1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2002 Doug Rabson 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include "opt_ffclock.h" 33 #include "opt_inet.h" 34 #include "opt_inet6.h" 35 #include "opt_ktrace.h" 36 37 #define __ELF_WORD_SIZE 32 38 39 #ifdef COMPAT_FREEBSD11 40 #define _WANT_FREEBSD11_KEVENT 41 #endif 42 43 #include <sys/param.h> 44 #include <sys/bus.h> 45 #include <sys/capsicum.h> 46 #include <sys/clock.h> 47 #include <sys/exec.h> 48 #include <sys/fcntl.h> 49 #include <sys/filedesc.h> 50 #include <sys/imgact.h> 51 #include <sys/jail.h> 52 #include <sys/kernel.h> 53 #include <sys/limits.h> 54 #include <sys/linker.h> 55 #include <sys/lock.h> 56 #include <sys/malloc.h> 57 #include <sys/file.h> /* Must come after sys/malloc.h */ 58 #include <sys/imgact.h> 59 #include <sys/mbuf.h> 60 #include <sys/mman.h> 61 #include <sys/module.h> 62 #include <sys/mount.h> 63 #include <sys/mutex.h> 64 #include <sys/namei.h> 65 #include <sys/priv.h> 66 #include <sys/proc.h> 67 #include <sys/procctl.h> 68 #include <sys/ptrace.h> 69 #include <sys/reboot.h> 70 #include <sys/resource.h> 71 #include <sys/resourcevar.h> 72 #include <sys/selinfo.h> 73 #include <sys/eventvar.h> /* Must come after sys/selinfo.h */ 74 #include <sys/pipe.h> /* Must come after sys/selinfo.h */ 75 #include <sys/signal.h> 76 #include <sys/signalvar.h> 77 #include <sys/socket.h> 78 #include <sys/socketvar.h> 79 #include <sys/stat.h> 80 #include <sys/syscall.h> 81 #include <sys/syscallsubr.h> 82 #include <sys/sysctl.h> 83 #include <sys/sysent.h> 84 #include <sys/sysproto.h> 85 #include <sys/systm.h> 86 #include <sys/thr.h> 87 #include <sys/timex.h> 88 #include <sys/unistd.h> 89 #include <sys/ucontext.h> 90 #include <sys/vnode.h> 91 #include <sys/wait.h> 92 #include <sys/ipc.h> 93 #include <sys/msg.h> 94 #include <sys/sem.h> 95 #include <sys/shm.h> 96 #include <sys/timeffc.h> 97 #ifdef KTRACE 98 #include <sys/ktrace.h> 99 #endif 100 101 #ifdef INET 102 #include <netinet/in.h> 103 #endif 104 105 #include <vm/vm.h> 106 #include <vm/vm_param.h> 107 #include <vm/pmap.h> 108 #include <vm/vm_map.h> 109 #include <vm/vm_object.h> 110 #include <vm/vm_extern.h> 111 112 #include <machine/cpu.h> 113 #include <machine/elf.h> 114 #ifdef __amd64__ 115 #include <machine/md_var.h> 116 #endif 117 118 #include <security/audit/audit.h> 119 120 #include <compat/freebsd32/freebsd32_util.h> 121 #include <compat/freebsd32/freebsd32.h> 122 #include <compat/freebsd32/freebsd32_ipc.h> 123 #include <compat/freebsd32/freebsd32_misc.h> 124 #include <compat/freebsd32/freebsd32_signal.h> 125 #include <compat/freebsd32/freebsd32_proto.h> 126 127 FEATURE(compat_freebsd_32bit, "Compatible with 32-bit FreeBSD"); 128 129 struct ptrace_io_desc32 { 130 int piod_op; 131 uint32_t piod_offs; 132 uint32_t piod_addr; 133 uint32_t piod_len; 134 }; 135 136 struct ptrace_sc_ret32 { 137 uint32_t sr_retval[2]; 138 int sr_error; 139 }; 140 141 struct ptrace_vm_entry32 { 142 int pve_entry; 143 int pve_timestamp; 144 uint32_t pve_start; 145 uint32_t pve_end; 146 uint32_t pve_offset; 147 u_int pve_prot; 148 u_int pve_pathlen; 149 int32_t pve_fileid; 150 u_int pve_fsid; 151 uint32_t pve_path; 152 }; 153 154 #ifdef __amd64__ 155 CTASSERT(sizeof(struct timeval32) == 8); 156 CTASSERT(sizeof(struct timespec32) == 8); 157 CTASSERT(sizeof(struct itimerval32) == 16); 158 CTASSERT(sizeof(struct bintime32) == 12); 159 #else 160 CTASSERT(sizeof(struct timeval32) == 16); 161 CTASSERT(sizeof(struct timespec32) == 16); 162 CTASSERT(sizeof(struct itimerval32) == 32); 163 CTASSERT(sizeof(struct bintime32) == 16); 164 #endif 165 CTASSERT(sizeof(struct ostatfs32) == 256); 166 #ifdef __amd64__ 167 CTASSERT(sizeof(struct rusage32) == 72); 168 #else 169 CTASSERT(sizeof(struct rusage32) == 88); 170 #endif 171 CTASSERT(sizeof(struct sigaltstack32) == 12); 172 #ifdef __amd64__ 173 CTASSERT(sizeof(struct kevent32) == 56); 174 #else 175 CTASSERT(sizeof(struct kevent32) == 64); 176 #endif 177 CTASSERT(sizeof(struct iovec32) == 8); 178 CTASSERT(sizeof(struct msghdr32) == 28); 179 #ifdef __amd64__ 180 CTASSERT(sizeof(struct stat32) == 208); 181 CTASSERT(sizeof(struct freebsd11_stat32) == 96); 182 #else 183 CTASSERT(sizeof(struct stat32) == 224); 184 CTASSERT(sizeof(struct freebsd11_stat32) == 120); 185 #endif 186 CTASSERT(sizeof(struct sigaction32) == 24); 187 188 static int freebsd32_kevent_copyout(void *arg, struct kevent *kevp, int count); 189 static int freebsd32_kevent_copyin(void *arg, struct kevent *kevp, int count); 190 static int freebsd32_user_clock_nanosleep(struct thread *td, clockid_t clock_id, 191 int flags, const struct timespec32 *ua_rqtp, struct timespec32 *ua_rmtp); 192 193 void 194 freebsd32_rusage_out(const struct rusage *s, struct rusage32 *s32) 195 { 196 197 TV_CP(*s, *s32, ru_utime); 198 TV_CP(*s, *s32, ru_stime); 199 CP(*s, *s32, ru_maxrss); 200 CP(*s, *s32, ru_ixrss); 201 CP(*s, *s32, ru_idrss); 202 CP(*s, *s32, ru_isrss); 203 CP(*s, *s32, ru_minflt); 204 CP(*s, *s32, ru_majflt); 205 CP(*s, *s32, ru_nswap); 206 CP(*s, *s32, ru_inblock); 207 CP(*s, *s32, ru_oublock); 208 CP(*s, *s32, ru_msgsnd); 209 CP(*s, *s32, ru_msgrcv); 210 CP(*s, *s32, ru_nsignals); 211 CP(*s, *s32, ru_nvcsw); 212 CP(*s, *s32, ru_nivcsw); 213 } 214 215 int 216 freebsd32_wait4(struct thread *td, struct freebsd32_wait4_args *uap) 217 { 218 int error, status; 219 struct rusage32 ru32; 220 struct rusage ru, *rup; 221 222 if (uap->rusage != NULL) 223 rup = &ru; 224 else 225 rup = NULL; 226 error = kern_wait(td, uap->pid, &status, uap->options, rup); 227 if (error) 228 return (error); 229 if (uap->status != NULL) 230 error = copyout(&status, uap->status, sizeof(status)); 231 if (uap->rusage != NULL && error == 0) { 232 freebsd32_rusage_out(&ru, &ru32); 233 error = copyout(&ru32, uap->rusage, sizeof(ru32)); 234 } 235 return (error); 236 } 237 238 int 239 freebsd32_wait6(struct thread *td, struct freebsd32_wait6_args *uap) 240 { 241 struct __wrusage32 wru32; 242 struct __wrusage wru, *wrup; 243 struct siginfo32 si32; 244 struct __siginfo si, *sip; 245 int error, status; 246 247 if (uap->wrusage != NULL) 248 wrup = &wru; 249 else 250 wrup = NULL; 251 if (uap->info != NULL) { 252 sip = &si; 253 bzero(sip, sizeof(*sip)); 254 } else 255 sip = NULL; 256 error = kern_wait6(td, uap->idtype, PAIR32TO64(id_t, uap->id), 257 &status, uap->options, wrup, sip); 258 if (error != 0) 259 return (error); 260 if (uap->status != NULL) 261 error = copyout(&status, uap->status, sizeof(status)); 262 if (uap->wrusage != NULL && error == 0) { 263 freebsd32_rusage_out(&wru.wru_self, &wru32.wru_self); 264 freebsd32_rusage_out(&wru.wru_children, &wru32.wru_children); 265 error = copyout(&wru32, uap->wrusage, sizeof(wru32)); 266 } 267 if (uap->info != NULL && error == 0) { 268 siginfo_to_siginfo32 (&si, &si32); 269 error = copyout(&si32, uap->info, sizeof(si32)); 270 } 271 return (error); 272 } 273 274 #ifdef COMPAT_FREEBSD4 275 static void 276 copy_statfs(struct statfs *in, struct ostatfs32 *out) 277 { 278 279 statfs_scale_blocks(in, INT32_MAX); 280 bzero(out, sizeof(*out)); 281 CP(*in, *out, f_bsize); 282 out->f_iosize = MIN(in->f_iosize, INT32_MAX); 283 CP(*in, *out, f_blocks); 284 CP(*in, *out, f_bfree); 285 CP(*in, *out, f_bavail); 286 out->f_files = MIN(in->f_files, INT32_MAX); 287 out->f_ffree = MIN(in->f_ffree, INT32_MAX); 288 CP(*in, *out, f_fsid); 289 CP(*in, *out, f_owner); 290 CP(*in, *out, f_type); 291 CP(*in, *out, f_flags); 292 out->f_syncwrites = MIN(in->f_syncwrites, INT32_MAX); 293 out->f_asyncwrites = MIN(in->f_asyncwrites, INT32_MAX); 294 strlcpy(out->f_fstypename, 295 in->f_fstypename, MFSNAMELEN); 296 strlcpy(out->f_mntonname, 297 in->f_mntonname, min(MNAMELEN, FREEBSD4_OMNAMELEN)); 298 out->f_syncreads = MIN(in->f_syncreads, INT32_MAX); 299 out->f_asyncreads = MIN(in->f_asyncreads, INT32_MAX); 300 strlcpy(out->f_mntfromname, 301 in->f_mntfromname, min(MNAMELEN, FREEBSD4_OMNAMELEN)); 302 } 303 #endif 304 305 int 306 freebsd32_getfsstat(struct thread *td, struct freebsd32_getfsstat_args *uap) 307 { 308 size_t count; 309 int error; 310 311 if (uap->bufsize < 0 || uap->bufsize > SIZE_MAX) 312 return (EINVAL); 313 error = kern_getfsstat(td, &uap->buf, uap->bufsize, &count, 314 UIO_USERSPACE, uap->mode); 315 if (error == 0) 316 td->td_retval[0] = count; 317 return (error); 318 } 319 320 #ifdef COMPAT_FREEBSD4 321 int 322 freebsd4_freebsd32_getfsstat(struct thread *td, 323 struct freebsd4_freebsd32_getfsstat_args *uap) 324 { 325 struct statfs *buf, *sp; 326 struct ostatfs32 stat32; 327 size_t count, size, copycount; 328 int error; 329 330 count = uap->bufsize / sizeof(struct ostatfs32); 331 size = count * sizeof(struct statfs); 332 error = kern_getfsstat(td, &buf, size, &count, UIO_SYSSPACE, uap->mode); 333 if (size > 0) { 334 sp = buf; 335 copycount = count; 336 while (copycount > 0 && error == 0) { 337 copy_statfs(sp, &stat32); 338 error = copyout(&stat32, uap->buf, sizeof(stat32)); 339 sp++; 340 uap->buf++; 341 copycount--; 342 } 343 free(buf, M_STATFS); 344 } 345 if (error == 0) 346 td->td_retval[0] = count; 347 return (error); 348 } 349 #endif 350 351 #ifdef COMPAT_FREEBSD11 352 int 353 freebsd11_freebsd32_getfsstat(struct thread *td, 354 struct freebsd11_freebsd32_getfsstat_args *uap) 355 { 356 return(kern_freebsd11_getfsstat(td, uap->buf, uap->bufsize, 357 uap->mode)); 358 } 359 #endif 360 361 int 362 freebsd32_sigaltstack(struct thread *td, 363 struct freebsd32_sigaltstack_args *uap) 364 { 365 struct sigaltstack32 s32; 366 struct sigaltstack ss, oss, *ssp; 367 int error; 368 369 if (uap->ss != NULL) { 370 error = copyin(uap->ss, &s32, sizeof(s32)); 371 if (error) 372 return (error); 373 PTRIN_CP(s32, ss, ss_sp); 374 CP(s32, ss, ss_size); 375 CP(s32, ss, ss_flags); 376 ssp = &ss; 377 } else 378 ssp = NULL; 379 error = kern_sigaltstack(td, ssp, &oss); 380 if (error == 0 && uap->oss != NULL) { 381 PTROUT_CP(oss, s32, ss_sp); 382 CP(oss, s32, ss_size); 383 CP(oss, s32, ss_flags); 384 error = copyout(&s32, uap->oss, sizeof(s32)); 385 } 386 return (error); 387 } 388 389 /* 390 * Custom version of exec_copyin_args() so that we can translate 391 * the pointers. 392 */ 393 int 394 freebsd32_exec_copyin_args(struct image_args *args, const char *fname, 395 enum uio_seg segflg, uint32_t *argv, uint32_t *envv) 396 { 397 char *argp, *envp; 398 uint32_t *p32, arg; 399 int error; 400 401 bzero(args, sizeof(*args)); 402 if (argv == NULL) 403 return (EFAULT); 404 405 /* 406 * Allocate demand-paged memory for the file name, argument, and 407 * environment strings. 408 */ 409 error = exec_alloc_args(args); 410 if (error != 0) 411 return (error); 412 413 /* 414 * Copy the file name. 415 */ 416 error = exec_args_add_fname(args, fname, segflg); 417 if (error != 0) 418 goto err_exit; 419 420 /* 421 * extract arguments first 422 */ 423 p32 = argv; 424 for (;;) { 425 error = copyin(p32++, &arg, sizeof(arg)); 426 if (error) 427 goto err_exit; 428 if (arg == 0) 429 break; 430 argp = PTRIN(arg); 431 error = exec_args_add_arg(args, argp, UIO_USERSPACE); 432 if (error != 0) 433 goto err_exit; 434 } 435 436 /* 437 * extract environment strings 438 */ 439 if (envv) { 440 p32 = envv; 441 for (;;) { 442 error = copyin(p32++, &arg, sizeof(arg)); 443 if (error) 444 goto err_exit; 445 if (arg == 0) 446 break; 447 envp = PTRIN(arg); 448 error = exec_args_add_env(args, envp, UIO_USERSPACE); 449 if (error != 0) 450 goto err_exit; 451 } 452 } 453 454 return (0); 455 456 err_exit: 457 exec_free_args(args); 458 return (error); 459 } 460 461 int 462 freebsd32_execve(struct thread *td, struct freebsd32_execve_args *uap) 463 { 464 struct image_args eargs; 465 struct vmspace *oldvmspace; 466 int error; 467 468 error = pre_execve(td, &oldvmspace); 469 if (error != 0) 470 return (error); 471 error = freebsd32_exec_copyin_args(&eargs, uap->fname, UIO_USERSPACE, 472 uap->argv, uap->envv); 473 if (error == 0) 474 error = kern_execve(td, &eargs, NULL, oldvmspace); 475 post_execve(td, error, oldvmspace); 476 AUDIT_SYSCALL_EXIT(error == EJUSTRETURN ? 0 : error, td); 477 return (error); 478 } 479 480 int 481 freebsd32_fexecve(struct thread *td, struct freebsd32_fexecve_args *uap) 482 { 483 struct image_args eargs; 484 struct vmspace *oldvmspace; 485 int error; 486 487 error = pre_execve(td, &oldvmspace); 488 if (error != 0) 489 return (error); 490 error = freebsd32_exec_copyin_args(&eargs, NULL, UIO_SYSSPACE, 491 uap->argv, uap->envv); 492 if (error == 0) { 493 eargs.fd = uap->fd; 494 error = kern_execve(td, &eargs, NULL, oldvmspace); 495 } 496 post_execve(td, error, oldvmspace); 497 AUDIT_SYSCALL_EXIT(error == EJUSTRETURN ? 0 : error, td); 498 return (error); 499 } 500 501 int 502 freebsd32_mknodat(struct thread *td, struct freebsd32_mknodat_args *uap) 503 { 504 505 return (kern_mknodat(td, uap->fd, uap->path, UIO_USERSPACE, 506 uap->mode, PAIR32TO64(dev_t, uap->dev))); 507 } 508 509 int 510 freebsd32_mprotect(struct thread *td, struct freebsd32_mprotect_args *uap) 511 { 512 int prot; 513 514 prot = uap->prot; 515 #if defined(__amd64__) 516 if (i386_read_exec && (prot & PROT_READ) != 0) 517 prot |= PROT_EXEC; 518 #endif 519 return (kern_mprotect(td, (uintptr_t)PTRIN(uap->addr), uap->len, 520 prot)); 521 } 522 523 int 524 freebsd32_mmap(struct thread *td, struct freebsd32_mmap_args *uap) 525 { 526 int prot; 527 528 prot = uap->prot; 529 #if defined(__amd64__) 530 if (i386_read_exec && (prot & PROT_READ)) 531 prot |= PROT_EXEC; 532 #endif 533 534 return (kern_mmap(td, &(struct mmap_req){ 535 .mr_hint = (uintptr_t)uap->addr, 536 .mr_len = uap->len, 537 .mr_prot = prot, 538 .mr_flags = uap->flags, 539 .mr_fd = uap->fd, 540 .mr_pos = PAIR32TO64(off_t, uap->pos), 541 })); 542 } 543 544 #ifdef COMPAT_FREEBSD6 545 int 546 freebsd6_freebsd32_mmap(struct thread *td, 547 struct freebsd6_freebsd32_mmap_args *uap) 548 { 549 int prot; 550 551 prot = uap->prot; 552 #if defined(__amd64__) 553 if (i386_read_exec && (prot & PROT_READ)) 554 prot |= PROT_EXEC; 555 #endif 556 557 return (kern_mmap(td, &(struct mmap_req){ 558 .mr_hint = (uintptr_t)uap->addr, 559 .mr_len = uap->len, 560 .mr_prot = prot, 561 .mr_flags = uap->flags, 562 .mr_fd = uap->fd, 563 .mr_pos = PAIR32TO64(off_t, uap->pos), 564 })); 565 } 566 #endif 567 568 #ifdef COMPAT_43 569 int 570 ofreebsd32_mmap(struct thread *td, struct ofreebsd32_mmap_args *uap) 571 { 572 return (kern_ommap(td, (uintptr_t)uap->addr, uap->len, uap->prot, 573 uap->flags, uap->fd, uap->pos)); 574 } 575 #endif 576 577 int 578 freebsd32_setitimer(struct thread *td, struct freebsd32_setitimer_args *uap) 579 { 580 struct itimerval itv, oitv, *itvp; 581 struct itimerval32 i32; 582 int error; 583 584 if (uap->itv != NULL) { 585 error = copyin(uap->itv, &i32, sizeof(i32)); 586 if (error) 587 return (error); 588 TV_CP(i32, itv, it_interval); 589 TV_CP(i32, itv, it_value); 590 itvp = &itv; 591 } else 592 itvp = NULL; 593 error = kern_setitimer(td, uap->which, itvp, &oitv); 594 if (error || uap->oitv == NULL) 595 return (error); 596 TV_CP(oitv, i32, it_interval); 597 TV_CP(oitv, i32, it_value); 598 return (copyout(&i32, uap->oitv, sizeof(i32))); 599 } 600 601 int 602 freebsd32_getitimer(struct thread *td, struct freebsd32_getitimer_args *uap) 603 { 604 struct itimerval itv; 605 struct itimerval32 i32; 606 int error; 607 608 error = kern_getitimer(td, uap->which, &itv); 609 if (error || uap->itv == NULL) 610 return (error); 611 TV_CP(itv, i32, it_interval); 612 TV_CP(itv, i32, it_value); 613 return (copyout(&i32, uap->itv, sizeof(i32))); 614 } 615 616 int 617 freebsd32_select(struct thread *td, struct freebsd32_select_args *uap) 618 { 619 struct timeval32 tv32; 620 struct timeval tv, *tvp; 621 int error; 622 623 if (uap->tv != NULL) { 624 error = copyin(uap->tv, &tv32, sizeof(tv32)); 625 if (error) 626 return (error); 627 CP(tv32, tv, tv_sec); 628 CP(tv32, tv, tv_usec); 629 tvp = &tv; 630 } else 631 tvp = NULL; 632 /* 633 * XXX Do pointers need PTRIN()? 634 */ 635 return (kern_select(td, uap->nd, uap->in, uap->ou, uap->ex, tvp, 636 sizeof(int32_t) * 8)); 637 } 638 639 int 640 freebsd32_pselect(struct thread *td, struct freebsd32_pselect_args *uap) 641 { 642 struct timespec32 ts32; 643 struct timespec ts; 644 struct timeval tv, *tvp; 645 sigset_t set, *uset; 646 int error; 647 648 if (uap->ts != NULL) { 649 error = copyin(uap->ts, &ts32, sizeof(ts32)); 650 if (error != 0) 651 return (error); 652 CP(ts32, ts, tv_sec); 653 CP(ts32, ts, tv_nsec); 654 TIMESPEC_TO_TIMEVAL(&tv, &ts); 655 tvp = &tv; 656 } else 657 tvp = NULL; 658 if (uap->sm != NULL) { 659 error = copyin(uap->sm, &set, sizeof(set)); 660 if (error != 0) 661 return (error); 662 uset = &set; 663 } else 664 uset = NULL; 665 /* 666 * XXX Do pointers need PTRIN()? 667 */ 668 error = kern_pselect(td, uap->nd, uap->in, uap->ou, uap->ex, tvp, 669 uset, sizeof(int32_t) * 8); 670 return (error); 671 } 672 673 /* 674 * Copy 'count' items into the destination list pointed to by uap->eventlist. 675 */ 676 static int 677 freebsd32_kevent_copyout(void *arg, struct kevent *kevp, int count) 678 { 679 struct freebsd32_kevent_args *uap; 680 struct kevent32 ks32[KQ_NEVENTS]; 681 uint64_t e; 682 int i, j, error; 683 684 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count)); 685 uap = (struct freebsd32_kevent_args *)arg; 686 687 for (i = 0; i < count; i++) { 688 CP(kevp[i], ks32[i], ident); 689 CP(kevp[i], ks32[i], filter); 690 CP(kevp[i], ks32[i], flags); 691 CP(kevp[i], ks32[i], fflags); 692 #if BYTE_ORDER == LITTLE_ENDIAN 693 ks32[i].data1 = kevp[i].data; 694 ks32[i].data2 = kevp[i].data >> 32; 695 #else 696 ks32[i].data1 = kevp[i].data >> 32; 697 ks32[i].data2 = kevp[i].data; 698 #endif 699 PTROUT_CP(kevp[i], ks32[i], udata); 700 for (j = 0; j < nitems(kevp->ext); j++) { 701 e = kevp[i].ext[j]; 702 #if BYTE_ORDER == LITTLE_ENDIAN 703 ks32[i].ext64[2 * j] = e; 704 ks32[i].ext64[2 * j + 1] = e >> 32; 705 #else 706 ks32[i].ext64[2 * j] = e >> 32; 707 ks32[i].ext64[2 * j + 1] = e; 708 #endif 709 } 710 } 711 error = copyout(ks32, uap->eventlist, count * sizeof *ks32); 712 if (error == 0) 713 uap->eventlist += count; 714 return (error); 715 } 716 717 /* 718 * Copy 'count' items from the list pointed to by uap->changelist. 719 */ 720 static int 721 freebsd32_kevent_copyin(void *arg, struct kevent *kevp, int count) 722 { 723 struct freebsd32_kevent_args *uap; 724 struct kevent32 ks32[KQ_NEVENTS]; 725 uint64_t e; 726 int i, j, error; 727 728 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count)); 729 uap = (struct freebsd32_kevent_args *)arg; 730 731 error = copyin(uap->changelist, ks32, count * sizeof *ks32); 732 if (error) 733 goto done; 734 uap->changelist += count; 735 736 for (i = 0; i < count; i++) { 737 CP(ks32[i], kevp[i], ident); 738 CP(ks32[i], kevp[i], filter); 739 CP(ks32[i], kevp[i], flags); 740 CP(ks32[i], kevp[i], fflags); 741 kevp[i].data = PAIR32TO64(uint64_t, ks32[i].data); 742 PTRIN_CP(ks32[i], kevp[i], udata); 743 for (j = 0; j < nitems(kevp->ext); j++) { 744 #if BYTE_ORDER == LITTLE_ENDIAN 745 e = ks32[i].ext64[2 * j + 1]; 746 e <<= 32; 747 e += ks32[i].ext64[2 * j]; 748 #else 749 e = ks32[i].ext64[2 * j]; 750 e <<= 32; 751 e += ks32[i].ext64[2 * j + 1]; 752 #endif 753 kevp[i].ext[j] = e; 754 } 755 } 756 done: 757 return (error); 758 } 759 760 int 761 freebsd32_kevent(struct thread *td, struct freebsd32_kevent_args *uap) 762 { 763 struct timespec32 ts32; 764 struct timespec ts, *tsp; 765 struct kevent_copyops k_ops = { 766 .arg = uap, 767 .k_copyout = freebsd32_kevent_copyout, 768 .k_copyin = freebsd32_kevent_copyin, 769 }; 770 #ifdef KTRACE 771 struct kevent32 *eventlist = uap->eventlist; 772 #endif 773 int error; 774 775 if (uap->timeout) { 776 error = copyin(uap->timeout, &ts32, sizeof(ts32)); 777 if (error) 778 return (error); 779 CP(ts32, ts, tv_sec); 780 CP(ts32, ts, tv_nsec); 781 tsp = &ts; 782 } else 783 tsp = NULL; 784 #ifdef KTRACE 785 if (KTRPOINT(td, KTR_STRUCT_ARRAY)) 786 ktrstructarray("kevent32", UIO_USERSPACE, uap->changelist, 787 uap->nchanges, sizeof(struct kevent32)); 788 #endif 789 error = kern_kevent(td, uap->fd, uap->nchanges, uap->nevents, 790 &k_ops, tsp); 791 #ifdef KTRACE 792 if (error == 0 && KTRPOINT(td, KTR_STRUCT_ARRAY)) 793 ktrstructarray("kevent32", UIO_USERSPACE, eventlist, 794 td->td_retval[0], sizeof(struct kevent32)); 795 #endif 796 return (error); 797 } 798 799 #ifdef COMPAT_FREEBSD11 800 static int 801 freebsd32_kevent11_copyout(void *arg, struct kevent *kevp, int count) 802 { 803 struct freebsd11_freebsd32_kevent_args *uap; 804 struct freebsd11_kevent32 ks32[KQ_NEVENTS]; 805 int i, error; 806 807 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count)); 808 uap = (struct freebsd11_freebsd32_kevent_args *)arg; 809 810 for (i = 0; i < count; i++) { 811 CP(kevp[i], ks32[i], ident); 812 CP(kevp[i], ks32[i], filter); 813 CP(kevp[i], ks32[i], flags); 814 CP(kevp[i], ks32[i], fflags); 815 CP(kevp[i], ks32[i], data); 816 PTROUT_CP(kevp[i], ks32[i], udata); 817 } 818 error = copyout(ks32, uap->eventlist, count * sizeof *ks32); 819 if (error == 0) 820 uap->eventlist += count; 821 return (error); 822 } 823 824 /* 825 * Copy 'count' items from the list pointed to by uap->changelist. 826 */ 827 static int 828 freebsd32_kevent11_copyin(void *arg, struct kevent *kevp, int count) 829 { 830 struct freebsd11_freebsd32_kevent_args *uap; 831 struct freebsd11_kevent32 ks32[KQ_NEVENTS]; 832 int i, j, error; 833 834 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count)); 835 uap = (struct freebsd11_freebsd32_kevent_args *)arg; 836 837 error = copyin(uap->changelist, ks32, count * sizeof *ks32); 838 if (error) 839 goto done; 840 uap->changelist += count; 841 842 for (i = 0; i < count; i++) { 843 CP(ks32[i], kevp[i], ident); 844 CP(ks32[i], kevp[i], filter); 845 CP(ks32[i], kevp[i], flags); 846 CP(ks32[i], kevp[i], fflags); 847 CP(ks32[i], kevp[i], data); 848 PTRIN_CP(ks32[i], kevp[i], udata); 849 for (j = 0; j < nitems(kevp->ext); j++) 850 kevp[i].ext[j] = 0; 851 } 852 done: 853 return (error); 854 } 855 856 int 857 freebsd11_freebsd32_kevent(struct thread *td, 858 struct freebsd11_freebsd32_kevent_args *uap) 859 { 860 struct timespec32 ts32; 861 struct timespec ts, *tsp; 862 struct kevent_copyops k_ops = { 863 .arg = uap, 864 .k_copyout = freebsd32_kevent11_copyout, 865 .k_copyin = freebsd32_kevent11_copyin, 866 }; 867 #ifdef KTRACE 868 struct freebsd11_kevent32 *eventlist = uap->eventlist; 869 #endif 870 int error; 871 872 if (uap->timeout) { 873 error = copyin(uap->timeout, &ts32, sizeof(ts32)); 874 if (error) 875 return (error); 876 CP(ts32, ts, tv_sec); 877 CP(ts32, ts, tv_nsec); 878 tsp = &ts; 879 } else 880 tsp = NULL; 881 #ifdef KTRACE 882 if (KTRPOINT(td, KTR_STRUCT_ARRAY)) 883 ktrstructarray("freebsd11_kevent32", UIO_USERSPACE, 884 uap->changelist, uap->nchanges, 885 sizeof(struct freebsd11_kevent32)); 886 #endif 887 error = kern_kevent(td, uap->fd, uap->nchanges, uap->nevents, 888 &k_ops, tsp); 889 #ifdef KTRACE 890 if (error == 0 && KTRPOINT(td, KTR_STRUCT_ARRAY)) 891 ktrstructarray("freebsd11_kevent32", UIO_USERSPACE, 892 eventlist, td->td_retval[0], 893 sizeof(struct freebsd11_kevent32)); 894 #endif 895 return (error); 896 } 897 #endif 898 899 int 900 freebsd32_gettimeofday(struct thread *td, 901 struct freebsd32_gettimeofday_args *uap) 902 { 903 struct timeval atv; 904 struct timeval32 atv32; 905 struct timezone rtz; 906 int error = 0; 907 908 if (uap->tp) { 909 microtime(&atv); 910 CP(atv, atv32, tv_sec); 911 CP(atv, atv32, tv_usec); 912 error = copyout(&atv32, uap->tp, sizeof (atv32)); 913 } 914 if (error == 0 && uap->tzp != NULL) { 915 rtz.tz_minuteswest = 0; 916 rtz.tz_dsttime = 0; 917 error = copyout(&rtz, uap->tzp, sizeof (rtz)); 918 } 919 return (error); 920 } 921 922 int 923 freebsd32_getrusage(struct thread *td, struct freebsd32_getrusage_args *uap) 924 { 925 struct rusage32 s32; 926 struct rusage s; 927 int error; 928 929 error = kern_getrusage(td, uap->who, &s); 930 if (error == 0) { 931 freebsd32_rusage_out(&s, &s32); 932 error = copyout(&s32, uap->rusage, sizeof(s32)); 933 } 934 return (error); 935 } 936 937 static void 938 ptrace_lwpinfo_to32(const struct ptrace_lwpinfo *pl, 939 struct ptrace_lwpinfo32 *pl32) 940 { 941 942 bzero(pl32, sizeof(*pl32)); 943 pl32->pl_lwpid = pl->pl_lwpid; 944 pl32->pl_event = pl->pl_event; 945 pl32->pl_flags = pl->pl_flags; 946 pl32->pl_sigmask = pl->pl_sigmask; 947 pl32->pl_siglist = pl->pl_siglist; 948 siginfo_to_siginfo32(&pl->pl_siginfo, &pl32->pl_siginfo); 949 strcpy(pl32->pl_tdname, pl->pl_tdname); 950 pl32->pl_child_pid = pl->pl_child_pid; 951 pl32->pl_syscall_code = pl->pl_syscall_code; 952 pl32->pl_syscall_narg = pl->pl_syscall_narg; 953 } 954 955 static void 956 ptrace_sc_ret_to32(const struct ptrace_sc_ret *psr, 957 struct ptrace_sc_ret32 *psr32) 958 { 959 960 bzero(psr32, sizeof(*psr32)); 961 psr32->sr_retval[0] = psr->sr_retval[0]; 962 psr32->sr_retval[1] = psr->sr_retval[1]; 963 psr32->sr_error = psr->sr_error; 964 } 965 966 int 967 freebsd32_ptrace(struct thread *td, struct freebsd32_ptrace_args *uap) 968 { 969 union { 970 struct ptrace_io_desc piod; 971 struct ptrace_lwpinfo pl; 972 struct ptrace_vm_entry pve; 973 struct ptrace_coredump pc; 974 struct dbreg32 dbreg; 975 struct fpreg32 fpreg; 976 struct reg32 reg; 977 struct iovec vec; 978 register_t args[nitems(td->td_sa.args)]; 979 struct ptrace_sc_ret psr; 980 int ptevents; 981 } r; 982 union { 983 struct ptrace_io_desc32 piod; 984 struct ptrace_lwpinfo32 pl; 985 struct ptrace_vm_entry32 pve; 986 struct ptrace_coredump32 pc; 987 uint32_t args[nitems(td->td_sa.args)]; 988 struct ptrace_sc_ret32 psr; 989 struct iovec32 vec; 990 } r32; 991 void *addr; 992 int data, error, i; 993 994 if (!allow_ptrace) 995 return (ENOSYS); 996 error = 0; 997 998 AUDIT_ARG_PID(uap->pid); 999 AUDIT_ARG_CMD(uap->req); 1000 AUDIT_ARG_VALUE(uap->data); 1001 addr = &r; 1002 data = uap->data; 1003 switch (uap->req) { 1004 case PT_GET_EVENT_MASK: 1005 case PT_GET_SC_ARGS: 1006 case PT_GET_SC_RET: 1007 break; 1008 case PT_LWPINFO: 1009 if (uap->data > sizeof(r32.pl)) 1010 return (EINVAL); 1011 1012 /* 1013 * Pass size of native structure in 'data'. Truncate 1014 * if necessary to avoid siginfo. 1015 */ 1016 data = sizeof(r.pl); 1017 if (uap->data < offsetof(struct ptrace_lwpinfo32, pl_siginfo) + 1018 sizeof(struct siginfo32)) 1019 data = offsetof(struct ptrace_lwpinfo, pl_siginfo); 1020 break; 1021 case PT_GETREGS: 1022 bzero(&r.reg, sizeof(r.reg)); 1023 break; 1024 case PT_GETFPREGS: 1025 bzero(&r.fpreg, sizeof(r.fpreg)); 1026 break; 1027 case PT_GETDBREGS: 1028 bzero(&r.dbreg, sizeof(r.dbreg)); 1029 break; 1030 case PT_SETREGS: 1031 error = copyin(uap->addr, &r.reg, sizeof(r.reg)); 1032 break; 1033 case PT_SETFPREGS: 1034 error = copyin(uap->addr, &r.fpreg, sizeof(r.fpreg)); 1035 break; 1036 case PT_SETDBREGS: 1037 error = copyin(uap->addr, &r.dbreg, sizeof(r.dbreg)); 1038 break; 1039 case PT_GETREGSET: 1040 case PT_SETREGSET: 1041 error = copyin(uap->addr, &r32.vec, sizeof(r32.vec)); 1042 if (error != 0) 1043 break; 1044 1045 r.vec.iov_len = r32.vec.iov_len; 1046 r.vec.iov_base = PTRIN(r32.vec.iov_base); 1047 break; 1048 case PT_SET_EVENT_MASK: 1049 if (uap->data != sizeof(r.ptevents)) 1050 error = EINVAL; 1051 else 1052 error = copyin(uap->addr, &r.ptevents, uap->data); 1053 break; 1054 case PT_IO: 1055 error = copyin(uap->addr, &r32.piod, sizeof(r32.piod)); 1056 if (error) 1057 break; 1058 CP(r32.piod, r.piod, piod_op); 1059 PTRIN_CP(r32.piod, r.piod, piod_offs); 1060 PTRIN_CP(r32.piod, r.piod, piod_addr); 1061 CP(r32.piod, r.piod, piod_len); 1062 break; 1063 case PT_VM_ENTRY: 1064 error = copyin(uap->addr, &r32.pve, sizeof(r32.pve)); 1065 if (error) 1066 break; 1067 1068 CP(r32.pve, r.pve, pve_entry); 1069 CP(r32.pve, r.pve, pve_timestamp); 1070 CP(r32.pve, r.pve, pve_start); 1071 CP(r32.pve, r.pve, pve_end); 1072 CP(r32.pve, r.pve, pve_offset); 1073 CP(r32.pve, r.pve, pve_prot); 1074 CP(r32.pve, r.pve, pve_pathlen); 1075 CP(r32.pve, r.pve, pve_fileid); 1076 CP(r32.pve, r.pve, pve_fsid); 1077 PTRIN_CP(r32.pve, r.pve, pve_path); 1078 break; 1079 case PT_COREDUMP: 1080 if (uap->data != sizeof(r32.pc)) 1081 error = EINVAL; 1082 else 1083 error = copyin(uap->addr, &r32.pc, uap->data); 1084 CP(r32.pc, r.pc, pc_fd); 1085 CP(r32.pc, r.pc, pc_flags); 1086 r.pc.pc_limit = PAIR32TO64(off_t, r32.pc.pc_limit); 1087 data = sizeof(r.pc); 1088 break; 1089 default: 1090 addr = uap->addr; 1091 break; 1092 } 1093 if (error) 1094 return (error); 1095 1096 error = kern_ptrace(td, uap->req, uap->pid, addr, data); 1097 if (error) 1098 return (error); 1099 1100 switch (uap->req) { 1101 case PT_VM_ENTRY: 1102 CP(r.pve, r32.pve, pve_entry); 1103 CP(r.pve, r32.pve, pve_timestamp); 1104 CP(r.pve, r32.pve, pve_start); 1105 CP(r.pve, r32.pve, pve_end); 1106 CP(r.pve, r32.pve, pve_offset); 1107 CP(r.pve, r32.pve, pve_prot); 1108 CP(r.pve, r32.pve, pve_pathlen); 1109 CP(r.pve, r32.pve, pve_fileid); 1110 CP(r.pve, r32.pve, pve_fsid); 1111 error = copyout(&r32.pve, uap->addr, sizeof(r32.pve)); 1112 break; 1113 case PT_IO: 1114 CP(r.piod, r32.piod, piod_len); 1115 error = copyout(&r32.piod, uap->addr, sizeof(r32.piod)); 1116 break; 1117 case PT_GETREGS: 1118 error = copyout(&r.reg, uap->addr, sizeof(r.reg)); 1119 break; 1120 case PT_GETFPREGS: 1121 error = copyout(&r.fpreg, uap->addr, sizeof(r.fpreg)); 1122 break; 1123 case PT_GETDBREGS: 1124 error = copyout(&r.dbreg, uap->addr, sizeof(r.dbreg)); 1125 break; 1126 case PT_GETREGSET: 1127 r32.vec.iov_len = r.vec.iov_len; 1128 error = copyout(&r32.vec, uap->addr, sizeof(r32.vec)); 1129 break; 1130 case PT_GET_EVENT_MASK: 1131 /* NB: The size in uap->data is validated in kern_ptrace(). */ 1132 error = copyout(&r.ptevents, uap->addr, uap->data); 1133 break; 1134 case PT_LWPINFO: 1135 ptrace_lwpinfo_to32(&r.pl, &r32.pl); 1136 error = copyout(&r32.pl, uap->addr, uap->data); 1137 break; 1138 case PT_GET_SC_ARGS: 1139 for (i = 0; i < nitems(r.args); i++) 1140 r32.args[i] = (uint32_t)r.args[i]; 1141 error = copyout(r32.args, uap->addr, MIN(uap->data, 1142 sizeof(r32.args))); 1143 break; 1144 case PT_GET_SC_RET: 1145 ptrace_sc_ret_to32(&r.psr, &r32.psr); 1146 error = copyout(&r32.psr, uap->addr, MIN(uap->data, 1147 sizeof(r32.psr))); 1148 break; 1149 } 1150 1151 return (error); 1152 } 1153 1154 int 1155 freebsd32_copyinuio(struct iovec32 *iovp, u_int iovcnt, struct uio **uiop) 1156 { 1157 struct iovec32 iov32; 1158 struct iovec *iov; 1159 struct uio *uio; 1160 u_int iovlen; 1161 int error, i; 1162 1163 *uiop = NULL; 1164 if (iovcnt > UIO_MAXIOV) 1165 return (EINVAL); 1166 iovlen = iovcnt * sizeof(struct iovec); 1167 uio = malloc(iovlen + sizeof *uio, M_IOV, M_WAITOK); 1168 iov = (struct iovec *)(uio + 1); 1169 for (i = 0; i < iovcnt; i++) { 1170 error = copyin(&iovp[i], &iov32, sizeof(struct iovec32)); 1171 if (error) { 1172 free(uio, M_IOV); 1173 return (error); 1174 } 1175 iov[i].iov_base = PTRIN(iov32.iov_base); 1176 iov[i].iov_len = iov32.iov_len; 1177 } 1178 uio->uio_iov = iov; 1179 uio->uio_iovcnt = iovcnt; 1180 uio->uio_segflg = UIO_USERSPACE; 1181 uio->uio_offset = -1; 1182 uio->uio_resid = 0; 1183 for (i = 0; i < iovcnt; i++) { 1184 if (iov->iov_len > INT_MAX - uio->uio_resid) { 1185 free(uio, M_IOV); 1186 return (EINVAL); 1187 } 1188 uio->uio_resid += iov->iov_len; 1189 iov++; 1190 } 1191 *uiop = uio; 1192 return (0); 1193 } 1194 1195 int 1196 freebsd32_readv(struct thread *td, struct freebsd32_readv_args *uap) 1197 { 1198 struct uio *auio; 1199 int error; 1200 1201 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 1202 if (error) 1203 return (error); 1204 error = kern_readv(td, uap->fd, auio); 1205 free(auio, M_IOV); 1206 return (error); 1207 } 1208 1209 int 1210 freebsd32_writev(struct thread *td, struct freebsd32_writev_args *uap) 1211 { 1212 struct uio *auio; 1213 int error; 1214 1215 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 1216 if (error) 1217 return (error); 1218 error = kern_writev(td, uap->fd, auio); 1219 free(auio, M_IOV); 1220 return (error); 1221 } 1222 1223 int 1224 freebsd32_preadv(struct thread *td, struct freebsd32_preadv_args *uap) 1225 { 1226 struct uio *auio; 1227 int error; 1228 1229 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 1230 if (error) 1231 return (error); 1232 error = kern_preadv(td, uap->fd, auio, PAIR32TO64(off_t,uap->offset)); 1233 free(auio, M_IOV); 1234 return (error); 1235 } 1236 1237 int 1238 freebsd32_pwritev(struct thread *td, struct freebsd32_pwritev_args *uap) 1239 { 1240 struct uio *auio; 1241 int error; 1242 1243 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 1244 if (error) 1245 return (error); 1246 error = kern_pwritev(td, uap->fd, auio, PAIR32TO64(off_t,uap->offset)); 1247 free(auio, M_IOV); 1248 return (error); 1249 } 1250 1251 int 1252 freebsd32_copyiniov(struct iovec32 *iovp32, u_int iovcnt, struct iovec **iovp, 1253 int error) 1254 { 1255 struct iovec32 iov32; 1256 struct iovec *iov; 1257 u_int iovlen; 1258 int i; 1259 1260 *iovp = NULL; 1261 if (iovcnt > UIO_MAXIOV) 1262 return (error); 1263 iovlen = iovcnt * sizeof(struct iovec); 1264 iov = malloc(iovlen, M_IOV, M_WAITOK); 1265 for (i = 0; i < iovcnt; i++) { 1266 error = copyin(&iovp32[i], &iov32, sizeof(struct iovec32)); 1267 if (error) { 1268 free(iov, M_IOV); 1269 return (error); 1270 } 1271 iov[i].iov_base = PTRIN(iov32.iov_base); 1272 iov[i].iov_len = iov32.iov_len; 1273 } 1274 *iovp = iov; 1275 return (0); 1276 } 1277 1278 static int 1279 freebsd32_copyinmsghdr(const struct msghdr32 *msg32, struct msghdr *msg) 1280 { 1281 struct msghdr32 m32; 1282 int error; 1283 1284 error = copyin(msg32, &m32, sizeof(m32)); 1285 if (error) 1286 return (error); 1287 msg->msg_name = PTRIN(m32.msg_name); 1288 msg->msg_namelen = m32.msg_namelen; 1289 msg->msg_iov = PTRIN(m32.msg_iov); 1290 msg->msg_iovlen = m32.msg_iovlen; 1291 msg->msg_control = PTRIN(m32.msg_control); 1292 msg->msg_controllen = m32.msg_controllen; 1293 msg->msg_flags = m32.msg_flags; 1294 return (0); 1295 } 1296 1297 static int 1298 freebsd32_copyoutmsghdr(struct msghdr *msg, struct msghdr32 *msg32) 1299 { 1300 struct msghdr32 m32; 1301 int error; 1302 1303 m32.msg_name = PTROUT(msg->msg_name); 1304 m32.msg_namelen = msg->msg_namelen; 1305 m32.msg_iov = PTROUT(msg->msg_iov); 1306 m32.msg_iovlen = msg->msg_iovlen; 1307 m32.msg_control = PTROUT(msg->msg_control); 1308 m32.msg_controllen = msg->msg_controllen; 1309 m32.msg_flags = msg->msg_flags; 1310 error = copyout(&m32, msg32, sizeof(m32)); 1311 return (error); 1312 } 1313 1314 #ifndef __mips__ 1315 #define FREEBSD32_ALIGNBYTES (sizeof(int) - 1) 1316 #else 1317 #define FREEBSD32_ALIGNBYTES (sizeof(long) - 1) 1318 #endif 1319 #define FREEBSD32_ALIGN(p) \ 1320 (((u_long)(p) + FREEBSD32_ALIGNBYTES) & ~FREEBSD32_ALIGNBYTES) 1321 #define FREEBSD32_CMSG_SPACE(l) \ 1322 (FREEBSD32_ALIGN(sizeof(struct cmsghdr)) + FREEBSD32_ALIGN(l)) 1323 1324 #define FREEBSD32_CMSG_DATA(cmsg) ((unsigned char *)(cmsg) + \ 1325 FREEBSD32_ALIGN(sizeof(struct cmsghdr))) 1326 1327 static size_t 1328 freebsd32_cmsg_convert(const struct cmsghdr *cm, void *data, socklen_t datalen) 1329 { 1330 size_t copylen; 1331 union { 1332 struct timespec32 ts; 1333 struct timeval32 tv; 1334 struct bintime32 bt; 1335 } tmp32; 1336 1337 union { 1338 struct timespec ts; 1339 struct timeval tv; 1340 struct bintime bt; 1341 } *in; 1342 1343 in = data; 1344 copylen = 0; 1345 switch (cm->cmsg_level) { 1346 case SOL_SOCKET: 1347 switch (cm->cmsg_type) { 1348 case SCM_TIMESTAMP: 1349 TV_CP(*in, tmp32, tv); 1350 copylen = sizeof(tmp32.tv); 1351 break; 1352 1353 case SCM_BINTIME: 1354 BT_CP(*in, tmp32, bt); 1355 copylen = sizeof(tmp32.bt); 1356 break; 1357 1358 case SCM_REALTIME: 1359 case SCM_MONOTONIC: 1360 TS_CP(*in, tmp32, ts); 1361 copylen = sizeof(tmp32.ts); 1362 break; 1363 1364 default: 1365 break; 1366 } 1367 1368 default: 1369 break; 1370 } 1371 1372 if (copylen == 0) 1373 return (datalen); 1374 1375 KASSERT((datalen >= copylen), ("corrupted cmsghdr")); 1376 1377 bcopy(&tmp32, data, copylen); 1378 return (copylen); 1379 } 1380 1381 static int 1382 freebsd32_copy_msg_out(struct msghdr *msg, struct mbuf *control) 1383 { 1384 struct cmsghdr *cm; 1385 void *data; 1386 socklen_t clen, datalen, datalen_out, oldclen; 1387 int error; 1388 caddr_t ctlbuf; 1389 int len, copylen; 1390 struct mbuf *m; 1391 error = 0; 1392 1393 len = msg->msg_controllen; 1394 msg->msg_controllen = 0; 1395 1396 ctlbuf = msg->msg_control; 1397 for (m = control; m != NULL && len > 0; m = m->m_next) { 1398 cm = mtod(m, struct cmsghdr *); 1399 clen = m->m_len; 1400 while (cm != NULL) { 1401 if (sizeof(struct cmsghdr) > clen || 1402 cm->cmsg_len > clen) { 1403 error = EINVAL; 1404 break; 1405 } 1406 1407 data = CMSG_DATA(cm); 1408 datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data; 1409 datalen_out = freebsd32_cmsg_convert(cm, data, datalen); 1410 1411 /* 1412 * Copy out the message header. Preserve the native 1413 * message size in case we need to inspect the message 1414 * contents later. 1415 */ 1416 copylen = sizeof(struct cmsghdr); 1417 if (len < copylen) { 1418 msg->msg_flags |= MSG_CTRUNC; 1419 m_dispose_extcontrolm(m); 1420 goto exit; 1421 } 1422 oldclen = cm->cmsg_len; 1423 cm->cmsg_len = FREEBSD32_ALIGN(sizeof(struct cmsghdr)) + 1424 datalen_out; 1425 error = copyout(cm, ctlbuf, copylen); 1426 cm->cmsg_len = oldclen; 1427 if (error != 0) 1428 goto exit; 1429 1430 ctlbuf += FREEBSD32_ALIGN(copylen); 1431 len -= FREEBSD32_ALIGN(copylen); 1432 1433 copylen = datalen_out; 1434 if (len < copylen) { 1435 msg->msg_flags |= MSG_CTRUNC; 1436 m_dispose_extcontrolm(m); 1437 break; 1438 } 1439 1440 /* Copy out the message data. */ 1441 error = copyout(data, ctlbuf, copylen); 1442 if (error) 1443 goto exit; 1444 1445 ctlbuf += FREEBSD32_ALIGN(copylen); 1446 len -= FREEBSD32_ALIGN(copylen); 1447 1448 if (CMSG_SPACE(datalen) < clen) { 1449 clen -= CMSG_SPACE(datalen); 1450 cm = (struct cmsghdr *) 1451 ((caddr_t)cm + CMSG_SPACE(datalen)); 1452 } else { 1453 clen = 0; 1454 cm = NULL; 1455 } 1456 1457 msg->msg_controllen += 1458 FREEBSD32_CMSG_SPACE(datalen_out); 1459 } 1460 } 1461 if (len == 0 && m != NULL) { 1462 msg->msg_flags |= MSG_CTRUNC; 1463 m_dispose_extcontrolm(m); 1464 } 1465 1466 exit: 1467 return (error); 1468 } 1469 1470 int 1471 freebsd32_recvmsg(struct thread *td, struct freebsd32_recvmsg_args *uap) 1472 { 1473 struct msghdr msg; 1474 struct iovec *uiov, *iov; 1475 struct mbuf *control = NULL; 1476 struct mbuf **controlp; 1477 int error; 1478 1479 error = freebsd32_copyinmsghdr(uap->msg, &msg); 1480 if (error) 1481 return (error); 1482 error = freebsd32_copyiniov((void *)msg.msg_iov, msg.msg_iovlen, &iov, 1483 EMSGSIZE); 1484 if (error) 1485 return (error); 1486 msg.msg_flags = uap->flags; 1487 uiov = msg.msg_iov; 1488 msg.msg_iov = iov; 1489 1490 controlp = (msg.msg_control != NULL) ? &control : NULL; 1491 error = kern_recvit(td, uap->s, &msg, UIO_USERSPACE, controlp); 1492 if (error == 0) { 1493 msg.msg_iov = uiov; 1494 1495 if (control != NULL) 1496 error = freebsd32_copy_msg_out(&msg, control); 1497 else 1498 msg.msg_controllen = 0; 1499 1500 if (error == 0) 1501 error = freebsd32_copyoutmsghdr(&msg, uap->msg); 1502 } 1503 free(iov, M_IOV); 1504 1505 if (control != NULL) { 1506 if (error != 0) 1507 m_dispose_extcontrolm(control); 1508 m_freem(control); 1509 } 1510 1511 return (error); 1512 } 1513 1514 #ifdef COMPAT_43 1515 int 1516 ofreebsd32_recvmsg(struct thread *td, struct ofreebsd32_recvmsg_args *uap) 1517 { 1518 return (ENOSYS); 1519 } 1520 #endif 1521 1522 /* 1523 * Copy-in the array of control messages constructed using alignment 1524 * and padding suitable for a 32-bit environment and construct an 1525 * mbuf using alignment and padding suitable for a 64-bit kernel. 1526 * The alignment and padding are defined indirectly by CMSG_DATA(), 1527 * CMSG_SPACE() and CMSG_LEN(). 1528 */ 1529 static int 1530 freebsd32_copyin_control(struct mbuf **mp, caddr_t buf, u_int buflen) 1531 { 1532 struct cmsghdr *cm; 1533 struct mbuf *m; 1534 void *in, *in1, *md; 1535 u_int msglen, outlen; 1536 int error; 1537 1538 if (buflen > MCLBYTES) 1539 return (EINVAL); 1540 1541 in = malloc(buflen, M_TEMP, M_WAITOK); 1542 error = copyin(buf, in, buflen); 1543 if (error != 0) 1544 goto out; 1545 1546 /* 1547 * Make a pass over the input buffer to determine the amount of space 1548 * required for 64 bit-aligned copies of the control messages. 1549 */ 1550 in1 = in; 1551 outlen = 0; 1552 while (buflen > 0) { 1553 if (buflen < sizeof(*cm)) { 1554 error = EINVAL; 1555 break; 1556 } 1557 cm = (struct cmsghdr *)in1; 1558 if (cm->cmsg_len < FREEBSD32_ALIGN(sizeof(*cm))) { 1559 error = EINVAL; 1560 break; 1561 } 1562 msglen = FREEBSD32_ALIGN(cm->cmsg_len); 1563 if (msglen > buflen || msglen < cm->cmsg_len) { 1564 error = EINVAL; 1565 break; 1566 } 1567 buflen -= msglen; 1568 1569 in1 = (char *)in1 + msglen; 1570 outlen += CMSG_ALIGN(sizeof(*cm)) + 1571 CMSG_ALIGN(msglen - FREEBSD32_ALIGN(sizeof(*cm))); 1572 } 1573 if (error == 0 && outlen > MCLBYTES) { 1574 /* 1575 * XXXMJ This implies that the upper limit on 32-bit aligned 1576 * control messages is less than MCLBYTES, and so we are not 1577 * perfectly compatible. However, there is no platform 1578 * guarantee that mbuf clusters larger than MCLBYTES can be 1579 * allocated. 1580 */ 1581 error = EINVAL; 1582 } 1583 if (error != 0) 1584 goto out; 1585 1586 m = m_get2(outlen, M_WAITOK, MT_CONTROL, 0); 1587 m->m_len = outlen; 1588 md = mtod(m, void *); 1589 1590 /* 1591 * Make a second pass over input messages, copying them into the output 1592 * buffer. 1593 */ 1594 in1 = in; 1595 while (outlen > 0) { 1596 /* Copy the message header and align the length field. */ 1597 cm = md; 1598 memcpy(cm, in1, sizeof(*cm)); 1599 msglen = cm->cmsg_len - FREEBSD32_ALIGN(sizeof(*cm)); 1600 cm->cmsg_len = CMSG_ALIGN(sizeof(*cm)) + msglen; 1601 1602 /* Copy the message body. */ 1603 in1 = (char *)in1 + FREEBSD32_ALIGN(sizeof(*cm)); 1604 md = (char *)md + CMSG_ALIGN(sizeof(*cm)); 1605 memcpy(md, in1, msglen); 1606 in1 = (char *)in1 + FREEBSD32_ALIGN(msglen); 1607 md = (char *)md + CMSG_ALIGN(msglen); 1608 KASSERT(outlen >= CMSG_ALIGN(sizeof(*cm)) + CMSG_ALIGN(msglen), 1609 ("outlen %u underflow, msglen %u", outlen, msglen)); 1610 outlen -= CMSG_ALIGN(sizeof(*cm)) + CMSG_ALIGN(msglen); 1611 } 1612 1613 *mp = m; 1614 out: 1615 free(in, M_TEMP); 1616 return (error); 1617 } 1618 1619 int 1620 freebsd32_sendmsg(struct thread *td, struct freebsd32_sendmsg_args *uap) 1621 { 1622 struct msghdr msg; 1623 struct iovec *iov; 1624 struct mbuf *control = NULL; 1625 struct sockaddr *to = NULL; 1626 int error; 1627 1628 error = freebsd32_copyinmsghdr(uap->msg, &msg); 1629 if (error) 1630 return (error); 1631 error = freebsd32_copyiniov((void *)msg.msg_iov, msg.msg_iovlen, &iov, 1632 EMSGSIZE); 1633 if (error) 1634 return (error); 1635 msg.msg_iov = iov; 1636 if (msg.msg_name != NULL) { 1637 error = getsockaddr(&to, msg.msg_name, msg.msg_namelen); 1638 if (error) { 1639 to = NULL; 1640 goto out; 1641 } 1642 msg.msg_name = to; 1643 } 1644 1645 if (msg.msg_control) { 1646 if (msg.msg_controllen < sizeof(struct cmsghdr)) { 1647 error = EINVAL; 1648 goto out; 1649 } 1650 1651 error = freebsd32_copyin_control(&control, msg.msg_control, 1652 msg.msg_controllen); 1653 if (error) 1654 goto out; 1655 1656 msg.msg_control = NULL; 1657 msg.msg_controllen = 0; 1658 } 1659 1660 error = kern_sendit(td, uap->s, &msg, uap->flags, control, 1661 UIO_USERSPACE); 1662 1663 out: 1664 free(iov, M_IOV); 1665 if (to) 1666 free(to, M_SONAME); 1667 return (error); 1668 } 1669 1670 #ifdef COMPAT_43 1671 int 1672 ofreebsd32_sendmsg(struct thread *td, struct ofreebsd32_sendmsg_args *uap) 1673 { 1674 return (ENOSYS); 1675 } 1676 #endif 1677 1678 1679 int 1680 freebsd32_settimeofday(struct thread *td, 1681 struct freebsd32_settimeofday_args *uap) 1682 { 1683 struct timeval32 tv32; 1684 struct timeval tv, *tvp; 1685 struct timezone tz, *tzp; 1686 int error; 1687 1688 if (uap->tv) { 1689 error = copyin(uap->tv, &tv32, sizeof(tv32)); 1690 if (error) 1691 return (error); 1692 CP(tv32, tv, tv_sec); 1693 CP(tv32, tv, tv_usec); 1694 tvp = &tv; 1695 } else 1696 tvp = NULL; 1697 if (uap->tzp) { 1698 error = copyin(uap->tzp, &tz, sizeof(tz)); 1699 if (error) 1700 return (error); 1701 tzp = &tz; 1702 } else 1703 tzp = NULL; 1704 return (kern_settimeofday(td, tvp, tzp)); 1705 } 1706 1707 int 1708 freebsd32_utimes(struct thread *td, struct freebsd32_utimes_args *uap) 1709 { 1710 struct timeval32 s32[2]; 1711 struct timeval s[2], *sp; 1712 int error; 1713 1714 if (uap->tptr != NULL) { 1715 error = copyin(uap->tptr, s32, sizeof(s32)); 1716 if (error) 1717 return (error); 1718 CP(s32[0], s[0], tv_sec); 1719 CP(s32[0], s[0], tv_usec); 1720 CP(s32[1], s[1], tv_sec); 1721 CP(s32[1], s[1], tv_usec); 1722 sp = s; 1723 } else 1724 sp = NULL; 1725 return (kern_utimesat(td, AT_FDCWD, uap->path, UIO_USERSPACE, 1726 sp, UIO_SYSSPACE)); 1727 } 1728 1729 int 1730 freebsd32_lutimes(struct thread *td, struct freebsd32_lutimes_args *uap) 1731 { 1732 struct timeval32 s32[2]; 1733 struct timeval s[2], *sp; 1734 int error; 1735 1736 if (uap->tptr != NULL) { 1737 error = copyin(uap->tptr, s32, sizeof(s32)); 1738 if (error) 1739 return (error); 1740 CP(s32[0], s[0], tv_sec); 1741 CP(s32[0], s[0], tv_usec); 1742 CP(s32[1], s[1], tv_sec); 1743 CP(s32[1], s[1], tv_usec); 1744 sp = s; 1745 } else 1746 sp = NULL; 1747 return (kern_lutimes(td, uap->path, UIO_USERSPACE, sp, UIO_SYSSPACE)); 1748 } 1749 1750 int 1751 freebsd32_futimes(struct thread *td, struct freebsd32_futimes_args *uap) 1752 { 1753 struct timeval32 s32[2]; 1754 struct timeval s[2], *sp; 1755 int error; 1756 1757 if (uap->tptr != NULL) { 1758 error = copyin(uap->tptr, s32, sizeof(s32)); 1759 if (error) 1760 return (error); 1761 CP(s32[0], s[0], tv_sec); 1762 CP(s32[0], s[0], tv_usec); 1763 CP(s32[1], s[1], tv_sec); 1764 CP(s32[1], s[1], tv_usec); 1765 sp = s; 1766 } else 1767 sp = NULL; 1768 return (kern_futimes(td, uap->fd, sp, UIO_SYSSPACE)); 1769 } 1770 1771 int 1772 freebsd32_futimesat(struct thread *td, struct freebsd32_futimesat_args *uap) 1773 { 1774 struct timeval32 s32[2]; 1775 struct timeval s[2], *sp; 1776 int error; 1777 1778 if (uap->times != NULL) { 1779 error = copyin(uap->times, s32, sizeof(s32)); 1780 if (error) 1781 return (error); 1782 CP(s32[0], s[0], tv_sec); 1783 CP(s32[0], s[0], tv_usec); 1784 CP(s32[1], s[1], tv_sec); 1785 CP(s32[1], s[1], tv_usec); 1786 sp = s; 1787 } else 1788 sp = NULL; 1789 return (kern_utimesat(td, uap->fd, uap->path, UIO_USERSPACE, 1790 sp, UIO_SYSSPACE)); 1791 } 1792 1793 int 1794 freebsd32_futimens(struct thread *td, struct freebsd32_futimens_args *uap) 1795 { 1796 struct timespec32 ts32[2]; 1797 struct timespec ts[2], *tsp; 1798 int error; 1799 1800 if (uap->times != NULL) { 1801 error = copyin(uap->times, ts32, sizeof(ts32)); 1802 if (error) 1803 return (error); 1804 CP(ts32[0], ts[0], tv_sec); 1805 CP(ts32[0], ts[0], tv_nsec); 1806 CP(ts32[1], ts[1], tv_sec); 1807 CP(ts32[1], ts[1], tv_nsec); 1808 tsp = ts; 1809 } else 1810 tsp = NULL; 1811 return (kern_futimens(td, uap->fd, tsp, UIO_SYSSPACE)); 1812 } 1813 1814 int 1815 freebsd32_utimensat(struct thread *td, struct freebsd32_utimensat_args *uap) 1816 { 1817 struct timespec32 ts32[2]; 1818 struct timespec ts[2], *tsp; 1819 int error; 1820 1821 if (uap->times != NULL) { 1822 error = copyin(uap->times, ts32, sizeof(ts32)); 1823 if (error) 1824 return (error); 1825 CP(ts32[0], ts[0], tv_sec); 1826 CP(ts32[0], ts[0], tv_nsec); 1827 CP(ts32[1], ts[1], tv_sec); 1828 CP(ts32[1], ts[1], tv_nsec); 1829 tsp = ts; 1830 } else 1831 tsp = NULL; 1832 return (kern_utimensat(td, uap->fd, uap->path, UIO_USERSPACE, 1833 tsp, UIO_SYSSPACE, uap->flag)); 1834 } 1835 1836 int 1837 freebsd32_adjtime(struct thread *td, struct freebsd32_adjtime_args *uap) 1838 { 1839 struct timeval32 tv32; 1840 struct timeval delta, olddelta, *deltap; 1841 int error; 1842 1843 if (uap->delta) { 1844 error = copyin(uap->delta, &tv32, sizeof(tv32)); 1845 if (error) 1846 return (error); 1847 CP(tv32, delta, tv_sec); 1848 CP(tv32, delta, tv_usec); 1849 deltap = δ 1850 } else 1851 deltap = NULL; 1852 error = kern_adjtime(td, deltap, &olddelta); 1853 if (uap->olddelta && error == 0) { 1854 CP(olddelta, tv32, tv_sec); 1855 CP(olddelta, tv32, tv_usec); 1856 error = copyout(&tv32, uap->olddelta, sizeof(tv32)); 1857 } 1858 return (error); 1859 } 1860 1861 #ifdef COMPAT_FREEBSD4 1862 int 1863 freebsd4_freebsd32_statfs(struct thread *td, struct freebsd4_freebsd32_statfs_args *uap) 1864 { 1865 struct ostatfs32 s32; 1866 struct statfs *sp; 1867 int error; 1868 1869 sp = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK); 1870 error = kern_statfs(td, uap->path, UIO_USERSPACE, sp); 1871 if (error == 0) { 1872 copy_statfs(sp, &s32); 1873 error = copyout(&s32, uap->buf, sizeof(s32)); 1874 } 1875 free(sp, M_STATFS); 1876 return (error); 1877 } 1878 #endif 1879 1880 #ifdef COMPAT_FREEBSD4 1881 int 1882 freebsd4_freebsd32_fstatfs(struct thread *td, struct freebsd4_freebsd32_fstatfs_args *uap) 1883 { 1884 struct ostatfs32 s32; 1885 struct statfs *sp; 1886 int error; 1887 1888 sp = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK); 1889 error = kern_fstatfs(td, uap->fd, sp); 1890 if (error == 0) { 1891 copy_statfs(sp, &s32); 1892 error = copyout(&s32, uap->buf, sizeof(s32)); 1893 } 1894 free(sp, M_STATFS); 1895 return (error); 1896 } 1897 #endif 1898 1899 #ifdef COMPAT_FREEBSD4 1900 int 1901 freebsd4_freebsd32_fhstatfs(struct thread *td, struct freebsd4_freebsd32_fhstatfs_args *uap) 1902 { 1903 struct ostatfs32 s32; 1904 struct statfs *sp; 1905 fhandle_t fh; 1906 int error; 1907 1908 if ((error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t))) != 0) 1909 return (error); 1910 sp = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK); 1911 error = kern_fhstatfs(td, fh, sp); 1912 if (error == 0) { 1913 copy_statfs(sp, &s32); 1914 error = copyout(&s32, uap->buf, sizeof(s32)); 1915 } 1916 free(sp, M_STATFS); 1917 return (error); 1918 } 1919 #endif 1920 1921 int 1922 freebsd32_pread(struct thread *td, struct freebsd32_pread_args *uap) 1923 { 1924 1925 return (kern_pread(td, uap->fd, uap->buf, uap->nbyte, 1926 PAIR32TO64(off_t, uap->offset))); 1927 } 1928 1929 int 1930 freebsd32_pwrite(struct thread *td, struct freebsd32_pwrite_args *uap) 1931 { 1932 1933 return (kern_pwrite(td, uap->fd, uap->buf, uap->nbyte, 1934 PAIR32TO64(off_t, uap->offset))); 1935 } 1936 1937 #ifdef COMPAT_43 1938 int 1939 ofreebsd32_lseek(struct thread *td, struct ofreebsd32_lseek_args *uap) 1940 { 1941 1942 return (kern_lseek(td, uap->fd, uap->offset, uap->whence)); 1943 } 1944 #endif 1945 1946 int 1947 freebsd32_lseek(struct thread *td, struct freebsd32_lseek_args *uap) 1948 { 1949 int error; 1950 off_t pos; 1951 1952 error = kern_lseek(td, uap->fd, PAIR32TO64(off_t, uap->offset), 1953 uap->whence); 1954 /* Expand the quad return into two parts for eax and edx */ 1955 pos = td->td_uretoff.tdu_off; 1956 td->td_retval[RETVAL_LO] = pos & 0xffffffff; /* %eax */ 1957 td->td_retval[RETVAL_HI] = pos >> 32; /* %edx */ 1958 return error; 1959 } 1960 1961 int 1962 freebsd32_truncate(struct thread *td, struct freebsd32_truncate_args *uap) 1963 { 1964 1965 return (kern_truncate(td, uap->path, UIO_USERSPACE, 1966 PAIR32TO64(off_t, uap->length))); 1967 } 1968 1969 #ifdef COMPAT_43 1970 int 1971 ofreebsd32_truncate(struct thread *td, struct ofreebsd32_truncate_args *uap) 1972 { 1973 return (kern_truncate(td, uap->path, UIO_USERSPACE, uap->length)); 1974 } 1975 #endif 1976 1977 int 1978 freebsd32_ftruncate(struct thread *td, struct freebsd32_ftruncate_args *uap) 1979 { 1980 1981 return (kern_ftruncate(td, uap->fd, PAIR32TO64(off_t, uap->length))); 1982 } 1983 1984 #ifdef COMPAT_43 1985 int 1986 ofreebsd32_ftruncate(struct thread *td, struct ofreebsd32_ftruncate_args *uap) 1987 { 1988 return (kern_ftruncate(td, uap->fd, uap->length)); 1989 } 1990 1991 int 1992 ofreebsd32_getdirentries(struct thread *td, 1993 struct ofreebsd32_getdirentries_args *uap) 1994 { 1995 struct ogetdirentries_args ap; 1996 int error; 1997 long loff; 1998 int32_t loff_cut; 1999 2000 ap.fd = uap->fd; 2001 ap.buf = uap->buf; 2002 ap.count = uap->count; 2003 ap.basep = NULL; 2004 error = kern_ogetdirentries(td, &ap, &loff); 2005 if (error == 0) { 2006 loff_cut = loff; 2007 error = copyout(&loff_cut, uap->basep, sizeof(int32_t)); 2008 } 2009 return (error); 2010 } 2011 #endif 2012 2013 #if defined(COMPAT_FREEBSD11) 2014 int 2015 freebsd11_freebsd32_getdirentries(struct thread *td, 2016 struct freebsd11_freebsd32_getdirentries_args *uap) 2017 { 2018 long base; 2019 int32_t base32; 2020 int error; 2021 2022 error = freebsd11_kern_getdirentries(td, uap->fd, uap->buf, uap->count, 2023 &base, NULL); 2024 if (error) 2025 return (error); 2026 if (uap->basep != NULL) { 2027 base32 = base; 2028 error = copyout(&base32, uap->basep, sizeof(int32_t)); 2029 } 2030 return (error); 2031 } 2032 #endif /* COMPAT_FREEBSD11 */ 2033 2034 #ifdef COMPAT_FREEBSD6 2035 /* versions with the 'int pad' argument */ 2036 int 2037 freebsd6_freebsd32_pread(struct thread *td, struct freebsd6_freebsd32_pread_args *uap) 2038 { 2039 2040 return (kern_pread(td, uap->fd, uap->buf, uap->nbyte, 2041 PAIR32TO64(off_t, uap->offset))); 2042 } 2043 2044 int 2045 freebsd6_freebsd32_pwrite(struct thread *td, struct freebsd6_freebsd32_pwrite_args *uap) 2046 { 2047 2048 return (kern_pwrite(td, uap->fd, uap->buf, uap->nbyte, 2049 PAIR32TO64(off_t, uap->offset))); 2050 } 2051 2052 int 2053 freebsd6_freebsd32_lseek(struct thread *td, struct freebsd6_freebsd32_lseek_args *uap) 2054 { 2055 int error; 2056 off_t pos; 2057 2058 error = kern_lseek(td, uap->fd, PAIR32TO64(off_t, uap->offset), 2059 uap->whence); 2060 /* Expand the quad return into two parts for eax and edx */ 2061 pos = *(off_t *)(td->td_retval); 2062 td->td_retval[RETVAL_LO] = pos & 0xffffffff; /* %eax */ 2063 td->td_retval[RETVAL_HI] = pos >> 32; /* %edx */ 2064 return error; 2065 } 2066 2067 int 2068 freebsd6_freebsd32_truncate(struct thread *td, struct freebsd6_freebsd32_truncate_args *uap) 2069 { 2070 2071 return (kern_truncate(td, uap->path, UIO_USERSPACE, 2072 PAIR32TO64(off_t, uap->length))); 2073 } 2074 2075 int 2076 freebsd6_freebsd32_ftruncate(struct thread *td, struct freebsd6_freebsd32_ftruncate_args *uap) 2077 { 2078 2079 return (kern_ftruncate(td, uap->fd, PAIR32TO64(off_t, uap->length))); 2080 } 2081 #endif /* COMPAT_FREEBSD6 */ 2082 2083 struct sf_hdtr32 { 2084 uint32_t headers; 2085 int hdr_cnt; 2086 uint32_t trailers; 2087 int trl_cnt; 2088 }; 2089 2090 static int 2091 freebsd32_do_sendfile(struct thread *td, 2092 struct freebsd32_sendfile_args *uap, int compat) 2093 { 2094 struct sf_hdtr32 hdtr32; 2095 struct sf_hdtr hdtr; 2096 struct uio *hdr_uio, *trl_uio; 2097 struct file *fp; 2098 cap_rights_t rights; 2099 struct iovec32 *iov32; 2100 off_t offset, sbytes; 2101 int error; 2102 2103 offset = PAIR32TO64(off_t, uap->offset); 2104 if (offset < 0) 2105 return (EINVAL); 2106 2107 hdr_uio = trl_uio = NULL; 2108 2109 if (uap->hdtr != NULL) { 2110 error = copyin(uap->hdtr, &hdtr32, sizeof(hdtr32)); 2111 if (error) 2112 goto out; 2113 PTRIN_CP(hdtr32, hdtr, headers); 2114 CP(hdtr32, hdtr, hdr_cnt); 2115 PTRIN_CP(hdtr32, hdtr, trailers); 2116 CP(hdtr32, hdtr, trl_cnt); 2117 2118 if (hdtr.headers != NULL) { 2119 iov32 = PTRIN(hdtr32.headers); 2120 error = freebsd32_copyinuio(iov32, 2121 hdtr32.hdr_cnt, &hdr_uio); 2122 if (error) 2123 goto out; 2124 #ifdef COMPAT_FREEBSD4 2125 /* 2126 * In FreeBSD < 5.0 the nbytes to send also included 2127 * the header. If compat is specified subtract the 2128 * header size from nbytes. 2129 */ 2130 if (compat) { 2131 if (uap->nbytes > hdr_uio->uio_resid) 2132 uap->nbytes -= hdr_uio->uio_resid; 2133 else 2134 uap->nbytes = 0; 2135 } 2136 #endif 2137 } 2138 if (hdtr.trailers != NULL) { 2139 iov32 = PTRIN(hdtr32.trailers); 2140 error = freebsd32_copyinuio(iov32, 2141 hdtr32.trl_cnt, &trl_uio); 2142 if (error) 2143 goto out; 2144 } 2145 } 2146 2147 AUDIT_ARG_FD(uap->fd); 2148 2149 if ((error = fget_read(td, uap->fd, 2150 cap_rights_init_one(&rights, CAP_PREAD), &fp)) != 0) 2151 goto out; 2152 2153 error = fo_sendfile(fp, uap->s, hdr_uio, trl_uio, offset, 2154 uap->nbytes, &sbytes, uap->flags, td); 2155 fdrop(fp, td); 2156 2157 if (uap->sbytes != NULL) 2158 copyout(&sbytes, uap->sbytes, sizeof(off_t)); 2159 2160 out: 2161 if (hdr_uio) 2162 free(hdr_uio, M_IOV); 2163 if (trl_uio) 2164 free(trl_uio, M_IOV); 2165 return (error); 2166 } 2167 2168 #ifdef COMPAT_FREEBSD4 2169 int 2170 freebsd4_freebsd32_sendfile(struct thread *td, 2171 struct freebsd4_freebsd32_sendfile_args *uap) 2172 { 2173 return (freebsd32_do_sendfile(td, 2174 (struct freebsd32_sendfile_args *)uap, 1)); 2175 } 2176 #endif 2177 2178 int 2179 freebsd32_sendfile(struct thread *td, struct freebsd32_sendfile_args *uap) 2180 { 2181 2182 return (freebsd32_do_sendfile(td, uap, 0)); 2183 } 2184 2185 static void 2186 copy_stat(struct stat *in, struct stat32 *out) 2187 { 2188 2189 #ifndef __amd64__ 2190 /* 2191 * 32-bit architectures other than i386 have 64-bit time_t. This 2192 * results in struct timespec32 with 12 bytes for tv_sec and tv_nsec, 2193 * and 4 bytes of padding. Zero the padding holes in struct stat32. 2194 */ 2195 bzero(&out->st_atim, sizeof(out->st_atim)); 2196 bzero(&out->st_mtim, sizeof(out->st_mtim)); 2197 bzero(&out->st_ctim, sizeof(out->st_ctim)); 2198 bzero(&out->st_birthtim, sizeof(out->st_birthtim)); 2199 #endif 2200 CP(*in, *out, st_dev); 2201 CP(*in, *out, st_ino); 2202 CP(*in, *out, st_mode); 2203 CP(*in, *out, st_nlink); 2204 CP(*in, *out, st_uid); 2205 CP(*in, *out, st_gid); 2206 CP(*in, *out, st_rdev); 2207 TS_CP(*in, *out, st_atim); 2208 TS_CP(*in, *out, st_mtim); 2209 TS_CP(*in, *out, st_ctim); 2210 CP(*in, *out, st_size); 2211 CP(*in, *out, st_blocks); 2212 CP(*in, *out, st_blksize); 2213 CP(*in, *out, st_flags); 2214 CP(*in, *out, st_gen); 2215 TS_CP(*in, *out, st_birthtim); 2216 out->st_padding0 = 0; 2217 out->st_padding1 = 0; 2218 #ifdef __STAT32_TIME_T_EXT 2219 out->st_atim_ext = 0; 2220 out->st_mtim_ext = 0; 2221 out->st_ctim_ext = 0; 2222 out->st_btim_ext = 0; 2223 #endif 2224 bzero(out->st_spare, sizeof(out->st_spare)); 2225 } 2226 2227 #ifdef COMPAT_43 2228 static void 2229 copy_ostat(struct stat *in, struct ostat32 *out) 2230 { 2231 2232 bzero(out, sizeof(*out)); 2233 CP(*in, *out, st_dev); 2234 CP(*in, *out, st_ino); 2235 CP(*in, *out, st_mode); 2236 CP(*in, *out, st_nlink); 2237 CP(*in, *out, st_uid); 2238 CP(*in, *out, st_gid); 2239 CP(*in, *out, st_rdev); 2240 out->st_size = MIN(in->st_size, INT32_MAX); 2241 TS_CP(*in, *out, st_atim); 2242 TS_CP(*in, *out, st_mtim); 2243 TS_CP(*in, *out, st_ctim); 2244 CP(*in, *out, st_blksize); 2245 CP(*in, *out, st_blocks); 2246 CP(*in, *out, st_flags); 2247 CP(*in, *out, st_gen); 2248 } 2249 #endif 2250 2251 #ifdef COMPAT_43 2252 int 2253 ofreebsd32_stat(struct thread *td, struct ofreebsd32_stat_args *uap) 2254 { 2255 struct stat sb; 2256 struct ostat32 sb32; 2257 int error; 2258 2259 error = kern_statat(td, 0, AT_FDCWD, uap->path, UIO_USERSPACE, 2260 &sb, NULL); 2261 if (error) 2262 return (error); 2263 copy_ostat(&sb, &sb32); 2264 error = copyout(&sb32, uap->ub, sizeof (sb32)); 2265 return (error); 2266 } 2267 #endif 2268 2269 int 2270 freebsd32_fstat(struct thread *td, struct freebsd32_fstat_args *uap) 2271 { 2272 struct stat ub; 2273 struct stat32 ub32; 2274 int error; 2275 2276 error = kern_fstat(td, uap->fd, &ub); 2277 if (error) 2278 return (error); 2279 copy_stat(&ub, &ub32); 2280 error = copyout(&ub32, uap->sb, sizeof(ub32)); 2281 return (error); 2282 } 2283 2284 #ifdef COMPAT_43 2285 int 2286 ofreebsd32_fstat(struct thread *td, struct ofreebsd32_fstat_args *uap) 2287 { 2288 struct stat ub; 2289 struct ostat32 ub32; 2290 int error; 2291 2292 error = kern_fstat(td, uap->fd, &ub); 2293 if (error) 2294 return (error); 2295 copy_ostat(&ub, &ub32); 2296 error = copyout(&ub32, uap->sb, sizeof(ub32)); 2297 return (error); 2298 } 2299 #endif 2300 2301 int 2302 freebsd32_fstatat(struct thread *td, struct freebsd32_fstatat_args *uap) 2303 { 2304 struct stat ub; 2305 struct stat32 ub32; 2306 int error; 2307 2308 error = kern_statat(td, uap->flag, uap->fd, uap->path, UIO_USERSPACE, 2309 &ub, NULL); 2310 if (error) 2311 return (error); 2312 copy_stat(&ub, &ub32); 2313 error = copyout(&ub32, uap->buf, sizeof(ub32)); 2314 return (error); 2315 } 2316 2317 #ifdef COMPAT_43 2318 int 2319 ofreebsd32_lstat(struct thread *td, struct ofreebsd32_lstat_args *uap) 2320 { 2321 struct stat sb; 2322 struct ostat32 sb32; 2323 int error; 2324 2325 error = kern_statat(td, AT_SYMLINK_NOFOLLOW, AT_FDCWD, uap->path, 2326 UIO_USERSPACE, &sb, NULL); 2327 if (error) 2328 return (error); 2329 copy_ostat(&sb, &sb32); 2330 error = copyout(&sb32, uap->ub, sizeof (sb32)); 2331 return (error); 2332 } 2333 #endif 2334 2335 int 2336 freebsd32_fhstat(struct thread *td, struct freebsd32_fhstat_args *uap) 2337 { 2338 struct stat sb; 2339 struct stat32 sb32; 2340 struct fhandle fh; 2341 int error; 2342 2343 error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t)); 2344 if (error != 0) 2345 return (error); 2346 error = kern_fhstat(td, fh, &sb); 2347 if (error != 0) 2348 return (error); 2349 copy_stat(&sb, &sb32); 2350 error = copyout(&sb32, uap->sb, sizeof (sb32)); 2351 return (error); 2352 } 2353 2354 #if defined(COMPAT_FREEBSD11) 2355 extern int ino64_trunc_error; 2356 2357 static int 2358 freebsd11_cvtstat32(struct stat *in, struct freebsd11_stat32 *out) 2359 { 2360 2361 #ifndef __amd64__ 2362 /* 2363 * 32-bit architectures other than i386 have 64-bit time_t. This 2364 * results in struct timespec32 with 12 bytes for tv_sec and tv_nsec, 2365 * and 4 bytes of padding. Zero the padding holes in freebsd11_stat32. 2366 */ 2367 bzero(&out->st_atim, sizeof(out->st_atim)); 2368 bzero(&out->st_mtim, sizeof(out->st_mtim)); 2369 bzero(&out->st_ctim, sizeof(out->st_ctim)); 2370 bzero(&out->st_birthtim, sizeof(out->st_birthtim)); 2371 #endif 2372 2373 CP(*in, *out, st_ino); 2374 if (in->st_ino != out->st_ino) { 2375 switch (ino64_trunc_error) { 2376 default: 2377 case 0: 2378 break; 2379 case 1: 2380 return (EOVERFLOW); 2381 case 2: 2382 out->st_ino = UINT32_MAX; 2383 break; 2384 } 2385 } 2386 CP(*in, *out, st_nlink); 2387 if (in->st_nlink != out->st_nlink) { 2388 switch (ino64_trunc_error) { 2389 default: 2390 case 0: 2391 break; 2392 case 1: 2393 return (EOVERFLOW); 2394 case 2: 2395 out->st_nlink = UINT16_MAX; 2396 break; 2397 } 2398 } 2399 out->st_dev = in->st_dev; 2400 if (out->st_dev != in->st_dev) { 2401 switch (ino64_trunc_error) { 2402 default: 2403 break; 2404 case 1: 2405 return (EOVERFLOW); 2406 } 2407 } 2408 CP(*in, *out, st_mode); 2409 CP(*in, *out, st_uid); 2410 CP(*in, *out, st_gid); 2411 out->st_rdev = in->st_rdev; 2412 if (out->st_rdev != in->st_rdev) { 2413 switch (ino64_trunc_error) { 2414 default: 2415 break; 2416 case 1: 2417 return (EOVERFLOW); 2418 } 2419 } 2420 TS_CP(*in, *out, st_atim); 2421 TS_CP(*in, *out, st_mtim); 2422 TS_CP(*in, *out, st_ctim); 2423 CP(*in, *out, st_size); 2424 CP(*in, *out, st_blocks); 2425 CP(*in, *out, st_blksize); 2426 CP(*in, *out, st_flags); 2427 CP(*in, *out, st_gen); 2428 TS_CP(*in, *out, st_birthtim); 2429 out->st_lspare = 0; 2430 bzero((char *)&out->st_birthtim + sizeof(out->st_birthtim), 2431 sizeof(*out) - offsetof(struct freebsd11_stat32, 2432 st_birthtim) - sizeof(out->st_birthtim)); 2433 return (0); 2434 } 2435 2436 int 2437 freebsd11_freebsd32_stat(struct thread *td, 2438 struct freebsd11_freebsd32_stat_args *uap) 2439 { 2440 struct stat sb; 2441 struct freebsd11_stat32 sb32; 2442 int error; 2443 2444 error = kern_statat(td, 0, AT_FDCWD, uap->path, UIO_USERSPACE, 2445 &sb, NULL); 2446 if (error != 0) 2447 return (error); 2448 error = freebsd11_cvtstat32(&sb, &sb32); 2449 if (error == 0) 2450 error = copyout(&sb32, uap->ub, sizeof (sb32)); 2451 return (error); 2452 } 2453 2454 int 2455 freebsd11_freebsd32_fstat(struct thread *td, 2456 struct freebsd11_freebsd32_fstat_args *uap) 2457 { 2458 struct stat sb; 2459 struct freebsd11_stat32 sb32; 2460 int error; 2461 2462 error = kern_fstat(td, uap->fd, &sb); 2463 if (error != 0) 2464 return (error); 2465 error = freebsd11_cvtstat32(&sb, &sb32); 2466 if (error == 0) 2467 error = copyout(&sb32, uap->sb, sizeof (sb32)); 2468 return (error); 2469 } 2470 2471 int 2472 freebsd11_freebsd32_fstatat(struct thread *td, 2473 struct freebsd11_freebsd32_fstatat_args *uap) 2474 { 2475 struct stat sb; 2476 struct freebsd11_stat32 sb32; 2477 int error; 2478 2479 error = kern_statat(td, uap->flag, uap->fd, uap->path, UIO_USERSPACE, 2480 &sb, NULL); 2481 if (error != 0) 2482 return (error); 2483 error = freebsd11_cvtstat32(&sb, &sb32); 2484 if (error == 0) 2485 error = copyout(&sb32, uap->buf, sizeof (sb32)); 2486 return (error); 2487 } 2488 2489 int 2490 freebsd11_freebsd32_lstat(struct thread *td, 2491 struct freebsd11_freebsd32_lstat_args *uap) 2492 { 2493 struct stat sb; 2494 struct freebsd11_stat32 sb32; 2495 int error; 2496 2497 error = kern_statat(td, AT_SYMLINK_NOFOLLOW, AT_FDCWD, uap->path, 2498 UIO_USERSPACE, &sb, NULL); 2499 if (error != 0) 2500 return (error); 2501 error = freebsd11_cvtstat32(&sb, &sb32); 2502 if (error == 0) 2503 error = copyout(&sb32, uap->ub, sizeof (sb32)); 2504 return (error); 2505 } 2506 2507 int 2508 freebsd11_freebsd32_fhstat(struct thread *td, 2509 struct freebsd11_freebsd32_fhstat_args *uap) 2510 { 2511 struct stat sb; 2512 struct freebsd11_stat32 sb32; 2513 struct fhandle fh; 2514 int error; 2515 2516 error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t)); 2517 if (error != 0) 2518 return (error); 2519 error = kern_fhstat(td, fh, &sb); 2520 if (error != 0) 2521 return (error); 2522 error = freebsd11_cvtstat32(&sb, &sb32); 2523 if (error == 0) 2524 error = copyout(&sb32, uap->sb, sizeof (sb32)); 2525 return (error); 2526 } 2527 2528 static int 2529 freebsd11_cvtnstat32(struct stat *sb, struct nstat32 *nsb32) 2530 { 2531 struct nstat nsb; 2532 int error; 2533 2534 error = freebsd11_cvtnstat(sb, &nsb); 2535 if (error != 0) 2536 return (error); 2537 2538 bzero(nsb32, sizeof(*nsb32)); 2539 CP(nsb, *nsb32, st_dev); 2540 CP(nsb, *nsb32, st_ino); 2541 CP(nsb, *nsb32, st_mode); 2542 CP(nsb, *nsb32, st_nlink); 2543 CP(nsb, *nsb32, st_uid); 2544 CP(nsb, *nsb32, st_gid); 2545 CP(nsb, *nsb32, st_rdev); 2546 CP(nsb, *nsb32, st_atim.tv_sec); 2547 CP(nsb, *nsb32, st_atim.tv_nsec); 2548 CP(nsb, *nsb32, st_mtim.tv_sec); 2549 CP(nsb, *nsb32, st_mtim.tv_nsec); 2550 CP(nsb, *nsb32, st_ctim.tv_sec); 2551 CP(nsb, *nsb32, st_ctim.tv_nsec); 2552 CP(nsb, *nsb32, st_size); 2553 CP(nsb, *nsb32, st_blocks); 2554 CP(nsb, *nsb32, st_blksize); 2555 CP(nsb, *nsb32, st_flags); 2556 CP(nsb, *nsb32, st_gen); 2557 CP(nsb, *nsb32, st_birthtim.tv_sec); 2558 CP(nsb, *nsb32, st_birthtim.tv_nsec); 2559 return (0); 2560 } 2561 2562 int 2563 freebsd11_freebsd32_nstat(struct thread *td, 2564 struct freebsd11_freebsd32_nstat_args *uap) 2565 { 2566 struct stat sb; 2567 struct nstat32 nsb; 2568 int error; 2569 2570 error = kern_statat(td, 0, AT_FDCWD, uap->path, UIO_USERSPACE, 2571 &sb, NULL); 2572 if (error != 0) 2573 return (error); 2574 error = freebsd11_cvtnstat32(&sb, &nsb); 2575 if (error != 0) 2576 error = copyout(&nsb, uap->ub, sizeof (nsb)); 2577 return (error); 2578 } 2579 2580 int 2581 freebsd11_freebsd32_nlstat(struct thread *td, 2582 struct freebsd11_freebsd32_nlstat_args *uap) 2583 { 2584 struct stat sb; 2585 struct nstat32 nsb; 2586 int error; 2587 2588 error = kern_statat(td, AT_SYMLINK_NOFOLLOW, AT_FDCWD, uap->path, 2589 UIO_USERSPACE, &sb, NULL); 2590 if (error != 0) 2591 return (error); 2592 error = freebsd11_cvtnstat32(&sb, &nsb); 2593 if (error == 0) 2594 error = copyout(&nsb, uap->ub, sizeof (nsb)); 2595 return (error); 2596 } 2597 2598 int 2599 freebsd11_freebsd32_nfstat(struct thread *td, 2600 struct freebsd11_freebsd32_nfstat_args *uap) 2601 { 2602 struct nstat32 nub; 2603 struct stat ub; 2604 int error; 2605 2606 error = kern_fstat(td, uap->fd, &ub); 2607 if (error != 0) 2608 return (error); 2609 error = freebsd11_cvtnstat32(&ub, &nub); 2610 if (error == 0) 2611 error = copyout(&nub, uap->sb, sizeof(nub)); 2612 return (error); 2613 } 2614 #endif 2615 2616 int 2617 freebsd32___sysctl(struct thread *td, struct freebsd32___sysctl_args *uap) 2618 { 2619 int error, name[CTL_MAXNAME]; 2620 size_t j, oldlen; 2621 uint32_t tmp; 2622 2623 if (uap->namelen > CTL_MAXNAME || uap->namelen < 2) 2624 return (EINVAL); 2625 error = copyin(uap->name, name, uap->namelen * sizeof(int)); 2626 if (error) 2627 return (error); 2628 if (uap->oldlenp) { 2629 error = fueword32(uap->oldlenp, &tmp); 2630 oldlen = tmp; 2631 } else { 2632 oldlen = 0; 2633 } 2634 if (error != 0) 2635 return (EFAULT); 2636 error = userland_sysctl(td, name, uap->namelen, 2637 uap->old, &oldlen, 1, 2638 uap->new, uap->newlen, &j, SCTL_MASK32); 2639 if (error) 2640 return (error); 2641 if (uap->oldlenp) 2642 suword32(uap->oldlenp, j); 2643 return (0); 2644 } 2645 2646 int 2647 freebsd32___sysctlbyname(struct thread *td, 2648 struct freebsd32___sysctlbyname_args *uap) 2649 { 2650 size_t oldlen, rv; 2651 int error; 2652 uint32_t tmp; 2653 2654 if (uap->oldlenp != NULL) { 2655 error = fueword32(uap->oldlenp, &tmp); 2656 oldlen = tmp; 2657 } else { 2658 error = oldlen = 0; 2659 } 2660 if (error != 0) 2661 return (EFAULT); 2662 error = kern___sysctlbyname(td, uap->name, uap->namelen, uap->old, 2663 &oldlen, uap->new, uap->newlen, &rv, SCTL_MASK32, 1); 2664 if (error != 0) 2665 return (error); 2666 if (uap->oldlenp != NULL) 2667 error = suword32(uap->oldlenp, rv); 2668 2669 return (error); 2670 } 2671 2672 int 2673 freebsd32_jail(struct thread *td, struct freebsd32_jail_args *uap) 2674 { 2675 uint32_t version; 2676 int error; 2677 struct jail j; 2678 2679 error = copyin(uap->jail, &version, sizeof(uint32_t)); 2680 if (error) 2681 return (error); 2682 2683 switch (version) { 2684 case 0: 2685 { 2686 /* FreeBSD single IPv4 jails. */ 2687 struct jail32_v0 j32_v0; 2688 2689 bzero(&j, sizeof(struct jail)); 2690 error = copyin(uap->jail, &j32_v0, sizeof(struct jail32_v0)); 2691 if (error) 2692 return (error); 2693 CP(j32_v0, j, version); 2694 PTRIN_CP(j32_v0, j, path); 2695 PTRIN_CP(j32_v0, j, hostname); 2696 j.ip4s = htonl(j32_v0.ip_number); /* jail_v0 is host order */ 2697 break; 2698 } 2699 2700 case 1: 2701 /* 2702 * Version 1 was used by multi-IPv4 jail implementations 2703 * that never made it into the official kernel. 2704 */ 2705 return (EINVAL); 2706 2707 case 2: /* JAIL_API_VERSION */ 2708 { 2709 /* FreeBSD multi-IPv4/IPv6,noIP jails. */ 2710 struct jail32 j32; 2711 2712 error = copyin(uap->jail, &j32, sizeof(struct jail32)); 2713 if (error) 2714 return (error); 2715 CP(j32, j, version); 2716 PTRIN_CP(j32, j, path); 2717 PTRIN_CP(j32, j, hostname); 2718 PTRIN_CP(j32, j, jailname); 2719 CP(j32, j, ip4s); 2720 CP(j32, j, ip6s); 2721 PTRIN_CP(j32, j, ip4); 2722 PTRIN_CP(j32, j, ip6); 2723 break; 2724 } 2725 2726 default: 2727 /* Sci-Fi jails are not supported, sorry. */ 2728 return (EINVAL); 2729 } 2730 return (kern_jail(td, &j)); 2731 } 2732 2733 int 2734 freebsd32_jail_set(struct thread *td, struct freebsd32_jail_set_args *uap) 2735 { 2736 struct uio *auio; 2737 int error; 2738 2739 /* Check that we have an even number of iovecs. */ 2740 if (uap->iovcnt & 1) 2741 return (EINVAL); 2742 2743 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 2744 if (error) 2745 return (error); 2746 error = kern_jail_set(td, auio, uap->flags); 2747 free(auio, M_IOV); 2748 return (error); 2749 } 2750 2751 int 2752 freebsd32_jail_get(struct thread *td, struct freebsd32_jail_get_args *uap) 2753 { 2754 struct iovec32 iov32; 2755 struct uio *auio; 2756 int error, i; 2757 2758 /* Check that we have an even number of iovecs. */ 2759 if (uap->iovcnt & 1) 2760 return (EINVAL); 2761 2762 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 2763 if (error) 2764 return (error); 2765 error = kern_jail_get(td, auio, uap->flags); 2766 if (error == 0) 2767 for (i = 0; i < uap->iovcnt; i++) { 2768 PTROUT_CP(auio->uio_iov[i], iov32, iov_base); 2769 CP(auio->uio_iov[i], iov32, iov_len); 2770 error = copyout(&iov32, uap->iovp + i, sizeof(iov32)); 2771 if (error != 0) 2772 break; 2773 } 2774 free(auio, M_IOV); 2775 return (error); 2776 } 2777 2778 int 2779 freebsd32_sigaction(struct thread *td, struct freebsd32_sigaction_args *uap) 2780 { 2781 struct sigaction32 s32; 2782 struct sigaction sa, osa, *sap; 2783 int error; 2784 2785 if (uap->act) { 2786 error = copyin(uap->act, &s32, sizeof(s32)); 2787 if (error) 2788 return (error); 2789 sa.sa_handler = PTRIN(s32.sa_u); 2790 CP(s32, sa, sa_flags); 2791 CP(s32, sa, sa_mask); 2792 sap = &sa; 2793 } else 2794 sap = NULL; 2795 error = kern_sigaction(td, uap->sig, sap, &osa, 0); 2796 if (error == 0 && uap->oact != NULL) { 2797 s32.sa_u = PTROUT(osa.sa_handler); 2798 CP(osa, s32, sa_flags); 2799 CP(osa, s32, sa_mask); 2800 error = copyout(&s32, uap->oact, sizeof(s32)); 2801 } 2802 return (error); 2803 } 2804 2805 #ifdef COMPAT_FREEBSD4 2806 int 2807 freebsd4_freebsd32_sigaction(struct thread *td, 2808 struct freebsd4_freebsd32_sigaction_args *uap) 2809 { 2810 struct sigaction32 s32; 2811 struct sigaction sa, osa, *sap; 2812 int error; 2813 2814 if (uap->act) { 2815 error = copyin(uap->act, &s32, sizeof(s32)); 2816 if (error) 2817 return (error); 2818 sa.sa_handler = PTRIN(s32.sa_u); 2819 CP(s32, sa, sa_flags); 2820 CP(s32, sa, sa_mask); 2821 sap = &sa; 2822 } else 2823 sap = NULL; 2824 error = kern_sigaction(td, uap->sig, sap, &osa, KSA_FREEBSD4); 2825 if (error == 0 && uap->oact != NULL) { 2826 s32.sa_u = PTROUT(osa.sa_handler); 2827 CP(osa, s32, sa_flags); 2828 CP(osa, s32, sa_mask); 2829 error = copyout(&s32, uap->oact, sizeof(s32)); 2830 } 2831 return (error); 2832 } 2833 #endif 2834 2835 #ifdef COMPAT_43 2836 struct osigaction32 { 2837 uint32_t sa_u; 2838 osigset_t sa_mask; 2839 int sa_flags; 2840 }; 2841 2842 #define ONSIG 32 2843 2844 int 2845 ofreebsd32_sigaction(struct thread *td, 2846 struct ofreebsd32_sigaction_args *uap) 2847 { 2848 struct osigaction32 s32; 2849 struct sigaction sa, osa, *sap; 2850 int error; 2851 2852 if (uap->signum <= 0 || uap->signum >= ONSIG) 2853 return (EINVAL); 2854 2855 if (uap->nsa) { 2856 error = copyin(uap->nsa, &s32, sizeof(s32)); 2857 if (error) 2858 return (error); 2859 sa.sa_handler = PTRIN(s32.sa_u); 2860 CP(s32, sa, sa_flags); 2861 OSIG2SIG(s32.sa_mask, sa.sa_mask); 2862 sap = &sa; 2863 } else 2864 sap = NULL; 2865 error = kern_sigaction(td, uap->signum, sap, &osa, KSA_OSIGSET); 2866 if (error == 0 && uap->osa != NULL) { 2867 s32.sa_u = PTROUT(osa.sa_handler); 2868 CP(osa, s32, sa_flags); 2869 SIG2OSIG(osa.sa_mask, s32.sa_mask); 2870 error = copyout(&s32, uap->osa, sizeof(s32)); 2871 } 2872 return (error); 2873 } 2874 2875 struct sigvec32 { 2876 uint32_t sv_handler; 2877 int sv_mask; 2878 int sv_flags; 2879 }; 2880 2881 int 2882 ofreebsd32_sigvec(struct thread *td, 2883 struct ofreebsd32_sigvec_args *uap) 2884 { 2885 struct sigvec32 vec; 2886 struct sigaction sa, osa, *sap; 2887 int error; 2888 2889 if (uap->signum <= 0 || uap->signum >= ONSIG) 2890 return (EINVAL); 2891 2892 if (uap->nsv) { 2893 error = copyin(uap->nsv, &vec, sizeof(vec)); 2894 if (error) 2895 return (error); 2896 sa.sa_handler = PTRIN(vec.sv_handler); 2897 OSIG2SIG(vec.sv_mask, sa.sa_mask); 2898 sa.sa_flags = vec.sv_flags; 2899 sa.sa_flags ^= SA_RESTART; 2900 sap = &sa; 2901 } else 2902 sap = NULL; 2903 error = kern_sigaction(td, uap->signum, sap, &osa, KSA_OSIGSET); 2904 if (error == 0 && uap->osv != NULL) { 2905 vec.sv_handler = PTROUT(osa.sa_handler); 2906 SIG2OSIG(osa.sa_mask, vec.sv_mask); 2907 vec.sv_flags = osa.sa_flags; 2908 vec.sv_flags &= ~SA_NOCLDWAIT; 2909 vec.sv_flags ^= SA_RESTART; 2910 error = copyout(&vec, uap->osv, sizeof(vec)); 2911 } 2912 return (error); 2913 } 2914 2915 struct sigstack32 { 2916 uint32_t ss_sp; 2917 int ss_onstack; 2918 }; 2919 2920 int 2921 ofreebsd32_sigstack(struct thread *td, 2922 struct ofreebsd32_sigstack_args *uap) 2923 { 2924 struct sigstack32 s32; 2925 struct sigstack nss, oss; 2926 int error = 0, unss; 2927 2928 if (uap->nss != NULL) { 2929 error = copyin(uap->nss, &s32, sizeof(s32)); 2930 if (error) 2931 return (error); 2932 nss.ss_sp = PTRIN(s32.ss_sp); 2933 CP(s32, nss, ss_onstack); 2934 unss = 1; 2935 } else { 2936 unss = 0; 2937 } 2938 oss.ss_sp = td->td_sigstk.ss_sp; 2939 oss.ss_onstack = sigonstack(cpu_getstack(td)); 2940 if (unss) { 2941 td->td_sigstk.ss_sp = nss.ss_sp; 2942 td->td_sigstk.ss_size = 0; 2943 td->td_sigstk.ss_flags |= (nss.ss_onstack & SS_ONSTACK); 2944 td->td_pflags |= TDP_ALTSTACK; 2945 } 2946 if (uap->oss != NULL) { 2947 s32.ss_sp = PTROUT(oss.ss_sp); 2948 CP(oss, s32, ss_onstack); 2949 error = copyout(&s32, uap->oss, sizeof(s32)); 2950 } 2951 return (error); 2952 } 2953 #endif 2954 2955 int 2956 freebsd32_nanosleep(struct thread *td, struct freebsd32_nanosleep_args *uap) 2957 { 2958 2959 return (freebsd32_user_clock_nanosleep(td, CLOCK_REALTIME, 2960 TIMER_RELTIME, uap->rqtp, uap->rmtp)); 2961 } 2962 2963 int 2964 freebsd32_clock_nanosleep(struct thread *td, 2965 struct freebsd32_clock_nanosleep_args *uap) 2966 { 2967 int error; 2968 2969 error = freebsd32_user_clock_nanosleep(td, uap->clock_id, uap->flags, 2970 uap->rqtp, uap->rmtp); 2971 return (kern_posix_error(td, error)); 2972 } 2973 2974 static int 2975 freebsd32_user_clock_nanosleep(struct thread *td, clockid_t clock_id, 2976 int flags, const struct timespec32 *ua_rqtp, struct timespec32 *ua_rmtp) 2977 { 2978 struct timespec32 rmt32, rqt32; 2979 struct timespec rmt, rqt; 2980 int error, error2; 2981 2982 error = copyin(ua_rqtp, &rqt32, sizeof(rqt32)); 2983 if (error) 2984 return (error); 2985 2986 CP(rqt32, rqt, tv_sec); 2987 CP(rqt32, rqt, tv_nsec); 2988 2989 error = kern_clock_nanosleep(td, clock_id, flags, &rqt, &rmt); 2990 if (error == EINTR && ua_rmtp != NULL && (flags & TIMER_ABSTIME) == 0) { 2991 CP(rmt, rmt32, tv_sec); 2992 CP(rmt, rmt32, tv_nsec); 2993 2994 error2 = copyout(&rmt32, ua_rmtp, sizeof(rmt32)); 2995 if (error2 != 0) 2996 error = error2; 2997 } 2998 return (error); 2999 } 3000 3001 int 3002 freebsd32_clock_gettime(struct thread *td, 3003 struct freebsd32_clock_gettime_args *uap) 3004 { 3005 struct timespec ats; 3006 struct timespec32 ats32; 3007 int error; 3008 3009 error = kern_clock_gettime(td, uap->clock_id, &ats); 3010 if (error == 0) { 3011 CP(ats, ats32, tv_sec); 3012 CP(ats, ats32, tv_nsec); 3013 error = copyout(&ats32, uap->tp, sizeof(ats32)); 3014 } 3015 return (error); 3016 } 3017 3018 int 3019 freebsd32_clock_settime(struct thread *td, 3020 struct freebsd32_clock_settime_args *uap) 3021 { 3022 struct timespec ats; 3023 struct timespec32 ats32; 3024 int error; 3025 3026 error = copyin(uap->tp, &ats32, sizeof(ats32)); 3027 if (error) 3028 return (error); 3029 CP(ats32, ats, tv_sec); 3030 CP(ats32, ats, tv_nsec); 3031 3032 return (kern_clock_settime(td, uap->clock_id, &ats)); 3033 } 3034 3035 int 3036 freebsd32_clock_getres(struct thread *td, 3037 struct freebsd32_clock_getres_args *uap) 3038 { 3039 struct timespec ts; 3040 struct timespec32 ts32; 3041 int error; 3042 3043 if (uap->tp == NULL) 3044 return (0); 3045 error = kern_clock_getres(td, uap->clock_id, &ts); 3046 if (error == 0) { 3047 CP(ts, ts32, tv_sec); 3048 CP(ts, ts32, tv_nsec); 3049 error = copyout(&ts32, uap->tp, sizeof(ts32)); 3050 } 3051 return (error); 3052 } 3053 3054 int freebsd32_ktimer_create(struct thread *td, 3055 struct freebsd32_ktimer_create_args *uap) 3056 { 3057 struct sigevent32 ev32; 3058 struct sigevent ev, *evp; 3059 int error, id; 3060 3061 if (uap->evp == NULL) { 3062 evp = NULL; 3063 } else { 3064 evp = &ev; 3065 error = copyin(uap->evp, &ev32, sizeof(ev32)); 3066 if (error != 0) 3067 return (error); 3068 error = convert_sigevent32(&ev32, &ev); 3069 if (error != 0) 3070 return (error); 3071 } 3072 error = kern_ktimer_create(td, uap->clock_id, evp, &id, -1); 3073 if (error == 0) { 3074 error = copyout(&id, uap->timerid, sizeof(int)); 3075 if (error != 0) 3076 kern_ktimer_delete(td, id); 3077 } 3078 return (error); 3079 } 3080 3081 int 3082 freebsd32_ktimer_settime(struct thread *td, 3083 struct freebsd32_ktimer_settime_args *uap) 3084 { 3085 struct itimerspec32 val32, oval32; 3086 struct itimerspec val, oval, *ovalp; 3087 int error; 3088 3089 error = copyin(uap->value, &val32, sizeof(val32)); 3090 if (error != 0) 3091 return (error); 3092 ITS_CP(val32, val); 3093 ovalp = uap->ovalue != NULL ? &oval : NULL; 3094 error = kern_ktimer_settime(td, uap->timerid, uap->flags, &val, ovalp); 3095 if (error == 0 && uap->ovalue != NULL) { 3096 ITS_CP(oval, oval32); 3097 error = copyout(&oval32, uap->ovalue, sizeof(oval32)); 3098 } 3099 return (error); 3100 } 3101 3102 int 3103 freebsd32_ktimer_gettime(struct thread *td, 3104 struct freebsd32_ktimer_gettime_args *uap) 3105 { 3106 struct itimerspec32 val32; 3107 struct itimerspec val; 3108 int error; 3109 3110 error = kern_ktimer_gettime(td, uap->timerid, &val); 3111 if (error == 0) { 3112 ITS_CP(val, val32); 3113 error = copyout(&val32, uap->value, sizeof(val32)); 3114 } 3115 return (error); 3116 } 3117 3118 int 3119 freebsd32_clock_getcpuclockid2(struct thread *td, 3120 struct freebsd32_clock_getcpuclockid2_args *uap) 3121 { 3122 clockid_t clk_id; 3123 int error; 3124 3125 error = kern_clock_getcpuclockid2(td, PAIR32TO64(id_t, uap->id), 3126 uap->which, &clk_id); 3127 if (error == 0) 3128 error = copyout(&clk_id, uap->clock_id, sizeof(clockid_t)); 3129 return (error); 3130 } 3131 3132 int 3133 freebsd32_thr_new(struct thread *td, 3134 struct freebsd32_thr_new_args *uap) 3135 { 3136 struct thr_param32 param32; 3137 struct thr_param param; 3138 int error; 3139 3140 if (uap->param_size < 0 || 3141 uap->param_size > sizeof(struct thr_param32)) 3142 return (EINVAL); 3143 bzero(¶m, sizeof(struct thr_param)); 3144 bzero(¶m32, sizeof(struct thr_param32)); 3145 error = copyin(uap->param, ¶m32, uap->param_size); 3146 if (error != 0) 3147 return (error); 3148 param.start_func = PTRIN(param32.start_func); 3149 param.arg = PTRIN(param32.arg); 3150 param.stack_base = PTRIN(param32.stack_base); 3151 param.stack_size = param32.stack_size; 3152 param.tls_base = PTRIN(param32.tls_base); 3153 param.tls_size = param32.tls_size; 3154 param.child_tid = PTRIN(param32.child_tid); 3155 param.parent_tid = PTRIN(param32.parent_tid); 3156 param.flags = param32.flags; 3157 param.rtp = PTRIN(param32.rtp); 3158 param.spare[0] = PTRIN(param32.spare[0]); 3159 param.spare[1] = PTRIN(param32.spare[1]); 3160 param.spare[2] = PTRIN(param32.spare[2]); 3161 3162 return (kern_thr_new(td, ¶m)); 3163 } 3164 3165 int 3166 freebsd32_thr_suspend(struct thread *td, struct freebsd32_thr_suspend_args *uap) 3167 { 3168 struct timespec32 ts32; 3169 struct timespec ts, *tsp; 3170 int error; 3171 3172 error = 0; 3173 tsp = NULL; 3174 if (uap->timeout != NULL) { 3175 error = copyin((const void *)uap->timeout, (void *)&ts32, 3176 sizeof(struct timespec32)); 3177 if (error != 0) 3178 return (error); 3179 ts.tv_sec = ts32.tv_sec; 3180 ts.tv_nsec = ts32.tv_nsec; 3181 tsp = &ts; 3182 } 3183 return (kern_thr_suspend(td, tsp)); 3184 } 3185 3186 void 3187 siginfo_to_siginfo32(const siginfo_t *src, struct siginfo32 *dst) 3188 { 3189 bzero(dst, sizeof(*dst)); 3190 dst->si_signo = src->si_signo; 3191 dst->si_errno = src->si_errno; 3192 dst->si_code = src->si_code; 3193 dst->si_pid = src->si_pid; 3194 dst->si_uid = src->si_uid; 3195 dst->si_status = src->si_status; 3196 dst->si_addr = (uintptr_t)src->si_addr; 3197 dst->si_value.sival_int = src->si_value.sival_int; 3198 dst->si_timerid = src->si_timerid; 3199 dst->si_overrun = src->si_overrun; 3200 } 3201 3202 #ifndef _FREEBSD32_SYSPROTO_H_ 3203 struct freebsd32_sigqueue_args { 3204 pid_t pid; 3205 int signum; 3206 /* union sigval32 */ int value; 3207 }; 3208 #endif 3209 int 3210 freebsd32_sigqueue(struct thread *td, struct freebsd32_sigqueue_args *uap) 3211 { 3212 union sigval sv; 3213 3214 /* 3215 * On 32-bit ABIs, sival_int and sival_ptr are the same. 3216 * On 64-bit little-endian ABIs, the low bits are the same. 3217 * In 64-bit big-endian ABIs, sival_int overlaps with 3218 * sival_ptr's HIGH bits. We choose to support sival_int 3219 * rather than sival_ptr in this case as it seems to be 3220 * more common. 3221 */ 3222 bzero(&sv, sizeof(sv)); 3223 sv.sival_int = (uint32_t)(uint64_t)uap->value; 3224 3225 return (kern_sigqueue(td, uap->pid, uap->signum, &sv)); 3226 } 3227 3228 int 3229 freebsd32_sigtimedwait(struct thread *td, struct freebsd32_sigtimedwait_args *uap) 3230 { 3231 struct timespec32 ts32; 3232 struct timespec ts; 3233 struct timespec *timeout; 3234 sigset_t set; 3235 ksiginfo_t ksi; 3236 struct siginfo32 si32; 3237 int error; 3238 3239 if (uap->timeout) { 3240 error = copyin(uap->timeout, &ts32, sizeof(ts32)); 3241 if (error) 3242 return (error); 3243 ts.tv_sec = ts32.tv_sec; 3244 ts.tv_nsec = ts32.tv_nsec; 3245 timeout = &ts; 3246 } else 3247 timeout = NULL; 3248 3249 error = copyin(uap->set, &set, sizeof(set)); 3250 if (error) 3251 return (error); 3252 3253 error = kern_sigtimedwait(td, set, &ksi, timeout); 3254 if (error) 3255 return (error); 3256 3257 if (uap->info) { 3258 siginfo_to_siginfo32(&ksi.ksi_info, &si32); 3259 error = copyout(&si32, uap->info, sizeof(struct siginfo32)); 3260 } 3261 3262 if (error == 0) 3263 td->td_retval[0] = ksi.ksi_signo; 3264 return (error); 3265 } 3266 3267 /* 3268 * MPSAFE 3269 */ 3270 int 3271 freebsd32_sigwaitinfo(struct thread *td, struct freebsd32_sigwaitinfo_args *uap) 3272 { 3273 ksiginfo_t ksi; 3274 struct siginfo32 si32; 3275 sigset_t set; 3276 int error; 3277 3278 error = copyin(uap->set, &set, sizeof(set)); 3279 if (error) 3280 return (error); 3281 3282 error = kern_sigtimedwait(td, set, &ksi, NULL); 3283 if (error) 3284 return (error); 3285 3286 if (uap->info) { 3287 siginfo_to_siginfo32(&ksi.ksi_info, &si32); 3288 error = copyout(&si32, uap->info, sizeof(struct siginfo32)); 3289 } 3290 if (error == 0) 3291 td->td_retval[0] = ksi.ksi_signo; 3292 return (error); 3293 } 3294 3295 int 3296 freebsd32_cpuset_setid(struct thread *td, 3297 struct freebsd32_cpuset_setid_args *uap) 3298 { 3299 3300 return (kern_cpuset_setid(td, uap->which, 3301 PAIR32TO64(id_t, uap->id), uap->setid)); 3302 } 3303 3304 int 3305 freebsd32_cpuset_getid(struct thread *td, 3306 struct freebsd32_cpuset_getid_args *uap) 3307 { 3308 3309 return (kern_cpuset_getid(td, uap->level, uap->which, 3310 PAIR32TO64(id_t, uap->id), uap->setid)); 3311 } 3312 3313 static int 3314 copyin32_set(const void *u, void *k, size_t size) 3315 { 3316 #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 3317 int rv; 3318 struct bitset *kb = k; 3319 int *p; 3320 3321 rv = copyin(u, k, size); 3322 if (rv != 0) 3323 return (rv); 3324 3325 p = (int *)kb->__bits; 3326 /* Loop through swapping words. 3327 * `size' is in bytes, we need bits. */ 3328 for (int i = 0; i < __bitset_words(size * 8); i++) { 3329 int tmp = p[0]; 3330 p[0] = p[1]; 3331 p[1] = tmp; 3332 p += 2; 3333 } 3334 return (0); 3335 #else 3336 return (copyin(u, k, size)); 3337 #endif 3338 } 3339 3340 static int 3341 copyout32_set(const void *k, void *u, size_t size) 3342 { 3343 #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 3344 const struct bitset *kb = k; 3345 struct bitset *ub = u; 3346 const int *kp = (const int *)kb->__bits; 3347 int *up = (int *)ub->__bits; 3348 int rv; 3349 3350 for (int i = 0; i < __bitset_words(CPU_SETSIZE); i++) { 3351 /* `size' is in bytes, we need bits. */ 3352 for (int i = 0; i < __bitset_words(size * 8); i++) { 3353 rv = suword32(up, kp[1]); 3354 if (rv == 0) 3355 rv = suword32(up + 1, kp[0]); 3356 if (rv != 0) 3357 return (EFAULT); 3358 } 3359 } 3360 return (0); 3361 #else 3362 return (copyout(k, u, size)); 3363 #endif 3364 } 3365 3366 static const struct cpuset_copy_cb cpuset_copy32_cb = { 3367 .cpuset_copyin = copyin32_set, 3368 .cpuset_copyout = copyout32_set 3369 }; 3370 3371 int 3372 freebsd32_cpuset_getaffinity(struct thread *td, 3373 struct freebsd32_cpuset_getaffinity_args *uap) 3374 { 3375 3376 return (user_cpuset_getaffinity(td, uap->level, uap->which, 3377 PAIR32TO64(id_t,uap->id), uap->cpusetsize, uap->mask, 3378 &cpuset_copy32_cb)); 3379 } 3380 3381 int 3382 freebsd32_cpuset_setaffinity(struct thread *td, 3383 struct freebsd32_cpuset_setaffinity_args *uap) 3384 { 3385 3386 return (user_cpuset_setaffinity(td, uap->level, uap->which, 3387 PAIR32TO64(id_t,uap->id), uap->cpusetsize, uap->mask, 3388 &cpuset_copy32_cb)); 3389 } 3390 3391 int 3392 freebsd32_cpuset_getdomain(struct thread *td, 3393 struct freebsd32_cpuset_getdomain_args *uap) 3394 { 3395 3396 return (kern_cpuset_getdomain(td, uap->level, uap->which, 3397 PAIR32TO64(id_t,uap->id), uap->domainsetsize, uap->mask, uap->policy, 3398 &cpuset_copy32_cb)); 3399 } 3400 3401 int 3402 freebsd32_cpuset_setdomain(struct thread *td, 3403 struct freebsd32_cpuset_setdomain_args *uap) 3404 { 3405 3406 return (kern_cpuset_setdomain(td, uap->level, uap->which, 3407 PAIR32TO64(id_t,uap->id), uap->domainsetsize, uap->mask, uap->policy, 3408 &cpuset_copy32_cb)); 3409 } 3410 3411 int 3412 freebsd32_nmount(struct thread *td, 3413 struct freebsd32_nmount_args /* { 3414 struct iovec *iovp; 3415 unsigned int iovcnt; 3416 int flags; 3417 } */ *uap) 3418 { 3419 struct uio *auio; 3420 uint64_t flags; 3421 int error; 3422 3423 /* 3424 * Mount flags are now 64-bits. On 32-bit archtectures only 3425 * 32-bits are passed in, but from here on everything handles 3426 * 64-bit flags correctly. 3427 */ 3428 flags = uap->flags; 3429 3430 AUDIT_ARG_FFLAGS(flags); 3431 3432 /* 3433 * Filter out MNT_ROOTFS. We do not want clients of nmount() in 3434 * userspace to set this flag, but we must filter it out if we want 3435 * MNT_UPDATE on the root file system to work. 3436 * MNT_ROOTFS should only be set by the kernel when mounting its 3437 * root file system. 3438 */ 3439 flags &= ~MNT_ROOTFS; 3440 3441 /* 3442 * check that we have an even number of iovec's 3443 * and that we have at least two options. 3444 */ 3445 if ((uap->iovcnt & 1) || (uap->iovcnt < 4)) 3446 return (EINVAL); 3447 3448 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 3449 if (error) 3450 return (error); 3451 error = vfs_donmount(td, flags, auio); 3452 3453 free(auio, M_IOV); 3454 return error; 3455 } 3456 3457 #if 0 3458 int 3459 freebsd32_xxx(struct thread *td, struct freebsd32_xxx_args *uap) 3460 { 3461 struct yyy32 *p32, s32; 3462 struct yyy *p = NULL, s; 3463 struct xxx_arg ap; 3464 int error; 3465 3466 if (uap->zzz) { 3467 error = copyin(uap->zzz, &s32, sizeof(s32)); 3468 if (error) 3469 return (error); 3470 /* translate in */ 3471 p = &s; 3472 } 3473 error = kern_xxx(td, p); 3474 if (error) 3475 return (error); 3476 if (uap->zzz) { 3477 /* translate out */ 3478 error = copyout(&s32, p32, sizeof(s32)); 3479 } 3480 return (error); 3481 } 3482 #endif 3483 3484 int 3485 syscall32_module_handler(struct module *mod, int what, void *arg) 3486 { 3487 3488 return (kern_syscall_module_handler(freebsd32_sysent, mod, what, arg)); 3489 } 3490 3491 int 3492 syscall32_helper_register(struct syscall_helper_data *sd, int flags) 3493 { 3494 3495 return (kern_syscall_helper_register(freebsd32_sysent, sd, flags)); 3496 } 3497 3498 int 3499 syscall32_helper_unregister(struct syscall_helper_data *sd) 3500 { 3501 3502 return (kern_syscall_helper_unregister(freebsd32_sysent, sd)); 3503 } 3504 3505 int 3506 freebsd32_copyout_strings(struct image_params *imgp, uintptr_t *stack_base) 3507 { 3508 struct sysentvec *sysent; 3509 int argc, envc, i; 3510 uint32_t *vectp; 3511 char *stringp; 3512 uintptr_t destp, ustringp; 3513 struct freebsd32_ps_strings *arginfo; 3514 char canary[sizeof(long) * 8]; 3515 int32_t pagesizes32[MAXPAGESIZES]; 3516 size_t execpath_len; 3517 int error, szsigcode; 3518 3519 sysent = imgp->sysent; 3520 3521 arginfo = (struct freebsd32_ps_strings *)PROC_PS_STRINGS(imgp->proc); 3522 imgp->ps_strings = arginfo; 3523 destp = (uintptr_t)arginfo; 3524 3525 /* 3526 * Install sigcode. 3527 */ 3528 if (sysent->sv_sigcode_base == 0) { 3529 szsigcode = *sysent->sv_szsigcode; 3530 destp -= szsigcode; 3531 destp = rounddown2(destp, sizeof(uint32_t)); 3532 error = copyout(sysent->sv_sigcode, (void *)destp, 3533 szsigcode); 3534 if (error != 0) 3535 return (error); 3536 } 3537 3538 /* 3539 * Copy the image path for the rtld. 3540 */ 3541 if (imgp->execpath != NULL && imgp->auxargs != NULL) { 3542 execpath_len = strlen(imgp->execpath) + 1; 3543 destp -= execpath_len; 3544 imgp->execpathp = (void *)destp; 3545 error = copyout(imgp->execpath, imgp->execpathp, execpath_len); 3546 if (error != 0) 3547 return (error); 3548 } 3549 3550 /* 3551 * Prepare the canary for SSP. 3552 */ 3553 arc4rand(canary, sizeof(canary), 0); 3554 destp -= sizeof(canary); 3555 imgp->canary = (void *)destp; 3556 error = copyout(canary, imgp->canary, sizeof(canary)); 3557 if (error != 0) 3558 return (error); 3559 imgp->canarylen = sizeof(canary); 3560 3561 /* 3562 * Prepare the pagesizes array. 3563 */ 3564 for (i = 0; i < MAXPAGESIZES; i++) 3565 pagesizes32[i] = (uint32_t)pagesizes[i]; 3566 destp -= sizeof(pagesizes32); 3567 destp = rounddown2(destp, sizeof(uint32_t)); 3568 imgp->pagesizes = (void *)destp; 3569 error = copyout(pagesizes32, imgp->pagesizes, sizeof(pagesizes32)); 3570 if (error != 0) 3571 return (error); 3572 imgp->pagesizeslen = sizeof(pagesizes32); 3573 3574 /* 3575 * Allocate room for the argument and environment strings. 3576 */ 3577 destp -= ARG_MAX - imgp->args->stringspace; 3578 destp = rounddown2(destp, sizeof(uint32_t)); 3579 ustringp = destp; 3580 3581 if (imgp->auxargs) { 3582 /* 3583 * Allocate room on the stack for the ELF auxargs 3584 * array. It has up to AT_COUNT entries. 3585 */ 3586 destp -= AT_COUNT * sizeof(Elf32_Auxinfo); 3587 destp = rounddown2(destp, sizeof(uint32_t)); 3588 } 3589 3590 vectp = (uint32_t *)destp; 3591 3592 /* 3593 * Allocate room for the argv[] and env vectors including the 3594 * terminating NULL pointers. 3595 */ 3596 vectp -= imgp->args->argc + 1 + imgp->args->envc + 1; 3597 3598 /* 3599 * vectp also becomes our initial stack base 3600 */ 3601 *stack_base = (uintptr_t)vectp; 3602 3603 stringp = imgp->args->begin_argv; 3604 argc = imgp->args->argc; 3605 envc = imgp->args->envc; 3606 /* 3607 * Copy out strings - arguments and environment. 3608 */ 3609 error = copyout(stringp, (void *)ustringp, 3610 ARG_MAX - imgp->args->stringspace); 3611 if (error != 0) 3612 return (error); 3613 3614 /* 3615 * Fill in "ps_strings" struct for ps, w, etc. 3616 */ 3617 imgp->argv = vectp; 3618 if (suword32(&arginfo->ps_argvstr, (uint32_t)(intptr_t)vectp) != 0 || 3619 suword32(&arginfo->ps_nargvstr, argc) != 0) 3620 return (EFAULT); 3621 3622 /* 3623 * Fill in argument portion of vector table. 3624 */ 3625 for (; argc > 0; --argc) { 3626 if (suword32(vectp++, ustringp) != 0) 3627 return (EFAULT); 3628 while (*stringp++ != 0) 3629 ustringp++; 3630 ustringp++; 3631 } 3632 3633 /* a null vector table pointer separates the argp's from the envp's */ 3634 if (suword32(vectp++, 0) != 0) 3635 return (EFAULT); 3636 3637 imgp->envv = vectp; 3638 if (suword32(&arginfo->ps_envstr, (uint32_t)(intptr_t)vectp) != 0 || 3639 suword32(&arginfo->ps_nenvstr, envc) != 0) 3640 return (EFAULT); 3641 3642 /* 3643 * Fill in environment portion of vector table. 3644 */ 3645 for (; envc > 0; --envc) { 3646 if (suword32(vectp++, ustringp) != 0) 3647 return (EFAULT); 3648 while (*stringp++ != 0) 3649 ustringp++; 3650 ustringp++; 3651 } 3652 3653 /* end of vector table is a null pointer */ 3654 if (suword32(vectp, 0) != 0) 3655 return (EFAULT); 3656 3657 if (imgp->auxargs) { 3658 vectp++; 3659 error = imgp->sysent->sv_copyout_auxargs(imgp, 3660 (uintptr_t)vectp); 3661 if (error != 0) 3662 return (error); 3663 } 3664 3665 return (0); 3666 } 3667 3668 int 3669 freebsd32_kldstat(struct thread *td, struct freebsd32_kldstat_args *uap) 3670 { 3671 struct kld_file_stat *stat; 3672 struct kld_file_stat32 *stat32; 3673 int error, version; 3674 3675 if ((error = copyin(&uap->stat->version, &version, sizeof(version))) 3676 != 0) 3677 return (error); 3678 if (version != sizeof(struct kld_file_stat_1_32) && 3679 version != sizeof(struct kld_file_stat32)) 3680 return (EINVAL); 3681 3682 stat = malloc(sizeof(*stat), M_TEMP, M_WAITOK | M_ZERO); 3683 stat32 = malloc(sizeof(*stat32), M_TEMP, M_WAITOK | M_ZERO); 3684 error = kern_kldstat(td, uap->fileid, stat); 3685 if (error == 0) { 3686 bcopy(&stat->name[0], &stat32->name[0], sizeof(stat->name)); 3687 CP(*stat, *stat32, refs); 3688 CP(*stat, *stat32, id); 3689 PTROUT_CP(*stat, *stat32, address); 3690 CP(*stat, *stat32, size); 3691 bcopy(&stat->pathname[0], &stat32->pathname[0], 3692 sizeof(stat->pathname)); 3693 stat32->version = version; 3694 error = copyout(stat32, uap->stat, version); 3695 } 3696 free(stat, M_TEMP); 3697 free(stat32, M_TEMP); 3698 return (error); 3699 } 3700 3701 int 3702 freebsd32_posix_fallocate(struct thread *td, 3703 struct freebsd32_posix_fallocate_args *uap) 3704 { 3705 int error; 3706 3707 error = kern_posix_fallocate(td, uap->fd, 3708 PAIR32TO64(off_t, uap->offset), PAIR32TO64(off_t, uap->len)); 3709 return (kern_posix_error(td, error)); 3710 } 3711 3712 int 3713 freebsd32_posix_fadvise(struct thread *td, 3714 struct freebsd32_posix_fadvise_args *uap) 3715 { 3716 int error; 3717 3718 error = kern_posix_fadvise(td, uap->fd, PAIR32TO64(off_t, uap->offset), 3719 PAIR32TO64(off_t, uap->len), uap->advice); 3720 return (kern_posix_error(td, error)); 3721 } 3722 3723 int 3724 convert_sigevent32(struct sigevent32 *sig32, struct sigevent *sig) 3725 { 3726 3727 CP(*sig32, *sig, sigev_notify); 3728 switch (sig->sigev_notify) { 3729 case SIGEV_NONE: 3730 break; 3731 case SIGEV_THREAD_ID: 3732 CP(*sig32, *sig, sigev_notify_thread_id); 3733 /* FALLTHROUGH */ 3734 case SIGEV_SIGNAL: 3735 CP(*sig32, *sig, sigev_signo); 3736 PTRIN_CP(*sig32, *sig, sigev_value.sival_ptr); 3737 break; 3738 case SIGEV_KEVENT: 3739 CP(*sig32, *sig, sigev_notify_kqueue); 3740 CP(*sig32, *sig, sigev_notify_kevent_flags); 3741 PTRIN_CP(*sig32, *sig, sigev_value.sival_ptr); 3742 break; 3743 default: 3744 return (EINVAL); 3745 } 3746 return (0); 3747 } 3748 3749 int 3750 freebsd32_procctl(struct thread *td, struct freebsd32_procctl_args *uap) 3751 { 3752 void *data; 3753 union { 3754 struct procctl_reaper_status rs; 3755 struct procctl_reaper_pids rp; 3756 struct procctl_reaper_kill rk; 3757 } x; 3758 union { 3759 struct procctl_reaper_pids32 rp; 3760 } x32; 3761 int error, error1, flags, signum; 3762 3763 if (uap->com >= PROC_PROCCTL_MD_MIN) 3764 return (cpu_procctl(td, uap->idtype, PAIR32TO64(id_t, uap->id), 3765 uap->com, PTRIN(uap->data))); 3766 3767 switch (uap->com) { 3768 case PROC_ASLR_CTL: 3769 case PROC_PROTMAX_CTL: 3770 case PROC_SPROTECT: 3771 case PROC_STACKGAP_CTL: 3772 case PROC_TRACE_CTL: 3773 case PROC_TRAPCAP_CTL: 3774 case PROC_NO_NEW_PRIVS_CTL: 3775 case PROC_WXMAP_CTL: 3776 error = copyin(PTRIN(uap->data), &flags, sizeof(flags)); 3777 if (error != 0) 3778 return (error); 3779 data = &flags; 3780 break; 3781 case PROC_REAP_ACQUIRE: 3782 case PROC_REAP_RELEASE: 3783 if (uap->data != NULL) 3784 return (EINVAL); 3785 data = NULL; 3786 break; 3787 case PROC_REAP_STATUS: 3788 data = &x.rs; 3789 break; 3790 case PROC_REAP_GETPIDS: 3791 error = copyin(uap->data, &x32.rp, sizeof(x32.rp)); 3792 if (error != 0) 3793 return (error); 3794 CP(x32.rp, x.rp, rp_count); 3795 PTRIN_CP(x32.rp, x.rp, rp_pids); 3796 data = &x.rp; 3797 break; 3798 case PROC_REAP_KILL: 3799 error = copyin(uap->data, &x.rk, sizeof(x.rk)); 3800 if (error != 0) 3801 return (error); 3802 data = &x.rk; 3803 break; 3804 case PROC_ASLR_STATUS: 3805 case PROC_PROTMAX_STATUS: 3806 case PROC_STACKGAP_STATUS: 3807 case PROC_TRACE_STATUS: 3808 case PROC_TRAPCAP_STATUS: 3809 case PROC_NO_NEW_PRIVS_STATUS: 3810 case PROC_WXMAP_STATUS: 3811 data = &flags; 3812 break; 3813 case PROC_PDEATHSIG_CTL: 3814 error = copyin(uap->data, &signum, sizeof(signum)); 3815 if (error != 0) 3816 return (error); 3817 data = &signum; 3818 break; 3819 case PROC_PDEATHSIG_STATUS: 3820 data = &signum; 3821 break; 3822 default: 3823 return (EINVAL); 3824 } 3825 error = kern_procctl(td, uap->idtype, PAIR32TO64(id_t, uap->id), 3826 uap->com, data); 3827 switch (uap->com) { 3828 case PROC_REAP_STATUS: 3829 if (error == 0) 3830 error = copyout(&x.rs, uap->data, sizeof(x.rs)); 3831 break; 3832 case PROC_REAP_KILL: 3833 error1 = copyout(&x.rk, uap->data, sizeof(x.rk)); 3834 if (error == 0) 3835 error = error1; 3836 break; 3837 case PROC_ASLR_STATUS: 3838 case PROC_PROTMAX_STATUS: 3839 case PROC_STACKGAP_STATUS: 3840 case PROC_TRACE_STATUS: 3841 case PROC_TRAPCAP_STATUS: 3842 case PROC_NO_NEW_PRIVS_STATUS: 3843 case PROC_WXMAP_STATUS: 3844 if (error == 0) 3845 error = copyout(&flags, uap->data, sizeof(flags)); 3846 break; 3847 case PROC_PDEATHSIG_STATUS: 3848 if (error == 0) 3849 error = copyout(&signum, uap->data, sizeof(signum)); 3850 break; 3851 } 3852 return (error); 3853 } 3854 3855 int 3856 freebsd32_fcntl(struct thread *td, struct freebsd32_fcntl_args *uap) 3857 { 3858 long tmp; 3859 3860 switch (uap->cmd) { 3861 /* 3862 * Do unsigned conversion for arg when operation 3863 * interprets it as flags or pointer. 3864 */ 3865 case F_SETLK_REMOTE: 3866 case F_SETLKW: 3867 case F_SETLK: 3868 case F_GETLK: 3869 case F_SETFD: 3870 case F_SETFL: 3871 case F_OGETLK: 3872 case F_OSETLK: 3873 case F_OSETLKW: 3874 case F_KINFO: 3875 tmp = (unsigned int)(uap->arg); 3876 break; 3877 default: 3878 tmp = uap->arg; 3879 break; 3880 } 3881 return (kern_fcntl_freebsd(td, uap->fd, uap->cmd, tmp)); 3882 } 3883 3884 int 3885 freebsd32_ppoll(struct thread *td, struct freebsd32_ppoll_args *uap) 3886 { 3887 struct timespec32 ts32; 3888 struct timespec ts, *tsp; 3889 sigset_t set, *ssp; 3890 int error; 3891 3892 if (uap->ts != NULL) { 3893 error = copyin(uap->ts, &ts32, sizeof(ts32)); 3894 if (error != 0) 3895 return (error); 3896 CP(ts32, ts, tv_sec); 3897 CP(ts32, ts, tv_nsec); 3898 tsp = &ts; 3899 } else 3900 tsp = NULL; 3901 if (uap->set != NULL) { 3902 error = copyin(uap->set, &set, sizeof(set)); 3903 if (error != 0) 3904 return (error); 3905 ssp = &set; 3906 } else 3907 ssp = NULL; 3908 3909 return (kern_poll(td, uap->fds, uap->nfds, tsp, ssp)); 3910 } 3911 3912 int 3913 freebsd32_sched_rr_get_interval(struct thread *td, 3914 struct freebsd32_sched_rr_get_interval_args *uap) 3915 { 3916 struct timespec ts; 3917 struct timespec32 ts32; 3918 int error; 3919 3920 error = kern_sched_rr_get_interval(td, uap->pid, &ts); 3921 if (error == 0) { 3922 CP(ts, ts32, tv_sec); 3923 CP(ts, ts32, tv_nsec); 3924 error = copyout(&ts32, uap->interval, sizeof(ts32)); 3925 } 3926 return (error); 3927 } 3928 3929 static void 3930 timex_to_32(struct timex32 *dst, struct timex *src) 3931 { 3932 CP(*src, *dst, modes); 3933 CP(*src, *dst, offset); 3934 CP(*src, *dst, freq); 3935 CP(*src, *dst, maxerror); 3936 CP(*src, *dst, esterror); 3937 CP(*src, *dst, status); 3938 CP(*src, *dst, constant); 3939 CP(*src, *dst, precision); 3940 CP(*src, *dst, tolerance); 3941 CP(*src, *dst, ppsfreq); 3942 CP(*src, *dst, jitter); 3943 CP(*src, *dst, shift); 3944 CP(*src, *dst, stabil); 3945 CP(*src, *dst, jitcnt); 3946 CP(*src, *dst, calcnt); 3947 CP(*src, *dst, errcnt); 3948 CP(*src, *dst, stbcnt); 3949 } 3950 3951 static void 3952 timex_from_32(struct timex *dst, struct timex32 *src) 3953 { 3954 CP(*src, *dst, modes); 3955 CP(*src, *dst, offset); 3956 CP(*src, *dst, freq); 3957 CP(*src, *dst, maxerror); 3958 CP(*src, *dst, esterror); 3959 CP(*src, *dst, status); 3960 CP(*src, *dst, constant); 3961 CP(*src, *dst, precision); 3962 CP(*src, *dst, tolerance); 3963 CP(*src, *dst, ppsfreq); 3964 CP(*src, *dst, jitter); 3965 CP(*src, *dst, shift); 3966 CP(*src, *dst, stabil); 3967 CP(*src, *dst, jitcnt); 3968 CP(*src, *dst, calcnt); 3969 CP(*src, *dst, errcnt); 3970 CP(*src, *dst, stbcnt); 3971 } 3972 3973 int 3974 freebsd32_ntp_adjtime(struct thread *td, struct freebsd32_ntp_adjtime_args *uap) 3975 { 3976 struct timex tx; 3977 struct timex32 tx32; 3978 int error, retval; 3979 3980 error = copyin(uap->tp, &tx32, sizeof(tx32)); 3981 if (error == 0) { 3982 timex_from_32(&tx, &tx32); 3983 error = kern_ntp_adjtime(td, &tx, &retval); 3984 if (error == 0) { 3985 timex_to_32(&tx32, &tx); 3986 error = copyout(&tx32, uap->tp, sizeof(tx32)); 3987 if (error == 0) 3988 td->td_retval[0] = retval; 3989 } 3990 } 3991 return (error); 3992 } 3993 3994 #ifdef FFCLOCK 3995 extern struct mtx ffclock_mtx; 3996 extern struct ffclock_estimate ffclock_estimate; 3997 extern int8_t ffclock_updated; 3998 3999 int 4000 freebsd32_ffclock_setestimate(struct thread *td, 4001 struct freebsd32_ffclock_setestimate_args *uap) 4002 { 4003 struct ffclock_estimate cest; 4004 struct ffclock_estimate32 cest32; 4005 int error; 4006 4007 /* Reuse of PRIV_CLOCK_SETTIME. */ 4008 if ((error = priv_check(td, PRIV_CLOCK_SETTIME)) != 0) 4009 return (error); 4010 4011 if ((error = copyin(uap->cest, &cest32, 4012 sizeof(struct ffclock_estimate32))) != 0) 4013 return (error); 4014 4015 CP(cest.update_time, cest32.update_time, sec); 4016 memcpy(&cest.update_time.frac, &cest32.update_time.frac, sizeof(uint64_t)); 4017 CP(cest, cest32, update_ffcount); 4018 CP(cest, cest32, leapsec_next); 4019 CP(cest, cest32, period); 4020 CP(cest, cest32, errb_abs); 4021 CP(cest, cest32, errb_rate); 4022 CP(cest, cest32, status); 4023 CP(cest, cest32, leapsec_total); 4024 CP(cest, cest32, leapsec); 4025 4026 mtx_lock(&ffclock_mtx); 4027 memcpy(&ffclock_estimate, &cest, sizeof(struct ffclock_estimate)); 4028 ffclock_updated++; 4029 mtx_unlock(&ffclock_mtx); 4030 return (error); 4031 } 4032 4033 int 4034 freebsd32_ffclock_getestimate(struct thread *td, 4035 struct freebsd32_ffclock_getestimate_args *uap) 4036 { 4037 struct ffclock_estimate cest; 4038 struct ffclock_estimate32 cest32; 4039 int error; 4040 4041 mtx_lock(&ffclock_mtx); 4042 memcpy(&cest, &ffclock_estimate, sizeof(struct ffclock_estimate)); 4043 mtx_unlock(&ffclock_mtx); 4044 4045 CP(cest32.update_time, cest.update_time, sec); 4046 memcpy(&cest32.update_time.frac, &cest.update_time.frac, sizeof(uint64_t)); 4047 CP(cest32, cest, update_ffcount); 4048 CP(cest32, cest, leapsec_next); 4049 CP(cest32, cest, period); 4050 CP(cest32, cest, errb_abs); 4051 CP(cest32, cest, errb_rate); 4052 CP(cest32, cest, status); 4053 CP(cest32, cest, leapsec_total); 4054 CP(cest32, cest, leapsec); 4055 4056 error = copyout(&cest32, uap->cest, sizeof(struct ffclock_estimate32)); 4057 return (error); 4058 } 4059 #else /* !FFCLOCK */ 4060 int 4061 freebsd32_ffclock_setestimate(struct thread *td, 4062 struct freebsd32_ffclock_setestimate_args *uap) 4063 { 4064 return (ENOSYS); 4065 } 4066 4067 int 4068 freebsd32_ffclock_getestimate(struct thread *td, 4069 struct freebsd32_ffclock_getestimate_args *uap) 4070 { 4071 return (ENOSYS); 4072 } 4073 #endif /* FFCLOCK */ 4074 4075 #ifdef COMPAT_43 4076 int 4077 ofreebsd32_sethostid(struct thread *td, struct ofreebsd32_sethostid_args *uap) 4078 { 4079 int name[] = { CTL_KERN, KERN_HOSTID }; 4080 long hostid; 4081 4082 hostid = uap->hostid; 4083 return (kernel_sysctl(td, name, nitems(name), NULL, NULL, &hostid, 4084 sizeof(hostid), NULL, 0)); 4085 } 4086 #endif 4087