1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2002 Doug Rabson 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include "opt_inet.h" 33 #include "opt_inet6.h" 34 #include "opt_ktrace.h" 35 36 #define __ELF_WORD_SIZE 32 37 38 #ifdef COMPAT_FREEBSD11 39 #define _WANT_FREEBSD11_KEVENT 40 #endif 41 42 #include <sys/param.h> 43 #include <sys/bus.h> 44 #include <sys/capsicum.h> 45 #include <sys/clock.h> 46 #include <sys/exec.h> 47 #include <sys/fcntl.h> 48 #include <sys/filedesc.h> 49 #include <sys/imgact.h> 50 #include <sys/jail.h> 51 #include <sys/kernel.h> 52 #include <sys/limits.h> 53 #include <sys/linker.h> 54 #include <sys/lock.h> 55 #include <sys/malloc.h> 56 #include <sys/file.h> /* Must come after sys/malloc.h */ 57 #include <sys/imgact.h> 58 #include <sys/mbuf.h> 59 #include <sys/mman.h> 60 #include <sys/module.h> 61 #include <sys/mount.h> 62 #include <sys/mutex.h> 63 #include <sys/namei.h> 64 #include <sys/proc.h> 65 #include <sys/procctl.h> 66 #include <sys/ptrace.h> 67 #include <sys/reboot.h> 68 #include <sys/resource.h> 69 #include <sys/resourcevar.h> 70 #include <sys/selinfo.h> 71 #include <sys/eventvar.h> /* Must come after sys/selinfo.h */ 72 #include <sys/pipe.h> /* Must come after sys/selinfo.h */ 73 #include <sys/signal.h> 74 #include <sys/signalvar.h> 75 #include <sys/socket.h> 76 #include <sys/socketvar.h> 77 #include <sys/stat.h> 78 #include <sys/syscall.h> 79 #include <sys/syscallsubr.h> 80 #include <sys/sysctl.h> 81 #include <sys/sysent.h> 82 #include <sys/sysproto.h> 83 #include <sys/systm.h> 84 #include <sys/thr.h> 85 #include <sys/timex.h> 86 #include <sys/unistd.h> 87 #include <sys/ucontext.h> 88 #include <sys/umtx.h> 89 #include <sys/vnode.h> 90 #include <sys/wait.h> 91 #include <sys/ipc.h> 92 #include <sys/msg.h> 93 #include <sys/sem.h> 94 #include <sys/shm.h> 95 #ifdef KTRACE 96 #include <sys/ktrace.h> 97 #endif 98 99 #ifdef INET 100 #include <netinet/in.h> 101 #endif 102 103 #include <vm/vm.h> 104 #include <vm/vm_param.h> 105 #include <vm/pmap.h> 106 #include <vm/vm_map.h> 107 #include <vm/vm_object.h> 108 #include <vm/vm_extern.h> 109 110 #include <machine/cpu.h> 111 #include <machine/elf.h> 112 #ifdef __amd64__ 113 #include <machine/md_var.h> 114 #endif 115 116 #include <security/audit/audit.h> 117 118 #include <compat/freebsd32/freebsd32_util.h> 119 #include <compat/freebsd32/freebsd32.h> 120 #include <compat/freebsd32/freebsd32_ipc.h> 121 #include <compat/freebsd32/freebsd32_misc.h> 122 #include <compat/freebsd32/freebsd32_signal.h> 123 #include <compat/freebsd32/freebsd32_proto.h> 124 125 FEATURE(compat_freebsd_32bit, "Compatible with 32-bit FreeBSD"); 126 127 struct ptrace_io_desc32 { 128 int piod_op; 129 uint32_t piod_offs; 130 uint32_t piod_addr; 131 uint32_t piod_len; 132 }; 133 134 struct ptrace_sc_ret32 { 135 uint32_t sr_retval[2]; 136 int sr_error; 137 }; 138 139 struct ptrace_vm_entry32 { 140 int pve_entry; 141 int pve_timestamp; 142 uint32_t pve_start; 143 uint32_t pve_end; 144 uint32_t pve_offset; 145 u_int pve_prot; 146 u_int pve_pathlen; 147 int32_t pve_fileid; 148 u_int pve_fsid; 149 uint32_t pve_path; 150 }; 151 152 #ifdef __amd64__ 153 CTASSERT(sizeof(struct timeval32) == 8); 154 CTASSERT(sizeof(struct timespec32) == 8); 155 CTASSERT(sizeof(struct itimerval32) == 16); 156 CTASSERT(sizeof(struct bintime32) == 12); 157 #endif 158 CTASSERT(sizeof(struct statfs32) == 256); 159 #ifdef __amd64__ 160 CTASSERT(sizeof(struct rusage32) == 72); 161 #endif 162 CTASSERT(sizeof(struct sigaltstack32) == 12); 163 #ifdef __amd64__ 164 CTASSERT(sizeof(struct kevent32) == 56); 165 #else 166 CTASSERT(sizeof(struct kevent32) == 64); 167 #endif 168 CTASSERT(sizeof(struct iovec32) == 8); 169 CTASSERT(sizeof(struct msghdr32) == 28); 170 #ifdef __amd64__ 171 CTASSERT(sizeof(struct stat32) == 208); 172 CTASSERT(sizeof(struct freebsd11_stat32) == 96); 173 #endif 174 CTASSERT(sizeof(struct sigaction32) == 24); 175 176 static int freebsd32_kevent_copyout(void *arg, struct kevent *kevp, int count); 177 static int freebsd32_kevent_copyin(void *arg, struct kevent *kevp, int count); 178 static int freebsd32_user_clock_nanosleep(struct thread *td, clockid_t clock_id, 179 int flags, const struct timespec32 *ua_rqtp, struct timespec32 *ua_rmtp); 180 181 void 182 freebsd32_rusage_out(const struct rusage *s, struct rusage32 *s32) 183 { 184 185 TV_CP(*s, *s32, ru_utime); 186 TV_CP(*s, *s32, ru_stime); 187 CP(*s, *s32, ru_maxrss); 188 CP(*s, *s32, ru_ixrss); 189 CP(*s, *s32, ru_idrss); 190 CP(*s, *s32, ru_isrss); 191 CP(*s, *s32, ru_minflt); 192 CP(*s, *s32, ru_majflt); 193 CP(*s, *s32, ru_nswap); 194 CP(*s, *s32, ru_inblock); 195 CP(*s, *s32, ru_oublock); 196 CP(*s, *s32, ru_msgsnd); 197 CP(*s, *s32, ru_msgrcv); 198 CP(*s, *s32, ru_nsignals); 199 CP(*s, *s32, ru_nvcsw); 200 CP(*s, *s32, ru_nivcsw); 201 } 202 203 int 204 freebsd32_wait4(struct thread *td, struct freebsd32_wait4_args *uap) 205 { 206 int error, status; 207 struct rusage32 ru32; 208 struct rusage ru, *rup; 209 210 if (uap->rusage != NULL) 211 rup = &ru; 212 else 213 rup = NULL; 214 error = kern_wait(td, uap->pid, &status, uap->options, rup); 215 if (error) 216 return (error); 217 if (uap->status != NULL) 218 error = copyout(&status, uap->status, sizeof(status)); 219 if (uap->rusage != NULL && error == 0) { 220 freebsd32_rusage_out(&ru, &ru32); 221 error = copyout(&ru32, uap->rusage, sizeof(ru32)); 222 } 223 return (error); 224 } 225 226 int 227 freebsd32_wait6(struct thread *td, struct freebsd32_wait6_args *uap) 228 { 229 struct wrusage32 wru32; 230 struct __wrusage wru, *wrup; 231 struct siginfo32 si32; 232 struct __siginfo si, *sip; 233 int error, status; 234 235 if (uap->wrusage != NULL) 236 wrup = &wru; 237 else 238 wrup = NULL; 239 if (uap->info != NULL) { 240 sip = &si; 241 bzero(sip, sizeof(*sip)); 242 } else 243 sip = NULL; 244 error = kern_wait6(td, uap->idtype, PAIR32TO64(id_t, uap->id), 245 &status, uap->options, wrup, sip); 246 if (error != 0) 247 return (error); 248 if (uap->status != NULL) 249 error = copyout(&status, uap->status, sizeof(status)); 250 if (uap->wrusage != NULL && error == 0) { 251 freebsd32_rusage_out(&wru.wru_self, &wru32.wru_self); 252 freebsd32_rusage_out(&wru.wru_children, &wru32.wru_children); 253 error = copyout(&wru32, uap->wrusage, sizeof(wru32)); 254 } 255 if (uap->info != NULL && error == 0) { 256 siginfo_to_siginfo32 (&si, &si32); 257 error = copyout(&si32, uap->info, sizeof(si32)); 258 } 259 return (error); 260 } 261 262 #ifdef COMPAT_FREEBSD4 263 static void 264 copy_statfs(struct statfs *in, struct statfs32 *out) 265 { 266 267 statfs_scale_blocks(in, INT32_MAX); 268 bzero(out, sizeof(*out)); 269 CP(*in, *out, f_bsize); 270 out->f_iosize = MIN(in->f_iosize, INT32_MAX); 271 CP(*in, *out, f_blocks); 272 CP(*in, *out, f_bfree); 273 CP(*in, *out, f_bavail); 274 out->f_files = MIN(in->f_files, INT32_MAX); 275 out->f_ffree = MIN(in->f_ffree, INT32_MAX); 276 CP(*in, *out, f_fsid); 277 CP(*in, *out, f_owner); 278 CP(*in, *out, f_type); 279 CP(*in, *out, f_flags); 280 out->f_syncwrites = MIN(in->f_syncwrites, INT32_MAX); 281 out->f_asyncwrites = MIN(in->f_asyncwrites, INT32_MAX); 282 strlcpy(out->f_fstypename, 283 in->f_fstypename, MFSNAMELEN); 284 strlcpy(out->f_mntonname, 285 in->f_mntonname, min(MNAMELEN, FREEBSD4_MNAMELEN)); 286 out->f_syncreads = MIN(in->f_syncreads, INT32_MAX); 287 out->f_asyncreads = MIN(in->f_asyncreads, INT32_MAX); 288 strlcpy(out->f_mntfromname, 289 in->f_mntfromname, min(MNAMELEN, FREEBSD4_MNAMELEN)); 290 } 291 #endif 292 293 #ifdef COMPAT_FREEBSD4 294 int 295 freebsd4_freebsd32_getfsstat(struct thread *td, 296 struct freebsd4_freebsd32_getfsstat_args *uap) 297 { 298 struct statfs *buf, *sp; 299 struct statfs32 stat32; 300 size_t count, size, copycount; 301 int error; 302 303 count = uap->bufsize / sizeof(struct statfs32); 304 size = count * sizeof(struct statfs); 305 error = kern_getfsstat(td, &buf, size, &count, UIO_SYSSPACE, uap->mode); 306 if (size > 0) { 307 sp = buf; 308 copycount = count; 309 while (copycount > 0 && error == 0) { 310 copy_statfs(sp, &stat32); 311 error = copyout(&stat32, uap->buf, sizeof(stat32)); 312 sp++; 313 uap->buf++; 314 copycount--; 315 } 316 free(buf, M_STATFS); 317 } 318 if (error == 0) 319 td->td_retval[0] = count; 320 return (error); 321 } 322 #endif 323 324 #ifdef COMPAT_FREEBSD10 325 int 326 freebsd10_freebsd32_pipe(struct thread *td, 327 struct freebsd10_freebsd32_pipe_args *uap) { 328 return (freebsd10_pipe(td, (struct freebsd10_pipe_args*)uap)); 329 } 330 #endif 331 332 int 333 freebsd32_sigaltstack(struct thread *td, 334 struct freebsd32_sigaltstack_args *uap) 335 { 336 struct sigaltstack32 s32; 337 struct sigaltstack ss, oss, *ssp; 338 int error; 339 340 if (uap->ss != NULL) { 341 error = copyin(uap->ss, &s32, sizeof(s32)); 342 if (error) 343 return (error); 344 PTRIN_CP(s32, ss, ss_sp); 345 CP(s32, ss, ss_size); 346 CP(s32, ss, ss_flags); 347 ssp = &ss; 348 } else 349 ssp = NULL; 350 error = kern_sigaltstack(td, ssp, &oss); 351 if (error == 0 && uap->oss != NULL) { 352 PTROUT_CP(oss, s32, ss_sp); 353 CP(oss, s32, ss_size); 354 CP(oss, s32, ss_flags); 355 error = copyout(&s32, uap->oss, sizeof(s32)); 356 } 357 return (error); 358 } 359 360 /* 361 * Custom version of exec_copyin_args() so that we can translate 362 * the pointers. 363 */ 364 int 365 freebsd32_exec_copyin_args(struct image_args *args, const char *fname, 366 enum uio_seg segflg, u_int32_t *argv, u_int32_t *envv) 367 { 368 char *argp, *envp; 369 u_int32_t *p32, arg; 370 int error; 371 372 bzero(args, sizeof(*args)); 373 if (argv == NULL) 374 return (EFAULT); 375 376 /* 377 * Allocate demand-paged memory for the file name, argument, and 378 * environment strings. 379 */ 380 error = exec_alloc_args(args); 381 if (error != 0) 382 return (error); 383 384 /* 385 * Copy the file name. 386 */ 387 error = exec_args_add_fname(args, fname, segflg); 388 if (error != 0) 389 goto err_exit; 390 391 /* 392 * extract arguments first 393 */ 394 p32 = argv; 395 for (;;) { 396 error = copyin(p32++, &arg, sizeof(arg)); 397 if (error) 398 goto err_exit; 399 if (arg == 0) 400 break; 401 argp = PTRIN(arg); 402 error = exec_args_add_arg(args, argp, UIO_USERSPACE); 403 if (error != 0) 404 goto err_exit; 405 } 406 407 /* 408 * extract environment strings 409 */ 410 if (envv) { 411 p32 = envv; 412 for (;;) { 413 error = copyin(p32++, &arg, sizeof(arg)); 414 if (error) 415 goto err_exit; 416 if (arg == 0) 417 break; 418 envp = PTRIN(arg); 419 error = exec_args_add_env(args, envp, UIO_USERSPACE); 420 if (error != 0) 421 goto err_exit; 422 } 423 } 424 425 return (0); 426 427 err_exit: 428 exec_free_args(args); 429 return (error); 430 } 431 432 int 433 freebsd32_execve(struct thread *td, struct freebsd32_execve_args *uap) 434 { 435 struct image_args eargs; 436 struct vmspace *oldvmspace; 437 int error; 438 439 error = pre_execve(td, &oldvmspace); 440 if (error != 0) 441 return (error); 442 error = freebsd32_exec_copyin_args(&eargs, uap->fname, UIO_USERSPACE, 443 uap->argv, uap->envv); 444 if (error == 0) 445 error = kern_execve(td, &eargs, NULL, oldvmspace); 446 post_execve(td, error, oldvmspace); 447 AUDIT_SYSCALL_EXIT(error == EJUSTRETURN ? 0 : error, td); 448 return (error); 449 } 450 451 int 452 freebsd32_fexecve(struct thread *td, struct freebsd32_fexecve_args *uap) 453 { 454 struct image_args eargs; 455 struct vmspace *oldvmspace; 456 int error; 457 458 error = pre_execve(td, &oldvmspace); 459 if (error != 0) 460 return (error); 461 error = freebsd32_exec_copyin_args(&eargs, NULL, UIO_SYSSPACE, 462 uap->argv, uap->envv); 463 if (error == 0) { 464 eargs.fd = uap->fd; 465 error = kern_execve(td, &eargs, NULL, oldvmspace); 466 } 467 post_execve(td, error, oldvmspace); 468 AUDIT_SYSCALL_EXIT(error == EJUSTRETURN ? 0 : error, td); 469 return (error); 470 } 471 472 int 473 freebsd32_mknodat(struct thread *td, struct freebsd32_mknodat_args *uap) 474 { 475 476 return (kern_mknodat(td, uap->fd, uap->path, UIO_USERSPACE, 477 uap->mode, PAIR32TO64(dev_t, uap->dev))); 478 } 479 480 int 481 freebsd32_mprotect(struct thread *td, struct freebsd32_mprotect_args *uap) 482 { 483 int prot; 484 485 prot = uap->prot; 486 #if defined(__amd64__) 487 if (i386_read_exec && (prot & PROT_READ) != 0) 488 prot |= PROT_EXEC; 489 #endif 490 return (kern_mprotect(td, (uintptr_t)PTRIN(uap->addr), uap->len, 491 prot)); 492 } 493 494 int 495 freebsd32_mmap(struct thread *td, struct freebsd32_mmap_args *uap) 496 { 497 int prot; 498 499 prot = uap->prot; 500 #if defined(__amd64__) 501 if (i386_read_exec && (prot & PROT_READ)) 502 prot |= PROT_EXEC; 503 #endif 504 505 return (kern_mmap(td, (uintptr_t)uap->addr, uap->len, prot, 506 uap->flags, uap->fd, PAIR32TO64(off_t, uap->pos))); 507 } 508 509 #ifdef COMPAT_FREEBSD6 510 int 511 freebsd6_freebsd32_mmap(struct thread *td, 512 struct freebsd6_freebsd32_mmap_args *uap) 513 { 514 int prot; 515 516 prot = uap->prot; 517 #if defined(__amd64__) 518 if (i386_read_exec && (prot & PROT_READ)) 519 prot |= PROT_EXEC; 520 #endif 521 522 return (kern_mmap(td, (uintptr_t)uap->addr, uap->len, prot, 523 uap->flags, uap->fd, PAIR32TO64(off_t, uap->pos))); 524 } 525 #endif 526 527 int 528 freebsd32_setitimer(struct thread *td, struct freebsd32_setitimer_args *uap) 529 { 530 struct itimerval itv, oitv, *itvp; 531 struct itimerval32 i32; 532 int error; 533 534 if (uap->itv != NULL) { 535 error = copyin(uap->itv, &i32, sizeof(i32)); 536 if (error) 537 return (error); 538 TV_CP(i32, itv, it_interval); 539 TV_CP(i32, itv, it_value); 540 itvp = &itv; 541 } else 542 itvp = NULL; 543 error = kern_setitimer(td, uap->which, itvp, &oitv); 544 if (error || uap->oitv == NULL) 545 return (error); 546 TV_CP(oitv, i32, it_interval); 547 TV_CP(oitv, i32, it_value); 548 return (copyout(&i32, uap->oitv, sizeof(i32))); 549 } 550 551 int 552 freebsd32_getitimer(struct thread *td, struct freebsd32_getitimer_args *uap) 553 { 554 struct itimerval itv; 555 struct itimerval32 i32; 556 int error; 557 558 error = kern_getitimer(td, uap->which, &itv); 559 if (error || uap->itv == NULL) 560 return (error); 561 TV_CP(itv, i32, it_interval); 562 TV_CP(itv, i32, it_value); 563 return (copyout(&i32, uap->itv, sizeof(i32))); 564 } 565 566 int 567 freebsd32_select(struct thread *td, struct freebsd32_select_args *uap) 568 { 569 struct timeval32 tv32; 570 struct timeval tv, *tvp; 571 int error; 572 573 if (uap->tv != NULL) { 574 error = copyin(uap->tv, &tv32, sizeof(tv32)); 575 if (error) 576 return (error); 577 CP(tv32, tv, tv_sec); 578 CP(tv32, tv, tv_usec); 579 tvp = &tv; 580 } else 581 tvp = NULL; 582 /* 583 * XXX Do pointers need PTRIN()? 584 */ 585 return (kern_select(td, uap->nd, uap->in, uap->ou, uap->ex, tvp, 586 sizeof(int32_t) * 8)); 587 } 588 589 int 590 freebsd32_pselect(struct thread *td, struct freebsd32_pselect_args *uap) 591 { 592 struct timespec32 ts32; 593 struct timespec ts; 594 struct timeval tv, *tvp; 595 sigset_t set, *uset; 596 int error; 597 598 if (uap->ts != NULL) { 599 error = copyin(uap->ts, &ts32, sizeof(ts32)); 600 if (error != 0) 601 return (error); 602 CP(ts32, ts, tv_sec); 603 CP(ts32, ts, tv_nsec); 604 TIMESPEC_TO_TIMEVAL(&tv, &ts); 605 tvp = &tv; 606 } else 607 tvp = NULL; 608 if (uap->sm != NULL) { 609 error = copyin(uap->sm, &set, sizeof(set)); 610 if (error != 0) 611 return (error); 612 uset = &set; 613 } else 614 uset = NULL; 615 /* 616 * XXX Do pointers need PTRIN()? 617 */ 618 error = kern_pselect(td, uap->nd, uap->in, uap->ou, uap->ex, tvp, 619 uset, sizeof(int32_t) * 8); 620 return (error); 621 } 622 623 /* 624 * Copy 'count' items into the destination list pointed to by uap->eventlist. 625 */ 626 static int 627 freebsd32_kevent_copyout(void *arg, struct kevent *kevp, int count) 628 { 629 struct freebsd32_kevent_args *uap; 630 struct kevent32 ks32[KQ_NEVENTS]; 631 uint64_t e; 632 int i, j, error; 633 634 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count)); 635 uap = (struct freebsd32_kevent_args *)arg; 636 637 for (i = 0; i < count; i++) { 638 CP(kevp[i], ks32[i], ident); 639 CP(kevp[i], ks32[i], filter); 640 CP(kevp[i], ks32[i], flags); 641 CP(kevp[i], ks32[i], fflags); 642 #if BYTE_ORDER == LITTLE_ENDIAN 643 ks32[i].data1 = kevp[i].data; 644 ks32[i].data2 = kevp[i].data >> 32; 645 #else 646 ks32[i].data1 = kevp[i].data >> 32; 647 ks32[i].data2 = kevp[i].data; 648 #endif 649 PTROUT_CP(kevp[i], ks32[i], udata); 650 for (j = 0; j < nitems(kevp->ext); j++) { 651 e = kevp[i].ext[j]; 652 #if BYTE_ORDER == LITTLE_ENDIAN 653 ks32[i].ext64[2 * j] = e; 654 ks32[i].ext64[2 * j + 1] = e >> 32; 655 #else 656 ks32[i].ext64[2 * j] = e >> 32; 657 ks32[i].ext64[2 * j + 1] = e; 658 #endif 659 } 660 } 661 error = copyout(ks32, uap->eventlist, count * sizeof *ks32); 662 if (error == 0) 663 uap->eventlist += count; 664 return (error); 665 } 666 667 /* 668 * Copy 'count' items from the list pointed to by uap->changelist. 669 */ 670 static int 671 freebsd32_kevent_copyin(void *arg, struct kevent *kevp, int count) 672 { 673 struct freebsd32_kevent_args *uap; 674 struct kevent32 ks32[KQ_NEVENTS]; 675 uint64_t e; 676 int i, j, error; 677 678 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count)); 679 uap = (struct freebsd32_kevent_args *)arg; 680 681 error = copyin(uap->changelist, ks32, count * sizeof *ks32); 682 if (error) 683 goto done; 684 uap->changelist += count; 685 686 for (i = 0; i < count; i++) { 687 CP(ks32[i], kevp[i], ident); 688 CP(ks32[i], kevp[i], filter); 689 CP(ks32[i], kevp[i], flags); 690 CP(ks32[i], kevp[i], fflags); 691 kevp[i].data = PAIR32TO64(uint64_t, ks32[i].data); 692 PTRIN_CP(ks32[i], kevp[i], udata); 693 for (j = 0; j < nitems(kevp->ext); j++) { 694 #if BYTE_ORDER == LITTLE_ENDIAN 695 e = ks32[i].ext64[2 * j + 1]; 696 e <<= 32; 697 e += ks32[i].ext64[2 * j]; 698 #else 699 e = ks32[i].ext64[2 * j]; 700 e <<= 32; 701 e += ks32[i].ext64[2 * j + 1]; 702 #endif 703 kevp[i].ext[j] = e; 704 } 705 } 706 done: 707 return (error); 708 } 709 710 int 711 freebsd32_kevent(struct thread *td, struct freebsd32_kevent_args *uap) 712 { 713 struct timespec32 ts32; 714 struct timespec ts, *tsp; 715 struct kevent_copyops k_ops = { 716 .arg = uap, 717 .k_copyout = freebsd32_kevent_copyout, 718 .k_copyin = freebsd32_kevent_copyin, 719 }; 720 #ifdef KTRACE 721 struct kevent32 *eventlist = uap->eventlist; 722 #endif 723 int error; 724 725 if (uap->timeout) { 726 error = copyin(uap->timeout, &ts32, sizeof(ts32)); 727 if (error) 728 return (error); 729 CP(ts32, ts, tv_sec); 730 CP(ts32, ts, tv_nsec); 731 tsp = &ts; 732 } else 733 tsp = NULL; 734 #ifdef KTRACE 735 if (KTRPOINT(td, KTR_STRUCT_ARRAY)) 736 ktrstructarray("kevent32", UIO_USERSPACE, uap->changelist, 737 uap->nchanges, sizeof(struct kevent32)); 738 #endif 739 error = kern_kevent(td, uap->fd, uap->nchanges, uap->nevents, 740 &k_ops, tsp); 741 #ifdef KTRACE 742 if (error == 0 && KTRPOINT(td, KTR_STRUCT_ARRAY)) 743 ktrstructarray("kevent32", UIO_USERSPACE, eventlist, 744 td->td_retval[0], sizeof(struct kevent32)); 745 #endif 746 return (error); 747 } 748 749 #ifdef COMPAT_FREEBSD11 750 static int 751 freebsd32_kevent11_copyout(void *arg, struct kevent *kevp, int count) 752 { 753 struct freebsd11_freebsd32_kevent_args *uap; 754 struct kevent32_freebsd11 ks32[KQ_NEVENTS]; 755 int i, error; 756 757 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count)); 758 uap = (struct freebsd11_freebsd32_kevent_args *)arg; 759 760 for (i = 0; i < count; i++) { 761 CP(kevp[i], ks32[i], ident); 762 CP(kevp[i], ks32[i], filter); 763 CP(kevp[i], ks32[i], flags); 764 CP(kevp[i], ks32[i], fflags); 765 CP(kevp[i], ks32[i], data); 766 PTROUT_CP(kevp[i], ks32[i], udata); 767 } 768 error = copyout(ks32, uap->eventlist, count * sizeof *ks32); 769 if (error == 0) 770 uap->eventlist += count; 771 return (error); 772 } 773 774 /* 775 * Copy 'count' items from the list pointed to by uap->changelist. 776 */ 777 static int 778 freebsd32_kevent11_copyin(void *arg, struct kevent *kevp, int count) 779 { 780 struct freebsd11_freebsd32_kevent_args *uap; 781 struct kevent32_freebsd11 ks32[KQ_NEVENTS]; 782 int i, j, error; 783 784 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count)); 785 uap = (struct freebsd11_freebsd32_kevent_args *)arg; 786 787 error = copyin(uap->changelist, ks32, count * sizeof *ks32); 788 if (error) 789 goto done; 790 uap->changelist += count; 791 792 for (i = 0; i < count; i++) { 793 CP(ks32[i], kevp[i], ident); 794 CP(ks32[i], kevp[i], filter); 795 CP(ks32[i], kevp[i], flags); 796 CP(ks32[i], kevp[i], fflags); 797 CP(ks32[i], kevp[i], data); 798 PTRIN_CP(ks32[i], kevp[i], udata); 799 for (j = 0; j < nitems(kevp->ext); j++) 800 kevp[i].ext[j] = 0; 801 } 802 done: 803 return (error); 804 } 805 806 int 807 freebsd11_freebsd32_kevent(struct thread *td, 808 struct freebsd11_freebsd32_kevent_args *uap) 809 { 810 struct timespec32 ts32; 811 struct timespec ts, *tsp; 812 struct kevent_copyops k_ops = { 813 .arg = uap, 814 .k_copyout = freebsd32_kevent11_copyout, 815 .k_copyin = freebsd32_kevent11_copyin, 816 }; 817 #ifdef KTRACE 818 struct kevent32_freebsd11 *eventlist = uap->eventlist; 819 #endif 820 int error; 821 822 if (uap->timeout) { 823 error = copyin(uap->timeout, &ts32, sizeof(ts32)); 824 if (error) 825 return (error); 826 CP(ts32, ts, tv_sec); 827 CP(ts32, ts, tv_nsec); 828 tsp = &ts; 829 } else 830 tsp = NULL; 831 #ifdef KTRACE 832 if (KTRPOINT(td, KTR_STRUCT_ARRAY)) 833 ktrstructarray("kevent32_freebsd11", UIO_USERSPACE, 834 uap->changelist, uap->nchanges, 835 sizeof(struct kevent32_freebsd11)); 836 #endif 837 error = kern_kevent(td, uap->fd, uap->nchanges, uap->nevents, 838 &k_ops, tsp); 839 #ifdef KTRACE 840 if (error == 0 && KTRPOINT(td, KTR_STRUCT_ARRAY)) 841 ktrstructarray("kevent32_freebsd11", UIO_USERSPACE, 842 eventlist, td->td_retval[0], 843 sizeof(struct kevent32_freebsd11)); 844 #endif 845 return (error); 846 } 847 #endif 848 849 int 850 freebsd32_gettimeofday(struct thread *td, 851 struct freebsd32_gettimeofday_args *uap) 852 { 853 struct timeval atv; 854 struct timeval32 atv32; 855 struct timezone rtz; 856 int error = 0; 857 858 if (uap->tp) { 859 microtime(&atv); 860 CP(atv, atv32, tv_sec); 861 CP(atv, atv32, tv_usec); 862 error = copyout(&atv32, uap->tp, sizeof (atv32)); 863 } 864 if (error == 0 && uap->tzp != NULL) { 865 rtz.tz_minuteswest = 0; 866 rtz.tz_dsttime = 0; 867 error = copyout(&rtz, uap->tzp, sizeof (rtz)); 868 } 869 return (error); 870 } 871 872 int 873 freebsd32_getrusage(struct thread *td, struct freebsd32_getrusage_args *uap) 874 { 875 struct rusage32 s32; 876 struct rusage s; 877 int error; 878 879 error = kern_getrusage(td, uap->who, &s); 880 if (error == 0) { 881 freebsd32_rusage_out(&s, &s32); 882 error = copyout(&s32, uap->rusage, sizeof(s32)); 883 } 884 return (error); 885 } 886 887 static void 888 ptrace_lwpinfo_to32(const struct ptrace_lwpinfo *pl, 889 struct ptrace_lwpinfo32 *pl32) 890 { 891 892 bzero(pl32, sizeof(*pl32)); 893 pl32->pl_lwpid = pl->pl_lwpid; 894 pl32->pl_event = pl->pl_event; 895 pl32->pl_flags = pl->pl_flags; 896 pl32->pl_sigmask = pl->pl_sigmask; 897 pl32->pl_siglist = pl->pl_siglist; 898 siginfo_to_siginfo32(&pl->pl_siginfo, &pl32->pl_siginfo); 899 strcpy(pl32->pl_tdname, pl->pl_tdname); 900 pl32->pl_child_pid = pl->pl_child_pid; 901 pl32->pl_syscall_code = pl->pl_syscall_code; 902 pl32->pl_syscall_narg = pl->pl_syscall_narg; 903 } 904 905 static void 906 ptrace_sc_ret_to32(const struct ptrace_sc_ret *psr, 907 struct ptrace_sc_ret32 *psr32) 908 { 909 910 bzero(psr32, sizeof(*psr32)); 911 psr32->sr_retval[0] = psr->sr_retval[0]; 912 psr32->sr_retval[1] = psr->sr_retval[1]; 913 psr32->sr_error = psr->sr_error; 914 } 915 916 int 917 freebsd32_ptrace(struct thread *td, struct freebsd32_ptrace_args *uap) 918 { 919 union { 920 struct ptrace_io_desc piod; 921 struct ptrace_lwpinfo pl; 922 struct ptrace_vm_entry pve; 923 struct dbreg32 dbreg; 924 struct fpreg32 fpreg; 925 struct reg32 reg; 926 register_t args[nitems(td->td_sa.args)]; 927 struct ptrace_sc_ret psr; 928 int ptevents; 929 } r; 930 union { 931 struct ptrace_io_desc32 piod; 932 struct ptrace_lwpinfo32 pl; 933 struct ptrace_vm_entry32 pve; 934 uint32_t args[nitems(td->td_sa.args)]; 935 struct ptrace_sc_ret32 psr; 936 } r32; 937 void *addr; 938 int data, error = 0, i; 939 940 AUDIT_ARG_PID(uap->pid); 941 AUDIT_ARG_CMD(uap->req); 942 AUDIT_ARG_VALUE(uap->data); 943 addr = &r; 944 data = uap->data; 945 switch (uap->req) { 946 case PT_GET_EVENT_MASK: 947 case PT_GET_SC_ARGS: 948 case PT_GET_SC_RET: 949 break; 950 case PT_LWPINFO: 951 if (uap->data > sizeof(r32.pl)) 952 return (EINVAL); 953 954 /* 955 * Pass size of native structure in 'data'. Truncate 956 * if necessary to avoid siginfo. 957 */ 958 data = sizeof(r.pl); 959 if (uap->data < offsetof(struct ptrace_lwpinfo32, pl_siginfo) + 960 sizeof(struct siginfo32)) 961 data = offsetof(struct ptrace_lwpinfo, pl_siginfo); 962 break; 963 case PT_GETREGS: 964 bzero(&r.reg, sizeof(r.reg)); 965 break; 966 case PT_GETFPREGS: 967 bzero(&r.fpreg, sizeof(r.fpreg)); 968 break; 969 case PT_GETDBREGS: 970 bzero(&r.dbreg, sizeof(r.dbreg)); 971 break; 972 case PT_SETREGS: 973 error = copyin(uap->addr, &r.reg, sizeof(r.reg)); 974 break; 975 case PT_SETFPREGS: 976 error = copyin(uap->addr, &r.fpreg, sizeof(r.fpreg)); 977 break; 978 case PT_SETDBREGS: 979 error = copyin(uap->addr, &r.dbreg, sizeof(r.dbreg)); 980 break; 981 case PT_SET_EVENT_MASK: 982 if (uap->data != sizeof(r.ptevents)) 983 error = EINVAL; 984 else 985 error = copyin(uap->addr, &r.ptevents, uap->data); 986 break; 987 case PT_IO: 988 error = copyin(uap->addr, &r32.piod, sizeof(r32.piod)); 989 if (error) 990 break; 991 CP(r32.piod, r.piod, piod_op); 992 PTRIN_CP(r32.piod, r.piod, piod_offs); 993 PTRIN_CP(r32.piod, r.piod, piod_addr); 994 CP(r32.piod, r.piod, piod_len); 995 break; 996 case PT_VM_ENTRY: 997 error = copyin(uap->addr, &r32.pve, sizeof(r32.pve)); 998 if (error) 999 break; 1000 1001 CP(r32.pve, r.pve, pve_entry); 1002 CP(r32.pve, r.pve, pve_timestamp); 1003 CP(r32.pve, r.pve, pve_start); 1004 CP(r32.pve, r.pve, pve_end); 1005 CP(r32.pve, r.pve, pve_offset); 1006 CP(r32.pve, r.pve, pve_prot); 1007 CP(r32.pve, r.pve, pve_pathlen); 1008 CP(r32.pve, r.pve, pve_fileid); 1009 CP(r32.pve, r.pve, pve_fsid); 1010 PTRIN_CP(r32.pve, r.pve, pve_path); 1011 break; 1012 default: 1013 addr = uap->addr; 1014 break; 1015 } 1016 if (error) 1017 return (error); 1018 1019 error = kern_ptrace(td, uap->req, uap->pid, addr, data); 1020 if (error) 1021 return (error); 1022 1023 switch (uap->req) { 1024 case PT_VM_ENTRY: 1025 CP(r.pve, r32.pve, pve_entry); 1026 CP(r.pve, r32.pve, pve_timestamp); 1027 CP(r.pve, r32.pve, pve_start); 1028 CP(r.pve, r32.pve, pve_end); 1029 CP(r.pve, r32.pve, pve_offset); 1030 CP(r.pve, r32.pve, pve_prot); 1031 CP(r.pve, r32.pve, pve_pathlen); 1032 CP(r.pve, r32.pve, pve_fileid); 1033 CP(r.pve, r32.pve, pve_fsid); 1034 error = copyout(&r32.pve, uap->addr, sizeof(r32.pve)); 1035 break; 1036 case PT_IO: 1037 CP(r.piod, r32.piod, piod_len); 1038 error = copyout(&r32.piod, uap->addr, sizeof(r32.piod)); 1039 break; 1040 case PT_GETREGS: 1041 error = copyout(&r.reg, uap->addr, sizeof(r.reg)); 1042 break; 1043 case PT_GETFPREGS: 1044 error = copyout(&r.fpreg, uap->addr, sizeof(r.fpreg)); 1045 break; 1046 case PT_GETDBREGS: 1047 error = copyout(&r.dbreg, uap->addr, sizeof(r.dbreg)); 1048 break; 1049 case PT_GET_EVENT_MASK: 1050 /* NB: The size in uap->data is validated in kern_ptrace(). */ 1051 error = copyout(&r.ptevents, uap->addr, uap->data); 1052 break; 1053 case PT_LWPINFO: 1054 ptrace_lwpinfo_to32(&r.pl, &r32.pl); 1055 error = copyout(&r32.pl, uap->addr, uap->data); 1056 break; 1057 case PT_GET_SC_ARGS: 1058 for (i = 0; i < nitems(r.args); i++) 1059 r32.args[i] = (uint32_t)r.args[i]; 1060 error = copyout(r32.args, uap->addr, MIN(uap->data, 1061 sizeof(r32.args))); 1062 break; 1063 case PT_GET_SC_RET: 1064 ptrace_sc_ret_to32(&r.psr, &r32.psr); 1065 error = copyout(&r32.psr, uap->addr, MIN(uap->data, 1066 sizeof(r32.psr))); 1067 break; 1068 } 1069 1070 return (error); 1071 } 1072 1073 static int 1074 freebsd32_copyinuio(struct iovec32 *iovp, u_int iovcnt, struct uio **uiop) 1075 { 1076 struct iovec32 iov32; 1077 struct iovec *iov; 1078 struct uio *uio; 1079 u_int iovlen; 1080 int error, i; 1081 1082 *uiop = NULL; 1083 if (iovcnt > UIO_MAXIOV) 1084 return (EINVAL); 1085 iovlen = iovcnt * sizeof(struct iovec); 1086 uio = malloc(iovlen + sizeof *uio, M_IOV, M_WAITOK); 1087 iov = (struct iovec *)(uio + 1); 1088 for (i = 0; i < iovcnt; i++) { 1089 error = copyin(&iovp[i], &iov32, sizeof(struct iovec32)); 1090 if (error) { 1091 free(uio, M_IOV); 1092 return (error); 1093 } 1094 iov[i].iov_base = PTRIN(iov32.iov_base); 1095 iov[i].iov_len = iov32.iov_len; 1096 } 1097 uio->uio_iov = iov; 1098 uio->uio_iovcnt = iovcnt; 1099 uio->uio_segflg = UIO_USERSPACE; 1100 uio->uio_offset = -1; 1101 uio->uio_resid = 0; 1102 for (i = 0; i < iovcnt; i++) { 1103 if (iov->iov_len > INT_MAX - uio->uio_resid) { 1104 free(uio, M_IOV); 1105 return (EINVAL); 1106 } 1107 uio->uio_resid += iov->iov_len; 1108 iov++; 1109 } 1110 *uiop = uio; 1111 return (0); 1112 } 1113 1114 int 1115 freebsd32_readv(struct thread *td, struct freebsd32_readv_args *uap) 1116 { 1117 struct uio *auio; 1118 int error; 1119 1120 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 1121 if (error) 1122 return (error); 1123 error = kern_readv(td, uap->fd, auio); 1124 free(auio, M_IOV); 1125 return (error); 1126 } 1127 1128 int 1129 freebsd32_writev(struct thread *td, struct freebsd32_writev_args *uap) 1130 { 1131 struct uio *auio; 1132 int error; 1133 1134 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 1135 if (error) 1136 return (error); 1137 error = kern_writev(td, uap->fd, auio); 1138 free(auio, M_IOV); 1139 return (error); 1140 } 1141 1142 int 1143 freebsd32_preadv(struct thread *td, struct freebsd32_preadv_args *uap) 1144 { 1145 struct uio *auio; 1146 int error; 1147 1148 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 1149 if (error) 1150 return (error); 1151 error = kern_preadv(td, uap->fd, auio, PAIR32TO64(off_t,uap->offset)); 1152 free(auio, M_IOV); 1153 return (error); 1154 } 1155 1156 int 1157 freebsd32_pwritev(struct thread *td, struct freebsd32_pwritev_args *uap) 1158 { 1159 struct uio *auio; 1160 int error; 1161 1162 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 1163 if (error) 1164 return (error); 1165 error = kern_pwritev(td, uap->fd, auio, PAIR32TO64(off_t,uap->offset)); 1166 free(auio, M_IOV); 1167 return (error); 1168 } 1169 1170 int 1171 freebsd32_copyiniov(struct iovec32 *iovp32, u_int iovcnt, struct iovec **iovp, 1172 int error) 1173 { 1174 struct iovec32 iov32; 1175 struct iovec *iov; 1176 u_int iovlen; 1177 int i; 1178 1179 *iovp = NULL; 1180 if (iovcnt > UIO_MAXIOV) 1181 return (error); 1182 iovlen = iovcnt * sizeof(struct iovec); 1183 iov = malloc(iovlen, M_IOV, M_WAITOK); 1184 for (i = 0; i < iovcnt; i++) { 1185 error = copyin(&iovp32[i], &iov32, sizeof(struct iovec32)); 1186 if (error) { 1187 free(iov, M_IOV); 1188 return (error); 1189 } 1190 iov[i].iov_base = PTRIN(iov32.iov_base); 1191 iov[i].iov_len = iov32.iov_len; 1192 } 1193 *iovp = iov; 1194 return (0); 1195 } 1196 1197 static int 1198 freebsd32_copyinmsghdr(struct msghdr32 *msg32, struct msghdr *msg) 1199 { 1200 struct msghdr32 m32; 1201 int error; 1202 1203 error = copyin(msg32, &m32, sizeof(m32)); 1204 if (error) 1205 return (error); 1206 msg->msg_name = PTRIN(m32.msg_name); 1207 msg->msg_namelen = m32.msg_namelen; 1208 msg->msg_iov = PTRIN(m32.msg_iov); 1209 msg->msg_iovlen = m32.msg_iovlen; 1210 msg->msg_control = PTRIN(m32.msg_control); 1211 msg->msg_controllen = m32.msg_controllen; 1212 msg->msg_flags = m32.msg_flags; 1213 return (0); 1214 } 1215 1216 static int 1217 freebsd32_copyoutmsghdr(struct msghdr *msg, struct msghdr32 *msg32) 1218 { 1219 struct msghdr32 m32; 1220 int error; 1221 1222 m32.msg_name = PTROUT(msg->msg_name); 1223 m32.msg_namelen = msg->msg_namelen; 1224 m32.msg_iov = PTROUT(msg->msg_iov); 1225 m32.msg_iovlen = msg->msg_iovlen; 1226 m32.msg_control = PTROUT(msg->msg_control); 1227 m32.msg_controllen = msg->msg_controllen; 1228 m32.msg_flags = msg->msg_flags; 1229 error = copyout(&m32, msg32, sizeof(m32)); 1230 return (error); 1231 } 1232 1233 #ifndef __mips__ 1234 #define FREEBSD32_ALIGNBYTES (sizeof(int) - 1) 1235 #else 1236 #define FREEBSD32_ALIGNBYTES (sizeof(long) - 1) 1237 #endif 1238 #define FREEBSD32_ALIGN(p) \ 1239 (((u_long)(p) + FREEBSD32_ALIGNBYTES) & ~FREEBSD32_ALIGNBYTES) 1240 #define FREEBSD32_CMSG_SPACE(l) \ 1241 (FREEBSD32_ALIGN(sizeof(struct cmsghdr)) + FREEBSD32_ALIGN(l)) 1242 1243 #define FREEBSD32_CMSG_DATA(cmsg) ((unsigned char *)(cmsg) + \ 1244 FREEBSD32_ALIGN(sizeof(struct cmsghdr))) 1245 1246 static size_t 1247 freebsd32_cmsg_convert(const struct cmsghdr *cm, void *data, socklen_t datalen) 1248 { 1249 size_t copylen; 1250 union { 1251 struct timespec32 ts; 1252 struct timeval32 tv; 1253 struct bintime32 bt; 1254 } tmp32; 1255 1256 union { 1257 struct timespec ts; 1258 struct timeval tv; 1259 struct bintime bt; 1260 } *in; 1261 1262 in = data; 1263 copylen = 0; 1264 switch (cm->cmsg_level) { 1265 case SOL_SOCKET: 1266 switch (cm->cmsg_type) { 1267 case SCM_TIMESTAMP: 1268 TV_CP(*in, tmp32, tv); 1269 copylen = sizeof(tmp32.tv); 1270 break; 1271 1272 case SCM_BINTIME: 1273 BT_CP(*in, tmp32, bt); 1274 copylen = sizeof(tmp32.bt); 1275 break; 1276 1277 case SCM_REALTIME: 1278 case SCM_MONOTONIC: 1279 TS_CP(*in, tmp32, ts); 1280 copylen = sizeof(tmp32.ts); 1281 break; 1282 1283 default: 1284 break; 1285 } 1286 1287 default: 1288 break; 1289 } 1290 1291 if (copylen == 0) 1292 return (datalen); 1293 1294 KASSERT((datalen >= copylen), ("corrupted cmsghdr")); 1295 1296 bcopy(&tmp32, data, copylen); 1297 return (copylen); 1298 } 1299 1300 static int 1301 freebsd32_copy_msg_out(struct msghdr *msg, struct mbuf *control) 1302 { 1303 struct cmsghdr *cm; 1304 void *data; 1305 socklen_t clen, datalen, datalen_out, oldclen; 1306 int error; 1307 caddr_t ctlbuf; 1308 int len, maxlen, copylen; 1309 struct mbuf *m; 1310 error = 0; 1311 1312 len = msg->msg_controllen; 1313 maxlen = msg->msg_controllen; 1314 msg->msg_controllen = 0; 1315 1316 ctlbuf = msg->msg_control; 1317 for (m = control; m != NULL && len > 0; m = m->m_next) { 1318 cm = mtod(m, struct cmsghdr *); 1319 clen = m->m_len; 1320 while (cm != NULL) { 1321 if (sizeof(struct cmsghdr) > clen || 1322 cm->cmsg_len > clen) { 1323 error = EINVAL; 1324 break; 1325 } 1326 1327 data = CMSG_DATA(cm); 1328 datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data; 1329 datalen_out = freebsd32_cmsg_convert(cm, data, datalen); 1330 1331 /* 1332 * Copy out the message header. Preserve the native 1333 * message size in case we need to inspect the message 1334 * contents later. 1335 */ 1336 copylen = sizeof(struct cmsghdr); 1337 if (len < copylen) { 1338 msg->msg_flags |= MSG_CTRUNC; 1339 m_dispose_extcontrolm(m); 1340 goto exit; 1341 } 1342 oldclen = cm->cmsg_len; 1343 cm->cmsg_len = FREEBSD32_ALIGN(sizeof(struct cmsghdr)) + 1344 datalen_out; 1345 error = copyout(cm, ctlbuf, copylen); 1346 cm->cmsg_len = oldclen; 1347 if (error != 0) 1348 goto exit; 1349 1350 ctlbuf += FREEBSD32_ALIGN(copylen); 1351 len -= FREEBSD32_ALIGN(copylen); 1352 1353 copylen = datalen_out; 1354 if (len < copylen) { 1355 msg->msg_flags |= MSG_CTRUNC; 1356 m_dispose_extcontrolm(m); 1357 break; 1358 } 1359 1360 /* Copy out the message data. */ 1361 error = copyout(data, ctlbuf, copylen); 1362 if (error) 1363 goto exit; 1364 1365 ctlbuf += FREEBSD32_ALIGN(copylen); 1366 len -= FREEBSD32_ALIGN(copylen); 1367 1368 if (CMSG_SPACE(datalen) < clen) { 1369 clen -= CMSG_SPACE(datalen); 1370 cm = (struct cmsghdr *) 1371 ((caddr_t)cm + CMSG_SPACE(datalen)); 1372 } else { 1373 clen = 0; 1374 cm = NULL; 1375 } 1376 1377 msg->msg_controllen += 1378 FREEBSD32_CMSG_SPACE(datalen_out); 1379 } 1380 } 1381 if (len == 0 && m != NULL) { 1382 msg->msg_flags |= MSG_CTRUNC; 1383 m_dispose_extcontrolm(m); 1384 } 1385 1386 exit: 1387 return (error); 1388 } 1389 1390 int 1391 freebsd32_recvmsg(td, uap) 1392 struct thread *td; 1393 struct freebsd32_recvmsg_args /* { 1394 int s; 1395 struct msghdr32 *msg; 1396 int flags; 1397 } */ *uap; 1398 { 1399 struct msghdr msg; 1400 struct msghdr32 m32; 1401 struct iovec *uiov, *iov; 1402 struct mbuf *control = NULL; 1403 struct mbuf **controlp; 1404 1405 int error; 1406 error = copyin(uap->msg, &m32, sizeof(m32)); 1407 if (error) 1408 return (error); 1409 error = freebsd32_copyinmsghdr(uap->msg, &msg); 1410 if (error) 1411 return (error); 1412 error = freebsd32_copyiniov(PTRIN(m32.msg_iov), m32.msg_iovlen, &iov, 1413 EMSGSIZE); 1414 if (error) 1415 return (error); 1416 msg.msg_flags = uap->flags; 1417 uiov = msg.msg_iov; 1418 msg.msg_iov = iov; 1419 1420 controlp = (msg.msg_control != NULL) ? &control : NULL; 1421 error = kern_recvit(td, uap->s, &msg, UIO_USERSPACE, controlp); 1422 if (error == 0) { 1423 msg.msg_iov = uiov; 1424 1425 if (control != NULL) 1426 error = freebsd32_copy_msg_out(&msg, control); 1427 else 1428 msg.msg_controllen = 0; 1429 1430 if (error == 0) 1431 error = freebsd32_copyoutmsghdr(&msg, uap->msg); 1432 } 1433 free(iov, M_IOV); 1434 1435 if (control != NULL) { 1436 if (error != 0) 1437 m_dispose_extcontrolm(control); 1438 m_freem(control); 1439 } 1440 1441 return (error); 1442 } 1443 1444 /* 1445 * Copy-in the array of control messages constructed using alignment 1446 * and padding suitable for a 32-bit environment and construct an 1447 * mbuf using alignment and padding suitable for a 64-bit kernel. 1448 * The alignment and padding are defined indirectly by CMSG_DATA(), 1449 * CMSG_SPACE() and CMSG_LEN(). 1450 */ 1451 static int 1452 freebsd32_copyin_control(struct mbuf **mp, caddr_t buf, u_int buflen) 1453 { 1454 struct cmsghdr *cm; 1455 struct mbuf *m; 1456 void *in, *in1, *md; 1457 u_int msglen, outlen; 1458 int error; 1459 1460 if (buflen > MCLBYTES) 1461 return (EINVAL); 1462 1463 in = malloc(buflen, M_TEMP, M_WAITOK); 1464 error = copyin(buf, in, buflen); 1465 if (error != 0) 1466 goto out; 1467 1468 /* 1469 * Make a pass over the input buffer to determine the amount of space 1470 * required for 64 bit-aligned copies of the control messages. 1471 */ 1472 in1 = in; 1473 outlen = 0; 1474 while (buflen > 0) { 1475 if (buflen < sizeof(*cm)) { 1476 error = EINVAL; 1477 break; 1478 } 1479 cm = (struct cmsghdr *)in1; 1480 if (cm->cmsg_len < FREEBSD32_ALIGN(sizeof(*cm))) { 1481 error = EINVAL; 1482 break; 1483 } 1484 msglen = FREEBSD32_ALIGN(cm->cmsg_len); 1485 if (msglen > buflen || msglen < cm->cmsg_len) { 1486 error = EINVAL; 1487 break; 1488 } 1489 buflen -= msglen; 1490 1491 in1 = (char *)in1 + msglen; 1492 outlen += CMSG_ALIGN(sizeof(*cm)) + 1493 CMSG_ALIGN(msglen - FREEBSD32_ALIGN(sizeof(*cm))); 1494 } 1495 if (error == 0 && outlen > MCLBYTES) { 1496 /* 1497 * XXXMJ This implies that the upper limit on 32-bit aligned 1498 * control messages is less than MCLBYTES, and so we are not 1499 * perfectly compatible. However, there is no platform 1500 * guarantee that mbuf clusters larger than MCLBYTES can be 1501 * allocated. 1502 */ 1503 error = EINVAL; 1504 } 1505 if (error != 0) 1506 goto out; 1507 1508 m = m_get2(outlen, M_WAITOK, MT_CONTROL, 0); 1509 m->m_len = outlen; 1510 md = mtod(m, void *); 1511 1512 /* 1513 * Make a second pass over input messages, copying them into the output 1514 * buffer. 1515 */ 1516 in1 = in; 1517 while (outlen > 0) { 1518 /* Copy the message header and align the length field. */ 1519 cm = md; 1520 memcpy(cm, in1, sizeof(*cm)); 1521 msglen = cm->cmsg_len - FREEBSD32_ALIGN(sizeof(*cm)); 1522 cm->cmsg_len = CMSG_ALIGN(sizeof(*cm)) + msglen; 1523 1524 /* Copy the message body. */ 1525 in1 = (char *)in1 + FREEBSD32_ALIGN(sizeof(*cm)); 1526 md = (char *)md + CMSG_ALIGN(sizeof(*cm)); 1527 memcpy(md, in1, msglen); 1528 in1 = (char *)in1 + FREEBSD32_ALIGN(msglen); 1529 md = (char *)md + CMSG_ALIGN(msglen); 1530 KASSERT(outlen >= CMSG_ALIGN(sizeof(*cm)) + CMSG_ALIGN(msglen), 1531 ("outlen %u underflow, msglen %u", outlen, msglen)); 1532 outlen -= CMSG_ALIGN(sizeof(*cm)) + CMSG_ALIGN(msglen); 1533 } 1534 1535 *mp = m; 1536 out: 1537 free(in, M_TEMP); 1538 return (error); 1539 } 1540 1541 int 1542 freebsd32_sendmsg(struct thread *td, 1543 struct freebsd32_sendmsg_args *uap) 1544 { 1545 struct msghdr msg; 1546 struct msghdr32 m32; 1547 struct iovec *iov; 1548 struct mbuf *control = NULL; 1549 struct sockaddr *to = NULL; 1550 int error; 1551 1552 error = copyin(uap->msg, &m32, sizeof(m32)); 1553 if (error) 1554 return (error); 1555 error = freebsd32_copyinmsghdr(uap->msg, &msg); 1556 if (error) 1557 return (error); 1558 error = freebsd32_copyiniov(PTRIN(m32.msg_iov), m32.msg_iovlen, &iov, 1559 EMSGSIZE); 1560 if (error) 1561 return (error); 1562 msg.msg_iov = iov; 1563 if (msg.msg_name != NULL) { 1564 error = getsockaddr(&to, msg.msg_name, msg.msg_namelen); 1565 if (error) { 1566 to = NULL; 1567 goto out; 1568 } 1569 msg.msg_name = to; 1570 } 1571 1572 if (msg.msg_control) { 1573 if (msg.msg_controllen < sizeof(struct cmsghdr)) { 1574 error = EINVAL; 1575 goto out; 1576 } 1577 1578 error = freebsd32_copyin_control(&control, msg.msg_control, 1579 msg.msg_controllen); 1580 if (error) 1581 goto out; 1582 1583 msg.msg_control = NULL; 1584 msg.msg_controllen = 0; 1585 } 1586 1587 error = kern_sendit(td, uap->s, &msg, uap->flags, control, 1588 UIO_USERSPACE); 1589 1590 out: 1591 free(iov, M_IOV); 1592 if (to) 1593 free(to, M_SONAME); 1594 return (error); 1595 } 1596 1597 int 1598 freebsd32_recvfrom(struct thread *td, 1599 struct freebsd32_recvfrom_args *uap) 1600 { 1601 struct msghdr msg; 1602 struct iovec aiov; 1603 int error; 1604 1605 if (uap->fromlenaddr) { 1606 error = copyin(PTRIN(uap->fromlenaddr), &msg.msg_namelen, 1607 sizeof(msg.msg_namelen)); 1608 if (error) 1609 return (error); 1610 } else { 1611 msg.msg_namelen = 0; 1612 } 1613 1614 msg.msg_name = PTRIN(uap->from); 1615 msg.msg_iov = &aiov; 1616 msg.msg_iovlen = 1; 1617 aiov.iov_base = PTRIN(uap->buf); 1618 aiov.iov_len = uap->len; 1619 msg.msg_control = NULL; 1620 msg.msg_flags = uap->flags; 1621 error = kern_recvit(td, uap->s, &msg, UIO_USERSPACE, NULL); 1622 if (error == 0 && uap->fromlenaddr) 1623 error = copyout(&msg.msg_namelen, PTRIN(uap->fromlenaddr), 1624 sizeof (msg.msg_namelen)); 1625 return (error); 1626 } 1627 1628 int 1629 freebsd32_settimeofday(struct thread *td, 1630 struct freebsd32_settimeofday_args *uap) 1631 { 1632 struct timeval32 tv32; 1633 struct timeval tv, *tvp; 1634 struct timezone tz, *tzp; 1635 int error; 1636 1637 if (uap->tv) { 1638 error = copyin(uap->tv, &tv32, sizeof(tv32)); 1639 if (error) 1640 return (error); 1641 CP(tv32, tv, tv_sec); 1642 CP(tv32, tv, tv_usec); 1643 tvp = &tv; 1644 } else 1645 tvp = NULL; 1646 if (uap->tzp) { 1647 error = copyin(uap->tzp, &tz, sizeof(tz)); 1648 if (error) 1649 return (error); 1650 tzp = &tz; 1651 } else 1652 tzp = NULL; 1653 return (kern_settimeofday(td, tvp, tzp)); 1654 } 1655 1656 int 1657 freebsd32_utimes(struct thread *td, struct freebsd32_utimes_args *uap) 1658 { 1659 struct timeval32 s32[2]; 1660 struct timeval s[2], *sp; 1661 int error; 1662 1663 if (uap->tptr != NULL) { 1664 error = copyin(uap->tptr, s32, sizeof(s32)); 1665 if (error) 1666 return (error); 1667 CP(s32[0], s[0], tv_sec); 1668 CP(s32[0], s[0], tv_usec); 1669 CP(s32[1], s[1], tv_sec); 1670 CP(s32[1], s[1], tv_usec); 1671 sp = s; 1672 } else 1673 sp = NULL; 1674 return (kern_utimesat(td, AT_FDCWD, uap->path, UIO_USERSPACE, 1675 sp, UIO_SYSSPACE)); 1676 } 1677 1678 int 1679 freebsd32_lutimes(struct thread *td, struct freebsd32_lutimes_args *uap) 1680 { 1681 struct timeval32 s32[2]; 1682 struct timeval s[2], *sp; 1683 int error; 1684 1685 if (uap->tptr != NULL) { 1686 error = copyin(uap->tptr, s32, sizeof(s32)); 1687 if (error) 1688 return (error); 1689 CP(s32[0], s[0], tv_sec); 1690 CP(s32[0], s[0], tv_usec); 1691 CP(s32[1], s[1], tv_sec); 1692 CP(s32[1], s[1], tv_usec); 1693 sp = s; 1694 } else 1695 sp = NULL; 1696 return (kern_lutimes(td, uap->path, UIO_USERSPACE, sp, UIO_SYSSPACE)); 1697 } 1698 1699 int 1700 freebsd32_futimes(struct thread *td, struct freebsd32_futimes_args *uap) 1701 { 1702 struct timeval32 s32[2]; 1703 struct timeval s[2], *sp; 1704 int error; 1705 1706 if (uap->tptr != NULL) { 1707 error = copyin(uap->tptr, s32, sizeof(s32)); 1708 if (error) 1709 return (error); 1710 CP(s32[0], s[0], tv_sec); 1711 CP(s32[0], s[0], tv_usec); 1712 CP(s32[1], s[1], tv_sec); 1713 CP(s32[1], s[1], tv_usec); 1714 sp = s; 1715 } else 1716 sp = NULL; 1717 return (kern_futimes(td, uap->fd, sp, UIO_SYSSPACE)); 1718 } 1719 1720 int 1721 freebsd32_futimesat(struct thread *td, struct freebsd32_futimesat_args *uap) 1722 { 1723 struct timeval32 s32[2]; 1724 struct timeval s[2], *sp; 1725 int error; 1726 1727 if (uap->times != NULL) { 1728 error = copyin(uap->times, s32, sizeof(s32)); 1729 if (error) 1730 return (error); 1731 CP(s32[0], s[0], tv_sec); 1732 CP(s32[0], s[0], tv_usec); 1733 CP(s32[1], s[1], tv_sec); 1734 CP(s32[1], s[1], tv_usec); 1735 sp = s; 1736 } else 1737 sp = NULL; 1738 return (kern_utimesat(td, uap->fd, uap->path, UIO_USERSPACE, 1739 sp, UIO_SYSSPACE)); 1740 } 1741 1742 int 1743 freebsd32_futimens(struct thread *td, struct freebsd32_futimens_args *uap) 1744 { 1745 struct timespec32 ts32[2]; 1746 struct timespec ts[2], *tsp; 1747 int error; 1748 1749 if (uap->times != NULL) { 1750 error = copyin(uap->times, ts32, sizeof(ts32)); 1751 if (error) 1752 return (error); 1753 CP(ts32[0], ts[0], tv_sec); 1754 CP(ts32[0], ts[0], tv_nsec); 1755 CP(ts32[1], ts[1], tv_sec); 1756 CP(ts32[1], ts[1], tv_nsec); 1757 tsp = ts; 1758 } else 1759 tsp = NULL; 1760 return (kern_futimens(td, uap->fd, tsp, UIO_SYSSPACE)); 1761 } 1762 1763 int 1764 freebsd32_utimensat(struct thread *td, struct freebsd32_utimensat_args *uap) 1765 { 1766 struct timespec32 ts32[2]; 1767 struct timespec ts[2], *tsp; 1768 int error; 1769 1770 if (uap->times != NULL) { 1771 error = copyin(uap->times, ts32, sizeof(ts32)); 1772 if (error) 1773 return (error); 1774 CP(ts32[0], ts[0], tv_sec); 1775 CP(ts32[0], ts[0], tv_nsec); 1776 CP(ts32[1], ts[1], tv_sec); 1777 CP(ts32[1], ts[1], tv_nsec); 1778 tsp = ts; 1779 } else 1780 tsp = NULL; 1781 return (kern_utimensat(td, uap->fd, uap->path, UIO_USERSPACE, 1782 tsp, UIO_SYSSPACE, uap->flag)); 1783 } 1784 1785 int 1786 freebsd32_adjtime(struct thread *td, struct freebsd32_adjtime_args *uap) 1787 { 1788 struct timeval32 tv32; 1789 struct timeval delta, olddelta, *deltap; 1790 int error; 1791 1792 if (uap->delta) { 1793 error = copyin(uap->delta, &tv32, sizeof(tv32)); 1794 if (error) 1795 return (error); 1796 CP(tv32, delta, tv_sec); 1797 CP(tv32, delta, tv_usec); 1798 deltap = δ 1799 } else 1800 deltap = NULL; 1801 error = kern_adjtime(td, deltap, &olddelta); 1802 if (uap->olddelta && error == 0) { 1803 CP(olddelta, tv32, tv_sec); 1804 CP(olddelta, tv32, tv_usec); 1805 error = copyout(&tv32, uap->olddelta, sizeof(tv32)); 1806 } 1807 return (error); 1808 } 1809 1810 #ifdef COMPAT_FREEBSD4 1811 int 1812 freebsd4_freebsd32_statfs(struct thread *td, struct freebsd4_freebsd32_statfs_args *uap) 1813 { 1814 struct statfs32 s32; 1815 struct statfs *sp; 1816 int error; 1817 1818 sp = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK); 1819 error = kern_statfs(td, uap->path, UIO_USERSPACE, sp); 1820 if (error == 0) { 1821 copy_statfs(sp, &s32); 1822 error = copyout(&s32, uap->buf, sizeof(s32)); 1823 } 1824 free(sp, M_STATFS); 1825 return (error); 1826 } 1827 #endif 1828 1829 #ifdef COMPAT_FREEBSD4 1830 int 1831 freebsd4_freebsd32_fstatfs(struct thread *td, struct freebsd4_freebsd32_fstatfs_args *uap) 1832 { 1833 struct statfs32 s32; 1834 struct statfs *sp; 1835 int error; 1836 1837 sp = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK); 1838 error = kern_fstatfs(td, uap->fd, sp); 1839 if (error == 0) { 1840 copy_statfs(sp, &s32); 1841 error = copyout(&s32, uap->buf, sizeof(s32)); 1842 } 1843 free(sp, M_STATFS); 1844 return (error); 1845 } 1846 #endif 1847 1848 #ifdef COMPAT_FREEBSD4 1849 int 1850 freebsd4_freebsd32_fhstatfs(struct thread *td, struct freebsd4_freebsd32_fhstatfs_args *uap) 1851 { 1852 struct statfs32 s32; 1853 struct statfs *sp; 1854 fhandle_t fh; 1855 int error; 1856 1857 if ((error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t))) != 0) 1858 return (error); 1859 sp = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK); 1860 error = kern_fhstatfs(td, fh, sp); 1861 if (error == 0) { 1862 copy_statfs(sp, &s32); 1863 error = copyout(&s32, uap->buf, sizeof(s32)); 1864 } 1865 free(sp, M_STATFS); 1866 return (error); 1867 } 1868 #endif 1869 1870 int 1871 freebsd32_pread(struct thread *td, struct freebsd32_pread_args *uap) 1872 { 1873 1874 return (kern_pread(td, uap->fd, uap->buf, uap->nbyte, 1875 PAIR32TO64(off_t, uap->offset))); 1876 } 1877 1878 int 1879 freebsd32_pwrite(struct thread *td, struct freebsd32_pwrite_args *uap) 1880 { 1881 1882 return (kern_pwrite(td, uap->fd, uap->buf, uap->nbyte, 1883 PAIR32TO64(off_t, uap->offset))); 1884 } 1885 1886 #ifdef COMPAT_43 1887 int 1888 ofreebsd32_lseek(struct thread *td, struct ofreebsd32_lseek_args *uap) 1889 { 1890 1891 return (kern_lseek(td, uap->fd, uap->offset, uap->whence)); 1892 } 1893 #endif 1894 1895 int 1896 freebsd32_lseek(struct thread *td, struct freebsd32_lseek_args *uap) 1897 { 1898 int error; 1899 off_t pos; 1900 1901 error = kern_lseek(td, uap->fd, PAIR32TO64(off_t, uap->offset), 1902 uap->whence); 1903 /* Expand the quad return into two parts for eax and edx */ 1904 pos = td->td_uretoff.tdu_off; 1905 td->td_retval[RETVAL_LO] = pos & 0xffffffff; /* %eax */ 1906 td->td_retval[RETVAL_HI] = pos >> 32; /* %edx */ 1907 return error; 1908 } 1909 1910 int 1911 freebsd32_truncate(struct thread *td, struct freebsd32_truncate_args *uap) 1912 { 1913 1914 return (kern_truncate(td, uap->path, UIO_USERSPACE, 1915 PAIR32TO64(off_t, uap->length))); 1916 } 1917 1918 int 1919 freebsd32_ftruncate(struct thread *td, struct freebsd32_ftruncate_args *uap) 1920 { 1921 1922 return (kern_ftruncate(td, uap->fd, PAIR32TO64(off_t, uap->length))); 1923 } 1924 1925 #ifdef COMPAT_43 1926 int 1927 ofreebsd32_getdirentries(struct thread *td, 1928 struct ofreebsd32_getdirentries_args *uap) 1929 { 1930 struct ogetdirentries_args ap; 1931 int error; 1932 long loff; 1933 int32_t loff_cut; 1934 1935 ap.fd = uap->fd; 1936 ap.buf = uap->buf; 1937 ap.count = uap->count; 1938 ap.basep = NULL; 1939 error = kern_ogetdirentries(td, &ap, &loff); 1940 if (error == 0) { 1941 loff_cut = loff; 1942 error = copyout(&loff_cut, uap->basep, sizeof(int32_t)); 1943 } 1944 return (error); 1945 } 1946 #endif 1947 1948 #if defined(COMPAT_FREEBSD11) 1949 int 1950 freebsd11_freebsd32_getdirentries(struct thread *td, 1951 struct freebsd11_freebsd32_getdirentries_args *uap) 1952 { 1953 long base; 1954 int32_t base32; 1955 int error; 1956 1957 error = freebsd11_kern_getdirentries(td, uap->fd, uap->buf, uap->count, 1958 &base, NULL); 1959 if (error) 1960 return (error); 1961 if (uap->basep != NULL) { 1962 base32 = base; 1963 error = copyout(&base32, uap->basep, sizeof(int32_t)); 1964 } 1965 return (error); 1966 } 1967 1968 int 1969 freebsd11_freebsd32_getdents(struct thread *td, 1970 struct freebsd11_freebsd32_getdents_args *uap) 1971 { 1972 struct freebsd11_freebsd32_getdirentries_args ap; 1973 1974 ap.fd = uap->fd; 1975 ap.buf = uap->buf; 1976 ap.count = uap->count; 1977 ap.basep = NULL; 1978 return (freebsd11_freebsd32_getdirentries(td, &ap)); 1979 } 1980 #endif /* COMPAT_FREEBSD11 */ 1981 1982 #ifdef COMPAT_FREEBSD6 1983 /* versions with the 'int pad' argument */ 1984 int 1985 freebsd6_freebsd32_pread(struct thread *td, struct freebsd6_freebsd32_pread_args *uap) 1986 { 1987 1988 return (kern_pread(td, uap->fd, uap->buf, uap->nbyte, 1989 PAIR32TO64(off_t, uap->offset))); 1990 } 1991 1992 int 1993 freebsd6_freebsd32_pwrite(struct thread *td, struct freebsd6_freebsd32_pwrite_args *uap) 1994 { 1995 1996 return (kern_pwrite(td, uap->fd, uap->buf, uap->nbyte, 1997 PAIR32TO64(off_t, uap->offset))); 1998 } 1999 2000 int 2001 freebsd6_freebsd32_lseek(struct thread *td, struct freebsd6_freebsd32_lseek_args *uap) 2002 { 2003 int error; 2004 off_t pos; 2005 2006 error = kern_lseek(td, uap->fd, PAIR32TO64(off_t, uap->offset), 2007 uap->whence); 2008 /* Expand the quad return into two parts for eax and edx */ 2009 pos = *(off_t *)(td->td_retval); 2010 td->td_retval[RETVAL_LO] = pos & 0xffffffff; /* %eax */ 2011 td->td_retval[RETVAL_HI] = pos >> 32; /* %edx */ 2012 return error; 2013 } 2014 2015 int 2016 freebsd6_freebsd32_truncate(struct thread *td, struct freebsd6_freebsd32_truncate_args *uap) 2017 { 2018 2019 return (kern_truncate(td, uap->path, UIO_USERSPACE, 2020 PAIR32TO64(off_t, uap->length))); 2021 } 2022 2023 int 2024 freebsd6_freebsd32_ftruncate(struct thread *td, struct freebsd6_freebsd32_ftruncate_args *uap) 2025 { 2026 2027 return (kern_ftruncate(td, uap->fd, PAIR32TO64(off_t, uap->length))); 2028 } 2029 #endif /* COMPAT_FREEBSD6 */ 2030 2031 struct sf_hdtr32 { 2032 uint32_t headers; 2033 int hdr_cnt; 2034 uint32_t trailers; 2035 int trl_cnt; 2036 }; 2037 2038 static int 2039 freebsd32_do_sendfile(struct thread *td, 2040 struct freebsd32_sendfile_args *uap, int compat) 2041 { 2042 struct sf_hdtr32 hdtr32; 2043 struct sf_hdtr hdtr; 2044 struct uio *hdr_uio, *trl_uio; 2045 struct file *fp; 2046 cap_rights_t rights; 2047 struct iovec32 *iov32; 2048 off_t offset, sbytes; 2049 int error; 2050 2051 offset = PAIR32TO64(off_t, uap->offset); 2052 if (offset < 0) 2053 return (EINVAL); 2054 2055 hdr_uio = trl_uio = NULL; 2056 2057 if (uap->hdtr != NULL) { 2058 error = copyin(uap->hdtr, &hdtr32, sizeof(hdtr32)); 2059 if (error) 2060 goto out; 2061 PTRIN_CP(hdtr32, hdtr, headers); 2062 CP(hdtr32, hdtr, hdr_cnt); 2063 PTRIN_CP(hdtr32, hdtr, trailers); 2064 CP(hdtr32, hdtr, trl_cnt); 2065 2066 if (hdtr.headers != NULL) { 2067 iov32 = PTRIN(hdtr32.headers); 2068 error = freebsd32_copyinuio(iov32, 2069 hdtr32.hdr_cnt, &hdr_uio); 2070 if (error) 2071 goto out; 2072 #ifdef COMPAT_FREEBSD4 2073 /* 2074 * In FreeBSD < 5.0 the nbytes to send also included 2075 * the header. If compat is specified subtract the 2076 * header size from nbytes. 2077 */ 2078 if (compat) { 2079 if (uap->nbytes > hdr_uio->uio_resid) 2080 uap->nbytes -= hdr_uio->uio_resid; 2081 else 2082 uap->nbytes = 0; 2083 } 2084 #endif 2085 } 2086 if (hdtr.trailers != NULL) { 2087 iov32 = PTRIN(hdtr32.trailers); 2088 error = freebsd32_copyinuio(iov32, 2089 hdtr32.trl_cnt, &trl_uio); 2090 if (error) 2091 goto out; 2092 } 2093 } 2094 2095 AUDIT_ARG_FD(uap->fd); 2096 2097 if ((error = fget_read(td, uap->fd, 2098 cap_rights_init(&rights, CAP_PREAD), &fp)) != 0) 2099 goto out; 2100 2101 error = fo_sendfile(fp, uap->s, hdr_uio, trl_uio, offset, 2102 uap->nbytes, &sbytes, uap->flags, td); 2103 fdrop(fp, td); 2104 2105 if (uap->sbytes != NULL) 2106 copyout(&sbytes, uap->sbytes, sizeof(off_t)); 2107 2108 out: 2109 if (hdr_uio) 2110 free(hdr_uio, M_IOV); 2111 if (trl_uio) 2112 free(trl_uio, M_IOV); 2113 return (error); 2114 } 2115 2116 #ifdef COMPAT_FREEBSD4 2117 int 2118 freebsd4_freebsd32_sendfile(struct thread *td, 2119 struct freebsd4_freebsd32_sendfile_args *uap) 2120 { 2121 return (freebsd32_do_sendfile(td, 2122 (struct freebsd32_sendfile_args *)uap, 1)); 2123 } 2124 #endif 2125 2126 int 2127 freebsd32_sendfile(struct thread *td, struct freebsd32_sendfile_args *uap) 2128 { 2129 2130 return (freebsd32_do_sendfile(td, uap, 0)); 2131 } 2132 2133 static void 2134 copy_stat(struct stat *in, struct stat32 *out) 2135 { 2136 2137 CP(*in, *out, st_dev); 2138 CP(*in, *out, st_ino); 2139 CP(*in, *out, st_mode); 2140 CP(*in, *out, st_nlink); 2141 CP(*in, *out, st_uid); 2142 CP(*in, *out, st_gid); 2143 CP(*in, *out, st_rdev); 2144 TS_CP(*in, *out, st_atim); 2145 TS_CP(*in, *out, st_mtim); 2146 TS_CP(*in, *out, st_ctim); 2147 CP(*in, *out, st_size); 2148 CP(*in, *out, st_blocks); 2149 CP(*in, *out, st_blksize); 2150 CP(*in, *out, st_flags); 2151 CP(*in, *out, st_gen); 2152 TS_CP(*in, *out, st_birthtim); 2153 out->st_padding0 = 0; 2154 out->st_padding1 = 0; 2155 #ifdef __STAT32_TIME_T_EXT 2156 out->st_atim_ext = 0; 2157 out->st_mtim_ext = 0; 2158 out->st_ctim_ext = 0; 2159 out->st_btim_ext = 0; 2160 #endif 2161 bzero(out->st_spare, sizeof(out->st_spare)); 2162 } 2163 2164 #ifdef COMPAT_43 2165 static void 2166 copy_ostat(struct stat *in, struct ostat32 *out) 2167 { 2168 2169 bzero(out, sizeof(*out)); 2170 CP(*in, *out, st_dev); 2171 CP(*in, *out, st_ino); 2172 CP(*in, *out, st_mode); 2173 CP(*in, *out, st_nlink); 2174 CP(*in, *out, st_uid); 2175 CP(*in, *out, st_gid); 2176 CP(*in, *out, st_rdev); 2177 out->st_size = MIN(in->st_size, INT32_MAX); 2178 TS_CP(*in, *out, st_atim); 2179 TS_CP(*in, *out, st_mtim); 2180 TS_CP(*in, *out, st_ctim); 2181 CP(*in, *out, st_blksize); 2182 CP(*in, *out, st_blocks); 2183 CP(*in, *out, st_flags); 2184 CP(*in, *out, st_gen); 2185 } 2186 #endif 2187 2188 #ifdef COMPAT_43 2189 int 2190 ofreebsd32_stat(struct thread *td, struct ofreebsd32_stat_args *uap) 2191 { 2192 struct stat sb; 2193 struct ostat32 sb32; 2194 int error; 2195 2196 error = kern_statat(td, 0, AT_FDCWD, uap->path, UIO_USERSPACE, 2197 &sb, NULL); 2198 if (error) 2199 return (error); 2200 copy_ostat(&sb, &sb32); 2201 error = copyout(&sb32, uap->ub, sizeof (sb32)); 2202 return (error); 2203 } 2204 #endif 2205 2206 int 2207 freebsd32_fstat(struct thread *td, struct freebsd32_fstat_args *uap) 2208 { 2209 struct stat ub; 2210 struct stat32 ub32; 2211 int error; 2212 2213 error = kern_fstat(td, uap->fd, &ub); 2214 if (error) 2215 return (error); 2216 copy_stat(&ub, &ub32); 2217 error = copyout(&ub32, uap->ub, sizeof(ub32)); 2218 return (error); 2219 } 2220 2221 #ifdef COMPAT_43 2222 int 2223 ofreebsd32_fstat(struct thread *td, struct ofreebsd32_fstat_args *uap) 2224 { 2225 struct stat ub; 2226 struct ostat32 ub32; 2227 int error; 2228 2229 error = kern_fstat(td, uap->fd, &ub); 2230 if (error) 2231 return (error); 2232 copy_ostat(&ub, &ub32); 2233 error = copyout(&ub32, uap->ub, sizeof(ub32)); 2234 return (error); 2235 } 2236 #endif 2237 2238 int 2239 freebsd32_fstatat(struct thread *td, struct freebsd32_fstatat_args *uap) 2240 { 2241 struct stat ub; 2242 struct stat32 ub32; 2243 int error; 2244 2245 error = kern_statat(td, uap->flag, uap->fd, uap->path, UIO_USERSPACE, 2246 &ub, NULL); 2247 if (error) 2248 return (error); 2249 copy_stat(&ub, &ub32); 2250 error = copyout(&ub32, uap->buf, sizeof(ub32)); 2251 return (error); 2252 } 2253 2254 #ifdef COMPAT_43 2255 int 2256 ofreebsd32_lstat(struct thread *td, struct ofreebsd32_lstat_args *uap) 2257 { 2258 struct stat sb; 2259 struct ostat32 sb32; 2260 int error; 2261 2262 error = kern_statat(td, AT_SYMLINK_NOFOLLOW, AT_FDCWD, uap->path, 2263 UIO_USERSPACE, &sb, NULL); 2264 if (error) 2265 return (error); 2266 copy_ostat(&sb, &sb32); 2267 error = copyout(&sb32, uap->ub, sizeof (sb32)); 2268 return (error); 2269 } 2270 #endif 2271 2272 int 2273 freebsd32_fhstat(struct thread *td, struct freebsd32_fhstat_args *uap) 2274 { 2275 struct stat sb; 2276 struct stat32 sb32; 2277 struct fhandle fh; 2278 int error; 2279 2280 error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t)); 2281 if (error != 0) 2282 return (error); 2283 error = kern_fhstat(td, fh, &sb); 2284 if (error != 0) 2285 return (error); 2286 copy_stat(&sb, &sb32); 2287 error = copyout(&sb32, uap->sb, sizeof (sb32)); 2288 return (error); 2289 } 2290 2291 #if defined(COMPAT_FREEBSD11) 2292 extern int ino64_trunc_error; 2293 2294 static int 2295 freebsd11_cvtstat32(struct stat *in, struct freebsd11_stat32 *out) 2296 { 2297 2298 CP(*in, *out, st_ino); 2299 if (in->st_ino != out->st_ino) { 2300 switch (ino64_trunc_error) { 2301 default: 2302 case 0: 2303 break; 2304 case 1: 2305 return (EOVERFLOW); 2306 case 2: 2307 out->st_ino = UINT32_MAX; 2308 break; 2309 } 2310 } 2311 CP(*in, *out, st_nlink); 2312 if (in->st_nlink != out->st_nlink) { 2313 switch (ino64_trunc_error) { 2314 default: 2315 case 0: 2316 break; 2317 case 1: 2318 return (EOVERFLOW); 2319 case 2: 2320 out->st_nlink = UINT16_MAX; 2321 break; 2322 } 2323 } 2324 out->st_dev = in->st_dev; 2325 if (out->st_dev != in->st_dev) { 2326 switch (ino64_trunc_error) { 2327 default: 2328 break; 2329 case 1: 2330 return (EOVERFLOW); 2331 } 2332 } 2333 CP(*in, *out, st_mode); 2334 CP(*in, *out, st_uid); 2335 CP(*in, *out, st_gid); 2336 out->st_rdev = in->st_rdev; 2337 if (out->st_rdev != in->st_rdev) { 2338 switch (ino64_trunc_error) { 2339 default: 2340 break; 2341 case 1: 2342 return (EOVERFLOW); 2343 } 2344 } 2345 TS_CP(*in, *out, st_atim); 2346 TS_CP(*in, *out, st_mtim); 2347 TS_CP(*in, *out, st_ctim); 2348 CP(*in, *out, st_size); 2349 CP(*in, *out, st_blocks); 2350 CP(*in, *out, st_blksize); 2351 CP(*in, *out, st_flags); 2352 CP(*in, *out, st_gen); 2353 TS_CP(*in, *out, st_birthtim); 2354 out->st_lspare = 0; 2355 bzero((char *)&out->st_birthtim + sizeof(out->st_birthtim), 2356 sizeof(*out) - offsetof(struct freebsd11_stat32, 2357 st_birthtim) - sizeof(out->st_birthtim)); 2358 return (0); 2359 } 2360 2361 int 2362 freebsd11_freebsd32_stat(struct thread *td, 2363 struct freebsd11_freebsd32_stat_args *uap) 2364 { 2365 struct stat sb; 2366 struct freebsd11_stat32 sb32; 2367 int error; 2368 2369 error = kern_statat(td, 0, AT_FDCWD, uap->path, UIO_USERSPACE, 2370 &sb, NULL); 2371 if (error != 0) 2372 return (error); 2373 error = freebsd11_cvtstat32(&sb, &sb32); 2374 if (error == 0) 2375 error = copyout(&sb32, uap->ub, sizeof (sb32)); 2376 return (error); 2377 } 2378 2379 int 2380 freebsd11_freebsd32_fstat(struct thread *td, 2381 struct freebsd11_freebsd32_fstat_args *uap) 2382 { 2383 struct stat sb; 2384 struct freebsd11_stat32 sb32; 2385 int error; 2386 2387 error = kern_fstat(td, uap->fd, &sb); 2388 if (error != 0) 2389 return (error); 2390 error = freebsd11_cvtstat32(&sb, &sb32); 2391 if (error == 0) 2392 error = copyout(&sb32, uap->ub, sizeof (sb32)); 2393 return (error); 2394 } 2395 2396 int 2397 freebsd11_freebsd32_fstatat(struct thread *td, 2398 struct freebsd11_freebsd32_fstatat_args *uap) 2399 { 2400 struct stat sb; 2401 struct freebsd11_stat32 sb32; 2402 int error; 2403 2404 error = kern_statat(td, uap->flag, uap->fd, uap->path, UIO_USERSPACE, 2405 &sb, NULL); 2406 if (error != 0) 2407 return (error); 2408 error = freebsd11_cvtstat32(&sb, &sb32); 2409 if (error == 0) 2410 error = copyout(&sb32, uap->buf, sizeof (sb32)); 2411 return (error); 2412 } 2413 2414 int 2415 freebsd11_freebsd32_lstat(struct thread *td, 2416 struct freebsd11_freebsd32_lstat_args *uap) 2417 { 2418 struct stat sb; 2419 struct freebsd11_stat32 sb32; 2420 int error; 2421 2422 error = kern_statat(td, AT_SYMLINK_NOFOLLOW, AT_FDCWD, uap->path, 2423 UIO_USERSPACE, &sb, NULL); 2424 if (error != 0) 2425 return (error); 2426 error = freebsd11_cvtstat32(&sb, &sb32); 2427 if (error == 0) 2428 error = copyout(&sb32, uap->ub, sizeof (sb32)); 2429 return (error); 2430 } 2431 2432 int 2433 freebsd11_freebsd32_fhstat(struct thread *td, 2434 struct freebsd11_freebsd32_fhstat_args *uap) 2435 { 2436 struct stat sb; 2437 struct freebsd11_stat32 sb32; 2438 struct fhandle fh; 2439 int error; 2440 2441 error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t)); 2442 if (error != 0) 2443 return (error); 2444 error = kern_fhstat(td, fh, &sb); 2445 if (error != 0) 2446 return (error); 2447 error = freebsd11_cvtstat32(&sb, &sb32); 2448 if (error == 0) 2449 error = copyout(&sb32, uap->sb, sizeof (sb32)); 2450 return (error); 2451 } 2452 #endif 2453 2454 int 2455 freebsd32___sysctl(struct thread *td, struct freebsd32___sysctl_args *uap) 2456 { 2457 int error, name[CTL_MAXNAME]; 2458 size_t j, oldlen; 2459 uint32_t tmp; 2460 2461 if (uap->namelen > CTL_MAXNAME || uap->namelen < 2) 2462 return (EINVAL); 2463 error = copyin(uap->name, name, uap->namelen * sizeof(int)); 2464 if (error) 2465 return (error); 2466 if (uap->oldlenp) { 2467 error = fueword32(uap->oldlenp, &tmp); 2468 oldlen = tmp; 2469 } else { 2470 oldlen = 0; 2471 } 2472 if (error != 0) 2473 return (EFAULT); 2474 error = userland_sysctl(td, name, uap->namelen, 2475 uap->old, &oldlen, 1, 2476 uap->new, uap->newlen, &j, SCTL_MASK32); 2477 if (error) 2478 return (error); 2479 if (uap->oldlenp) 2480 suword32(uap->oldlenp, j); 2481 return (0); 2482 } 2483 2484 int 2485 freebsd32___sysctlbyname(struct thread *td, 2486 struct freebsd32___sysctlbyname_args *uap) 2487 { 2488 size_t oldlen, rv; 2489 int error; 2490 uint32_t tmp; 2491 2492 if (uap->oldlenp != NULL) { 2493 error = fueword32(uap->oldlenp, &tmp); 2494 oldlen = tmp; 2495 } else { 2496 error = oldlen = 0; 2497 } 2498 if (error != 0) 2499 return (EFAULT); 2500 error = kern___sysctlbyname(td, uap->name, uap->namelen, uap->old, 2501 &oldlen, uap->new, uap->newlen, &rv, SCTL_MASK32, 1); 2502 if (error != 0) 2503 return (error); 2504 if (uap->oldlenp != NULL) 2505 error = suword32(uap->oldlenp, rv); 2506 2507 return (error); 2508 } 2509 2510 int 2511 freebsd32_jail(struct thread *td, struct freebsd32_jail_args *uap) 2512 { 2513 uint32_t version; 2514 int error; 2515 struct jail j; 2516 2517 error = copyin(uap->jail, &version, sizeof(uint32_t)); 2518 if (error) 2519 return (error); 2520 2521 switch (version) { 2522 case 0: 2523 { 2524 /* FreeBSD single IPv4 jails. */ 2525 struct jail32_v0 j32_v0; 2526 2527 bzero(&j, sizeof(struct jail)); 2528 error = copyin(uap->jail, &j32_v0, sizeof(struct jail32_v0)); 2529 if (error) 2530 return (error); 2531 CP(j32_v0, j, version); 2532 PTRIN_CP(j32_v0, j, path); 2533 PTRIN_CP(j32_v0, j, hostname); 2534 j.ip4s = htonl(j32_v0.ip_number); /* jail_v0 is host order */ 2535 break; 2536 } 2537 2538 case 1: 2539 /* 2540 * Version 1 was used by multi-IPv4 jail implementations 2541 * that never made it into the official kernel. 2542 */ 2543 return (EINVAL); 2544 2545 case 2: /* JAIL_API_VERSION */ 2546 { 2547 /* FreeBSD multi-IPv4/IPv6,noIP jails. */ 2548 struct jail32 j32; 2549 2550 error = copyin(uap->jail, &j32, sizeof(struct jail32)); 2551 if (error) 2552 return (error); 2553 CP(j32, j, version); 2554 PTRIN_CP(j32, j, path); 2555 PTRIN_CP(j32, j, hostname); 2556 PTRIN_CP(j32, j, jailname); 2557 CP(j32, j, ip4s); 2558 CP(j32, j, ip6s); 2559 PTRIN_CP(j32, j, ip4); 2560 PTRIN_CP(j32, j, ip6); 2561 break; 2562 } 2563 2564 default: 2565 /* Sci-Fi jails are not supported, sorry. */ 2566 return (EINVAL); 2567 } 2568 return (kern_jail(td, &j)); 2569 } 2570 2571 int 2572 freebsd32_jail_set(struct thread *td, struct freebsd32_jail_set_args *uap) 2573 { 2574 struct uio *auio; 2575 int error; 2576 2577 /* Check that we have an even number of iovecs. */ 2578 if (uap->iovcnt & 1) 2579 return (EINVAL); 2580 2581 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 2582 if (error) 2583 return (error); 2584 error = kern_jail_set(td, auio, uap->flags); 2585 free(auio, M_IOV); 2586 return (error); 2587 } 2588 2589 int 2590 freebsd32_jail_get(struct thread *td, struct freebsd32_jail_get_args *uap) 2591 { 2592 struct iovec32 iov32; 2593 struct uio *auio; 2594 int error, i; 2595 2596 /* Check that we have an even number of iovecs. */ 2597 if (uap->iovcnt & 1) 2598 return (EINVAL); 2599 2600 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 2601 if (error) 2602 return (error); 2603 error = kern_jail_get(td, auio, uap->flags); 2604 if (error == 0) 2605 for (i = 0; i < uap->iovcnt; i++) { 2606 PTROUT_CP(auio->uio_iov[i], iov32, iov_base); 2607 CP(auio->uio_iov[i], iov32, iov_len); 2608 error = copyout(&iov32, uap->iovp + i, sizeof(iov32)); 2609 if (error != 0) 2610 break; 2611 } 2612 free(auio, M_IOV); 2613 return (error); 2614 } 2615 2616 int 2617 freebsd32_sigaction(struct thread *td, struct freebsd32_sigaction_args *uap) 2618 { 2619 struct sigaction32 s32; 2620 struct sigaction sa, osa, *sap; 2621 int error; 2622 2623 if (uap->act) { 2624 error = copyin(uap->act, &s32, sizeof(s32)); 2625 if (error) 2626 return (error); 2627 sa.sa_handler = PTRIN(s32.sa_u); 2628 CP(s32, sa, sa_flags); 2629 CP(s32, sa, sa_mask); 2630 sap = &sa; 2631 } else 2632 sap = NULL; 2633 error = kern_sigaction(td, uap->sig, sap, &osa, 0); 2634 if (error == 0 && uap->oact != NULL) { 2635 s32.sa_u = PTROUT(osa.sa_handler); 2636 CP(osa, s32, sa_flags); 2637 CP(osa, s32, sa_mask); 2638 error = copyout(&s32, uap->oact, sizeof(s32)); 2639 } 2640 return (error); 2641 } 2642 2643 #ifdef COMPAT_FREEBSD4 2644 int 2645 freebsd4_freebsd32_sigaction(struct thread *td, 2646 struct freebsd4_freebsd32_sigaction_args *uap) 2647 { 2648 struct sigaction32 s32; 2649 struct sigaction sa, osa, *sap; 2650 int error; 2651 2652 if (uap->act) { 2653 error = copyin(uap->act, &s32, sizeof(s32)); 2654 if (error) 2655 return (error); 2656 sa.sa_handler = PTRIN(s32.sa_u); 2657 CP(s32, sa, sa_flags); 2658 CP(s32, sa, sa_mask); 2659 sap = &sa; 2660 } else 2661 sap = NULL; 2662 error = kern_sigaction(td, uap->sig, sap, &osa, KSA_FREEBSD4); 2663 if (error == 0 && uap->oact != NULL) { 2664 s32.sa_u = PTROUT(osa.sa_handler); 2665 CP(osa, s32, sa_flags); 2666 CP(osa, s32, sa_mask); 2667 error = copyout(&s32, uap->oact, sizeof(s32)); 2668 } 2669 return (error); 2670 } 2671 #endif 2672 2673 #ifdef COMPAT_43 2674 struct osigaction32 { 2675 u_int32_t sa_u; 2676 osigset_t sa_mask; 2677 int sa_flags; 2678 }; 2679 2680 #define ONSIG 32 2681 2682 int 2683 ofreebsd32_sigaction(struct thread *td, 2684 struct ofreebsd32_sigaction_args *uap) 2685 { 2686 struct osigaction32 s32; 2687 struct sigaction sa, osa, *sap; 2688 int error; 2689 2690 if (uap->signum <= 0 || uap->signum >= ONSIG) 2691 return (EINVAL); 2692 2693 if (uap->nsa) { 2694 error = copyin(uap->nsa, &s32, sizeof(s32)); 2695 if (error) 2696 return (error); 2697 sa.sa_handler = PTRIN(s32.sa_u); 2698 CP(s32, sa, sa_flags); 2699 OSIG2SIG(s32.sa_mask, sa.sa_mask); 2700 sap = &sa; 2701 } else 2702 sap = NULL; 2703 error = kern_sigaction(td, uap->signum, sap, &osa, KSA_OSIGSET); 2704 if (error == 0 && uap->osa != NULL) { 2705 s32.sa_u = PTROUT(osa.sa_handler); 2706 CP(osa, s32, sa_flags); 2707 SIG2OSIG(osa.sa_mask, s32.sa_mask); 2708 error = copyout(&s32, uap->osa, sizeof(s32)); 2709 } 2710 return (error); 2711 } 2712 2713 int 2714 ofreebsd32_sigprocmask(struct thread *td, 2715 struct ofreebsd32_sigprocmask_args *uap) 2716 { 2717 sigset_t set, oset; 2718 int error; 2719 2720 OSIG2SIG(uap->mask, set); 2721 error = kern_sigprocmask(td, uap->how, &set, &oset, SIGPROCMASK_OLD); 2722 SIG2OSIG(oset, td->td_retval[0]); 2723 return (error); 2724 } 2725 2726 int 2727 ofreebsd32_sigpending(struct thread *td, 2728 struct ofreebsd32_sigpending_args *uap) 2729 { 2730 struct proc *p = td->td_proc; 2731 sigset_t siglist; 2732 2733 PROC_LOCK(p); 2734 siglist = p->p_siglist; 2735 SIGSETOR(siglist, td->td_siglist); 2736 PROC_UNLOCK(p); 2737 SIG2OSIG(siglist, td->td_retval[0]); 2738 return (0); 2739 } 2740 2741 struct sigvec32 { 2742 u_int32_t sv_handler; 2743 int sv_mask; 2744 int sv_flags; 2745 }; 2746 2747 int 2748 ofreebsd32_sigvec(struct thread *td, 2749 struct ofreebsd32_sigvec_args *uap) 2750 { 2751 struct sigvec32 vec; 2752 struct sigaction sa, osa, *sap; 2753 int error; 2754 2755 if (uap->signum <= 0 || uap->signum >= ONSIG) 2756 return (EINVAL); 2757 2758 if (uap->nsv) { 2759 error = copyin(uap->nsv, &vec, sizeof(vec)); 2760 if (error) 2761 return (error); 2762 sa.sa_handler = PTRIN(vec.sv_handler); 2763 OSIG2SIG(vec.sv_mask, sa.sa_mask); 2764 sa.sa_flags = vec.sv_flags; 2765 sa.sa_flags ^= SA_RESTART; 2766 sap = &sa; 2767 } else 2768 sap = NULL; 2769 error = kern_sigaction(td, uap->signum, sap, &osa, KSA_OSIGSET); 2770 if (error == 0 && uap->osv != NULL) { 2771 vec.sv_handler = PTROUT(osa.sa_handler); 2772 SIG2OSIG(osa.sa_mask, vec.sv_mask); 2773 vec.sv_flags = osa.sa_flags; 2774 vec.sv_flags &= ~SA_NOCLDWAIT; 2775 vec.sv_flags ^= SA_RESTART; 2776 error = copyout(&vec, uap->osv, sizeof(vec)); 2777 } 2778 return (error); 2779 } 2780 2781 int 2782 ofreebsd32_sigblock(struct thread *td, 2783 struct ofreebsd32_sigblock_args *uap) 2784 { 2785 sigset_t set, oset; 2786 2787 OSIG2SIG(uap->mask, set); 2788 kern_sigprocmask(td, SIG_BLOCK, &set, &oset, 0); 2789 SIG2OSIG(oset, td->td_retval[0]); 2790 return (0); 2791 } 2792 2793 int 2794 ofreebsd32_sigsetmask(struct thread *td, 2795 struct ofreebsd32_sigsetmask_args *uap) 2796 { 2797 sigset_t set, oset; 2798 2799 OSIG2SIG(uap->mask, set); 2800 kern_sigprocmask(td, SIG_SETMASK, &set, &oset, 0); 2801 SIG2OSIG(oset, td->td_retval[0]); 2802 return (0); 2803 } 2804 2805 int 2806 ofreebsd32_sigsuspend(struct thread *td, 2807 struct ofreebsd32_sigsuspend_args *uap) 2808 { 2809 sigset_t mask; 2810 2811 OSIG2SIG(uap->mask, mask); 2812 return (kern_sigsuspend(td, mask)); 2813 } 2814 2815 struct sigstack32 { 2816 u_int32_t ss_sp; 2817 int ss_onstack; 2818 }; 2819 2820 int 2821 ofreebsd32_sigstack(struct thread *td, 2822 struct ofreebsd32_sigstack_args *uap) 2823 { 2824 struct sigstack32 s32; 2825 struct sigstack nss, oss; 2826 int error = 0, unss; 2827 2828 if (uap->nss != NULL) { 2829 error = copyin(uap->nss, &s32, sizeof(s32)); 2830 if (error) 2831 return (error); 2832 nss.ss_sp = PTRIN(s32.ss_sp); 2833 CP(s32, nss, ss_onstack); 2834 unss = 1; 2835 } else { 2836 unss = 0; 2837 } 2838 oss.ss_sp = td->td_sigstk.ss_sp; 2839 oss.ss_onstack = sigonstack(cpu_getstack(td)); 2840 if (unss) { 2841 td->td_sigstk.ss_sp = nss.ss_sp; 2842 td->td_sigstk.ss_size = 0; 2843 td->td_sigstk.ss_flags |= (nss.ss_onstack & SS_ONSTACK); 2844 td->td_pflags |= TDP_ALTSTACK; 2845 } 2846 if (uap->oss != NULL) { 2847 s32.ss_sp = PTROUT(oss.ss_sp); 2848 CP(oss, s32, ss_onstack); 2849 error = copyout(&s32, uap->oss, sizeof(s32)); 2850 } 2851 return (error); 2852 } 2853 #endif 2854 2855 int 2856 freebsd32_nanosleep(struct thread *td, struct freebsd32_nanosleep_args *uap) 2857 { 2858 2859 return (freebsd32_user_clock_nanosleep(td, CLOCK_REALTIME, 2860 TIMER_RELTIME, uap->rqtp, uap->rmtp)); 2861 } 2862 2863 int 2864 freebsd32_clock_nanosleep(struct thread *td, 2865 struct freebsd32_clock_nanosleep_args *uap) 2866 { 2867 int error; 2868 2869 error = freebsd32_user_clock_nanosleep(td, uap->clock_id, uap->flags, 2870 uap->rqtp, uap->rmtp); 2871 return (kern_posix_error(td, error)); 2872 } 2873 2874 static int 2875 freebsd32_user_clock_nanosleep(struct thread *td, clockid_t clock_id, 2876 int flags, const struct timespec32 *ua_rqtp, struct timespec32 *ua_rmtp) 2877 { 2878 struct timespec32 rmt32, rqt32; 2879 struct timespec rmt, rqt; 2880 int error, error2; 2881 2882 error = copyin(ua_rqtp, &rqt32, sizeof(rqt32)); 2883 if (error) 2884 return (error); 2885 2886 CP(rqt32, rqt, tv_sec); 2887 CP(rqt32, rqt, tv_nsec); 2888 2889 error = kern_clock_nanosleep(td, clock_id, flags, &rqt, &rmt); 2890 if (error == EINTR && ua_rmtp != NULL && (flags & TIMER_ABSTIME) == 0) { 2891 CP(rmt, rmt32, tv_sec); 2892 CP(rmt, rmt32, tv_nsec); 2893 2894 error2 = copyout(&rmt32, ua_rmtp, sizeof(rmt32)); 2895 if (error2 != 0) 2896 error = error2; 2897 } 2898 return (error); 2899 } 2900 2901 int 2902 freebsd32_clock_gettime(struct thread *td, 2903 struct freebsd32_clock_gettime_args *uap) 2904 { 2905 struct timespec ats; 2906 struct timespec32 ats32; 2907 int error; 2908 2909 error = kern_clock_gettime(td, uap->clock_id, &ats); 2910 if (error == 0) { 2911 CP(ats, ats32, tv_sec); 2912 CP(ats, ats32, tv_nsec); 2913 error = copyout(&ats32, uap->tp, sizeof(ats32)); 2914 } 2915 return (error); 2916 } 2917 2918 int 2919 freebsd32_clock_settime(struct thread *td, 2920 struct freebsd32_clock_settime_args *uap) 2921 { 2922 struct timespec ats; 2923 struct timespec32 ats32; 2924 int error; 2925 2926 error = copyin(uap->tp, &ats32, sizeof(ats32)); 2927 if (error) 2928 return (error); 2929 CP(ats32, ats, tv_sec); 2930 CP(ats32, ats, tv_nsec); 2931 2932 return (kern_clock_settime(td, uap->clock_id, &ats)); 2933 } 2934 2935 int 2936 freebsd32_clock_getres(struct thread *td, 2937 struct freebsd32_clock_getres_args *uap) 2938 { 2939 struct timespec ts; 2940 struct timespec32 ts32; 2941 int error; 2942 2943 if (uap->tp == NULL) 2944 return (0); 2945 error = kern_clock_getres(td, uap->clock_id, &ts); 2946 if (error == 0) { 2947 CP(ts, ts32, tv_sec); 2948 CP(ts, ts32, tv_nsec); 2949 error = copyout(&ts32, uap->tp, sizeof(ts32)); 2950 } 2951 return (error); 2952 } 2953 2954 int freebsd32_ktimer_create(struct thread *td, 2955 struct freebsd32_ktimer_create_args *uap) 2956 { 2957 struct sigevent32 ev32; 2958 struct sigevent ev, *evp; 2959 int error, id; 2960 2961 if (uap->evp == NULL) { 2962 evp = NULL; 2963 } else { 2964 evp = &ev; 2965 error = copyin(uap->evp, &ev32, sizeof(ev32)); 2966 if (error != 0) 2967 return (error); 2968 error = convert_sigevent32(&ev32, &ev); 2969 if (error != 0) 2970 return (error); 2971 } 2972 error = kern_ktimer_create(td, uap->clock_id, evp, &id, -1); 2973 if (error == 0) { 2974 error = copyout(&id, uap->timerid, sizeof(int)); 2975 if (error != 0) 2976 kern_ktimer_delete(td, id); 2977 } 2978 return (error); 2979 } 2980 2981 int 2982 freebsd32_ktimer_settime(struct thread *td, 2983 struct freebsd32_ktimer_settime_args *uap) 2984 { 2985 struct itimerspec32 val32, oval32; 2986 struct itimerspec val, oval, *ovalp; 2987 int error; 2988 2989 error = copyin(uap->value, &val32, sizeof(val32)); 2990 if (error != 0) 2991 return (error); 2992 ITS_CP(val32, val); 2993 ovalp = uap->ovalue != NULL ? &oval : NULL; 2994 error = kern_ktimer_settime(td, uap->timerid, uap->flags, &val, ovalp); 2995 if (error == 0 && uap->ovalue != NULL) { 2996 ITS_CP(oval, oval32); 2997 error = copyout(&oval32, uap->ovalue, sizeof(oval32)); 2998 } 2999 return (error); 3000 } 3001 3002 int 3003 freebsd32_ktimer_gettime(struct thread *td, 3004 struct freebsd32_ktimer_gettime_args *uap) 3005 { 3006 struct itimerspec32 val32; 3007 struct itimerspec val; 3008 int error; 3009 3010 error = kern_ktimer_gettime(td, uap->timerid, &val); 3011 if (error == 0) { 3012 ITS_CP(val, val32); 3013 error = copyout(&val32, uap->value, sizeof(val32)); 3014 } 3015 return (error); 3016 } 3017 3018 int 3019 freebsd32_clock_getcpuclockid2(struct thread *td, 3020 struct freebsd32_clock_getcpuclockid2_args *uap) 3021 { 3022 clockid_t clk_id; 3023 int error; 3024 3025 error = kern_clock_getcpuclockid2(td, PAIR32TO64(id_t, uap->id), 3026 uap->which, &clk_id); 3027 if (error == 0) 3028 error = copyout(&clk_id, uap->clock_id, sizeof(clockid_t)); 3029 return (error); 3030 } 3031 3032 int 3033 freebsd32_thr_new(struct thread *td, 3034 struct freebsd32_thr_new_args *uap) 3035 { 3036 struct thr_param32 param32; 3037 struct thr_param param; 3038 int error; 3039 3040 if (uap->param_size < 0 || 3041 uap->param_size > sizeof(struct thr_param32)) 3042 return (EINVAL); 3043 bzero(¶m, sizeof(struct thr_param)); 3044 bzero(¶m32, sizeof(struct thr_param32)); 3045 error = copyin(uap->param, ¶m32, uap->param_size); 3046 if (error != 0) 3047 return (error); 3048 param.start_func = PTRIN(param32.start_func); 3049 param.arg = PTRIN(param32.arg); 3050 param.stack_base = PTRIN(param32.stack_base); 3051 param.stack_size = param32.stack_size; 3052 param.tls_base = PTRIN(param32.tls_base); 3053 param.tls_size = param32.tls_size; 3054 param.child_tid = PTRIN(param32.child_tid); 3055 param.parent_tid = PTRIN(param32.parent_tid); 3056 param.flags = param32.flags; 3057 param.rtp = PTRIN(param32.rtp); 3058 param.spare[0] = PTRIN(param32.spare[0]); 3059 param.spare[1] = PTRIN(param32.spare[1]); 3060 param.spare[2] = PTRIN(param32.spare[2]); 3061 3062 return (kern_thr_new(td, ¶m)); 3063 } 3064 3065 int 3066 freebsd32_thr_suspend(struct thread *td, struct freebsd32_thr_suspend_args *uap) 3067 { 3068 struct timespec32 ts32; 3069 struct timespec ts, *tsp; 3070 int error; 3071 3072 error = 0; 3073 tsp = NULL; 3074 if (uap->timeout != NULL) { 3075 error = copyin((const void *)uap->timeout, (void *)&ts32, 3076 sizeof(struct timespec32)); 3077 if (error != 0) 3078 return (error); 3079 ts.tv_sec = ts32.tv_sec; 3080 ts.tv_nsec = ts32.tv_nsec; 3081 tsp = &ts; 3082 } 3083 return (kern_thr_suspend(td, tsp)); 3084 } 3085 3086 void 3087 siginfo_to_siginfo32(const siginfo_t *src, struct siginfo32 *dst) 3088 { 3089 bzero(dst, sizeof(*dst)); 3090 dst->si_signo = src->si_signo; 3091 dst->si_errno = src->si_errno; 3092 dst->si_code = src->si_code; 3093 dst->si_pid = src->si_pid; 3094 dst->si_uid = src->si_uid; 3095 dst->si_status = src->si_status; 3096 dst->si_addr = (uintptr_t)src->si_addr; 3097 dst->si_value.sival_int = src->si_value.sival_int; 3098 dst->si_timerid = src->si_timerid; 3099 dst->si_overrun = src->si_overrun; 3100 } 3101 3102 #ifndef _FREEBSD32_SYSPROTO_H_ 3103 struct freebsd32_sigqueue_args { 3104 pid_t pid; 3105 int signum; 3106 /* union sigval32 */ int value; 3107 }; 3108 #endif 3109 int 3110 freebsd32_sigqueue(struct thread *td, struct freebsd32_sigqueue_args *uap) 3111 { 3112 union sigval sv; 3113 3114 /* 3115 * On 32-bit ABIs, sival_int and sival_ptr are the same. 3116 * On 64-bit little-endian ABIs, the low bits are the same. 3117 * In 64-bit big-endian ABIs, sival_int overlaps with 3118 * sival_ptr's HIGH bits. We choose to support sival_int 3119 * rather than sival_ptr in this case as it seems to be 3120 * more common. 3121 */ 3122 bzero(&sv, sizeof(sv)); 3123 sv.sival_int = uap->value; 3124 3125 return (kern_sigqueue(td, uap->pid, uap->signum, &sv)); 3126 } 3127 3128 int 3129 freebsd32_sigtimedwait(struct thread *td, struct freebsd32_sigtimedwait_args *uap) 3130 { 3131 struct timespec32 ts32; 3132 struct timespec ts; 3133 struct timespec *timeout; 3134 sigset_t set; 3135 ksiginfo_t ksi; 3136 struct siginfo32 si32; 3137 int error; 3138 3139 if (uap->timeout) { 3140 error = copyin(uap->timeout, &ts32, sizeof(ts32)); 3141 if (error) 3142 return (error); 3143 ts.tv_sec = ts32.tv_sec; 3144 ts.tv_nsec = ts32.tv_nsec; 3145 timeout = &ts; 3146 } else 3147 timeout = NULL; 3148 3149 error = copyin(uap->set, &set, sizeof(set)); 3150 if (error) 3151 return (error); 3152 3153 error = kern_sigtimedwait(td, set, &ksi, timeout); 3154 if (error) 3155 return (error); 3156 3157 if (uap->info) { 3158 siginfo_to_siginfo32(&ksi.ksi_info, &si32); 3159 error = copyout(&si32, uap->info, sizeof(struct siginfo32)); 3160 } 3161 3162 if (error == 0) 3163 td->td_retval[0] = ksi.ksi_signo; 3164 return (error); 3165 } 3166 3167 /* 3168 * MPSAFE 3169 */ 3170 int 3171 freebsd32_sigwaitinfo(struct thread *td, struct freebsd32_sigwaitinfo_args *uap) 3172 { 3173 ksiginfo_t ksi; 3174 struct siginfo32 si32; 3175 sigset_t set; 3176 int error; 3177 3178 error = copyin(uap->set, &set, sizeof(set)); 3179 if (error) 3180 return (error); 3181 3182 error = kern_sigtimedwait(td, set, &ksi, NULL); 3183 if (error) 3184 return (error); 3185 3186 if (uap->info) { 3187 siginfo_to_siginfo32(&ksi.ksi_info, &si32); 3188 error = copyout(&si32, uap->info, sizeof(struct siginfo32)); 3189 } 3190 if (error == 0) 3191 td->td_retval[0] = ksi.ksi_signo; 3192 return (error); 3193 } 3194 3195 int 3196 freebsd32_cpuset_setid(struct thread *td, 3197 struct freebsd32_cpuset_setid_args *uap) 3198 { 3199 3200 return (kern_cpuset_setid(td, uap->which, 3201 PAIR32TO64(id_t, uap->id), uap->setid)); 3202 } 3203 3204 int 3205 freebsd32_cpuset_getid(struct thread *td, 3206 struct freebsd32_cpuset_getid_args *uap) 3207 { 3208 3209 return (kern_cpuset_getid(td, uap->level, uap->which, 3210 PAIR32TO64(id_t, uap->id), uap->setid)); 3211 } 3212 3213 int 3214 freebsd32_cpuset_getaffinity(struct thread *td, 3215 struct freebsd32_cpuset_getaffinity_args *uap) 3216 { 3217 3218 return (kern_cpuset_getaffinity(td, uap->level, uap->which, 3219 PAIR32TO64(id_t,uap->id), uap->cpusetsize, uap->mask)); 3220 } 3221 3222 int 3223 freebsd32_cpuset_setaffinity(struct thread *td, 3224 struct freebsd32_cpuset_setaffinity_args *uap) 3225 { 3226 3227 return (kern_cpuset_setaffinity(td, uap->level, uap->which, 3228 PAIR32TO64(id_t,uap->id), uap->cpusetsize, uap->mask)); 3229 } 3230 3231 int 3232 freebsd32_cpuset_getdomain(struct thread *td, 3233 struct freebsd32_cpuset_getdomain_args *uap) 3234 { 3235 3236 return (kern_cpuset_getdomain(td, uap->level, uap->which, 3237 PAIR32TO64(id_t,uap->id), uap->domainsetsize, uap->mask, uap->policy)); 3238 } 3239 3240 int 3241 freebsd32_cpuset_setdomain(struct thread *td, 3242 struct freebsd32_cpuset_setdomain_args *uap) 3243 { 3244 3245 return (kern_cpuset_setdomain(td, uap->level, uap->which, 3246 PAIR32TO64(id_t,uap->id), uap->domainsetsize, uap->mask, uap->policy)); 3247 } 3248 3249 int 3250 freebsd32_nmount(struct thread *td, 3251 struct freebsd32_nmount_args /* { 3252 struct iovec *iovp; 3253 unsigned int iovcnt; 3254 int flags; 3255 } */ *uap) 3256 { 3257 struct uio *auio; 3258 uint64_t flags; 3259 int error; 3260 3261 /* 3262 * Mount flags are now 64-bits. On 32-bit archtectures only 3263 * 32-bits are passed in, but from here on everything handles 3264 * 64-bit flags correctly. 3265 */ 3266 flags = uap->flags; 3267 3268 AUDIT_ARG_FFLAGS(flags); 3269 3270 /* 3271 * Filter out MNT_ROOTFS. We do not want clients of nmount() in 3272 * userspace to set this flag, but we must filter it out if we want 3273 * MNT_UPDATE on the root file system to work. 3274 * MNT_ROOTFS should only be set by the kernel when mounting its 3275 * root file system. 3276 */ 3277 flags &= ~MNT_ROOTFS; 3278 3279 /* 3280 * check that we have an even number of iovec's 3281 * and that we have at least two options. 3282 */ 3283 if ((uap->iovcnt & 1) || (uap->iovcnt < 4)) 3284 return (EINVAL); 3285 3286 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 3287 if (error) 3288 return (error); 3289 error = vfs_donmount(td, flags, auio); 3290 3291 free(auio, M_IOV); 3292 return error; 3293 } 3294 3295 #if 0 3296 int 3297 freebsd32_xxx(struct thread *td, struct freebsd32_xxx_args *uap) 3298 { 3299 struct yyy32 *p32, s32; 3300 struct yyy *p = NULL, s; 3301 struct xxx_arg ap; 3302 int error; 3303 3304 if (uap->zzz) { 3305 error = copyin(uap->zzz, &s32, sizeof(s32)); 3306 if (error) 3307 return (error); 3308 /* translate in */ 3309 p = &s; 3310 } 3311 error = kern_xxx(td, p); 3312 if (error) 3313 return (error); 3314 if (uap->zzz) { 3315 /* translate out */ 3316 error = copyout(&s32, p32, sizeof(s32)); 3317 } 3318 return (error); 3319 } 3320 #endif 3321 3322 int 3323 syscall32_module_handler(struct module *mod, int what, void *arg) 3324 { 3325 3326 return (kern_syscall_module_handler(freebsd32_sysent, mod, what, arg)); 3327 } 3328 3329 int 3330 syscall32_helper_register(struct syscall_helper_data *sd, int flags) 3331 { 3332 3333 return (kern_syscall_helper_register(freebsd32_sysent, sd, flags)); 3334 } 3335 3336 int 3337 syscall32_helper_unregister(struct syscall_helper_data *sd) 3338 { 3339 3340 return (kern_syscall_helper_unregister(freebsd32_sysent, sd)); 3341 } 3342 3343 int 3344 freebsd32_copyout_strings(struct image_params *imgp, uintptr_t *stack_base) 3345 { 3346 int argc, envc, i; 3347 u_int32_t *vectp; 3348 char *stringp; 3349 uintptr_t destp, ustringp; 3350 struct freebsd32_ps_strings *arginfo; 3351 char canary[sizeof(long) * 8]; 3352 int32_t pagesizes32[MAXPAGESIZES]; 3353 size_t execpath_len; 3354 int error, szsigcode; 3355 3356 /* 3357 * Calculate string base and vector table pointers. 3358 * Also deal with signal trampoline code for this exec type. 3359 */ 3360 if (imgp->execpath != NULL && imgp->auxargs != NULL) 3361 execpath_len = strlen(imgp->execpath) + 1; 3362 else 3363 execpath_len = 0; 3364 arginfo = (struct freebsd32_ps_strings *)curproc->p_sysent-> 3365 sv_psstrings; 3366 imgp->ps_strings = arginfo; 3367 if (imgp->proc->p_sysent->sv_sigcode_base == 0) 3368 szsigcode = *(imgp->proc->p_sysent->sv_szsigcode); 3369 else 3370 szsigcode = 0; 3371 destp = (uintptr_t)arginfo; 3372 3373 /* 3374 * install sigcode 3375 */ 3376 if (szsigcode != 0) { 3377 destp -= szsigcode; 3378 destp = rounddown2(destp, sizeof(uint32_t)); 3379 error = copyout(imgp->proc->p_sysent->sv_sigcode, (void *)destp, 3380 szsigcode); 3381 if (error != 0) 3382 return (error); 3383 } 3384 3385 /* 3386 * Copy the image path for the rtld. 3387 */ 3388 if (execpath_len != 0) { 3389 destp -= execpath_len; 3390 imgp->execpathp = (void *)destp; 3391 error = copyout(imgp->execpath, imgp->execpathp, execpath_len); 3392 if (error != 0) 3393 return (error); 3394 } 3395 3396 /* 3397 * Prepare the canary for SSP. 3398 */ 3399 arc4rand(canary, sizeof(canary), 0); 3400 destp -= sizeof(canary); 3401 imgp->canary = (void *)destp; 3402 error = copyout(canary, imgp->canary, sizeof(canary)); 3403 if (error != 0) 3404 return (error); 3405 imgp->canarylen = sizeof(canary); 3406 3407 /* 3408 * Prepare the pagesizes array. 3409 */ 3410 for (i = 0; i < MAXPAGESIZES; i++) 3411 pagesizes32[i] = (uint32_t)pagesizes[i]; 3412 destp -= sizeof(pagesizes32); 3413 destp = rounddown2(destp, sizeof(uint32_t)); 3414 imgp->pagesizes = (void *)destp; 3415 error = copyout(pagesizes32, imgp->pagesizes, sizeof(pagesizes32)); 3416 if (error != 0) 3417 return (error); 3418 imgp->pagesizeslen = sizeof(pagesizes32); 3419 3420 /* 3421 * Allocate room for the argument and environment strings. 3422 */ 3423 destp -= ARG_MAX - imgp->args->stringspace; 3424 destp = rounddown2(destp, sizeof(uint32_t)); 3425 ustringp = destp; 3426 3427 exec_stackgap(imgp, &destp); 3428 3429 if (imgp->auxargs) { 3430 /* 3431 * Allocate room on the stack for the ELF auxargs 3432 * array. It has up to AT_COUNT entries. 3433 */ 3434 destp -= AT_COUNT * sizeof(Elf32_Auxinfo); 3435 destp = rounddown2(destp, sizeof(uint32_t)); 3436 } 3437 3438 vectp = (uint32_t *)destp; 3439 3440 /* 3441 * Allocate room for the argv[] and env vectors including the 3442 * terminating NULL pointers. 3443 */ 3444 vectp -= imgp->args->argc + 1 + imgp->args->envc + 1; 3445 3446 /* 3447 * vectp also becomes our initial stack base 3448 */ 3449 *stack_base = (uintptr_t)vectp; 3450 3451 stringp = imgp->args->begin_argv; 3452 argc = imgp->args->argc; 3453 envc = imgp->args->envc; 3454 /* 3455 * Copy out strings - arguments and environment. 3456 */ 3457 error = copyout(stringp, (void *)ustringp, 3458 ARG_MAX - imgp->args->stringspace); 3459 if (error != 0) 3460 return (error); 3461 3462 /* 3463 * Fill in "ps_strings" struct for ps, w, etc. 3464 */ 3465 imgp->argv = vectp; 3466 if (suword32(&arginfo->ps_argvstr, (u_int32_t)(intptr_t)vectp) != 0 || 3467 suword32(&arginfo->ps_nargvstr, argc) != 0) 3468 return (EFAULT); 3469 3470 /* 3471 * Fill in argument portion of vector table. 3472 */ 3473 for (; argc > 0; --argc) { 3474 if (suword32(vectp++, ustringp) != 0) 3475 return (EFAULT); 3476 while (*stringp++ != 0) 3477 ustringp++; 3478 ustringp++; 3479 } 3480 3481 /* a null vector table pointer separates the argp's from the envp's */ 3482 if (suword32(vectp++, 0) != 0) 3483 return (EFAULT); 3484 3485 imgp->envv = vectp; 3486 if (suword32(&arginfo->ps_envstr, (u_int32_t)(intptr_t)vectp) != 0 || 3487 suword32(&arginfo->ps_nenvstr, envc) != 0) 3488 return (EFAULT); 3489 3490 /* 3491 * Fill in environment portion of vector table. 3492 */ 3493 for (; envc > 0; --envc) { 3494 if (suword32(vectp++, ustringp) != 0) 3495 return (EFAULT); 3496 while (*stringp++ != 0) 3497 ustringp++; 3498 ustringp++; 3499 } 3500 3501 /* end of vector table is a null pointer */ 3502 if (suword32(vectp, 0) != 0) 3503 return (EFAULT); 3504 3505 if (imgp->auxargs) { 3506 vectp++; 3507 error = imgp->sysent->sv_copyout_auxargs(imgp, 3508 (uintptr_t)vectp); 3509 if (error != 0) 3510 return (error); 3511 } 3512 3513 return (0); 3514 } 3515 3516 int 3517 freebsd32_kldstat(struct thread *td, struct freebsd32_kldstat_args *uap) 3518 { 3519 struct kld_file_stat *stat; 3520 struct kld32_file_stat *stat32; 3521 int error, version; 3522 3523 if ((error = copyin(&uap->stat->version, &version, sizeof(version))) 3524 != 0) 3525 return (error); 3526 if (version != sizeof(struct kld32_file_stat_1) && 3527 version != sizeof(struct kld32_file_stat)) 3528 return (EINVAL); 3529 3530 stat = malloc(sizeof(*stat), M_TEMP, M_WAITOK | M_ZERO); 3531 stat32 = malloc(sizeof(*stat32), M_TEMP, M_WAITOK | M_ZERO); 3532 error = kern_kldstat(td, uap->fileid, stat); 3533 if (error == 0) { 3534 bcopy(&stat->name[0], &stat32->name[0], sizeof(stat->name)); 3535 CP(*stat, *stat32, refs); 3536 CP(*stat, *stat32, id); 3537 PTROUT_CP(*stat, *stat32, address); 3538 CP(*stat, *stat32, size); 3539 bcopy(&stat->pathname[0], &stat32->pathname[0], 3540 sizeof(stat->pathname)); 3541 stat32->version = version; 3542 error = copyout(stat32, uap->stat, version); 3543 } 3544 free(stat, M_TEMP); 3545 free(stat32, M_TEMP); 3546 return (error); 3547 } 3548 3549 int 3550 freebsd32_posix_fallocate(struct thread *td, 3551 struct freebsd32_posix_fallocate_args *uap) 3552 { 3553 int error; 3554 3555 error = kern_posix_fallocate(td, uap->fd, 3556 PAIR32TO64(off_t, uap->offset), PAIR32TO64(off_t, uap->len)); 3557 return (kern_posix_error(td, error)); 3558 } 3559 3560 int 3561 freebsd32_posix_fadvise(struct thread *td, 3562 struct freebsd32_posix_fadvise_args *uap) 3563 { 3564 int error; 3565 3566 error = kern_posix_fadvise(td, uap->fd, PAIR32TO64(off_t, uap->offset), 3567 PAIR32TO64(off_t, uap->len), uap->advice); 3568 return (kern_posix_error(td, error)); 3569 } 3570 3571 int 3572 convert_sigevent32(struct sigevent32 *sig32, struct sigevent *sig) 3573 { 3574 3575 CP(*sig32, *sig, sigev_notify); 3576 switch (sig->sigev_notify) { 3577 case SIGEV_NONE: 3578 break; 3579 case SIGEV_THREAD_ID: 3580 CP(*sig32, *sig, sigev_notify_thread_id); 3581 /* FALLTHROUGH */ 3582 case SIGEV_SIGNAL: 3583 CP(*sig32, *sig, sigev_signo); 3584 PTRIN_CP(*sig32, *sig, sigev_value.sival_ptr); 3585 break; 3586 case SIGEV_KEVENT: 3587 CP(*sig32, *sig, sigev_notify_kqueue); 3588 CP(*sig32, *sig, sigev_notify_kevent_flags); 3589 PTRIN_CP(*sig32, *sig, sigev_value.sival_ptr); 3590 break; 3591 default: 3592 return (EINVAL); 3593 } 3594 return (0); 3595 } 3596 3597 int 3598 freebsd32_procctl(struct thread *td, struct freebsd32_procctl_args *uap) 3599 { 3600 void *data; 3601 union { 3602 struct procctl_reaper_status rs; 3603 struct procctl_reaper_pids rp; 3604 struct procctl_reaper_kill rk; 3605 } x; 3606 union { 3607 struct procctl_reaper_pids32 rp; 3608 } x32; 3609 int error, error1, flags, signum; 3610 3611 if (uap->com >= PROC_PROCCTL_MD_MIN) 3612 return (cpu_procctl(td, uap->idtype, PAIR32TO64(id_t, uap->id), 3613 uap->com, PTRIN(uap->data))); 3614 3615 switch (uap->com) { 3616 case PROC_ASLR_CTL: 3617 case PROC_PROTMAX_CTL: 3618 case PROC_SPROTECT: 3619 case PROC_STACKGAP_CTL: 3620 case PROC_TRACE_CTL: 3621 case PROC_TRAPCAP_CTL: 3622 error = copyin(PTRIN(uap->data), &flags, sizeof(flags)); 3623 if (error != 0) 3624 return (error); 3625 data = &flags; 3626 break; 3627 case PROC_REAP_ACQUIRE: 3628 case PROC_REAP_RELEASE: 3629 if (uap->data != NULL) 3630 return (EINVAL); 3631 data = NULL; 3632 break; 3633 case PROC_REAP_STATUS: 3634 data = &x.rs; 3635 break; 3636 case PROC_REAP_GETPIDS: 3637 error = copyin(uap->data, &x32.rp, sizeof(x32.rp)); 3638 if (error != 0) 3639 return (error); 3640 CP(x32.rp, x.rp, rp_count); 3641 PTRIN_CP(x32.rp, x.rp, rp_pids); 3642 data = &x.rp; 3643 break; 3644 case PROC_REAP_KILL: 3645 error = copyin(uap->data, &x.rk, sizeof(x.rk)); 3646 if (error != 0) 3647 return (error); 3648 data = &x.rk; 3649 break; 3650 case PROC_ASLR_STATUS: 3651 case PROC_PROTMAX_STATUS: 3652 case PROC_STACKGAP_STATUS: 3653 case PROC_TRACE_STATUS: 3654 case PROC_TRAPCAP_STATUS: 3655 data = &flags; 3656 break; 3657 case PROC_PDEATHSIG_CTL: 3658 error = copyin(uap->data, &signum, sizeof(signum)); 3659 if (error != 0) 3660 return (error); 3661 data = &signum; 3662 break; 3663 case PROC_PDEATHSIG_STATUS: 3664 data = &signum; 3665 break; 3666 default: 3667 return (EINVAL); 3668 } 3669 error = kern_procctl(td, uap->idtype, PAIR32TO64(id_t, uap->id), 3670 uap->com, data); 3671 switch (uap->com) { 3672 case PROC_REAP_STATUS: 3673 if (error == 0) 3674 error = copyout(&x.rs, uap->data, sizeof(x.rs)); 3675 break; 3676 case PROC_REAP_KILL: 3677 error1 = copyout(&x.rk, uap->data, sizeof(x.rk)); 3678 if (error == 0) 3679 error = error1; 3680 break; 3681 case PROC_ASLR_STATUS: 3682 case PROC_PROTMAX_STATUS: 3683 case PROC_STACKGAP_STATUS: 3684 case PROC_TRACE_STATUS: 3685 case PROC_TRAPCAP_STATUS: 3686 if (error == 0) 3687 error = copyout(&flags, uap->data, sizeof(flags)); 3688 break; 3689 case PROC_PDEATHSIG_STATUS: 3690 if (error == 0) 3691 error = copyout(&signum, uap->data, sizeof(signum)); 3692 break; 3693 } 3694 return (error); 3695 } 3696 3697 int 3698 freebsd32_fcntl(struct thread *td, struct freebsd32_fcntl_args *uap) 3699 { 3700 long tmp; 3701 3702 switch (uap->cmd) { 3703 /* 3704 * Do unsigned conversion for arg when operation 3705 * interprets it as flags or pointer. 3706 */ 3707 case F_SETLK_REMOTE: 3708 case F_SETLKW: 3709 case F_SETLK: 3710 case F_GETLK: 3711 case F_SETFD: 3712 case F_SETFL: 3713 case F_OGETLK: 3714 case F_OSETLK: 3715 case F_OSETLKW: 3716 tmp = (unsigned int)(uap->arg); 3717 break; 3718 default: 3719 tmp = uap->arg; 3720 break; 3721 } 3722 return (kern_fcntl_freebsd(td, uap->fd, uap->cmd, tmp)); 3723 } 3724 3725 int 3726 freebsd32_ppoll(struct thread *td, struct freebsd32_ppoll_args *uap) 3727 { 3728 struct timespec32 ts32; 3729 struct timespec ts, *tsp; 3730 sigset_t set, *ssp; 3731 int error; 3732 3733 if (uap->ts != NULL) { 3734 error = copyin(uap->ts, &ts32, sizeof(ts32)); 3735 if (error != 0) 3736 return (error); 3737 CP(ts32, ts, tv_sec); 3738 CP(ts32, ts, tv_nsec); 3739 tsp = &ts; 3740 } else 3741 tsp = NULL; 3742 if (uap->set != NULL) { 3743 error = copyin(uap->set, &set, sizeof(set)); 3744 if (error != 0) 3745 return (error); 3746 ssp = &set; 3747 } else 3748 ssp = NULL; 3749 3750 return (kern_poll(td, uap->fds, uap->nfds, tsp, ssp)); 3751 } 3752 3753 int 3754 freebsd32_sched_rr_get_interval(struct thread *td, 3755 struct freebsd32_sched_rr_get_interval_args *uap) 3756 { 3757 struct timespec ts; 3758 struct timespec32 ts32; 3759 int error; 3760 3761 error = kern_sched_rr_get_interval(td, uap->pid, &ts); 3762 if (error == 0) { 3763 CP(ts, ts32, tv_sec); 3764 CP(ts, ts32, tv_nsec); 3765 error = copyout(&ts32, uap->interval, sizeof(ts32)); 3766 } 3767 return (error); 3768 } 3769 3770 static void 3771 timex_to_32(struct timex32 *dst, struct timex *src) 3772 { 3773 CP(*src, *dst, modes); 3774 CP(*src, *dst, offset); 3775 CP(*src, *dst, freq); 3776 CP(*src, *dst, maxerror); 3777 CP(*src, *dst, esterror); 3778 CP(*src, *dst, status); 3779 CP(*src, *dst, constant); 3780 CP(*src, *dst, precision); 3781 CP(*src, *dst, tolerance); 3782 CP(*src, *dst, ppsfreq); 3783 CP(*src, *dst, jitter); 3784 CP(*src, *dst, shift); 3785 CP(*src, *dst, stabil); 3786 CP(*src, *dst, jitcnt); 3787 CP(*src, *dst, calcnt); 3788 CP(*src, *dst, errcnt); 3789 CP(*src, *dst, stbcnt); 3790 } 3791 3792 static void 3793 timex_from_32(struct timex *dst, struct timex32 *src) 3794 { 3795 CP(*src, *dst, modes); 3796 CP(*src, *dst, offset); 3797 CP(*src, *dst, freq); 3798 CP(*src, *dst, maxerror); 3799 CP(*src, *dst, esterror); 3800 CP(*src, *dst, status); 3801 CP(*src, *dst, constant); 3802 CP(*src, *dst, precision); 3803 CP(*src, *dst, tolerance); 3804 CP(*src, *dst, ppsfreq); 3805 CP(*src, *dst, jitter); 3806 CP(*src, *dst, shift); 3807 CP(*src, *dst, stabil); 3808 CP(*src, *dst, jitcnt); 3809 CP(*src, *dst, calcnt); 3810 CP(*src, *dst, errcnt); 3811 CP(*src, *dst, stbcnt); 3812 } 3813 3814 int 3815 freebsd32_ntp_adjtime(struct thread *td, struct freebsd32_ntp_adjtime_args *uap) 3816 { 3817 struct timex tx; 3818 struct timex32 tx32; 3819 int error, retval; 3820 3821 error = copyin(uap->tp, &tx32, sizeof(tx32)); 3822 if (error == 0) { 3823 timex_from_32(&tx, &tx32); 3824 error = kern_ntp_adjtime(td, &tx, &retval); 3825 if (error == 0) { 3826 timex_to_32(&tx32, &tx); 3827 error = copyout(&tx32, uap->tp, sizeof(tx32)); 3828 if (error == 0) 3829 td->td_retval[0] = retval; 3830 } 3831 } 3832 return (error); 3833 } 3834