1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2002 Doug Rabson 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 #include "opt_ffclock.h" 31 #include "opt_inet.h" 32 #include "opt_inet6.h" 33 #include "opt_ktrace.h" 34 35 #define __ELF_WORD_SIZE 32 36 37 #ifdef COMPAT_FREEBSD11 38 #define _WANT_FREEBSD11_KEVENT 39 #endif 40 41 #include <sys/param.h> 42 #include <sys/bus.h> 43 #include <sys/capsicum.h> 44 #include <sys/clock.h> 45 #include <sys/exec.h> 46 #include <sys/fcntl.h> 47 #include <sys/filedesc.h> 48 #include <sys/imgact.h> 49 #include <sys/jail.h> 50 #include <sys/kernel.h> 51 #include <sys/limits.h> 52 #include <sys/linker.h> 53 #include <sys/lock.h> 54 #include <sys/malloc.h> 55 #include <sys/file.h> /* Must come after sys/malloc.h */ 56 #include <sys/imgact.h> 57 #include <sys/mbuf.h> 58 #include <sys/mman.h> 59 #include <sys/module.h> 60 #include <sys/mount.h> 61 #include <sys/mutex.h> 62 #include <sys/namei.h> 63 #include <sys/priv.h> 64 #include <sys/proc.h> 65 #include <sys/procctl.h> 66 #include <sys/ptrace.h> 67 #include <sys/reboot.h> 68 #include <sys/resource.h> 69 #include <sys/resourcevar.h> 70 #include <sys/selinfo.h> 71 #include <sys/eventvar.h> /* Must come after sys/selinfo.h */ 72 #include <sys/pipe.h> /* Must come after sys/selinfo.h */ 73 #include <sys/signal.h> 74 #include <sys/signalvar.h> 75 #include <sys/socket.h> 76 #include <sys/socketvar.h> 77 #include <sys/stat.h> 78 #include <sys/syscall.h> 79 #include <sys/syscallsubr.h> 80 #include <sys/sysctl.h> 81 #include <sys/sysent.h> 82 #include <sys/sysproto.h> 83 #include <sys/systm.h> 84 #include <sys/thr.h> 85 #include <sys/timex.h> 86 #include <sys/unistd.h> 87 #include <sys/ucontext.h> 88 #include <sys/vnode.h> 89 #include <sys/wait.h> 90 #include <sys/ipc.h> 91 #include <sys/msg.h> 92 #include <sys/sem.h> 93 #include <sys/shm.h> 94 #include <sys/timeffc.h> 95 #ifdef KTRACE 96 #include <sys/ktrace.h> 97 #endif 98 99 #ifdef INET 100 #include <netinet/in.h> 101 #endif 102 103 #include <vm/vm.h> 104 #include <vm/vm_param.h> 105 #include <vm/pmap.h> 106 #include <vm/vm_map.h> 107 #include <vm/vm_object.h> 108 #include <vm/vm_extern.h> 109 110 #include <machine/cpu.h> 111 #include <machine/elf.h> 112 #ifdef __amd64__ 113 #include <machine/md_var.h> 114 #endif 115 116 #include <security/audit/audit.h> 117 118 #include <compat/freebsd32/freebsd32_util.h> 119 #include <compat/freebsd32/freebsd32.h> 120 #include <compat/freebsd32/freebsd32_ipc.h> 121 #include <compat/freebsd32/freebsd32_misc.h> 122 #include <compat/freebsd32/freebsd32_signal.h> 123 #include <compat/freebsd32/freebsd32_proto.h> 124 125 FEATURE(compat_freebsd_32bit, "Compatible with 32-bit FreeBSD"); 126 127 struct ptrace_io_desc32 { 128 int piod_op; 129 uint32_t piod_offs; 130 uint32_t piod_addr; 131 uint32_t piod_len; 132 }; 133 134 struct ptrace_vm_entry32 { 135 int pve_entry; 136 int pve_timestamp; 137 uint32_t pve_start; 138 uint32_t pve_end; 139 uint32_t pve_offset; 140 u_int pve_prot; 141 u_int pve_pathlen; 142 int32_t pve_fileid; 143 u_int pve_fsid; 144 uint32_t pve_path; 145 }; 146 147 #ifdef __amd64__ 148 CTASSERT(sizeof(struct timeval32) == 8); 149 CTASSERT(sizeof(struct timespec32) == 8); 150 CTASSERT(sizeof(struct itimerval32) == 16); 151 CTASSERT(sizeof(struct bintime32) == 12); 152 #else 153 CTASSERT(sizeof(struct timeval32) == 16); 154 CTASSERT(sizeof(struct timespec32) == 16); 155 CTASSERT(sizeof(struct itimerval32) == 32); 156 CTASSERT(sizeof(struct bintime32) == 16); 157 #endif 158 CTASSERT(sizeof(struct ostatfs32) == 256); 159 #ifdef __amd64__ 160 CTASSERT(sizeof(struct rusage32) == 72); 161 #else 162 CTASSERT(sizeof(struct rusage32) == 88); 163 #endif 164 CTASSERT(sizeof(struct sigaltstack32) == 12); 165 #ifdef __amd64__ 166 CTASSERT(sizeof(struct kevent32) == 56); 167 #else 168 CTASSERT(sizeof(struct kevent32) == 64); 169 #endif 170 CTASSERT(sizeof(struct iovec32) == 8); 171 CTASSERT(sizeof(struct msghdr32) == 28); 172 #ifdef __amd64__ 173 CTASSERT(sizeof(struct stat32) == 208); 174 CTASSERT(sizeof(struct freebsd11_stat32) == 96); 175 #else 176 CTASSERT(sizeof(struct stat32) == 224); 177 CTASSERT(sizeof(struct freebsd11_stat32) == 120); 178 #endif 179 CTASSERT(sizeof(struct sigaction32) == 24); 180 181 static int freebsd32_kevent_copyout(void *arg, struct kevent *kevp, int count); 182 static int freebsd32_kevent_copyin(void *arg, struct kevent *kevp, int count); 183 static int freebsd32_user_clock_nanosleep(struct thread *td, clockid_t clock_id, 184 int flags, const struct timespec32 *ua_rqtp, struct timespec32 *ua_rmtp); 185 186 void 187 freebsd32_rusage_out(const struct rusage *s, struct rusage32 *s32) 188 { 189 190 TV_CP(*s, *s32, ru_utime); 191 TV_CP(*s, *s32, ru_stime); 192 CP(*s, *s32, ru_maxrss); 193 CP(*s, *s32, ru_ixrss); 194 CP(*s, *s32, ru_idrss); 195 CP(*s, *s32, ru_isrss); 196 CP(*s, *s32, ru_minflt); 197 CP(*s, *s32, ru_majflt); 198 CP(*s, *s32, ru_nswap); 199 CP(*s, *s32, ru_inblock); 200 CP(*s, *s32, ru_oublock); 201 CP(*s, *s32, ru_msgsnd); 202 CP(*s, *s32, ru_msgrcv); 203 CP(*s, *s32, ru_nsignals); 204 CP(*s, *s32, ru_nvcsw); 205 CP(*s, *s32, ru_nivcsw); 206 } 207 208 int 209 freebsd32_wait4(struct thread *td, struct freebsd32_wait4_args *uap) 210 { 211 int error, status; 212 struct rusage32 ru32; 213 struct rusage ru, *rup; 214 215 if (uap->rusage != NULL) 216 rup = &ru; 217 else 218 rup = NULL; 219 error = kern_wait(td, uap->pid, &status, uap->options, rup); 220 if (error) 221 return (error); 222 if (uap->status != NULL) 223 error = copyout(&status, uap->status, sizeof(status)); 224 if (uap->rusage != NULL && error == 0) { 225 freebsd32_rusage_out(&ru, &ru32); 226 error = copyout(&ru32, uap->rusage, sizeof(ru32)); 227 } 228 return (error); 229 } 230 231 int 232 freebsd32_wait6(struct thread *td, struct freebsd32_wait6_args *uap) 233 { 234 struct __wrusage32 wru32; 235 struct __wrusage wru, *wrup; 236 struct siginfo32 si32; 237 struct __siginfo si, *sip; 238 int error, status; 239 240 if (uap->wrusage != NULL) 241 wrup = &wru; 242 else 243 wrup = NULL; 244 if (uap->info != NULL) { 245 sip = &si; 246 bzero(sip, sizeof(*sip)); 247 } else 248 sip = NULL; 249 error = kern_wait6(td, uap->idtype, PAIR32TO64(id_t, uap->id), 250 &status, uap->options, wrup, sip); 251 if (error != 0) 252 return (error); 253 if (uap->status != NULL) 254 error = copyout(&status, uap->status, sizeof(status)); 255 if (uap->wrusage != NULL && error == 0) { 256 freebsd32_rusage_out(&wru.wru_self, &wru32.wru_self); 257 freebsd32_rusage_out(&wru.wru_children, &wru32.wru_children); 258 error = copyout(&wru32, uap->wrusage, sizeof(wru32)); 259 } 260 if (uap->info != NULL && error == 0) { 261 siginfo_to_siginfo32 (&si, &si32); 262 error = copyout(&si32, uap->info, sizeof(si32)); 263 } 264 return (error); 265 } 266 267 #ifdef COMPAT_FREEBSD4 268 static void 269 copy_statfs(struct statfs *in, struct ostatfs32 *out) 270 { 271 272 statfs_scale_blocks(in, INT32_MAX); 273 bzero(out, sizeof(*out)); 274 CP(*in, *out, f_bsize); 275 out->f_iosize = MIN(in->f_iosize, INT32_MAX); 276 CP(*in, *out, f_blocks); 277 CP(*in, *out, f_bfree); 278 CP(*in, *out, f_bavail); 279 out->f_files = MIN(in->f_files, INT32_MAX); 280 out->f_ffree = MIN(in->f_ffree, INT32_MAX); 281 CP(*in, *out, f_fsid); 282 CP(*in, *out, f_owner); 283 CP(*in, *out, f_type); 284 CP(*in, *out, f_flags); 285 out->f_syncwrites = MIN(in->f_syncwrites, INT32_MAX); 286 out->f_asyncwrites = MIN(in->f_asyncwrites, INT32_MAX); 287 strlcpy(out->f_fstypename, 288 in->f_fstypename, MFSNAMELEN); 289 strlcpy(out->f_mntonname, 290 in->f_mntonname, min(MNAMELEN, FREEBSD4_OMNAMELEN)); 291 out->f_syncreads = MIN(in->f_syncreads, INT32_MAX); 292 out->f_asyncreads = MIN(in->f_asyncreads, INT32_MAX); 293 strlcpy(out->f_mntfromname, 294 in->f_mntfromname, min(MNAMELEN, FREEBSD4_OMNAMELEN)); 295 } 296 #endif 297 298 int 299 freebsd32_getfsstat(struct thread *td, struct freebsd32_getfsstat_args *uap) 300 { 301 size_t count; 302 int error; 303 304 if (uap->bufsize < 0 || uap->bufsize > SIZE_MAX) 305 return (EINVAL); 306 error = kern_getfsstat(td, &uap->buf, uap->bufsize, &count, 307 UIO_USERSPACE, uap->mode); 308 if (error == 0) 309 td->td_retval[0] = count; 310 return (error); 311 } 312 313 #ifdef COMPAT_FREEBSD4 314 int 315 freebsd4_freebsd32_getfsstat(struct thread *td, 316 struct freebsd4_freebsd32_getfsstat_args *uap) 317 { 318 struct statfs *buf, *sp; 319 struct ostatfs32 stat32; 320 size_t count, size, copycount; 321 int error; 322 323 count = uap->bufsize / sizeof(struct ostatfs32); 324 size = count * sizeof(struct statfs); 325 error = kern_getfsstat(td, &buf, size, &count, UIO_SYSSPACE, uap->mode); 326 if (size > 0) { 327 sp = buf; 328 copycount = count; 329 while (copycount > 0 && error == 0) { 330 copy_statfs(sp, &stat32); 331 error = copyout(&stat32, uap->buf, sizeof(stat32)); 332 sp++; 333 uap->buf++; 334 copycount--; 335 } 336 free(buf, M_STATFS); 337 } 338 if (error == 0) 339 td->td_retval[0] = count; 340 return (error); 341 } 342 #endif 343 344 #ifdef COMPAT_FREEBSD11 345 int 346 freebsd11_freebsd32_getfsstat(struct thread *td, 347 struct freebsd11_freebsd32_getfsstat_args *uap) 348 { 349 return(kern_freebsd11_getfsstat(td, uap->buf, uap->bufsize, 350 uap->mode)); 351 } 352 #endif 353 354 int 355 freebsd32_sigaltstack(struct thread *td, 356 struct freebsd32_sigaltstack_args *uap) 357 { 358 struct sigaltstack32 s32; 359 struct sigaltstack ss, oss, *ssp; 360 int error; 361 362 if (uap->ss != NULL) { 363 error = copyin(uap->ss, &s32, sizeof(s32)); 364 if (error) 365 return (error); 366 PTRIN_CP(s32, ss, ss_sp); 367 CP(s32, ss, ss_size); 368 CP(s32, ss, ss_flags); 369 ssp = &ss; 370 } else 371 ssp = NULL; 372 error = kern_sigaltstack(td, ssp, &oss); 373 if (error == 0 && uap->oss != NULL) { 374 PTROUT_CP(oss, s32, ss_sp); 375 CP(oss, s32, ss_size); 376 CP(oss, s32, ss_flags); 377 error = copyout(&s32, uap->oss, sizeof(s32)); 378 } 379 return (error); 380 } 381 382 /* 383 * Custom version of exec_copyin_args() so that we can translate 384 * the pointers. 385 */ 386 int 387 freebsd32_exec_copyin_args(struct image_args *args, const char *fname, 388 enum uio_seg segflg, uint32_t *argv, uint32_t *envv) 389 { 390 char *argp, *envp; 391 uint32_t *p32, arg; 392 int error; 393 394 bzero(args, sizeof(*args)); 395 if (argv == NULL) 396 return (EFAULT); 397 398 /* 399 * Allocate demand-paged memory for the file name, argument, and 400 * environment strings. 401 */ 402 error = exec_alloc_args(args); 403 if (error != 0) 404 return (error); 405 406 /* 407 * Copy the file name. 408 */ 409 error = exec_args_add_fname(args, fname, segflg); 410 if (error != 0) 411 goto err_exit; 412 413 /* 414 * extract arguments first 415 */ 416 p32 = argv; 417 for (;;) { 418 error = copyin(p32++, &arg, sizeof(arg)); 419 if (error) 420 goto err_exit; 421 if (arg == 0) 422 break; 423 argp = PTRIN(arg); 424 error = exec_args_add_arg(args, argp, UIO_USERSPACE); 425 if (error != 0) 426 goto err_exit; 427 } 428 429 /* 430 * extract environment strings 431 */ 432 if (envv) { 433 p32 = envv; 434 for (;;) { 435 error = copyin(p32++, &arg, sizeof(arg)); 436 if (error) 437 goto err_exit; 438 if (arg == 0) 439 break; 440 envp = PTRIN(arg); 441 error = exec_args_add_env(args, envp, UIO_USERSPACE); 442 if (error != 0) 443 goto err_exit; 444 } 445 } 446 447 return (0); 448 449 err_exit: 450 exec_free_args(args); 451 return (error); 452 } 453 454 int 455 freebsd32_execve(struct thread *td, struct freebsd32_execve_args *uap) 456 { 457 struct image_args eargs; 458 struct vmspace *oldvmspace; 459 int error; 460 461 error = pre_execve(td, &oldvmspace); 462 if (error != 0) 463 return (error); 464 error = freebsd32_exec_copyin_args(&eargs, uap->fname, UIO_USERSPACE, 465 uap->argv, uap->envv); 466 if (error == 0) 467 error = kern_execve(td, &eargs, NULL, oldvmspace); 468 post_execve(td, error, oldvmspace); 469 AUDIT_SYSCALL_EXIT(error == EJUSTRETURN ? 0 : error, td); 470 return (error); 471 } 472 473 int 474 freebsd32_fexecve(struct thread *td, struct freebsd32_fexecve_args *uap) 475 { 476 struct image_args eargs; 477 struct vmspace *oldvmspace; 478 int error; 479 480 error = pre_execve(td, &oldvmspace); 481 if (error != 0) 482 return (error); 483 error = freebsd32_exec_copyin_args(&eargs, NULL, UIO_SYSSPACE, 484 uap->argv, uap->envv); 485 if (error == 0) { 486 eargs.fd = uap->fd; 487 error = kern_execve(td, &eargs, NULL, oldvmspace); 488 } 489 post_execve(td, error, oldvmspace); 490 AUDIT_SYSCALL_EXIT(error == EJUSTRETURN ? 0 : error, td); 491 return (error); 492 } 493 494 int 495 freebsd32_mknodat(struct thread *td, struct freebsd32_mknodat_args *uap) 496 { 497 498 return (kern_mknodat(td, uap->fd, uap->path, UIO_USERSPACE, 499 uap->mode, PAIR32TO64(dev_t, uap->dev))); 500 } 501 502 int 503 freebsd32_mprotect(struct thread *td, struct freebsd32_mprotect_args *uap) 504 { 505 int prot; 506 507 prot = uap->prot; 508 #if defined(__amd64__) 509 if (i386_read_exec && (prot & PROT_READ) != 0) 510 prot |= PROT_EXEC; 511 #endif 512 return (kern_mprotect(td, (uintptr_t)PTRIN(uap->addr), uap->len, 513 prot, 0)); 514 } 515 516 int 517 freebsd32_mmap(struct thread *td, struct freebsd32_mmap_args *uap) 518 { 519 int prot; 520 521 prot = uap->prot; 522 #if defined(__amd64__) 523 if (i386_read_exec && (prot & PROT_READ)) 524 prot |= PROT_EXEC; 525 #endif 526 527 return (kern_mmap(td, &(struct mmap_req){ 528 .mr_hint = (uintptr_t)uap->addr, 529 .mr_len = uap->len, 530 .mr_prot = prot, 531 .mr_flags = uap->flags, 532 .mr_fd = uap->fd, 533 .mr_pos = PAIR32TO64(off_t, uap->pos), 534 })); 535 } 536 537 #ifdef COMPAT_FREEBSD6 538 int 539 freebsd6_freebsd32_mmap(struct thread *td, 540 struct freebsd6_freebsd32_mmap_args *uap) 541 { 542 int prot; 543 544 prot = uap->prot; 545 #if defined(__amd64__) 546 if (i386_read_exec && (prot & PROT_READ)) 547 prot |= PROT_EXEC; 548 #endif 549 550 return (kern_mmap(td, &(struct mmap_req){ 551 .mr_hint = (uintptr_t)uap->addr, 552 .mr_len = uap->len, 553 .mr_prot = prot, 554 .mr_flags = uap->flags, 555 .mr_fd = uap->fd, 556 .mr_pos = PAIR32TO64(off_t, uap->pos), 557 })); 558 } 559 #endif 560 561 #ifdef COMPAT_43 562 int 563 ofreebsd32_mmap(struct thread *td, struct ofreebsd32_mmap_args *uap) 564 { 565 return (kern_ommap(td, (uintptr_t)uap->addr, uap->len, uap->prot, 566 uap->flags, uap->fd, uap->pos)); 567 } 568 #endif 569 570 int 571 freebsd32_setitimer(struct thread *td, struct freebsd32_setitimer_args *uap) 572 { 573 struct itimerval itv, oitv, *itvp; 574 struct itimerval32 i32; 575 int error; 576 577 if (uap->itv != NULL) { 578 error = copyin(uap->itv, &i32, sizeof(i32)); 579 if (error) 580 return (error); 581 TV_CP(i32, itv, it_interval); 582 TV_CP(i32, itv, it_value); 583 itvp = &itv; 584 } else 585 itvp = NULL; 586 error = kern_setitimer(td, uap->which, itvp, &oitv); 587 if (error || uap->oitv == NULL) 588 return (error); 589 TV_CP(oitv, i32, it_interval); 590 TV_CP(oitv, i32, it_value); 591 return (copyout(&i32, uap->oitv, sizeof(i32))); 592 } 593 594 int 595 freebsd32_getitimer(struct thread *td, struct freebsd32_getitimer_args *uap) 596 { 597 struct itimerval itv; 598 struct itimerval32 i32; 599 int error; 600 601 error = kern_getitimer(td, uap->which, &itv); 602 if (error || uap->itv == NULL) 603 return (error); 604 TV_CP(itv, i32, it_interval); 605 TV_CP(itv, i32, it_value); 606 return (copyout(&i32, uap->itv, sizeof(i32))); 607 } 608 609 int 610 freebsd32_select(struct thread *td, struct freebsd32_select_args *uap) 611 { 612 struct timeval32 tv32; 613 struct timeval tv, *tvp; 614 int error; 615 616 if (uap->tv != NULL) { 617 error = copyin(uap->tv, &tv32, sizeof(tv32)); 618 if (error) 619 return (error); 620 CP(tv32, tv, tv_sec); 621 CP(tv32, tv, tv_usec); 622 tvp = &tv; 623 } else 624 tvp = NULL; 625 /* 626 * XXX Do pointers need PTRIN()? 627 */ 628 return (kern_select(td, uap->nd, uap->in, uap->ou, uap->ex, tvp, 629 sizeof(int32_t) * 8)); 630 } 631 632 int 633 freebsd32_pselect(struct thread *td, struct freebsd32_pselect_args *uap) 634 { 635 struct timespec32 ts32; 636 struct timespec ts; 637 struct timeval tv, *tvp; 638 sigset_t set, *uset; 639 int error; 640 641 if (uap->ts != NULL) { 642 error = copyin(uap->ts, &ts32, sizeof(ts32)); 643 if (error != 0) 644 return (error); 645 CP(ts32, ts, tv_sec); 646 CP(ts32, ts, tv_nsec); 647 TIMESPEC_TO_TIMEVAL(&tv, &ts); 648 tvp = &tv; 649 } else 650 tvp = NULL; 651 if (uap->sm != NULL) { 652 error = copyin(uap->sm, &set, sizeof(set)); 653 if (error != 0) 654 return (error); 655 uset = &set; 656 } else 657 uset = NULL; 658 /* 659 * XXX Do pointers need PTRIN()? 660 */ 661 error = kern_pselect(td, uap->nd, uap->in, uap->ou, uap->ex, tvp, 662 uset, sizeof(int32_t) * 8); 663 return (error); 664 } 665 666 /* 667 * Copy 'count' items into the destination list pointed to by uap->eventlist. 668 */ 669 static int 670 freebsd32_kevent_copyout(void *arg, struct kevent *kevp, int count) 671 { 672 struct freebsd32_kevent_args *uap; 673 struct kevent32 ks32[KQ_NEVENTS]; 674 uint64_t e; 675 int i, j, error; 676 677 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count)); 678 uap = (struct freebsd32_kevent_args *)arg; 679 680 for (i = 0; i < count; i++) { 681 CP(kevp[i], ks32[i], ident); 682 CP(kevp[i], ks32[i], filter); 683 CP(kevp[i], ks32[i], flags); 684 CP(kevp[i], ks32[i], fflags); 685 #if BYTE_ORDER == LITTLE_ENDIAN 686 ks32[i].data1 = kevp[i].data; 687 ks32[i].data2 = kevp[i].data >> 32; 688 #else 689 ks32[i].data1 = kevp[i].data >> 32; 690 ks32[i].data2 = kevp[i].data; 691 #endif 692 PTROUT_CP(kevp[i], ks32[i], udata); 693 for (j = 0; j < nitems(kevp->ext); j++) { 694 e = kevp[i].ext[j]; 695 #if BYTE_ORDER == LITTLE_ENDIAN 696 ks32[i].ext64[2 * j] = e; 697 ks32[i].ext64[2 * j + 1] = e >> 32; 698 #else 699 ks32[i].ext64[2 * j] = e >> 32; 700 ks32[i].ext64[2 * j + 1] = e; 701 #endif 702 } 703 } 704 error = copyout(ks32, uap->eventlist, count * sizeof *ks32); 705 if (error == 0) 706 uap->eventlist += count; 707 return (error); 708 } 709 710 /* 711 * Copy 'count' items from the list pointed to by uap->changelist. 712 */ 713 static int 714 freebsd32_kevent_copyin(void *arg, struct kevent *kevp, int count) 715 { 716 struct freebsd32_kevent_args *uap; 717 struct kevent32 ks32[KQ_NEVENTS]; 718 uint64_t e; 719 int i, j, error; 720 721 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count)); 722 uap = (struct freebsd32_kevent_args *)arg; 723 724 error = copyin(uap->changelist, ks32, count * sizeof *ks32); 725 if (error) 726 goto done; 727 uap->changelist += count; 728 729 for (i = 0; i < count; i++) { 730 CP(ks32[i], kevp[i], ident); 731 CP(ks32[i], kevp[i], filter); 732 CP(ks32[i], kevp[i], flags); 733 CP(ks32[i], kevp[i], fflags); 734 kevp[i].data = PAIR32TO64(uint64_t, ks32[i].data); 735 PTRIN_CP(ks32[i], kevp[i], udata); 736 for (j = 0; j < nitems(kevp->ext); j++) { 737 #if BYTE_ORDER == LITTLE_ENDIAN 738 e = ks32[i].ext64[2 * j + 1]; 739 e <<= 32; 740 e += ks32[i].ext64[2 * j]; 741 #else 742 e = ks32[i].ext64[2 * j]; 743 e <<= 32; 744 e += ks32[i].ext64[2 * j + 1]; 745 #endif 746 kevp[i].ext[j] = e; 747 } 748 } 749 done: 750 return (error); 751 } 752 753 int 754 freebsd32_kevent(struct thread *td, struct freebsd32_kevent_args *uap) 755 { 756 struct timespec32 ts32; 757 struct timespec ts, *tsp; 758 struct kevent_copyops k_ops = { 759 .arg = uap, 760 .k_copyout = freebsd32_kevent_copyout, 761 .k_copyin = freebsd32_kevent_copyin, 762 }; 763 #ifdef KTRACE 764 struct kevent32 *eventlist = uap->eventlist; 765 #endif 766 int error; 767 768 if (uap->timeout) { 769 error = copyin(uap->timeout, &ts32, sizeof(ts32)); 770 if (error) 771 return (error); 772 CP(ts32, ts, tv_sec); 773 CP(ts32, ts, tv_nsec); 774 tsp = &ts; 775 } else 776 tsp = NULL; 777 #ifdef KTRACE 778 if (KTRPOINT(td, KTR_STRUCT_ARRAY)) 779 ktrstructarray("kevent32", UIO_USERSPACE, uap->changelist, 780 uap->nchanges, sizeof(struct kevent32)); 781 #endif 782 error = kern_kevent(td, uap->fd, uap->nchanges, uap->nevents, 783 &k_ops, tsp); 784 #ifdef KTRACE 785 if (error == 0 && KTRPOINT(td, KTR_STRUCT_ARRAY)) 786 ktrstructarray("kevent32", UIO_USERSPACE, eventlist, 787 td->td_retval[0], sizeof(struct kevent32)); 788 #endif 789 return (error); 790 } 791 792 #ifdef COMPAT_FREEBSD11 793 static int 794 freebsd32_kevent11_copyout(void *arg, struct kevent *kevp, int count) 795 { 796 struct freebsd11_freebsd32_kevent_args *uap; 797 struct freebsd11_kevent32 ks32[KQ_NEVENTS]; 798 int i, error; 799 800 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count)); 801 uap = (struct freebsd11_freebsd32_kevent_args *)arg; 802 803 for (i = 0; i < count; i++) { 804 CP(kevp[i], ks32[i], ident); 805 CP(kevp[i], ks32[i], filter); 806 CP(kevp[i], ks32[i], flags); 807 CP(kevp[i], ks32[i], fflags); 808 CP(kevp[i], ks32[i], data); 809 PTROUT_CP(kevp[i], ks32[i], udata); 810 } 811 error = copyout(ks32, uap->eventlist, count * sizeof *ks32); 812 if (error == 0) 813 uap->eventlist += count; 814 return (error); 815 } 816 817 /* 818 * Copy 'count' items from the list pointed to by uap->changelist. 819 */ 820 static int 821 freebsd32_kevent11_copyin(void *arg, struct kevent *kevp, int count) 822 { 823 struct freebsd11_freebsd32_kevent_args *uap; 824 struct freebsd11_kevent32 ks32[KQ_NEVENTS]; 825 int i, j, error; 826 827 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count)); 828 uap = (struct freebsd11_freebsd32_kevent_args *)arg; 829 830 error = copyin(uap->changelist, ks32, count * sizeof *ks32); 831 if (error) 832 goto done; 833 uap->changelist += count; 834 835 for (i = 0; i < count; i++) { 836 CP(ks32[i], kevp[i], ident); 837 CP(ks32[i], kevp[i], filter); 838 CP(ks32[i], kevp[i], flags); 839 CP(ks32[i], kevp[i], fflags); 840 CP(ks32[i], kevp[i], data); 841 PTRIN_CP(ks32[i], kevp[i], udata); 842 for (j = 0; j < nitems(kevp->ext); j++) 843 kevp[i].ext[j] = 0; 844 } 845 done: 846 return (error); 847 } 848 849 int 850 freebsd11_freebsd32_kevent(struct thread *td, 851 struct freebsd11_freebsd32_kevent_args *uap) 852 { 853 struct timespec32 ts32; 854 struct timespec ts, *tsp; 855 struct kevent_copyops k_ops = { 856 .arg = uap, 857 .k_copyout = freebsd32_kevent11_copyout, 858 .k_copyin = freebsd32_kevent11_copyin, 859 }; 860 #ifdef KTRACE 861 struct freebsd11_kevent32 *eventlist = uap->eventlist; 862 #endif 863 int error; 864 865 if (uap->timeout) { 866 error = copyin(uap->timeout, &ts32, sizeof(ts32)); 867 if (error) 868 return (error); 869 CP(ts32, ts, tv_sec); 870 CP(ts32, ts, tv_nsec); 871 tsp = &ts; 872 } else 873 tsp = NULL; 874 #ifdef KTRACE 875 if (KTRPOINT(td, KTR_STRUCT_ARRAY)) 876 ktrstructarray("freebsd11_kevent32", UIO_USERSPACE, 877 uap->changelist, uap->nchanges, 878 sizeof(struct freebsd11_kevent32)); 879 #endif 880 error = kern_kevent(td, uap->fd, uap->nchanges, uap->nevents, 881 &k_ops, tsp); 882 #ifdef KTRACE 883 if (error == 0 && KTRPOINT(td, KTR_STRUCT_ARRAY)) 884 ktrstructarray("freebsd11_kevent32", UIO_USERSPACE, 885 eventlist, td->td_retval[0], 886 sizeof(struct freebsd11_kevent32)); 887 #endif 888 return (error); 889 } 890 #endif 891 892 int 893 freebsd32_gettimeofday(struct thread *td, 894 struct freebsd32_gettimeofday_args *uap) 895 { 896 struct timeval atv; 897 struct timeval32 atv32; 898 struct timezone rtz; 899 int error = 0; 900 901 if (uap->tp) { 902 microtime(&atv); 903 CP(atv, atv32, tv_sec); 904 CP(atv, atv32, tv_usec); 905 error = copyout(&atv32, uap->tp, sizeof (atv32)); 906 } 907 if (error == 0 && uap->tzp != NULL) { 908 rtz.tz_minuteswest = 0; 909 rtz.tz_dsttime = 0; 910 error = copyout(&rtz, uap->tzp, sizeof (rtz)); 911 } 912 return (error); 913 } 914 915 int 916 freebsd32_getrusage(struct thread *td, struct freebsd32_getrusage_args *uap) 917 { 918 struct rusage32 s32; 919 struct rusage s; 920 int error; 921 922 error = kern_getrusage(td, uap->who, &s); 923 if (error == 0) { 924 freebsd32_rusage_out(&s, &s32); 925 error = copyout(&s32, uap->rusage, sizeof(s32)); 926 } 927 return (error); 928 } 929 930 static void 931 ptrace_lwpinfo_to32(const struct ptrace_lwpinfo *pl, 932 struct ptrace_lwpinfo32 *pl32) 933 { 934 935 bzero(pl32, sizeof(*pl32)); 936 pl32->pl_lwpid = pl->pl_lwpid; 937 pl32->pl_event = pl->pl_event; 938 pl32->pl_flags = pl->pl_flags; 939 pl32->pl_sigmask = pl->pl_sigmask; 940 pl32->pl_siglist = pl->pl_siglist; 941 siginfo_to_siginfo32(&pl->pl_siginfo, &pl32->pl_siginfo); 942 strcpy(pl32->pl_tdname, pl->pl_tdname); 943 pl32->pl_child_pid = pl->pl_child_pid; 944 pl32->pl_syscall_code = pl->pl_syscall_code; 945 pl32->pl_syscall_narg = pl->pl_syscall_narg; 946 } 947 948 static void 949 ptrace_sc_ret_to32(const struct ptrace_sc_ret *psr, 950 struct ptrace_sc_ret32 *psr32) 951 { 952 953 bzero(psr32, sizeof(*psr32)); 954 psr32->sr_retval[0] = psr->sr_retval[0]; 955 psr32->sr_retval[1] = psr->sr_retval[1]; 956 psr32->sr_error = psr->sr_error; 957 } 958 959 int 960 freebsd32_ptrace(struct thread *td, struct freebsd32_ptrace_args *uap) 961 { 962 union { 963 struct ptrace_io_desc piod; 964 struct ptrace_lwpinfo pl; 965 struct ptrace_vm_entry pve; 966 struct ptrace_coredump pc; 967 struct ptrace_sc_remote sr; 968 struct dbreg32 dbreg; 969 struct fpreg32 fpreg; 970 struct reg32 reg; 971 struct iovec vec; 972 register_t args[nitems(td->td_sa.args)]; 973 struct ptrace_sc_ret psr; 974 int ptevents; 975 } r; 976 union { 977 struct ptrace_io_desc32 piod; 978 struct ptrace_lwpinfo32 pl; 979 struct ptrace_vm_entry32 pve; 980 struct ptrace_coredump32 pc; 981 struct ptrace_sc_remote32 sr; 982 uint32_t args[nitems(td->td_sa.args)]; 983 struct ptrace_sc_ret32 psr; 984 struct iovec32 vec; 985 } r32; 986 syscallarg_t pscr_args[nitems(td->td_sa.args)]; 987 u_int pscr_args32[nitems(td->td_sa.args)]; 988 void *addr; 989 int data, error, i; 990 991 if (!allow_ptrace) 992 return (ENOSYS); 993 error = 0; 994 995 AUDIT_ARG_PID(uap->pid); 996 AUDIT_ARG_CMD(uap->req); 997 AUDIT_ARG_VALUE(uap->data); 998 addr = &r; 999 data = uap->data; 1000 switch (uap->req) { 1001 case PT_GET_EVENT_MASK: 1002 case PT_GET_SC_ARGS: 1003 case PT_GET_SC_RET: 1004 break; 1005 case PT_LWPINFO: 1006 if (uap->data > sizeof(r32.pl)) 1007 return (EINVAL); 1008 1009 /* 1010 * Pass size of native structure in 'data'. Truncate 1011 * if necessary to avoid siginfo. 1012 */ 1013 data = sizeof(r.pl); 1014 if (uap->data < offsetof(struct ptrace_lwpinfo32, pl_siginfo) + 1015 sizeof(struct siginfo32)) 1016 data = offsetof(struct ptrace_lwpinfo, pl_siginfo); 1017 break; 1018 case PT_GETREGS: 1019 bzero(&r.reg, sizeof(r.reg)); 1020 break; 1021 case PT_GETFPREGS: 1022 bzero(&r.fpreg, sizeof(r.fpreg)); 1023 break; 1024 case PT_GETDBREGS: 1025 bzero(&r.dbreg, sizeof(r.dbreg)); 1026 break; 1027 case PT_SETREGS: 1028 error = copyin(uap->addr, &r.reg, sizeof(r.reg)); 1029 break; 1030 case PT_SETFPREGS: 1031 error = copyin(uap->addr, &r.fpreg, sizeof(r.fpreg)); 1032 break; 1033 case PT_SETDBREGS: 1034 error = copyin(uap->addr, &r.dbreg, sizeof(r.dbreg)); 1035 break; 1036 case PT_GETREGSET: 1037 case PT_SETREGSET: 1038 error = copyin(uap->addr, &r32.vec, sizeof(r32.vec)); 1039 if (error != 0) 1040 break; 1041 1042 r.vec.iov_len = r32.vec.iov_len; 1043 r.vec.iov_base = PTRIN(r32.vec.iov_base); 1044 break; 1045 case PT_SET_EVENT_MASK: 1046 if (uap->data != sizeof(r.ptevents)) 1047 error = EINVAL; 1048 else 1049 error = copyin(uap->addr, &r.ptevents, uap->data); 1050 break; 1051 case PT_IO: 1052 error = copyin(uap->addr, &r32.piod, sizeof(r32.piod)); 1053 if (error) 1054 break; 1055 CP(r32.piod, r.piod, piod_op); 1056 PTRIN_CP(r32.piod, r.piod, piod_offs); 1057 PTRIN_CP(r32.piod, r.piod, piod_addr); 1058 CP(r32.piod, r.piod, piod_len); 1059 break; 1060 case PT_VM_ENTRY: 1061 error = copyin(uap->addr, &r32.pve, sizeof(r32.pve)); 1062 if (error) 1063 break; 1064 1065 CP(r32.pve, r.pve, pve_entry); 1066 CP(r32.pve, r.pve, pve_timestamp); 1067 CP(r32.pve, r.pve, pve_start); 1068 CP(r32.pve, r.pve, pve_end); 1069 CP(r32.pve, r.pve, pve_offset); 1070 CP(r32.pve, r.pve, pve_prot); 1071 CP(r32.pve, r.pve, pve_pathlen); 1072 CP(r32.pve, r.pve, pve_fileid); 1073 CP(r32.pve, r.pve, pve_fsid); 1074 PTRIN_CP(r32.pve, r.pve, pve_path); 1075 break; 1076 case PT_COREDUMP: 1077 if (uap->data != sizeof(r32.pc)) 1078 error = EINVAL; 1079 else 1080 error = copyin(uap->addr, &r32.pc, uap->data); 1081 CP(r32.pc, r.pc, pc_fd); 1082 CP(r32.pc, r.pc, pc_flags); 1083 r.pc.pc_limit = PAIR32TO64(off_t, r32.pc.pc_limit); 1084 data = sizeof(r.pc); 1085 break; 1086 case PT_SC_REMOTE: 1087 if (uap->data != sizeof(r32.sr)) { 1088 error = EINVAL; 1089 break; 1090 } 1091 error = copyin(uap->addr, &r32.sr, uap->data); 1092 if (error != 0) 1093 break; 1094 CP(r32.sr, r.sr, pscr_syscall); 1095 CP(r32.sr, r.sr, pscr_nargs); 1096 if (r.sr.pscr_nargs > nitems(td->td_sa.args)) { 1097 error = EINVAL; 1098 break; 1099 } 1100 error = copyin(PTRIN(r32.sr.pscr_args), pscr_args32, 1101 sizeof(u_int) * r32.sr.pscr_nargs); 1102 if (error != 0) 1103 break; 1104 for (i = 0; i < r32.sr.pscr_nargs; i++) 1105 pscr_args[i] = pscr_args32[i]; 1106 r.sr.pscr_args = pscr_args; 1107 break; 1108 default: 1109 addr = uap->addr; 1110 break; 1111 } 1112 if (error) 1113 return (error); 1114 1115 error = kern_ptrace(td, uap->req, uap->pid, addr, data); 1116 if (error) 1117 return (error); 1118 1119 switch (uap->req) { 1120 case PT_VM_ENTRY: 1121 CP(r.pve, r32.pve, pve_entry); 1122 CP(r.pve, r32.pve, pve_timestamp); 1123 CP(r.pve, r32.pve, pve_start); 1124 CP(r.pve, r32.pve, pve_end); 1125 CP(r.pve, r32.pve, pve_offset); 1126 CP(r.pve, r32.pve, pve_prot); 1127 CP(r.pve, r32.pve, pve_pathlen); 1128 CP(r.pve, r32.pve, pve_fileid); 1129 CP(r.pve, r32.pve, pve_fsid); 1130 error = copyout(&r32.pve, uap->addr, sizeof(r32.pve)); 1131 break; 1132 case PT_IO: 1133 CP(r.piod, r32.piod, piod_len); 1134 error = copyout(&r32.piod, uap->addr, sizeof(r32.piod)); 1135 break; 1136 case PT_GETREGS: 1137 error = copyout(&r.reg, uap->addr, sizeof(r.reg)); 1138 break; 1139 case PT_GETFPREGS: 1140 error = copyout(&r.fpreg, uap->addr, sizeof(r.fpreg)); 1141 break; 1142 case PT_GETDBREGS: 1143 error = copyout(&r.dbreg, uap->addr, sizeof(r.dbreg)); 1144 break; 1145 case PT_GETREGSET: 1146 r32.vec.iov_len = r.vec.iov_len; 1147 error = copyout(&r32.vec, uap->addr, sizeof(r32.vec)); 1148 break; 1149 case PT_GET_EVENT_MASK: 1150 /* NB: The size in uap->data is validated in kern_ptrace(). */ 1151 error = copyout(&r.ptevents, uap->addr, uap->data); 1152 break; 1153 case PT_LWPINFO: 1154 ptrace_lwpinfo_to32(&r.pl, &r32.pl); 1155 error = copyout(&r32.pl, uap->addr, uap->data); 1156 break; 1157 case PT_GET_SC_ARGS: 1158 for (i = 0; i < nitems(r.args); i++) 1159 r32.args[i] = (uint32_t)r.args[i]; 1160 error = copyout(r32.args, uap->addr, MIN(uap->data, 1161 sizeof(r32.args))); 1162 break; 1163 case PT_GET_SC_RET: 1164 ptrace_sc_ret_to32(&r.psr, &r32.psr); 1165 error = copyout(&r32.psr, uap->addr, MIN(uap->data, 1166 sizeof(r32.psr))); 1167 break; 1168 case PT_SC_REMOTE: 1169 ptrace_sc_ret_to32(&r.sr.pscr_ret, &r32.sr.pscr_ret); 1170 error = copyout(&r32.sr.pscr_ret, uap->addr + 1171 offsetof(struct ptrace_sc_remote32, pscr_ret), 1172 sizeof(r32.psr)); 1173 break; 1174 } 1175 1176 return (error); 1177 } 1178 1179 int 1180 freebsd32_copyinuio(struct iovec32 *iovp, u_int iovcnt, struct uio **uiop) 1181 { 1182 struct iovec32 iov32; 1183 struct iovec *iov; 1184 struct uio *uio; 1185 u_int iovlen; 1186 int error, i; 1187 1188 *uiop = NULL; 1189 if (iovcnt > UIO_MAXIOV) 1190 return (EINVAL); 1191 iovlen = iovcnt * sizeof(struct iovec); 1192 uio = malloc(iovlen + sizeof *uio, M_IOV, M_WAITOK); 1193 iov = (struct iovec *)(uio + 1); 1194 for (i = 0; i < iovcnt; i++) { 1195 error = copyin(&iovp[i], &iov32, sizeof(struct iovec32)); 1196 if (error) { 1197 free(uio, M_IOV); 1198 return (error); 1199 } 1200 iov[i].iov_base = PTRIN(iov32.iov_base); 1201 iov[i].iov_len = iov32.iov_len; 1202 } 1203 uio->uio_iov = iov; 1204 uio->uio_iovcnt = iovcnt; 1205 uio->uio_segflg = UIO_USERSPACE; 1206 uio->uio_offset = -1; 1207 uio->uio_resid = 0; 1208 for (i = 0; i < iovcnt; i++) { 1209 if (iov->iov_len > INT_MAX - uio->uio_resid) { 1210 free(uio, M_IOV); 1211 return (EINVAL); 1212 } 1213 uio->uio_resid += iov->iov_len; 1214 iov++; 1215 } 1216 *uiop = uio; 1217 return (0); 1218 } 1219 1220 int 1221 freebsd32_readv(struct thread *td, struct freebsd32_readv_args *uap) 1222 { 1223 struct uio *auio; 1224 int error; 1225 1226 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 1227 if (error) 1228 return (error); 1229 error = kern_readv(td, uap->fd, auio); 1230 free(auio, M_IOV); 1231 return (error); 1232 } 1233 1234 int 1235 freebsd32_writev(struct thread *td, struct freebsd32_writev_args *uap) 1236 { 1237 struct uio *auio; 1238 int error; 1239 1240 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 1241 if (error) 1242 return (error); 1243 error = kern_writev(td, uap->fd, auio); 1244 free(auio, M_IOV); 1245 return (error); 1246 } 1247 1248 int 1249 freebsd32_preadv(struct thread *td, struct freebsd32_preadv_args *uap) 1250 { 1251 struct uio *auio; 1252 int error; 1253 1254 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 1255 if (error) 1256 return (error); 1257 error = kern_preadv(td, uap->fd, auio, PAIR32TO64(off_t,uap->offset)); 1258 free(auio, M_IOV); 1259 return (error); 1260 } 1261 1262 int 1263 freebsd32_pwritev(struct thread *td, struct freebsd32_pwritev_args *uap) 1264 { 1265 struct uio *auio; 1266 int error; 1267 1268 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 1269 if (error) 1270 return (error); 1271 error = kern_pwritev(td, uap->fd, auio, PAIR32TO64(off_t,uap->offset)); 1272 free(auio, M_IOV); 1273 return (error); 1274 } 1275 1276 int 1277 freebsd32_copyiniov(struct iovec32 *iovp32, u_int iovcnt, struct iovec **iovp, 1278 int error) 1279 { 1280 struct iovec32 iov32; 1281 struct iovec *iov; 1282 u_int iovlen; 1283 int i; 1284 1285 *iovp = NULL; 1286 if (iovcnt > UIO_MAXIOV) 1287 return (error); 1288 iovlen = iovcnt * sizeof(struct iovec); 1289 iov = malloc(iovlen, M_IOV, M_WAITOK); 1290 for (i = 0; i < iovcnt; i++) { 1291 error = copyin(&iovp32[i], &iov32, sizeof(struct iovec32)); 1292 if (error) { 1293 free(iov, M_IOV); 1294 return (error); 1295 } 1296 iov[i].iov_base = PTRIN(iov32.iov_base); 1297 iov[i].iov_len = iov32.iov_len; 1298 } 1299 *iovp = iov; 1300 return (0); 1301 } 1302 1303 static int 1304 freebsd32_copyinmsghdr(const struct msghdr32 *msg32, struct msghdr *msg) 1305 { 1306 struct msghdr32 m32; 1307 int error; 1308 1309 error = copyin(msg32, &m32, sizeof(m32)); 1310 if (error) 1311 return (error); 1312 msg->msg_name = PTRIN(m32.msg_name); 1313 msg->msg_namelen = m32.msg_namelen; 1314 msg->msg_iov = PTRIN(m32.msg_iov); 1315 msg->msg_iovlen = m32.msg_iovlen; 1316 msg->msg_control = PTRIN(m32.msg_control); 1317 msg->msg_controllen = m32.msg_controllen; 1318 msg->msg_flags = m32.msg_flags; 1319 return (0); 1320 } 1321 1322 static int 1323 freebsd32_copyoutmsghdr(struct msghdr *msg, struct msghdr32 *msg32) 1324 { 1325 struct msghdr32 m32; 1326 int error; 1327 1328 m32.msg_name = PTROUT(msg->msg_name); 1329 m32.msg_namelen = msg->msg_namelen; 1330 m32.msg_iov = PTROUT(msg->msg_iov); 1331 m32.msg_iovlen = msg->msg_iovlen; 1332 m32.msg_control = PTROUT(msg->msg_control); 1333 m32.msg_controllen = msg->msg_controllen; 1334 m32.msg_flags = msg->msg_flags; 1335 error = copyout(&m32, msg32, sizeof(m32)); 1336 return (error); 1337 } 1338 1339 #define FREEBSD32_ALIGNBYTES (sizeof(int) - 1) 1340 #define FREEBSD32_ALIGN(p) \ 1341 (((u_long)(p) + FREEBSD32_ALIGNBYTES) & ~FREEBSD32_ALIGNBYTES) 1342 #define FREEBSD32_CMSG_SPACE(l) \ 1343 (FREEBSD32_ALIGN(sizeof(struct cmsghdr)) + FREEBSD32_ALIGN(l)) 1344 1345 #define FREEBSD32_CMSG_DATA(cmsg) ((unsigned char *)(cmsg) + \ 1346 FREEBSD32_ALIGN(sizeof(struct cmsghdr))) 1347 1348 static size_t 1349 freebsd32_cmsg_convert(const struct cmsghdr *cm, void *data, socklen_t datalen) 1350 { 1351 size_t copylen; 1352 union { 1353 struct timespec32 ts; 1354 struct timeval32 tv; 1355 struct bintime32 bt; 1356 } tmp32; 1357 1358 union { 1359 struct timespec ts; 1360 struct timeval tv; 1361 struct bintime bt; 1362 } *in; 1363 1364 in = data; 1365 copylen = 0; 1366 switch (cm->cmsg_level) { 1367 case SOL_SOCKET: 1368 switch (cm->cmsg_type) { 1369 case SCM_TIMESTAMP: 1370 TV_CP(*in, tmp32, tv); 1371 copylen = sizeof(tmp32.tv); 1372 break; 1373 1374 case SCM_BINTIME: 1375 BT_CP(*in, tmp32, bt); 1376 copylen = sizeof(tmp32.bt); 1377 break; 1378 1379 case SCM_REALTIME: 1380 case SCM_MONOTONIC: 1381 TS_CP(*in, tmp32, ts); 1382 copylen = sizeof(tmp32.ts); 1383 break; 1384 1385 default: 1386 break; 1387 } 1388 1389 default: 1390 break; 1391 } 1392 1393 if (copylen == 0) 1394 return (datalen); 1395 1396 KASSERT((datalen >= copylen), ("corrupted cmsghdr")); 1397 1398 bcopy(&tmp32, data, copylen); 1399 return (copylen); 1400 } 1401 1402 static int 1403 freebsd32_copy_msg_out(struct msghdr *msg, struct mbuf *control) 1404 { 1405 struct cmsghdr *cm; 1406 void *data; 1407 socklen_t clen, datalen, datalen_out, oldclen; 1408 int error; 1409 caddr_t ctlbuf; 1410 int len, copylen; 1411 struct mbuf *m; 1412 error = 0; 1413 1414 len = msg->msg_controllen; 1415 msg->msg_controllen = 0; 1416 1417 ctlbuf = msg->msg_control; 1418 for (m = control; m != NULL && len > 0; m = m->m_next) { 1419 cm = mtod(m, struct cmsghdr *); 1420 clen = m->m_len; 1421 while (cm != NULL) { 1422 if (sizeof(struct cmsghdr) > clen || 1423 cm->cmsg_len > clen) { 1424 error = EINVAL; 1425 break; 1426 } 1427 1428 data = CMSG_DATA(cm); 1429 datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data; 1430 datalen_out = freebsd32_cmsg_convert(cm, data, datalen); 1431 1432 /* 1433 * Copy out the message header. Preserve the native 1434 * message size in case we need to inspect the message 1435 * contents later. 1436 */ 1437 copylen = sizeof(struct cmsghdr); 1438 if (len < copylen) { 1439 msg->msg_flags |= MSG_CTRUNC; 1440 m_dispose_extcontrolm(m); 1441 goto exit; 1442 } 1443 oldclen = cm->cmsg_len; 1444 cm->cmsg_len = FREEBSD32_ALIGN(sizeof(struct cmsghdr)) + 1445 datalen_out; 1446 error = copyout(cm, ctlbuf, copylen); 1447 cm->cmsg_len = oldclen; 1448 if (error != 0) 1449 goto exit; 1450 1451 ctlbuf += FREEBSD32_ALIGN(copylen); 1452 len -= FREEBSD32_ALIGN(copylen); 1453 1454 copylen = datalen_out; 1455 if (len < copylen) { 1456 msg->msg_flags |= MSG_CTRUNC; 1457 m_dispose_extcontrolm(m); 1458 break; 1459 } 1460 1461 /* Copy out the message data. */ 1462 error = copyout(data, ctlbuf, copylen); 1463 if (error) 1464 goto exit; 1465 1466 ctlbuf += FREEBSD32_ALIGN(copylen); 1467 len -= FREEBSD32_ALIGN(copylen); 1468 1469 if (CMSG_SPACE(datalen) < clen) { 1470 clen -= CMSG_SPACE(datalen); 1471 cm = (struct cmsghdr *) 1472 ((caddr_t)cm + CMSG_SPACE(datalen)); 1473 } else { 1474 clen = 0; 1475 cm = NULL; 1476 } 1477 1478 msg->msg_controllen += 1479 FREEBSD32_CMSG_SPACE(datalen_out); 1480 } 1481 } 1482 if (len == 0 && m != NULL) { 1483 msg->msg_flags |= MSG_CTRUNC; 1484 m_dispose_extcontrolm(m); 1485 } 1486 1487 exit: 1488 return (error); 1489 } 1490 1491 int 1492 freebsd32_recvmsg(struct thread *td, struct freebsd32_recvmsg_args *uap) 1493 { 1494 struct msghdr msg; 1495 struct iovec *uiov, *iov; 1496 struct mbuf *control = NULL; 1497 struct mbuf **controlp; 1498 int error; 1499 1500 error = freebsd32_copyinmsghdr(uap->msg, &msg); 1501 if (error) 1502 return (error); 1503 error = freebsd32_copyiniov((void *)msg.msg_iov, msg.msg_iovlen, &iov, 1504 EMSGSIZE); 1505 if (error) 1506 return (error); 1507 msg.msg_flags = uap->flags; 1508 uiov = msg.msg_iov; 1509 msg.msg_iov = iov; 1510 1511 controlp = (msg.msg_control != NULL) ? &control : NULL; 1512 error = kern_recvit(td, uap->s, &msg, UIO_USERSPACE, controlp); 1513 if (error == 0) { 1514 msg.msg_iov = uiov; 1515 1516 if (control != NULL) 1517 error = freebsd32_copy_msg_out(&msg, control); 1518 else 1519 msg.msg_controllen = 0; 1520 1521 if (error == 0) 1522 error = freebsd32_copyoutmsghdr(&msg, uap->msg); 1523 } 1524 free(iov, M_IOV); 1525 1526 if (control != NULL) { 1527 if (error != 0) 1528 m_dispose_extcontrolm(control); 1529 m_freem(control); 1530 } 1531 1532 return (error); 1533 } 1534 1535 #ifdef COMPAT_43 1536 int 1537 ofreebsd32_recvmsg(struct thread *td, struct ofreebsd32_recvmsg_args *uap) 1538 { 1539 return (ENOSYS); 1540 } 1541 #endif 1542 1543 /* 1544 * Copy-in the array of control messages constructed using alignment 1545 * and padding suitable for a 32-bit environment and construct an 1546 * mbuf using alignment and padding suitable for a 64-bit kernel. 1547 * The alignment and padding are defined indirectly by CMSG_DATA(), 1548 * CMSG_SPACE() and CMSG_LEN(). 1549 */ 1550 static int 1551 freebsd32_copyin_control(struct mbuf **mp, caddr_t buf, u_int buflen) 1552 { 1553 struct cmsghdr *cm; 1554 struct mbuf *m; 1555 void *in, *in1, *md; 1556 u_int msglen, outlen; 1557 int error; 1558 1559 /* Enforce the size limit of the native implementation. */ 1560 if (buflen > MCLBYTES) 1561 return (EINVAL); 1562 1563 in = malloc(buflen, M_TEMP, M_WAITOK); 1564 error = copyin(buf, in, buflen); 1565 if (error != 0) 1566 goto out; 1567 1568 /* 1569 * Make a pass over the input buffer to determine the amount of space 1570 * required for 64 bit-aligned copies of the control messages. 1571 */ 1572 in1 = in; 1573 outlen = 0; 1574 while (buflen > 0) { 1575 if (buflen < sizeof(*cm)) { 1576 error = EINVAL; 1577 break; 1578 } 1579 cm = (struct cmsghdr *)in1; 1580 if (cm->cmsg_len < FREEBSD32_ALIGN(sizeof(*cm)) || 1581 cm->cmsg_len > buflen) { 1582 error = EINVAL; 1583 break; 1584 } 1585 msglen = FREEBSD32_ALIGN(cm->cmsg_len); 1586 if (msglen < cm->cmsg_len) { 1587 error = EINVAL; 1588 break; 1589 } 1590 /* The native ABI permits the final padding to be omitted. */ 1591 if (msglen > buflen) 1592 msglen = buflen; 1593 buflen -= msglen; 1594 1595 in1 = (char *)in1 + msglen; 1596 outlen += CMSG_ALIGN(sizeof(*cm)) + 1597 CMSG_ALIGN(msglen - FREEBSD32_ALIGN(sizeof(*cm))); 1598 } 1599 if (error != 0) 1600 goto out; 1601 1602 /* 1603 * Allocate up to MJUMPAGESIZE space for the re-aligned and 1604 * re-padded control messages. This allows a full MCLBYTES of 1605 * 32-bit sized and aligned messages to fit and avoids an ABI 1606 * mismatch with the native implementation. 1607 */ 1608 m = m_get2(outlen, M_WAITOK, MT_CONTROL, 0); 1609 if (m == NULL) { 1610 error = EINVAL; 1611 goto out; 1612 } 1613 m->m_len = outlen; 1614 md = mtod(m, void *); 1615 1616 /* 1617 * Make a second pass over input messages, copying them into the output 1618 * buffer. 1619 */ 1620 in1 = in; 1621 while (outlen > 0) { 1622 /* Copy the message header and align the length field. */ 1623 cm = md; 1624 memcpy(cm, in1, sizeof(*cm)); 1625 msglen = cm->cmsg_len - FREEBSD32_ALIGN(sizeof(*cm)); 1626 cm->cmsg_len = CMSG_ALIGN(sizeof(*cm)) + msglen; 1627 1628 /* Copy the message body. */ 1629 in1 = (char *)in1 + FREEBSD32_ALIGN(sizeof(*cm)); 1630 md = (char *)md + CMSG_ALIGN(sizeof(*cm)); 1631 memcpy(md, in1, msglen); 1632 in1 = (char *)in1 + FREEBSD32_ALIGN(msglen); 1633 md = (char *)md + CMSG_ALIGN(msglen); 1634 KASSERT(outlen >= CMSG_ALIGN(sizeof(*cm)) + CMSG_ALIGN(msglen), 1635 ("outlen %u underflow, msglen %u", outlen, msglen)); 1636 outlen -= CMSG_ALIGN(sizeof(*cm)) + CMSG_ALIGN(msglen); 1637 } 1638 1639 *mp = m; 1640 out: 1641 free(in, M_TEMP); 1642 return (error); 1643 } 1644 1645 int 1646 freebsd32_sendmsg(struct thread *td, struct freebsd32_sendmsg_args *uap) 1647 { 1648 struct msghdr msg; 1649 struct iovec *iov; 1650 struct mbuf *control = NULL; 1651 struct sockaddr *to = NULL; 1652 int error; 1653 1654 error = freebsd32_copyinmsghdr(uap->msg, &msg); 1655 if (error) 1656 return (error); 1657 error = freebsd32_copyiniov((void *)msg.msg_iov, msg.msg_iovlen, &iov, 1658 EMSGSIZE); 1659 if (error) 1660 return (error); 1661 msg.msg_iov = iov; 1662 if (msg.msg_name != NULL) { 1663 error = getsockaddr(&to, msg.msg_name, msg.msg_namelen); 1664 if (error) { 1665 to = NULL; 1666 goto out; 1667 } 1668 msg.msg_name = to; 1669 } 1670 1671 if (msg.msg_control) { 1672 if (msg.msg_controllen < sizeof(struct cmsghdr)) { 1673 error = EINVAL; 1674 goto out; 1675 } 1676 1677 error = freebsd32_copyin_control(&control, msg.msg_control, 1678 msg.msg_controllen); 1679 if (error) 1680 goto out; 1681 1682 msg.msg_control = NULL; 1683 msg.msg_controllen = 0; 1684 } 1685 1686 error = kern_sendit(td, uap->s, &msg, uap->flags, control, 1687 UIO_USERSPACE); 1688 1689 out: 1690 free(iov, M_IOV); 1691 if (to) 1692 free(to, M_SONAME); 1693 return (error); 1694 } 1695 1696 #ifdef COMPAT_43 1697 int 1698 ofreebsd32_sendmsg(struct thread *td, struct ofreebsd32_sendmsg_args *uap) 1699 { 1700 return (ENOSYS); 1701 } 1702 #endif 1703 1704 1705 int 1706 freebsd32_settimeofday(struct thread *td, 1707 struct freebsd32_settimeofday_args *uap) 1708 { 1709 struct timeval32 tv32; 1710 struct timeval tv, *tvp; 1711 struct timezone tz, *tzp; 1712 int error; 1713 1714 if (uap->tv) { 1715 error = copyin(uap->tv, &tv32, sizeof(tv32)); 1716 if (error) 1717 return (error); 1718 CP(tv32, tv, tv_sec); 1719 CP(tv32, tv, tv_usec); 1720 tvp = &tv; 1721 } else 1722 tvp = NULL; 1723 if (uap->tzp) { 1724 error = copyin(uap->tzp, &tz, sizeof(tz)); 1725 if (error) 1726 return (error); 1727 tzp = &tz; 1728 } else 1729 tzp = NULL; 1730 return (kern_settimeofday(td, tvp, tzp)); 1731 } 1732 1733 int 1734 freebsd32_utimes(struct thread *td, struct freebsd32_utimes_args *uap) 1735 { 1736 struct timeval32 s32[2]; 1737 struct timeval s[2], *sp; 1738 int error; 1739 1740 if (uap->tptr != NULL) { 1741 error = copyin(uap->tptr, s32, sizeof(s32)); 1742 if (error) 1743 return (error); 1744 CP(s32[0], s[0], tv_sec); 1745 CP(s32[0], s[0], tv_usec); 1746 CP(s32[1], s[1], tv_sec); 1747 CP(s32[1], s[1], tv_usec); 1748 sp = s; 1749 } else 1750 sp = NULL; 1751 return (kern_utimesat(td, AT_FDCWD, uap->path, UIO_USERSPACE, 1752 sp, UIO_SYSSPACE)); 1753 } 1754 1755 int 1756 freebsd32_lutimes(struct thread *td, struct freebsd32_lutimes_args *uap) 1757 { 1758 struct timeval32 s32[2]; 1759 struct timeval s[2], *sp; 1760 int error; 1761 1762 if (uap->tptr != NULL) { 1763 error = copyin(uap->tptr, s32, sizeof(s32)); 1764 if (error) 1765 return (error); 1766 CP(s32[0], s[0], tv_sec); 1767 CP(s32[0], s[0], tv_usec); 1768 CP(s32[1], s[1], tv_sec); 1769 CP(s32[1], s[1], tv_usec); 1770 sp = s; 1771 } else 1772 sp = NULL; 1773 return (kern_lutimes(td, uap->path, UIO_USERSPACE, sp, UIO_SYSSPACE)); 1774 } 1775 1776 int 1777 freebsd32_futimes(struct thread *td, struct freebsd32_futimes_args *uap) 1778 { 1779 struct timeval32 s32[2]; 1780 struct timeval s[2], *sp; 1781 int error; 1782 1783 if (uap->tptr != NULL) { 1784 error = copyin(uap->tptr, s32, sizeof(s32)); 1785 if (error) 1786 return (error); 1787 CP(s32[0], s[0], tv_sec); 1788 CP(s32[0], s[0], tv_usec); 1789 CP(s32[1], s[1], tv_sec); 1790 CP(s32[1], s[1], tv_usec); 1791 sp = s; 1792 } else 1793 sp = NULL; 1794 return (kern_futimes(td, uap->fd, sp, UIO_SYSSPACE)); 1795 } 1796 1797 int 1798 freebsd32_futimesat(struct thread *td, struct freebsd32_futimesat_args *uap) 1799 { 1800 struct timeval32 s32[2]; 1801 struct timeval s[2], *sp; 1802 int error; 1803 1804 if (uap->times != NULL) { 1805 error = copyin(uap->times, s32, sizeof(s32)); 1806 if (error) 1807 return (error); 1808 CP(s32[0], s[0], tv_sec); 1809 CP(s32[0], s[0], tv_usec); 1810 CP(s32[1], s[1], tv_sec); 1811 CP(s32[1], s[1], tv_usec); 1812 sp = s; 1813 } else 1814 sp = NULL; 1815 return (kern_utimesat(td, uap->fd, uap->path, UIO_USERSPACE, 1816 sp, UIO_SYSSPACE)); 1817 } 1818 1819 int 1820 freebsd32_futimens(struct thread *td, struct freebsd32_futimens_args *uap) 1821 { 1822 struct timespec32 ts32[2]; 1823 struct timespec ts[2], *tsp; 1824 int error; 1825 1826 if (uap->times != NULL) { 1827 error = copyin(uap->times, ts32, sizeof(ts32)); 1828 if (error) 1829 return (error); 1830 CP(ts32[0], ts[0], tv_sec); 1831 CP(ts32[0], ts[0], tv_nsec); 1832 CP(ts32[1], ts[1], tv_sec); 1833 CP(ts32[1], ts[1], tv_nsec); 1834 tsp = ts; 1835 } else 1836 tsp = NULL; 1837 return (kern_futimens(td, uap->fd, tsp, UIO_SYSSPACE)); 1838 } 1839 1840 int 1841 freebsd32_utimensat(struct thread *td, struct freebsd32_utimensat_args *uap) 1842 { 1843 struct timespec32 ts32[2]; 1844 struct timespec ts[2], *tsp; 1845 int error; 1846 1847 if (uap->times != NULL) { 1848 error = copyin(uap->times, ts32, sizeof(ts32)); 1849 if (error) 1850 return (error); 1851 CP(ts32[0], ts[0], tv_sec); 1852 CP(ts32[0], ts[0], tv_nsec); 1853 CP(ts32[1], ts[1], tv_sec); 1854 CP(ts32[1], ts[1], tv_nsec); 1855 tsp = ts; 1856 } else 1857 tsp = NULL; 1858 return (kern_utimensat(td, uap->fd, uap->path, UIO_USERSPACE, 1859 tsp, UIO_SYSSPACE, uap->flag)); 1860 } 1861 1862 int 1863 freebsd32_adjtime(struct thread *td, struct freebsd32_adjtime_args *uap) 1864 { 1865 struct timeval32 tv32; 1866 struct timeval delta, olddelta, *deltap; 1867 int error; 1868 1869 if (uap->delta) { 1870 error = copyin(uap->delta, &tv32, sizeof(tv32)); 1871 if (error) 1872 return (error); 1873 CP(tv32, delta, tv_sec); 1874 CP(tv32, delta, tv_usec); 1875 deltap = δ 1876 } else 1877 deltap = NULL; 1878 error = kern_adjtime(td, deltap, &olddelta); 1879 if (uap->olddelta && error == 0) { 1880 CP(olddelta, tv32, tv_sec); 1881 CP(olddelta, tv32, tv_usec); 1882 error = copyout(&tv32, uap->olddelta, sizeof(tv32)); 1883 } 1884 return (error); 1885 } 1886 1887 #ifdef COMPAT_FREEBSD4 1888 int 1889 freebsd4_freebsd32_statfs(struct thread *td, struct freebsd4_freebsd32_statfs_args *uap) 1890 { 1891 struct ostatfs32 s32; 1892 struct statfs *sp; 1893 int error; 1894 1895 sp = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK); 1896 error = kern_statfs(td, uap->path, UIO_USERSPACE, sp); 1897 if (error == 0) { 1898 copy_statfs(sp, &s32); 1899 error = copyout(&s32, uap->buf, sizeof(s32)); 1900 } 1901 free(sp, M_STATFS); 1902 return (error); 1903 } 1904 #endif 1905 1906 #ifdef COMPAT_FREEBSD4 1907 int 1908 freebsd4_freebsd32_fstatfs(struct thread *td, struct freebsd4_freebsd32_fstatfs_args *uap) 1909 { 1910 struct ostatfs32 s32; 1911 struct statfs *sp; 1912 int error; 1913 1914 sp = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK); 1915 error = kern_fstatfs(td, uap->fd, sp); 1916 if (error == 0) { 1917 copy_statfs(sp, &s32); 1918 error = copyout(&s32, uap->buf, sizeof(s32)); 1919 } 1920 free(sp, M_STATFS); 1921 return (error); 1922 } 1923 #endif 1924 1925 #ifdef COMPAT_FREEBSD4 1926 int 1927 freebsd4_freebsd32_fhstatfs(struct thread *td, struct freebsd4_freebsd32_fhstatfs_args *uap) 1928 { 1929 struct ostatfs32 s32; 1930 struct statfs *sp; 1931 fhandle_t fh; 1932 int error; 1933 1934 if ((error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t))) != 0) 1935 return (error); 1936 sp = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK); 1937 error = kern_fhstatfs(td, fh, sp); 1938 if (error == 0) { 1939 copy_statfs(sp, &s32); 1940 error = copyout(&s32, uap->buf, sizeof(s32)); 1941 } 1942 free(sp, M_STATFS); 1943 return (error); 1944 } 1945 #endif 1946 1947 int 1948 freebsd32_pread(struct thread *td, struct freebsd32_pread_args *uap) 1949 { 1950 1951 return (kern_pread(td, uap->fd, uap->buf, uap->nbyte, 1952 PAIR32TO64(off_t, uap->offset))); 1953 } 1954 1955 int 1956 freebsd32_pwrite(struct thread *td, struct freebsd32_pwrite_args *uap) 1957 { 1958 1959 return (kern_pwrite(td, uap->fd, uap->buf, uap->nbyte, 1960 PAIR32TO64(off_t, uap->offset))); 1961 } 1962 1963 #ifdef COMPAT_43 1964 int 1965 ofreebsd32_lseek(struct thread *td, struct ofreebsd32_lseek_args *uap) 1966 { 1967 1968 return (kern_lseek(td, uap->fd, uap->offset, uap->whence)); 1969 } 1970 #endif 1971 1972 int 1973 freebsd32_lseek(struct thread *td, struct freebsd32_lseek_args *uap) 1974 { 1975 int error; 1976 off_t pos; 1977 1978 error = kern_lseek(td, uap->fd, PAIR32TO64(off_t, uap->offset), 1979 uap->whence); 1980 /* Expand the quad return into two parts for eax and edx */ 1981 pos = td->td_uretoff.tdu_off; 1982 td->td_retval[RETVAL_LO] = pos & 0xffffffff; /* %eax */ 1983 td->td_retval[RETVAL_HI] = pos >> 32; /* %edx */ 1984 return error; 1985 } 1986 1987 int 1988 freebsd32_truncate(struct thread *td, struct freebsd32_truncate_args *uap) 1989 { 1990 1991 return (kern_truncate(td, uap->path, UIO_USERSPACE, 1992 PAIR32TO64(off_t, uap->length))); 1993 } 1994 1995 #ifdef COMPAT_43 1996 int 1997 ofreebsd32_truncate(struct thread *td, struct ofreebsd32_truncate_args *uap) 1998 { 1999 return (kern_truncate(td, uap->path, UIO_USERSPACE, uap->length)); 2000 } 2001 #endif 2002 2003 int 2004 freebsd32_ftruncate(struct thread *td, struct freebsd32_ftruncate_args *uap) 2005 { 2006 2007 return (kern_ftruncate(td, uap->fd, PAIR32TO64(off_t, uap->length))); 2008 } 2009 2010 #ifdef COMPAT_43 2011 int 2012 ofreebsd32_ftruncate(struct thread *td, struct ofreebsd32_ftruncate_args *uap) 2013 { 2014 return (kern_ftruncate(td, uap->fd, uap->length)); 2015 } 2016 2017 int 2018 ofreebsd32_getdirentries(struct thread *td, 2019 struct ofreebsd32_getdirentries_args *uap) 2020 { 2021 struct ogetdirentries_args ap; 2022 int error; 2023 long loff; 2024 int32_t loff_cut; 2025 2026 ap.fd = uap->fd; 2027 ap.buf = uap->buf; 2028 ap.count = uap->count; 2029 ap.basep = NULL; 2030 error = kern_ogetdirentries(td, &ap, &loff); 2031 if (error == 0) { 2032 loff_cut = loff; 2033 error = copyout(&loff_cut, uap->basep, sizeof(int32_t)); 2034 } 2035 return (error); 2036 } 2037 #endif 2038 2039 #if defined(COMPAT_FREEBSD11) 2040 int 2041 freebsd11_freebsd32_getdirentries(struct thread *td, 2042 struct freebsd11_freebsd32_getdirentries_args *uap) 2043 { 2044 long base; 2045 int32_t base32; 2046 int error; 2047 2048 error = freebsd11_kern_getdirentries(td, uap->fd, uap->buf, uap->count, 2049 &base, NULL); 2050 if (error) 2051 return (error); 2052 if (uap->basep != NULL) { 2053 base32 = base; 2054 error = copyout(&base32, uap->basep, sizeof(int32_t)); 2055 } 2056 return (error); 2057 } 2058 #endif /* COMPAT_FREEBSD11 */ 2059 2060 #ifdef COMPAT_FREEBSD6 2061 /* versions with the 'int pad' argument */ 2062 int 2063 freebsd6_freebsd32_pread(struct thread *td, struct freebsd6_freebsd32_pread_args *uap) 2064 { 2065 2066 return (kern_pread(td, uap->fd, uap->buf, uap->nbyte, 2067 PAIR32TO64(off_t, uap->offset))); 2068 } 2069 2070 int 2071 freebsd6_freebsd32_pwrite(struct thread *td, struct freebsd6_freebsd32_pwrite_args *uap) 2072 { 2073 2074 return (kern_pwrite(td, uap->fd, uap->buf, uap->nbyte, 2075 PAIR32TO64(off_t, uap->offset))); 2076 } 2077 2078 int 2079 freebsd6_freebsd32_lseek(struct thread *td, struct freebsd6_freebsd32_lseek_args *uap) 2080 { 2081 int error; 2082 off_t pos; 2083 2084 error = kern_lseek(td, uap->fd, PAIR32TO64(off_t, uap->offset), 2085 uap->whence); 2086 /* Expand the quad return into two parts for eax and edx */ 2087 pos = *(off_t *)(td->td_retval); 2088 td->td_retval[RETVAL_LO] = pos & 0xffffffff; /* %eax */ 2089 td->td_retval[RETVAL_HI] = pos >> 32; /* %edx */ 2090 return error; 2091 } 2092 2093 int 2094 freebsd6_freebsd32_truncate(struct thread *td, struct freebsd6_freebsd32_truncate_args *uap) 2095 { 2096 2097 return (kern_truncate(td, uap->path, UIO_USERSPACE, 2098 PAIR32TO64(off_t, uap->length))); 2099 } 2100 2101 int 2102 freebsd6_freebsd32_ftruncate(struct thread *td, struct freebsd6_freebsd32_ftruncate_args *uap) 2103 { 2104 2105 return (kern_ftruncate(td, uap->fd, PAIR32TO64(off_t, uap->length))); 2106 } 2107 #endif /* COMPAT_FREEBSD6 */ 2108 2109 struct sf_hdtr32 { 2110 uint32_t headers; 2111 int hdr_cnt; 2112 uint32_t trailers; 2113 int trl_cnt; 2114 }; 2115 2116 static int 2117 freebsd32_do_sendfile(struct thread *td, 2118 struct freebsd32_sendfile_args *uap, int compat) 2119 { 2120 struct sf_hdtr32 hdtr32; 2121 struct sf_hdtr hdtr; 2122 struct uio *hdr_uio, *trl_uio; 2123 struct file *fp; 2124 cap_rights_t rights; 2125 struct iovec32 *iov32; 2126 off_t offset, sbytes; 2127 int error; 2128 2129 offset = PAIR32TO64(off_t, uap->offset); 2130 if (offset < 0) 2131 return (EINVAL); 2132 2133 hdr_uio = trl_uio = NULL; 2134 2135 if (uap->hdtr != NULL) { 2136 error = copyin(uap->hdtr, &hdtr32, sizeof(hdtr32)); 2137 if (error) 2138 goto out; 2139 PTRIN_CP(hdtr32, hdtr, headers); 2140 CP(hdtr32, hdtr, hdr_cnt); 2141 PTRIN_CP(hdtr32, hdtr, trailers); 2142 CP(hdtr32, hdtr, trl_cnt); 2143 2144 if (hdtr.headers != NULL) { 2145 iov32 = PTRIN(hdtr32.headers); 2146 error = freebsd32_copyinuio(iov32, 2147 hdtr32.hdr_cnt, &hdr_uio); 2148 if (error) 2149 goto out; 2150 #ifdef COMPAT_FREEBSD4 2151 /* 2152 * In FreeBSD < 5.0 the nbytes to send also included 2153 * the header. If compat is specified subtract the 2154 * header size from nbytes. 2155 */ 2156 if (compat) { 2157 if (uap->nbytes > hdr_uio->uio_resid) 2158 uap->nbytes -= hdr_uio->uio_resid; 2159 else 2160 uap->nbytes = 0; 2161 } 2162 #endif 2163 } 2164 if (hdtr.trailers != NULL) { 2165 iov32 = PTRIN(hdtr32.trailers); 2166 error = freebsd32_copyinuio(iov32, 2167 hdtr32.trl_cnt, &trl_uio); 2168 if (error) 2169 goto out; 2170 } 2171 } 2172 2173 AUDIT_ARG_FD(uap->fd); 2174 2175 if ((error = fget_read(td, uap->fd, 2176 cap_rights_init_one(&rights, CAP_PREAD), &fp)) != 0) 2177 goto out; 2178 2179 error = fo_sendfile(fp, uap->s, hdr_uio, trl_uio, offset, 2180 uap->nbytes, &sbytes, uap->flags, td); 2181 fdrop(fp, td); 2182 2183 if (uap->sbytes != NULL) 2184 copyout(&sbytes, uap->sbytes, sizeof(off_t)); 2185 2186 out: 2187 if (hdr_uio) 2188 free(hdr_uio, M_IOV); 2189 if (trl_uio) 2190 free(trl_uio, M_IOV); 2191 return (error); 2192 } 2193 2194 #ifdef COMPAT_FREEBSD4 2195 int 2196 freebsd4_freebsd32_sendfile(struct thread *td, 2197 struct freebsd4_freebsd32_sendfile_args *uap) 2198 { 2199 return (freebsd32_do_sendfile(td, 2200 (struct freebsd32_sendfile_args *)uap, 1)); 2201 } 2202 #endif 2203 2204 int 2205 freebsd32_sendfile(struct thread *td, struct freebsd32_sendfile_args *uap) 2206 { 2207 2208 return (freebsd32_do_sendfile(td, uap, 0)); 2209 } 2210 2211 static void 2212 copy_stat(struct stat *in, struct stat32 *out) 2213 { 2214 2215 #ifndef __amd64__ 2216 /* 2217 * 32-bit architectures other than i386 have 64-bit time_t. This 2218 * results in struct timespec32 with 12 bytes for tv_sec and tv_nsec, 2219 * and 4 bytes of padding. Zero the padding holes in struct stat32. 2220 */ 2221 bzero(&out->st_atim, sizeof(out->st_atim)); 2222 bzero(&out->st_mtim, sizeof(out->st_mtim)); 2223 bzero(&out->st_ctim, sizeof(out->st_ctim)); 2224 bzero(&out->st_birthtim, sizeof(out->st_birthtim)); 2225 #endif 2226 CP(*in, *out, st_dev); 2227 CP(*in, *out, st_ino); 2228 CP(*in, *out, st_mode); 2229 CP(*in, *out, st_nlink); 2230 CP(*in, *out, st_uid); 2231 CP(*in, *out, st_gid); 2232 CP(*in, *out, st_rdev); 2233 TS_CP(*in, *out, st_atim); 2234 TS_CP(*in, *out, st_mtim); 2235 TS_CP(*in, *out, st_ctim); 2236 CP(*in, *out, st_size); 2237 CP(*in, *out, st_blocks); 2238 CP(*in, *out, st_blksize); 2239 CP(*in, *out, st_flags); 2240 CP(*in, *out, st_gen); 2241 TS_CP(*in, *out, st_birthtim); 2242 out->st_padding0 = 0; 2243 out->st_padding1 = 0; 2244 #ifdef __STAT32_TIME_T_EXT 2245 out->st_atim_ext = 0; 2246 out->st_mtim_ext = 0; 2247 out->st_ctim_ext = 0; 2248 out->st_btim_ext = 0; 2249 #endif 2250 bzero(out->st_spare, sizeof(out->st_spare)); 2251 } 2252 2253 #ifdef COMPAT_43 2254 static void 2255 copy_ostat(struct stat *in, struct ostat32 *out) 2256 { 2257 2258 bzero(out, sizeof(*out)); 2259 CP(*in, *out, st_dev); 2260 CP(*in, *out, st_ino); 2261 CP(*in, *out, st_mode); 2262 CP(*in, *out, st_nlink); 2263 CP(*in, *out, st_uid); 2264 CP(*in, *out, st_gid); 2265 CP(*in, *out, st_rdev); 2266 out->st_size = MIN(in->st_size, INT32_MAX); 2267 TS_CP(*in, *out, st_atim); 2268 TS_CP(*in, *out, st_mtim); 2269 TS_CP(*in, *out, st_ctim); 2270 CP(*in, *out, st_blksize); 2271 CP(*in, *out, st_blocks); 2272 CP(*in, *out, st_flags); 2273 CP(*in, *out, st_gen); 2274 } 2275 #endif 2276 2277 #ifdef COMPAT_43 2278 int 2279 ofreebsd32_stat(struct thread *td, struct ofreebsd32_stat_args *uap) 2280 { 2281 struct stat sb; 2282 struct ostat32 sb32; 2283 int error; 2284 2285 error = kern_statat(td, 0, AT_FDCWD, uap->path, UIO_USERSPACE, &sb); 2286 if (error) 2287 return (error); 2288 copy_ostat(&sb, &sb32); 2289 error = copyout(&sb32, uap->ub, sizeof (sb32)); 2290 return (error); 2291 } 2292 #endif 2293 2294 int 2295 freebsd32_fstat(struct thread *td, struct freebsd32_fstat_args *uap) 2296 { 2297 struct stat ub; 2298 struct stat32 ub32; 2299 int error; 2300 2301 error = kern_fstat(td, uap->fd, &ub); 2302 if (error) 2303 return (error); 2304 copy_stat(&ub, &ub32); 2305 error = copyout(&ub32, uap->sb, sizeof(ub32)); 2306 return (error); 2307 } 2308 2309 #ifdef COMPAT_43 2310 int 2311 ofreebsd32_fstat(struct thread *td, struct ofreebsd32_fstat_args *uap) 2312 { 2313 struct stat ub; 2314 struct ostat32 ub32; 2315 int error; 2316 2317 error = kern_fstat(td, uap->fd, &ub); 2318 if (error) 2319 return (error); 2320 copy_ostat(&ub, &ub32); 2321 error = copyout(&ub32, uap->sb, sizeof(ub32)); 2322 return (error); 2323 } 2324 #endif 2325 2326 int 2327 freebsd32_fstatat(struct thread *td, struct freebsd32_fstatat_args *uap) 2328 { 2329 struct stat ub; 2330 struct stat32 ub32; 2331 int error; 2332 2333 error = kern_statat(td, uap->flag, uap->fd, uap->path, UIO_USERSPACE, 2334 &ub); 2335 if (error) 2336 return (error); 2337 copy_stat(&ub, &ub32); 2338 error = copyout(&ub32, uap->buf, sizeof(ub32)); 2339 return (error); 2340 } 2341 2342 #ifdef COMPAT_43 2343 int 2344 ofreebsd32_lstat(struct thread *td, struct ofreebsd32_lstat_args *uap) 2345 { 2346 struct stat sb; 2347 struct ostat32 sb32; 2348 int error; 2349 2350 error = kern_statat(td, AT_SYMLINK_NOFOLLOW, AT_FDCWD, uap->path, 2351 UIO_USERSPACE, &sb); 2352 if (error) 2353 return (error); 2354 copy_ostat(&sb, &sb32); 2355 error = copyout(&sb32, uap->ub, sizeof (sb32)); 2356 return (error); 2357 } 2358 #endif 2359 2360 int 2361 freebsd32_fhstat(struct thread *td, struct freebsd32_fhstat_args *uap) 2362 { 2363 struct stat sb; 2364 struct stat32 sb32; 2365 struct fhandle fh; 2366 int error; 2367 2368 error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t)); 2369 if (error != 0) 2370 return (error); 2371 error = kern_fhstat(td, fh, &sb); 2372 if (error != 0) 2373 return (error); 2374 copy_stat(&sb, &sb32); 2375 error = copyout(&sb32, uap->sb, sizeof (sb32)); 2376 return (error); 2377 } 2378 2379 #if defined(COMPAT_FREEBSD11) 2380 extern int ino64_trunc_error; 2381 2382 static int 2383 freebsd11_cvtstat32(struct stat *in, struct freebsd11_stat32 *out) 2384 { 2385 2386 #ifndef __amd64__ 2387 /* 2388 * 32-bit architectures other than i386 have 64-bit time_t. This 2389 * results in struct timespec32 with 12 bytes for tv_sec and tv_nsec, 2390 * and 4 bytes of padding. Zero the padding holes in freebsd11_stat32. 2391 */ 2392 bzero(&out->st_atim, sizeof(out->st_atim)); 2393 bzero(&out->st_mtim, sizeof(out->st_mtim)); 2394 bzero(&out->st_ctim, sizeof(out->st_ctim)); 2395 bzero(&out->st_birthtim, sizeof(out->st_birthtim)); 2396 #endif 2397 2398 CP(*in, *out, st_ino); 2399 if (in->st_ino != out->st_ino) { 2400 switch (ino64_trunc_error) { 2401 default: 2402 case 0: 2403 break; 2404 case 1: 2405 return (EOVERFLOW); 2406 case 2: 2407 out->st_ino = UINT32_MAX; 2408 break; 2409 } 2410 } 2411 CP(*in, *out, st_nlink); 2412 if (in->st_nlink != out->st_nlink) { 2413 switch (ino64_trunc_error) { 2414 default: 2415 case 0: 2416 break; 2417 case 1: 2418 return (EOVERFLOW); 2419 case 2: 2420 out->st_nlink = UINT16_MAX; 2421 break; 2422 } 2423 } 2424 out->st_dev = in->st_dev; 2425 if (out->st_dev != in->st_dev) { 2426 switch (ino64_trunc_error) { 2427 default: 2428 break; 2429 case 1: 2430 return (EOVERFLOW); 2431 } 2432 } 2433 CP(*in, *out, st_mode); 2434 CP(*in, *out, st_uid); 2435 CP(*in, *out, st_gid); 2436 out->st_rdev = in->st_rdev; 2437 if (out->st_rdev != in->st_rdev) { 2438 switch (ino64_trunc_error) { 2439 default: 2440 break; 2441 case 1: 2442 return (EOVERFLOW); 2443 } 2444 } 2445 TS_CP(*in, *out, st_atim); 2446 TS_CP(*in, *out, st_mtim); 2447 TS_CP(*in, *out, st_ctim); 2448 CP(*in, *out, st_size); 2449 CP(*in, *out, st_blocks); 2450 CP(*in, *out, st_blksize); 2451 CP(*in, *out, st_flags); 2452 CP(*in, *out, st_gen); 2453 TS_CP(*in, *out, st_birthtim); 2454 out->st_lspare = 0; 2455 bzero((char *)&out->st_birthtim + sizeof(out->st_birthtim), 2456 sizeof(*out) - offsetof(struct freebsd11_stat32, 2457 st_birthtim) - sizeof(out->st_birthtim)); 2458 return (0); 2459 } 2460 2461 int 2462 freebsd11_freebsd32_stat(struct thread *td, 2463 struct freebsd11_freebsd32_stat_args *uap) 2464 { 2465 struct stat sb; 2466 struct freebsd11_stat32 sb32; 2467 int error; 2468 2469 error = kern_statat(td, 0, AT_FDCWD, uap->path, UIO_USERSPACE, &sb); 2470 if (error != 0) 2471 return (error); 2472 error = freebsd11_cvtstat32(&sb, &sb32); 2473 if (error == 0) 2474 error = copyout(&sb32, uap->ub, sizeof (sb32)); 2475 return (error); 2476 } 2477 2478 int 2479 freebsd11_freebsd32_fstat(struct thread *td, 2480 struct freebsd11_freebsd32_fstat_args *uap) 2481 { 2482 struct stat sb; 2483 struct freebsd11_stat32 sb32; 2484 int error; 2485 2486 error = kern_fstat(td, uap->fd, &sb); 2487 if (error != 0) 2488 return (error); 2489 error = freebsd11_cvtstat32(&sb, &sb32); 2490 if (error == 0) 2491 error = copyout(&sb32, uap->sb, sizeof (sb32)); 2492 return (error); 2493 } 2494 2495 int 2496 freebsd11_freebsd32_fstatat(struct thread *td, 2497 struct freebsd11_freebsd32_fstatat_args *uap) 2498 { 2499 struct stat sb; 2500 struct freebsd11_stat32 sb32; 2501 int error; 2502 2503 error = kern_statat(td, uap->flag, uap->fd, uap->path, UIO_USERSPACE, 2504 &sb); 2505 if (error != 0) 2506 return (error); 2507 error = freebsd11_cvtstat32(&sb, &sb32); 2508 if (error == 0) 2509 error = copyout(&sb32, uap->buf, sizeof (sb32)); 2510 return (error); 2511 } 2512 2513 int 2514 freebsd11_freebsd32_lstat(struct thread *td, 2515 struct freebsd11_freebsd32_lstat_args *uap) 2516 { 2517 struct stat sb; 2518 struct freebsd11_stat32 sb32; 2519 int error; 2520 2521 error = kern_statat(td, AT_SYMLINK_NOFOLLOW, AT_FDCWD, uap->path, 2522 UIO_USERSPACE, &sb); 2523 if (error != 0) 2524 return (error); 2525 error = freebsd11_cvtstat32(&sb, &sb32); 2526 if (error == 0) 2527 error = copyout(&sb32, uap->ub, sizeof (sb32)); 2528 return (error); 2529 } 2530 2531 int 2532 freebsd11_freebsd32_fhstat(struct thread *td, 2533 struct freebsd11_freebsd32_fhstat_args *uap) 2534 { 2535 struct stat sb; 2536 struct freebsd11_stat32 sb32; 2537 struct fhandle fh; 2538 int error; 2539 2540 error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t)); 2541 if (error != 0) 2542 return (error); 2543 error = kern_fhstat(td, fh, &sb); 2544 if (error != 0) 2545 return (error); 2546 error = freebsd11_cvtstat32(&sb, &sb32); 2547 if (error == 0) 2548 error = copyout(&sb32, uap->sb, sizeof (sb32)); 2549 return (error); 2550 } 2551 2552 static int 2553 freebsd11_cvtnstat32(struct stat *sb, struct nstat32 *nsb32) 2554 { 2555 struct nstat nsb; 2556 int error; 2557 2558 error = freebsd11_cvtnstat(sb, &nsb); 2559 if (error != 0) 2560 return (error); 2561 2562 bzero(nsb32, sizeof(*nsb32)); 2563 CP(nsb, *nsb32, st_dev); 2564 CP(nsb, *nsb32, st_ino); 2565 CP(nsb, *nsb32, st_mode); 2566 CP(nsb, *nsb32, st_nlink); 2567 CP(nsb, *nsb32, st_uid); 2568 CP(nsb, *nsb32, st_gid); 2569 CP(nsb, *nsb32, st_rdev); 2570 CP(nsb, *nsb32, st_atim.tv_sec); 2571 CP(nsb, *nsb32, st_atim.tv_nsec); 2572 CP(nsb, *nsb32, st_mtim.tv_sec); 2573 CP(nsb, *nsb32, st_mtim.tv_nsec); 2574 CP(nsb, *nsb32, st_ctim.tv_sec); 2575 CP(nsb, *nsb32, st_ctim.tv_nsec); 2576 CP(nsb, *nsb32, st_size); 2577 CP(nsb, *nsb32, st_blocks); 2578 CP(nsb, *nsb32, st_blksize); 2579 CP(nsb, *nsb32, st_flags); 2580 CP(nsb, *nsb32, st_gen); 2581 CP(nsb, *nsb32, st_birthtim.tv_sec); 2582 CP(nsb, *nsb32, st_birthtim.tv_nsec); 2583 return (0); 2584 } 2585 2586 int 2587 freebsd11_freebsd32_nstat(struct thread *td, 2588 struct freebsd11_freebsd32_nstat_args *uap) 2589 { 2590 struct stat sb; 2591 struct nstat32 nsb; 2592 int error; 2593 2594 error = kern_statat(td, 0, AT_FDCWD, uap->path, UIO_USERSPACE, &sb); 2595 if (error != 0) 2596 return (error); 2597 error = freebsd11_cvtnstat32(&sb, &nsb); 2598 if (error != 0) 2599 error = copyout(&nsb, uap->ub, sizeof (nsb)); 2600 return (error); 2601 } 2602 2603 int 2604 freebsd11_freebsd32_nlstat(struct thread *td, 2605 struct freebsd11_freebsd32_nlstat_args *uap) 2606 { 2607 struct stat sb; 2608 struct nstat32 nsb; 2609 int error; 2610 2611 error = kern_statat(td, AT_SYMLINK_NOFOLLOW, AT_FDCWD, uap->path, 2612 UIO_USERSPACE, &sb); 2613 if (error != 0) 2614 return (error); 2615 error = freebsd11_cvtnstat32(&sb, &nsb); 2616 if (error == 0) 2617 error = copyout(&nsb, uap->ub, sizeof (nsb)); 2618 return (error); 2619 } 2620 2621 int 2622 freebsd11_freebsd32_nfstat(struct thread *td, 2623 struct freebsd11_freebsd32_nfstat_args *uap) 2624 { 2625 struct nstat32 nub; 2626 struct stat ub; 2627 int error; 2628 2629 error = kern_fstat(td, uap->fd, &ub); 2630 if (error != 0) 2631 return (error); 2632 error = freebsd11_cvtnstat32(&ub, &nub); 2633 if (error == 0) 2634 error = copyout(&nub, uap->sb, sizeof(nub)); 2635 return (error); 2636 } 2637 #endif 2638 2639 int 2640 freebsd32___sysctl(struct thread *td, struct freebsd32___sysctl_args *uap) 2641 { 2642 int error, name[CTL_MAXNAME]; 2643 size_t j, oldlen; 2644 uint32_t tmp; 2645 2646 if (uap->namelen > CTL_MAXNAME || uap->namelen < 2) 2647 return (EINVAL); 2648 error = copyin(uap->name, name, uap->namelen * sizeof(int)); 2649 if (error) 2650 return (error); 2651 if (uap->oldlenp) { 2652 error = fueword32(uap->oldlenp, &tmp); 2653 oldlen = tmp; 2654 } else { 2655 oldlen = 0; 2656 } 2657 if (error != 0) 2658 return (EFAULT); 2659 error = userland_sysctl(td, name, uap->namelen, 2660 uap->old, &oldlen, 1, 2661 uap->new, uap->newlen, &j, SCTL_MASK32); 2662 if (error) 2663 return (error); 2664 if (uap->oldlenp) 2665 suword32(uap->oldlenp, j); 2666 return (0); 2667 } 2668 2669 int 2670 freebsd32___sysctlbyname(struct thread *td, 2671 struct freebsd32___sysctlbyname_args *uap) 2672 { 2673 size_t oldlen, rv; 2674 int error; 2675 uint32_t tmp; 2676 2677 if (uap->oldlenp != NULL) { 2678 error = fueword32(uap->oldlenp, &tmp); 2679 oldlen = tmp; 2680 } else { 2681 error = oldlen = 0; 2682 } 2683 if (error != 0) 2684 return (EFAULT); 2685 error = kern___sysctlbyname(td, uap->name, uap->namelen, uap->old, 2686 &oldlen, uap->new, uap->newlen, &rv, SCTL_MASK32, 1); 2687 if (error != 0) 2688 return (error); 2689 if (uap->oldlenp != NULL) 2690 error = suword32(uap->oldlenp, rv); 2691 2692 return (error); 2693 } 2694 2695 int 2696 freebsd32_jail(struct thread *td, struct freebsd32_jail_args *uap) 2697 { 2698 uint32_t version; 2699 int error; 2700 struct jail j; 2701 2702 error = copyin(uap->jail, &version, sizeof(uint32_t)); 2703 if (error) 2704 return (error); 2705 2706 switch (version) { 2707 case 0: 2708 { 2709 /* FreeBSD single IPv4 jails. */ 2710 struct jail32_v0 j32_v0; 2711 2712 bzero(&j, sizeof(struct jail)); 2713 error = copyin(uap->jail, &j32_v0, sizeof(struct jail32_v0)); 2714 if (error) 2715 return (error); 2716 CP(j32_v0, j, version); 2717 PTRIN_CP(j32_v0, j, path); 2718 PTRIN_CP(j32_v0, j, hostname); 2719 j.ip4s = htonl(j32_v0.ip_number); /* jail_v0 is host order */ 2720 break; 2721 } 2722 2723 case 1: 2724 /* 2725 * Version 1 was used by multi-IPv4 jail implementations 2726 * that never made it into the official kernel. 2727 */ 2728 return (EINVAL); 2729 2730 case 2: /* JAIL_API_VERSION */ 2731 { 2732 /* FreeBSD multi-IPv4/IPv6,noIP jails. */ 2733 struct jail32 j32; 2734 2735 error = copyin(uap->jail, &j32, sizeof(struct jail32)); 2736 if (error) 2737 return (error); 2738 CP(j32, j, version); 2739 PTRIN_CP(j32, j, path); 2740 PTRIN_CP(j32, j, hostname); 2741 PTRIN_CP(j32, j, jailname); 2742 CP(j32, j, ip4s); 2743 CP(j32, j, ip6s); 2744 PTRIN_CP(j32, j, ip4); 2745 PTRIN_CP(j32, j, ip6); 2746 break; 2747 } 2748 2749 default: 2750 /* Sci-Fi jails are not supported, sorry. */ 2751 return (EINVAL); 2752 } 2753 return (kern_jail(td, &j)); 2754 } 2755 2756 int 2757 freebsd32_jail_set(struct thread *td, struct freebsd32_jail_set_args *uap) 2758 { 2759 struct uio *auio; 2760 int error; 2761 2762 /* Check that we have an even number of iovecs. */ 2763 if (uap->iovcnt & 1) 2764 return (EINVAL); 2765 2766 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 2767 if (error) 2768 return (error); 2769 error = kern_jail_set(td, auio, uap->flags); 2770 free(auio, M_IOV); 2771 return (error); 2772 } 2773 2774 int 2775 freebsd32_jail_get(struct thread *td, struct freebsd32_jail_get_args *uap) 2776 { 2777 struct iovec32 iov32; 2778 struct uio *auio; 2779 int error, i; 2780 2781 /* Check that we have an even number of iovecs. */ 2782 if (uap->iovcnt & 1) 2783 return (EINVAL); 2784 2785 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 2786 if (error) 2787 return (error); 2788 error = kern_jail_get(td, auio, uap->flags); 2789 if (error == 0) 2790 for (i = 0; i < uap->iovcnt; i++) { 2791 PTROUT_CP(auio->uio_iov[i], iov32, iov_base); 2792 CP(auio->uio_iov[i], iov32, iov_len); 2793 error = copyout(&iov32, uap->iovp + i, sizeof(iov32)); 2794 if (error != 0) 2795 break; 2796 } 2797 free(auio, M_IOV); 2798 return (error); 2799 } 2800 2801 int 2802 freebsd32_sigaction(struct thread *td, struct freebsd32_sigaction_args *uap) 2803 { 2804 struct sigaction32 s32; 2805 struct sigaction sa, osa, *sap; 2806 int error; 2807 2808 if (uap->act) { 2809 error = copyin(uap->act, &s32, sizeof(s32)); 2810 if (error) 2811 return (error); 2812 sa.sa_handler = PTRIN(s32.sa_u); 2813 CP(s32, sa, sa_flags); 2814 CP(s32, sa, sa_mask); 2815 sap = &sa; 2816 } else 2817 sap = NULL; 2818 error = kern_sigaction(td, uap->sig, sap, &osa, 0); 2819 if (error == 0 && uap->oact != NULL) { 2820 s32.sa_u = PTROUT(osa.sa_handler); 2821 CP(osa, s32, sa_flags); 2822 CP(osa, s32, sa_mask); 2823 error = copyout(&s32, uap->oact, sizeof(s32)); 2824 } 2825 return (error); 2826 } 2827 2828 #ifdef COMPAT_FREEBSD4 2829 int 2830 freebsd4_freebsd32_sigaction(struct thread *td, 2831 struct freebsd4_freebsd32_sigaction_args *uap) 2832 { 2833 struct sigaction32 s32; 2834 struct sigaction sa, osa, *sap; 2835 int error; 2836 2837 if (uap->act) { 2838 error = copyin(uap->act, &s32, sizeof(s32)); 2839 if (error) 2840 return (error); 2841 sa.sa_handler = PTRIN(s32.sa_u); 2842 CP(s32, sa, sa_flags); 2843 CP(s32, sa, sa_mask); 2844 sap = &sa; 2845 } else 2846 sap = NULL; 2847 error = kern_sigaction(td, uap->sig, sap, &osa, KSA_FREEBSD4); 2848 if (error == 0 && uap->oact != NULL) { 2849 s32.sa_u = PTROUT(osa.sa_handler); 2850 CP(osa, s32, sa_flags); 2851 CP(osa, s32, sa_mask); 2852 error = copyout(&s32, uap->oact, sizeof(s32)); 2853 } 2854 return (error); 2855 } 2856 #endif 2857 2858 #ifdef COMPAT_43 2859 struct osigaction32 { 2860 uint32_t sa_u; 2861 osigset_t sa_mask; 2862 int sa_flags; 2863 }; 2864 2865 #define ONSIG 32 2866 2867 int 2868 ofreebsd32_sigaction(struct thread *td, 2869 struct ofreebsd32_sigaction_args *uap) 2870 { 2871 struct osigaction32 s32; 2872 struct sigaction sa, osa, *sap; 2873 int error; 2874 2875 if (uap->signum <= 0 || uap->signum >= ONSIG) 2876 return (EINVAL); 2877 2878 if (uap->nsa) { 2879 error = copyin(uap->nsa, &s32, sizeof(s32)); 2880 if (error) 2881 return (error); 2882 sa.sa_handler = PTRIN(s32.sa_u); 2883 CP(s32, sa, sa_flags); 2884 OSIG2SIG(s32.sa_mask, sa.sa_mask); 2885 sap = &sa; 2886 } else 2887 sap = NULL; 2888 error = kern_sigaction(td, uap->signum, sap, &osa, KSA_OSIGSET); 2889 if (error == 0 && uap->osa != NULL) { 2890 s32.sa_u = PTROUT(osa.sa_handler); 2891 CP(osa, s32, sa_flags); 2892 SIG2OSIG(osa.sa_mask, s32.sa_mask); 2893 error = copyout(&s32, uap->osa, sizeof(s32)); 2894 } 2895 return (error); 2896 } 2897 2898 struct sigvec32 { 2899 uint32_t sv_handler; 2900 int sv_mask; 2901 int sv_flags; 2902 }; 2903 2904 int 2905 ofreebsd32_sigvec(struct thread *td, 2906 struct ofreebsd32_sigvec_args *uap) 2907 { 2908 struct sigvec32 vec; 2909 struct sigaction sa, osa, *sap; 2910 int error; 2911 2912 if (uap->signum <= 0 || uap->signum >= ONSIG) 2913 return (EINVAL); 2914 2915 if (uap->nsv) { 2916 error = copyin(uap->nsv, &vec, sizeof(vec)); 2917 if (error) 2918 return (error); 2919 sa.sa_handler = PTRIN(vec.sv_handler); 2920 OSIG2SIG(vec.sv_mask, sa.sa_mask); 2921 sa.sa_flags = vec.sv_flags; 2922 sa.sa_flags ^= SA_RESTART; 2923 sap = &sa; 2924 } else 2925 sap = NULL; 2926 error = kern_sigaction(td, uap->signum, sap, &osa, KSA_OSIGSET); 2927 if (error == 0 && uap->osv != NULL) { 2928 vec.sv_handler = PTROUT(osa.sa_handler); 2929 SIG2OSIG(osa.sa_mask, vec.sv_mask); 2930 vec.sv_flags = osa.sa_flags; 2931 vec.sv_flags &= ~SA_NOCLDWAIT; 2932 vec.sv_flags ^= SA_RESTART; 2933 error = copyout(&vec, uap->osv, sizeof(vec)); 2934 } 2935 return (error); 2936 } 2937 2938 struct sigstack32 { 2939 uint32_t ss_sp; 2940 int ss_onstack; 2941 }; 2942 2943 int 2944 ofreebsd32_sigstack(struct thread *td, 2945 struct ofreebsd32_sigstack_args *uap) 2946 { 2947 struct sigstack32 s32; 2948 struct sigstack nss, oss; 2949 int error = 0, unss; 2950 2951 if (uap->nss != NULL) { 2952 error = copyin(uap->nss, &s32, sizeof(s32)); 2953 if (error) 2954 return (error); 2955 nss.ss_sp = PTRIN(s32.ss_sp); 2956 CP(s32, nss, ss_onstack); 2957 unss = 1; 2958 } else { 2959 unss = 0; 2960 } 2961 oss.ss_sp = td->td_sigstk.ss_sp; 2962 oss.ss_onstack = sigonstack(cpu_getstack(td)); 2963 if (unss) { 2964 td->td_sigstk.ss_sp = nss.ss_sp; 2965 td->td_sigstk.ss_size = 0; 2966 td->td_sigstk.ss_flags |= (nss.ss_onstack & SS_ONSTACK); 2967 td->td_pflags |= TDP_ALTSTACK; 2968 } 2969 if (uap->oss != NULL) { 2970 s32.ss_sp = PTROUT(oss.ss_sp); 2971 CP(oss, s32, ss_onstack); 2972 error = copyout(&s32, uap->oss, sizeof(s32)); 2973 } 2974 return (error); 2975 } 2976 #endif 2977 2978 int 2979 freebsd32_nanosleep(struct thread *td, struct freebsd32_nanosleep_args *uap) 2980 { 2981 2982 return (freebsd32_user_clock_nanosleep(td, CLOCK_REALTIME, 2983 TIMER_RELTIME, uap->rqtp, uap->rmtp)); 2984 } 2985 2986 int 2987 freebsd32_clock_nanosleep(struct thread *td, 2988 struct freebsd32_clock_nanosleep_args *uap) 2989 { 2990 int error; 2991 2992 error = freebsd32_user_clock_nanosleep(td, uap->clock_id, uap->flags, 2993 uap->rqtp, uap->rmtp); 2994 return (kern_posix_error(td, error)); 2995 } 2996 2997 static int 2998 freebsd32_user_clock_nanosleep(struct thread *td, clockid_t clock_id, 2999 int flags, const struct timespec32 *ua_rqtp, struct timespec32 *ua_rmtp) 3000 { 3001 struct timespec32 rmt32, rqt32; 3002 struct timespec rmt, rqt; 3003 int error, error2; 3004 3005 error = copyin(ua_rqtp, &rqt32, sizeof(rqt32)); 3006 if (error) 3007 return (error); 3008 3009 CP(rqt32, rqt, tv_sec); 3010 CP(rqt32, rqt, tv_nsec); 3011 3012 error = kern_clock_nanosleep(td, clock_id, flags, &rqt, &rmt); 3013 if (error == EINTR && ua_rmtp != NULL && (flags & TIMER_ABSTIME) == 0) { 3014 CP(rmt, rmt32, tv_sec); 3015 CP(rmt, rmt32, tv_nsec); 3016 3017 error2 = copyout(&rmt32, ua_rmtp, sizeof(rmt32)); 3018 if (error2 != 0) 3019 error = error2; 3020 } 3021 return (error); 3022 } 3023 3024 int 3025 freebsd32_clock_gettime(struct thread *td, 3026 struct freebsd32_clock_gettime_args *uap) 3027 { 3028 struct timespec ats; 3029 struct timespec32 ats32; 3030 int error; 3031 3032 error = kern_clock_gettime(td, uap->clock_id, &ats); 3033 if (error == 0) { 3034 CP(ats, ats32, tv_sec); 3035 CP(ats, ats32, tv_nsec); 3036 error = copyout(&ats32, uap->tp, sizeof(ats32)); 3037 } 3038 return (error); 3039 } 3040 3041 int 3042 freebsd32_clock_settime(struct thread *td, 3043 struct freebsd32_clock_settime_args *uap) 3044 { 3045 struct timespec ats; 3046 struct timespec32 ats32; 3047 int error; 3048 3049 error = copyin(uap->tp, &ats32, sizeof(ats32)); 3050 if (error) 3051 return (error); 3052 CP(ats32, ats, tv_sec); 3053 CP(ats32, ats, tv_nsec); 3054 3055 return (kern_clock_settime(td, uap->clock_id, &ats)); 3056 } 3057 3058 int 3059 freebsd32_clock_getres(struct thread *td, 3060 struct freebsd32_clock_getres_args *uap) 3061 { 3062 struct timespec ts; 3063 struct timespec32 ts32; 3064 int error; 3065 3066 if (uap->tp == NULL) 3067 return (0); 3068 error = kern_clock_getres(td, uap->clock_id, &ts); 3069 if (error == 0) { 3070 CP(ts, ts32, tv_sec); 3071 CP(ts, ts32, tv_nsec); 3072 error = copyout(&ts32, uap->tp, sizeof(ts32)); 3073 } 3074 return (error); 3075 } 3076 3077 int freebsd32_ktimer_create(struct thread *td, 3078 struct freebsd32_ktimer_create_args *uap) 3079 { 3080 struct sigevent32 ev32; 3081 struct sigevent ev, *evp; 3082 int error, id; 3083 3084 if (uap->evp == NULL) { 3085 evp = NULL; 3086 } else { 3087 evp = &ev; 3088 error = copyin(uap->evp, &ev32, sizeof(ev32)); 3089 if (error != 0) 3090 return (error); 3091 error = convert_sigevent32(&ev32, &ev); 3092 if (error != 0) 3093 return (error); 3094 } 3095 error = kern_ktimer_create(td, uap->clock_id, evp, &id, -1); 3096 if (error == 0) { 3097 error = copyout(&id, uap->timerid, sizeof(int)); 3098 if (error != 0) 3099 kern_ktimer_delete(td, id); 3100 } 3101 return (error); 3102 } 3103 3104 int 3105 freebsd32_ktimer_settime(struct thread *td, 3106 struct freebsd32_ktimer_settime_args *uap) 3107 { 3108 struct itimerspec32 val32, oval32; 3109 struct itimerspec val, oval, *ovalp; 3110 int error; 3111 3112 error = copyin(uap->value, &val32, sizeof(val32)); 3113 if (error != 0) 3114 return (error); 3115 ITS_CP(val32, val); 3116 ovalp = uap->ovalue != NULL ? &oval : NULL; 3117 error = kern_ktimer_settime(td, uap->timerid, uap->flags, &val, ovalp); 3118 if (error == 0 && uap->ovalue != NULL) { 3119 ITS_CP(oval, oval32); 3120 error = copyout(&oval32, uap->ovalue, sizeof(oval32)); 3121 } 3122 return (error); 3123 } 3124 3125 int 3126 freebsd32_ktimer_gettime(struct thread *td, 3127 struct freebsd32_ktimer_gettime_args *uap) 3128 { 3129 struct itimerspec32 val32; 3130 struct itimerspec val; 3131 int error; 3132 3133 error = kern_ktimer_gettime(td, uap->timerid, &val); 3134 if (error == 0) { 3135 ITS_CP(val, val32); 3136 error = copyout(&val32, uap->value, sizeof(val32)); 3137 } 3138 return (error); 3139 } 3140 3141 int 3142 freebsd32_clock_getcpuclockid2(struct thread *td, 3143 struct freebsd32_clock_getcpuclockid2_args *uap) 3144 { 3145 clockid_t clk_id; 3146 int error; 3147 3148 error = kern_clock_getcpuclockid2(td, PAIR32TO64(id_t, uap->id), 3149 uap->which, &clk_id); 3150 if (error == 0) 3151 error = copyout(&clk_id, uap->clock_id, sizeof(clockid_t)); 3152 return (error); 3153 } 3154 3155 int 3156 freebsd32_thr_new(struct thread *td, 3157 struct freebsd32_thr_new_args *uap) 3158 { 3159 struct thr_param32 param32; 3160 struct thr_param param; 3161 int error; 3162 3163 if (uap->param_size < 0 || 3164 uap->param_size > sizeof(struct thr_param32)) 3165 return (EINVAL); 3166 bzero(¶m, sizeof(struct thr_param)); 3167 bzero(¶m32, sizeof(struct thr_param32)); 3168 error = copyin(uap->param, ¶m32, uap->param_size); 3169 if (error != 0) 3170 return (error); 3171 param.start_func = PTRIN(param32.start_func); 3172 param.arg = PTRIN(param32.arg); 3173 param.stack_base = PTRIN(param32.stack_base); 3174 param.stack_size = param32.stack_size; 3175 param.tls_base = PTRIN(param32.tls_base); 3176 param.tls_size = param32.tls_size; 3177 param.child_tid = PTRIN(param32.child_tid); 3178 param.parent_tid = PTRIN(param32.parent_tid); 3179 param.flags = param32.flags; 3180 param.rtp = PTRIN(param32.rtp); 3181 param.spare[0] = PTRIN(param32.spare[0]); 3182 param.spare[1] = PTRIN(param32.spare[1]); 3183 param.spare[2] = PTRIN(param32.spare[2]); 3184 3185 return (kern_thr_new(td, ¶m)); 3186 } 3187 3188 int 3189 freebsd32_thr_suspend(struct thread *td, struct freebsd32_thr_suspend_args *uap) 3190 { 3191 struct timespec32 ts32; 3192 struct timespec ts, *tsp; 3193 int error; 3194 3195 error = 0; 3196 tsp = NULL; 3197 if (uap->timeout != NULL) { 3198 error = copyin((const void *)uap->timeout, (void *)&ts32, 3199 sizeof(struct timespec32)); 3200 if (error != 0) 3201 return (error); 3202 ts.tv_sec = ts32.tv_sec; 3203 ts.tv_nsec = ts32.tv_nsec; 3204 tsp = &ts; 3205 } 3206 return (kern_thr_suspend(td, tsp)); 3207 } 3208 3209 void 3210 siginfo_to_siginfo32(const siginfo_t *src, struct siginfo32 *dst) 3211 { 3212 bzero(dst, sizeof(*dst)); 3213 dst->si_signo = src->si_signo; 3214 dst->si_errno = src->si_errno; 3215 dst->si_code = src->si_code; 3216 dst->si_pid = src->si_pid; 3217 dst->si_uid = src->si_uid; 3218 dst->si_status = src->si_status; 3219 dst->si_addr = (uintptr_t)src->si_addr; 3220 dst->si_value.sival_int = src->si_value.sival_int; 3221 dst->si_timerid = src->si_timerid; 3222 dst->si_overrun = src->si_overrun; 3223 } 3224 3225 #ifndef _FREEBSD32_SYSPROTO_H_ 3226 struct freebsd32_sigqueue_args { 3227 pid_t pid; 3228 int signum; 3229 /* union sigval32 */ int value; 3230 }; 3231 #endif 3232 int 3233 freebsd32_sigqueue(struct thread *td, struct freebsd32_sigqueue_args *uap) 3234 { 3235 union sigval sv; 3236 3237 /* 3238 * On 32-bit ABIs, sival_int and sival_ptr are the same. 3239 * On 64-bit little-endian ABIs, the low bits are the same. 3240 * In 64-bit big-endian ABIs, sival_int overlaps with 3241 * sival_ptr's HIGH bits. We choose to support sival_int 3242 * rather than sival_ptr in this case as it seems to be 3243 * more common. 3244 */ 3245 bzero(&sv, sizeof(sv)); 3246 sv.sival_int = (uint32_t)(uint64_t)uap->value; 3247 3248 return (kern_sigqueue(td, uap->pid, uap->signum, &sv)); 3249 } 3250 3251 int 3252 freebsd32_sigtimedwait(struct thread *td, struct freebsd32_sigtimedwait_args *uap) 3253 { 3254 struct timespec32 ts32; 3255 struct timespec ts; 3256 struct timespec *timeout; 3257 sigset_t set; 3258 ksiginfo_t ksi; 3259 struct siginfo32 si32; 3260 int error; 3261 3262 if (uap->timeout) { 3263 error = copyin(uap->timeout, &ts32, sizeof(ts32)); 3264 if (error) 3265 return (error); 3266 ts.tv_sec = ts32.tv_sec; 3267 ts.tv_nsec = ts32.tv_nsec; 3268 timeout = &ts; 3269 } else 3270 timeout = NULL; 3271 3272 error = copyin(uap->set, &set, sizeof(set)); 3273 if (error) 3274 return (error); 3275 3276 error = kern_sigtimedwait(td, set, &ksi, timeout); 3277 if (error) 3278 return (error); 3279 3280 if (uap->info) { 3281 siginfo_to_siginfo32(&ksi.ksi_info, &si32); 3282 error = copyout(&si32, uap->info, sizeof(struct siginfo32)); 3283 } 3284 3285 if (error == 0) 3286 td->td_retval[0] = ksi.ksi_signo; 3287 return (error); 3288 } 3289 3290 /* 3291 * MPSAFE 3292 */ 3293 int 3294 freebsd32_sigwaitinfo(struct thread *td, struct freebsd32_sigwaitinfo_args *uap) 3295 { 3296 ksiginfo_t ksi; 3297 struct siginfo32 si32; 3298 sigset_t set; 3299 int error; 3300 3301 error = copyin(uap->set, &set, sizeof(set)); 3302 if (error) 3303 return (error); 3304 3305 error = kern_sigtimedwait(td, set, &ksi, NULL); 3306 if (error) 3307 return (error); 3308 3309 if (uap->info) { 3310 siginfo_to_siginfo32(&ksi.ksi_info, &si32); 3311 error = copyout(&si32, uap->info, sizeof(struct siginfo32)); 3312 } 3313 if (error == 0) 3314 td->td_retval[0] = ksi.ksi_signo; 3315 return (error); 3316 } 3317 3318 int 3319 freebsd32_cpuset_setid(struct thread *td, 3320 struct freebsd32_cpuset_setid_args *uap) 3321 { 3322 3323 return (kern_cpuset_setid(td, uap->which, 3324 PAIR32TO64(id_t, uap->id), uap->setid)); 3325 } 3326 3327 int 3328 freebsd32_cpuset_getid(struct thread *td, 3329 struct freebsd32_cpuset_getid_args *uap) 3330 { 3331 3332 return (kern_cpuset_getid(td, uap->level, uap->which, 3333 PAIR32TO64(id_t, uap->id), uap->setid)); 3334 } 3335 3336 static int 3337 copyin32_set(const void *u, void *k, size_t size) 3338 { 3339 #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 3340 int rv; 3341 struct bitset *kb = k; 3342 int *p; 3343 3344 rv = copyin(u, k, size); 3345 if (rv != 0) 3346 return (rv); 3347 3348 p = (int *)kb->__bits; 3349 /* Loop through swapping words. 3350 * `size' is in bytes, we need bits. */ 3351 for (int i = 0; i < __bitset_words(size * 8); i++) { 3352 int tmp = p[0]; 3353 p[0] = p[1]; 3354 p[1] = tmp; 3355 p += 2; 3356 } 3357 return (0); 3358 #else 3359 return (copyin(u, k, size)); 3360 #endif 3361 } 3362 3363 static int 3364 copyout32_set(const void *k, void *u, size_t size) 3365 { 3366 #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 3367 const struct bitset *kb = k; 3368 struct bitset *ub = u; 3369 const int *kp = (const int *)kb->__bits; 3370 int *up = (int *)ub->__bits; 3371 int rv; 3372 3373 for (int i = 0; i < __bitset_words(CPU_SETSIZE); i++) { 3374 /* `size' is in bytes, we need bits. */ 3375 for (int i = 0; i < __bitset_words(size * 8); i++) { 3376 rv = suword32(up, kp[1]); 3377 if (rv == 0) 3378 rv = suword32(up + 1, kp[0]); 3379 if (rv != 0) 3380 return (EFAULT); 3381 } 3382 } 3383 return (0); 3384 #else 3385 return (copyout(k, u, size)); 3386 #endif 3387 } 3388 3389 static const struct cpuset_copy_cb cpuset_copy32_cb = { 3390 .cpuset_copyin = copyin32_set, 3391 .cpuset_copyout = copyout32_set 3392 }; 3393 3394 int 3395 freebsd32_cpuset_getaffinity(struct thread *td, 3396 struct freebsd32_cpuset_getaffinity_args *uap) 3397 { 3398 3399 return (user_cpuset_getaffinity(td, uap->level, uap->which, 3400 PAIR32TO64(id_t,uap->id), uap->cpusetsize, uap->mask, 3401 &cpuset_copy32_cb)); 3402 } 3403 3404 int 3405 freebsd32_cpuset_setaffinity(struct thread *td, 3406 struct freebsd32_cpuset_setaffinity_args *uap) 3407 { 3408 3409 return (user_cpuset_setaffinity(td, uap->level, uap->which, 3410 PAIR32TO64(id_t,uap->id), uap->cpusetsize, uap->mask, 3411 &cpuset_copy32_cb)); 3412 } 3413 3414 int 3415 freebsd32_cpuset_getdomain(struct thread *td, 3416 struct freebsd32_cpuset_getdomain_args *uap) 3417 { 3418 3419 return (kern_cpuset_getdomain(td, uap->level, uap->which, 3420 PAIR32TO64(id_t,uap->id), uap->domainsetsize, uap->mask, uap->policy, 3421 &cpuset_copy32_cb)); 3422 } 3423 3424 int 3425 freebsd32_cpuset_setdomain(struct thread *td, 3426 struct freebsd32_cpuset_setdomain_args *uap) 3427 { 3428 3429 return (kern_cpuset_setdomain(td, uap->level, uap->which, 3430 PAIR32TO64(id_t,uap->id), uap->domainsetsize, uap->mask, uap->policy, 3431 &cpuset_copy32_cb)); 3432 } 3433 3434 int 3435 freebsd32_nmount(struct thread *td, 3436 struct freebsd32_nmount_args /* { 3437 struct iovec *iovp; 3438 unsigned int iovcnt; 3439 int flags; 3440 } */ *uap) 3441 { 3442 struct uio *auio; 3443 uint64_t flags; 3444 int error; 3445 3446 /* 3447 * Mount flags are now 64-bits. On 32-bit archtectures only 3448 * 32-bits are passed in, but from here on everything handles 3449 * 64-bit flags correctly. 3450 */ 3451 flags = uap->flags; 3452 3453 AUDIT_ARG_FFLAGS(flags); 3454 3455 /* 3456 * Filter out MNT_ROOTFS. We do not want clients of nmount() in 3457 * userspace to set this flag, but we must filter it out if we want 3458 * MNT_UPDATE on the root file system to work. 3459 * MNT_ROOTFS should only be set by the kernel when mounting its 3460 * root file system. 3461 */ 3462 flags &= ~MNT_ROOTFS; 3463 3464 /* 3465 * check that we have an even number of iovec's 3466 * and that we have at least two options. 3467 */ 3468 if ((uap->iovcnt & 1) || (uap->iovcnt < 4)) 3469 return (EINVAL); 3470 3471 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 3472 if (error) 3473 return (error); 3474 error = vfs_donmount(td, flags, auio); 3475 3476 free(auio, M_IOV); 3477 return error; 3478 } 3479 3480 #if 0 3481 int 3482 freebsd32_xxx(struct thread *td, struct freebsd32_xxx_args *uap) 3483 { 3484 struct yyy32 *p32, s32; 3485 struct yyy *p = NULL, s; 3486 struct xxx_arg ap; 3487 int error; 3488 3489 if (uap->zzz) { 3490 error = copyin(uap->zzz, &s32, sizeof(s32)); 3491 if (error) 3492 return (error); 3493 /* translate in */ 3494 p = &s; 3495 } 3496 error = kern_xxx(td, p); 3497 if (error) 3498 return (error); 3499 if (uap->zzz) { 3500 /* translate out */ 3501 error = copyout(&s32, p32, sizeof(s32)); 3502 } 3503 return (error); 3504 } 3505 #endif 3506 3507 int 3508 syscall32_module_handler(struct module *mod, int what, void *arg) 3509 { 3510 3511 return (kern_syscall_module_handler(freebsd32_sysent, mod, what, arg)); 3512 } 3513 3514 int 3515 syscall32_helper_register(struct syscall_helper_data *sd, int flags) 3516 { 3517 3518 return (kern_syscall_helper_register(freebsd32_sysent, sd, flags)); 3519 } 3520 3521 int 3522 syscall32_helper_unregister(struct syscall_helper_data *sd) 3523 { 3524 3525 return (kern_syscall_helper_unregister(freebsd32_sysent, sd)); 3526 } 3527 3528 int 3529 freebsd32_copyout_strings(struct image_params *imgp, uintptr_t *stack_base) 3530 { 3531 struct sysentvec *sysent; 3532 int argc, envc, i; 3533 uint32_t *vectp; 3534 char *stringp; 3535 uintptr_t destp, ustringp; 3536 struct freebsd32_ps_strings *arginfo; 3537 char canary[sizeof(long) * 8]; 3538 int32_t pagesizes32[MAXPAGESIZES]; 3539 size_t execpath_len; 3540 int error, szsigcode; 3541 3542 sysent = imgp->sysent; 3543 3544 arginfo = (struct freebsd32_ps_strings *)PROC_PS_STRINGS(imgp->proc); 3545 imgp->ps_strings = arginfo; 3546 destp = (uintptr_t)arginfo; 3547 3548 /* 3549 * Install sigcode. 3550 */ 3551 if (!PROC_HAS_SHP(imgp->proc)) { 3552 szsigcode = *sysent->sv_szsigcode; 3553 destp -= szsigcode; 3554 destp = rounddown2(destp, sizeof(uint32_t)); 3555 error = copyout(sysent->sv_sigcode, (void *)destp, 3556 szsigcode); 3557 if (error != 0) 3558 return (error); 3559 } 3560 3561 /* 3562 * Copy the image path for the rtld. 3563 */ 3564 if (imgp->execpath != NULL && imgp->auxargs != NULL) { 3565 execpath_len = strlen(imgp->execpath) + 1; 3566 destp -= execpath_len; 3567 imgp->execpathp = (void *)destp; 3568 error = copyout(imgp->execpath, imgp->execpathp, execpath_len); 3569 if (error != 0) 3570 return (error); 3571 } 3572 3573 /* 3574 * Prepare the canary for SSP. 3575 */ 3576 arc4rand(canary, sizeof(canary), 0); 3577 destp -= sizeof(canary); 3578 imgp->canary = (void *)destp; 3579 error = copyout(canary, imgp->canary, sizeof(canary)); 3580 if (error != 0) 3581 return (error); 3582 imgp->canarylen = sizeof(canary); 3583 3584 /* 3585 * Prepare the pagesizes array. 3586 */ 3587 for (i = 0; i < MAXPAGESIZES; i++) 3588 pagesizes32[i] = (uint32_t)pagesizes[i]; 3589 destp -= sizeof(pagesizes32); 3590 destp = rounddown2(destp, sizeof(uint32_t)); 3591 imgp->pagesizes = (void *)destp; 3592 error = copyout(pagesizes32, imgp->pagesizes, sizeof(pagesizes32)); 3593 if (error != 0) 3594 return (error); 3595 imgp->pagesizeslen = sizeof(pagesizes32); 3596 3597 /* 3598 * Allocate room for the argument and environment strings. 3599 */ 3600 destp -= ARG_MAX - imgp->args->stringspace; 3601 destp = rounddown2(destp, sizeof(uint32_t)); 3602 ustringp = destp; 3603 3604 if (imgp->auxargs) { 3605 /* 3606 * Allocate room on the stack for the ELF auxargs 3607 * array. It has up to AT_COUNT entries. 3608 */ 3609 destp -= AT_COUNT * sizeof(Elf32_Auxinfo); 3610 destp = rounddown2(destp, sizeof(uint32_t)); 3611 } 3612 3613 vectp = (uint32_t *)destp; 3614 3615 /* 3616 * Allocate room for the argv[] and env vectors including the 3617 * terminating NULL pointers. 3618 */ 3619 vectp -= imgp->args->argc + 1 + imgp->args->envc + 1; 3620 3621 /* 3622 * vectp also becomes our initial stack base 3623 */ 3624 *stack_base = (uintptr_t)vectp; 3625 3626 stringp = imgp->args->begin_argv; 3627 argc = imgp->args->argc; 3628 envc = imgp->args->envc; 3629 /* 3630 * Copy out strings - arguments and environment. 3631 */ 3632 error = copyout(stringp, (void *)ustringp, 3633 ARG_MAX - imgp->args->stringspace); 3634 if (error != 0) 3635 return (error); 3636 3637 /* 3638 * Fill in "ps_strings" struct for ps, w, etc. 3639 */ 3640 imgp->argv = vectp; 3641 if (suword32(&arginfo->ps_argvstr, (uint32_t)(intptr_t)vectp) != 0 || 3642 suword32(&arginfo->ps_nargvstr, argc) != 0) 3643 return (EFAULT); 3644 3645 /* 3646 * Fill in argument portion of vector table. 3647 */ 3648 for (; argc > 0; --argc) { 3649 if (suword32(vectp++, ustringp) != 0) 3650 return (EFAULT); 3651 while (*stringp++ != 0) 3652 ustringp++; 3653 ustringp++; 3654 } 3655 3656 /* a null vector table pointer separates the argp's from the envp's */ 3657 if (suword32(vectp++, 0) != 0) 3658 return (EFAULT); 3659 3660 imgp->envv = vectp; 3661 if (suword32(&arginfo->ps_envstr, (uint32_t)(intptr_t)vectp) != 0 || 3662 suword32(&arginfo->ps_nenvstr, envc) != 0) 3663 return (EFAULT); 3664 3665 /* 3666 * Fill in environment portion of vector table. 3667 */ 3668 for (; envc > 0; --envc) { 3669 if (suword32(vectp++, ustringp) != 0) 3670 return (EFAULT); 3671 while (*stringp++ != 0) 3672 ustringp++; 3673 ustringp++; 3674 } 3675 3676 /* end of vector table is a null pointer */ 3677 if (suword32(vectp, 0) != 0) 3678 return (EFAULT); 3679 3680 if (imgp->auxargs) { 3681 vectp++; 3682 error = imgp->sysent->sv_copyout_auxargs(imgp, 3683 (uintptr_t)vectp); 3684 if (error != 0) 3685 return (error); 3686 } 3687 3688 return (0); 3689 } 3690 3691 int 3692 freebsd32_kldstat(struct thread *td, struct freebsd32_kldstat_args *uap) 3693 { 3694 struct kld_file_stat *stat; 3695 struct kld_file_stat32 *stat32; 3696 int error, version; 3697 3698 if ((error = copyin(&uap->stat->version, &version, sizeof(version))) 3699 != 0) 3700 return (error); 3701 if (version != sizeof(struct kld_file_stat_1_32) && 3702 version != sizeof(struct kld_file_stat32)) 3703 return (EINVAL); 3704 3705 stat = malloc(sizeof(*stat), M_TEMP, M_WAITOK | M_ZERO); 3706 stat32 = malloc(sizeof(*stat32), M_TEMP, M_WAITOK | M_ZERO); 3707 error = kern_kldstat(td, uap->fileid, stat); 3708 if (error == 0) { 3709 bcopy(&stat->name[0], &stat32->name[0], sizeof(stat->name)); 3710 CP(*stat, *stat32, refs); 3711 CP(*stat, *stat32, id); 3712 PTROUT_CP(*stat, *stat32, address); 3713 CP(*stat, *stat32, size); 3714 bcopy(&stat->pathname[0], &stat32->pathname[0], 3715 sizeof(stat->pathname)); 3716 stat32->version = version; 3717 error = copyout(stat32, uap->stat, version); 3718 } 3719 free(stat, M_TEMP); 3720 free(stat32, M_TEMP); 3721 return (error); 3722 } 3723 3724 int 3725 freebsd32_posix_fallocate(struct thread *td, 3726 struct freebsd32_posix_fallocate_args *uap) 3727 { 3728 int error; 3729 3730 error = kern_posix_fallocate(td, uap->fd, 3731 PAIR32TO64(off_t, uap->offset), PAIR32TO64(off_t, uap->len)); 3732 return (kern_posix_error(td, error)); 3733 } 3734 3735 int 3736 freebsd32_posix_fadvise(struct thread *td, 3737 struct freebsd32_posix_fadvise_args *uap) 3738 { 3739 int error; 3740 3741 error = kern_posix_fadvise(td, uap->fd, PAIR32TO64(off_t, uap->offset), 3742 PAIR32TO64(off_t, uap->len), uap->advice); 3743 return (kern_posix_error(td, error)); 3744 } 3745 3746 int 3747 convert_sigevent32(struct sigevent32 *sig32, struct sigevent *sig) 3748 { 3749 3750 CP(*sig32, *sig, sigev_notify); 3751 switch (sig->sigev_notify) { 3752 case SIGEV_NONE: 3753 break; 3754 case SIGEV_THREAD_ID: 3755 CP(*sig32, *sig, sigev_notify_thread_id); 3756 /* FALLTHROUGH */ 3757 case SIGEV_SIGNAL: 3758 CP(*sig32, *sig, sigev_signo); 3759 PTRIN_CP(*sig32, *sig, sigev_value.sival_ptr); 3760 break; 3761 case SIGEV_KEVENT: 3762 CP(*sig32, *sig, sigev_notify_kqueue); 3763 CP(*sig32, *sig, sigev_notify_kevent_flags); 3764 PTRIN_CP(*sig32, *sig, sigev_value.sival_ptr); 3765 break; 3766 default: 3767 return (EINVAL); 3768 } 3769 return (0); 3770 } 3771 3772 int 3773 freebsd32_procctl(struct thread *td, struct freebsd32_procctl_args *uap) 3774 { 3775 void *data; 3776 union { 3777 struct procctl_reaper_status rs; 3778 struct procctl_reaper_pids rp; 3779 struct procctl_reaper_kill rk; 3780 } x; 3781 union { 3782 struct procctl_reaper_pids32 rp; 3783 } x32; 3784 int error, error1, flags, signum; 3785 3786 if (uap->com >= PROC_PROCCTL_MD_MIN) 3787 return (cpu_procctl(td, uap->idtype, PAIR32TO64(id_t, uap->id), 3788 uap->com, PTRIN(uap->data))); 3789 3790 switch (uap->com) { 3791 case PROC_ASLR_CTL: 3792 case PROC_PROTMAX_CTL: 3793 case PROC_SPROTECT: 3794 case PROC_STACKGAP_CTL: 3795 case PROC_TRACE_CTL: 3796 case PROC_TRAPCAP_CTL: 3797 case PROC_NO_NEW_PRIVS_CTL: 3798 case PROC_WXMAP_CTL: 3799 error = copyin(PTRIN(uap->data), &flags, sizeof(flags)); 3800 if (error != 0) 3801 return (error); 3802 data = &flags; 3803 break; 3804 case PROC_REAP_ACQUIRE: 3805 case PROC_REAP_RELEASE: 3806 if (uap->data != NULL) 3807 return (EINVAL); 3808 data = NULL; 3809 break; 3810 case PROC_REAP_STATUS: 3811 data = &x.rs; 3812 break; 3813 case PROC_REAP_GETPIDS: 3814 error = copyin(uap->data, &x32.rp, sizeof(x32.rp)); 3815 if (error != 0) 3816 return (error); 3817 CP(x32.rp, x.rp, rp_count); 3818 PTRIN_CP(x32.rp, x.rp, rp_pids); 3819 data = &x.rp; 3820 break; 3821 case PROC_REAP_KILL: 3822 error = copyin(uap->data, &x.rk, sizeof(x.rk)); 3823 if (error != 0) 3824 return (error); 3825 data = &x.rk; 3826 break; 3827 case PROC_ASLR_STATUS: 3828 case PROC_PROTMAX_STATUS: 3829 case PROC_STACKGAP_STATUS: 3830 case PROC_TRACE_STATUS: 3831 case PROC_TRAPCAP_STATUS: 3832 case PROC_NO_NEW_PRIVS_STATUS: 3833 case PROC_WXMAP_STATUS: 3834 data = &flags; 3835 break; 3836 case PROC_PDEATHSIG_CTL: 3837 error = copyin(uap->data, &signum, sizeof(signum)); 3838 if (error != 0) 3839 return (error); 3840 data = &signum; 3841 break; 3842 case PROC_PDEATHSIG_STATUS: 3843 data = &signum; 3844 break; 3845 default: 3846 return (EINVAL); 3847 } 3848 error = kern_procctl(td, uap->idtype, PAIR32TO64(id_t, uap->id), 3849 uap->com, data); 3850 switch (uap->com) { 3851 case PROC_REAP_STATUS: 3852 if (error == 0) 3853 error = copyout(&x.rs, uap->data, sizeof(x.rs)); 3854 break; 3855 case PROC_REAP_KILL: 3856 error1 = copyout(&x.rk, uap->data, sizeof(x.rk)); 3857 if (error == 0) 3858 error = error1; 3859 break; 3860 case PROC_ASLR_STATUS: 3861 case PROC_PROTMAX_STATUS: 3862 case PROC_STACKGAP_STATUS: 3863 case PROC_TRACE_STATUS: 3864 case PROC_TRAPCAP_STATUS: 3865 case PROC_NO_NEW_PRIVS_STATUS: 3866 case PROC_WXMAP_STATUS: 3867 if (error == 0) 3868 error = copyout(&flags, uap->data, sizeof(flags)); 3869 break; 3870 case PROC_PDEATHSIG_STATUS: 3871 if (error == 0) 3872 error = copyout(&signum, uap->data, sizeof(signum)); 3873 break; 3874 } 3875 return (error); 3876 } 3877 3878 int 3879 freebsd32_fcntl(struct thread *td, struct freebsd32_fcntl_args *uap) 3880 { 3881 long tmp; 3882 3883 switch (uap->cmd) { 3884 /* 3885 * Do unsigned conversion for arg when operation 3886 * interprets it as flags or pointer. 3887 */ 3888 case F_SETLK_REMOTE: 3889 case F_SETLKW: 3890 case F_SETLK: 3891 case F_GETLK: 3892 case F_SETFD: 3893 case F_SETFL: 3894 case F_OGETLK: 3895 case F_OSETLK: 3896 case F_OSETLKW: 3897 case F_KINFO: 3898 tmp = (unsigned int)(uap->arg); 3899 break; 3900 default: 3901 tmp = uap->arg; 3902 break; 3903 } 3904 return (kern_fcntl_freebsd(td, uap->fd, uap->cmd, tmp)); 3905 } 3906 3907 int 3908 freebsd32_ppoll(struct thread *td, struct freebsd32_ppoll_args *uap) 3909 { 3910 struct timespec32 ts32; 3911 struct timespec ts, *tsp; 3912 sigset_t set, *ssp; 3913 int error; 3914 3915 if (uap->ts != NULL) { 3916 error = copyin(uap->ts, &ts32, sizeof(ts32)); 3917 if (error != 0) 3918 return (error); 3919 CP(ts32, ts, tv_sec); 3920 CP(ts32, ts, tv_nsec); 3921 tsp = &ts; 3922 } else 3923 tsp = NULL; 3924 if (uap->set != NULL) { 3925 error = copyin(uap->set, &set, sizeof(set)); 3926 if (error != 0) 3927 return (error); 3928 ssp = &set; 3929 } else 3930 ssp = NULL; 3931 3932 return (kern_poll(td, uap->fds, uap->nfds, tsp, ssp)); 3933 } 3934 3935 int 3936 freebsd32_sched_rr_get_interval(struct thread *td, 3937 struct freebsd32_sched_rr_get_interval_args *uap) 3938 { 3939 struct timespec ts; 3940 struct timespec32 ts32; 3941 int error; 3942 3943 error = kern_sched_rr_get_interval(td, uap->pid, &ts); 3944 if (error == 0) { 3945 CP(ts, ts32, tv_sec); 3946 CP(ts, ts32, tv_nsec); 3947 error = copyout(&ts32, uap->interval, sizeof(ts32)); 3948 } 3949 return (error); 3950 } 3951 3952 static void 3953 timex_to_32(struct timex32 *dst, struct timex *src) 3954 { 3955 CP(*src, *dst, modes); 3956 CP(*src, *dst, offset); 3957 CP(*src, *dst, freq); 3958 CP(*src, *dst, maxerror); 3959 CP(*src, *dst, esterror); 3960 CP(*src, *dst, status); 3961 CP(*src, *dst, constant); 3962 CP(*src, *dst, precision); 3963 CP(*src, *dst, tolerance); 3964 CP(*src, *dst, ppsfreq); 3965 CP(*src, *dst, jitter); 3966 CP(*src, *dst, shift); 3967 CP(*src, *dst, stabil); 3968 CP(*src, *dst, jitcnt); 3969 CP(*src, *dst, calcnt); 3970 CP(*src, *dst, errcnt); 3971 CP(*src, *dst, stbcnt); 3972 } 3973 3974 static void 3975 timex_from_32(struct timex *dst, struct timex32 *src) 3976 { 3977 CP(*src, *dst, modes); 3978 CP(*src, *dst, offset); 3979 CP(*src, *dst, freq); 3980 CP(*src, *dst, maxerror); 3981 CP(*src, *dst, esterror); 3982 CP(*src, *dst, status); 3983 CP(*src, *dst, constant); 3984 CP(*src, *dst, precision); 3985 CP(*src, *dst, tolerance); 3986 CP(*src, *dst, ppsfreq); 3987 CP(*src, *dst, jitter); 3988 CP(*src, *dst, shift); 3989 CP(*src, *dst, stabil); 3990 CP(*src, *dst, jitcnt); 3991 CP(*src, *dst, calcnt); 3992 CP(*src, *dst, errcnt); 3993 CP(*src, *dst, stbcnt); 3994 } 3995 3996 int 3997 freebsd32_ntp_adjtime(struct thread *td, struct freebsd32_ntp_adjtime_args *uap) 3998 { 3999 struct timex tx; 4000 struct timex32 tx32; 4001 int error, retval; 4002 4003 error = copyin(uap->tp, &tx32, sizeof(tx32)); 4004 if (error == 0) { 4005 timex_from_32(&tx, &tx32); 4006 error = kern_ntp_adjtime(td, &tx, &retval); 4007 if (error == 0) { 4008 timex_to_32(&tx32, &tx); 4009 error = copyout(&tx32, uap->tp, sizeof(tx32)); 4010 if (error == 0) 4011 td->td_retval[0] = retval; 4012 } 4013 } 4014 return (error); 4015 } 4016 4017 #ifdef FFCLOCK 4018 extern struct mtx ffclock_mtx; 4019 extern struct ffclock_estimate ffclock_estimate; 4020 extern int8_t ffclock_updated; 4021 4022 int 4023 freebsd32_ffclock_setestimate(struct thread *td, 4024 struct freebsd32_ffclock_setestimate_args *uap) 4025 { 4026 struct ffclock_estimate cest; 4027 struct ffclock_estimate32 cest32; 4028 int error; 4029 4030 /* Reuse of PRIV_CLOCK_SETTIME. */ 4031 if ((error = priv_check(td, PRIV_CLOCK_SETTIME)) != 0) 4032 return (error); 4033 4034 if ((error = copyin(uap->cest, &cest32, 4035 sizeof(struct ffclock_estimate32))) != 0) 4036 return (error); 4037 4038 CP(cest.update_time, cest32.update_time, sec); 4039 memcpy(&cest.update_time.frac, &cest32.update_time.frac, sizeof(uint64_t)); 4040 CP(cest, cest32, update_ffcount); 4041 CP(cest, cest32, leapsec_next); 4042 CP(cest, cest32, period); 4043 CP(cest, cest32, errb_abs); 4044 CP(cest, cest32, errb_rate); 4045 CP(cest, cest32, status); 4046 CP(cest, cest32, leapsec_total); 4047 CP(cest, cest32, leapsec); 4048 4049 mtx_lock(&ffclock_mtx); 4050 memcpy(&ffclock_estimate, &cest, sizeof(struct ffclock_estimate)); 4051 ffclock_updated++; 4052 mtx_unlock(&ffclock_mtx); 4053 return (error); 4054 } 4055 4056 int 4057 freebsd32_ffclock_getestimate(struct thread *td, 4058 struct freebsd32_ffclock_getestimate_args *uap) 4059 { 4060 struct ffclock_estimate cest; 4061 struct ffclock_estimate32 cest32; 4062 int error; 4063 4064 mtx_lock(&ffclock_mtx); 4065 memcpy(&cest, &ffclock_estimate, sizeof(struct ffclock_estimate)); 4066 mtx_unlock(&ffclock_mtx); 4067 4068 CP(cest32.update_time, cest.update_time, sec); 4069 memcpy(&cest32.update_time.frac, &cest.update_time.frac, sizeof(uint64_t)); 4070 CP(cest32, cest, update_ffcount); 4071 CP(cest32, cest, leapsec_next); 4072 CP(cest32, cest, period); 4073 CP(cest32, cest, errb_abs); 4074 CP(cest32, cest, errb_rate); 4075 CP(cest32, cest, status); 4076 CP(cest32, cest, leapsec_total); 4077 CP(cest32, cest, leapsec); 4078 4079 error = copyout(&cest32, uap->cest, sizeof(struct ffclock_estimate32)); 4080 return (error); 4081 } 4082 #else /* !FFCLOCK */ 4083 int 4084 freebsd32_ffclock_setestimate(struct thread *td, 4085 struct freebsd32_ffclock_setestimate_args *uap) 4086 { 4087 return (ENOSYS); 4088 } 4089 4090 int 4091 freebsd32_ffclock_getestimate(struct thread *td, 4092 struct freebsd32_ffclock_getestimate_args *uap) 4093 { 4094 return (ENOSYS); 4095 } 4096 #endif /* FFCLOCK */ 4097 4098 #ifdef COMPAT_43 4099 int 4100 ofreebsd32_sethostid(struct thread *td, struct ofreebsd32_sethostid_args *uap) 4101 { 4102 int name[] = { CTL_KERN, KERN_HOSTID }; 4103 long hostid; 4104 4105 hostid = uap->hostid; 4106 return (kernel_sysctl(td, name, nitems(name), NULL, NULL, &hostid, 4107 sizeof(hostid), NULL, 0)); 4108 } 4109 #endif 4110