xref: /freebsd/sys/compat/freebsd32/freebsd32_misc.c (revision dd41de95a84d979615a2ef11df6850622bf6184e)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2002 Doug Rabson
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include "opt_inet.h"
33 #include "opt_inet6.h"
34 #include "opt_ktrace.h"
35 
36 #define __ELF_WORD_SIZE 32
37 
38 #ifdef COMPAT_FREEBSD11
39 #define	_WANT_FREEBSD11_KEVENT
40 #endif
41 
42 #include <sys/param.h>
43 #include <sys/bus.h>
44 #include <sys/capsicum.h>
45 #include <sys/clock.h>
46 #include <sys/exec.h>
47 #include <sys/fcntl.h>
48 #include <sys/filedesc.h>
49 #include <sys/imgact.h>
50 #include <sys/jail.h>
51 #include <sys/kernel.h>
52 #include <sys/limits.h>
53 #include <sys/linker.h>
54 #include <sys/lock.h>
55 #include <sys/malloc.h>
56 #include <sys/file.h>		/* Must come after sys/malloc.h */
57 #include <sys/imgact.h>
58 #include <sys/mbuf.h>
59 #include <sys/mman.h>
60 #include <sys/module.h>
61 #include <sys/mount.h>
62 #include <sys/mutex.h>
63 #include <sys/namei.h>
64 #include <sys/proc.h>
65 #include <sys/procctl.h>
66 #include <sys/ptrace.h>
67 #include <sys/reboot.h>
68 #include <sys/resource.h>
69 #include <sys/resourcevar.h>
70 #include <sys/selinfo.h>
71 #include <sys/eventvar.h>	/* Must come after sys/selinfo.h */
72 #include <sys/pipe.h>		/* Must come after sys/selinfo.h */
73 #include <sys/signal.h>
74 #include <sys/signalvar.h>
75 #include <sys/socket.h>
76 #include <sys/socketvar.h>
77 #include <sys/stat.h>
78 #include <sys/syscall.h>
79 #include <sys/syscallsubr.h>
80 #include <sys/sysctl.h>
81 #include <sys/sysent.h>
82 #include <sys/sysproto.h>
83 #include <sys/systm.h>
84 #include <sys/thr.h>
85 #include <sys/timex.h>
86 #include <sys/unistd.h>
87 #include <sys/ucontext.h>
88 #include <sys/umtx.h>
89 #include <sys/vnode.h>
90 #include <sys/wait.h>
91 #include <sys/ipc.h>
92 #include <sys/msg.h>
93 #include <sys/sem.h>
94 #include <sys/shm.h>
95 #ifdef KTRACE
96 #include <sys/ktrace.h>
97 #endif
98 
99 #ifdef INET
100 #include <netinet/in.h>
101 #endif
102 
103 #include <vm/vm.h>
104 #include <vm/vm_param.h>
105 #include <vm/pmap.h>
106 #include <vm/vm_map.h>
107 #include <vm/vm_object.h>
108 #include <vm/vm_extern.h>
109 
110 #include <machine/cpu.h>
111 #include <machine/elf.h>
112 #ifdef __amd64__
113 #include <machine/md_var.h>
114 #endif
115 
116 #include <security/audit/audit.h>
117 
118 #include <compat/freebsd32/freebsd32_util.h>
119 #include <compat/freebsd32/freebsd32.h>
120 #include <compat/freebsd32/freebsd32_ipc.h>
121 #include <compat/freebsd32/freebsd32_misc.h>
122 #include <compat/freebsd32/freebsd32_signal.h>
123 #include <compat/freebsd32/freebsd32_proto.h>
124 
125 FEATURE(compat_freebsd_32bit, "Compatible with 32-bit FreeBSD");
126 
127 struct ptrace_io_desc32 {
128 	int		piod_op;
129 	uint32_t	piod_offs;
130 	uint32_t	piod_addr;
131 	uint32_t	piod_len;
132 };
133 
134 struct ptrace_sc_ret32 {
135 	uint32_t	sr_retval[2];
136 	int		sr_error;
137 };
138 
139 struct ptrace_vm_entry32 {
140 	int		pve_entry;
141 	int		pve_timestamp;
142 	uint32_t	pve_start;
143 	uint32_t	pve_end;
144 	uint32_t	pve_offset;
145 	u_int		pve_prot;
146 	u_int		pve_pathlen;
147 	int32_t		pve_fileid;
148 	u_int		pve_fsid;
149 	uint32_t	pve_path;
150 };
151 
152 #ifdef __amd64__
153 CTASSERT(sizeof(struct timeval32) == 8);
154 CTASSERT(sizeof(struct timespec32) == 8);
155 CTASSERT(sizeof(struct itimerval32) == 16);
156 CTASSERT(sizeof(struct bintime32) == 12);
157 #endif
158 CTASSERT(sizeof(struct statfs32) == 256);
159 #ifdef __amd64__
160 CTASSERT(sizeof(struct rusage32) == 72);
161 #endif
162 CTASSERT(sizeof(struct sigaltstack32) == 12);
163 #ifdef __amd64__
164 CTASSERT(sizeof(struct kevent32) == 56);
165 #else
166 CTASSERT(sizeof(struct kevent32) == 64);
167 #endif
168 CTASSERT(sizeof(struct iovec32) == 8);
169 CTASSERT(sizeof(struct msghdr32) == 28);
170 #ifdef __amd64__
171 CTASSERT(sizeof(struct stat32) == 208);
172 CTASSERT(sizeof(struct freebsd11_stat32) == 96);
173 #endif
174 CTASSERT(sizeof(struct sigaction32) == 24);
175 
176 static int freebsd32_kevent_copyout(void *arg, struct kevent *kevp, int count);
177 static int freebsd32_kevent_copyin(void *arg, struct kevent *kevp, int count);
178 static int freebsd32_user_clock_nanosleep(struct thread *td, clockid_t clock_id,
179     int flags, const struct timespec32 *ua_rqtp, struct timespec32 *ua_rmtp);
180 
181 void
182 freebsd32_rusage_out(const struct rusage *s, struct rusage32 *s32)
183 {
184 
185 	TV_CP(*s, *s32, ru_utime);
186 	TV_CP(*s, *s32, ru_stime);
187 	CP(*s, *s32, ru_maxrss);
188 	CP(*s, *s32, ru_ixrss);
189 	CP(*s, *s32, ru_idrss);
190 	CP(*s, *s32, ru_isrss);
191 	CP(*s, *s32, ru_minflt);
192 	CP(*s, *s32, ru_majflt);
193 	CP(*s, *s32, ru_nswap);
194 	CP(*s, *s32, ru_inblock);
195 	CP(*s, *s32, ru_oublock);
196 	CP(*s, *s32, ru_msgsnd);
197 	CP(*s, *s32, ru_msgrcv);
198 	CP(*s, *s32, ru_nsignals);
199 	CP(*s, *s32, ru_nvcsw);
200 	CP(*s, *s32, ru_nivcsw);
201 }
202 
203 int
204 freebsd32_wait4(struct thread *td, struct freebsd32_wait4_args *uap)
205 {
206 	int error, status;
207 	struct rusage32 ru32;
208 	struct rusage ru, *rup;
209 
210 	if (uap->rusage != NULL)
211 		rup = &ru;
212 	else
213 		rup = NULL;
214 	error = kern_wait(td, uap->pid, &status, uap->options, rup);
215 	if (error)
216 		return (error);
217 	if (uap->status != NULL)
218 		error = copyout(&status, uap->status, sizeof(status));
219 	if (uap->rusage != NULL && error == 0) {
220 		freebsd32_rusage_out(&ru, &ru32);
221 		error = copyout(&ru32, uap->rusage, sizeof(ru32));
222 	}
223 	return (error);
224 }
225 
226 int
227 freebsd32_wait6(struct thread *td, struct freebsd32_wait6_args *uap)
228 {
229 	struct wrusage32 wru32;
230 	struct __wrusage wru, *wrup;
231 	struct siginfo32 si32;
232 	struct __siginfo si, *sip;
233 	int error, status;
234 
235 	if (uap->wrusage != NULL)
236 		wrup = &wru;
237 	else
238 		wrup = NULL;
239 	if (uap->info != NULL) {
240 		sip = &si;
241 		bzero(sip, sizeof(*sip));
242 	} else
243 		sip = NULL;
244 	error = kern_wait6(td, uap->idtype, PAIR32TO64(id_t, uap->id),
245 	    &status, uap->options, wrup, sip);
246 	if (error != 0)
247 		return (error);
248 	if (uap->status != NULL)
249 		error = copyout(&status, uap->status, sizeof(status));
250 	if (uap->wrusage != NULL && error == 0) {
251 		freebsd32_rusage_out(&wru.wru_self, &wru32.wru_self);
252 		freebsd32_rusage_out(&wru.wru_children, &wru32.wru_children);
253 		error = copyout(&wru32, uap->wrusage, sizeof(wru32));
254 	}
255 	if (uap->info != NULL && error == 0) {
256 		siginfo_to_siginfo32 (&si, &si32);
257 		error = copyout(&si32, uap->info, sizeof(si32));
258 	}
259 	return (error);
260 }
261 
262 #ifdef COMPAT_FREEBSD4
263 static void
264 copy_statfs(struct statfs *in, struct statfs32 *out)
265 {
266 
267 	statfs_scale_blocks(in, INT32_MAX);
268 	bzero(out, sizeof(*out));
269 	CP(*in, *out, f_bsize);
270 	out->f_iosize = MIN(in->f_iosize, INT32_MAX);
271 	CP(*in, *out, f_blocks);
272 	CP(*in, *out, f_bfree);
273 	CP(*in, *out, f_bavail);
274 	out->f_files = MIN(in->f_files, INT32_MAX);
275 	out->f_ffree = MIN(in->f_ffree, INT32_MAX);
276 	CP(*in, *out, f_fsid);
277 	CP(*in, *out, f_owner);
278 	CP(*in, *out, f_type);
279 	CP(*in, *out, f_flags);
280 	out->f_syncwrites = MIN(in->f_syncwrites, INT32_MAX);
281 	out->f_asyncwrites = MIN(in->f_asyncwrites, INT32_MAX);
282 	strlcpy(out->f_fstypename,
283 	      in->f_fstypename, MFSNAMELEN);
284 	strlcpy(out->f_mntonname,
285 	      in->f_mntonname, min(MNAMELEN, FREEBSD4_MNAMELEN));
286 	out->f_syncreads = MIN(in->f_syncreads, INT32_MAX);
287 	out->f_asyncreads = MIN(in->f_asyncreads, INT32_MAX);
288 	strlcpy(out->f_mntfromname,
289 	      in->f_mntfromname, min(MNAMELEN, FREEBSD4_MNAMELEN));
290 }
291 #endif
292 
293 #ifdef COMPAT_FREEBSD4
294 int
295 freebsd4_freebsd32_getfsstat(struct thread *td,
296     struct freebsd4_freebsd32_getfsstat_args *uap)
297 {
298 	struct statfs *buf, *sp;
299 	struct statfs32 stat32;
300 	size_t count, size, copycount;
301 	int error;
302 
303 	count = uap->bufsize / sizeof(struct statfs32);
304 	size = count * sizeof(struct statfs);
305 	error = kern_getfsstat(td, &buf, size, &count, UIO_SYSSPACE, uap->mode);
306 	if (size > 0) {
307 		sp = buf;
308 		copycount = count;
309 		while (copycount > 0 && error == 0) {
310 			copy_statfs(sp, &stat32);
311 			error = copyout(&stat32, uap->buf, sizeof(stat32));
312 			sp++;
313 			uap->buf++;
314 			copycount--;
315 		}
316 		free(buf, M_STATFS);
317 	}
318 	if (error == 0)
319 		td->td_retval[0] = count;
320 	return (error);
321 }
322 #endif
323 
324 #ifdef COMPAT_FREEBSD10
325 int
326 freebsd10_freebsd32_pipe(struct thread *td,
327     struct freebsd10_freebsd32_pipe_args *uap) {
328 	return (freebsd10_pipe(td, (struct freebsd10_pipe_args*)uap));
329 }
330 #endif
331 
332 int
333 freebsd32_sigaltstack(struct thread *td,
334 		      struct freebsd32_sigaltstack_args *uap)
335 {
336 	struct sigaltstack32 s32;
337 	struct sigaltstack ss, oss, *ssp;
338 	int error;
339 
340 	if (uap->ss != NULL) {
341 		error = copyin(uap->ss, &s32, sizeof(s32));
342 		if (error)
343 			return (error);
344 		PTRIN_CP(s32, ss, ss_sp);
345 		CP(s32, ss, ss_size);
346 		CP(s32, ss, ss_flags);
347 		ssp = &ss;
348 	} else
349 		ssp = NULL;
350 	error = kern_sigaltstack(td, ssp, &oss);
351 	if (error == 0 && uap->oss != NULL) {
352 		PTROUT_CP(oss, s32, ss_sp);
353 		CP(oss, s32, ss_size);
354 		CP(oss, s32, ss_flags);
355 		error = copyout(&s32, uap->oss, sizeof(s32));
356 	}
357 	return (error);
358 }
359 
360 /*
361  * Custom version of exec_copyin_args() so that we can translate
362  * the pointers.
363  */
364 int
365 freebsd32_exec_copyin_args(struct image_args *args, const char *fname,
366     enum uio_seg segflg, u_int32_t *argv, u_int32_t *envv)
367 {
368 	char *argp, *envp;
369 	u_int32_t *p32, arg;
370 	int error;
371 
372 	bzero(args, sizeof(*args));
373 	if (argv == NULL)
374 		return (EFAULT);
375 
376 	/*
377 	 * Allocate demand-paged memory for the file name, argument, and
378 	 * environment strings.
379 	 */
380 	error = exec_alloc_args(args);
381 	if (error != 0)
382 		return (error);
383 
384 	/*
385 	 * Copy the file name.
386 	 */
387 	error = exec_args_add_fname(args, fname, segflg);
388 	if (error != 0)
389 		goto err_exit;
390 
391 	/*
392 	 * extract arguments first
393 	 */
394 	p32 = argv;
395 	for (;;) {
396 		error = copyin(p32++, &arg, sizeof(arg));
397 		if (error)
398 			goto err_exit;
399 		if (arg == 0)
400 			break;
401 		argp = PTRIN(arg);
402 		error = exec_args_add_arg(args, argp, UIO_USERSPACE);
403 		if (error != 0)
404 			goto err_exit;
405 	}
406 
407 	/*
408 	 * extract environment strings
409 	 */
410 	if (envv) {
411 		p32 = envv;
412 		for (;;) {
413 			error = copyin(p32++, &arg, sizeof(arg));
414 			if (error)
415 				goto err_exit;
416 			if (arg == 0)
417 				break;
418 			envp = PTRIN(arg);
419 			error = exec_args_add_env(args, envp, UIO_USERSPACE);
420 			if (error != 0)
421 				goto err_exit;
422 		}
423 	}
424 
425 	return (0);
426 
427 err_exit:
428 	exec_free_args(args);
429 	return (error);
430 }
431 
432 int
433 freebsd32_execve(struct thread *td, struct freebsd32_execve_args *uap)
434 {
435 	struct image_args eargs;
436 	struct vmspace *oldvmspace;
437 	int error;
438 
439 	error = pre_execve(td, &oldvmspace);
440 	if (error != 0)
441 		return (error);
442 	error = freebsd32_exec_copyin_args(&eargs, uap->fname, UIO_USERSPACE,
443 	    uap->argv, uap->envv);
444 	if (error == 0)
445 		error = kern_execve(td, &eargs, NULL, oldvmspace);
446 	post_execve(td, error, oldvmspace);
447 	AUDIT_SYSCALL_EXIT(error == EJUSTRETURN ? 0 : error, td);
448 	return (error);
449 }
450 
451 int
452 freebsd32_fexecve(struct thread *td, struct freebsd32_fexecve_args *uap)
453 {
454 	struct image_args eargs;
455 	struct vmspace *oldvmspace;
456 	int error;
457 
458 	error = pre_execve(td, &oldvmspace);
459 	if (error != 0)
460 		return (error);
461 	error = freebsd32_exec_copyin_args(&eargs, NULL, UIO_SYSSPACE,
462 	    uap->argv, uap->envv);
463 	if (error == 0) {
464 		eargs.fd = uap->fd;
465 		error = kern_execve(td, &eargs, NULL, oldvmspace);
466 	}
467 	post_execve(td, error, oldvmspace);
468 	AUDIT_SYSCALL_EXIT(error == EJUSTRETURN ? 0 : error, td);
469 	return (error);
470 }
471 
472 int
473 freebsd32_mknodat(struct thread *td, struct freebsd32_mknodat_args *uap)
474 {
475 
476 	return (kern_mknodat(td, uap->fd, uap->path, UIO_USERSPACE,
477 	    uap->mode, PAIR32TO64(dev_t, uap->dev)));
478 }
479 
480 int
481 freebsd32_mprotect(struct thread *td, struct freebsd32_mprotect_args *uap)
482 {
483 	int prot;
484 
485 	prot = uap->prot;
486 #if defined(__amd64__)
487 	if (i386_read_exec && (prot & PROT_READ) != 0)
488 		prot |= PROT_EXEC;
489 #endif
490 	return (kern_mprotect(td, (uintptr_t)PTRIN(uap->addr), uap->len,
491 	    prot));
492 }
493 
494 int
495 freebsd32_mmap(struct thread *td, struct freebsd32_mmap_args *uap)
496 {
497 	int prot;
498 
499 	prot = uap->prot;
500 #if defined(__amd64__)
501 	if (i386_read_exec && (prot & PROT_READ))
502 		prot |= PROT_EXEC;
503 #endif
504 
505 	return (kern_mmap(td, &(struct mmap_req){
506 		.mr_hint = (uintptr_t)uap->addr,
507 		.mr_len = uap->len,
508 		.mr_prot = prot,
509 		.mr_flags = uap->flags,
510 		.mr_fd = uap->fd,
511 		.mr_pos = PAIR32TO64(off_t, uap->pos),
512 	    }));
513 }
514 
515 #ifdef COMPAT_FREEBSD6
516 int
517 freebsd6_freebsd32_mmap(struct thread *td,
518     struct freebsd6_freebsd32_mmap_args *uap)
519 {
520 	int prot;
521 
522 	prot = uap->prot;
523 #if defined(__amd64__)
524 	if (i386_read_exec && (prot & PROT_READ))
525 		prot |= PROT_EXEC;
526 #endif
527 
528 	return (kern_mmap(td, &(struct mmap_req){
529 		.mr_hint = (uintptr_t)uap->addr,
530 		.mr_len = uap->len,
531 		.mr_prot = prot,
532 		.mr_flags = uap->flags,
533 		.mr_fd = uap->fd,
534 		.mr_pos = PAIR32TO64(off_t, uap->pos),
535 	    }));
536 }
537 #endif
538 
539 int
540 freebsd32_setitimer(struct thread *td, struct freebsd32_setitimer_args *uap)
541 {
542 	struct itimerval itv, oitv, *itvp;
543 	struct itimerval32 i32;
544 	int error;
545 
546 	if (uap->itv != NULL) {
547 		error = copyin(uap->itv, &i32, sizeof(i32));
548 		if (error)
549 			return (error);
550 		TV_CP(i32, itv, it_interval);
551 		TV_CP(i32, itv, it_value);
552 		itvp = &itv;
553 	} else
554 		itvp = NULL;
555 	error = kern_setitimer(td, uap->which, itvp, &oitv);
556 	if (error || uap->oitv == NULL)
557 		return (error);
558 	TV_CP(oitv, i32, it_interval);
559 	TV_CP(oitv, i32, it_value);
560 	return (copyout(&i32, uap->oitv, sizeof(i32)));
561 }
562 
563 int
564 freebsd32_getitimer(struct thread *td, struct freebsd32_getitimer_args *uap)
565 {
566 	struct itimerval itv;
567 	struct itimerval32 i32;
568 	int error;
569 
570 	error = kern_getitimer(td, uap->which, &itv);
571 	if (error || uap->itv == NULL)
572 		return (error);
573 	TV_CP(itv, i32, it_interval);
574 	TV_CP(itv, i32, it_value);
575 	return (copyout(&i32, uap->itv, sizeof(i32)));
576 }
577 
578 int
579 freebsd32_select(struct thread *td, struct freebsd32_select_args *uap)
580 {
581 	struct timeval32 tv32;
582 	struct timeval tv, *tvp;
583 	int error;
584 
585 	if (uap->tv != NULL) {
586 		error = copyin(uap->tv, &tv32, sizeof(tv32));
587 		if (error)
588 			return (error);
589 		CP(tv32, tv, tv_sec);
590 		CP(tv32, tv, tv_usec);
591 		tvp = &tv;
592 	} else
593 		tvp = NULL;
594 	/*
595 	 * XXX Do pointers need PTRIN()?
596 	 */
597 	return (kern_select(td, uap->nd, uap->in, uap->ou, uap->ex, tvp,
598 	    sizeof(int32_t) * 8));
599 }
600 
601 int
602 freebsd32_pselect(struct thread *td, struct freebsd32_pselect_args *uap)
603 {
604 	struct timespec32 ts32;
605 	struct timespec ts;
606 	struct timeval tv, *tvp;
607 	sigset_t set, *uset;
608 	int error;
609 
610 	if (uap->ts != NULL) {
611 		error = copyin(uap->ts, &ts32, sizeof(ts32));
612 		if (error != 0)
613 			return (error);
614 		CP(ts32, ts, tv_sec);
615 		CP(ts32, ts, tv_nsec);
616 		TIMESPEC_TO_TIMEVAL(&tv, &ts);
617 		tvp = &tv;
618 	} else
619 		tvp = NULL;
620 	if (uap->sm != NULL) {
621 		error = copyin(uap->sm, &set, sizeof(set));
622 		if (error != 0)
623 			return (error);
624 		uset = &set;
625 	} else
626 		uset = NULL;
627 	/*
628 	 * XXX Do pointers need PTRIN()?
629 	 */
630 	error = kern_pselect(td, uap->nd, uap->in, uap->ou, uap->ex, tvp,
631 	    uset, sizeof(int32_t) * 8);
632 	return (error);
633 }
634 
635 /*
636  * Copy 'count' items into the destination list pointed to by uap->eventlist.
637  */
638 static int
639 freebsd32_kevent_copyout(void *arg, struct kevent *kevp, int count)
640 {
641 	struct freebsd32_kevent_args *uap;
642 	struct kevent32	ks32[KQ_NEVENTS];
643 	uint64_t e;
644 	int i, j, error;
645 
646 	KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
647 	uap = (struct freebsd32_kevent_args *)arg;
648 
649 	for (i = 0; i < count; i++) {
650 		CP(kevp[i], ks32[i], ident);
651 		CP(kevp[i], ks32[i], filter);
652 		CP(kevp[i], ks32[i], flags);
653 		CP(kevp[i], ks32[i], fflags);
654 #if BYTE_ORDER == LITTLE_ENDIAN
655 		ks32[i].data1 = kevp[i].data;
656 		ks32[i].data2 = kevp[i].data >> 32;
657 #else
658 		ks32[i].data1 = kevp[i].data >> 32;
659 		ks32[i].data2 = kevp[i].data;
660 #endif
661 		PTROUT_CP(kevp[i], ks32[i], udata);
662 		for (j = 0; j < nitems(kevp->ext); j++) {
663 			e = kevp[i].ext[j];
664 #if BYTE_ORDER == LITTLE_ENDIAN
665 			ks32[i].ext64[2 * j] = e;
666 			ks32[i].ext64[2 * j + 1] = e >> 32;
667 #else
668 			ks32[i].ext64[2 * j] = e >> 32;
669 			ks32[i].ext64[2 * j + 1] = e;
670 #endif
671 		}
672 	}
673 	error = copyout(ks32, uap->eventlist, count * sizeof *ks32);
674 	if (error == 0)
675 		uap->eventlist += count;
676 	return (error);
677 }
678 
679 /*
680  * Copy 'count' items from the list pointed to by uap->changelist.
681  */
682 static int
683 freebsd32_kevent_copyin(void *arg, struct kevent *kevp, int count)
684 {
685 	struct freebsd32_kevent_args *uap;
686 	struct kevent32	ks32[KQ_NEVENTS];
687 	uint64_t e;
688 	int i, j, error;
689 
690 	KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
691 	uap = (struct freebsd32_kevent_args *)arg;
692 
693 	error = copyin(uap->changelist, ks32, count * sizeof *ks32);
694 	if (error)
695 		goto done;
696 	uap->changelist += count;
697 
698 	for (i = 0; i < count; i++) {
699 		CP(ks32[i], kevp[i], ident);
700 		CP(ks32[i], kevp[i], filter);
701 		CP(ks32[i], kevp[i], flags);
702 		CP(ks32[i], kevp[i], fflags);
703 		kevp[i].data = PAIR32TO64(uint64_t, ks32[i].data);
704 		PTRIN_CP(ks32[i], kevp[i], udata);
705 		for (j = 0; j < nitems(kevp->ext); j++) {
706 #if BYTE_ORDER == LITTLE_ENDIAN
707 			e = ks32[i].ext64[2 * j + 1];
708 			e <<= 32;
709 			e += ks32[i].ext64[2 * j];
710 #else
711 			e = ks32[i].ext64[2 * j];
712 			e <<= 32;
713 			e += ks32[i].ext64[2 * j + 1];
714 #endif
715 			kevp[i].ext[j] = e;
716 		}
717 	}
718 done:
719 	return (error);
720 }
721 
722 int
723 freebsd32_kevent(struct thread *td, struct freebsd32_kevent_args *uap)
724 {
725 	struct timespec32 ts32;
726 	struct timespec ts, *tsp;
727 	struct kevent_copyops k_ops = {
728 		.arg = uap,
729 		.k_copyout = freebsd32_kevent_copyout,
730 		.k_copyin = freebsd32_kevent_copyin,
731 	};
732 #ifdef KTRACE
733 	struct kevent32 *eventlist = uap->eventlist;
734 #endif
735 	int error;
736 
737 	if (uap->timeout) {
738 		error = copyin(uap->timeout, &ts32, sizeof(ts32));
739 		if (error)
740 			return (error);
741 		CP(ts32, ts, tv_sec);
742 		CP(ts32, ts, tv_nsec);
743 		tsp = &ts;
744 	} else
745 		tsp = NULL;
746 #ifdef KTRACE
747 	if (KTRPOINT(td, KTR_STRUCT_ARRAY))
748 		ktrstructarray("kevent32", UIO_USERSPACE, uap->changelist,
749 		    uap->nchanges, sizeof(struct kevent32));
750 #endif
751 	error = kern_kevent(td, uap->fd, uap->nchanges, uap->nevents,
752 	    &k_ops, tsp);
753 #ifdef KTRACE
754 	if (error == 0 && KTRPOINT(td, KTR_STRUCT_ARRAY))
755 		ktrstructarray("kevent32", UIO_USERSPACE, eventlist,
756 		    td->td_retval[0], sizeof(struct kevent32));
757 #endif
758 	return (error);
759 }
760 
761 #ifdef COMPAT_FREEBSD11
762 static int
763 freebsd32_kevent11_copyout(void *arg, struct kevent *kevp, int count)
764 {
765 	struct freebsd11_freebsd32_kevent_args *uap;
766 	struct kevent32_freebsd11 ks32[KQ_NEVENTS];
767 	int i, error;
768 
769 	KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
770 	uap = (struct freebsd11_freebsd32_kevent_args *)arg;
771 
772 	for (i = 0; i < count; i++) {
773 		CP(kevp[i], ks32[i], ident);
774 		CP(kevp[i], ks32[i], filter);
775 		CP(kevp[i], ks32[i], flags);
776 		CP(kevp[i], ks32[i], fflags);
777 		CP(kevp[i], ks32[i], data);
778 		PTROUT_CP(kevp[i], ks32[i], udata);
779 	}
780 	error = copyout(ks32, uap->eventlist, count * sizeof *ks32);
781 	if (error == 0)
782 		uap->eventlist += count;
783 	return (error);
784 }
785 
786 /*
787  * Copy 'count' items from the list pointed to by uap->changelist.
788  */
789 static int
790 freebsd32_kevent11_copyin(void *arg, struct kevent *kevp, int count)
791 {
792 	struct freebsd11_freebsd32_kevent_args *uap;
793 	struct kevent32_freebsd11 ks32[KQ_NEVENTS];
794 	int i, j, error;
795 
796 	KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
797 	uap = (struct freebsd11_freebsd32_kevent_args *)arg;
798 
799 	error = copyin(uap->changelist, ks32, count * sizeof *ks32);
800 	if (error)
801 		goto done;
802 	uap->changelist += count;
803 
804 	for (i = 0; i < count; i++) {
805 		CP(ks32[i], kevp[i], ident);
806 		CP(ks32[i], kevp[i], filter);
807 		CP(ks32[i], kevp[i], flags);
808 		CP(ks32[i], kevp[i], fflags);
809 		CP(ks32[i], kevp[i], data);
810 		PTRIN_CP(ks32[i], kevp[i], udata);
811 		for (j = 0; j < nitems(kevp->ext); j++)
812 			kevp[i].ext[j] = 0;
813 	}
814 done:
815 	return (error);
816 }
817 
818 int
819 freebsd11_freebsd32_kevent(struct thread *td,
820     struct freebsd11_freebsd32_kevent_args *uap)
821 {
822 	struct timespec32 ts32;
823 	struct timespec ts, *tsp;
824 	struct kevent_copyops k_ops = {
825 		.arg = uap,
826 		.k_copyout = freebsd32_kevent11_copyout,
827 		.k_copyin = freebsd32_kevent11_copyin,
828 	};
829 #ifdef KTRACE
830 	struct kevent32_freebsd11 *eventlist = uap->eventlist;
831 #endif
832 	int error;
833 
834 	if (uap->timeout) {
835 		error = copyin(uap->timeout, &ts32, sizeof(ts32));
836 		if (error)
837 			return (error);
838 		CP(ts32, ts, tv_sec);
839 		CP(ts32, ts, tv_nsec);
840 		tsp = &ts;
841 	} else
842 		tsp = NULL;
843 #ifdef KTRACE
844 	if (KTRPOINT(td, KTR_STRUCT_ARRAY))
845 		ktrstructarray("kevent32_freebsd11", UIO_USERSPACE,
846 		    uap->changelist, uap->nchanges,
847 		    sizeof(struct kevent32_freebsd11));
848 #endif
849 	error = kern_kevent(td, uap->fd, uap->nchanges, uap->nevents,
850 	    &k_ops, tsp);
851 #ifdef KTRACE
852 	if (error == 0 && KTRPOINT(td, KTR_STRUCT_ARRAY))
853 		ktrstructarray("kevent32_freebsd11", UIO_USERSPACE,
854 		    eventlist, td->td_retval[0],
855 		    sizeof(struct kevent32_freebsd11));
856 #endif
857 	return (error);
858 }
859 #endif
860 
861 int
862 freebsd32_gettimeofday(struct thread *td,
863 		       struct freebsd32_gettimeofday_args *uap)
864 {
865 	struct timeval atv;
866 	struct timeval32 atv32;
867 	struct timezone rtz;
868 	int error = 0;
869 
870 	if (uap->tp) {
871 		microtime(&atv);
872 		CP(atv, atv32, tv_sec);
873 		CP(atv, atv32, tv_usec);
874 		error = copyout(&atv32, uap->tp, sizeof (atv32));
875 	}
876 	if (error == 0 && uap->tzp != NULL) {
877 		rtz.tz_minuteswest = 0;
878 		rtz.tz_dsttime = 0;
879 		error = copyout(&rtz, uap->tzp, sizeof (rtz));
880 	}
881 	return (error);
882 }
883 
884 int
885 freebsd32_getrusage(struct thread *td, struct freebsd32_getrusage_args *uap)
886 {
887 	struct rusage32 s32;
888 	struct rusage s;
889 	int error;
890 
891 	error = kern_getrusage(td, uap->who, &s);
892 	if (error == 0) {
893 		freebsd32_rusage_out(&s, &s32);
894 		error = copyout(&s32, uap->rusage, sizeof(s32));
895 	}
896 	return (error);
897 }
898 
899 static void
900 ptrace_lwpinfo_to32(const struct ptrace_lwpinfo *pl,
901     struct ptrace_lwpinfo32 *pl32)
902 {
903 
904 	bzero(pl32, sizeof(*pl32));
905 	pl32->pl_lwpid = pl->pl_lwpid;
906 	pl32->pl_event = pl->pl_event;
907 	pl32->pl_flags = pl->pl_flags;
908 	pl32->pl_sigmask = pl->pl_sigmask;
909 	pl32->pl_siglist = pl->pl_siglist;
910 	siginfo_to_siginfo32(&pl->pl_siginfo, &pl32->pl_siginfo);
911 	strcpy(pl32->pl_tdname, pl->pl_tdname);
912 	pl32->pl_child_pid = pl->pl_child_pid;
913 	pl32->pl_syscall_code = pl->pl_syscall_code;
914 	pl32->pl_syscall_narg = pl->pl_syscall_narg;
915 }
916 
917 static void
918 ptrace_sc_ret_to32(const struct ptrace_sc_ret *psr,
919     struct ptrace_sc_ret32 *psr32)
920 {
921 
922 	bzero(psr32, sizeof(*psr32));
923 	psr32->sr_retval[0] = psr->sr_retval[0];
924 	psr32->sr_retval[1] = psr->sr_retval[1];
925 	psr32->sr_error = psr->sr_error;
926 }
927 
928 int
929 freebsd32_ptrace(struct thread *td, struct freebsd32_ptrace_args *uap)
930 {
931 	union {
932 		struct ptrace_io_desc piod;
933 		struct ptrace_lwpinfo pl;
934 		struct ptrace_vm_entry pve;
935 		struct ptrace_coredump pc;
936 		struct dbreg32 dbreg;
937 		struct fpreg32 fpreg;
938 		struct reg32 reg;
939 		register_t args[nitems(td->td_sa.args)];
940 		struct ptrace_sc_ret psr;
941 		int ptevents;
942 	} r;
943 	union {
944 		struct ptrace_io_desc32 piod;
945 		struct ptrace_lwpinfo32 pl;
946 		struct ptrace_vm_entry32 pve;
947 		struct ptrace_coredump32 pc;
948 		uint32_t args[nitems(td->td_sa.args)];
949 		struct ptrace_sc_ret32 psr;
950 	} r32;
951 	void *addr;
952 	int data, error = 0, i;
953 
954 	AUDIT_ARG_PID(uap->pid);
955 	AUDIT_ARG_CMD(uap->req);
956 	AUDIT_ARG_VALUE(uap->data);
957 	addr = &r;
958 	data = uap->data;
959 	switch (uap->req) {
960 	case PT_GET_EVENT_MASK:
961 	case PT_GET_SC_ARGS:
962 	case PT_GET_SC_RET:
963 		break;
964 	case PT_LWPINFO:
965 		if (uap->data > sizeof(r32.pl))
966 			return (EINVAL);
967 
968 		/*
969 		 * Pass size of native structure in 'data'.  Truncate
970 		 * if necessary to avoid siginfo.
971 		 */
972 		data = sizeof(r.pl);
973 		if (uap->data < offsetof(struct ptrace_lwpinfo32, pl_siginfo) +
974 		    sizeof(struct siginfo32))
975 			data = offsetof(struct ptrace_lwpinfo, pl_siginfo);
976 		break;
977 	case PT_GETREGS:
978 		bzero(&r.reg, sizeof(r.reg));
979 		break;
980 	case PT_GETFPREGS:
981 		bzero(&r.fpreg, sizeof(r.fpreg));
982 		break;
983 	case PT_GETDBREGS:
984 		bzero(&r.dbreg, sizeof(r.dbreg));
985 		break;
986 	case PT_SETREGS:
987 		error = copyin(uap->addr, &r.reg, sizeof(r.reg));
988 		break;
989 	case PT_SETFPREGS:
990 		error = copyin(uap->addr, &r.fpreg, sizeof(r.fpreg));
991 		break;
992 	case PT_SETDBREGS:
993 		error = copyin(uap->addr, &r.dbreg, sizeof(r.dbreg));
994 		break;
995 	case PT_SET_EVENT_MASK:
996 		if (uap->data != sizeof(r.ptevents))
997 			error = EINVAL;
998 		else
999 			error = copyin(uap->addr, &r.ptevents, uap->data);
1000 		break;
1001 	case PT_IO:
1002 		error = copyin(uap->addr, &r32.piod, sizeof(r32.piod));
1003 		if (error)
1004 			break;
1005 		CP(r32.piod, r.piod, piod_op);
1006 		PTRIN_CP(r32.piod, r.piod, piod_offs);
1007 		PTRIN_CP(r32.piod, r.piod, piod_addr);
1008 		CP(r32.piod, r.piod, piod_len);
1009 		break;
1010 	case PT_VM_ENTRY:
1011 		error = copyin(uap->addr, &r32.pve, sizeof(r32.pve));
1012 		if (error)
1013 			break;
1014 
1015 		CP(r32.pve, r.pve, pve_entry);
1016 		CP(r32.pve, r.pve, pve_timestamp);
1017 		CP(r32.pve, r.pve, pve_start);
1018 		CP(r32.pve, r.pve, pve_end);
1019 		CP(r32.pve, r.pve, pve_offset);
1020 		CP(r32.pve, r.pve, pve_prot);
1021 		CP(r32.pve, r.pve, pve_pathlen);
1022 		CP(r32.pve, r.pve, pve_fileid);
1023 		CP(r32.pve, r.pve, pve_fsid);
1024 		PTRIN_CP(r32.pve, r.pve, pve_path);
1025 		break;
1026 	case PT_COREDUMP:
1027 		if (uap->data != sizeof(r32.pc))
1028 			error = EINVAL;
1029 		else
1030 			error = copyin(uap->addr, &r32.pc, uap->data);
1031 		CP(r32.pc, r.pc, pc_fd);
1032 		CP(r32.pc, r.pc, pc_flags);
1033 		r.pc.pc_limit = PAIR32TO64(off_t, r32.pc.pc_limit);
1034 		data = sizeof(r.pc);
1035 		break;
1036 	default:
1037 		addr = uap->addr;
1038 		break;
1039 	}
1040 	if (error)
1041 		return (error);
1042 
1043 	error = kern_ptrace(td, uap->req, uap->pid, addr, data);
1044 	if (error)
1045 		return (error);
1046 
1047 	switch (uap->req) {
1048 	case PT_VM_ENTRY:
1049 		CP(r.pve, r32.pve, pve_entry);
1050 		CP(r.pve, r32.pve, pve_timestamp);
1051 		CP(r.pve, r32.pve, pve_start);
1052 		CP(r.pve, r32.pve, pve_end);
1053 		CP(r.pve, r32.pve, pve_offset);
1054 		CP(r.pve, r32.pve, pve_prot);
1055 		CP(r.pve, r32.pve, pve_pathlen);
1056 		CP(r.pve, r32.pve, pve_fileid);
1057 		CP(r.pve, r32.pve, pve_fsid);
1058 		error = copyout(&r32.pve, uap->addr, sizeof(r32.pve));
1059 		break;
1060 	case PT_IO:
1061 		CP(r.piod, r32.piod, piod_len);
1062 		error = copyout(&r32.piod, uap->addr, sizeof(r32.piod));
1063 		break;
1064 	case PT_GETREGS:
1065 		error = copyout(&r.reg, uap->addr, sizeof(r.reg));
1066 		break;
1067 	case PT_GETFPREGS:
1068 		error = copyout(&r.fpreg, uap->addr, sizeof(r.fpreg));
1069 		break;
1070 	case PT_GETDBREGS:
1071 		error = copyout(&r.dbreg, uap->addr, sizeof(r.dbreg));
1072 		break;
1073 	case PT_GET_EVENT_MASK:
1074 		/* NB: The size in uap->data is validated in kern_ptrace(). */
1075 		error = copyout(&r.ptevents, uap->addr, uap->data);
1076 		break;
1077 	case PT_LWPINFO:
1078 		ptrace_lwpinfo_to32(&r.pl, &r32.pl);
1079 		error = copyout(&r32.pl, uap->addr, uap->data);
1080 		break;
1081 	case PT_GET_SC_ARGS:
1082 		for (i = 0; i < nitems(r.args); i++)
1083 			r32.args[i] = (uint32_t)r.args[i];
1084 		error = copyout(r32.args, uap->addr, MIN(uap->data,
1085 		    sizeof(r32.args)));
1086 		break;
1087 	case PT_GET_SC_RET:
1088 		ptrace_sc_ret_to32(&r.psr, &r32.psr);
1089 		error = copyout(&r32.psr, uap->addr, MIN(uap->data,
1090 		    sizeof(r32.psr)));
1091 		break;
1092 	}
1093 
1094 	return (error);
1095 }
1096 
1097 int
1098 freebsd32_copyinuio(struct iovec32 *iovp, u_int iovcnt, struct uio **uiop)
1099 {
1100 	struct iovec32 iov32;
1101 	struct iovec *iov;
1102 	struct uio *uio;
1103 	u_int iovlen;
1104 	int error, i;
1105 
1106 	*uiop = NULL;
1107 	if (iovcnt > UIO_MAXIOV)
1108 		return (EINVAL);
1109 	iovlen = iovcnt * sizeof(struct iovec);
1110 	uio = malloc(iovlen + sizeof *uio, M_IOV, M_WAITOK);
1111 	iov = (struct iovec *)(uio + 1);
1112 	for (i = 0; i < iovcnt; i++) {
1113 		error = copyin(&iovp[i], &iov32, sizeof(struct iovec32));
1114 		if (error) {
1115 			free(uio, M_IOV);
1116 			return (error);
1117 		}
1118 		iov[i].iov_base = PTRIN(iov32.iov_base);
1119 		iov[i].iov_len = iov32.iov_len;
1120 	}
1121 	uio->uio_iov = iov;
1122 	uio->uio_iovcnt = iovcnt;
1123 	uio->uio_segflg = UIO_USERSPACE;
1124 	uio->uio_offset = -1;
1125 	uio->uio_resid = 0;
1126 	for (i = 0; i < iovcnt; i++) {
1127 		if (iov->iov_len > INT_MAX - uio->uio_resid) {
1128 			free(uio, M_IOV);
1129 			return (EINVAL);
1130 		}
1131 		uio->uio_resid += iov->iov_len;
1132 		iov++;
1133 	}
1134 	*uiop = uio;
1135 	return (0);
1136 }
1137 
1138 int
1139 freebsd32_readv(struct thread *td, struct freebsd32_readv_args *uap)
1140 {
1141 	struct uio *auio;
1142 	int error;
1143 
1144 	error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio);
1145 	if (error)
1146 		return (error);
1147 	error = kern_readv(td, uap->fd, auio);
1148 	free(auio, M_IOV);
1149 	return (error);
1150 }
1151 
1152 int
1153 freebsd32_writev(struct thread *td, struct freebsd32_writev_args *uap)
1154 {
1155 	struct uio *auio;
1156 	int error;
1157 
1158 	error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio);
1159 	if (error)
1160 		return (error);
1161 	error = kern_writev(td, uap->fd, auio);
1162 	free(auio, M_IOV);
1163 	return (error);
1164 }
1165 
1166 int
1167 freebsd32_preadv(struct thread *td, struct freebsd32_preadv_args *uap)
1168 {
1169 	struct uio *auio;
1170 	int error;
1171 
1172 	error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio);
1173 	if (error)
1174 		return (error);
1175 	error = kern_preadv(td, uap->fd, auio, PAIR32TO64(off_t,uap->offset));
1176 	free(auio, M_IOV);
1177 	return (error);
1178 }
1179 
1180 int
1181 freebsd32_pwritev(struct thread *td, struct freebsd32_pwritev_args *uap)
1182 {
1183 	struct uio *auio;
1184 	int error;
1185 
1186 	error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio);
1187 	if (error)
1188 		return (error);
1189 	error = kern_pwritev(td, uap->fd, auio, PAIR32TO64(off_t,uap->offset));
1190 	free(auio, M_IOV);
1191 	return (error);
1192 }
1193 
1194 int
1195 freebsd32_copyiniov(struct iovec32 *iovp32, u_int iovcnt, struct iovec **iovp,
1196     int error)
1197 {
1198 	struct iovec32 iov32;
1199 	struct iovec *iov;
1200 	u_int iovlen;
1201 	int i;
1202 
1203 	*iovp = NULL;
1204 	if (iovcnt > UIO_MAXIOV)
1205 		return (error);
1206 	iovlen = iovcnt * sizeof(struct iovec);
1207 	iov = malloc(iovlen, M_IOV, M_WAITOK);
1208 	for (i = 0; i < iovcnt; i++) {
1209 		error = copyin(&iovp32[i], &iov32, sizeof(struct iovec32));
1210 		if (error) {
1211 			free(iov, M_IOV);
1212 			return (error);
1213 		}
1214 		iov[i].iov_base = PTRIN(iov32.iov_base);
1215 		iov[i].iov_len = iov32.iov_len;
1216 	}
1217 	*iovp = iov;
1218 	return (0);
1219 }
1220 
1221 static int
1222 freebsd32_copyinmsghdr(struct msghdr32 *msg32, struct msghdr *msg)
1223 {
1224 	struct msghdr32 m32;
1225 	int error;
1226 
1227 	error = copyin(msg32, &m32, sizeof(m32));
1228 	if (error)
1229 		return (error);
1230 	msg->msg_name = PTRIN(m32.msg_name);
1231 	msg->msg_namelen = m32.msg_namelen;
1232 	msg->msg_iov = PTRIN(m32.msg_iov);
1233 	msg->msg_iovlen = m32.msg_iovlen;
1234 	msg->msg_control = PTRIN(m32.msg_control);
1235 	msg->msg_controllen = m32.msg_controllen;
1236 	msg->msg_flags = m32.msg_flags;
1237 	return (0);
1238 }
1239 
1240 static int
1241 freebsd32_copyoutmsghdr(struct msghdr *msg, struct msghdr32 *msg32)
1242 {
1243 	struct msghdr32 m32;
1244 	int error;
1245 
1246 	m32.msg_name = PTROUT(msg->msg_name);
1247 	m32.msg_namelen = msg->msg_namelen;
1248 	m32.msg_iov = PTROUT(msg->msg_iov);
1249 	m32.msg_iovlen = msg->msg_iovlen;
1250 	m32.msg_control = PTROUT(msg->msg_control);
1251 	m32.msg_controllen = msg->msg_controllen;
1252 	m32.msg_flags = msg->msg_flags;
1253 	error = copyout(&m32, msg32, sizeof(m32));
1254 	return (error);
1255 }
1256 
1257 #ifndef __mips__
1258 #define FREEBSD32_ALIGNBYTES	(sizeof(int) - 1)
1259 #else
1260 #define FREEBSD32_ALIGNBYTES	(sizeof(long) - 1)
1261 #endif
1262 #define FREEBSD32_ALIGN(p)	\
1263 	(((u_long)(p) + FREEBSD32_ALIGNBYTES) & ~FREEBSD32_ALIGNBYTES)
1264 #define	FREEBSD32_CMSG_SPACE(l)	\
1265 	(FREEBSD32_ALIGN(sizeof(struct cmsghdr)) + FREEBSD32_ALIGN(l))
1266 
1267 #define	FREEBSD32_CMSG_DATA(cmsg)	((unsigned char *)(cmsg) + \
1268 				 FREEBSD32_ALIGN(sizeof(struct cmsghdr)))
1269 
1270 static size_t
1271 freebsd32_cmsg_convert(const struct cmsghdr *cm, void *data, socklen_t datalen)
1272 {
1273 	size_t copylen;
1274 	union {
1275 		struct timespec32 ts;
1276 		struct timeval32 tv;
1277 		struct bintime32 bt;
1278 	} tmp32;
1279 
1280 	union {
1281 		struct timespec ts;
1282 		struct timeval tv;
1283 		struct bintime bt;
1284 	} *in;
1285 
1286 	in = data;
1287 	copylen = 0;
1288 	switch (cm->cmsg_level) {
1289 	case SOL_SOCKET:
1290 		switch (cm->cmsg_type) {
1291 		case SCM_TIMESTAMP:
1292 			TV_CP(*in, tmp32, tv);
1293 			copylen = sizeof(tmp32.tv);
1294 			break;
1295 
1296 		case SCM_BINTIME:
1297 			BT_CP(*in, tmp32, bt);
1298 			copylen = sizeof(tmp32.bt);
1299 			break;
1300 
1301 		case SCM_REALTIME:
1302 		case SCM_MONOTONIC:
1303 			TS_CP(*in, tmp32, ts);
1304 			copylen = sizeof(tmp32.ts);
1305 			break;
1306 
1307 		default:
1308 			break;
1309 		}
1310 
1311 	default:
1312 		break;
1313 	}
1314 
1315 	if (copylen == 0)
1316 		return (datalen);
1317 
1318 	KASSERT((datalen >= copylen), ("corrupted cmsghdr"));
1319 
1320 	bcopy(&tmp32, data, copylen);
1321 	return (copylen);
1322 }
1323 
1324 static int
1325 freebsd32_copy_msg_out(struct msghdr *msg, struct mbuf *control)
1326 {
1327 	struct cmsghdr *cm;
1328 	void *data;
1329 	socklen_t clen, datalen, datalen_out, oldclen;
1330 	int error;
1331 	caddr_t ctlbuf;
1332 	int len, maxlen, copylen;
1333 	struct mbuf *m;
1334 	error = 0;
1335 
1336 	len    = msg->msg_controllen;
1337 	maxlen = msg->msg_controllen;
1338 	msg->msg_controllen = 0;
1339 
1340 	ctlbuf = msg->msg_control;
1341 	for (m = control; m != NULL && len > 0; m = m->m_next) {
1342 		cm = mtod(m, struct cmsghdr *);
1343 		clen = m->m_len;
1344 		while (cm != NULL) {
1345 			if (sizeof(struct cmsghdr) > clen ||
1346 			    cm->cmsg_len > clen) {
1347 				error = EINVAL;
1348 				break;
1349 			}
1350 
1351 			data   = CMSG_DATA(cm);
1352 			datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data;
1353 			datalen_out = freebsd32_cmsg_convert(cm, data, datalen);
1354 
1355 			/*
1356 			 * Copy out the message header.  Preserve the native
1357 			 * message size in case we need to inspect the message
1358 			 * contents later.
1359 			 */
1360 			copylen = sizeof(struct cmsghdr);
1361 			if (len < copylen) {
1362 				msg->msg_flags |= MSG_CTRUNC;
1363 				m_dispose_extcontrolm(m);
1364 				goto exit;
1365 			}
1366 			oldclen = cm->cmsg_len;
1367 			cm->cmsg_len = FREEBSD32_ALIGN(sizeof(struct cmsghdr)) +
1368 			    datalen_out;
1369 			error = copyout(cm, ctlbuf, copylen);
1370 			cm->cmsg_len = oldclen;
1371 			if (error != 0)
1372 				goto exit;
1373 
1374 			ctlbuf += FREEBSD32_ALIGN(copylen);
1375 			len    -= FREEBSD32_ALIGN(copylen);
1376 
1377 			copylen = datalen_out;
1378 			if (len < copylen) {
1379 				msg->msg_flags |= MSG_CTRUNC;
1380 				m_dispose_extcontrolm(m);
1381 				break;
1382 			}
1383 
1384 			/* Copy out the message data. */
1385 			error = copyout(data, ctlbuf, copylen);
1386 			if (error)
1387 				goto exit;
1388 
1389 			ctlbuf += FREEBSD32_ALIGN(copylen);
1390 			len    -= FREEBSD32_ALIGN(copylen);
1391 
1392 			if (CMSG_SPACE(datalen) < clen) {
1393 				clen -= CMSG_SPACE(datalen);
1394 				cm = (struct cmsghdr *)
1395 				    ((caddr_t)cm + CMSG_SPACE(datalen));
1396 			} else {
1397 				clen = 0;
1398 				cm = NULL;
1399 			}
1400 
1401 			msg->msg_controllen +=
1402 			    FREEBSD32_CMSG_SPACE(datalen_out);
1403 		}
1404 	}
1405 	if (len == 0 && m != NULL) {
1406 		msg->msg_flags |= MSG_CTRUNC;
1407 		m_dispose_extcontrolm(m);
1408 	}
1409 
1410 exit:
1411 	return (error);
1412 }
1413 
1414 int
1415 freebsd32_recvmsg(td, uap)
1416 	struct thread *td;
1417 	struct freebsd32_recvmsg_args /* {
1418 		int	s;
1419 		struct	msghdr32 *msg;
1420 		int	flags;
1421 	} */ *uap;
1422 {
1423 	struct msghdr msg;
1424 	struct msghdr32 m32;
1425 	struct iovec *uiov, *iov;
1426 	struct mbuf *control = NULL;
1427 	struct mbuf **controlp;
1428 
1429 	int error;
1430 	error = copyin(uap->msg, &m32, sizeof(m32));
1431 	if (error)
1432 		return (error);
1433 	error = freebsd32_copyinmsghdr(uap->msg, &msg);
1434 	if (error)
1435 		return (error);
1436 	error = freebsd32_copyiniov(PTRIN(m32.msg_iov), m32.msg_iovlen, &iov,
1437 	    EMSGSIZE);
1438 	if (error)
1439 		return (error);
1440 	msg.msg_flags = uap->flags;
1441 	uiov = msg.msg_iov;
1442 	msg.msg_iov = iov;
1443 
1444 	controlp = (msg.msg_control != NULL) ?  &control : NULL;
1445 	error = kern_recvit(td, uap->s, &msg, UIO_USERSPACE, controlp);
1446 	if (error == 0) {
1447 		msg.msg_iov = uiov;
1448 
1449 		if (control != NULL)
1450 			error = freebsd32_copy_msg_out(&msg, control);
1451 		else
1452 			msg.msg_controllen = 0;
1453 
1454 		if (error == 0)
1455 			error = freebsd32_copyoutmsghdr(&msg, uap->msg);
1456 	}
1457 	free(iov, M_IOV);
1458 
1459 	if (control != NULL) {
1460 		if (error != 0)
1461 			m_dispose_extcontrolm(control);
1462 		m_freem(control);
1463 	}
1464 
1465 	return (error);
1466 }
1467 
1468 /*
1469  * Copy-in the array of control messages constructed using alignment
1470  * and padding suitable for a 32-bit environment and construct an
1471  * mbuf using alignment and padding suitable for a 64-bit kernel.
1472  * The alignment and padding are defined indirectly by CMSG_DATA(),
1473  * CMSG_SPACE() and CMSG_LEN().
1474  */
1475 static int
1476 freebsd32_copyin_control(struct mbuf **mp, caddr_t buf, u_int buflen)
1477 {
1478 	struct cmsghdr *cm;
1479 	struct mbuf *m;
1480 	void *in, *in1, *md;
1481 	u_int msglen, outlen;
1482 	int error;
1483 
1484 	if (buflen > MCLBYTES)
1485 		return (EINVAL);
1486 
1487 	in = malloc(buflen, M_TEMP, M_WAITOK);
1488 	error = copyin(buf, in, buflen);
1489 	if (error != 0)
1490 		goto out;
1491 
1492 	/*
1493 	 * Make a pass over the input buffer to determine the amount of space
1494 	 * required for 64 bit-aligned copies of the control messages.
1495 	 */
1496 	in1 = in;
1497 	outlen = 0;
1498 	while (buflen > 0) {
1499 		if (buflen < sizeof(*cm)) {
1500 			error = EINVAL;
1501 			break;
1502 		}
1503 		cm = (struct cmsghdr *)in1;
1504 		if (cm->cmsg_len < FREEBSD32_ALIGN(sizeof(*cm))) {
1505 			error = EINVAL;
1506 			break;
1507 		}
1508 		msglen = FREEBSD32_ALIGN(cm->cmsg_len);
1509 		if (msglen > buflen || msglen < cm->cmsg_len) {
1510 			error = EINVAL;
1511 			break;
1512 		}
1513 		buflen -= msglen;
1514 
1515 		in1 = (char *)in1 + msglen;
1516 		outlen += CMSG_ALIGN(sizeof(*cm)) +
1517 		    CMSG_ALIGN(msglen - FREEBSD32_ALIGN(sizeof(*cm)));
1518 	}
1519 	if (error == 0 && outlen > MCLBYTES) {
1520 		/*
1521 		 * XXXMJ This implies that the upper limit on 32-bit aligned
1522 		 * control messages is less than MCLBYTES, and so we are not
1523 		 * perfectly compatible.  However, there is no platform
1524 		 * guarantee that mbuf clusters larger than MCLBYTES can be
1525 		 * allocated.
1526 		 */
1527 		error = EINVAL;
1528 	}
1529 	if (error != 0)
1530 		goto out;
1531 
1532 	m = m_get2(outlen, M_WAITOK, MT_CONTROL, 0);
1533 	m->m_len = outlen;
1534 	md = mtod(m, void *);
1535 
1536 	/*
1537 	 * Make a second pass over input messages, copying them into the output
1538 	 * buffer.
1539 	 */
1540 	in1 = in;
1541 	while (outlen > 0) {
1542 		/* Copy the message header and align the length field. */
1543 		cm = md;
1544 		memcpy(cm, in1, sizeof(*cm));
1545 		msglen = cm->cmsg_len - FREEBSD32_ALIGN(sizeof(*cm));
1546 		cm->cmsg_len = CMSG_ALIGN(sizeof(*cm)) + msglen;
1547 
1548 		/* Copy the message body. */
1549 		in1 = (char *)in1 + FREEBSD32_ALIGN(sizeof(*cm));
1550 		md = (char *)md + CMSG_ALIGN(sizeof(*cm));
1551 		memcpy(md, in1, msglen);
1552 		in1 = (char *)in1 + FREEBSD32_ALIGN(msglen);
1553 		md = (char *)md + CMSG_ALIGN(msglen);
1554 		KASSERT(outlen >= CMSG_ALIGN(sizeof(*cm)) + CMSG_ALIGN(msglen),
1555 		    ("outlen %u underflow, msglen %u", outlen, msglen));
1556 		outlen -= CMSG_ALIGN(sizeof(*cm)) + CMSG_ALIGN(msglen);
1557 	}
1558 
1559 	*mp = m;
1560 out:
1561 	free(in, M_TEMP);
1562 	return (error);
1563 }
1564 
1565 int
1566 freebsd32_sendmsg(struct thread *td,
1567 		  struct freebsd32_sendmsg_args *uap)
1568 {
1569 	struct msghdr msg;
1570 	struct msghdr32 m32;
1571 	struct iovec *iov;
1572 	struct mbuf *control = NULL;
1573 	struct sockaddr *to = NULL;
1574 	int error;
1575 
1576 	error = copyin(uap->msg, &m32, sizeof(m32));
1577 	if (error)
1578 		return (error);
1579 	error = freebsd32_copyinmsghdr(uap->msg, &msg);
1580 	if (error)
1581 		return (error);
1582 	error = freebsd32_copyiniov(PTRIN(m32.msg_iov), m32.msg_iovlen, &iov,
1583 	    EMSGSIZE);
1584 	if (error)
1585 		return (error);
1586 	msg.msg_iov = iov;
1587 	if (msg.msg_name != NULL) {
1588 		error = getsockaddr(&to, msg.msg_name, msg.msg_namelen);
1589 		if (error) {
1590 			to = NULL;
1591 			goto out;
1592 		}
1593 		msg.msg_name = to;
1594 	}
1595 
1596 	if (msg.msg_control) {
1597 		if (msg.msg_controllen < sizeof(struct cmsghdr)) {
1598 			error = EINVAL;
1599 			goto out;
1600 		}
1601 
1602 		error = freebsd32_copyin_control(&control, msg.msg_control,
1603 		    msg.msg_controllen);
1604 		if (error)
1605 			goto out;
1606 
1607 		msg.msg_control = NULL;
1608 		msg.msg_controllen = 0;
1609 	}
1610 
1611 	error = kern_sendit(td, uap->s, &msg, uap->flags, control,
1612 	    UIO_USERSPACE);
1613 
1614 out:
1615 	free(iov, M_IOV);
1616 	if (to)
1617 		free(to, M_SONAME);
1618 	return (error);
1619 }
1620 
1621 int
1622 freebsd32_recvfrom(struct thread *td,
1623 		   struct freebsd32_recvfrom_args *uap)
1624 {
1625 	struct msghdr msg;
1626 	struct iovec aiov;
1627 	int error;
1628 
1629 	if (uap->fromlenaddr) {
1630 		error = copyin(PTRIN(uap->fromlenaddr), &msg.msg_namelen,
1631 		    sizeof(msg.msg_namelen));
1632 		if (error)
1633 			return (error);
1634 	} else {
1635 		msg.msg_namelen = 0;
1636 	}
1637 
1638 	msg.msg_name = PTRIN(uap->from);
1639 	msg.msg_iov = &aiov;
1640 	msg.msg_iovlen = 1;
1641 	aiov.iov_base = PTRIN(uap->buf);
1642 	aiov.iov_len = uap->len;
1643 	msg.msg_control = NULL;
1644 	msg.msg_flags = uap->flags;
1645 	error = kern_recvit(td, uap->s, &msg, UIO_USERSPACE, NULL);
1646 	if (error == 0 && uap->fromlenaddr)
1647 		error = copyout(&msg.msg_namelen, PTRIN(uap->fromlenaddr),
1648 		    sizeof (msg.msg_namelen));
1649 	return (error);
1650 }
1651 
1652 int
1653 freebsd32_settimeofday(struct thread *td,
1654 		       struct freebsd32_settimeofday_args *uap)
1655 {
1656 	struct timeval32 tv32;
1657 	struct timeval tv, *tvp;
1658 	struct timezone tz, *tzp;
1659 	int error;
1660 
1661 	if (uap->tv) {
1662 		error = copyin(uap->tv, &tv32, sizeof(tv32));
1663 		if (error)
1664 			return (error);
1665 		CP(tv32, tv, tv_sec);
1666 		CP(tv32, tv, tv_usec);
1667 		tvp = &tv;
1668 	} else
1669 		tvp = NULL;
1670 	if (uap->tzp) {
1671 		error = copyin(uap->tzp, &tz, sizeof(tz));
1672 		if (error)
1673 			return (error);
1674 		tzp = &tz;
1675 	} else
1676 		tzp = NULL;
1677 	return (kern_settimeofday(td, tvp, tzp));
1678 }
1679 
1680 int
1681 freebsd32_utimes(struct thread *td, struct freebsd32_utimes_args *uap)
1682 {
1683 	struct timeval32 s32[2];
1684 	struct timeval s[2], *sp;
1685 	int error;
1686 
1687 	if (uap->tptr != NULL) {
1688 		error = copyin(uap->tptr, s32, sizeof(s32));
1689 		if (error)
1690 			return (error);
1691 		CP(s32[0], s[0], tv_sec);
1692 		CP(s32[0], s[0], tv_usec);
1693 		CP(s32[1], s[1], tv_sec);
1694 		CP(s32[1], s[1], tv_usec);
1695 		sp = s;
1696 	} else
1697 		sp = NULL;
1698 	return (kern_utimesat(td, AT_FDCWD, uap->path, UIO_USERSPACE,
1699 	    sp, UIO_SYSSPACE));
1700 }
1701 
1702 int
1703 freebsd32_lutimes(struct thread *td, struct freebsd32_lutimes_args *uap)
1704 {
1705 	struct timeval32 s32[2];
1706 	struct timeval s[2], *sp;
1707 	int error;
1708 
1709 	if (uap->tptr != NULL) {
1710 		error = copyin(uap->tptr, s32, sizeof(s32));
1711 		if (error)
1712 			return (error);
1713 		CP(s32[0], s[0], tv_sec);
1714 		CP(s32[0], s[0], tv_usec);
1715 		CP(s32[1], s[1], tv_sec);
1716 		CP(s32[1], s[1], tv_usec);
1717 		sp = s;
1718 	} else
1719 		sp = NULL;
1720 	return (kern_lutimes(td, uap->path, UIO_USERSPACE, sp, UIO_SYSSPACE));
1721 }
1722 
1723 int
1724 freebsd32_futimes(struct thread *td, struct freebsd32_futimes_args *uap)
1725 {
1726 	struct timeval32 s32[2];
1727 	struct timeval s[2], *sp;
1728 	int error;
1729 
1730 	if (uap->tptr != NULL) {
1731 		error = copyin(uap->tptr, s32, sizeof(s32));
1732 		if (error)
1733 			return (error);
1734 		CP(s32[0], s[0], tv_sec);
1735 		CP(s32[0], s[0], tv_usec);
1736 		CP(s32[1], s[1], tv_sec);
1737 		CP(s32[1], s[1], tv_usec);
1738 		sp = s;
1739 	} else
1740 		sp = NULL;
1741 	return (kern_futimes(td, uap->fd, sp, UIO_SYSSPACE));
1742 }
1743 
1744 int
1745 freebsd32_futimesat(struct thread *td, struct freebsd32_futimesat_args *uap)
1746 {
1747 	struct timeval32 s32[2];
1748 	struct timeval s[2], *sp;
1749 	int error;
1750 
1751 	if (uap->times != NULL) {
1752 		error = copyin(uap->times, s32, sizeof(s32));
1753 		if (error)
1754 			return (error);
1755 		CP(s32[0], s[0], tv_sec);
1756 		CP(s32[0], s[0], tv_usec);
1757 		CP(s32[1], s[1], tv_sec);
1758 		CP(s32[1], s[1], tv_usec);
1759 		sp = s;
1760 	} else
1761 		sp = NULL;
1762 	return (kern_utimesat(td, uap->fd, uap->path, UIO_USERSPACE,
1763 		sp, UIO_SYSSPACE));
1764 }
1765 
1766 int
1767 freebsd32_futimens(struct thread *td, struct freebsd32_futimens_args *uap)
1768 {
1769 	struct timespec32 ts32[2];
1770 	struct timespec ts[2], *tsp;
1771 	int error;
1772 
1773 	if (uap->times != NULL) {
1774 		error = copyin(uap->times, ts32, sizeof(ts32));
1775 		if (error)
1776 			return (error);
1777 		CP(ts32[0], ts[0], tv_sec);
1778 		CP(ts32[0], ts[0], tv_nsec);
1779 		CP(ts32[1], ts[1], tv_sec);
1780 		CP(ts32[1], ts[1], tv_nsec);
1781 		tsp = ts;
1782 	} else
1783 		tsp = NULL;
1784 	return (kern_futimens(td, uap->fd, tsp, UIO_SYSSPACE));
1785 }
1786 
1787 int
1788 freebsd32_utimensat(struct thread *td, struct freebsd32_utimensat_args *uap)
1789 {
1790 	struct timespec32 ts32[2];
1791 	struct timespec ts[2], *tsp;
1792 	int error;
1793 
1794 	if (uap->times != NULL) {
1795 		error = copyin(uap->times, ts32, sizeof(ts32));
1796 		if (error)
1797 			return (error);
1798 		CP(ts32[0], ts[0], tv_sec);
1799 		CP(ts32[0], ts[0], tv_nsec);
1800 		CP(ts32[1], ts[1], tv_sec);
1801 		CP(ts32[1], ts[1], tv_nsec);
1802 		tsp = ts;
1803 	} else
1804 		tsp = NULL;
1805 	return (kern_utimensat(td, uap->fd, uap->path, UIO_USERSPACE,
1806 	    tsp, UIO_SYSSPACE, uap->flag));
1807 }
1808 
1809 int
1810 freebsd32_adjtime(struct thread *td, struct freebsd32_adjtime_args *uap)
1811 {
1812 	struct timeval32 tv32;
1813 	struct timeval delta, olddelta, *deltap;
1814 	int error;
1815 
1816 	if (uap->delta) {
1817 		error = copyin(uap->delta, &tv32, sizeof(tv32));
1818 		if (error)
1819 			return (error);
1820 		CP(tv32, delta, tv_sec);
1821 		CP(tv32, delta, tv_usec);
1822 		deltap = &delta;
1823 	} else
1824 		deltap = NULL;
1825 	error = kern_adjtime(td, deltap, &olddelta);
1826 	if (uap->olddelta && error == 0) {
1827 		CP(olddelta, tv32, tv_sec);
1828 		CP(olddelta, tv32, tv_usec);
1829 		error = copyout(&tv32, uap->olddelta, sizeof(tv32));
1830 	}
1831 	return (error);
1832 }
1833 
1834 #ifdef COMPAT_FREEBSD4
1835 int
1836 freebsd4_freebsd32_statfs(struct thread *td, struct freebsd4_freebsd32_statfs_args *uap)
1837 {
1838 	struct statfs32 s32;
1839 	struct statfs *sp;
1840 	int error;
1841 
1842 	sp = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK);
1843 	error = kern_statfs(td, uap->path, UIO_USERSPACE, sp);
1844 	if (error == 0) {
1845 		copy_statfs(sp, &s32);
1846 		error = copyout(&s32, uap->buf, sizeof(s32));
1847 	}
1848 	free(sp, M_STATFS);
1849 	return (error);
1850 }
1851 #endif
1852 
1853 #ifdef COMPAT_FREEBSD4
1854 int
1855 freebsd4_freebsd32_fstatfs(struct thread *td, struct freebsd4_freebsd32_fstatfs_args *uap)
1856 {
1857 	struct statfs32 s32;
1858 	struct statfs *sp;
1859 	int error;
1860 
1861 	sp = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK);
1862 	error = kern_fstatfs(td, uap->fd, sp);
1863 	if (error == 0) {
1864 		copy_statfs(sp, &s32);
1865 		error = copyout(&s32, uap->buf, sizeof(s32));
1866 	}
1867 	free(sp, M_STATFS);
1868 	return (error);
1869 }
1870 #endif
1871 
1872 #ifdef COMPAT_FREEBSD4
1873 int
1874 freebsd4_freebsd32_fhstatfs(struct thread *td, struct freebsd4_freebsd32_fhstatfs_args *uap)
1875 {
1876 	struct statfs32 s32;
1877 	struct statfs *sp;
1878 	fhandle_t fh;
1879 	int error;
1880 
1881 	if ((error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t))) != 0)
1882 		return (error);
1883 	sp = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK);
1884 	error = kern_fhstatfs(td, fh, sp);
1885 	if (error == 0) {
1886 		copy_statfs(sp, &s32);
1887 		error = copyout(&s32, uap->buf, sizeof(s32));
1888 	}
1889 	free(sp, M_STATFS);
1890 	return (error);
1891 }
1892 #endif
1893 
1894 int
1895 freebsd32_pread(struct thread *td, struct freebsd32_pread_args *uap)
1896 {
1897 
1898 	return (kern_pread(td, uap->fd, uap->buf, uap->nbyte,
1899 	    PAIR32TO64(off_t, uap->offset)));
1900 }
1901 
1902 int
1903 freebsd32_pwrite(struct thread *td, struct freebsd32_pwrite_args *uap)
1904 {
1905 
1906 	return (kern_pwrite(td, uap->fd, uap->buf, uap->nbyte,
1907 	    PAIR32TO64(off_t, uap->offset)));
1908 }
1909 
1910 #ifdef COMPAT_43
1911 int
1912 ofreebsd32_lseek(struct thread *td, struct ofreebsd32_lseek_args *uap)
1913 {
1914 
1915 	return (kern_lseek(td, uap->fd, uap->offset, uap->whence));
1916 }
1917 #endif
1918 
1919 int
1920 freebsd32_lseek(struct thread *td, struct freebsd32_lseek_args *uap)
1921 {
1922 	int error;
1923 	off_t pos;
1924 
1925 	error = kern_lseek(td, uap->fd, PAIR32TO64(off_t, uap->offset),
1926 	    uap->whence);
1927 	/* Expand the quad return into two parts for eax and edx */
1928 	pos = td->td_uretoff.tdu_off;
1929 	td->td_retval[RETVAL_LO] = pos & 0xffffffff;	/* %eax */
1930 	td->td_retval[RETVAL_HI] = pos >> 32;		/* %edx */
1931 	return error;
1932 }
1933 
1934 int
1935 freebsd32_truncate(struct thread *td, struct freebsd32_truncate_args *uap)
1936 {
1937 
1938 	return (kern_truncate(td, uap->path, UIO_USERSPACE,
1939 	    PAIR32TO64(off_t, uap->length)));
1940 }
1941 
1942 int
1943 freebsd32_ftruncate(struct thread *td, struct freebsd32_ftruncate_args *uap)
1944 {
1945 
1946 	return (kern_ftruncate(td, uap->fd, PAIR32TO64(off_t, uap->length)));
1947 }
1948 
1949 #ifdef COMPAT_43
1950 int
1951 ofreebsd32_getdirentries(struct thread *td,
1952     struct ofreebsd32_getdirentries_args *uap)
1953 {
1954 	struct ogetdirentries_args ap;
1955 	int error;
1956 	long loff;
1957 	int32_t loff_cut;
1958 
1959 	ap.fd = uap->fd;
1960 	ap.buf = uap->buf;
1961 	ap.count = uap->count;
1962 	ap.basep = NULL;
1963 	error = kern_ogetdirentries(td, &ap, &loff);
1964 	if (error == 0) {
1965 		loff_cut = loff;
1966 		error = copyout(&loff_cut, uap->basep, sizeof(int32_t));
1967 	}
1968 	return (error);
1969 }
1970 #endif
1971 
1972 #if defined(COMPAT_FREEBSD11)
1973 int
1974 freebsd11_freebsd32_getdirentries(struct thread *td,
1975     struct freebsd11_freebsd32_getdirentries_args *uap)
1976 {
1977 	long base;
1978 	int32_t base32;
1979 	int error;
1980 
1981 	error = freebsd11_kern_getdirentries(td, uap->fd, uap->buf, uap->count,
1982 	    &base, NULL);
1983 	if (error)
1984 		return (error);
1985 	if (uap->basep != NULL) {
1986 		base32 = base;
1987 		error = copyout(&base32, uap->basep, sizeof(int32_t));
1988 	}
1989 	return (error);
1990 }
1991 
1992 int
1993 freebsd11_freebsd32_getdents(struct thread *td,
1994     struct freebsd11_freebsd32_getdents_args *uap)
1995 {
1996 	struct freebsd11_freebsd32_getdirentries_args ap;
1997 
1998 	ap.fd = uap->fd;
1999 	ap.buf = uap->buf;
2000 	ap.count = uap->count;
2001 	ap.basep = NULL;
2002 	return (freebsd11_freebsd32_getdirentries(td, &ap));
2003 }
2004 #endif /* COMPAT_FREEBSD11 */
2005 
2006 #ifdef COMPAT_FREEBSD6
2007 /* versions with the 'int pad' argument */
2008 int
2009 freebsd6_freebsd32_pread(struct thread *td, struct freebsd6_freebsd32_pread_args *uap)
2010 {
2011 
2012 	return (kern_pread(td, uap->fd, uap->buf, uap->nbyte,
2013 	    PAIR32TO64(off_t, uap->offset)));
2014 }
2015 
2016 int
2017 freebsd6_freebsd32_pwrite(struct thread *td, struct freebsd6_freebsd32_pwrite_args *uap)
2018 {
2019 
2020 	return (kern_pwrite(td, uap->fd, uap->buf, uap->nbyte,
2021 	    PAIR32TO64(off_t, uap->offset)));
2022 }
2023 
2024 int
2025 freebsd6_freebsd32_lseek(struct thread *td, struct freebsd6_freebsd32_lseek_args *uap)
2026 {
2027 	int error;
2028 	off_t pos;
2029 
2030 	error = kern_lseek(td, uap->fd, PAIR32TO64(off_t, uap->offset),
2031 	    uap->whence);
2032 	/* Expand the quad return into two parts for eax and edx */
2033 	pos = *(off_t *)(td->td_retval);
2034 	td->td_retval[RETVAL_LO] = pos & 0xffffffff;	/* %eax */
2035 	td->td_retval[RETVAL_HI] = pos >> 32;		/* %edx */
2036 	return error;
2037 }
2038 
2039 int
2040 freebsd6_freebsd32_truncate(struct thread *td, struct freebsd6_freebsd32_truncate_args *uap)
2041 {
2042 
2043 	return (kern_truncate(td, uap->path, UIO_USERSPACE,
2044 	    PAIR32TO64(off_t, uap->length)));
2045 }
2046 
2047 int
2048 freebsd6_freebsd32_ftruncate(struct thread *td, struct freebsd6_freebsd32_ftruncate_args *uap)
2049 {
2050 
2051 	return (kern_ftruncate(td, uap->fd, PAIR32TO64(off_t, uap->length)));
2052 }
2053 #endif /* COMPAT_FREEBSD6 */
2054 
2055 struct sf_hdtr32 {
2056 	uint32_t headers;
2057 	int hdr_cnt;
2058 	uint32_t trailers;
2059 	int trl_cnt;
2060 };
2061 
2062 static int
2063 freebsd32_do_sendfile(struct thread *td,
2064     struct freebsd32_sendfile_args *uap, int compat)
2065 {
2066 	struct sf_hdtr32 hdtr32;
2067 	struct sf_hdtr hdtr;
2068 	struct uio *hdr_uio, *trl_uio;
2069 	struct file *fp;
2070 	cap_rights_t rights;
2071 	struct iovec32 *iov32;
2072 	off_t offset, sbytes;
2073 	int error;
2074 
2075 	offset = PAIR32TO64(off_t, uap->offset);
2076 	if (offset < 0)
2077 		return (EINVAL);
2078 
2079 	hdr_uio = trl_uio = NULL;
2080 
2081 	if (uap->hdtr != NULL) {
2082 		error = copyin(uap->hdtr, &hdtr32, sizeof(hdtr32));
2083 		if (error)
2084 			goto out;
2085 		PTRIN_CP(hdtr32, hdtr, headers);
2086 		CP(hdtr32, hdtr, hdr_cnt);
2087 		PTRIN_CP(hdtr32, hdtr, trailers);
2088 		CP(hdtr32, hdtr, trl_cnt);
2089 
2090 		if (hdtr.headers != NULL) {
2091 			iov32 = PTRIN(hdtr32.headers);
2092 			error = freebsd32_copyinuio(iov32,
2093 			    hdtr32.hdr_cnt, &hdr_uio);
2094 			if (error)
2095 				goto out;
2096 #ifdef COMPAT_FREEBSD4
2097 			/*
2098 			 * In FreeBSD < 5.0 the nbytes to send also included
2099 			 * the header.  If compat is specified subtract the
2100 			 * header size from nbytes.
2101 			 */
2102 			if (compat) {
2103 				if (uap->nbytes > hdr_uio->uio_resid)
2104 					uap->nbytes -= hdr_uio->uio_resid;
2105 				else
2106 					uap->nbytes = 0;
2107 			}
2108 #endif
2109 		}
2110 		if (hdtr.trailers != NULL) {
2111 			iov32 = PTRIN(hdtr32.trailers);
2112 			error = freebsd32_copyinuio(iov32,
2113 			    hdtr32.trl_cnt, &trl_uio);
2114 			if (error)
2115 				goto out;
2116 		}
2117 	}
2118 
2119 	AUDIT_ARG_FD(uap->fd);
2120 
2121 	if ((error = fget_read(td, uap->fd,
2122 	    cap_rights_init_one(&rights, CAP_PREAD), &fp)) != 0)
2123 		goto out;
2124 
2125 	error = fo_sendfile(fp, uap->s, hdr_uio, trl_uio, offset,
2126 	    uap->nbytes, &sbytes, uap->flags, td);
2127 	fdrop(fp, td);
2128 
2129 	if (uap->sbytes != NULL)
2130 		copyout(&sbytes, uap->sbytes, sizeof(off_t));
2131 
2132 out:
2133 	if (hdr_uio)
2134 		free(hdr_uio, M_IOV);
2135 	if (trl_uio)
2136 		free(trl_uio, M_IOV);
2137 	return (error);
2138 }
2139 
2140 #ifdef COMPAT_FREEBSD4
2141 int
2142 freebsd4_freebsd32_sendfile(struct thread *td,
2143     struct freebsd4_freebsd32_sendfile_args *uap)
2144 {
2145 	return (freebsd32_do_sendfile(td,
2146 	    (struct freebsd32_sendfile_args *)uap, 1));
2147 }
2148 #endif
2149 
2150 int
2151 freebsd32_sendfile(struct thread *td, struct freebsd32_sendfile_args *uap)
2152 {
2153 
2154 	return (freebsd32_do_sendfile(td, uap, 0));
2155 }
2156 
2157 static void
2158 copy_stat(struct stat *in, struct stat32 *out)
2159 {
2160 
2161 	CP(*in, *out, st_dev);
2162 	CP(*in, *out, st_ino);
2163 	CP(*in, *out, st_mode);
2164 	CP(*in, *out, st_nlink);
2165 	CP(*in, *out, st_uid);
2166 	CP(*in, *out, st_gid);
2167 	CP(*in, *out, st_rdev);
2168 	TS_CP(*in, *out, st_atim);
2169 	TS_CP(*in, *out, st_mtim);
2170 	TS_CP(*in, *out, st_ctim);
2171 	CP(*in, *out, st_size);
2172 	CP(*in, *out, st_blocks);
2173 	CP(*in, *out, st_blksize);
2174 	CP(*in, *out, st_flags);
2175 	CP(*in, *out, st_gen);
2176 	TS_CP(*in, *out, st_birthtim);
2177 	out->st_padding0 = 0;
2178 	out->st_padding1 = 0;
2179 #ifdef __STAT32_TIME_T_EXT
2180 	out->st_atim_ext = 0;
2181 	out->st_mtim_ext = 0;
2182 	out->st_ctim_ext = 0;
2183 	out->st_btim_ext = 0;
2184 #endif
2185 	bzero(out->st_spare, sizeof(out->st_spare));
2186 }
2187 
2188 #ifdef COMPAT_43
2189 static void
2190 copy_ostat(struct stat *in, struct ostat32 *out)
2191 {
2192 
2193 	bzero(out, sizeof(*out));
2194 	CP(*in, *out, st_dev);
2195 	CP(*in, *out, st_ino);
2196 	CP(*in, *out, st_mode);
2197 	CP(*in, *out, st_nlink);
2198 	CP(*in, *out, st_uid);
2199 	CP(*in, *out, st_gid);
2200 	CP(*in, *out, st_rdev);
2201 	out->st_size = MIN(in->st_size, INT32_MAX);
2202 	TS_CP(*in, *out, st_atim);
2203 	TS_CP(*in, *out, st_mtim);
2204 	TS_CP(*in, *out, st_ctim);
2205 	CP(*in, *out, st_blksize);
2206 	CP(*in, *out, st_blocks);
2207 	CP(*in, *out, st_flags);
2208 	CP(*in, *out, st_gen);
2209 }
2210 #endif
2211 
2212 #ifdef COMPAT_43
2213 int
2214 ofreebsd32_stat(struct thread *td, struct ofreebsd32_stat_args *uap)
2215 {
2216 	struct stat sb;
2217 	struct ostat32 sb32;
2218 	int error;
2219 
2220 	error = kern_statat(td, 0, AT_FDCWD, uap->path, UIO_USERSPACE,
2221 	    &sb, NULL);
2222 	if (error)
2223 		return (error);
2224 	copy_ostat(&sb, &sb32);
2225 	error = copyout(&sb32, uap->ub, sizeof (sb32));
2226 	return (error);
2227 }
2228 #endif
2229 
2230 int
2231 freebsd32_fstat(struct thread *td, struct freebsd32_fstat_args *uap)
2232 {
2233 	struct stat ub;
2234 	struct stat32 ub32;
2235 	int error;
2236 
2237 	error = kern_fstat(td, uap->fd, &ub);
2238 	if (error)
2239 		return (error);
2240 	copy_stat(&ub, &ub32);
2241 	error = copyout(&ub32, uap->ub, sizeof(ub32));
2242 	return (error);
2243 }
2244 
2245 #ifdef COMPAT_43
2246 int
2247 ofreebsd32_fstat(struct thread *td, struct ofreebsd32_fstat_args *uap)
2248 {
2249 	struct stat ub;
2250 	struct ostat32 ub32;
2251 	int error;
2252 
2253 	error = kern_fstat(td, uap->fd, &ub);
2254 	if (error)
2255 		return (error);
2256 	copy_ostat(&ub, &ub32);
2257 	error = copyout(&ub32, uap->ub, sizeof(ub32));
2258 	return (error);
2259 }
2260 #endif
2261 
2262 int
2263 freebsd32_fstatat(struct thread *td, struct freebsd32_fstatat_args *uap)
2264 {
2265 	struct stat ub;
2266 	struct stat32 ub32;
2267 	int error;
2268 
2269 	error = kern_statat(td, uap->flag, uap->fd, uap->path, UIO_USERSPACE,
2270 	    &ub, NULL);
2271 	if (error)
2272 		return (error);
2273 	copy_stat(&ub, &ub32);
2274 	error = copyout(&ub32, uap->buf, sizeof(ub32));
2275 	return (error);
2276 }
2277 
2278 #ifdef COMPAT_43
2279 int
2280 ofreebsd32_lstat(struct thread *td, struct ofreebsd32_lstat_args *uap)
2281 {
2282 	struct stat sb;
2283 	struct ostat32 sb32;
2284 	int error;
2285 
2286 	error = kern_statat(td, AT_SYMLINK_NOFOLLOW, AT_FDCWD, uap->path,
2287 	    UIO_USERSPACE, &sb, NULL);
2288 	if (error)
2289 		return (error);
2290 	copy_ostat(&sb, &sb32);
2291 	error = copyout(&sb32, uap->ub, sizeof (sb32));
2292 	return (error);
2293 }
2294 #endif
2295 
2296 int
2297 freebsd32_fhstat(struct thread *td, struct freebsd32_fhstat_args *uap)
2298 {
2299 	struct stat sb;
2300 	struct stat32 sb32;
2301 	struct fhandle fh;
2302 	int error;
2303 
2304 	error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t));
2305         if (error != 0)
2306                 return (error);
2307 	error = kern_fhstat(td, fh, &sb);
2308 	if (error != 0)
2309 		return (error);
2310 	copy_stat(&sb, &sb32);
2311 	error = copyout(&sb32, uap->sb, sizeof (sb32));
2312 	return (error);
2313 }
2314 
2315 #if defined(COMPAT_FREEBSD11)
2316 extern int ino64_trunc_error;
2317 
2318 static int
2319 freebsd11_cvtstat32(struct stat *in, struct freebsd11_stat32 *out)
2320 {
2321 
2322 	CP(*in, *out, st_ino);
2323 	if (in->st_ino != out->st_ino) {
2324 		switch (ino64_trunc_error) {
2325 		default:
2326 		case 0:
2327 			break;
2328 		case 1:
2329 			return (EOVERFLOW);
2330 		case 2:
2331 			out->st_ino = UINT32_MAX;
2332 			break;
2333 		}
2334 	}
2335 	CP(*in, *out, st_nlink);
2336 	if (in->st_nlink != out->st_nlink) {
2337 		switch (ino64_trunc_error) {
2338 		default:
2339 		case 0:
2340 			break;
2341 		case 1:
2342 			return (EOVERFLOW);
2343 		case 2:
2344 			out->st_nlink = UINT16_MAX;
2345 			break;
2346 		}
2347 	}
2348 	out->st_dev = in->st_dev;
2349 	if (out->st_dev != in->st_dev) {
2350 		switch (ino64_trunc_error) {
2351 		default:
2352 			break;
2353 		case 1:
2354 			return (EOVERFLOW);
2355 		}
2356 	}
2357 	CP(*in, *out, st_mode);
2358 	CP(*in, *out, st_uid);
2359 	CP(*in, *out, st_gid);
2360 	out->st_rdev = in->st_rdev;
2361 	if (out->st_rdev != in->st_rdev) {
2362 		switch (ino64_trunc_error) {
2363 		default:
2364 			break;
2365 		case 1:
2366 			return (EOVERFLOW);
2367 		}
2368 	}
2369 	TS_CP(*in, *out, st_atim);
2370 	TS_CP(*in, *out, st_mtim);
2371 	TS_CP(*in, *out, st_ctim);
2372 	CP(*in, *out, st_size);
2373 	CP(*in, *out, st_blocks);
2374 	CP(*in, *out, st_blksize);
2375 	CP(*in, *out, st_flags);
2376 	CP(*in, *out, st_gen);
2377 	TS_CP(*in, *out, st_birthtim);
2378 	out->st_lspare = 0;
2379 	bzero((char *)&out->st_birthtim + sizeof(out->st_birthtim),
2380 	    sizeof(*out) - offsetof(struct freebsd11_stat32,
2381 	    st_birthtim) - sizeof(out->st_birthtim));
2382 	return (0);
2383 }
2384 
2385 int
2386 freebsd11_freebsd32_stat(struct thread *td,
2387     struct freebsd11_freebsd32_stat_args *uap)
2388 {
2389 	struct stat sb;
2390 	struct freebsd11_stat32 sb32;
2391 	int error;
2392 
2393 	error = kern_statat(td, 0, AT_FDCWD, uap->path, UIO_USERSPACE,
2394 	    &sb, NULL);
2395 	if (error != 0)
2396 		return (error);
2397 	error = freebsd11_cvtstat32(&sb, &sb32);
2398 	if (error == 0)
2399 		error = copyout(&sb32, uap->ub, sizeof (sb32));
2400 	return (error);
2401 }
2402 
2403 int
2404 freebsd11_freebsd32_fstat(struct thread *td,
2405     struct freebsd11_freebsd32_fstat_args *uap)
2406 {
2407 	struct stat sb;
2408 	struct freebsd11_stat32 sb32;
2409 	int error;
2410 
2411 	error = kern_fstat(td, uap->fd, &sb);
2412 	if (error != 0)
2413 		return (error);
2414 	error = freebsd11_cvtstat32(&sb, &sb32);
2415 	if (error == 0)
2416 		error = copyout(&sb32, uap->ub, sizeof (sb32));
2417 	return (error);
2418 }
2419 
2420 int
2421 freebsd11_freebsd32_fstatat(struct thread *td,
2422     struct freebsd11_freebsd32_fstatat_args *uap)
2423 {
2424 	struct stat sb;
2425 	struct freebsd11_stat32 sb32;
2426 	int error;
2427 
2428 	error = kern_statat(td, uap->flag, uap->fd, uap->path, UIO_USERSPACE,
2429 	    &sb, NULL);
2430 	if (error != 0)
2431 		return (error);
2432 	error = freebsd11_cvtstat32(&sb, &sb32);
2433 	if (error == 0)
2434 		error = copyout(&sb32, uap->buf, sizeof (sb32));
2435 	return (error);
2436 }
2437 
2438 int
2439 freebsd11_freebsd32_lstat(struct thread *td,
2440     struct freebsd11_freebsd32_lstat_args *uap)
2441 {
2442 	struct stat sb;
2443 	struct freebsd11_stat32 sb32;
2444 	int error;
2445 
2446 	error = kern_statat(td, AT_SYMLINK_NOFOLLOW, AT_FDCWD, uap->path,
2447 	    UIO_USERSPACE, &sb, NULL);
2448 	if (error != 0)
2449 		return (error);
2450 	error = freebsd11_cvtstat32(&sb, &sb32);
2451 	if (error == 0)
2452 		error = copyout(&sb32, uap->ub, sizeof (sb32));
2453 	return (error);
2454 }
2455 
2456 int
2457 freebsd11_freebsd32_fhstat(struct thread *td,
2458     struct freebsd11_freebsd32_fhstat_args *uap)
2459 {
2460 	struct stat sb;
2461 	struct freebsd11_stat32 sb32;
2462 	struct fhandle fh;
2463 	int error;
2464 
2465 	error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t));
2466         if (error != 0)
2467                 return (error);
2468 	error = kern_fhstat(td, fh, &sb);
2469 	if (error != 0)
2470 		return (error);
2471 	error = freebsd11_cvtstat32(&sb, &sb32);
2472 	if (error == 0)
2473 		error = copyout(&sb32, uap->sb, sizeof (sb32));
2474 	return (error);
2475 }
2476 #endif
2477 
2478 int
2479 freebsd32___sysctl(struct thread *td, struct freebsd32___sysctl_args *uap)
2480 {
2481 	int error, name[CTL_MAXNAME];
2482 	size_t j, oldlen;
2483 	uint32_t tmp;
2484 
2485 	if (uap->namelen > CTL_MAXNAME || uap->namelen < 2)
2486 		return (EINVAL);
2487  	error = copyin(uap->name, name, uap->namelen * sizeof(int));
2488  	if (error)
2489 		return (error);
2490 	if (uap->oldlenp) {
2491 		error = fueword32(uap->oldlenp, &tmp);
2492 		oldlen = tmp;
2493 	} else {
2494 		oldlen = 0;
2495 	}
2496 	if (error != 0)
2497 		return (EFAULT);
2498 	error = userland_sysctl(td, name, uap->namelen,
2499 		uap->old, &oldlen, 1,
2500 		uap->new, uap->newlen, &j, SCTL_MASK32);
2501 	if (error)
2502 		return (error);
2503 	if (uap->oldlenp)
2504 		suword32(uap->oldlenp, j);
2505 	return (0);
2506 }
2507 
2508 int
2509 freebsd32___sysctlbyname(struct thread *td,
2510     struct freebsd32___sysctlbyname_args *uap)
2511 {
2512 	size_t oldlen, rv;
2513 	int error;
2514 	uint32_t tmp;
2515 
2516 	if (uap->oldlenp != NULL) {
2517 		error = fueword32(uap->oldlenp, &tmp);
2518 		oldlen = tmp;
2519 	} else {
2520 		error = oldlen = 0;
2521 	}
2522 	if (error != 0)
2523 		return (EFAULT);
2524 	error = kern___sysctlbyname(td, uap->name, uap->namelen, uap->old,
2525 	    &oldlen, uap->new, uap->newlen, &rv, SCTL_MASK32, 1);
2526 	if (error != 0)
2527 		return (error);
2528 	if (uap->oldlenp != NULL)
2529 		error = suword32(uap->oldlenp, rv);
2530 
2531 	return (error);
2532 }
2533 
2534 int
2535 freebsd32_jail(struct thread *td, struct freebsd32_jail_args *uap)
2536 {
2537 	uint32_t version;
2538 	int error;
2539 	struct jail j;
2540 
2541 	error = copyin(uap->jail, &version, sizeof(uint32_t));
2542 	if (error)
2543 		return (error);
2544 
2545 	switch (version) {
2546 	case 0:
2547 	{
2548 		/* FreeBSD single IPv4 jails. */
2549 		struct jail32_v0 j32_v0;
2550 
2551 		bzero(&j, sizeof(struct jail));
2552 		error = copyin(uap->jail, &j32_v0, sizeof(struct jail32_v0));
2553 		if (error)
2554 			return (error);
2555 		CP(j32_v0, j, version);
2556 		PTRIN_CP(j32_v0, j, path);
2557 		PTRIN_CP(j32_v0, j, hostname);
2558 		j.ip4s = htonl(j32_v0.ip_number);	/* jail_v0 is host order */
2559 		break;
2560 	}
2561 
2562 	case 1:
2563 		/*
2564 		 * Version 1 was used by multi-IPv4 jail implementations
2565 		 * that never made it into the official kernel.
2566 		 */
2567 		return (EINVAL);
2568 
2569 	case 2:	/* JAIL_API_VERSION */
2570 	{
2571 		/* FreeBSD multi-IPv4/IPv6,noIP jails. */
2572 		struct jail32 j32;
2573 
2574 		error = copyin(uap->jail, &j32, sizeof(struct jail32));
2575 		if (error)
2576 			return (error);
2577 		CP(j32, j, version);
2578 		PTRIN_CP(j32, j, path);
2579 		PTRIN_CP(j32, j, hostname);
2580 		PTRIN_CP(j32, j, jailname);
2581 		CP(j32, j, ip4s);
2582 		CP(j32, j, ip6s);
2583 		PTRIN_CP(j32, j, ip4);
2584 		PTRIN_CP(j32, j, ip6);
2585 		break;
2586 	}
2587 
2588 	default:
2589 		/* Sci-Fi jails are not supported, sorry. */
2590 		return (EINVAL);
2591 	}
2592 	return (kern_jail(td, &j));
2593 }
2594 
2595 int
2596 freebsd32_jail_set(struct thread *td, struct freebsd32_jail_set_args *uap)
2597 {
2598 	struct uio *auio;
2599 	int error;
2600 
2601 	/* Check that we have an even number of iovecs. */
2602 	if (uap->iovcnt & 1)
2603 		return (EINVAL);
2604 
2605 	error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio);
2606 	if (error)
2607 		return (error);
2608 	error = kern_jail_set(td, auio, uap->flags);
2609 	free(auio, M_IOV);
2610 	return (error);
2611 }
2612 
2613 int
2614 freebsd32_jail_get(struct thread *td, struct freebsd32_jail_get_args *uap)
2615 {
2616 	struct iovec32 iov32;
2617 	struct uio *auio;
2618 	int error, i;
2619 
2620 	/* Check that we have an even number of iovecs. */
2621 	if (uap->iovcnt & 1)
2622 		return (EINVAL);
2623 
2624 	error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio);
2625 	if (error)
2626 		return (error);
2627 	error = kern_jail_get(td, auio, uap->flags);
2628 	if (error == 0)
2629 		for (i = 0; i < uap->iovcnt; i++) {
2630 			PTROUT_CP(auio->uio_iov[i], iov32, iov_base);
2631 			CP(auio->uio_iov[i], iov32, iov_len);
2632 			error = copyout(&iov32, uap->iovp + i, sizeof(iov32));
2633 			if (error != 0)
2634 				break;
2635 		}
2636 	free(auio, M_IOV);
2637 	return (error);
2638 }
2639 
2640 int
2641 freebsd32_sigaction(struct thread *td, struct freebsd32_sigaction_args *uap)
2642 {
2643 	struct sigaction32 s32;
2644 	struct sigaction sa, osa, *sap;
2645 	int error;
2646 
2647 	if (uap->act) {
2648 		error = copyin(uap->act, &s32, sizeof(s32));
2649 		if (error)
2650 			return (error);
2651 		sa.sa_handler = PTRIN(s32.sa_u);
2652 		CP(s32, sa, sa_flags);
2653 		CP(s32, sa, sa_mask);
2654 		sap = &sa;
2655 	} else
2656 		sap = NULL;
2657 	error = kern_sigaction(td, uap->sig, sap, &osa, 0);
2658 	if (error == 0 && uap->oact != NULL) {
2659 		s32.sa_u = PTROUT(osa.sa_handler);
2660 		CP(osa, s32, sa_flags);
2661 		CP(osa, s32, sa_mask);
2662 		error = copyout(&s32, uap->oact, sizeof(s32));
2663 	}
2664 	return (error);
2665 }
2666 
2667 #ifdef COMPAT_FREEBSD4
2668 int
2669 freebsd4_freebsd32_sigaction(struct thread *td,
2670 			     struct freebsd4_freebsd32_sigaction_args *uap)
2671 {
2672 	struct sigaction32 s32;
2673 	struct sigaction sa, osa, *sap;
2674 	int error;
2675 
2676 	if (uap->act) {
2677 		error = copyin(uap->act, &s32, sizeof(s32));
2678 		if (error)
2679 			return (error);
2680 		sa.sa_handler = PTRIN(s32.sa_u);
2681 		CP(s32, sa, sa_flags);
2682 		CP(s32, sa, sa_mask);
2683 		sap = &sa;
2684 	} else
2685 		sap = NULL;
2686 	error = kern_sigaction(td, uap->sig, sap, &osa, KSA_FREEBSD4);
2687 	if (error == 0 && uap->oact != NULL) {
2688 		s32.sa_u = PTROUT(osa.sa_handler);
2689 		CP(osa, s32, sa_flags);
2690 		CP(osa, s32, sa_mask);
2691 		error = copyout(&s32, uap->oact, sizeof(s32));
2692 	}
2693 	return (error);
2694 }
2695 #endif
2696 
2697 #ifdef COMPAT_43
2698 struct osigaction32 {
2699 	u_int32_t	sa_u;
2700 	osigset_t	sa_mask;
2701 	int		sa_flags;
2702 };
2703 
2704 #define	ONSIG	32
2705 
2706 int
2707 ofreebsd32_sigaction(struct thread *td,
2708 			     struct ofreebsd32_sigaction_args *uap)
2709 {
2710 	struct osigaction32 s32;
2711 	struct sigaction sa, osa, *sap;
2712 	int error;
2713 
2714 	if (uap->signum <= 0 || uap->signum >= ONSIG)
2715 		return (EINVAL);
2716 
2717 	if (uap->nsa) {
2718 		error = copyin(uap->nsa, &s32, sizeof(s32));
2719 		if (error)
2720 			return (error);
2721 		sa.sa_handler = PTRIN(s32.sa_u);
2722 		CP(s32, sa, sa_flags);
2723 		OSIG2SIG(s32.sa_mask, sa.sa_mask);
2724 		sap = &sa;
2725 	} else
2726 		sap = NULL;
2727 	error = kern_sigaction(td, uap->signum, sap, &osa, KSA_OSIGSET);
2728 	if (error == 0 && uap->osa != NULL) {
2729 		s32.sa_u = PTROUT(osa.sa_handler);
2730 		CP(osa, s32, sa_flags);
2731 		SIG2OSIG(osa.sa_mask, s32.sa_mask);
2732 		error = copyout(&s32, uap->osa, sizeof(s32));
2733 	}
2734 	return (error);
2735 }
2736 
2737 int
2738 ofreebsd32_sigprocmask(struct thread *td,
2739 			       struct ofreebsd32_sigprocmask_args *uap)
2740 {
2741 	sigset_t set, oset;
2742 	int error;
2743 
2744 	OSIG2SIG(uap->mask, set);
2745 	error = kern_sigprocmask(td, uap->how, &set, &oset, SIGPROCMASK_OLD);
2746 	SIG2OSIG(oset, td->td_retval[0]);
2747 	return (error);
2748 }
2749 
2750 int
2751 ofreebsd32_sigpending(struct thread *td,
2752 			      struct ofreebsd32_sigpending_args *uap)
2753 {
2754 	struct proc *p = td->td_proc;
2755 	sigset_t siglist;
2756 
2757 	PROC_LOCK(p);
2758 	siglist = p->p_siglist;
2759 	SIGSETOR(siglist, td->td_siglist);
2760 	PROC_UNLOCK(p);
2761 	SIG2OSIG(siglist, td->td_retval[0]);
2762 	return (0);
2763 }
2764 
2765 struct sigvec32 {
2766 	u_int32_t	sv_handler;
2767 	int		sv_mask;
2768 	int		sv_flags;
2769 };
2770 
2771 int
2772 ofreebsd32_sigvec(struct thread *td,
2773 			  struct ofreebsd32_sigvec_args *uap)
2774 {
2775 	struct sigvec32 vec;
2776 	struct sigaction sa, osa, *sap;
2777 	int error;
2778 
2779 	if (uap->signum <= 0 || uap->signum >= ONSIG)
2780 		return (EINVAL);
2781 
2782 	if (uap->nsv) {
2783 		error = copyin(uap->nsv, &vec, sizeof(vec));
2784 		if (error)
2785 			return (error);
2786 		sa.sa_handler = PTRIN(vec.sv_handler);
2787 		OSIG2SIG(vec.sv_mask, sa.sa_mask);
2788 		sa.sa_flags = vec.sv_flags;
2789 		sa.sa_flags ^= SA_RESTART;
2790 		sap = &sa;
2791 	} else
2792 		sap = NULL;
2793 	error = kern_sigaction(td, uap->signum, sap, &osa, KSA_OSIGSET);
2794 	if (error == 0 && uap->osv != NULL) {
2795 		vec.sv_handler = PTROUT(osa.sa_handler);
2796 		SIG2OSIG(osa.sa_mask, vec.sv_mask);
2797 		vec.sv_flags = osa.sa_flags;
2798 		vec.sv_flags &= ~SA_NOCLDWAIT;
2799 		vec.sv_flags ^= SA_RESTART;
2800 		error = copyout(&vec, uap->osv, sizeof(vec));
2801 	}
2802 	return (error);
2803 }
2804 
2805 int
2806 ofreebsd32_sigblock(struct thread *td,
2807 			    struct ofreebsd32_sigblock_args *uap)
2808 {
2809 	sigset_t set, oset;
2810 
2811 	OSIG2SIG(uap->mask, set);
2812 	kern_sigprocmask(td, SIG_BLOCK, &set, &oset, 0);
2813 	SIG2OSIG(oset, td->td_retval[0]);
2814 	return (0);
2815 }
2816 
2817 int
2818 ofreebsd32_sigsetmask(struct thread *td,
2819 			      struct ofreebsd32_sigsetmask_args *uap)
2820 {
2821 	sigset_t set, oset;
2822 
2823 	OSIG2SIG(uap->mask, set);
2824 	kern_sigprocmask(td, SIG_SETMASK, &set, &oset, 0);
2825 	SIG2OSIG(oset, td->td_retval[0]);
2826 	return (0);
2827 }
2828 
2829 int
2830 ofreebsd32_sigsuspend(struct thread *td,
2831 			      struct ofreebsd32_sigsuspend_args *uap)
2832 {
2833 	sigset_t mask;
2834 
2835 	OSIG2SIG(uap->mask, mask);
2836 	return (kern_sigsuspend(td, mask));
2837 }
2838 
2839 struct sigstack32 {
2840 	u_int32_t	ss_sp;
2841 	int		ss_onstack;
2842 };
2843 
2844 int
2845 ofreebsd32_sigstack(struct thread *td,
2846 			    struct ofreebsd32_sigstack_args *uap)
2847 {
2848 	struct sigstack32 s32;
2849 	struct sigstack nss, oss;
2850 	int error = 0, unss;
2851 
2852 	if (uap->nss != NULL) {
2853 		error = copyin(uap->nss, &s32, sizeof(s32));
2854 		if (error)
2855 			return (error);
2856 		nss.ss_sp = PTRIN(s32.ss_sp);
2857 		CP(s32, nss, ss_onstack);
2858 		unss = 1;
2859 	} else {
2860 		unss = 0;
2861 	}
2862 	oss.ss_sp = td->td_sigstk.ss_sp;
2863 	oss.ss_onstack = sigonstack(cpu_getstack(td));
2864 	if (unss) {
2865 		td->td_sigstk.ss_sp = nss.ss_sp;
2866 		td->td_sigstk.ss_size = 0;
2867 		td->td_sigstk.ss_flags |= (nss.ss_onstack & SS_ONSTACK);
2868 		td->td_pflags |= TDP_ALTSTACK;
2869 	}
2870 	if (uap->oss != NULL) {
2871 		s32.ss_sp = PTROUT(oss.ss_sp);
2872 		CP(oss, s32, ss_onstack);
2873 		error = copyout(&s32, uap->oss, sizeof(s32));
2874 	}
2875 	return (error);
2876 }
2877 #endif
2878 
2879 int
2880 freebsd32_nanosleep(struct thread *td, struct freebsd32_nanosleep_args *uap)
2881 {
2882 
2883 	return (freebsd32_user_clock_nanosleep(td, CLOCK_REALTIME,
2884 	    TIMER_RELTIME, uap->rqtp, uap->rmtp));
2885 }
2886 
2887 int
2888 freebsd32_clock_nanosleep(struct thread *td,
2889     struct freebsd32_clock_nanosleep_args *uap)
2890 {
2891 	int error;
2892 
2893 	error = freebsd32_user_clock_nanosleep(td, uap->clock_id, uap->flags,
2894 	    uap->rqtp, uap->rmtp);
2895 	return (kern_posix_error(td, error));
2896 }
2897 
2898 static int
2899 freebsd32_user_clock_nanosleep(struct thread *td, clockid_t clock_id,
2900     int flags, const struct timespec32 *ua_rqtp, struct timespec32 *ua_rmtp)
2901 {
2902 	struct timespec32 rmt32, rqt32;
2903 	struct timespec rmt, rqt;
2904 	int error, error2;
2905 
2906 	error = copyin(ua_rqtp, &rqt32, sizeof(rqt32));
2907 	if (error)
2908 		return (error);
2909 
2910 	CP(rqt32, rqt, tv_sec);
2911 	CP(rqt32, rqt, tv_nsec);
2912 
2913 	error = kern_clock_nanosleep(td, clock_id, flags, &rqt, &rmt);
2914 	if (error == EINTR && ua_rmtp != NULL && (flags & TIMER_ABSTIME) == 0) {
2915 		CP(rmt, rmt32, tv_sec);
2916 		CP(rmt, rmt32, tv_nsec);
2917 
2918 		error2 = copyout(&rmt32, ua_rmtp, sizeof(rmt32));
2919 		if (error2 != 0)
2920 			error = error2;
2921 	}
2922 	return (error);
2923 }
2924 
2925 int
2926 freebsd32_clock_gettime(struct thread *td,
2927 			struct freebsd32_clock_gettime_args *uap)
2928 {
2929 	struct timespec	ats;
2930 	struct timespec32 ats32;
2931 	int error;
2932 
2933 	error = kern_clock_gettime(td, uap->clock_id, &ats);
2934 	if (error == 0) {
2935 		CP(ats, ats32, tv_sec);
2936 		CP(ats, ats32, tv_nsec);
2937 		error = copyout(&ats32, uap->tp, sizeof(ats32));
2938 	}
2939 	return (error);
2940 }
2941 
2942 int
2943 freebsd32_clock_settime(struct thread *td,
2944 			struct freebsd32_clock_settime_args *uap)
2945 {
2946 	struct timespec	ats;
2947 	struct timespec32 ats32;
2948 	int error;
2949 
2950 	error = copyin(uap->tp, &ats32, sizeof(ats32));
2951 	if (error)
2952 		return (error);
2953 	CP(ats32, ats, tv_sec);
2954 	CP(ats32, ats, tv_nsec);
2955 
2956 	return (kern_clock_settime(td, uap->clock_id, &ats));
2957 }
2958 
2959 int
2960 freebsd32_clock_getres(struct thread *td,
2961 		       struct freebsd32_clock_getres_args *uap)
2962 {
2963 	struct timespec	ts;
2964 	struct timespec32 ts32;
2965 	int error;
2966 
2967 	if (uap->tp == NULL)
2968 		return (0);
2969 	error = kern_clock_getres(td, uap->clock_id, &ts);
2970 	if (error == 0) {
2971 		CP(ts, ts32, tv_sec);
2972 		CP(ts, ts32, tv_nsec);
2973 		error = copyout(&ts32, uap->tp, sizeof(ts32));
2974 	}
2975 	return (error);
2976 }
2977 
2978 int freebsd32_ktimer_create(struct thread *td,
2979     struct freebsd32_ktimer_create_args *uap)
2980 {
2981 	struct sigevent32 ev32;
2982 	struct sigevent ev, *evp;
2983 	int error, id;
2984 
2985 	if (uap->evp == NULL) {
2986 		evp = NULL;
2987 	} else {
2988 		evp = &ev;
2989 		error = copyin(uap->evp, &ev32, sizeof(ev32));
2990 		if (error != 0)
2991 			return (error);
2992 		error = convert_sigevent32(&ev32, &ev);
2993 		if (error != 0)
2994 			return (error);
2995 	}
2996 	error = kern_ktimer_create(td, uap->clock_id, evp, &id, -1);
2997 	if (error == 0) {
2998 		error = copyout(&id, uap->timerid, sizeof(int));
2999 		if (error != 0)
3000 			kern_ktimer_delete(td, id);
3001 	}
3002 	return (error);
3003 }
3004 
3005 int
3006 freebsd32_ktimer_settime(struct thread *td,
3007     struct freebsd32_ktimer_settime_args *uap)
3008 {
3009 	struct itimerspec32 val32, oval32;
3010 	struct itimerspec val, oval, *ovalp;
3011 	int error;
3012 
3013 	error = copyin(uap->value, &val32, sizeof(val32));
3014 	if (error != 0)
3015 		return (error);
3016 	ITS_CP(val32, val);
3017 	ovalp = uap->ovalue != NULL ? &oval : NULL;
3018 	error = kern_ktimer_settime(td, uap->timerid, uap->flags, &val, ovalp);
3019 	if (error == 0 && uap->ovalue != NULL) {
3020 		ITS_CP(oval, oval32);
3021 		error = copyout(&oval32, uap->ovalue, sizeof(oval32));
3022 	}
3023 	return (error);
3024 }
3025 
3026 int
3027 freebsd32_ktimer_gettime(struct thread *td,
3028     struct freebsd32_ktimer_gettime_args *uap)
3029 {
3030 	struct itimerspec32 val32;
3031 	struct itimerspec val;
3032 	int error;
3033 
3034 	error = kern_ktimer_gettime(td, uap->timerid, &val);
3035 	if (error == 0) {
3036 		ITS_CP(val, val32);
3037 		error = copyout(&val32, uap->value, sizeof(val32));
3038 	}
3039 	return (error);
3040 }
3041 
3042 int
3043 freebsd32_clock_getcpuclockid2(struct thread *td,
3044     struct freebsd32_clock_getcpuclockid2_args *uap)
3045 {
3046 	clockid_t clk_id;
3047 	int error;
3048 
3049 	error = kern_clock_getcpuclockid2(td, PAIR32TO64(id_t, uap->id),
3050 	    uap->which, &clk_id);
3051 	if (error == 0)
3052 		error = copyout(&clk_id, uap->clock_id, sizeof(clockid_t));
3053 	return (error);
3054 }
3055 
3056 int
3057 freebsd32_thr_new(struct thread *td,
3058 		  struct freebsd32_thr_new_args *uap)
3059 {
3060 	struct thr_param32 param32;
3061 	struct thr_param param;
3062 	int error;
3063 
3064 	if (uap->param_size < 0 ||
3065 	    uap->param_size > sizeof(struct thr_param32))
3066 		return (EINVAL);
3067 	bzero(&param, sizeof(struct thr_param));
3068 	bzero(&param32, sizeof(struct thr_param32));
3069 	error = copyin(uap->param, &param32, uap->param_size);
3070 	if (error != 0)
3071 		return (error);
3072 	param.start_func = PTRIN(param32.start_func);
3073 	param.arg = PTRIN(param32.arg);
3074 	param.stack_base = PTRIN(param32.stack_base);
3075 	param.stack_size = param32.stack_size;
3076 	param.tls_base = PTRIN(param32.tls_base);
3077 	param.tls_size = param32.tls_size;
3078 	param.child_tid = PTRIN(param32.child_tid);
3079 	param.parent_tid = PTRIN(param32.parent_tid);
3080 	param.flags = param32.flags;
3081 	param.rtp = PTRIN(param32.rtp);
3082 	param.spare[0] = PTRIN(param32.spare[0]);
3083 	param.spare[1] = PTRIN(param32.spare[1]);
3084 	param.spare[2] = PTRIN(param32.spare[2]);
3085 
3086 	return (kern_thr_new(td, &param));
3087 }
3088 
3089 int
3090 freebsd32_thr_suspend(struct thread *td, struct freebsd32_thr_suspend_args *uap)
3091 {
3092 	struct timespec32 ts32;
3093 	struct timespec ts, *tsp;
3094 	int error;
3095 
3096 	error = 0;
3097 	tsp = NULL;
3098 	if (uap->timeout != NULL) {
3099 		error = copyin((const void *)uap->timeout, (void *)&ts32,
3100 		    sizeof(struct timespec32));
3101 		if (error != 0)
3102 			return (error);
3103 		ts.tv_sec = ts32.tv_sec;
3104 		ts.tv_nsec = ts32.tv_nsec;
3105 		tsp = &ts;
3106 	}
3107 	return (kern_thr_suspend(td, tsp));
3108 }
3109 
3110 void
3111 siginfo_to_siginfo32(const siginfo_t *src, struct siginfo32 *dst)
3112 {
3113 	bzero(dst, sizeof(*dst));
3114 	dst->si_signo = src->si_signo;
3115 	dst->si_errno = src->si_errno;
3116 	dst->si_code = src->si_code;
3117 	dst->si_pid = src->si_pid;
3118 	dst->si_uid = src->si_uid;
3119 	dst->si_status = src->si_status;
3120 	dst->si_addr = (uintptr_t)src->si_addr;
3121 	dst->si_value.sival_int = src->si_value.sival_int;
3122 	dst->si_timerid = src->si_timerid;
3123 	dst->si_overrun = src->si_overrun;
3124 }
3125 
3126 #ifndef _FREEBSD32_SYSPROTO_H_
3127 struct freebsd32_sigqueue_args {
3128         pid_t pid;
3129         int signum;
3130         /* union sigval32 */ int value;
3131 };
3132 #endif
3133 int
3134 freebsd32_sigqueue(struct thread *td, struct freebsd32_sigqueue_args *uap)
3135 {
3136 	union sigval sv;
3137 
3138 	/*
3139 	 * On 32-bit ABIs, sival_int and sival_ptr are the same.
3140 	 * On 64-bit little-endian ABIs, the low bits are the same.
3141 	 * In 64-bit big-endian ABIs, sival_int overlaps with
3142 	 * sival_ptr's HIGH bits.  We choose to support sival_int
3143 	 * rather than sival_ptr in this case as it seems to be
3144 	 * more common.
3145 	 */
3146 	bzero(&sv, sizeof(sv));
3147 	sv.sival_int = uap->value;
3148 
3149 	return (kern_sigqueue(td, uap->pid, uap->signum, &sv));
3150 }
3151 
3152 int
3153 freebsd32_sigtimedwait(struct thread *td, struct freebsd32_sigtimedwait_args *uap)
3154 {
3155 	struct timespec32 ts32;
3156 	struct timespec ts;
3157 	struct timespec *timeout;
3158 	sigset_t set;
3159 	ksiginfo_t ksi;
3160 	struct siginfo32 si32;
3161 	int error;
3162 
3163 	if (uap->timeout) {
3164 		error = copyin(uap->timeout, &ts32, sizeof(ts32));
3165 		if (error)
3166 			return (error);
3167 		ts.tv_sec = ts32.tv_sec;
3168 		ts.tv_nsec = ts32.tv_nsec;
3169 		timeout = &ts;
3170 	} else
3171 		timeout = NULL;
3172 
3173 	error = copyin(uap->set, &set, sizeof(set));
3174 	if (error)
3175 		return (error);
3176 
3177 	error = kern_sigtimedwait(td, set, &ksi, timeout);
3178 	if (error)
3179 		return (error);
3180 
3181 	if (uap->info) {
3182 		siginfo_to_siginfo32(&ksi.ksi_info, &si32);
3183 		error = copyout(&si32, uap->info, sizeof(struct siginfo32));
3184 	}
3185 
3186 	if (error == 0)
3187 		td->td_retval[0] = ksi.ksi_signo;
3188 	return (error);
3189 }
3190 
3191 /*
3192  * MPSAFE
3193  */
3194 int
3195 freebsd32_sigwaitinfo(struct thread *td, struct freebsd32_sigwaitinfo_args *uap)
3196 {
3197 	ksiginfo_t ksi;
3198 	struct siginfo32 si32;
3199 	sigset_t set;
3200 	int error;
3201 
3202 	error = copyin(uap->set, &set, sizeof(set));
3203 	if (error)
3204 		return (error);
3205 
3206 	error = kern_sigtimedwait(td, set, &ksi, NULL);
3207 	if (error)
3208 		return (error);
3209 
3210 	if (uap->info) {
3211 		siginfo_to_siginfo32(&ksi.ksi_info, &si32);
3212 		error = copyout(&si32, uap->info, sizeof(struct siginfo32));
3213 	}
3214 	if (error == 0)
3215 		td->td_retval[0] = ksi.ksi_signo;
3216 	return (error);
3217 }
3218 
3219 int
3220 freebsd32_cpuset_setid(struct thread *td,
3221     struct freebsd32_cpuset_setid_args *uap)
3222 {
3223 
3224 	return (kern_cpuset_setid(td, uap->which,
3225 	    PAIR32TO64(id_t, uap->id), uap->setid));
3226 }
3227 
3228 int
3229 freebsd32_cpuset_getid(struct thread *td,
3230     struct freebsd32_cpuset_getid_args *uap)
3231 {
3232 
3233 	return (kern_cpuset_getid(td, uap->level, uap->which,
3234 	    PAIR32TO64(id_t, uap->id), uap->setid));
3235 }
3236 
3237 int
3238 freebsd32_cpuset_getaffinity(struct thread *td,
3239     struct freebsd32_cpuset_getaffinity_args *uap)
3240 {
3241 
3242 	return (kern_cpuset_getaffinity(td, uap->level, uap->which,
3243 	    PAIR32TO64(id_t,uap->id), uap->cpusetsize, uap->mask));
3244 }
3245 
3246 int
3247 freebsd32_cpuset_setaffinity(struct thread *td,
3248     struct freebsd32_cpuset_setaffinity_args *uap)
3249 {
3250 
3251 	return (kern_cpuset_setaffinity(td, uap->level, uap->which,
3252 	    PAIR32TO64(id_t,uap->id), uap->cpusetsize, uap->mask));
3253 }
3254 
3255 int
3256 freebsd32_cpuset_getdomain(struct thread *td,
3257     struct freebsd32_cpuset_getdomain_args *uap)
3258 {
3259 
3260 	return (kern_cpuset_getdomain(td, uap->level, uap->which,
3261 	    PAIR32TO64(id_t,uap->id), uap->domainsetsize, uap->mask, uap->policy));
3262 }
3263 
3264 int
3265 freebsd32_cpuset_setdomain(struct thread *td,
3266     struct freebsd32_cpuset_setdomain_args *uap)
3267 {
3268 
3269 	return (kern_cpuset_setdomain(td, uap->level, uap->which,
3270 	    PAIR32TO64(id_t,uap->id), uap->domainsetsize, uap->mask, uap->policy));
3271 }
3272 
3273 int
3274 freebsd32_nmount(struct thread *td,
3275     struct freebsd32_nmount_args /* {
3276     	struct iovec *iovp;
3277     	unsigned int iovcnt;
3278     	int flags;
3279     } */ *uap)
3280 {
3281 	struct uio *auio;
3282 	uint64_t flags;
3283 	int error;
3284 
3285 	/*
3286 	 * Mount flags are now 64-bits. On 32-bit archtectures only
3287 	 * 32-bits are passed in, but from here on everything handles
3288 	 * 64-bit flags correctly.
3289 	 */
3290 	flags = uap->flags;
3291 
3292 	AUDIT_ARG_FFLAGS(flags);
3293 
3294 	/*
3295 	 * Filter out MNT_ROOTFS.  We do not want clients of nmount() in
3296 	 * userspace to set this flag, but we must filter it out if we want
3297 	 * MNT_UPDATE on the root file system to work.
3298 	 * MNT_ROOTFS should only be set by the kernel when mounting its
3299 	 * root file system.
3300 	 */
3301 	flags &= ~MNT_ROOTFS;
3302 
3303 	/*
3304 	 * check that we have an even number of iovec's
3305 	 * and that we have at least two options.
3306 	 */
3307 	if ((uap->iovcnt & 1) || (uap->iovcnt < 4))
3308 		return (EINVAL);
3309 
3310 	error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio);
3311 	if (error)
3312 		return (error);
3313 	error = vfs_donmount(td, flags, auio);
3314 
3315 	free(auio, M_IOV);
3316 	return error;
3317 }
3318 
3319 #if 0
3320 int
3321 freebsd32_xxx(struct thread *td, struct freebsd32_xxx_args *uap)
3322 {
3323 	struct yyy32 *p32, s32;
3324 	struct yyy *p = NULL, s;
3325 	struct xxx_arg ap;
3326 	int error;
3327 
3328 	if (uap->zzz) {
3329 		error = copyin(uap->zzz, &s32, sizeof(s32));
3330 		if (error)
3331 			return (error);
3332 		/* translate in */
3333 		p = &s;
3334 	}
3335 	error = kern_xxx(td, p);
3336 	if (error)
3337 		return (error);
3338 	if (uap->zzz) {
3339 		/* translate out */
3340 		error = copyout(&s32, p32, sizeof(s32));
3341 	}
3342 	return (error);
3343 }
3344 #endif
3345 
3346 int
3347 syscall32_module_handler(struct module *mod, int what, void *arg)
3348 {
3349 
3350 	return (kern_syscall_module_handler(freebsd32_sysent, mod, what, arg));
3351 }
3352 
3353 int
3354 syscall32_helper_register(struct syscall_helper_data *sd, int flags)
3355 {
3356 
3357 	return (kern_syscall_helper_register(freebsd32_sysent, sd, flags));
3358 }
3359 
3360 int
3361 syscall32_helper_unregister(struct syscall_helper_data *sd)
3362 {
3363 
3364 	return (kern_syscall_helper_unregister(freebsd32_sysent, sd));
3365 }
3366 
3367 int
3368 freebsd32_copyout_strings(struct image_params *imgp, uintptr_t *stack_base)
3369 {
3370 	int argc, envc, i;
3371 	u_int32_t *vectp;
3372 	char *stringp;
3373 	uintptr_t destp, ustringp;
3374 	struct freebsd32_ps_strings *arginfo;
3375 	char canary[sizeof(long) * 8];
3376 	int32_t pagesizes32[MAXPAGESIZES];
3377 	size_t execpath_len;
3378 	int error, szsigcode;
3379 
3380 	/*
3381 	 * Calculate string base and vector table pointers.
3382 	 * Also deal with signal trampoline code for this exec type.
3383 	 */
3384 	if (imgp->execpath != NULL && imgp->auxargs != NULL)
3385 		execpath_len = strlen(imgp->execpath) + 1;
3386 	else
3387 		execpath_len = 0;
3388 	arginfo = (struct freebsd32_ps_strings *)curproc->p_sysent->
3389 	    sv_psstrings;
3390 	imgp->ps_strings = arginfo;
3391 	if (imgp->proc->p_sysent->sv_sigcode_base == 0)
3392 		szsigcode = *(imgp->proc->p_sysent->sv_szsigcode);
3393 	else
3394 		szsigcode = 0;
3395 	destp =	(uintptr_t)arginfo;
3396 
3397 	/*
3398 	 * install sigcode
3399 	 */
3400 	if (szsigcode != 0) {
3401 		destp -= szsigcode;
3402 		destp = rounddown2(destp, sizeof(uint32_t));
3403 		error = copyout(imgp->proc->p_sysent->sv_sigcode, (void *)destp,
3404 		    szsigcode);
3405 		if (error != 0)
3406 			return (error);
3407 	}
3408 
3409 	/*
3410 	 * Copy the image path for the rtld.
3411 	 */
3412 	if (execpath_len != 0) {
3413 		destp -= execpath_len;
3414 		imgp->execpathp = (void *)destp;
3415 		error = copyout(imgp->execpath, imgp->execpathp, execpath_len);
3416 		if (error != 0)
3417 			return (error);
3418 	}
3419 
3420 	/*
3421 	 * Prepare the canary for SSP.
3422 	 */
3423 	arc4rand(canary, sizeof(canary), 0);
3424 	destp -= sizeof(canary);
3425 	imgp->canary = (void *)destp;
3426 	error = copyout(canary, imgp->canary, sizeof(canary));
3427 	if (error != 0)
3428 		return (error);
3429 	imgp->canarylen = sizeof(canary);
3430 
3431 	/*
3432 	 * Prepare the pagesizes array.
3433 	 */
3434 	for (i = 0; i < MAXPAGESIZES; i++)
3435 		pagesizes32[i] = (uint32_t)pagesizes[i];
3436 	destp -= sizeof(pagesizes32);
3437 	destp = rounddown2(destp, sizeof(uint32_t));
3438 	imgp->pagesizes = (void *)destp;
3439 	error = copyout(pagesizes32, imgp->pagesizes, sizeof(pagesizes32));
3440 	if (error != 0)
3441 		return (error);
3442 	imgp->pagesizeslen = sizeof(pagesizes32);
3443 
3444 	/*
3445 	 * Allocate room for the argument and environment strings.
3446 	 */
3447 	destp -= ARG_MAX - imgp->args->stringspace;
3448 	destp = rounddown2(destp, sizeof(uint32_t));
3449 	ustringp = destp;
3450 
3451 	exec_stackgap(imgp, &destp);
3452 
3453 	if (imgp->auxargs) {
3454 		/*
3455 		 * Allocate room on the stack for the ELF auxargs
3456 		 * array.  It has up to AT_COUNT entries.
3457 		 */
3458 		destp -= AT_COUNT * sizeof(Elf32_Auxinfo);
3459 		destp = rounddown2(destp, sizeof(uint32_t));
3460 	}
3461 
3462 	vectp = (uint32_t *)destp;
3463 
3464 	/*
3465 	 * Allocate room for the argv[] and env vectors including the
3466 	 * terminating NULL pointers.
3467 	 */
3468 	vectp -= imgp->args->argc + 1 + imgp->args->envc + 1;
3469 
3470 	/*
3471 	 * vectp also becomes our initial stack base
3472 	 */
3473 	*stack_base = (uintptr_t)vectp;
3474 
3475 	stringp = imgp->args->begin_argv;
3476 	argc = imgp->args->argc;
3477 	envc = imgp->args->envc;
3478 	/*
3479 	 * Copy out strings - arguments and environment.
3480 	 */
3481 	error = copyout(stringp, (void *)ustringp,
3482 	    ARG_MAX - imgp->args->stringspace);
3483 	if (error != 0)
3484 		return (error);
3485 
3486 	/*
3487 	 * Fill in "ps_strings" struct for ps, w, etc.
3488 	 */
3489 	imgp->argv = vectp;
3490 	if (suword32(&arginfo->ps_argvstr, (u_int32_t)(intptr_t)vectp) != 0 ||
3491 	    suword32(&arginfo->ps_nargvstr, argc) != 0)
3492 		return (EFAULT);
3493 
3494 	/*
3495 	 * Fill in argument portion of vector table.
3496 	 */
3497 	for (; argc > 0; --argc) {
3498 		if (suword32(vectp++, ustringp) != 0)
3499 			return (EFAULT);
3500 		while (*stringp++ != 0)
3501 			ustringp++;
3502 		ustringp++;
3503 	}
3504 
3505 	/* a null vector table pointer separates the argp's from the envp's */
3506 	if (suword32(vectp++, 0) != 0)
3507 		return (EFAULT);
3508 
3509 	imgp->envv = vectp;
3510 	if (suword32(&arginfo->ps_envstr, (u_int32_t)(intptr_t)vectp) != 0 ||
3511 	    suword32(&arginfo->ps_nenvstr, envc) != 0)
3512 		return (EFAULT);
3513 
3514 	/*
3515 	 * Fill in environment portion of vector table.
3516 	 */
3517 	for (; envc > 0; --envc) {
3518 		if (suword32(vectp++, ustringp) != 0)
3519 			return (EFAULT);
3520 		while (*stringp++ != 0)
3521 			ustringp++;
3522 		ustringp++;
3523 	}
3524 
3525 	/* end of vector table is a null pointer */
3526 	if (suword32(vectp, 0) != 0)
3527 		return (EFAULT);
3528 
3529 	if (imgp->auxargs) {
3530 		vectp++;
3531 		error = imgp->sysent->sv_copyout_auxargs(imgp,
3532 		    (uintptr_t)vectp);
3533 		if (error != 0)
3534 			return (error);
3535 	}
3536 
3537 	return (0);
3538 }
3539 
3540 int
3541 freebsd32_kldstat(struct thread *td, struct freebsd32_kldstat_args *uap)
3542 {
3543 	struct kld_file_stat *stat;
3544 	struct kld32_file_stat *stat32;
3545 	int error, version;
3546 
3547 	if ((error = copyin(&uap->stat->version, &version, sizeof(version)))
3548 	    != 0)
3549 		return (error);
3550 	if (version != sizeof(struct kld32_file_stat_1) &&
3551 	    version != sizeof(struct kld32_file_stat))
3552 		return (EINVAL);
3553 
3554 	stat = malloc(sizeof(*stat), M_TEMP, M_WAITOK | M_ZERO);
3555 	stat32 = malloc(sizeof(*stat32), M_TEMP, M_WAITOK | M_ZERO);
3556 	error = kern_kldstat(td, uap->fileid, stat);
3557 	if (error == 0) {
3558 		bcopy(&stat->name[0], &stat32->name[0], sizeof(stat->name));
3559 		CP(*stat, *stat32, refs);
3560 		CP(*stat, *stat32, id);
3561 		PTROUT_CP(*stat, *stat32, address);
3562 		CP(*stat, *stat32, size);
3563 		bcopy(&stat->pathname[0], &stat32->pathname[0],
3564 		    sizeof(stat->pathname));
3565 		stat32->version  = version;
3566 		error = copyout(stat32, uap->stat, version);
3567 	}
3568 	free(stat, M_TEMP);
3569 	free(stat32, M_TEMP);
3570 	return (error);
3571 }
3572 
3573 int
3574 freebsd32_posix_fallocate(struct thread *td,
3575     struct freebsd32_posix_fallocate_args *uap)
3576 {
3577 	int error;
3578 
3579 	error = kern_posix_fallocate(td, uap->fd,
3580 	    PAIR32TO64(off_t, uap->offset), PAIR32TO64(off_t, uap->len));
3581 	return (kern_posix_error(td, error));
3582 }
3583 
3584 int
3585 freebsd32_posix_fadvise(struct thread *td,
3586     struct freebsd32_posix_fadvise_args *uap)
3587 {
3588 	int error;
3589 
3590 	error = kern_posix_fadvise(td, uap->fd, PAIR32TO64(off_t, uap->offset),
3591 	    PAIR32TO64(off_t, uap->len), uap->advice);
3592 	return (kern_posix_error(td, error));
3593 }
3594 
3595 int
3596 convert_sigevent32(struct sigevent32 *sig32, struct sigevent *sig)
3597 {
3598 
3599 	CP(*sig32, *sig, sigev_notify);
3600 	switch (sig->sigev_notify) {
3601 	case SIGEV_NONE:
3602 		break;
3603 	case SIGEV_THREAD_ID:
3604 		CP(*sig32, *sig, sigev_notify_thread_id);
3605 		/* FALLTHROUGH */
3606 	case SIGEV_SIGNAL:
3607 		CP(*sig32, *sig, sigev_signo);
3608 		PTRIN_CP(*sig32, *sig, sigev_value.sival_ptr);
3609 		break;
3610 	case SIGEV_KEVENT:
3611 		CP(*sig32, *sig, sigev_notify_kqueue);
3612 		CP(*sig32, *sig, sigev_notify_kevent_flags);
3613 		PTRIN_CP(*sig32, *sig, sigev_value.sival_ptr);
3614 		break;
3615 	default:
3616 		return (EINVAL);
3617 	}
3618 	return (0);
3619 }
3620 
3621 int
3622 freebsd32_procctl(struct thread *td, struct freebsd32_procctl_args *uap)
3623 {
3624 	void *data;
3625 	union {
3626 		struct procctl_reaper_status rs;
3627 		struct procctl_reaper_pids rp;
3628 		struct procctl_reaper_kill rk;
3629 	} x;
3630 	union {
3631 		struct procctl_reaper_pids32 rp;
3632 	} x32;
3633 	int error, error1, flags, signum;
3634 
3635 	if (uap->com >= PROC_PROCCTL_MD_MIN)
3636 		return (cpu_procctl(td, uap->idtype, PAIR32TO64(id_t, uap->id),
3637 		    uap->com, PTRIN(uap->data)));
3638 
3639 	switch (uap->com) {
3640 	case PROC_ASLR_CTL:
3641 	case PROC_PROTMAX_CTL:
3642 	case PROC_SPROTECT:
3643 	case PROC_STACKGAP_CTL:
3644 	case PROC_TRACE_CTL:
3645 	case PROC_TRAPCAP_CTL:
3646 		error = copyin(PTRIN(uap->data), &flags, sizeof(flags));
3647 		if (error != 0)
3648 			return (error);
3649 		data = &flags;
3650 		break;
3651 	case PROC_REAP_ACQUIRE:
3652 	case PROC_REAP_RELEASE:
3653 		if (uap->data != NULL)
3654 			return (EINVAL);
3655 		data = NULL;
3656 		break;
3657 	case PROC_REAP_STATUS:
3658 		data = &x.rs;
3659 		break;
3660 	case PROC_REAP_GETPIDS:
3661 		error = copyin(uap->data, &x32.rp, sizeof(x32.rp));
3662 		if (error != 0)
3663 			return (error);
3664 		CP(x32.rp, x.rp, rp_count);
3665 		PTRIN_CP(x32.rp, x.rp, rp_pids);
3666 		data = &x.rp;
3667 		break;
3668 	case PROC_REAP_KILL:
3669 		error = copyin(uap->data, &x.rk, sizeof(x.rk));
3670 		if (error != 0)
3671 			return (error);
3672 		data = &x.rk;
3673 		break;
3674 	case PROC_ASLR_STATUS:
3675 	case PROC_PROTMAX_STATUS:
3676 	case PROC_STACKGAP_STATUS:
3677 	case PROC_TRACE_STATUS:
3678 	case PROC_TRAPCAP_STATUS:
3679 		data = &flags;
3680 		break;
3681 	case PROC_PDEATHSIG_CTL:
3682 		error = copyin(uap->data, &signum, sizeof(signum));
3683 		if (error != 0)
3684 			return (error);
3685 		data = &signum;
3686 		break;
3687 	case PROC_PDEATHSIG_STATUS:
3688 		data = &signum;
3689 		break;
3690 	default:
3691 		return (EINVAL);
3692 	}
3693 	error = kern_procctl(td, uap->idtype, PAIR32TO64(id_t, uap->id),
3694 	    uap->com, data);
3695 	switch (uap->com) {
3696 	case PROC_REAP_STATUS:
3697 		if (error == 0)
3698 			error = copyout(&x.rs, uap->data, sizeof(x.rs));
3699 		break;
3700 	case PROC_REAP_KILL:
3701 		error1 = copyout(&x.rk, uap->data, sizeof(x.rk));
3702 		if (error == 0)
3703 			error = error1;
3704 		break;
3705 	case PROC_ASLR_STATUS:
3706 	case PROC_PROTMAX_STATUS:
3707 	case PROC_STACKGAP_STATUS:
3708 	case PROC_TRACE_STATUS:
3709 	case PROC_TRAPCAP_STATUS:
3710 		if (error == 0)
3711 			error = copyout(&flags, uap->data, sizeof(flags));
3712 		break;
3713 	case PROC_PDEATHSIG_STATUS:
3714 		if (error == 0)
3715 			error = copyout(&signum, uap->data, sizeof(signum));
3716 		break;
3717 	}
3718 	return (error);
3719 }
3720 
3721 int
3722 freebsd32_fcntl(struct thread *td, struct freebsd32_fcntl_args *uap)
3723 {
3724 	long tmp;
3725 
3726 	switch (uap->cmd) {
3727 	/*
3728 	 * Do unsigned conversion for arg when operation
3729 	 * interprets it as flags or pointer.
3730 	 */
3731 	case F_SETLK_REMOTE:
3732 	case F_SETLKW:
3733 	case F_SETLK:
3734 	case F_GETLK:
3735 	case F_SETFD:
3736 	case F_SETFL:
3737 	case F_OGETLK:
3738 	case F_OSETLK:
3739 	case F_OSETLKW:
3740 		tmp = (unsigned int)(uap->arg);
3741 		break;
3742 	default:
3743 		tmp = uap->arg;
3744 		break;
3745 	}
3746 	return (kern_fcntl_freebsd(td, uap->fd, uap->cmd, tmp));
3747 }
3748 
3749 int
3750 freebsd32_ppoll(struct thread *td, struct freebsd32_ppoll_args *uap)
3751 {
3752 	struct timespec32 ts32;
3753 	struct timespec ts, *tsp;
3754 	sigset_t set, *ssp;
3755 	int error;
3756 
3757 	if (uap->ts != NULL) {
3758 		error = copyin(uap->ts, &ts32, sizeof(ts32));
3759 		if (error != 0)
3760 			return (error);
3761 		CP(ts32, ts, tv_sec);
3762 		CP(ts32, ts, tv_nsec);
3763 		tsp = &ts;
3764 	} else
3765 		tsp = NULL;
3766 	if (uap->set != NULL) {
3767 		error = copyin(uap->set, &set, sizeof(set));
3768 		if (error != 0)
3769 			return (error);
3770 		ssp = &set;
3771 	} else
3772 		ssp = NULL;
3773 
3774 	return (kern_poll(td, uap->fds, uap->nfds, tsp, ssp));
3775 }
3776 
3777 int
3778 freebsd32_sched_rr_get_interval(struct thread *td,
3779     struct freebsd32_sched_rr_get_interval_args *uap)
3780 {
3781 	struct timespec ts;
3782 	struct timespec32 ts32;
3783 	int error;
3784 
3785 	error = kern_sched_rr_get_interval(td, uap->pid, &ts);
3786 	if (error == 0) {
3787 		CP(ts, ts32, tv_sec);
3788 		CP(ts, ts32, tv_nsec);
3789 		error = copyout(&ts32, uap->interval, sizeof(ts32));
3790 	}
3791 	return (error);
3792 }
3793 
3794 static void
3795 timex_to_32(struct timex32 *dst, struct timex *src)
3796 {
3797 	CP(*src, *dst, modes);
3798 	CP(*src, *dst, offset);
3799 	CP(*src, *dst, freq);
3800 	CP(*src, *dst, maxerror);
3801 	CP(*src, *dst, esterror);
3802 	CP(*src, *dst, status);
3803 	CP(*src, *dst, constant);
3804 	CP(*src, *dst, precision);
3805 	CP(*src, *dst, tolerance);
3806 	CP(*src, *dst, ppsfreq);
3807 	CP(*src, *dst, jitter);
3808 	CP(*src, *dst, shift);
3809 	CP(*src, *dst, stabil);
3810 	CP(*src, *dst, jitcnt);
3811 	CP(*src, *dst, calcnt);
3812 	CP(*src, *dst, errcnt);
3813 	CP(*src, *dst, stbcnt);
3814 }
3815 
3816 static void
3817 timex_from_32(struct timex *dst, struct timex32 *src)
3818 {
3819 	CP(*src, *dst, modes);
3820 	CP(*src, *dst, offset);
3821 	CP(*src, *dst, freq);
3822 	CP(*src, *dst, maxerror);
3823 	CP(*src, *dst, esterror);
3824 	CP(*src, *dst, status);
3825 	CP(*src, *dst, constant);
3826 	CP(*src, *dst, precision);
3827 	CP(*src, *dst, tolerance);
3828 	CP(*src, *dst, ppsfreq);
3829 	CP(*src, *dst, jitter);
3830 	CP(*src, *dst, shift);
3831 	CP(*src, *dst, stabil);
3832 	CP(*src, *dst, jitcnt);
3833 	CP(*src, *dst, calcnt);
3834 	CP(*src, *dst, errcnt);
3835 	CP(*src, *dst, stbcnt);
3836 }
3837 
3838 int
3839 freebsd32_ntp_adjtime(struct thread *td, struct freebsd32_ntp_adjtime_args *uap)
3840 {
3841 	struct timex tx;
3842 	struct timex32 tx32;
3843 	int error, retval;
3844 
3845 	error = copyin(uap->tp, &tx32, sizeof(tx32));
3846 	if (error == 0) {
3847 		timex_from_32(&tx, &tx32);
3848 		error = kern_ntp_adjtime(td, &tx, &retval);
3849 		if (error == 0) {
3850 			timex_to_32(&tx32, &tx);
3851 			error = copyout(&tx32, uap->tp, sizeof(tx32));
3852 			if (error == 0)
3853 				td->td_retval[0] = retval;
3854 		}
3855 	}
3856 	return (error);
3857 }
3858