xref: /freebsd/sys/compat/linux/linux_event.c (revision 77ebcc05eac2658a68b447e654cfdf7ff3e703b8)
1 /*-
2  * Copyright (c) 2007 Roman Divacky
3  * Copyright (c) 2014 Dmitry Chagin
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30 
31 #include "opt_compat.h"
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/imgact.h>
36 #include <sys/kernel.h>
37 #include <sys/limits.h>
38 #include <sys/lock.h>
39 #include <sys/mutex.h>
40 #include <sys/callout.h>
41 #include <sys/capsicum.h>
42 #include <sys/types.h>
43 #include <sys/user.h>
44 #include <sys/file.h>
45 #include <sys/filedesc.h>
46 #include <sys/filio.h>
47 #include <sys/errno.h>
48 #include <sys/event.h>
49 #include <sys/poll.h>
50 #include <sys/proc.h>
51 #include <sys/selinfo.h>
52 #include <sys/sx.h>
53 #include <sys/syscallsubr.h>
54 #include <sys/timespec.h>
55 
56 #ifdef COMPAT_LINUX32
57 #include <machine/../linux32/linux.h>
58 #include <machine/../linux32/linux32_proto.h>
59 #else
60 #include <machine/../linux/linux.h>
61 #include <machine/../linux/linux_proto.h>
62 #endif
63 
64 #include <compat/linux/linux_emul.h>
65 #include <compat/linux/linux_event.h>
66 #include <compat/linux/linux_file.h>
67 #include <compat/linux/linux_timer.h>
68 #include <compat/linux/linux_util.h>
69 
70 /*
71  * epoll defines 'struct epoll_event' with the field 'data' as 64 bits
72  * on all architectures. But on 32 bit architectures BSD 'struct kevent' only
73  * has 32 bit opaque pointer as 'udata' field. So we can't pass epoll supplied
74  * data verbatuim. Therefore we allocate 64-bit memory block to pass
75  * user supplied data for every file descriptor.
76  */
77 
78 typedef uint64_t	epoll_udata_t;
79 
80 struct epoll_emuldata {
81 	uint32_t	fdc;		/* epoll udata max index */
82 	epoll_udata_t	udata[1];	/* epoll user data vector */
83 };
84 
85 #define	EPOLL_DEF_SZ		16
86 #define	EPOLL_SIZE(fdn)			\
87 	(sizeof(struct epoll_emuldata)+(fdn) * sizeof(epoll_udata_t))
88 
89 struct epoll_event {
90 	uint32_t	events;
91 	epoll_udata_t	data;
92 }
93 #if defined(__amd64__)
94 __attribute__((packed))
95 #endif
96 ;
97 
98 #define	LINUX_MAX_EVENTS	(INT_MAX / sizeof(struct epoll_event))
99 
100 static void	epoll_fd_install(struct thread *td, int fd, epoll_udata_t udata);
101 static int	epoll_to_kevent(struct thread *td, struct file *epfp,
102 		    int fd, struct epoll_event *l_event, int *kev_flags,
103 		    struct kevent *kevent, int *nkevents);
104 static void	kevent_to_epoll(struct kevent *kevent, struct epoll_event *l_event);
105 static int	epoll_kev_copyout(void *arg, struct kevent *kevp, int count);
106 static int	epoll_kev_copyin(void *arg, struct kevent *kevp, int count);
107 static int	epoll_delete_event(struct thread *td, struct file *epfp,
108 		    int fd, int filter);
109 static int	epoll_delete_all_events(struct thread *td, struct file *epfp,
110 		    int fd);
111 
112 struct epoll_copyin_args {
113 	struct kevent	*changelist;
114 };
115 
116 struct epoll_copyout_args {
117 	struct epoll_event	*leventlist;
118 	struct proc		*p;
119 	uint32_t		count;
120 	int			error;
121 };
122 
123 /* eventfd */
124 typedef uint64_t	eventfd_t;
125 
126 static fo_rdwr_t	eventfd_read;
127 static fo_rdwr_t	eventfd_write;
128 static fo_ioctl_t	eventfd_ioctl;
129 static fo_poll_t	eventfd_poll;
130 static fo_kqfilter_t	eventfd_kqfilter;
131 static fo_stat_t	eventfd_stat;
132 static fo_close_t	eventfd_close;
133 static fo_fill_kinfo_t	eventfd_fill_kinfo;
134 
135 static struct fileops eventfdops = {
136 	.fo_read = eventfd_read,
137 	.fo_write = eventfd_write,
138 	.fo_truncate = invfo_truncate,
139 	.fo_ioctl = eventfd_ioctl,
140 	.fo_poll = eventfd_poll,
141 	.fo_kqfilter = eventfd_kqfilter,
142 	.fo_stat = eventfd_stat,
143 	.fo_close = eventfd_close,
144 	.fo_chmod = invfo_chmod,
145 	.fo_chown = invfo_chown,
146 	.fo_sendfile = invfo_sendfile,
147 	.fo_fill_kinfo = eventfd_fill_kinfo,
148 	.fo_flags = DFLAG_PASSABLE
149 };
150 
151 static void	filt_eventfddetach(struct knote *kn);
152 static int	filt_eventfdread(struct knote *kn, long hint);
153 static int	filt_eventfdwrite(struct knote *kn, long hint);
154 
155 static struct filterops eventfd_rfiltops = {
156 	.f_isfd = 1,
157 	.f_detach = filt_eventfddetach,
158 	.f_event = filt_eventfdread
159 };
160 static struct filterops eventfd_wfiltops = {
161 	.f_isfd = 1,
162 	.f_detach = filt_eventfddetach,
163 	.f_event = filt_eventfdwrite
164 };
165 
166 /* timerfd */
167 typedef uint64_t	timerfd_t;
168 
169 static fo_rdwr_t	timerfd_read;
170 static fo_poll_t	timerfd_poll;
171 static fo_kqfilter_t	timerfd_kqfilter;
172 static fo_stat_t	timerfd_stat;
173 static fo_close_t	timerfd_close;
174 static fo_fill_kinfo_t	timerfd_fill_kinfo;
175 
176 static struct fileops timerfdops = {
177 	.fo_read = timerfd_read,
178 	.fo_write = invfo_rdwr,
179 	.fo_truncate = invfo_truncate,
180 	.fo_ioctl = eventfd_ioctl,
181 	.fo_poll = timerfd_poll,
182 	.fo_kqfilter = timerfd_kqfilter,
183 	.fo_stat = timerfd_stat,
184 	.fo_close = timerfd_close,
185 	.fo_chmod = invfo_chmod,
186 	.fo_chown = invfo_chown,
187 	.fo_sendfile = invfo_sendfile,
188 	.fo_fill_kinfo = timerfd_fill_kinfo,
189 	.fo_flags = DFLAG_PASSABLE
190 };
191 
192 static void	filt_timerfddetach(struct knote *kn);
193 static int	filt_timerfdread(struct knote *kn, long hint);
194 
195 static struct filterops timerfd_rfiltops = {
196 	.f_isfd = 1,
197 	.f_detach = filt_timerfddetach,
198 	.f_event = filt_timerfdread
199 };
200 
201 struct eventfd {
202 	eventfd_t	efd_count;
203 	uint32_t	efd_flags;
204 	struct selinfo	efd_sel;
205 	struct mtx	efd_lock;
206 };
207 
208 struct timerfd {
209 	clockid_t	tfd_clockid;
210 	struct itimerspec tfd_time;
211 	struct callout	tfd_callout;
212 	timerfd_t	tfd_count;
213 	bool		tfd_canceled;
214 	struct selinfo	tfd_sel;
215 	struct mtx	tfd_lock;
216 };
217 
218 static int	eventfd_create(struct thread *td, uint32_t initval, int flags);
219 static void	linux_timerfd_expire(void *);
220 static void	linux_timerfd_curval(struct timerfd *, struct itimerspec *);
221 
222 
223 static void
224 epoll_fd_install(struct thread *td, int fd, epoll_udata_t udata)
225 {
226 	struct linux_pemuldata *pem;
227 	struct epoll_emuldata *emd;
228 	struct proc *p;
229 
230 	p = td->td_proc;
231 
232 	pem = pem_find(p);
233 	KASSERT(pem != NULL, ("epoll proc emuldata not found.\n"));
234 
235 	LINUX_PEM_XLOCK(pem);
236 	if (pem->epoll == NULL) {
237 		emd = malloc(EPOLL_SIZE(fd), M_EPOLL, M_WAITOK);
238 		emd->fdc = fd;
239 		pem->epoll = emd;
240 	} else {
241 		emd = pem->epoll;
242 		if (fd > emd->fdc) {
243 			emd = realloc(emd, EPOLL_SIZE(fd), M_EPOLL, M_WAITOK);
244 			emd->fdc = fd;
245 			pem->epoll = emd;
246 		}
247 	}
248 	emd->udata[fd] = udata;
249 	LINUX_PEM_XUNLOCK(pem);
250 }
251 
252 static int
253 epoll_create_common(struct thread *td, int flags)
254 {
255 	int error;
256 
257 	error = kern_kqueue(td, flags, NULL);
258 	if (error != 0)
259 		return (error);
260 
261 	epoll_fd_install(td, EPOLL_DEF_SZ, 0);
262 
263 	return (0);
264 }
265 
266 #ifdef LINUX_LEGACY_SYSCALLS
267 int
268 linux_epoll_create(struct thread *td, struct linux_epoll_create_args *args)
269 {
270 
271 	/*
272 	 * args->size is unused. Linux just tests it
273 	 * and then forgets it as well.
274 	 */
275 	if (args->size <= 0)
276 		return (EINVAL);
277 
278 	return (epoll_create_common(td, 0));
279 }
280 #endif
281 
282 int
283 linux_epoll_create1(struct thread *td, struct linux_epoll_create1_args *args)
284 {
285 	int flags;
286 
287 	if ((args->flags & ~(LINUX_O_CLOEXEC)) != 0)
288 		return (EINVAL);
289 
290 	flags = 0;
291 	if ((args->flags & LINUX_O_CLOEXEC) != 0)
292 		flags |= O_CLOEXEC;
293 
294 	return (epoll_create_common(td, flags));
295 }
296 
297 /* Structure converting function from epoll to kevent. */
298 static int
299 epoll_to_kevent(struct thread *td, struct file *epfp,
300     int fd, struct epoll_event *l_event, int *kev_flags,
301     struct kevent *kevent, int *nkevents)
302 {
303 	uint32_t levents = l_event->events;
304 	struct linux_pemuldata *pem;
305 	struct proc *p;
306 
307 	/* flags related to how event is registered */
308 	if ((levents & LINUX_EPOLLONESHOT) != 0)
309 		*kev_flags |= EV_ONESHOT;
310 	if ((levents & LINUX_EPOLLET) != 0)
311 		*kev_flags |= EV_CLEAR;
312 	if ((levents & LINUX_EPOLLERR) != 0)
313 		*kev_flags |= EV_ERROR;
314 	if ((levents & LINUX_EPOLLRDHUP) != 0)
315 		*kev_flags |= EV_EOF;
316 
317 	/* flags related to what event is registered */
318 	if ((levents & LINUX_EPOLL_EVRD) != 0) {
319 		EV_SET(kevent++, fd, EVFILT_READ, *kev_flags, 0, 0, 0);
320 		++(*nkevents);
321 	}
322 	if ((levents & LINUX_EPOLL_EVWR) != 0) {
323 		EV_SET(kevent++, fd, EVFILT_WRITE, *kev_flags, 0, 0, 0);
324 		++(*nkevents);
325 	}
326 
327 	if ((levents & ~(LINUX_EPOLL_EVSUP)) != 0) {
328 		p = td->td_proc;
329 
330 		pem = pem_find(p);
331 		KASSERT(pem != NULL, ("epoll proc emuldata not found.\n"));
332 		KASSERT(pem->epoll != NULL, ("epoll proc epolldata not found.\n"));
333 
334 		LINUX_PEM_XLOCK(pem);
335 		if ((pem->flags & LINUX_XUNSUP_EPOLL) == 0) {
336 			pem->flags |= LINUX_XUNSUP_EPOLL;
337 			LINUX_PEM_XUNLOCK(pem);
338 			linux_msg(td, "epoll_ctl unsupported flags: 0x%x\n",
339 			    levents);
340 		} else
341 			LINUX_PEM_XUNLOCK(pem);
342 		return (EINVAL);
343 	}
344 
345 	return (0);
346 }
347 
348 /*
349  * Structure converting function from kevent to epoll. In a case
350  * this is called on error in registration we store the error in
351  * event->data and pick it up later in linux_epoll_ctl().
352  */
353 static void
354 kevent_to_epoll(struct kevent *kevent, struct epoll_event *l_event)
355 {
356 
357 	if ((kevent->flags & EV_ERROR) != 0) {
358 		l_event->events = LINUX_EPOLLERR;
359 		return;
360 	}
361 
362 	/* XXX EPOLLPRI, EPOLLHUP */
363 	switch (kevent->filter) {
364 	case EVFILT_READ:
365 		l_event->events = LINUX_EPOLLIN;
366 		if ((kevent->flags & EV_EOF) != 0)
367 			l_event->events |= LINUX_EPOLLRDHUP;
368 	break;
369 	case EVFILT_WRITE:
370 		l_event->events = LINUX_EPOLLOUT;
371 	break;
372 	}
373 }
374 
375 /*
376  * Copyout callback used by kevent. This converts kevent
377  * events to epoll events and copies them back to the
378  * userspace. This is also called on error on registering
379  * of the filter.
380  */
381 static int
382 epoll_kev_copyout(void *arg, struct kevent *kevp, int count)
383 {
384 	struct epoll_copyout_args *args;
385 	struct linux_pemuldata *pem;
386 	struct epoll_emuldata *emd;
387 	struct epoll_event *eep;
388 	int error, fd, i;
389 
390 	args = (struct epoll_copyout_args*) arg;
391 	eep = malloc(sizeof(*eep) * count, M_EPOLL, M_WAITOK | M_ZERO);
392 
393 	pem = pem_find(args->p);
394 	KASSERT(pem != NULL, ("epoll proc emuldata not found.\n"));
395 	LINUX_PEM_SLOCK(pem);
396 	emd = pem->epoll;
397 	KASSERT(emd != NULL, ("epoll proc epolldata not found.\n"));
398 
399 	for (i = 0; i < count; i++) {
400 		kevent_to_epoll(&kevp[i], &eep[i]);
401 
402 		fd = kevp[i].ident;
403 		KASSERT(fd <= emd->fdc, ("epoll user data vector"
404 						    " is too small.\n"));
405 		eep[i].data = emd->udata[fd];
406 	}
407 	LINUX_PEM_SUNLOCK(pem);
408 
409 	error = copyout(eep, args->leventlist, count * sizeof(*eep));
410 	if (error == 0) {
411 		args->leventlist += count;
412 		args->count += count;
413 	} else if (args->error == 0)
414 		args->error = error;
415 
416 	free(eep, M_EPOLL);
417 	return (error);
418 }
419 
420 /*
421  * Copyin callback used by kevent. This copies already
422  * converted filters from kernel memory to the kevent
423  * internal kernel memory. Hence the memcpy instead of
424  * copyin.
425  */
426 static int
427 epoll_kev_copyin(void *arg, struct kevent *kevp, int count)
428 {
429 	struct epoll_copyin_args *args;
430 
431 	args = (struct epoll_copyin_args*) arg;
432 
433 	memcpy(kevp, args->changelist, count * sizeof(*kevp));
434 	args->changelist += count;
435 
436 	return (0);
437 }
438 
439 /*
440  * Load epoll filter, convert it to kevent filter
441  * and load it into kevent subsystem.
442  */
443 int
444 linux_epoll_ctl(struct thread *td, struct linux_epoll_ctl_args *args)
445 {
446 	struct file *epfp, *fp;
447 	struct epoll_copyin_args ciargs;
448 	struct kevent kev[2];
449 	struct kevent_copyops k_ops = { &ciargs,
450 					NULL,
451 					epoll_kev_copyin};
452 	struct epoll_event le;
453 	cap_rights_t rights;
454 	int kev_flags;
455 	int nchanges = 0;
456 	int error;
457 
458 	if (args->op != LINUX_EPOLL_CTL_DEL) {
459 		error = copyin(args->event, &le, sizeof(le));
460 		if (error != 0)
461 			return (error);
462 	}
463 
464 	error = fget(td, args->epfd,
465 	    cap_rights_init(&rights, CAP_KQUEUE_CHANGE), &epfp);
466 	if (error != 0)
467 		return (error);
468 	if (epfp->f_type != DTYPE_KQUEUE) {
469 		error = EINVAL;
470 		goto leave1;
471 	}
472 
473 	 /* Protect user data vector from incorrectly supplied fd. */
474 	error = fget(td, args->fd, cap_rights_init(&rights, CAP_POLL_EVENT), &fp);
475 	if (error != 0)
476 		goto leave1;
477 
478 	/* Linux disallows spying on himself */
479 	if (epfp == fp) {
480 		error = EINVAL;
481 		goto leave0;
482 	}
483 
484 	ciargs.changelist = kev;
485 
486 	if (args->op != LINUX_EPOLL_CTL_DEL) {
487 		kev_flags = EV_ADD | EV_ENABLE;
488 		error = epoll_to_kevent(td, epfp, args->fd, &le,
489 		    &kev_flags, kev, &nchanges);
490 		if (error != 0)
491 			goto leave0;
492 	}
493 
494 	switch (args->op) {
495 	case LINUX_EPOLL_CTL_MOD:
496 		error = epoll_delete_all_events(td, epfp, args->fd);
497 		if (error != 0)
498 			goto leave0;
499 		break;
500 
501 	case LINUX_EPOLL_CTL_ADD:
502 		/*
503 		 * kqueue_register() return ENOENT if event does not exists
504 		 * and the EV_ADD flag is not set.
505 		 */
506 		kev[0].flags &= ~EV_ADD;
507 		error = kqfd_register(args->epfd, &kev[0], td, M_WAITOK);
508 		if (error != ENOENT) {
509 			error = EEXIST;
510 			goto leave0;
511 		}
512 		error = 0;
513 		kev[0].flags |= EV_ADD;
514 		break;
515 
516 	case LINUX_EPOLL_CTL_DEL:
517 		/* CTL_DEL means unregister this fd with this epoll */
518 		error = epoll_delete_all_events(td, epfp, args->fd);
519 		goto leave0;
520 
521 	default:
522 		error = EINVAL;
523 		goto leave0;
524 	}
525 
526 	epoll_fd_install(td, args->fd, le.data);
527 
528 	error = kern_kevent_fp(td, epfp, nchanges, 0, &k_ops, NULL);
529 
530 leave0:
531 	fdrop(fp, td);
532 
533 leave1:
534 	fdrop(epfp, td);
535 	return (error);
536 }
537 
538 /*
539  * Wait for a filter to be triggered on the epoll file descriptor.
540  */
541 static int
542 linux_epoll_wait_common(struct thread *td, int epfd, struct epoll_event *events,
543     int maxevents, int timeout, sigset_t *uset)
544 {
545 	struct epoll_copyout_args coargs;
546 	struct kevent_copyops k_ops = { &coargs,
547 					epoll_kev_copyout,
548 					NULL};
549 	struct timespec ts, *tsp;
550 	cap_rights_t rights;
551 	struct file *epfp;
552 	sigset_t omask;
553 	int error;
554 
555 	if (maxevents <= 0 || maxevents > LINUX_MAX_EVENTS)
556 		return (EINVAL);
557 
558 	error = fget(td, epfd,
559 	    cap_rights_init(&rights, CAP_KQUEUE_EVENT), &epfp);
560 	if (error != 0)
561 		return (error);
562 	if (epfp->f_type != DTYPE_KQUEUE) {
563 		error = EINVAL;
564 		goto leave1;
565 	}
566 	if (uset != NULL) {
567 		error = kern_sigprocmask(td, SIG_SETMASK, uset,
568 		    &omask, 0);
569 		if (error != 0)
570 			goto leave1;
571 		td->td_pflags |= TDP_OLDMASK;
572 		/*
573 		 * Make sure that ast() is called on return to
574 		 * usermode and TDP_OLDMASK is cleared, restoring old
575 		 * sigmask.
576 		 */
577 		thread_lock(td);
578 		td->td_flags |= TDF_ASTPENDING;
579 		thread_unlock(td);
580 	}
581 
582 
583 	coargs.leventlist = events;
584 	coargs.p = td->td_proc;
585 	coargs.count = 0;
586 	coargs.error = 0;
587 
588 	if (timeout != -1) {
589 		if (timeout < 0) {
590 			error = EINVAL;
591 			goto leave0;
592 		}
593 		/* Convert from milliseconds to timespec. */
594 		ts.tv_sec = timeout / 1000;
595 		ts.tv_nsec = (timeout % 1000) * 1000000;
596 		tsp = &ts;
597 	} else {
598 		tsp = NULL;
599 	}
600 
601 	error = kern_kevent_fp(td, epfp, 0, maxevents, &k_ops, tsp);
602 	if (error == 0 && coargs.error != 0)
603 		error = coargs.error;
604 
605 	/*
606 	 * kern_kevent might return ENOMEM which is not expected from epoll_wait.
607 	 * Maybe we should translate that but I don't think it matters at all.
608 	 */
609 	if (error == 0)
610 		td->td_retval[0] = coargs.count;
611 
612 leave0:
613 	if (uset != NULL)
614 		error = kern_sigprocmask(td, SIG_SETMASK, &omask,
615 		    NULL, 0);
616 leave1:
617 	fdrop(epfp, td);
618 	return (error);
619 }
620 
621 #ifdef LINUX_LEGACY_SYSCALLS
622 int
623 linux_epoll_wait(struct thread *td, struct linux_epoll_wait_args *args)
624 {
625 
626 	return (linux_epoll_wait_common(td, args->epfd, args->events,
627 	    args->maxevents, args->timeout, NULL));
628 }
629 #endif
630 
631 int
632 linux_epoll_pwait(struct thread *td, struct linux_epoll_pwait_args *args)
633 {
634 	sigset_t mask, *pmask;
635 	l_sigset_t lmask;
636 	int error;
637 
638 	if (args->mask != NULL) {
639 		if (args->sigsetsize != sizeof(l_sigset_t))
640 			return (EINVAL);
641 		error = copyin(args->mask, &lmask, sizeof(l_sigset_t));
642 		if (error != 0)
643 			return (error);
644 		linux_to_bsd_sigset(&lmask, &mask);
645 		pmask = &mask;
646 	} else
647 		pmask = NULL;
648 	return (linux_epoll_wait_common(td, args->epfd, args->events,
649 	    args->maxevents, args->timeout, pmask));
650 }
651 
652 static int
653 epoll_delete_event(struct thread *td, struct file *epfp, int fd, int filter)
654 {
655 	struct epoll_copyin_args ciargs;
656 	struct kevent kev;
657 	struct kevent_copyops k_ops = { &ciargs,
658 					NULL,
659 					epoll_kev_copyin};
660 
661 	ciargs.changelist = &kev;
662 	EV_SET(&kev, fd, filter, EV_DELETE | EV_DISABLE, 0, 0, 0);
663 
664 	return (kern_kevent_fp(td, epfp, 1, 0, &k_ops, NULL));
665 }
666 
667 static int
668 epoll_delete_all_events(struct thread *td, struct file *epfp, int fd)
669 {
670 	int error1, error2;
671 
672 	error1 = epoll_delete_event(td, epfp, fd, EVFILT_READ);
673 	error2 = epoll_delete_event(td, epfp, fd, EVFILT_WRITE);
674 
675 	/* return 0 if at least one result positive */
676 	return (error1 == 0 ? 0 : error2);
677 }
678 
679 static int
680 eventfd_create(struct thread *td, uint32_t initval, int flags)
681 {
682 	struct filedesc *fdp;
683 	struct eventfd *efd;
684 	struct file *fp;
685 	int fflags, fd, error;
686 
687 	fflags = 0;
688 	if ((flags & LINUX_O_CLOEXEC) != 0)
689 		fflags |= O_CLOEXEC;
690 
691 	fdp = td->td_proc->p_fd;
692 	error = falloc(td, &fp, &fd, fflags);
693 	if (error != 0)
694 		return (error);
695 
696 	efd = malloc(sizeof(*efd), M_EPOLL, M_WAITOK | M_ZERO);
697 	efd->efd_flags = flags;
698 	efd->efd_count = initval;
699 	mtx_init(&efd->efd_lock, "eventfd", NULL, MTX_DEF);
700 
701 	knlist_init_mtx(&efd->efd_sel.si_note, &efd->efd_lock);
702 
703 	fflags = FREAD | FWRITE;
704 	if ((flags & LINUX_O_NONBLOCK) != 0)
705 		fflags |= FNONBLOCK;
706 
707 	finit(fp, fflags, DTYPE_LINUXEFD, efd, &eventfdops);
708 	fdrop(fp, td);
709 
710 	td->td_retval[0] = fd;
711 	return (error);
712 }
713 
714 #ifdef LINUX_LEGACY_SYSCALLS
715 int
716 linux_eventfd(struct thread *td, struct linux_eventfd_args *args)
717 {
718 
719 	return (eventfd_create(td, args->initval, 0));
720 }
721 #endif
722 
723 int
724 linux_eventfd2(struct thread *td, struct linux_eventfd2_args *args)
725 {
726 
727 	if ((args->flags & ~(LINUX_O_CLOEXEC|LINUX_O_NONBLOCK|LINUX_EFD_SEMAPHORE)) != 0)
728 		return (EINVAL);
729 
730 	return (eventfd_create(td, args->initval, args->flags));
731 }
732 
733 static int
734 eventfd_close(struct file *fp, struct thread *td)
735 {
736 	struct eventfd *efd;
737 
738 	efd = fp->f_data;
739 	if (fp->f_type != DTYPE_LINUXEFD || efd == NULL)
740 		return (EINVAL);
741 
742 	seldrain(&efd->efd_sel);
743 	knlist_destroy(&efd->efd_sel.si_note);
744 
745 	fp->f_ops = &badfileops;
746 	mtx_destroy(&efd->efd_lock);
747 	free(efd, M_EPOLL);
748 
749 	return (0);
750 }
751 
752 static int
753 eventfd_read(struct file *fp, struct uio *uio, struct ucred *active_cred,
754     int flags, struct thread *td)
755 {
756 	struct eventfd *efd;
757 	eventfd_t count;
758 	int error;
759 
760 	efd = fp->f_data;
761 	if (fp->f_type != DTYPE_LINUXEFD || efd == NULL)
762 		return (EINVAL);
763 
764 	if (uio->uio_resid < sizeof(eventfd_t))
765 		return (EINVAL);
766 
767 	error = 0;
768 	mtx_lock(&efd->efd_lock);
769 retry:
770 	if (efd->efd_count == 0) {
771 		if ((fp->f_flag & FNONBLOCK) != 0) {
772 			mtx_unlock(&efd->efd_lock);
773 			return (EAGAIN);
774 		}
775 		error = mtx_sleep(&efd->efd_count, &efd->efd_lock, PCATCH, "lefdrd", 0);
776 		if (error == 0)
777 			goto retry;
778 	}
779 	if (error == 0) {
780 		if ((efd->efd_flags & LINUX_EFD_SEMAPHORE) != 0) {
781 			count = 1;
782 			--efd->efd_count;
783 		} else {
784 			count = efd->efd_count;
785 			efd->efd_count = 0;
786 		}
787 		KNOTE_LOCKED(&efd->efd_sel.si_note, 0);
788 		selwakeup(&efd->efd_sel);
789 		wakeup(&efd->efd_count);
790 		mtx_unlock(&efd->efd_lock);
791 		error = uiomove(&count, sizeof(eventfd_t), uio);
792 	} else
793 		mtx_unlock(&efd->efd_lock);
794 
795 	return (error);
796 }
797 
798 static int
799 eventfd_write(struct file *fp, struct uio *uio, struct ucred *active_cred,
800      int flags, struct thread *td)
801 {
802 	struct eventfd *efd;
803 	eventfd_t count;
804 	int error;
805 
806 	efd = fp->f_data;
807 	if (fp->f_type != DTYPE_LINUXEFD || efd == NULL)
808 		return (EINVAL);
809 
810 	if (uio->uio_resid < sizeof(eventfd_t))
811 		return (EINVAL);
812 
813 	error = uiomove(&count, sizeof(eventfd_t), uio);
814 	if (error != 0)
815 		return (error);
816 	if (count == UINT64_MAX)
817 		return (EINVAL);
818 
819 	mtx_lock(&efd->efd_lock);
820 retry:
821 	if (UINT64_MAX - efd->efd_count <= count) {
822 		if ((fp->f_flag & FNONBLOCK) != 0) {
823 			mtx_unlock(&efd->efd_lock);
824 			/* Do not not return the number of bytes written */
825 			uio->uio_resid += sizeof(eventfd_t);
826 			return (EAGAIN);
827 		}
828 		error = mtx_sleep(&efd->efd_count, &efd->efd_lock,
829 		    PCATCH, "lefdwr", 0);
830 		if (error == 0)
831 			goto retry;
832 	}
833 	if (error == 0) {
834 		efd->efd_count += count;
835 		KNOTE_LOCKED(&efd->efd_sel.si_note, 0);
836 		selwakeup(&efd->efd_sel);
837 		wakeup(&efd->efd_count);
838 	}
839 	mtx_unlock(&efd->efd_lock);
840 
841 	return (error);
842 }
843 
844 static int
845 eventfd_poll(struct file *fp, int events, struct ucred *active_cred,
846     struct thread *td)
847 {
848 	struct eventfd *efd;
849 	int revents = 0;
850 
851 	efd = fp->f_data;
852 	if (fp->f_type != DTYPE_LINUXEFD || efd == NULL)
853 		return (POLLERR);
854 
855 	mtx_lock(&efd->efd_lock);
856 	if ((events & (POLLIN|POLLRDNORM)) && efd->efd_count > 0)
857 		revents |= events & (POLLIN|POLLRDNORM);
858 	if ((events & (POLLOUT|POLLWRNORM)) && UINT64_MAX - 1 > efd->efd_count)
859 		revents |= events & (POLLOUT|POLLWRNORM);
860 	if (revents == 0)
861 		selrecord(td, &efd->efd_sel);
862 	mtx_unlock(&efd->efd_lock);
863 
864 	return (revents);
865 }
866 
867 /*ARGSUSED*/
868 static int
869 eventfd_kqfilter(struct file *fp, struct knote *kn)
870 {
871 	struct eventfd *efd;
872 
873 	efd = fp->f_data;
874 	if (fp->f_type != DTYPE_LINUXEFD || efd == NULL)
875 		return (EINVAL);
876 
877 	mtx_lock(&efd->efd_lock);
878 	switch (kn->kn_filter) {
879 	case EVFILT_READ:
880 		kn->kn_fop = &eventfd_rfiltops;
881 		break;
882 	case EVFILT_WRITE:
883 		kn->kn_fop = &eventfd_wfiltops;
884 		break;
885 	default:
886 		mtx_unlock(&efd->efd_lock);
887 		return (EINVAL);
888 	}
889 
890 	kn->kn_hook = efd;
891 	knlist_add(&efd->efd_sel.si_note, kn, 1);
892 	mtx_unlock(&efd->efd_lock);
893 
894 	return (0);
895 }
896 
897 static void
898 filt_eventfddetach(struct knote *kn)
899 {
900 	struct eventfd *efd = kn->kn_hook;
901 
902 	mtx_lock(&efd->efd_lock);
903 	knlist_remove(&efd->efd_sel.si_note, kn, 1);
904 	mtx_unlock(&efd->efd_lock);
905 }
906 
907 /*ARGSUSED*/
908 static int
909 filt_eventfdread(struct knote *kn, long hint)
910 {
911 	struct eventfd *efd = kn->kn_hook;
912 	int ret;
913 
914 	mtx_assert(&efd->efd_lock, MA_OWNED);
915 	ret = (efd->efd_count > 0);
916 
917 	return (ret);
918 }
919 
920 /*ARGSUSED*/
921 static int
922 filt_eventfdwrite(struct knote *kn, long hint)
923 {
924 	struct eventfd *efd = kn->kn_hook;
925 	int ret;
926 
927 	mtx_assert(&efd->efd_lock, MA_OWNED);
928 	ret = (UINT64_MAX - 1 > efd->efd_count);
929 
930 	return (ret);
931 }
932 
933 /*ARGSUSED*/
934 static int
935 eventfd_ioctl(struct file *fp, u_long cmd, void *data,
936     struct ucred *active_cred, struct thread *td)
937 {
938 
939 	if (fp->f_data == NULL || (fp->f_type != DTYPE_LINUXEFD &&
940 	    fp->f_type != DTYPE_LINUXTFD))
941 		return (EINVAL);
942 
943 	switch (cmd)
944 	{
945 	case FIONBIO:
946 		if ((*(int *)data))
947 			atomic_set_int(&fp->f_flag, FNONBLOCK);
948 		else
949 			atomic_clear_int(&fp->f_flag, FNONBLOCK);
950 	case FIOASYNC:
951 		return (0);
952 	default:
953 		return (ENXIO);
954 	}
955 }
956 
957 /*ARGSUSED*/
958 static int
959 eventfd_stat(struct file *fp, struct stat *st, struct ucred *active_cred,
960     struct thread *td)
961 {
962 
963 	return (ENXIO);
964 }
965 
966 /*ARGSUSED*/
967 static int
968 eventfd_fill_kinfo(struct file *fp, struct kinfo_file *kif, struct filedesc *fdp)
969 {
970 
971 	kif->kf_type = KF_TYPE_UNKNOWN;
972 	return (0);
973 }
974 
975 int
976 linux_timerfd_create(struct thread *td, struct linux_timerfd_create_args *args)
977 {
978 	struct filedesc *fdp;
979 	struct timerfd *tfd;
980 	struct file *fp;
981 	clockid_t clockid;
982 	int fflags, fd, error;
983 
984 	if ((args->flags & ~LINUX_TFD_CREATE_FLAGS) != 0)
985 		return (EINVAL);
986 
987 	error = linux_to_native_clockid(&clockid, args->clockid);
988 	if (error != 0)
989 		return (error);
990 	if (clockid != CLOCK_REALTIME && clockid != CLOCK_MONOTONIC)
991 		return (EINVAL);
992 
993 	fflags = 0;
994 	if ((args->flags & LINUX_TFD_CLOEXEC) != 0)
995 		fflags |= O_CLOEXEC;
996 
997 	fdp = td->td_proc->p_fd;
998 	error = falloc(td, &fp, &fd, fflags);
999 	if (error != 0)
1000 		return (error);
1001 
1002 	tfd = malloc(sizeof(*tfd), M_EPOLL, M_WAITOK | M_ZERO);
1003 	tfd->tfd_clockid = clockid;
1004 	mtx_init(&tfd->tfd_lock, "timerfd", NULL, MTX_DEF);
1005 
1006 	callout_init_mtx(&tfd->tfd_callout, &tfd->tfd_lock, 0);
1007 	knlist_init_mtx(&tfd->tfd_sel.si_note, &tfd->tfd_lock);
1008 
1009 	fflags = FREAD;
1010 	if ((args->flags & LINUX_O_NONBLOCK) != 0)
1011 		fflags |= FNONBLOCK;
1012 
1013 	finit(fp, fflags, DTYPE_LINUXTFD, tfd, &timerfdops);
1014 	fdrop(fp, td);
1015 
1016 	td->td_retval[0] = fd;
1017 	return (error);
1018 }
1019 
1020 static int
1021 timerfd_close(struct file *fp, struct thread *td)
1022 {
1023 	struct timerfd *tfd;
1024 
1025 	tfd = fp->f_data;
1026 	if (fp->f_type != DTYPE_LINUXTFD || tfd == NULL)
1027 		return (EINVAL);
1028 
1029 	timespecclear(&tfd->tfd_time.it_value);
1030 	timespecclear(&tfd->tfd_time.it_interval);
1031 
1032 	mtx_lock(&tfd->tfd_lock);
1033 	callout_drain(&tfd->tfd_callout);
1034 	mtx_unlock(&tfd->tfd_lock);
1035 
1036 	seldrain(&tfd->tfd_sel);
1037 	knlist_destroy(&tfd->tfd_sel.si_note);
1038 
1039 	fp->f_ops = &badfileops;
1040 	mtx_destroy(&tfd->tfd_lock);
1041 	free(tfd, M_EPOLL);
1042 
1043 	return (0);
1044 }
1045 
1046 static int
1047 timerfd_read(struct file *fp, struct uio *uio, struct ucred *active_cred,
1048     int flags, struct thread *td)
1049 {
1050 	struct timerfd *tfd;
1051 	timerfd_t count;
1052 	int error;
1053 
1054 	tfd = fp->f_data;
1055 	if (fp->f_type != DTYPE_LINUXTFD || tfd == NULL)
1056 		return (EINVAL);
1057 
1058 	if (uio->uio_resid < sizeof(timerfd_t))
1059 		return (EINVAL);
1060 
1061 	error = 0;
1062 	mtx_lock(&tfd->tfd_lock);
1063 retry:
1064 	if (tfd->tfd_canceled) {
1065 		tfd->tfd_count = 0;
1066 		mtx_unlock(&tfd->tfd_lock);
1067 		return (ECANCELED);
1068 	}
1069 	if (tfd->tfd_count == 0) {
1070 		if ((fp->f_flag & FNONBLOCK) != 0) {
1071 			mtx_unlock(&tfd->tfd_lock);
1072 			return (EAGAIN);
1073 		}
1074 		error = mtx_sleep(&tfd->tfd_count, &tfd->tfd_lock, PCATCH, "ltfdrd", 0);
1075 		if (error == 0)
1076 			goto retry;
1077 	}
1078 	if (error == 0) {
1079 		count = tfd->tfd_count;
1080 		tfd->tfd_count = 0;
1081 		mtx_unlock(&tfd->tfd_lock);
1082 		error = uiomove(&count, sizeof(timerfd_t), uio);
1083 	} else
1084 		mtx_unlock(&tfd->tfd_lock);
1085 
1086 	return (error);
1087 }
1088 
1089 static int
1090 timerfd_poll(struct file *fp, int events, struct ucred *active_cred,
1091     struct thread *td)
1092 {
1093 	struct timerfd *tfd;
1094 	int revents = 0;
1095 
1096 	tfd = fp->f_data;
1097 	if (fp->f_type != DTYPE_LINUXTFD || tfd == NULL)
1098 		return (POLLERR);
1099 
1100 	mtx_lock(&tfd->tfd_lock);
1101 	if ((events & (POLLIN|POLLRDNORM)) && tfd->tfd_count > 0)
1102 		revents |= events & (POLLIN|POLLRDNORM);
1103 	if (revents == 0)
1104 		selrecord(td, &tfd->tfd_sel);
1105 	mtx_unlock(&tfd->tfd_lock);
1106 
1107 	return (revents);
1108 }
1109 
1110 /*ARGSUSED*/
1111 static int
1112 timerfd_kqfilter(struct file *fp, struct knote *kn)
1113 {
1114 	struct timerfd *tfd;
1115 
1116 	tfd = fp->f_data;
1117 	if (fp->f_type != DTYPE_LINUXTFD || tfd == NULL)
1118 		return (EINVAL);
1119 
1120 	if (kn->kn_filter == EVFILT_READ)
1121 		kn->kn_fop = &timerfd_rfiltops;
1122 	else
1123 		return (EINVAL);
1124 
1125 	kn->kn_hook = tfd;
1126 	knlist_add(&tfd->tfd_sel.si_note, kn, 0);
1127 
1128 	return (0);
1129 }
1130 
1131 static void
1132 filt_timerfddetach(struct knote *kn)
1133 {
1134 	struct timerfd *tfd = kn->kn_hook;
1135 
1136 	mtx_lock(&tfd->tfd_lock);
1137 	knlist_remove(&tfd->tfd_sel.si_note, kn, 1);
1138 	mtx_unlock(&tfd->tfd_lock);
1139 }
1140 
1141 /*ARGSUSED*/
1142 static int
1143 filt_timerfdread(struct knote *kn, long hint)
1144 {
1145 	struct timerfd *tfd = kn->kn_hook;
1146 
1147 	return (tfd->tfd_count > 0);
1148 }
1149 
1150 /*ARGSUSED*/
1151 static int
1152 timerfd_stat(struct file *fp, struct stat *st, struct ucred *active_cred,
1153     struct thread *td)
1154 {
1155 
1156 	return (ENXIO);
1157 }
1158 
1159 /*ARGSUSED*/
1160 static int
1161 timerfd_fill_kinfo(struct file *fp, struct kinfo_file *kif, struct filedesc *fdp)
1162 {
1163 
1164 	kif->kf_type = KF_TYPE_UNKNOWN;
1165 	return (0);
1166 }
1167 
1168 static void
1169 linux_timerfd_clocktime(struct timerfd *tfd, struct timespec *ts)
1170 {
1171 
1172 	if (tfd->tfd_clockid == CLOCK_REALTIME)
1173 		getnanotime(ts);
1174 	else	/* CLOCK_MONOTONIC */
1175 		getnanouptime(ts);
1176 }
1177 
1178 static void
1179 linux_timerfd_curval(struct timerfd *tfd, struct itimerspec *ots)
1180 {
1181 	struct timespec cts;
1182 
1183 	linux_timerfd_clocktime(tfd, &cts);
1184 	*ots = tfd->tfd_time;
1185 	if (ots->it_value.tv_sec != 0 || ots->it_value.tv_nsec != 0) {
1186 		timespecsub(&ots->it_value, &cts, &ots->it_value);
1187 		if (ots->it_value.tv_sec < 0 ||
1188 		    (ots->it_value.tv_sec == 0 &&
1189 		     ots->it_value.tv_nsec == 0)) {
1190 			ots->it_value.tv_sec  = 0;
1191 			ots->it_value.tv_nsec = 1;
1192 		}
1193 	}
1194 }
1195 
1196 int
1197 linux_timerfd_gettime(struct thread *td, struct linux_timerfd_gettime_args *args)
1198 {
1199 	struct l_itimerspec lots;
1200 	struct itimerspec ots;
1201 	struct timerfd *tfd;
1202 	struct file *fp;
1203 	int error;
1204 
1205 	error = fget(td, args->fd, &cap_read_rights, &fp);
1206 	if (error != 0)
1207 		return (error);
1208 	tfd = fp->f_data;
1209 	if (fp->f_type != DTYPE_LINUXTFD || tfd == NULL) {
1210 		error = EINVAL;
1211 		goto out;
1212 	}
1213 
1214 	mtx_lock(&tfd->tfd_lock);
1215 	linux_timerfd_curval(tfd, &ots);
1216 	mtx_unlock(&tfd->tfd_lock);
1217 
1218 	error = native_to_linux_itimerspec(&lots, &ots);
1219 	if (error == 0)
1220 		error = copyout(&lots, args->old_value, sizeof(lots));
1221 
1222 out:
1223 	fdrop(fp, td);
1224 	return (error);
1225 }
1226 
1227 int
1228 linux_timerfd_settime(struct thread *td, struct linux_timerfd_settime_args *args)
1229 {
1230 	struct l_itimerspec lots;
1231 	struct itimerspec nts, ots;
1232 	struct timespec cts, ts;
1233 	struct timerfd *tfd;
1234 	struct timeval tv;
1235 	struct file *fp;
1236 	int error;
1237 
1238 	if ((args->flags & ~LINUX_TFD_SETTIME_FLAGS) != 0)
1239 		return (EINVAL);
1240 
1241 	error = copyin(args->new_value, &lots, sizeof(lots));
1242 	if (error != 0)
1243 		return (error);
1244 	error = linux_to_native_itimerspec(&nts, &lots);
1245 	if (error != 0)
1246 		return (error);
1247 
1248 	error = fget(td, args->fd, &cap_write_rights, &fp);
1249 	if (error != 0)
1250 		return (error);
1251 	tfd = fp->f_data;
1252 	if (fp->f_type != DTYPE_LINUXTFD || tfd == NULL) {
1253 		error = EINVAL;
1254 		goto out;
1255 	}
1256 
1257 	mtx_lock(&tfd->tfd_lock);
1258 	if (!timespecisset(&nts.it_value))
1259 		timespecclear(&nts.it_interval);
1260 	if (args->old_value != NULL)
1261 		linux_timerfd_curval(tfd, &ots);
1262 
1263 	tfd->tfd_time = nts;
1264 	if (timespecisset(&nts.it_value)) {
1265 		linux_timerfd_clocktime(tfd, &cts);
1266 		ts = nts.it_value;
1267 		if ((args->flags & LINUX_TFD_TIMER_ABSTIME) == 0) {
1268 			timespecadd(&tfd->tfd_time.it_value, &cts,
1269 				&tfd->tfd_time.it_value);
1270 		} else {
1271 			timespecsub(&ts, &cts, &ts);
1272 		}
1273 		TIMESPEC_TO_TIMEVAL(&tv, &ts);
1274 		callout_reset(&tfd->tfd_callout, tvtohz(&tv),
1275 			linux_timerfd_expire, tfd);
1276 		tfd->tfd_canceled = false;
1277 	} else {
1278 		tfd->tfd_canceled = true;
1279 		callout_stop(&tfd->tfd_callout);
1280 	}
1281 	mtx_unlock(&tfd->tfd_lock);
1282 
1283 	if (args->old_value != NULL) {
1284 		error = native_to_linux_itimerspec(&lots, &ots);
1285 		if (error == 0)
1286 			error = copyout(&lots, args->old_value, sizeof(lots));
1287 	}
1288 
1289 out:
1290 	fdrop(fp, td);
1291 	return (error);
1292 }
1293 
1294 static void
1295 linux_timerfd_expire(void *arg)
1296 {
1297 	struct timespec cts, ts;
1298 	struct timeval tv;
1299 	struct timerfd *tfd;
1300 
1301 	tfd = (struct timerfd *)arg;
1302 
1303 	linux_timerfd_clocktime(tfd, &cts);
1304 	if (timespeccmp(&cts, &tfd->tfd_time.it_value, >=)) {
1305 		if (timespecisset(&tfd->tfd_time.it_interval))
1306 			timespecadd(&tfd->tfd_time.it_value,
1307 				    &tfd->tfd_time.it_interval,
1308 				    &tfd->tfd_time.it_value);
1309 		else
1310 			/* single shot timer */
1311 			timespecclear(&tfd->tfd_time.it_value);
1312 		if (timespecisset(&tfd->tfd_time.it_value)) {
1313 			timespecsub(&tfd->tfd_time.it_value, &cts, &ts);
1314 			TIMESPEC_TO_TIMEVAL(&tv, &ts);
1315 			callout_reset(&tfd->tfd_callout, tvtohz(&tv),
1316 				linux_timerfd_expire, tfd);
1317 		}
1318 		tfd->tfd_count++;
1319 		KNOTE_LOCKED(&tfd->tfd_sel.si_note, 0);
1320 		selwakeup(&tfd->tfd_sel);
1321 		wakeup(&tfd->tfd_count);
1322 	} else if (timespecisset(&tfd->tfd_time.it_value)) {
1323 		timespecsub(&tfd->tfd_time.it_value, &cts, &ts);
1324 		TIMESPEC_TO_TIMEVAL(&tv, &ts);
1325 		callout_reset(&tfd->tfd_callout, tvtohz(&tv),
1326 		    linux_timerfd_expire, tfd);
1327 	}
1328 }
1329