1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2002 Doug Rabson 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include "opt_inet.h" 33 #include "opt_inet6.h" 34 #include "opt_ktrace.h" 35 36 #define __ELF_WORD_SIZE 32 37 38 #ifdef COMPAT_FREEBSD11 39 #define _WANT_FREEBSD11_KEVENT 40 #endif 41 42 #include <sys/param.h> 43 #include <sys/bus.h> 44 #include <sys/capsicum.h> 45 #include <sys/clock.h> 46 #include <sys/exec.h> 47 #include <sys/fcntl.h> 48 #include <sys/filedesc.h> 49 #include <sys/imgact.h> 50 #include <sys/jail.h> 51 #include <sys/kernel.h> 52 #include <sys/limits.h> 53 #include <sys/linker.h> 54 #include <sys/lock.h> 55 #include <sys/malloc.h> 56 #include <sys/file.h> /* Must come after sys/malloc.h */ 57 #include <sys/imgact.h> 58 #include <sys/mbuf.h> 59 #include <sys/mman.h> 60 #include <sys/module.h> 61 #include <sys/mount.h> 62 #include <sys/mutex.h> 63 #include <sys/namei.h> 64 #include <sys/proc.h> 65 #include <sys/procctl.h> 66 #include <sys/ptrace.h> 67 #include <sys/reboot.h> 68 #include <sys/resource.h> 69 #include <sys/resourcevar.h> 70 #include <sys/selinfo.h> 71 #include <sys/eventvar.h> /* Must come after sys/selinfo.h */ 72 #include <sys/pipe.h> /* Must come after sys/selinfo.h */ 73 #include <sys/signal.h> 74 #include <sys/signalvar.h> 75 #include <sys/socket.h> 76 #include <sys/socketvar.h> 77 #include <sys/stat.h> 78 #include <sys/syscall.h> 79 #include <sys/syscallsubr.h> 80 #include <sys/sysctl.h> 81 #include <sys/sysent.h> 82 #include <sys/sysproto.h> 83 #include <sys/systm.h> 84 #include <sys/thr.h> 85 #include <sys/timex.h> 86 #include <sys/unistd.h> 87 #include <sys/ucontext.h> 88 #include <sys/umtx.h> 89 #include <sys/vnode.h> 90 #include <sys/wait.h> 91 #include <sys/ipc.h> 92 #include <sys/msg.h> 93 #include <sys/sem.h> 94 #include <sys/shm.h> 95 #ifdef KTRACE 96 #include <sys/ktrace.h> 97 #endif 98 99 #ifdef INET 100 #include <netinet/in.h> 101 #endif 102 103 #include <vm/vm.h> 104 #include <vm/vm_param.h> 105 #include <vm/pmap.h> 106 #include <vm/vm_map.h> 107 #include <vm/vm_object.h> 108 #include <vm/vm_extern.h> 109 110 #include <machine/cpu.h> 111 #include <machine/elf.h> 112 #ifdef __amd64__ 113 #include <machine/md_var.h> 114 #endif 115 116 #include <security/audit/audit.h> 117 118 #include <compat/freebsd32/freebsd32_util.h> 119 #include <compat/freebsd32/freebsd32.h> 120 #include <compat/freebsd32/freebsd32_ipc.h> 121 #include <compat/freebsd32/freebsd32_misc.h> 122 #include <compat/freebsd32/freebsd32_signal.h> 123 #include <compat/freebsd32/freebsd32_proto.h> 124 125 FEATURE(compat_freebsd_32bit, "Compatible with 32-bit FreeBSD"); 126 127 struct ptrace_io_desc32 { 128 int piod_op; 129 uint32_t piod_offs; 130 uint32_t piod_addr; 131 uint32_t piod_len; 132 }; 133 134 struct ptrace_sc_ret32 { 135 uint32_t sr_retval[2]; 136 int sr_error; 137 }; 138 139 struct ptrace_vm_entry32 { 140 int pve_entry; 141 int pve_timestamp; 142 uint32_t pve_start; 143 uint32_t pve_end; 144 uint32_t pve_offset; 145 u_int pve_prot; 146 u_int pve_pathlen; 147 int32_t pve_fileid; 148 u_int pve_fsid; 149 uint32_t pve_path; 150 }; 151 152 #ifdef __amd64__ 153 CTASSERT(sizeof(struct timeval32) == 8); 154 CTASSERT(sizeof(struct timespec32) == 8); 155 CTASSERT(sizeof(struct itimerval32) == 16); 156 CTASSERT(sizeof(struct bintime32) == 12); 157 #endif 158 CTASSERT(sizeof(struct statfs32) == 256); 159 #ifdef __amd64__ 160 CTASSERT(sizeof(struct rusage32) == 72); 161 #endif 162 CTASSERT(sizeof(struct sigaltstack32) == 12); 163 #ifdef __amd64__ 164 CTASSERT(sizeof(struct kevent32) == 56); 165 #else 166 CTASSERT(sizeof(struct kevent32) == 64); 167 #endif 168 CTASSERT(sizeof(struct iovec32) == 8); 169 CTASSERT(sizeof(struct msghdr32) == 28); 170 #ifdef __amd64__ 171 CTASSERT(sizeof(struct stat32) == 208); 172 CTASSERT(sizeof(struct freebsd11_stat32) == 96); 173 #endif 174 CTASSERT(sizeof(struct sigaction32) == 24); 175 176 static int freebsd32_kevent_copyout(void *arg, struct kevent *kevp, int count); 177 static int freebsd32_kevent_copyin(void *arg, struct kevent *kevp, int count); 178 static int freebsd32_user_clock_nanosleep(struct thread *td, clockid_t clock_id, 179 int flags, const struct timespec32 *ua_rqtp, struct timespec32 *ua_rmtp); 180 181 void 182 freebsd32_rusage_out(const struct rusage *s, struct rusage32 *s32) 183 { 184 185 TV_CP(*s, *s32, ru_utime); 186 TV_CP(*s, *s32, ru_stime); 187 CP(*s, *s32, ru_maxrss); 188 CP(*s, *s32, ru_ixrss); 189 CP(*s, *s32, ru_idrss); 190 CP(*s, *s32, ru_isrss); 191 CP(*s, *s32, ru_minflt); 192 CP(*s, *s32, ru_majflt); 193 CP(*s, *s32, ru_nswap); 194 CP(*s, *s32, ru_inblock); 195 CP(*s, *s32, ru_oublock); 196 CP(*s, *s32, ru_msgsnd); 197 CP(*s, *s32, ru_msgrcv); 198 CP(*s, *s32, ru_nsignals); 199 CP(*s, *s32, ru_nvcsw); 200 CP(*s, *s32, ru_nivcsw); 201 } 202 203 int 204 freebsd32_wait4(struct thread *td, struct freebsd32_wait4_args *uap) 205 { 206 int error, status; 207 struct rusage32 ru32; 208 struct rusage ru, *rup; 209 210 if (uap->rusage != NULL) 211 rup = &ru; 212 else 213 rup = NULL; 214 error = kern_wait(td, uap->pid, &status, uap->options, rup); 215 if (error) 216 return (error); 217 if (uap->status != NULL) 218 error = copyout(&status, uap->status, sizeof(status)); 219 if (uap->rusage != NULL && error == 0) { 220 freebsd32_rusage_out(&ru, &ru32); 221 error = copyout(&ru32, uap->rusage, sizeof(ru32)); 222 } 223 return (error); 224 } 225 226 int 227 freebsd32_wait6(struct thread *td, struct freebsd32_wait6_args *uap) 228 { 229 struct wrusage32 wru32; 230 struct __wrusage wru, *wrup; 231 struct siginfo32 si32; 232 struct __siginfo si, *sip; 233 int error, status; 234 235 if (uap->wrusage != NULL) 236 wrup = &wru; 237 else 238 wrup = NULL; 239 if (uap->info != NULL) { 240 sip = &si; 241 bzero(sip, sizeof(*sip)); 242 } else 243 sip = NULL; 244 error = kern_wait6(td, uap->idtype, PAIR32TO64(id_t, uap->id), 245 &status, uap->options, wrup, sip); 246 if (error != 0) 247 return (error); 248 if (uap->status != NULL) 249 error = copyout(&status, uap->status, sizeof(status)); 250 if (uap->wrusage != NULL && error == 0) { 251 freebsd32_rusage_out(&wru.wru_self, &wru32.wru_self); 252 freebsd32_rusage_out(&wru.wru_children, &wru32.wru_children); 253 error = copyout(&wru32, uap->wrusage, sizeof(wru32)); 254 } 255 if (uap->info != NULL && error == 0) { 256 siginfo_to_siginfo32 (&si, &si32); 257 error = copyout(&si32, uap->info, sizeof(si32)); 258 } 259 return (error); 260 } 261 262 #ifdef COMPAT_FREEBSD4 263 static void 264 copy_statfs(struct statfs *in, struct statfs32 *out) 265 { 266 267 statfs_scale_blocks(in, INT32_MAX); 268 bzero(out, sizeof(*out)); 269 CP(*in, *out, f_bsize); 270 out->f_iosize = MIN(in->f_iosize, INT32_MAX); 271 CP(*in, *out, f_blocks); 272 CP(*in, *out, f_bfree); 273 CP(*in, *out, f_bavail); 274 out->f_files = MIN(in->f_files, INT32_MAX); 275 out->f_ffree = MIN(in->f_ffree, INT32_MAX); 276 CP(*in, *out, f_fsid); 277 CP(*in, *out, f_owner); 278 CP(*in, *out, f_type); 279 CP(*in, *out, f_flags); 280 out->f_syncwrites = MIN(in->f_syncwrites, INT32_MAX); 281 out->f_asyncwrites = MIN(in->f_asyncwrites, INT32_MAX); 282 strlcpy(out->f_fstypename, 283 in->f_fstypename, MFSNAMELEN); 284 strlcpy(out->f_mntonname, 285 in->f_mntonname, min(MNAMELEN, FREEBSD4_MNAMELEN)); 286 out->f_syncreads = MIN(in->f_syncreads, INT32_MAX); 287 out->f_asyncreads = MIN(in->f_asyncreads, INT32_MAX); 288 strlcpy(out->f_mntfromname, 289 in->f_mntfromname, min(MNAMELEN, FREEBSD4_MNAMELEN)); 290 } 291 #endif 292 293 #ifdef COMPAT_FREEBSD4 294 int 295 freebsd4_freebsd32_getfsstat(struct thread *td, 296 struct freebsd4_freebsd32_getfsstat_args *uap) 297 { 298 struct statfs *buf, *sp; 299 struct statfs32 stat32; 300 size_t count, size, copycount; 301 int error; 302 303 count = uap->bufsize / sizeof(struct statfs32); 304 size = count * sizeof(struct statfs); 305 error = kern_getfsstat(td, &buf, size, &count, UIO_SYSSPACE, uap->mode); 306 if (size > 0) { 307 sp = buf; 308 copycount = count; 309 while (copycount > 0 && error == 0) { 310 copy_statfs(sp, &stat32); 311 error = copyout(&stat32, uap->buf, sizeof(stat32)); 312 sp++; 313 uap->buf++; 314 copycount--; 315 } 316 free(buf, M_STATFS); 317 } 318 if (error == 0) 319 td->td_retval[0] = count; 320 return (error); 321 } 322 #endif 323 324 #ifdef COMPAT_FREEBSD10 325 int 326 freebsd10_freebsd32_pipe(struct thread *td, 327 struct freebsd10_freebsd32_pipe_args *uap) { 328 return (freebsd10_pipe(td, (struct freebsd10_pipe_args*)uap)); 329 } 330 #endif 331 332 int 333 freebsd32_sigaltstack(struct thread *td, 334 struct freebsd32_sigaltstack_args *uap) 335 { 336 struct sigaltstack32 s32; 337 struct sigaltstack ss, oss, *ssp; 338 int error; 339 340 if (uap->ss != NULL) { 341 error = copyin(uap->ss, &s32, sizeof(s32)); 342 if (error) 343 return (error); 344 PTRIN_CP(s32, ss, ss_sp); 345 CP(s32, ss, ss_size); 346 CP(s32, ss, ss_flags); 347 ssp = &ss; 348 } else 349 ssp = NULL; 350 error = kern_sigaltstack(td, ssp, &oss); 351 if (error == 0 && uap->oss != NULL) { 352 PTROUT_CP(oss, s32, ss_sp); 353 CP(oss, s32, ss_size); 354 CP(oss, s32, ss_flags); 355 error = copyout(&s32, uap->oss, sizeof(s32)); 356 } 357 return (error); 358 } 359 360 /* 361 * Custom version of exec_copyin_args() so that we can translate 362 * the pointers. 363 */ 364 int 365 freebsd32_exec_copyin_args(struct image_args *args, const char *fname, 366 enum uio_seg segflg, u_int32_t *argv, u_int32_t *envv) 367 { 368 char *argp, *envp; 369 u_int32_t *p32, arg; 370 int error; 371 372 bzero(args, sizeof(*args)); 373 if (argv == NULL) 374 return (EFAULT); 375 376 /* 377 * Allocate demand-paged memory for the file name, argument, and 378 * environment strings. 379 */ 380 error = exec_alloc_args(args); 381 if (error != 0) 382 return (error); 383 384 /* 385 * Copy the file name. 386 */ 387 error = exec_args_add_fname(args, fname, segflg); 388 if (error != 0) 389 goto err_exit; 390 391 /* 392 * extract arguments first 393 */ 394 p32 = argv; 395 for (;;) { 396 error = copyin(p32++, &arg, sizeof(arg)); 397 if (error) 398 goto err_exit; 399 if (arg == 0) 400 break; 401 argp = PTRIN(arg); 402 error = exec_args_add_arg(args, argp, UIO_USERSPACE); 403 if (error != 0) 404 goto err_exit; 405 } 406 407 /* 408 * extract environment strings 409 */ 410 if (envv) { 411 p32 = envv; 412 for (;;) { 413 error = copyin(p32++, &arg, sizeof(arg)); 414 if (error) 415 goto err_exit; 416 if (arg == 0) 417 break; 418 envp = PTRIN(arg); 419 error = exec_args_add_env(args, envp, UIO_USERSPACE); 420 if (error != 0) 421 goto err_exit; 422 } 423 } 424 425 return (0); 426 427 err_exit: 428 exec_free_args(args); 429 return (error); 430 } 431 432 int 433 freebsd32_execve(struct thread *td, struct freebsd32_execve_args *uap) 434 { 435 struct image_args eargs; 436 struct vmspace *oldvmspace; 437 int error; 438 439 error = pre_execve(td, &oldvmspace); 440 if (error != 0) 441 return (error); 442 error = freebsd32_exec_copyin_args(&eargs, uap->fname, UIO_USERSPACE, 443 uap->argv, uap->envv); 444 if (error == 0) 445 error = kern_execve(td, &eargs, NULL, oldvmspace); 446 post_execve(td, error, oldvmspace); 447 AUDIT_SYSCALL_EXIT(error == EJUSTRETURN ? 0 : error, td); 448 return (error); 449 } 450 451 int 452 freebsd32_fexecve(struct thread *td, struct freebsd32_fexecve_args *uap) 453 { 454 struct image_args eargs; 455 struct vmspace *oldvmspace; 456 int error; 457 458 error = pre_execve(td, &oldvmspace); 459 if (error != 0) 460 return (error); 461 error = freebsd32_exec_copyin_args(&eargs, NULL, UIO_SYSSPACE, 462 uap->argv, uap->envv); 463 if (error == 0) { 464 eargs.fd = uap->fd; 465 error = kern_execve(td, &eargs, NULL, oldvmspace); 466 } 467 post_execve(td, error, oldvmspace); 468 AUDIT_SYSCALL_EXIT(error == EJUSTRETURN ? 0 : error, td); 469 return (error); 470 } 471 472 int 473 freebsd32_mknodat(struct thread *td, struct freebsd32_mknodat_args *uap) 474 { 475 476 return (kern_mknodat(td, uap->fd, uap->path, UIO_USERSPACE, 477 uap->mode, PAIR32TO64(dev_t, uap->dev))); 478 } 479 480 int 481 freebsd32_mprotect(struct thread *td, struct freebsd32_mprotect_args *uap) 482 { 483 int prot; 484 485 prot = uap->prot; 486 #if defined(__amd64__) 487 if (i386_read_exec && (prot & PROT_READ) != 0) 488 prot |= PROT_EXEC; 489 #endif 490 return (kern_mprotect(td, (uintptr_t)PTRIN(uap->addr), uap->len, 491 prot)); 492 } 493 494 int 495 freebsd32_mmap(struct thread *td, struct freebsd32_mmap_args *uap) 496 { 497 int prot; 498 499 prot = uap->prot; 500 #if defined(__amd64__) 501 if (i386_read_exec && (prot & PROT_READ)) 502 prot |= PROT_EXEC; 503 #endif 504 505 return (kern_mmap(td, &(struct mmap_req){ 506 .mr_hint = (uintptr_t)uap->addr, 507 .mr_len = uap->len, 508 .mr_prot = prot, 509 .mr_flags = uap->flags, 510 .mr_fd = uap->fd, 511 .mr_pos = PAIR32TO64(off_t, uap->pos), 512 })); 513 } 514 515 #ifdef COMPAT_FREEBSD6 516 int 517 freebsd6_freebsd32_mmap(struct thread *td, 518 struct freebsd6_freebsd32_mmap_args *uap) 519 { 520 int prot; 521 522 prot = uap->prot; 523 #if defined(__amd64__) 524 if (i386_read_exec && (prot & PROT_READ)) 525 prot |= PROT_EXEC; 526 #endif 527 528 return (kern_mmap(td, &(struct mmap_req){ 529 .mr_hint = (uintptr_t)uap->addr, 530 .mr_len = uap->len, 531 .mr_prot = prot, 532 .mr_flags = uap->flags, 533 .mr_fd = uap->fd, 534 .mr_pos = PAIR32TO64(off_t, uap->pos), 535 })); 536 } 537 #endif 538 539 int 540 freebsd32_setitimer(struct thread *td, struct freebsd32_setitimer_args *uap) 541 { 542 struct itimerval itv, oitv, *itvp; 543 struct itimerval32 i32; 544 int error; 545 546 if (uap->itv != NULL) { 547 error = copyin(uap->itv, &i32, sizeof(i32)); 548 if (error) 549 return (error); 550 TV_CP(i32, itv, it_interval); 551 TV_CP(i32, itv, it_value); 552 itvp = &itv; 553 } else 554 itvp = NULL; 555 error = kern_setitimer(td, uap->which, itvp, &oitv); 556 if (error || uap->oitv == NULL) 557 return (error); 558 TV_CP(oitv, i32, it_interval); 559 TV_CP(oitv, i32, it_value); 560 return (copyout(&i32, uap->oitv, sizeof(i32))); 561 } 562 563 int 564 freebsd32_getitimer(struct thread *td, struct freebsd32_getitimer_args *uap) 565 { 566 struct itimerval itv; 567 struct itimerval32 i32; 568 int error; 569 570 error = kern_getitimer(td, uap->which, &itv); 571 if (error || uap->itv == NULL) 572 return (error); 573 TV_CP(itv, i32, it_interval); 574 TV_CP(itv, i32, it_value); 575 return (copyout(&i32, uap->itv, sizeof(i32))); 576 } 577 578 int 579 freebsd32_select(struct thread *td, struct freebsd32_select_args *uap) 580 { 581 struct timeval32 tv32; 582 struct timeval tv, *tvp; 583 int error; 584 585 if (uap->tv != NULL) { 586 error = copyin(uap->tv, &tv32, sizeof(tv32)); 587 if (error) 588 return (error); 589 CP(tv32, tv, tv_sec); 590 CP(tv32, tv, tv_usec); 591 tvp = &tv; 592 } else 593 tvp = NULL; 594 /* 595 * XXX Do pointers need PTRIN()? 596 */ 597 return (kern_select(td, uap->nd, uap->in, uap->ou, uap->ex, tvp, 598 sizeof(int32_t) * 8)); 599 } 600 601 int 602 freebsd32_pselect(struct thread *td, struct freebsd32_pselect_args *uap) 603 { 604 struct timespec32 ts32; 605 struct timespec ts; 606 struct timeval tv, *tvp; 607 sigset_t set, *uset; 608 int error; 609 610 if (uap->ts != NULL) { 611 error = copyin(uap->ts, &ts32, sizeof(ts32)); 612 if (error != 0) 613 return (error); 614 CP(ts32, ts, tv_sec); 615 CP(ts32, ts, tv_nsec); 616 TIMESPEC_TO_TIMEVAL(&tv, &ts); 617 tvp = &tv; 618 } else 619 tvp = NULL; 620 if (uap->sm != NULL) { 621 error = copyin(uap->sm, &set, sizeof(set)); 622 if (error != 0) 623 return (error); 624 uset = &set; 625 } else 626 uset = NULL; 627 /* 628 * XXX Do pointers need PTRIN()? 629 */ 630 error = kern_pselect(td, uap->nd, uap->in, uap->ou, uap->ex, tvp, 631 uset, sizeof(int32_t) * 8); 632 return (error); 633 } 634 635 /* 636 * Copy 'count' items into the destination list pointed to by uap->eventlist. 637 */ 638 static int 639 freebsd32_kevent_copyout(void *arg, struct kevent *kevp, int count) 640 { 641 struct freebsd32_kevent_args *uap; 642 struct kevent32 ks32[KQ_NEVENTS]; 643 uint64_t e; 644 int i, j, error; 645 646 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count)); 647 uap = (struct freebsd32_kevent_args *)arg; 648 649 for (i = 0; i < count; i++) { 650 CP(kevp[i], ks32[i], ident); 651 CP(kevp[i], ks32[i], filter); 652 CP(kevp[i], ks32[i], flags); 653 CP(kevp[i], ks32[i], fflags); 654 #if BYTE_ORDER == LITTLE_ENDIAN 655 ks32[i].data1 = kevp[i].data; 656 ks32[i].data2 = kevp[i].data >> 32; 657 #else 658 ks32[i].data1 = kevp[i].data >> 32; 659 ks32[i].data2 = kevp[i].data; 660 #endif 661 PTROUT_CP(kevp[i], ks32[i], udata); 662 for (j = 0; j < nitems(kevp->ext); j++) { 663 e = kevp[i].ext[j]; 664 #if BYTE_ORDER == LITTLE_ENDIAN 665 ks32[i].ext64[2 * j] = e; 666 ks32[i].ext64[2 * j + 1] = e >> 32; 667 #else 668 ks32[i].ext64[2 * j] = e >> 32; 669 ks32[i].ext64[2 * j + 1] = e; 670 #endif 671 } 672 } 673 error = copyout(ks32, uap->eventlist, count * sizeof *ks32); 674 if (error == 0) 675 uap->eventlist += count; 676 return (error); 677 } 678 679 /* 680 * Copy 'count' items from the list pointed to by uap->changelist. 681 */ 682 static int 683 freebsd32_kevent_copyin(void *arg, struct kevent *kevp, int count) 684 { 685 struct freebsd32_kevent_args *uap; 686 struct kevent32 ks32[KQ_NEVENTS]; 687 uint64_t e; 688 int i, j, error; 689 690 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count)); 691 uap = (struct freebsd32_kevent_args *)arg; 692 693 error = copyin(uap->changelist, ks32, count * sizeof *ks32); 694 if (error) 695 goto done; 696 uap->changelist += count; 697 698 for (i = 0; i < count; i++) { 699 CP(ks32[i], kevp[i], ident); 700 CP(ks32[i], kevp[i], filter); 701 CP(ks32[i], kevp[i], flags); 702 CP(ks32[i], kevp[i], fflags); 703 kevp[i].data = PAIR32TO64(uint64_t, ks32[i].data); 704 PTRIN_CP(ks32[i], kevp[i], udata); 705 for (j = 0; j < nitems(kevp->ext); j++) { 706 #if BYTE_ORDER == LITTLE_ENDIAN 707 e = ks32[i].ext64[2 * j + 1]; 708 e <<= 32; 709 e += ks32[i].ext64[2 * j]; 710 #else 711 e = ks32[i].ext64[2 * j]; 712 e <<= 32; 713 e += ks32[i].ext64[2 * j + 1]; 714 #endif 715 kevp[i].ext[j] = e; 716 } 717 } 718 done: 719 return (error); 720 } 721 722 int 723 freebsd32_kevent(struct thread *td, struct freebsd32_kevent_args *uap) 724 { 725 struct timespec32 ts32; 726 struct timespec ts, *tsp; 727 struct kevent_copyops k_ops = { 728 .arg = uap, 729 .k_copyout = freebsd32_kevent_copyout, 730 .k_copyin = freebsd32_kevent_copyin, 731 }; 732 #ifdef KTRACE 733 struct kevent32 *eventlist = uap->eventlist; 734 #endif 735 int error; 736 737 if (uap->timeout) { 738 error = copyin(uap->timeout, &ts32, sizeof(ts32)); 739 if (error) 740 return (error); 741 CP(ts32, ts, tv_sec); 742 CP(ts32, ts, tv_nsec); 743 tsp = &ts; 744 } else 745 tsp = NULL; 746 #ifdef KTRACE 747 if (KTRPOINT(td, KTR_STRUCT_ARRAY)) 748 ktrstructarray("kevent32", UIO_USERSPACE, uap->changelist, 749 uap->nchanges, sizeof(struct kevent32)); 750 #endif 751 error = kern_kevent(td, uap->fd, uap->nchanges, uap->nevents, 752 &k_ops, tsp); 753 #ifdef KTRACE 754 if (error == 0 && KTRPOINT(td, KTR_STRUCT_ARRAY)) 755 ktrstructarray("kevent32", UIO_USERSPACE, eventlist, 756 td->td_retval[0], sizeof(struct kevent32)); 757 #endif 758 return (error); 759 } 760 761 #ifdef COMPAT_FREEBSD11 762 static int 763 freebsd32_kevent11_copyout(void *arg, struct kevent *kevp, int count) 764 { 765 struct freebsd11_freebsd32_kevent_args *uap; 766 struct kevent32_freebsd11 ks32[KQ_NEVENTS]; 767 int i, error; 768 769 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count)); 770 uap = (struct freebsd11_freebsd32_kevent_args *)arg; 771 772 for (i = 0; i < count; i++) { 773 CP(kevp[i], ks32[i], ident); 774 CP(kevp[i], ks32[i], filter); 775 CP(kevp[i], ks32[i], flags); 776 CP(kevp[i], ks32[i], fflags); 777 CP(kevp[i], ks32[i], data); 778 PTROUT_CP(kevp[i], ks32[i], udata); 779 } 780 error = copyout(ks32, uap->eventlist, count * sizeof *ks32); 781 if (error == 0) 782 uap->eventlist += count; 783 return (error); 784 } 785 786 /* 787 * Copy 'count' items from the list pointed to by uap->changelist. 788 */ 789 static int 790 freebsd32_kevent11_copyin(void *arg, struct kevent *kevp, int count) 791 { 792 struct freebsd11_freebsd32_kevent_args *uap; 793 struct kevent32_freebsd11 ks32[KQ_NEVENTS]; 794 int i, j, error; 795 796 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count)); 797 uap = (struct freebsd11_freebsd32_kevent_args *)arg; 798 799 error = copyin(uap->changelist, ks32, count * sizeof *ks32); 800 if (error) 801 goto done; 802 uap->changelist += count; 803 804 for (i = 0; i < count; i++) { 805 CP(ks32[i], kevp[i], ident); 806 CP(ks32[i], kevp[i], filter); 807 CP(ks32[i], kevp[i], flags); 808 CP(ks32[i], kevp[i], fflags); 809 CP(ks32[i], kevp[i], data); 810 PTRIN_CP(ks32[i], kevp[i], udata); 811 for (j = 0; j < nitems(kevp->ext); j++) 812 kevp[i].ext[j] = 0; 813 } 814 done: 815 return (error); 816 } 817 818 int 819 freebsd11_freebsd32_kevent(struct thread *td, 820 struct freebsd11_freebsd32_kevent_args *uap) 821 { 822 struct timespec32 ts32; 823 struct timespec ts, *tsp; 824 struct kevent_copyops k_ops = { 825 .arg = uap, 826 .k_copyout = freebsd32_kevent11_copyout, 827 .k_copyin = freebsd32_kevent11_copyin, 828 }; 829 #ifdef KTRACE 830 struct kevent32_freebsd11 *eventlist = uap->eventlist; 831 #endif 832 int error; 833 834 if (uap->timeout) { 835 error = copyin(uap->timeout, &ts32, sizeof(ts32)); 836 if (error) 837 return (error); 838 CP(ts32, ts, tv_sec); 839 CP(ts32, ts, tv_nsec); 840 tsp = &ts; 841 } else 842 tsp = NULL; 843 #ifdef KTRACE 844 if (KTRPOINT(td, KTR_STRUCT_ARRAY)) 845 ktrstructarray("kevent32_freebsd11", UIO_USERSPACE, 846 uap->changelist, uap->nchanges, 847 sizeof(struct kevent32_freebsd11)); 848 #endif 849 error = kern_kevent(td, uap->fd, uap->nchanges, uap->nevents, 850 &k_ops, tsp); 851 #ifdef KTRACE 852 if (error == 0 && KTRPOINT(td, KTR_STRUCT_ARRAY)) 853 ktrstructarray("kevent32_freebsd11", UIO_USERSPACE, 854 eventlist, td->td_retval[0], 855 sizeof(struct kevent32_freebsd11)); 856 #endif 857 return (error); 858 } 859 #endif 860 861 int 862 freebsd32_gettimeofday(struct thread *td, 863 struct freebsd32_gettimeofday_args *uap) 864 { 865 struct timeval atv; 866 struct timeval32 atv32; 867 struct timezone rtz; 868 int error = 0; 869 870 if (uap->tp) { 871 microtime(&atv); 872 CP(atv, atv32, tv_sec); 873 CP(atv, atv32, tv_usec); 874 error = copyout(&atv32, uap->tp, sizeof (atv32)); 875 } 876 if (error == 0 && uap->tzp != NULL) { 877 rtz.tz_minuteswest = 0; 878 rtz.tz_dsttime = 0; 879 error = copyout(&rtz, uap->tzp, sizeof (rtz)); 880 } 881 return (error); 882 } 883 884 int 885 freebsd32_getrusage(struct thread *td, struct freebsd32_getrusage_args *uap) 886 { 887 struct rusage32 s32; 888 struct rusage s; 889 int error; 890 891 error = kern_getrusage(td, uap->who, &s); 892 if (error == 0) { 893 freebsd32_rusage_out(&s, &s32); 894 error = copyout(&s32, uap->rusage, sizeof(s32)); 895 } 896 return (error); 897 } 898 899 static void 900 ptrace_lwpinfo_to32(const struct ptrace_lwpinfo *pl, 901 struct ptrace_lwpinfo32 *pl32) 902 { 903 904 bzero(pl32, sizeof(*pl32)); 905 pl32->pl_lwpid = pl->pl_lwpid; 906 pl32->pl_event = pl->pl_event; 907 pl32->pl_flags = pl->pl_flags; 908 pl32->pl_sigmask = pl->pl_sigmask; 909 pl32->pl_siglist = pl->pl_siglist; 910 siginfo_to_siginfo32(&pl->pl_siginfo, &pl32->pl_siginfo); 911 strcpy(pl32->pl_tdname, pl->pl_tdname); 912 pl32->pl_child_pid = pl->pl_child_pid; 913 pl32->pl_syscall_code = pl->pl_syscall_code; 914 pl32->pl_syscall_narg = pl->pl_syscall_narg; 915 } 916 917 static void 918 ptrace_sc_ret_to32(const struct ptrace_sc_ret *psr, 919 struct ptrace_sc_ret32 *psr32) 920 { 921 922 bzero(psr32, sizeof(*psr32)); 923 psr32->sr_retval[0] = psr->sr_retval[0]; 924 psr32->sr_retval[1] = psr->sr_retval[1]; 925 psr32->sr_error = psr->sr_error; 926 } 927 928 int 929 freebsd32_ptrace(struct thread *td, struct freebsd32_ptrace_args *uap) 930 { 931 union { 932 struct ptrace_io_desc piod; 933 struct ptrace_lwpinfo pl; 934 struct ptrace_vm_entry pve; 935 struct ptrace_coredump pc; 936 struct dbreg32 dbreg; 937 struct fpreg32 fpreg; 938 struct reg32 reg; 939 register_t args[nitems(td->td_sa.args)]; 940 struct ptrace_sc_ret psr; 941 int ptevents; 942 } r; 943 union { 944 struct ptrace_io_desc32 piod; 945 struct ptrace_lwpinfo32 pl; 946 struct ptrace_vm_entry32 pve; 947 struct ptrace_coredump32 pc; 948 uint32_t args[nitems(td->td_sa.args)]; 949 struct ptrace_sc_ret32 psr; 950 } r32; 951 void *addr; 952 int data, error = 0, i; 953 954 AUDIT_ARG_PID(uap->pid); 955 AUDIT_ARG_CMD(uap->req); 956 AUDIT_ARG_VALUE(uap->data); 957 addr = &r; 958 data = uap->data; 959 switch (uap->req) { 960 case PT_GET_EVENT_MASK: 961 case PT_GET_SC_ARGS: 962 case PT_GET_SC_RET: 963 break; 964 case PT_LWPINFO: 965 if (uap->data > sizeof(r32.pl)) 966 return (EINVAL); 967 968 /* 969 * Pass size of native structure in 'data'. Truncate 970 * if necessary to avoid siginfo. 971 */ 972 data = sizeof(r.pl); 973 if (uap->data < offsetof(struct ptrace_lwpinfo32, pl_siginfo) + 974 sizeof(struct siginfo32)) 975 data = offsetof(struct ptrace_lwpinfo, pl_siginfo); 976 break; 977 case PT_GETREGS: 978 bzero(&r.reg, sizeof(r.reg)); 979 break; 980 case PT_GETFPREGS: 981 bzero(&r.fpreg, sizeof(r.fpreg)); 982 break; 983 case PT_GETDBREGS: 984 bzero(&r.dbreg, sizeof(r.dbreg)); 985 break; 986 case PT_SETREGS: 987 error = copyin(uap->addr, &r.reg, sizeof(r.reg)); 988 break; 989 case PT_SETFPREGS: 990 error = copyin(uap->addr, &r.fpreg, sizeof(r.fpreg)); 991 break; 992 case PT_SETDBREGS: 993 error = copyin(uap->addr, &r.dbreg, sizeof(r.dbreg)); 994 break; 995 case PT_SET_EVENT_MASK: 996 if (uap->data != sizeof(r.ptevents)) 997 error = EINVAL; 998 else 999 error = copyin(uap->addr, &r.ptevents, uap->data); 1000 break; 1001 case PT_IO: 1002 error = copyin(uap->addr, &r32.piod, sizeof(r32.piod)); 1003 if (error) 1004 break; 1005 CP(r32.piod, r.piod, piod_op); 1006 PTRIN_CP(r32.piod, r.piod, piod_offs); 1007 PTRIN_CP(r32.piod, r.piod, piod_addr); 1008 CP(r32.piod, r.piod, piod_len); 1009 break; 1010 case PT_VM_ENTRY: 1011 error = copyin(uap->addr, &r32.pve, sizeof(r32.pve)); 1012 if (error) 1013 break; 1014 1015 CP(r32.pve, r.pve, pve_entry); 1016 CP(r32.pve, r.pve, pve_timestamp); 1017 CP(r32.pve, r.pve, pve_start); 1018 CP(r32.pve, r.pve, pve_end); 1019 CP(r32.pve, r.pve, pve_offset); 1020 CP(r32.pve, r.pve, pve_prot); 1021 CP(r32.pve, r.pve, pve_pathlen); 1022 CP(r32.pve, r.pve, pve_fileid); 1023 CP(r32.pve, r.pve, pve_fsid); 1024 PTRIN_CP(r32.pve, r.pve, pve_path); 1025 break; 1026 case PT_COREDUMP: 1027 if (uap->data != sizeof(r32.pc)) 1028 error = EINVAL; 1029 else 1030 error = copyin(uap->addr, &r32.pc, uap->data); 1031 CP(r32.pc, r.pc, pc_fd); 1032 CP(r32.pc, r.pc, pc_flags); 1033 r.pc.pc_limit = PAIR32TO64(off_t, r32.pc.pc_limit); 1034 data = sizeof(r.pc); 1035 break; 1036 default: 1037 addr = uap->addr; 1038 break; 1039 } 1040 if (error) 1041 return (error); 1042 1043 error = kern_ptrace(td, uap->req, uap->pid, addr, data); 1044 if (error) 1045 return (error); 1046 1047 switch (uap->req) { 1048 case PT_VM_ENTRY: 1049 CP(r.pve, r32.pve, pve_entry); 1050 CP(r.pve, r32.pve, pve_timestamp); 1051 CP(r.pve, r32.pve, pve_start); 1052 CP(r.pve, r32.pve, pve_end); 1053 CP(r.pve, r32.pve, pve_offset); 1054 CP(r.pve, r32.pve, pve_prot); 1055 CP(r.pve, r32.pve, pve_pathlen); 1056 CP(r.pve, r32.pve, pve_fileid); 1057 CP(r.pve, r32.pve, pve_fsid); 1058 error = copyout(&r32.pve, uap->addr, sizeof(r32.pve)); 1059 break; 1060 case PT_IO: 1061 CP(r.piod, r32.piod, piod_len); 1062 error = copyout(&r32.piod, uap->addr, sizeof(r32.piod)); 1063 break; 1064 case PT_GETREGS: 1065 error = copyout(&r.reg, uap->addr, sizeof(r.reg)); 1066 break; 1067 case PT_GETFPREGS: 1068 error = copyout(&r.fpreg, uap->addr, sizeof(r.fpreg)); 1069 break; 1070 case PT_GETDBREGS: 1071 error = copyout(&r.dbreg, uap->addr, sizeof(r.dbreg)); 1072 break; 1073 case PT_GET_EVENT_MASK: 1074 /* NB: The size in uap->data is validated in kern_ptrace(). */ 1075 error = copyout(&r.ptevents, uap->addr, uap->data); 1076 break; 1077 case PT_LWPINFO: 1078 ptrace_lwpinfo_to32(&r.pl, &r32.pl); 1079 error = copyout(&r32.pl, uap->addr, uap->data); 1080 break; 1081 case PT_GET_SC_ARGS: 1082 for (i = 0; i < nitems(r.args); i++) 1083 r32.args[i] = (uint32_t)r.args[i]; 1084 error = copyout(r32.args, uap->addr, MIN(uap->data, 1085 sizeof(r32.args))); 1086 break; 1087 case PT_GET_SC_RET: 1088 ptrace_sc_ret_to32(&r.psr, &r32.psr); 1089 error = copyout(&r32.psr, uap->addr, MIN(uap->data, 1090 sizeof(r32.psr))); 1091 break; 1092 } 1093 1094 return (error); 1095 } 1096 1097 int 1098 freebsd32_copyinuio(struct iovec32 *iovp, u_int iovcnt, struct uio **uiop) 1099 { 1100 struct iovec32 iov32; 1101 struct iovec *iov; 1102 struct uio *uio; 1103 u_int iovlen; 1104 int error, i; 1105 1106 *uiop = NULL; 1107 if (iovcnt > UIO_MAXIOV) 1108 return (EINVAL); 1109 iovlen = iovcnt * sizeof(struct iovec); 1110 uio = malloc(iovlen + sizeof *uio, M_IOV, M_WAITOK); 1111 iov = (struct iovec *)(uio + 1); 1112 for (i = 0; i < iovcnt; i++) { 1113 error = copyin(&iovp[i], &iov32, sizeof(struct iovec32)); 1114 if (error) { 1115 free(uio, M_IOV); 1116 return (error); 1117 } 1118 iov[i].iov_base = PTRIN(iov32.iov_base); 1119 iov[i].iov_len = iov32.iov_len; 1120 } 1121 uio->uio_iov = iov; 1122 uio->uio_iovcnt = iovcnt; 1123 uio->uio_segflg = UIO_USERSPACE; 1124 uio->uio_offset = -1; 1125 uio->uio_resid = 0; 1126 for (i = 0; i < iovcnt; i++) { 1127 if (iov->iov_len > INT_MAX - uio->uio_resid) { 1128 free(uio, M_IOV); 1129 return (EINVAL); 1130 } 1131 uio->uio_resid += iov->iov_len; 1132 iov++; 1133 } 1134 *uiop = uio; 1135 return (0); 1136 } 1137 1138 int 1139 freebsd32_readv(struct thread *td, struct freebsd32_readv_args *uap) 1140 { 1141 struct uio *auio; 1142 int error; 1143 1144 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 1145 if (error) 1146 return (error); 1147 error = kern_readv(td, uap->fd, auio); 1148 free(auio, M_IOV); 1149 return (error); 1150 } 1151 1152 int 1153 freebsd32_writev(struct thread *td, struct freebsd32_writev_args *uap) 1154 { 1155 struct uio *auio; 1156 int error; 1157 1158 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 1159 if (error) 1160 return (error); 1161 error = kern_writev(td, uap->fd, auio); 1162 free(auio, M_IOV); 1163 return (error); 1164 } 1165 1166 int 1167 freebsd32_preadv(struct thread *td, struct freebsd32_preadv_args *uap) 1168 { 1169 struct uio *auio; 1170 int error; 1171 1172 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 1173 if (error) 1174 return (error); 1175 error = kern_preadv(td, uap->fd, auio, PAIR32TO64(off_t,uap->offset)); 1176 free(auio, M_IOV); 1177 return (error); 1178 } 1179 1180 int 1181 freebsd32_pwritev(struct thread *td, struct freebsd32_pwritev_args *uap) 1182 { 1183 struct uio *auio; 1184 int error; 1185 1186 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 1187 if (error) 1188 return (error); 1189 error = kern_pwritev(td, uap->fd, auio, PAIR32TO64(off_t,uap->offset)); 1190 free(auio, M_IOV); 1191 return (error); 1192 } 1193 1194 int 1195 freebsd32_copyiniov(struct iovec32 *iovp32, u_int iovcnt, struct iovec **iovp, 1196 int error) 1197 { 1198 struct iovec32 iov32; 1199 struct iovec *iov; 1200 u_int iovlen; 1201 int i; 1202 1203 *iovp = NULL; 1204 if (iovcnt > UIO_MAXIOV) 1205 return (error); 1206 iovlen = iovcnt * sizeof(struct iovec); 1207 iov = malloc(iovlen, M_IOV, M_WAITOK); 1208 for (i = 0; i < iovcnt; i++) { 1209 error = copyin(&iovp32[i], &iov32, sizeof(struct iovec32)); 1210 if (error) { 1211 free(iov, M_IOV); 1212 return (error); 1213 } 1214 iov[i].iov_base = PTRIN(iov32.iov_base); 1215 iov[i].iov_len = iov32.iov_len; 1216 } 1217 *iovp = iov; 1218 return (0); 1219 } 1220 1221 static int 1222 freebsd32_copyinmsghdr(struct msghdr32 *msg32, struct msghdr *msg) 1223 { 1224 struct msghdr32 m32; 1225 int error; 1226 1227 error = copyin(msg32, &m32, sizeof(m32)); 1228 if (error) 1229 return (error); 1230 msg->msg_name = PTRIN(m32.msg_name); 1231 msg->msg_namelen = m32.msg_namelen; 1232 msg->msg_iov = PTRIN(m32.msg_iov); 1233 msg->msg_iovlen = m32.msg_iovlen; 1234 msg->msg_control = PTRIN(m32.msg_control); 1235 msg->msg_controllen = m32.msg_controllen; 1236 msg->msg_flags = m32.msg_flags; 1237 return (0); 1238 } 1239 1240 static int 1241 freebsd32_copyoutmsghdr(struct msghdr *msg, struct msghdr32 *msg32) 1242 { 1243 struct msghdr32 m32; 1244 int error; 1245 1246 m32.msg_name = PTROUT(msg->msg_name); 1247 m32.msg_namelen = msg->msg_namelen; 1248 m32.msg_iov = PTROUT(msg->msg_iov); 1249 m32.msg_iovlen = msg->msg_iovlen; 1250 m32.msg_control = PTROUT(msg->msg_control); 1251 m32.msg_controllen = msg->msg_controllen; 1252 m32.msg_flags = msg->msg_flags; 1253 error = copyout(&m32, msg32, sizeof(m32)); 1254 return (error); 1255 } 1256 1257 #ifndef __mips__ 1258 #define FREEBSD32_ALIGNBYTES (sizeof(int) - 1) 1259 #else 1260 #define FREEBSD32_ALIGNBYTES (sizeof(long) - 1) 1261 #endif 1262 #define FREEBSD32_ALIGN(p) \ 1263 (((u_long)(p) + FREEBSD32_ALIGNBYTES) & ~FREEBSD32_ALIGNBYTES) 1264 #define FREEBSD32_CMSG_SPACE(l) \ 1265 (FREEBSD32_ALIGN(sizeof(struct cmsghdr)) + FREEBSD32_ALIGN(l)) 1266 1267 #define FREEBSD32_CMSG_DATA(cmsg) ((unsigned char *)(cmsg) + \ 1268 FREEBSD32_ALIGN(sizeof(struct cmsghdr))) 1269 1270 static size_t 1271 freebsd32_cmsg_convert(const struct cmsghdr *cm, void *data, socklen_t datalen) 1272 { 1273 size_t copylen; 1274 union { 1275 struct timespec32 ts; 1276 struct timeval32 tv; 1277 struct bintime32 bt; 1278 } tmp32; 1279 1280 union { 1281 struct timespec ts; 1282 struct timeval tv; 1283 struct bintime bt; 1284 } *in; 1285 1286 in = data; 1287 copylen = 0; 1288 switch (cm->cmsg_level) { 1289 case SOL_SOCKET: 1290 switch (cm->cmsg_type) { 1291 case SCM_TIMESTAMP: 1292 TV_CP(*in, tmp32, tv); 1293 copylen = sizeof(tmp32.tv); 1294 break; 1295 1296 case SCM_BINTIME: 1297 BT_CP(*in, tmp32, bt); 1298 copylen = sizeof(tmp32.bt); 1299 break; 1300 1301 case SCM_REALTIME: 1302 case SCM_MONOTONIC: 1303 TS_CP(*in, tmp32, ts); 1304 copylen = sizeof(tmp32.ts); 1305 break; 1306 1307 default: 1308 break; 1309 } 1310 1311 default: 1312 break; 1313 } 1314 1315 if (copylen == 0) 1316 return (datalen); 1317 1318 KASSERT((datalen >= copylen), ("corrupted cmsghdr")); 1319 1320 bcopy(&tmp32, data, copylen); 1321 return (copylen); 1322 } 1323 1324 static int 1325 freebsd32_copy_msg_out(struct msghdr *msg, struct mbuf *control) 1326 { 1327 struct cmsghdr *cm; 1328 void *data; 1329 socklen_t clen, datalen, datalen_out, oldclen; 1330 int error; 1331 caddr_t ctlbuf; 1332 int len, maxlen, copylen; 1333 struct mbuf *m; 1334 error = 0; 1335 1336 len = msg->msg_controllen; 1337 maxlen = msg->msg_controllen; 1338 msg->msg_controllen = 0; 1339 1340 ctlbuf = msg->msg_control; 1341 for (m = control; m != NULL && len > 0; m = m->m_next) { 1342 cm = mtod(m, struct cmsghdr *); 1343 clen = m->m_len; 1344 while (cm != NULL) { 1345 if (sizeof(struct cmsghdr) > clen || 1346 cm->cmsg_len > clen) { 1347 error = EINVAL; 1348 break; 1349 } 1350 1351 data = CMSG_DATA(cm); 1352 datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data; 1353 datalen_out = freebsd32_cmsg_convert(cm, data, datalen); 1354 1355 /* 1356 * Copy out the message header. Preserve the native 1357 * message size in case we need to inspect the message 1358 * contents later. 1359 */ 1360 copylen = sizeof(struct cmsghdr); 1361 if (len < copylen) { 1362 msg->msg_flags |= MSG_CTRUNC; 1363 m_dispose_extcontrolm(m); 1364 goto exit; 1365 } 1366 oldclen = cm->cmsg_len; 1367 cm->cmsg_len = FREEBSD32_ALIGN(sizeof(struct cmsghdr)) + 1368 datalen_out; 1369 error = copyout(cm, ctlbuf, copylen); 1370 cm->cmsg_len = oldclen; 1371 if (error != 0) 1372 goto exit; 1373 1374 ctlbuf += FREEBSD32_ALIGN(copylen); 1375 len -= FREEBSD32_ALIGN(copylen); 1376 1377 copylen = datalen_out; 1378 if (len < copylen) { 1379 msg->msg_flags |= MSG_CTRUNC; 1380 m_dispose_extcontrolm(m); 1381 break; 1382 } 1383 1384 /* Copy out the message data. */ 1385 error = copyout(data, ctlbuf, copylen); 1386 if (error) 1387 goto exit; 1388 1389 ctlbuf += FREEBSD32_ALIGN(copylen); 1390 len -= FREEBSD32_ALIGN(copylen); 1391 1392 if (CMSG_SPACE(datalen) < clen) { 1393 clen -= CMSG_SPACE(datalen); 1394 cm = (struct cmsghdr *) 1395 ((caddr_t)cm + CMSG_SPACE(datalen)); 1396 } else { 1397 clen = 0; 1398 cm = NULL; 1399 } 1400 1401 msg->msg_controllen += 1402 FREEBSD32_CMSG_SPACE(datalen_out); 1403 } 1404 } 1405 if (len == 0 && m != NULL) { 1406 msg->msg_flags |= MSG_CTRUNC; 1407 m_dispose_extcontrolm(m); 1408 } 1409 1410 exit: 1411 return (error); 1412 } 1413 1414 int 1415 freebsd32_recvmsg(td, uap) 1416 struct thread *td; 1417 struct freebsd32_recvmsg_args /* { 1418 int s; 1419 struct msghdr32 *msg; 1420 int flags; 1421 } */ *uap; 1422 { 1423 struct msghdr msg; 1424 struct msghdr32 m32; 1425 struct iovec *uiov, *iov; 1426 struct mbuf *control = NULL; 1427 struct mbuf **controlp; 1428 1429 int error; 1430 error = copyin(uap->msg, &m32, sizeof(m32)); 1431 if (error) 1432 return (error); 1433 error = freebsd32_copyinmsghdr(uap->msg, &msg); 1434 if (error) 1435 return (error); 1436 error = freebsd32_copyiniov(PTRIN(m32.msg_iov), m32.msg_iovlen, &iov, 1437 EMSGSIZE); 1438 if (error) 1439 return (error); 1440 msg.msg_flags = uap->flags; 1441 uiov = msg.msg_iov; 1442 msg.msg_iov = iov; 1443 1444 controlp = (msg.msg_control != NULL) ? &control : NULL; 1445 error = kern_recvit(td, uap->s, &msg, UIO_USERSPACE, controlp); 1446 if (error == 0) { 1447 msg.msg_iov = uiov; 1448 1449 if (control != NULL) 1450 error = freebsd32_copy_msg_out(&msg, control); 1451 else 1452 msg.msg_controllen = 0; 1453 1454 if (error == 0) 1455 error = freebsd32_copyoutmsghdr(&msg, uap->msg); 1456 } 1457 free(iov, M_IOV); 1458 1459 if (control != NULL) { 1460 if (error != 0) 1461 m_dispose_extcontrolm(control); 1462 m_freem(control); 1463 } 1464 1465 return (error); 1466 } 1467 1468 /* 1469 * Copy-in the array of control messages constructed using alignment 1470 * and padding suitable for a 32-bit environment and construct an 1471 * mbuf using alignment and padding suitable for a 64-bit kernel. 1472 * The alignment and padding are defined indirectly by CMSG_DATA(), 1473 * CMSG_SPACE() and CMSG_LEN(). 1474 */ 1475 static int 1476 freebsd32_copyin_control(struct mbuf **mp, caddr_t buf, u_int buflen) 1477 { 1478 struct cmsghdr *cm; 1479 struct mbuf *m; 1480 void *in, *in1, *md; 1481 u_int msglen, outlen; 1482 int error; 1483 1484 if (buflen > MCLBYTES) 1485 return (EINVAL); 1486 1487 in = malloc(buflen, M_TEMP, M_WAITOK); 1488 error = copyin(buf, in, buflen); 1489 if (error != 0) 1490 goto out; 1491 1492 /* 1493 * Make a pass over the input buffer to determine the amount of space 1494 * required for 64 bit-aligned copies of the control messages. 1495 */ 1496 in1 = in; 1497 outlen = 0; 1498 while (buflen > 0) { 1499 if (buflen < sizeof(*cm)) { 1500 error = EINVAL; 1501 break; 1502 } 1503 cm = (struct cmsghdr *)in1; 1504 if (cm->cmsg_len < FREEBSD32_ALIGN(sizeof(*cm))) { 1505 error = EINVAL; 1506 break; 1507 } 1508 msglen = FREEBSD32_ALIGN(cm->cmsg_len); 1509 if (msglen > buflen || msglen < cm->cmsg_len) { 1510 error = EINVAL; 1511 break; 1512 } 1513 buflen -= msglen; 1514 1515 in1 = (char *)in1 + msglen; 1516 outlen += CMSG_ALIGN(sizeof(*cm)) + 1517 CMSG_ALIGN(msglen - FREEBSD32_ALIGN(sizeof(*cm))); 1518 } 1519 if (error == 0 && outlen > MCLBYTES) { 1520 /* 1521 * XXXMJ This implies that the upper limit on 32-bit aligned 1522 * control messages is less than MCLBYTES, and so we are not 1523 * perfectly compatible. However, there is no platform 1524 * guarantee that mbuf clusters larger than MCLBYTES can be 1525 * allocated. 1526 */ 1527 error = EINVAL; 1528 } 1529 if (error != 0) 1530 goto out; 1531 1532 m = m_get2(outlen, M_WAITOK, MT_CONTROL, 0); 1533 m->m_len = outlen; 1534 md = mtod(m, void *); 1535 1536 /* 1537 * Make a second pass over input messages, copying them into the output 1538 * buffer. 1539 */ 1540 in1 = in; 1541 while (outlen > 0) { 1542 /* Copy the message header and align the length field. */ 1543 cm = md; 1544 memcpy(cm, in1, sizeof(*cm)); 1545 msglen = cm->cmsg_len - FREEBSD32_ALIGN(sizeof(*cm)); 1546 cm->cmsg_len = CMSG_ALIGN(sizeof(*cm)) + msglen; 1547 1548 /* Copy the message body. */ 1549 in1 = (char *)in1 + FREEBSD32_ALIGN(sizeof(*cm)); 1550 md = (char *)md + CMSG_ALIGN(sizeof(*cm)); 1551 memcpy(md, in1, msglen); 1552 in1 = (char *)in1 + FREEBSD32_ALIGN(msglen); 1553 md = (char *)md + CMSG_ALIGN(msglen); 1554 KASSERT(outlen >= CMSG_ALIGN(sizeof(*cm)) + CMSG_ALIGN(msglen), 1555 ("outlen %u underflow, msglen %u", outlen, msglen)); 1556 outlen -= CMSG_ALIGN(sizeof(*cm)) + CMSG_ALIGN(msglen); 1557 } 1558 1559 *mp = m; 1560 out: 1561 free(in, M_TEMP); 1562 return (error); 1563 } 1564 1565 int 1566 freebsd32_sendmsg(struct thread *td, 1567 struct freebsd32_sendmsg_args *uap) 1568 { 1569 struct msghdr msg; 1570 struct msghdr32 m32; 1571 struct iovec *iov; 1572 struct mbuf *control = NULL; 1573 struct sockaddr *to = NULL; 1574 int error; 1575 1576 error = copyin(uap->msg, &m32, sizeof(m32)); 1577 if (error) 1578 return (error); 1579 error = freebsd32_copyinmsghdr(uap->msg, &msg); 1580 if (error) 1581 return (error); 1582 error = freebsd32_copyiniov(PTRIN(m32.msg_iov), m32.msg_iovlen, &iov, 1583 EMSGSIZE); 1584 if (error) 1585 return (error); 1586 msg.msg_iov = iov; 1587 if (msg.msg_name != NULL) { 1588 error = getsockaddr(&to, msg.msg_name, msg.msg_namelen); 1589 if (error) { 1590 to = NULL; 1591 goto out; 1592 } 1593 msg.msg_name = to; 1594 } 1595 1596 if (msg.msg_control) { 1597 if (msg.msg_controllen < sizeof(struct cmsghdr)) { 1598 error = EINVAL; 1599 goto out; 1600 } 1601 1602 error = freebsd32_copyin_control(&control, msg.msg_control, 1603 msg.msg_controllen); 1604 if (error) 1605 goto out; 1606 1607 msg.msg_control = NULL; 1608 msg.msg_controllen = 0; 1609 } 1610 1611 error = kern_sendit(td, uap->s, &msg, uap->flags, control, 1612 UIO_USERSPACE); 1613 1614 out: 1615 free(iov, M_IOV); 1616 if (to) 1617 free(to, M_SONAME); 1618 return (error); 1619 } 1620 1621 int 1622 freebsd32_recvfrom(struct thread *td, 1623 struct freebsd32_recvfrom_args *uap) 1624 { 1625 struct msghdr msg; 1626 struct iovec aiov; 1627 int error; 1628 1629 if (uap->fromlenaddr) { 1630 error = copyin(PTRIN(uap->fromlenaddr), &msg.msg_namelen, 1631 sizeof(msg.msg_namelen)); 1632 if (error) 1633 return (error); 1634 } else { 1635 msg.msg_namelen = 0; 1636 } 1637 1638 msg.msg_name = PTRIN(uap->from); 1639 msg.msg_iov = &aiov; 1640 msg.msg_iovlen = 1; 1641 aiov.iov_base = PTRIN(uap->buf); 1642 aiov.iov_len = uap->len; 1643 msg.msg_control = NULL; 1644 msg.msg_flags = uap->flags; 1645 error = kern_recvit(td, uap->s, &msg, UIO_USERSPACE, NULL); 1646 if (error == 0 && uap->fromlenaddr) 1647 error = copyout(&msg.msg_namelen, PTRIN(uap->fromlenaddr), 1648 sizeof (msg.msg_namelen)); 1649 return (error); 1650 } 1651 1652 int 1653 freebsd32_settimeofday(struct thread *td, 1654 struct freebsd32_settimeofday_args *uap) 1655 { 1656 struct timeval32 tv32; 1657 struct timeval tv, *tvp; 1658 struct timezone tz, *tzp; 1659 int error; 1660 1661 if (uap->tv) { 1662 error = copyin(uap->tv, &tv32, sizeof(tv32)); 1663 if (error) 1664 return (error); 1665 CP(tv32, tv, tv_sec); 1666 CP(tv32, tv, tv_usec); 1667 tvp = &tv; 1668 } else 1669 tvp = NULL; 1670 if (uap->tzp) { 1671 error = copyin(uap->tzp, &tz, sizeof(tz)); 1672 if (error) 1673 return (error); 1674 tzp = &tz; 1675 } else 1676 tzp = NULL; 1677 return (kern_settimeofday(td, tvp, tzp)); 1678 } 1679 1680 int 1681 freebsd32_utimes(struct thread *td, struct freebsd32_utimes_args *uap) 1682 { 1683 struct timeval32 s32[2]; 1684 struct timeval s[2], *sp; 1685 int error; 1686 1687 if (uap->tptr != NULL) { 1688 error = copyin(uap->tptr, s32, sizeof(s32)); 1689 if (error) 1690 return (error); 1691 CP(s32[0], s[0], tv_sec); 1692 CP(s32[0], s[0], tv_usec); 1693 CP(s32[1], s[1], tv_sec); 1694 CP(s32[1], s[1], tv_usec); 1695 sp = s; 1696 } else 1697 sp = NULL; 1698 return (kern_utimesat(td, AT_FDCWD, uap->path, UIO_USERSPACE, 1699 sp, UIO_SYSSPACE)); 1700 } 1701 1702 int 1703 freebsd32_lutimes(struct thread *td, struct freebsd32_lutimes_args *uap) 1704 { 1705 struct timeval32 s32[2]; 1706 struct timeval s[2], *sp; 1707 int error; 1708 1709 if (uap->tptr != NULL) { 1710 error = copyin(uap->tptr, s32, sizeof(s32)); 1711 if (error) 1712 return (error); 1713 CP(s32[0], s[0], tv_sec); 1714 CP(s32[0], s[0], tv_usec); 1715 CP(s32[1], s[1], tv_sec); 1716 CP(s32[1], s[1], tv_usec); 1717 sp = s; 1718 } else 1719 sp = NULL; 1720 return (kern_lutimes(td, uap->path, UIO_USERSPACE, sp, UIO_SYSSPACE)); 1721 } 1722 1723 int 1724 freebsd32_futimes(struct thread *td, struct freebsd32_futimes_args *uap) 1725 { 1726 struct timeval32 s32[2]; 1727 struct timeval s[2], *sp; 1728 int error; 1729 1730 if (uap->tptr != NULL) { 1731 error = copyin(uap->tptr, s32, sizeof(s32)); 1732 if (error) 1733 return (error); 1734 CP(s32[0], s[0], tv_sec); 1735 CP(s32[0], s[0], tv_usec); 1736 CP(s32[1], s[1], tv_sec); 1737 CP(s32[1], s[1], tv_usec); 1738 sp = s; 1739 } else 1740 sp = NULL; 1741 return (kern_futimes(td, uap->fd, sp, UIO_SYSSPACE)); 1742 } 1743 1744 int 1745 freebsd32_futimesat(struct thread *td, struct freebsd32_futimesat_args *uap) 1746 { 1747 struct timeval32 s32[2]; 1748 struct timeval s[2], *sp; 1749 int error; 1750 1751 if (uap->times != NULL) { 1752 error = copyin(uap->times, s32, sizeof(s32)); 1753 if (error) 1754 return (error); 1755 CP(s32[0], s[0], tv_sec); 1756 CP(s32[0], s[0], tv_usec); 1757 CP(s32[1], s[1], tv_sec); 1758 CP(s32[1], s[1], tv_usec); 1759 sp = s; 1760 } else 1761 sp = NULL; 1762 return (kern_utimesat(td, uap->fd, uap->path, UIO_USERSPACE, 1763 sp, UIO_SYSSPACE)); 1764 } 1765 1766 int 1767 freebsd32_futimens(struct thread *td, struct freebsd32_futimens_args *uap) 1768 { 1769 struct timespec32 ts32[2]; 1770 struct timespec ts[2], *tsp; 1771 int error; 1772 1773 if (uap->times != NULL) { 1774 error = copyin(uap->times, ts32, sizeof(ts32)); 1775 if (error) 1776 return (error); 1777 CP(ts32[0], ts[0], tv_sec); 1778 CP(ts32[0], ts[0], tv_nsec); 1779 CP(ts32[1], ts[1], tv_sec); 1780 CP(ts32[1], ts[1], tv_nsec); 1781 tsp = ts; 1782 } else 1783 tsp = NULL; 1784 return (kern_futimens(td, uap->fd, tsp, UIO_SYSSPACE)); 1785 } 1786 1787 int 1788 freebsd32_utimensat(struct thread *td, struct freebsd32_utimensat_args *uap) 1789 { 1790 struct timespec32 ts32[2]; 1791 struct timespec ts[2], *tsp; 1792 int error; 1793 1794 if (uap->times != NULL) { 1795 error = copyin(uap->times, ts32, sizeof(ts32)); 1796 if (error) 1797 return (error); 1798 CP(ts32[0], ts[0], tv_sec); 1799 CP(ts32[0], ts[0], tv_nsec); 1800 CP(ts32[1], ts[1], tv_sec); 1801 CP(ts32[1], ts[1], tv_nsec); 1802 tsp = ts; 1803 } else 1804 tsp = NULL; 1805 return (kern_utimensat(td, uap->fd, uap->path, UIO_USERSPACE, 1806 tsp, UIO_SYSSPACE, uap->flag)); 1807 } 1808 1809 int 1810 freebsd32_adjtime(struct thread *td, struct freebsd32_adjtime_args *uap) 1811 { 1812 struct timeval32 tv32; 1813 struct timeval delta, olddelta, *deltap; 1814 int error; 1815 1816 if (uap->delta) { 1817 error = copyin(uap->delta, &tv32, sizeof(tv32)); 1818 if (error) 1819 return (error); 1820 CP(tv32, delta, tv_sec); 1821 CP(tv32, delta, tv_usec); 1822 deltap = δ 1823 } else 1824 deltap = NULL; 1825 error = kern_adjtime(td, deltap, &olddelta); 1826 if (uap->olddelta && error == 0) { 1827 CP(olddelta, tv32, tv_sec); 1828 CP(olddelta, tv32, tv_usec); 1829 error = copyout(&tv32, uap->olddelta, sizeof(tv32)); 1830 } 1831 return (error); 1832 } 1833 1834 #ifdef COMPAT_FREEBSD4 1835 int 1836 freebsd4_freebsd32_statfs(struct thread *td, struct freebsd4_freebsd32_statfs_args *uap) 1837 { 1838 struct statfs32 s32; 1839 struct statfs *sp; 1840 int error; 1841 1842 sp = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK); 1843 error = kern_statfs(td, uap->path, UIO_USERSPACE, sp); 1844 if (error == 0) { 1845 copy_statfs(sp, &s32); 1846 error = copyout(&s32, uap->buf, sizeof(s32)); 1847 } 1848 free(sp, M_STATFS); 1849 return (error); 1850 } 1851 #endif 1852 1853 #ifdef COMPAT_FREEBSD4 1854 int 1855 freebsd4_freebsd32_fstatfs(struct thread *td, struct freebsd4_freebsd32_fstatfs_args *uap) 1856 { 1857 struct statfs32 s32; 1858 struct statfs *sp; 1859 int error; 1860 1861 sp = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK); 1862 error = kern_fstatfs(td, uap->fd, sp); 1863 if (error == 0) { 1864 copy_statfs(sp, &s32); 1865 error = copyout(&s32, uap->buf, sizeof(s32)); 1866 } 1867 free(sp, M_STATFS); 1868 return (error); 1869 } 1870 #endif 1871 1872 #ifdef COMPAT_FREEBSD4 1873 int 1874 freebsd4_freebsd32_fhstatfs(struct thread *td, struct freebsd4_freebsd32_fhstatfs_args *uap) 1875 { 1876 struct statfs32 s32; 1877 struct statfs *sp; 1878 fhandle_t fh; 1879 int error; 1880 1881 if ((error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t))) != 0) 1882 return (error); 1883 sp = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK); 1884 error = kern_fhstatfs(td, fh, sp); 1885 if (error == 0) { 1886 copy_statfs(sp, &s32); 1887 error = copyout(&s32, uap->buf, sizeof(s32)); 1888 } 1889 free(sp, M_STATFS); 1890 return (error); 1891 } 1892 #endif 1893 1894 int 1895 freebsd32_pread(struct thread *td, struct freebsd32_pread_args *uap) 1896 { 1897 1898 return (kern_pread(td, uap->fd, uap->buf, uap->nbyte, 1899 PAIR32TO64(off_t, uap->offset))); 1900 } 1901 1902 int 1903 freebsd32_pwrite(struct thread *td, struct freebsd32_pwrite_args *uap) 1904 { 1905 1906 return (kern_pwrite(td, uap->fd, uap->buf, uap->nbyte, 1907 PAIR32TO64(off_t, uap->offset))); 1908 } 1909 1910 #ifdef COMPAT_43 1911 int 1912 ofreebsd32_lseek(struct thread *td, struct ofreebsd32_lseek_args *uap) 1913 { 1914 1915 return (kern_lseek(td, uap->fd, uap->offset, uap->whence)); 1916 } 1917 #endif 1918 1919 int 1920 freebsd32_lseek(struct thread *td, struct freebsd32_lseek_args *uap) 1921 { 1922 int error; 1923 off_t pos; 1924 1925 error = kern_lseek(td, uap->fd, PAIR32TO64(off_t, uap->offset), 1926 uap->whence); 1927 /* Expand the quad return into two parts for eax and edx */ 1928 pos = td->td_uretoff.tdu_off; 1929 td->td_retval[RETVAL_LO] = pos & 0xffffffff; /* %eax */ 1930 td->td_retval[RETVAL_HI] = pos >> 32; /* %edx */ 1931 return error; 1932 } 1933 1934 int 1935 freebsd32_truncate(struct thread *td, struct freebsd32_truncate_args *uap) 1936 { 1937 1938 return (kern_truncate(td, uap->path, UIO_USERSPACE, 1939 PAIR32TO64(off_t, uap->length))); 1940 } 1941 1942 int 1943 freebsd32_ftruncate(struct thread *td, struct freebsd32_ftruncate_args *uap) 1944 { 1945 1946 return (kern_ftruncate(td, uap->fd, PAIR32TO64(off_t, uap->length))); 1947 } 1948 1949 #ifdef COMPAT_43 1950 int 1951 ofreebsd32_getdirentries(struct thread *td, 1952 struct ofreebsd32_getdirentries_args *uap) 1953 { 1954 struct ogetdirentries_args ap; 1955 int error; 1956 long loff; 1957 int32_t loff_cut; 1958 1959 ap.fd = uap->fd; 1960 ap.buf = uap->buf; 1961 ap.count = uap->count; 1962 ap.basep = NULL; 1963 error = kern_ogetdirentries(td, &ap, &loff); 1964 if (error == 0) { 1965 loff_cut = loff; 1966 error = copyout(&loff_cut, uap->basep, sizeof(int32_t)); 1967 } 1968 return (error); 1969 } 1970 #endif 1971 1972 #if defined(COMPAT_FREEBSD11) 1973 int 1974 freebsd11_freebsd32_getdirentries(struct thread *td, 1975 struct freebsd11_freebsd32_getdirentries_args *uap) 1976 { 1977 long base; 1978 int32_t base32; 1979 int error; 1980 1981 error = freebsd11_kern_getdirentries(td, uap->fd, uap->buf, uap->count, 1982 &base, NULL); 1983 if (error) 1984 return (error); 1985 if (uap->basep != NULL) { 1986 base32 = base; 1987 error = copyout(&base32, uap->basep, sizeof(int32_t)); 1988 } 1989 return (error); 1990 } 1991 1992 int 1993 freebsd11_freebsd32_getdents(struct thread *td, 1994 struct freebsd11_freebsd32_getdents_args *uap) 1995 { 1996 struct freebsd11_freebsd32_getdirentries_args ap; 1997 1998 ap.fd = uap->fd; 1999 ap.buf = uap->buf; 2000 ap.count = uap->count; 2001 ap.basep = NULL; 2002 return (freebsd11_freebsd32_getdirentries(td, &ap)); 2003 } 2004 #endif /* COMPAT_FREEBSD11 */ 2005 2006 #ifdef COMPAT_FREEBSD6 2007 /* versions with the 'int pad' argument */ 2008 int 2009 freebsd6_freebsd32_pread(struct thread *td, struct freebsd6_freebsd32_pread_args *uap) 2010 { 2011 2012 return (kern_pread(td, uap->fd, uap->buf, uap->nbyte, 2013 PAIR32TO64(off_t, uap->offset))); 2014 } 2015 2016 int 2017 freebsd6_freebsd32_pwrite(struct thread *td, struct freebsd6_freebsd32_pwrite_args *uap) 2018 { 2019 2020 return (kern_pwrite(td, uap->fd, uap->buf, uap->nbyte, 2021 PAIR32TO64(off_t, uap->offset))); 2022 } 2023 2024 int 2025 freebsd6_freebsd32_lseek(struct thread *td, struct freebsd6_freebsd32_lseek_args *uap) 2026 { 2027 int error; 2028 off_t pos; 2029 2030 error = kern_lseek(td, uap->fd, PAIR32TO64(off_t, uap->offset), 2031 uap->whence); 2032 /* Expand the quad return into two parts for eax and edx */ 2033 pos = *(off_t *)(td->td_retval); 2034 td->td_retval[RETVAL_LO] = pos & 0xffffffff; /* %eax */ 2035 td->td_retval[RETVAL_HI] = pos >> 32; /* %edx */ 2036 return error; 2037 } 2038 2039 int 2040 freebsd6_freebsd32_truncate(struct thread *td, struct freebsd6_freebsd32_truncate_args *uap) 2041 { 2042 2043 return (kern_truncate(td, uap->path, UIO_USERSPACE, 2044 PAIR32TO64(off_t, uap->length))); 2045 } 2046 2047 int 2048 freebsd6_freebsd32_ftruncate(struct thread *td, struct freebsd6_freebsd32_ftruncate_args *uap) 2049 { 2050 2051 return (kern_ftruncate(td, uap->fd, PAIR32TO64(off_t, uap->length))); 2052 } 2053 #endif /* COMPAT_FREEBSD6 */ 2054 2055 struct sf_hdtr32 { 2056 uint32_t headers; 2057 int hdr_cnt; 2058 uint32_t trailers; 2059 int trl_cnt; 2060 }; 2061 2062 static int 2063 freebsd32_do_sendfile(struct thread *td, 2064 struct freebsd32_sendfile_args *uap, int compat) 2065 { 2066 struct sf_hdtr32 hdtr32; 2067 struct sf_hdtr hdtr; 2068 struct uio *hdr_uio, *trl_uio; 2069 struct file *fp; 2070 cap_rights_t rights; 2071 struct iovec32 *iov32; 2072 off_t offset, sbytes; 2073 int error; 2074 2075 offset = PAIR32TO64(off_t, uap->offset); 2076 if (offset < 0) 2077 return (EINVAL); 2078 2079 hdr_uio = trl_uio = NULL; 2080 2081 if (uap->hdtr != NULL) { 2082 error = copyin(uap->hdtr, &hdtr32, sizeof(hdtr32)); 2083 if (error) 2084 goto out; 2085 PTRIN_CP(hdtr32, hdtr, headers); 2086 CP(hdtr32, hdtr, hdr_cnt); 2087 PTRIN_CP(hdtr32, hdtr, trailers); 2088 CP(hdtr32, hdtr, trl_cnt); 2089 2090 if (hdtr.headers != NULL) { 2091 iov32 = PTRIN(hdtr32.headers); 2092 error = freebsd32_copyinuio(iov32, 2093 hdtr32.hdr_cnt, &hdr_uio); 2094 if (error) 2095 goto out; 2096 #ifdef COMPAT_FREEBSD4 2097 /* 2098 * In FreeBSD < 5.0 the nbytes to send also included 2099 * the header. If compat is specified subtract the 2100 * header size from nbytes. 2101 */ 2102 if (compat) { 2103 if (uap->nbytes > hdr_uio->uio_resid) 2104 uap->nbytes -= hdr_uio->uio_resid; 2105 else 2106 uap->nbytes = 0; 2107 } 2108 #endif 2109 } 2110 if (hdtr.trailers != NULL) { 2111 iov32 = PTRIN(hdtr32.trailers); 2112 error = freebsd32_copyinuio(iov32, 2113 hdtr32.trl_cnt, &trl_uio); 2114 if (error) 2115 goto out; 2116 } 2117 } 2118 2119 AUDIT_ARG_FD(uap->fd); 2120 2121 if ((error = fget_read(td, uap->fd, 2122 cap_rights_init_one(&rights, CAP_PREAD), &fp)) != 0) 2123 goto out; 2124 2125 error = fo_sendfile(fp, uap->s, hdr_uio, trl_uio, offset, 2126 uap->nbytes, &sbytes, uap->flags, td); 2127 fdrop(fp, td); 2128 2129 if (uap->sbytes != NULL) 2130 copyout(&sbytes, uap->sbytes, sizeof(off_t)); 2131 2132 out: 2133 if (hdr_uio) 2134 free(hdr_uio, M_IOV); 2135 if (trl_uio) 2136 free(trl_uio, M_IOV); 2137 return (error); 2138 } 2139 2140 #ifdef COMPAT_FREEBSD4 2141 int 2142 freebsd4_freebsd32_sendfile(struct thread *td, 2143 struct freebsd4_freebsd32_sendfile_args *uap) 2144 { 2145 return (freebsd32_do_sendfile(td, 2146 (struct freebsd32_sendfile_args *)uap, 1)); 2147 } 2148 #endif 2149 2150 int 2151 freebsd32_sendfile(struct thread *td, struct freebsd32_sendfile_args *uap) 2152 { 2153 2154 return (freebsd32_do_sendfile(td, uap, 0)); 2155 } 2156 2157 static void 2158 copy_stat(struct stat *in, struct stat32 *out) 2159 { 2160 2161 CP(*in, *out, st_dev); 2162 CP(*in, *out, st_ino); 2163 CP(*in, *out, st_mode); 2164 CP(*in, *out, st_nlink); 2165 CP(*in, *out, st_uid); 2166 CP(*in, *out, st_gid); 2167 CP(*in, *out, st_rdev); 2168 TS_CP(*in, *out, st_atim); 2169 TS_CP(*in, *out, st_mtim); 2170 TS_CP(*in, *out, st_ctim); 2171 CP(*in, *out, st_size); 2172 CP(*in, *out, st_blocks); 2173 CP(*in, *out, st_blksize); 2174 CP(*in, *out, st_flags); 2175 CP(*in, *out, st_gen); 2176 TS_CP(*in, *out, st_birthtim); 2177 out->st_padding0 = 0; 2178 out->st_padding1 = 0; 2179 #ifdef __STAT32_TIME_T_EXT 2180 out->st_atim_ext = 0; 2181 out->st_mtim_ext = 0; 2182 out->st_ctim_ext = 0; 2183 out->st_btim_ext = 0; 2184 #endif 2185 bzero(out->st_spare, sizeof(out->st_spare)); 2186 } 2187 2188 #ifdef COMPAT_43 2189 static void 2190 copy_ostat(struct stat *in, struct ostat32 *out) 2191 { 2192 2193 bzero(out, sizeof(*out)); 2194 CP(*in, *out, st_dev); 2195 CP(*in, *out, st_ino); 2196 CP(*in, *out, st_mode); 2197 CP(*in, *out, st_nlink); 2198 CP(*in, *out, st_uid); 2199 CP(*in, *out, st_gid); 2200 CP(*in, *out, st_rdev); 2201 out->st_size = MIN(in->st_size, INT32_MAX); 2202 TS_CP(*in, *out, st_atim); 2203 TS_CP(*in, *out, st_mtim); 2204 TS_CP(*in, *out, st_ctim); 2205 CP(*in, *out, st_blksize); 2206 CP(*in, *out, st_blocks); 2207 CP(*in, *out, st_flags); 2208 CP(*in, *out, st_gen); 2209 } 2210 #endif 2211 2212 #ifdef COMPAT_43 2213 int 2214 ofreebsd32_stat(struct thread *td, struct ofreebsd32_stat_args *uap) 2215 { 2216 struct stat sb; 2217 struct ostat32 sb32; 2218 int error; 2219 2220 error = kern_statat(td, 0, AT_FDCWD, uap->path, UIO_USERSPACE, 2221 &sb, NULL); 2222 if (error) 2223 return (error); 2224 copy_ostat(&sb, &sb32); 2225 error = copyout(&sb32, uap->ub, sizeof (sb32)); 2226 return (error); 2227 } 2228 #endif 2229 2230 int 2231 freebsd32_fstat(struct thread *td, struct freebsd32_fstat_args *uap) 2232 { 2233 struct stat ub; 2234 struct stat32 ub32; 2235 int error; 2236 2237 error = kern_fstat(td, uap->fd, &ub); 2238 if (error) 2239 return (error); 2240 copy_stat(&ub, &ub32); 2241 error = copyout(&ub32, uap->ub, sizeof(ub32)); 2242 return (error); 2243 } 2244 2245 #ifdef COMPAT_43 2246 int 2247 ofreebsd32_fstat(struct thread *td, struct ofreebsd32_fstat_args *uap) 2248 { 2249 struct stat ub; 2250 struct ostat32 ub32; 2251 int error; 2252 2253 error = kern_fstat(td, uap->fd, &ub); 2254 if (error) 2255 return (error); 2256 copy_ostat(&ub, &ub32); 2257 error = copyout(&ub32, uap->ub, sizeof(ub32)); 2258 return (error); 2259 } 2260 #endif 2261 2262 int 2263 freebsd32_fstatat(struct thread *td, struct freebsd32_fstatat_args *uap) 2264 { 2265 struct stat ub; 2266 struct stat32 ub32; 2267 int error; 2268 2269 error = kern_statat(td, uap->flag, uap->fd, uap->path, UIO_USERSPACE, 2270 &ub, NULL); 2271 if (error) 2272 return (error); 2273 copy_stat(&ub, &ub32); 2274 error = copyout(&ub32, uap->buf, sizeof(ub32)); 2275 return (error); 2276 } 2277 2278 #ifdef COMPAT_43 2279 int 2280 ofreebsd32_lstat(struct thread *td, struct ofreebsd32_lstat_args *uap) 2281 { 2282 struct stat sb; 2283 struct ostat32 sb32; 2284 int error; 2285 2286 error = kern_statat(td, AT_SYMLINK_NOFOLLOW, AT_FDCWD, uap->path, 2287 UIO_USERSPACE, &sb, NULL); 2288 if (error) 2289 return (error); 2290 copy_ostat(&sb, &sb32); 2291 error = copyout(&sb32, uap->ub, sizeof (sb32)); 2292 return (error); 2293 } 2294 #endif 2295 2296 int 2297 freebsd32_fhstat(struct thread *td, struct freebsd32_fhstat_args *uap) 2298 { 2299 struct stat sb; 2300 struct stat32 sb32; 2301 struct fhandle fh; 2302 int error; 2303 2304 error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t)); 2305 if (error != 0) 2306 return (error); 2307 error = kern_fhstat(td, fh, &sb); 2308 if (error != 0) 2309 return (error); 2310 copy_stat(&sb, &sb32); 2311 error = copyout(&sb32, uap->sb, sizeof (sb32)); 2312 return (error); 2313 } 2314 2315 #if defined(COMPAT_FREEBSD11) 2316 extern int ino64_trunc_error; 2317 2318 static int 2319 freebsd11_cvtstat32(struct stat *in, struct freebsd11_stat32 *out) 2320 { 2321 2322 CP(*in, *out, st_ino); 2323 if (in->st_ino != out->st_ino) { 2324 switch (ino64_trunc_error) { 2325 default: 2326 case 0: 2327 break; 2328 case 1: 2329 return (EOVERFLOW); 2330 case 2: 2331 out->st_ino = UINT32_MAX; 2332 break; 2333 } 2334 } 2335 CP(*in, *out, st_nlink); 2336 if (in->st_nlink != out->st_nlink) { 2337 switch (ino64_trunc_error) { 2338 default: 2339 case 0: 2340 break; 2341 case 1: 2342 return (EOVERFLOW); 2343 case 2: 2344 out->st_nlink = UINT16_MAX; 2345 break; 2346 } 2347 } 2348 out->st_dev = in->st_dev; 2349 if (out->st_dev != in->st_dev) { 2350 switch (ino64_trunc_error) { 2351 default: 2352 break; 2353 case 1: 2354 return (EOVERFLOW); 2355 } 2356 } 2357 CP(*in, *out, st_mode); 2358 CP(*in, *out, st_uid); 2359 CP(*in, *out, st_gid); 2360 out->st_rdev = in->st_rdev; 2361 if (out->st_rdev != in->st_rdev) { 2362 switch (ino64_trunc_error) { 2363 default: 2364 break; 2365 case 1: 2366 return (EOVERFLOW); 2367 } 2368 } 2369 TS_CP(*in, *out, st_atim); 2370 TS_CP(*in, *out, st_mtim); 2371 TS_CP(*in, *out, st_ctim); 2372 CP(*in, *out, st_size); 2373 CP(*in, *out, st_blocks); 2374 CP(*in, *out, st_blksize); 2375 CP(*in, *out, st_flags); 2376 CP(*in, *out, st_gen); 2377 TS_CP(*in, *out, st_birthtim); 2378 out->st_lspare = 0; 2379 bzero((char *)&out->st_birthtim + sizeof(out->st_birthtim), 2380 sizeof(*out) - offsetof(struct freebsd11_stat32, 2381 st_birthtim) - sizeof(out->st_birthtim)); 2382 return (0); 2383 } 2384 2385 int 2386 freebsd11_freebsd32_stat(struct thread *td, 2387 struct freebsd11_freebsd32_stat_args *uap) 2388 { 2389 struct stat sb; 2390 struct freebsd11_stat32 sb32; 2391 int error; 2392 2393 error = kern_statat(td, 0, AT_FDCWD, uap->path, UIO_USERSPACE, 2394 &sb, NULL); 2395 if (error != 0) 2396 return (error); 2397 error = freebsd11_cvtstat32(&sb, &sb32); 2398 if (error == 0) 2399 error = copyout(&sb32, uap->ub, sizeof (sb32)); 2400 return (error); 2401 } 2402 2403 int 2404 freebsd11_freebsd32_fstat(struct thread *td, 2405 struct freebsd11_freebsd32_fstat_args *uap) 2406 { 2407 struct stat sb; 2408 struct freebsd11_stat32 sb32; 2409 int error; 2410 2411 error = kern_fstat(td, uap->fd, &sb); 2412 if (error != 0) 2413 return (error); 2414 error = freebsd11_cvtstat32(&sb, &sb32); 2415 if (error == 0) 2416 error = copyout(&sb32, uap->ub, sizeof (sb32)); 2417 return (error); 2418 } 2419 2420 int 2421 freebsd11_freebsd32_fstatat(struct thread *td, 2422 struct freebsd11_freebsd32_fstatat_args *uap) 2423 { 2424 struct stat sb; 2425 struct freebsd11_stat32 sb32; 2426 int error; 2427 2428 error = kern_statat(td, uap->flag, uap->fd, uap->path, UIO_USERSPACE, 2429 &sb, NULL); 2430 if (error != 0) 2431 return (error); 2432 error = freebsd11_cvtstat32(&sb, &sb32); 2433 if (error == 0) 2434 error = copyout(&sb32, uap->buf, sizeof (sb32)); 2435 return (error); 2436 } 2437 2438 int 2439 freebsd11_freebsd32_lstat(struct thread *td, 2440 struct freebsd11_freebsd32_lstat_args *uap) 2441 { 2442 struct stat sb; 2443 struct freebsd11_stat32 sb32; 2444 int error; 2445 2446 error = kern_statat(td, AT_SYMLINK_NOFOLLOW, AT_FDCWD, uap->path, 2447 UIO_USERSPACE, &sb, NULL); 2448 if (error != 0) 2449 return (error); 2450 error = freebsd11_cvtstat32(&sb, &sb32); 2451 if (error == 0) 2452 error = copyout(&sb32, uap->ub, sizeof (sb32)); 2453 return (error); 2454 } 2455 2456 int 2457 freebsd11_freebsd32_fhstat(struct thread *td, 2458 struct freebsd11_freebsd32_fhstat_args *uap) 2459 { 2460 struct stat sb; 2461 struct freebsd11_stat32 sb32; 2462 struct fhandle fh; 2463 int error; 2464 2465 error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t)); 2466 if (error != 0) 2467 return (error); 2468 error = kern_fhstat(td, fh, &sb); 2469 if (error != 0) 2470 return (error); 2471 error = freebsd11_cvtstat32(&sb, &sb32); 2472 if (error == 0) 2473 error = copyout(&sb32, uap->sb, sizeof (sb32)); 2474 return (error); 2475 } 2476 #endif 2477 2478 int 2479 freebsd32___sysctl(struct thread *td, struct freebsd32___sysctl_args *uap) 2480 { 2481 int error, name[CTL_MAXNAME]; 2482 size_t j, oldlen; 2483 uint32_t tmp; 2484 2485 if (uap->namelen > CTL_MAXNAME || uap->namelen < 2) 2486 return (EINVAL); 2487 error = copyin(uap->name, name, uap->namelen * sizeof(int)); 2488 if (error) 2489 return (error); 2490 if (uap->oldlenp) { 2491 error = fueword32(uap->oldlenp, &tmp); 2492 oldlen = tmp; 2493 } else { 2494 oldlen = 0; 2495 } 2496 if (error != 0) 2497 return (EFAULT); 2498 error = userland_sysctl(td, name, uap->namelen, 2499 uap->old, &oldlen, 1, 2500 uap->new, uap->newlen, &j, SCTL_MASK32); 2501 if (error) 2502 return (error); 2503 if (uap->oldlenp) 2504 suword32(uap->oldlenp, j); 2505 return (0); 2506 } 2507 2508 int 2509 freebsd32___sysctlbyname(struct thread *td, 2510 struct freebsd32___sysctlbyname_args *uap) 2511 { 2512 size_t oldlen, rv; 2513 int error; 2514 uint32_t tmp; 2515 2516 if (uap->oldlenp != NULL) { 2517 error = fueword32(uap->oldlenp, &tmp); 2518 oldlen = tmp; 2519 } else { 2520 error = oldlen = 0; 2521 } 2522 if (error != 0) 2523 return (EFAULT); 2524 error = kern___sysctlbyname(td, uap->name, uap->namelen, uap->old, 2525 &oldlen, uap->new, uap->newlen, &rv, SCTL_MASK32, 1); 2526 if (error != 0) 2527 return (error); 2528 if (uap->oldlenp != NULL) 2529 error = suword32(uap->oldlenp, rv); 2530 2531 return (error); 2532 } 2533 2534 int 2535 freebsd32_jail(struct thread *td, struct freebsd32_jail_args *uap) 2536 { 2537 uint32_t version; 2538 int error; 2539 struct jail j; 2540 2541 error = copyin(uap->jail, &version, sizeof(uint32_t)); 2542 if (error) 2543 return (error); 2544 2545 switch (version) { 2546 case 0: 2547 { 2548 /* FreeBSD single IPv4 jails. */ 2549 struct jail32_v0 j32_v0; 2550 2551 bzero(&j, sizeof(struct jail)); 2552 error = copyin(uap->jail, &j32_v0, sizeof(struct jail32_v0)); 2553 if (error) 2554 return (error); 2555 CP(j32_v0, j, version); 2556 PTRIN_CP(j32_v0, j, path); 2557 PTRIN_CP(j32_v0, j, hostname); 2558 j.ip4s = htonl(j32_v0.ip_number); /* jail_v0 is host order */ 2559 break; 2560 } 2561 2562 case 1: 2563 /* 2564 * Version 1 was used by multi-IPv4 jail implementations 2565 * that never made it into the official kernel. 2566 */ 2567 return (EINVAL); 2568 2569 case 2: /* JAIL_API_VERSION */ 2570 { 2571 /* FreeBSD multi-IPv4/IPv6,noIP jails. */ 2572 struct jail32 j32; 2573 2574 error = copyin(uap->jail, &j32, sizeof(struct jail32)); 2575 if (error) 2576 return (error); 2577 CP(j32, j, version); 2578 PTRIN_CP(j32, j, path); 2579 PTRIN_CP(j32, j, hostname); 2580 PTRIN_CP(j32, j, jailname); 2581 CP(j32, j, ip4s); 2582 CP(j32, j, ip6s); 2583 PTRIN_CP(j32, j, ip4); 2584 PTRIN_CP(j32, j, ip6); 2585 break; 2586 } 2587 2588 default: 2589 /* Sci-Fi jails are not supported, sorry. */ 2590 return (EINVAL); 2591 } 2592 return (kern_jail(td, &j)); 2593 } 2594 2595 int 2596 freebsd32_jail_set(struct thread *td, struct freebsd32_jail_set_args *uap) 2597 { 2598 struct uio *auio; 2599 int error; 2600 2601 /* Check that we have an even number of iovecs. */ 2602 if (uap->iovcnt & 1) 2603 return (EINVAL); 2604 2605 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 2606 if (error) 2607 return (error); 2608 error = kern_jail_set(td, auio, uap->flags); 2609 free(auio, M_IOV); 2610 return (error); 2611 } 2612 2613 int 2614 freebsd32_jail_get(struct thread *td, struct freebsd32_jail_get_args *uap) 2615 { 2616 struct iovec32 iov32; 2617 struct uio *auio; 2618 int error, i; 2619 2620 /* Check that we have an even number of iovecs. */ 2621 if (uap->iovcnt & 1) 2622 return (EINVAL); 2623 2624 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 2625 if (error) 2626 return (error); 2627 error = kern_jail_get(td, auio, uap->flags); 2628 if (error == 0) 2629 for (i = 0; i < uap->iovcnt; i++) { 2630 PTROUT_CP(auio->uio_iov[i], iov32, iov_base); 2631 CP(auio->uio_iov[i], iov32, iov_len); 2632 error = copyout(&iov32, uap->iovp + i, sizeof(iov32)); 2633 if (error != 0) 2634 break; 2635 } 2636 free(auio, M_IOV); 2637 return (error); 2638 } 2639 2640 int 2641 freebsd32_sigaction(struct thread *td, struct freebsd32_sigaction_args *uap) 2642 { 2643 struct sigaction32 s32; 2644 struct sigaction sa, osa, *sap; 2645 int error; 2646 2647 if (uap->act) { 2648 error = copyin(uap->act, &s32, sizeof(s32)); 2649 if (error) 2650 return (error); 2651 sa.sa_handler = PTRIN(s32.sa_u); 2652 CP(s32, sa, sa_flags); 2653 CP(s32, sa, sa_mask); 2654 sap = &sa; 2655 } else 2656 sap = NULL; 2657 error = kern_sigaction(td, uap->sig, sap, &osa, 0); 2658 if (error == 0 && uap->oact != NULL) { 2659 s32.sa_u = PTROUT(osa.sa_handler); 2660 CP(osa, s32, sa_flags); 2661 CP(osa, s32, sa_mask); 2662 error = copyout(&s32, uap->oact, sizeof(s32)); 2663 } 2664 return (error); 2665 } 2666 2667 #ifdef COMPAT_FREEBSD4 2668 int 2669 freebsd4_freebsd32_sigaction(struct thread *td, 2670 struct freebsd4_freebsd32_sigaction_args *uap) 2671 { 2672 struct sigaction32 s32; 2673 struct sigaction sa, osa, *sap; 2674 int error; 2675 2676 if (uap->act) { 2677 error = copyin(uap->act, &s32, sizeof(s32)); 2678 if (error) 2679 return (error); 2680 sa.sa_handler = PTRIN(s32.sa_u); 2681 CP(s32, sa, sa_flags); 2682 CP(s32, sa, sa_mask); 2683 sap = &sa; 2684 } else 2685 sap = NULL; 2686 error = kern_sigaction(td, uap->sig, sap, &osa, KSA_FREEBSD4); 2687 if (error == 0 && uap->oact != NULL) { 2688 s32.sa_u = PTROUT(osa.sa_handler); 2689 CP(osa, s32, sa_flags); 2690 CP(osa, s32, sa_mask); 2691 error = copyout(&s32, uap->oact, sizeof(s32)); 2692 } 2693 return (error); 2694 } 2695 #endif 2696 2697 #ifdef COMPAT_43 2698 struct osigaction32 { 2699 u_int32_t sa_u; 2700 osigset_t sa_mask; 2701 int sa_flags; 2702 }; 2703 2704 #define ONSIG 32 2705 2706 int 2707 ofreebsd32_sigaction(struct thread *td, 2708 struct ofreebsd32_sigaction_args *uap) 2709 { 2710 struct osigaction32 s32; 2711 struct sigaction sa, osa, *sap; 2712 int error; 2713 2714 if (uap->signum <= 0 || uap->signum >= ONSIG) 2715 return (EINVAL); 2716 2717 if (uap->nsa) { 2718 error = copyin(uap->nsa, &s32, sizeof(s32)); 2719 if (error) 2720 return (error); 2721 sa.sa_handler = PTRIN(s32.sa_u); 2722 CP(s32, sa, sa_flags); 2723 OSIG2SIG(s32.sa_mask, sa.sa_mask); 2724 sap = &sa; 2725 } else 2726 sap = NULL; 2727 error = kern_sigaction(td, uap->signum, sap, &osa, KSA_OSIGSET); 2728 if (error == 0 && uap->osa != NULL) { 2729 s32.sa_u = PTROUT(osa.sa_handler); 2730 CP(osa, s32, sa_flags); 2731 SIG2OSIG(osa.sa_mask, s32.sa_mask); 2732 error = copyout(&s32, uap->osa, sizeof(s32)); 2733 } 2734 return (error); 2735 } 2736 2737 int 2738 ofreebsd32_sigprocmask(struct thread *td, 2739 struct ofreebsd32_sigprocmask_args *uap) 2740 { 2741 sigset_t set, oset; 2742 int error; 2743 2744 OSIG2SIG(uap->mask, set); 2745 error = kern_sigprocmask(td, uap->how, &set, &oset, SIGPROCMASK_OLD); 2746 SIG2OSIG(oset, td->td_retval[0]); 2747 return (error); 2748 } 2749 2750 int 2751 ofreebsd32_sigpending(struct thread *td, 2752 struct ofreebsd32_sigpending_args *uap) 2753 { 2754 struct proc *p = td->td_proc; 2755 sigset_t siglist; 2756 2757 PROC_LOCK(p); 2758 siglist = p->p_siglist; 2759 SIGSETOR(siglist, td->td_siglist); 2760 PROC_UNLOCK(p); 2761 SIG2OSIG(siglist, td->td_retval[0]); 2762 return (0); 2763 } 2764 2765 struct sigvec32 { 2766 u_int32_t sv_handler; 2767 int sv_mask; 2768 int sv_flags; 2769 }; 2770 2771 int 2772 ofreebsd32_sigvec(struct thread *td, 2773 struct ofreebsd32_sigvec_args *uap) 2774 { 2775 struct sigvec32 vec; 2776 struct sigaction sa, osa, *sap; 2777 int error; 2778 2779 if (uap->signum <= 0 || uap->signum >= ONSIG) 2780 return (EINVAL); 2781 2782 if (uap->nsv) { 2783 error = copyin(uap->nsv, &vec, sizeof(vec)); 2784 if (error) 2785 return (error); 2786 sa.sa_handler = PTRIN(vec.sv_handler); 2787 OSIG2SIG(vec.sv_mask, sa.sa_mask); 2788 sa.sa_flags = vec.sv_flags; 2789 sa.sa_flags ^= SA_RESTART; 2790 sap = &sa; 2791 } else 2792 sap = NULL; 2793 error = kern_sigaction(td, uap->signum, sap, &osa, KSA_OSIGSET); 2794 if (error == 0 && uap->osv != NULL) { 2795 vec.sv_handler = PTROUT(osa.sa_handler); 2796 SIG2OSIG(osa.sa_mask, vec.sv_mask); 2797 vec.sv_flags = osa.sa_flags; 2798 vec.sv_flags &= ~SA_NOCLDWAIT; 2799 vec.sv_flags ^= SA_RESTART; 2800 error = copyout(&vec, uap->osv, sizeof(vec)); 2801 } 2802 return (error); 2803 } 2804 2805 int 2806 ofreebsd32_sigblock(struct thread *td, 2807 struct ofreebsd32_sigblock_args *uap) 2808 { 2809 sigset_t set, oset; 2810 2811 OSIG2SIG(uap->mask, set); 2812 kern_sigprocmask(td, SIG_BLOCK, &set, &oset, 0); 2813 SIG2OSIG(oset, td->td_retval[0]); 2814 return (0); 2815 } 2816 2817 int 2818 ofreebsd32_sigsetmask(struct thread *td, 2819 struct ofreebsd32_sigsetmask_args *uap) 2820 { 2821 sigset_t set, oset; 2822 2823 OSIG2SIG(uap->mask, set); 2824 kern_sigprocmask(td, SIG_SETMASK, &set, &oset, 0); 2825 SIG2OSIG(oset, td->td_retval[0]); 2826 return (0); 2827 } 2828 2829 int 2830 ofreebsd32_sigsuspend(struct thread *td, 2831 struct ofreebsd32_sigsuspend_args *uap) 2832 { 2833 sigset_t mask; 2834 2835 OSIG2SIG(uap->mask, mask); 2836 return (kern_sigsuspend(td, mask)); 2837 } 2838 2839 struct sigstack32 { 2840 u_int32_t ss_sp; 2841 int ss_onstack; 2842 }; 2843 2844 int 2845 ofreebsd32_sigstack(struct thread *td, 2846 struct ofreebsd32_sigstack_args *uap) 2847 { 2848 struct sigstack32 s32; 2849 struct sigstack nss, oss; 2850 int error = 0, unss; 2851 2852 if (uap->nss != NULL) { 2853 error = copyin(uap->nss, &s32, sizeof(s32)); 2854 if (error) 2855 return (error); 2856 nss.ss_sp = PTRIN(s32.ss_sp); 2857 CP(s32, nss, ss_onstack); 2858 unss = 1; 2859 } else { 2860 unss = 0; 2861 } 2862 oss.ss_sp = td->td_sigstk.ss_sp; 2863 oss.ss_onstack = sigonstack(cpu_getstack(td)); 2864 if (unss) { 2865 td->td_sigstk.ss_sp = nss.ss_sp; 2866 td->td_sigstk.ss_size = 0; 2867 td->td_sigstk.ss_flags |= (nss.ss_onstack & SS_ONSTACK); 2868 td->td_pflags |= TDP_ALTSTACK; 2869 } 2870 if (uap->oss != NULL) { 2871 s32.ss_sp = PTROUT(oss.ss_sp); 2872 CP(oss, s32, ss_onstack); 2873 error = copyout(&s32, uap->oss, sizeof(s32)); 2874 } 2875 return (error); 2876 } 2877 #endif 2878 2879 int 2880 freebsd32_nanosleep(struct thread *td, struct freebsd32_nanosleep_args *uap) 2881 { 2882 2883 return (freebsd32_user_clock_nanosleep(td, CLOCK_REALTIME, 2884 TIMER_RELTIME, uap->rqtp, uap->rmtp)); 2885 } 2886 2887 int 2888 freebsd32_clock_nanosleep(struct thread *td, 2889 struct freebsd32_clock_nanosleep_args *uap) 2890 { 2891 int error; 2892 2893 error = freebsd32_user_clock_nanosleep(td, uap->clock_id, uap->flags, 2894 uap->rqtp, uap->rmtp); 2895 return (kern_posix_error(td, error)); 2896 } 2897 2898 static int 2899 freebsd32_user_clock_nanosleep(struct thread *td, clockid_t clock_id, 2900 int flags, const struct timespec32 *ua_rqtp, struct timespec32 *ua_rmtp) 2901 { 2902 struct timespec32 rmt32, rqt32; 2903 struct timespec rmt, rqt; 2904 int error, error2; 2905 2906 error = copyin(ua_rqtp, &rqt32, sizeof(rqt32)); 2907 if (error) 2908 return (error); 2909 2910 CP(rqt32, rqt, tv_sec); 2911 CP(rqt32, rqt, tv_nsec); 2912 2913 error = kern_clock_nanosleep(td, clock_id, flags, &rqt, &rmt); 2914 if (error == EINTR && ua_rmtp != NULL && (flags & TIMER_ABSTIME) == 0) { 2915 CP(rmt, rmt32, tv_sec); 2916 CP(rmt, rmt32, tv_nsec); 2917 2918 error2 = copyout(&rmt32, ua_rmtp, sizeof(rmt32)); 2919 if (error2 != 0) 2920 error = error2; 2921 } 2922 return (error); 2923 } 2924 2925 int 2926 freebsd32_clock_gettime(struct thread *td, 2927 struct freebsd32_clock_gettime_args *uap) 2928 { 2929 struct timespec ats; 2930 struct timespec32 ats32; 2931 int error; 2932 2933 error = kern_clock_gettime(td, uap->clock_id, &ats); 2934 if (error == 0) { 2935 CP(ats, ats32, tv_sec); 2936 CP(ats, ats32, tv_nsec); 2937 error = copyout(&ats32, uap->tp, sizeof(ats32)); 2938 } 2939 return (error); 2940 } 2941 2942 int 2943 freebsd32_clock_settime(struct thread *td, 2944 struct freebsd32_clock_settime_args *uap) 2945 { 2946 struct timespec ats; 2947 struct timespec32 ats32; 2948 int error; 2949 2950 error = copyin(uap->tp, &ats32, sizeof(ats32)); 2951 if (error) 2952 return (error); 2953 CP(ats32, ats, tv_sec); 2954 CP(ats32, ats, tv_nsec); 2955 2956 return (kern_clock_settime(td, uap->clock_id, &ats)); 2957 } 2958 2959 int 2960 freebsd32_clock_getres(struct thread *td, 2961 struct freebsd32_clock_getres_args *uap) 2962 { 2963 struct timespec ts; 2964 struct timespec32 ts32; 2965 int error; 2966 2967 if (uap->tp == NULL) 2968 return (0); 2969 error = kern_clock_getres(td, uap->clock_id, &ts); 2970 if (error == 0) { 2971 CP(ts, ts32, tv_sec); 2972 CP(ts, ts32, tv_nsec); 2973 error = copyout(&ts32, uap->tp, sizeof(ts32)); 2974 } 2975 return (error); 2976 } 2977 2978 int freebsd32_ktimer_create(struct thread *td, 2979 struct freebsd32_ktimer_create_args *uap) 2980 { 2981 struct sigevent32 ev32; 2982 struct sigevent ev, *evp; 2983 int error, id; 2984 2985 if (uap->evp == NULL) { 2986 evp = NULL; 2987 } else { 2988 evp = &ev; 2989 error = copyin(uap->evp, &ev32, sizeof(ev32)); 2990 if (error != 0) 2991 return (error); 2992 error = convert_sigevent32(&ev32, &ev); 2993 if (error != 0) 2994 return (error); 2995 } 2996 error = kern_ktimer_create(td, uap->clock_id, evp, &id, -1); 2997 if (error == 0) { 2998 error = copyout(&id, uap->timerid, sizeof(int)); 2999 if (error != 0) 3000 kern_ktimer_delete(td, id); 3001 } 3002 return (error); 3003 } 3004 3005 int 3006 freebsd32_ktimer_settime(struct thread *td, 3007 struct freebsd32_ktimer_settime_args *uap) 3008 { 3009 struct itimerspec32 val32, oval32; 3010 struct itimerspec val, oval, *ovalp; 3011 int error; 3012 3013 error = copyin(uap->value, &val32, sizeof(val32)); 3014 if (error != 0) 3015 return (error); 3016 ITS_CP(val32, val); 3017 ovalp = uap->ovalue != NULL ? &oval : NULL; 3018 error = kern_ktimer_settime(td, uap->timerid, uap->flags, &val, ovalp); 3019 if (error == 0 && uap->ovalue != NULL) { 3020 ITS_CP(oval, oval32); 3021 error = copyout(&oval32, uap->ovalue, sizeof(oval32)); 3022 } 3023 return (error); 3024 } 3025 3026 int 3027 freebsd32_ktimer_gettime(struct thread *td, 3028 struct freebsd32_ktimer_gettime_args *uap) 3029 { 3030 struct itimerspec32 val32; 3031 struct itimerspec val; 3032 int error; 3033 3034 error = kern_ktimer_gettime(td, uap->timerid, &val); 3035 if (error == 0) { 3036 ITS_CP(val, val32); 3037 error = copyout(&val32, uap->value, sizeof(val32)); 3038 } 3039 return (error); 3040 } 3041 3042 int 3043 freebsd32_clock_getcpuclockid2(struct thread *td, 3044 struct freebsd32_clock_getcpuclockid2_args *uap) 3045 { 3046 clockid_t clk_id; 3047 int error; 3048 3049 error = kern_clock_getcpuclockid2(td, PAIR32TO64(id_t, uap->id), 3050 uap->which, &clk_id); 3051 if (error == 0) 3052 error = copyout(&clk_id, uap->clock_id, sizeof(clockid_t)); 3053 return (error); 3054 } 3055 3056 int 3057 freebsd32_thr_new(struct thread *td, 3058 struct freebsd32_thr_new_args *uap) 3059 { 3060 struct thr_param32 param32; 3061 struct thr_param param; 3062 int error; 3063 3064 if (uap->param_size < 0 || 3065 uap->param_size > sizeof(struct thr_param32)) 3066 return (EINVAL); 3067 bzero(¶m, sizeof(struct thr_param)); 3068 bzero(¶m32, sizeof(struct thr_param32)); 3069 error = copyin(uap->param, ¶m32, uap->param_size); 3070 if (error != 0) 3071 return (error); 3072 param.start_func = PTRIN(param32.start_func); 3073 param.arg = PTRIN(param32.arg); 3074 param.stack_base = PTRIN(param32.stack_base); 3075 param.stack_size = param32.stack_size; 3076 param.tls_base = PTRIN(param32.tls_base); 3077 param.tls_size = param32.tls_size; 3078 param.child_tid = PTRIN(param32.child_tid); 3079 param.parent_tid = PTRIN(param32.parent_tid); 3080 param.flags = param32.flags; 3081 param.rtp = PTRIN(param32.rtp); 3082 param.spare[0] = PTRIN(param32.spare[0]); 3083 param.spare[1] = PTRIN(param32.spare[1]); 3084 param.spare[2] = PTRIN(param32.spare[2]); 3085 3086 return (kern_thr_new(td, ¶m)); 3087 } 3088 3089 int 3090 freebsd32_thr_suspend(struct thread *td, struct freebsd32_thr_suspend_args *uap) 3091 { 3092 struct timespec32 ts32; 3093 struct timespec ts, *tsp; 3094 int error; 3095 3096 error = 0; 3097 tsp = NULL; 3098 if (uap->timeout != NULL) { 3099 error = copyin((const void *)uap->timeout, (void *)&ts32, 3100 sizeof(struct timespec32)); 3101 if (error != 0) 3102 return (error); 3103 ts.tv_sec = ts32.tv_sec; 3104 ts.tv_nsec = ts32.tv_nsec; 3105 tsp = &ts; 3106 } 3107 return (kern_thr_suspend(td, tsp)); 3108 } 3109 3110 void 3111 siginfo_to_siginfo32(const siginfo_t *src, struct siginfo32 *dst) 3112 { 3113 bzero(dst, sizeof(*dst)); 3114 dst->si_signo = src->si_signo; 3115 dst->si_errno = src->si_errno; 3116 dst->si_code = src->si_code; 3117 dst->si_pid = src->si_pid; 3118 dst->si_uid = src->si_uid; 3119 dst->si_status = src->si_status; 3120 dst->si_addr = (uintptr_t)src->si_addr; 3121 dst->si_value.sival_int = src->si_value.sival_int; 3122 dst->si_timerid = src->si_timerid; 3123 dst->si_overrun = src->si_overrun; 3124 } 3125 3126 #ifndef _FREEBSD32_SYSPROTO_H_ 3127 struct freebsd32_sigqueue_args { 3128 pid_t pid; 3129 int signum; 3130 /* union sigval32 */ int value; 3131 }; 3132 #endif 3133 int 3134 freebsd32_sigqueue(struct thread *td, struct freebsd32_sigqueue_args *uap) 3135 { 3136 union sigval sv; 3137 3138 /* 3139 * On 32-bit ABIs, sival_int and sival_ptr are the same. 3140 * On 64-bit little-endian ABIs, the low bits are the same. 3141 * In 64-bit big-endian ABIs, sival_int overlaps with 3142 * sival_ptr's HIGH bits. We choose to support sival_int 3143 * rather than sival_ptr in this case as it seems to be 3144 * more common. 3145 */ 3146 bzero(&sv, sizeof(sv)); 3147 sv.sival_int = uap->value; 3148 3149 return (kern_sigqueue(td, uap->pid, uap->signum, &sv)); 3150 } 3151 3152 int 3153 freebsd32_sigtimedwait(struct thread *td, struct freebsd32_sigtimedwait_args *uap) 3154 { 3155 struct timespec32 ts32; 3156 struct timespec ts; 3157 struct timespec *timeout; 3158 sigset_t set; 3159 ksiginfo_t ksi; 3160 struct siginfo32 si32; 3161 int error; 3162 3163 if (uap->timeout) { 3164 error = copyin(uap->timeout, &ts32, sizeof(ts32)); 3165 if (error) 3166 return (error); 3167 ts.tv_sec = ts32.tv_sec; 3168 ts.tv_nsec = ts32.tv_nsec; 3169 timeout = &ts; 3170 } else 3171 timeout = NULL; 3172 3173 error = copyin(uap->set, &set, sizeof(set)); 3174 if (error) 3175 return (error); 3176 3177 error = kern_sigtimedwait(td, set, &ksi, timeout); 3178 if (error) 3179 return (error); 3180 3181 if (uap->info) { 3182 siginfo_to_siginfo32(&ksi.ksi_info, &si32); 3183 error = copyout(&si32, uap->info, sizeof(struct siginfo32)); 3184 } 3185 3186 if (error == 0) 3187 td->td_retval[0] = ksi.ksi_signo; 3188 return (error); 3189 } 3190 3191 /* 3192 * MPSAFE 3193 */ 3194 int 3195 freebsd32_sigwaitinfo(struct thread *td, struct freebsd32_sigwaitinfo_args *uap) 3196 { 3197 ksiginfo_t ksi; 3198 struct siginfo32 si32; 3199 sigset_t set; 3200 int error; 3201 3202 error = copyin(uap->set, &set, sizeof(set)); 3203 if (error) 3204 return (error); 3205 3206 error = kern_sigtimedwait(td, set, &ksi, NULL); 3207 if (error) 3208 return (error); 3209 3210 if (uap->info) { 3211 siginfo_to_siginfo32(&ksi.ksi_info, &si32); 3212 error = copyout(&si32, uap->info, sizeof(struct siginfo32)); 3213 } 3214 if (error == 0) 3215 td->td_retval[0] = ksi.ksi_signo; 3216 return (error); 3217 } 3218 3219 int 3220 freebsd32_cpuset_setid(struct thread *td, 3221 struct freebsd32_cpuset_setid_args *uap) 3222 { 3223 3224 return (kern_cpuset_setid(td, uap->which, 3225 PAIR32TO64(id_t, uap->id), uap->setid)); 3226 } 3227 3228 int 3229 freebsd32_cpuset_getid(struct thread *td, 3230 struct freebsd32_cpuset_getid_args *uap) 3231 { 3232 3233 return (kern_cpuset_getid(td, uap->level, uap->which, 3234 PAIR32TO64(id_t, uap->id), uap->setid)); 3235 } 3236 3237 int 3238 freebsd32_cpuset_getaffinity(struct thread *td, 3239 struct freebsd32_cpuset_getaffinity_args *uap) 3240 { 3241 3242 return (kern_cpuset_getaffinity(td, uap->level, uap->which, 3243 PAIR32TO64(id_t,uap->id), uap->cpusetsize, uap->mask)); 3244 } 3245 3246 int 3247 freebsd32_cpuset_setaffinity(struct thread *td, 3248 struct freebsd32_cpuset_setaffinity_args *uap) 3249 { 3250 3251 return (kern_cpuset_setaffinity(td, uap->level, uap->which, 3252 PAIR32TO64(id_t,uap->id), uap->cpusetsize, uap->mask)); 3253 } 3254 3255 int 3256 freebsd32_cpuset_getdomain(struct thread *td, 3257 struct freebsd32_cpuset_getdomain_args *uap) 3258 { 3259 3260 return (kern_cpuset_getdomain(td, uap->level, uap->which, 3261 PAIR32TO64(id_t,uap->id), uap->domainsetsize, uap->mask, uap->policy)); 3262 } 3263 3264 int 3265 freebsd32_cpuset_setdomain(struct thread *td, 3266 struct freebsd32_cpuset_setdomain_args *uap) 3267 { 3268 3269 return (kern_cpuset_setdomain(td, uap->level, uap->which, 3270 PAIR32TO64(id_t,uap->id), uap->domainsetsize, uap->mask, uap->policy)); 3271 } 3272 3273 int 3274 freebsd32_nmount(struct thread *td, 3275 struct freebsd32_nmount_args /* { 3276 struct iovec *iovp; 3277 unsigned int iovcnt; 3278 int flags; 3279 } */ *uap) 3280 { 3281 struct uio *auio; 3282 uint64_t flags; 3283 int error; 3284 3285 /* 3286 * Mount flags are now 64-bits. On 32-bit archtectures only 3287 * 32-bits are passed in, but from here on everything handles 3288 * 64-bit flags correctly. 3289 */ 3290 flags = uap->flags; 3291 3292 AUDIT_ARG_FFLAGS(flags); 3293 3294 /* 3295 * Filter out MNT_ROOTFS. We do not want clients of nmount() in 3296 * userspace to set this flag, but we must filter it out if we want 3297 * MNT_UPDATE on the root file system to work. 3298 * MNT_ROOTFS should only be set by the kernel when mounting its 3299 * root file system. 3300 */ 3301 flags &= ~MNT_ROOTFS; 3302 3303 /* 3304 * check that we have an even number of iovec's 3305 * and that we have at least two options. 3306 */ 3307 if ((uap->iovcnt & 1) || (uap->iovcnt < 4)) 3308 return (EINVAL); 3309 3310 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 3311 if (error) 3312 return (error); 3313 error = vfs_donmount(td, flags, auio); 3314 3315 free(auio, M_IOV); 3316 return error; 3317 } 3318 3319 #if 0 3320 int 3321 freebsd32_xxx(struct thread *td, struct freebsd32_xxx_args *uap) 3322 { 3323 struct yyy32 *p32, s32; 3324 struct yyy *p = NULL, s; 3325 struct xxx_arg ap; 3326 int error; 3327 3328 if (uap->zzz) { 3329 error = copyin(uap->zzz, &s32, sizeof(s32)); 3330 if (error) 3331 return (error); 3332 /* translate in */ 3333 p = &s; 3334 } 3335 error = kern_xxx(td, p); 3336 if (error) 3337 return (error); 3338 if (uap->zzz) { 3339 /* translate out */ 3340 error = copyout(&s32, p32, sizeof(s32)); 3341 } 3342 return (error); 3343 } 3344 #endif 3345 3346 int 3347 syscall32_module_handler(struct module *mod, int what, void *arg) 3348 { 3349 3350 return (kern_syscall_module_handler(freebsd32_sysent, mod, what, arg)); 3351 } 3352 3353 int 3354 syscall32_helper_register(struct syscall_helper_data *sd, int flags) 3355 { 3356 3357 return (kern_syscall_helper_register(freebsd32_sysent, sd, flags)); 3358 } 3359 3360 int 3361 syscall32_helper_unregister(struct syscall_helper_data *sd) 3362 { 3363 3364 return (kern_syscall_helper_unregister(freebsd32_sysent, sd)); 3365 } 3366 3367 int 3368 freebsd32_copyout_strings(struct image_params *imgp, uintptr_t *stack_base) 3369 { 3370 int argc, envc, i; 3371 u_int32_t *vectp; 3372 char *stringp; 3373 uintptr_t destp, ustringp; 3374 struct freebsd32_ps_strings *arginfo; 3375 char canary[sizeof(long) * 8]; 3376 int32_t pagesizes32[MAXPAGESIZES]; 3377 size_t execpath_len; 3378 int error, szsigcode; 3379 3380 /* 3381 * Calculate string base and vector table pointers. 3382 * Also deal with signal trampoline code for this exec type. 3383 */ 3384 if (imgp->execpath != NULL && imgp->auxargs != NULL) 3385 execpath_len = strlen(imgp->execpath) + 1; 3386 else 3387 execpath_len = 0; 3388 arginfo = (struct freebsd32_ps_strings *)curproc->p_sysent-> 3389 sv_psstrings; 3390 imgp->ps_strings = arginfo; 3391 if (imgp->proc->p_sysent->sv_sigcode_base == 0) 3392 szsigcode = *(imgp->proc->p_sysent->sv_szsigcode); 3393 else 3394 szsigcode = 0; 3395 destp = (uintptr_t)arginfo; 3396 3397 /* 3398 * install sigcode 3399 */ 3400 if (szsigcode != 0) { 3401 destp -= szsigcode; 3402 destp = rounddown2(destp, sizeof(uint32_t)); 3403 error = copyout(imgp->proc->p_sysent->sv_sigcode, (void *)destp, 3404 szsigcode); 3405 if (error != 0) 3406 return (error); 3407 } 3408 3409 /* 3410 * Copy the image path for the rtld. 3411 */ 3412 if (execpath_len != 0) { 3413 destp -= execpath_len; 3414 imgp->execpathp = (void *)destp; 3415 error = copyout(imgp->execpath, imgp->execpathp, execpath_len); 3416 if (error != 0) 3417 return (error); 3418 } 3419 3420 /* 3421 * Prepare the canary for SSP. 3422 */ 3423 arc4rand(canary, sizeof(canary), 0); 3424 destp -= sizeof(canary); 3425 imgp->canary = (void *)destp; 3426 error = copyout(canary, imgp->canary, sizeof(canary)); 3427 if (error != 0) 3428 return (error); 3429 imgp->canarylen = sizeof(canary); 3430 3431 /* 3432 * Prepare the pagesizes array. 3433 */ 3434 for (i = 0; i < MAXPAGESIZES; i++) 3435 pagesizes32[i] = (uint32_t)pagesizes[i]; 3436 destp -= sizeof(pagesizes32); 3437 destp = rounddown2(destp, sizeof(uint32_t)); 3438 imgp->pagesizes = (void *)destp; 3439 error = copyout(pagesizes32, imgp->pagesizes, sizeof(pagesizes32)); 3440 if (error != 0) 3441 return (error); 3442 imgp->pagesizeslen = sizeof(pagesizes32); 3443 3444 /* 3445 * Allocate room for the argument and environment strings. 3446 */ 3447 destp -= ARG_MAX - imgp->args->stringspace; 3448 destp = rounddown2(destp, sizeof(uint32_t)); 3449 ustringp = destp; 3450 3451 exec_stackgap(imgp, &destp); 3452 3453 if (imgp->auxargs) { 3454 /* 3455 * Allocate room on the stack for the ELF auxargs 3456 * array. It has up to AT_COUNT entries. 3457 */ 3458 destp -= AT_COUNT * sizeof(Elf32_Auxinfo); 3459 destp = rounddown2(destp, sizeof(uint32_t)); 3460 } 3461 3462 vectp = (uint32_t *)destp; 3463 3464 /* 3465 * Allocate room for the argv[] and env vectors including the 3466 * terminating NULL pointers. 3467 */ 3468 vectp -= imgp->args->argc + 1 + imgp->args->envc + 1; 3469 3470 /* 3471 * vectp also becomes our initial stack base 3472 */ 3473 *stack_base = (uintptr_t)vectp; 3474 3475 stringp = imgp->args->begin_argv; 3476 argc = imgp->args->argc; 3477 envc = imgp->args->envc; 3478 /* 3479 * Copy out strings - arguments and environment. 3480 */ 3481 error = copyout(stringp, (void *)ustringp, 3482 ARG_MAX - imgp->args->stringspace); 3483 if (error != 0) 3484 return (error); 3485 3486 /* 3487 * Fill in "ps_strings" struct for ps, w, etc. 3488 */ 3489 imgp->argv = vectp; 3490 if (suword32(&arginfo->ps_argvstr, (u_int32_t)(intptr_t)vectp) != 0 || 3491 suword32(&arginfo->ps_nargvstr, argc) != 0) 3492 return (EFAULT); 3493 3494 /* 3495 * Fill in argument portion of vector table. 3496 */ 3497 for (; argc > 0; --argc) { 3498 if (suword32(vectp++, ustringp) != 0) 3499 return (EFAULT); 3500 while (*stringp++ != 0) 3501 ustringp++; 3502 ustringp++; 3503 } 3504 3505 /* a null vector table pointer separates the argp's from the envp's */ 3506 if (suword32(vectp++, 0) != 0) 3507 return (EFAULT); 3508 3509 imgp->envv = vectp; 3510 if (suword32(&arginfo->ps_envstr, (u_int32_t)(intptr_t)vectp) != 0 || 3511 suword32(&arginfo->ps_nenvstr, envc) != 0) 3512 return (EFAULT); 3513 3514 /* 3515 * Fill in environment portion of vector table. 3516 */ 3517 for (; envc > 0; --envc) { 3518 if (suword32(vectp++, ustringp) != 0) 3519 return (EFAULT); 3520 while (*stringp++ != 0) 3521 ustringp++; 3522 ustringp++; 3523 } 3524 3525 /* end of vector table is a null pointer */ 3526 if (suword32(vectp, 0) != 0) 3527 return (EFAULT); 3528 3529 if (imgp->auxargs) { 3530 vectp++; 3531 error = imgp->sysent->sv_copyout_auxargs(imgp, 3532 (uintptr_t)vectp); 3533 if (error != 0) 3534 return (error); 3535 } 3536 3537 return (0); 3538 } 3539 3540 int 3541 freebsd32_kldstat(struct thread *td, struct freebsd32_kldstat_args *uap) 3542 { 3543 struct kld_file_stat *stat; 3544 struct kld32_file_stat *stat32; 3545 int error, version; 3546 3547 if ((error = copyin(&uap->stat->version, &version, sizeof(version))) 3548 != 0) 3549 return (error); 3550 if (version != sizeof(struct kld32_file_stat_1) && 3551 version != sizeof(struct kld32_file_stat)) 3552 return (EINVAL); 3553 3554 stat = malloc(sizeof(*stat), M_TEMP, M_WAITOK | M_ZERO); 3555 stat32 = malloc(sizeof(*stat32), M_TEMP, M_WAITOK | M_ZERO); 3556 error = kern_kldstat(td, uap->fileid, stat); 3557 if (error == 0) { 3558 bcopy(&stat->name[0], &stat32->name[0], sizeof(stat->name)); 3559 CP(*stat, *stat32, refs); 3560 CP(*stat, *stat32, id); 3561 PTROUT_CP(*stat, *stat32, address); 3562 CP(*stat, *stat32, size); 3563 bcopy(&stat->pathname[0], &stat32->pathname[0], 3564 sizeof(stat->pathname)); 3565 stat32->version = version; 3566 error = copyout(stat32, uap->stat, version); 3567 } 3568 free(stat, M_TEMP); 3569 free(stat32, M_TEMP); 3570 return (error); 3571 } 3572 3573 int 3574 freebsd32_posix_fallocate(struct thread *td, 3575 struct freebsd32_posix_fallocate_args *uap) 3576 { 3577 int error; 3578 3579 error = kern_posix_fallocate(td, uap->fd, 3580 PAIR32TO64(off_t, uap->offset), PAIR32TO64(off_t, uap->len)); 3581 return (kern_posix_error(td, error)); 3582 } 3583 3584 int 3585 freebsd32_posix_fadvise(struct thread *td, 3586 struct freebsd32_posix_fadvise_args *uap) 3587 { 3588 int error; 3589 3590 error = kern_posix_fadvise(td, uap->fd, PAIR32TO64(off_t, uap->offset), 3591 PAIR32TO64(off_t, uap->len), uap->advice); 3592 return (kern_posix_error(td, error)); 3593 } 3594 3595 int 3596 convert_sigevent32(struct sigevent32 *sig32, struct sigevent *sig) 3597 { 3598 3599 CP(*sig32, *sig, sigev_notify); 3600 switch (sig->sigev_notify) { 3601 case SIGEV_NONE: 3602 break; 3603 case SIGEV_THREAD_ID: 3604 CP(*sig32, *sig, sigev_notify_thread_id); 3605 /* FALLTHROUGH */ 3606 case SIGEV_SIGNAL: 3607 CP(*sig32, *sig, sigev_signo); 3608 PTRIN_CP(*sig32, *sig, sigev_value.sival_ptr); 3609 break; 3610 case SIGEV_KEVENT: 3611 CP(*sig32, *sig, sigev_notify_kqueue); 3612 CP(*sig32, *sig, sigev_notify_kevent_flags); 3613 PTRIN_CP(*sig32, *sig, sigev_value.sival_ptr); 3614 break; 3615 default: 3616 return (EINVAL); 3617 } 3618 return (0); 3619 } 3620 3621 int 3622 freebsd32_procctl(struct thread *td, struct freebsd32_procctl_args *uap) 3623 { 3624 void *data; 3625 union { 3626 struct procctl_reaper_status rs; 3627 struct procctl_reaper_pids rp; 3628 struct procctl_reaper_kill rk; 3629 } x; 3630 union { 3631 struct procctl_reaper_pids32 rp; 3632 } x32; 3633 int error, error1, flags, signum; 3634 3635 if (uap->com >= PROC_PROCCTL_MD_MIN) 3636 return (cpu_procctl(td, uap->idtype, PAIR32TO64(id_t, uap->id), 3637 uap->com, PTRIN(uap->data))); 3638 3639 switch (uap->com) { 3640 case PROC_ASLR_CTL: 3641 case PROC_PROTMAX_CTL: 3642 case PROC_SPROTECT: 3643 case PROC_STACKGAP_CTL: 3644 case PROC_TRACE_CTL: 3645 case PROC_TRAPCAP_CTL: 3646 error = copyin(PTRIN(uap->data), &flags, sizeof(flags)); 3647 if (error != 0) 3648 return (error); 3649 data = &flags; 3650 break; 3651 case PROC_REAP_ACQUIRE: 3652 case PROC_REAP_RELEASE: 3653 if (uap->data != NULL) 3654 return (EINVAL); 3655 data = NULL; 3656 break; 3657 case PROC_REAP_STATUS: 3658 data = &x.rs; 3659 break; 3660 case PROC_REAP_GETPIDS: 3661 error = copyin(uap->data, &x32.rp, sizeof(x32.rp)); 3662 if (error != 0) 3663 return (error); 3664 CP(x32.rp, x.rp, rp_count); 3665 PTRIN_CP(x32.rp, x.rp, rp_pids); 3666 data = &x.rp; 3667 break; 3668 case PROC_REAP_KILL: 3669 error = copyin(uap->data, &x.rk, sizeof(x.rk)); 3670 if (error != 0) 3671 return (error); 3672 data = &x.rk; 3673 break; 3674 case PROC_ASLR_STATUS: 3675 case PROC_PROTMAX_STATUS: 3676 case PROC_STACKGAP_STATUS: 3677 case PROC_TRACE_STATUS: 3678 case PROC_TRAPCAP_STATUS: 3679 data = &flags; 3680 break; 3681 case PROC_PDEATHSIG_CTL: 3682 error = copyin(uap->data, &signum, sizeof(signum)); 3683 if (error != 0) 3684 return (error); 3685 data = &signum; 3686 break; 3687 case PROC_PDEATHSIG_STATUS: 3688 data = &signum; 3689 break; 3690 default: 3691 return (EINVAL); 3692 } 3693 error = kern_procctl(td, uap->idtype, PAIR32TO64(id_t, uap->id), 3694 uap->com, data); 3695 switch (uap->com) { 3696 case PROC_REAP_STATUS: 3697 if (error == 0) 3698 error = copyout(&x.rs, uap->data, sizeof(x.rs)); 3699 break; 3700 case PROC_REAP_KILL: 3701 error1 = copyout(&x.rk, uap->data, sizeof(x.rk)); 3702 if (error == 0) 3703 error = error1; 3704 break; 3705 case PROC_ASLR_STATUS: 3706 case PROC_PROTMAX_STATUS: 3707 case PROC_STACKGAP_STATUS: 3708 case PROC_TRACE_STATUS: 3709 case PROC_TRAPCAP_STATUS: 3710 if (error == 0) 3711 error = copyout(&flags, uap->data, sizeof(flags)); 3712 break; 3713 case PROC_PDEATHSIG_STATUS: 3714 if (error == 0) 3715 error = copyout(&signum, uap->data, sizeof(signum)); 3716 break; 3717 } 3718 return (error); 3719 } 3720 3721 int 3722 freebsd32_fcntl(struct thread *td, struct freebsd32_fcntl_args *uap) 3723 { 3724 long tmp; 3725 3726 switch (uap->cmd) { 3727 /* 3728 * Do unsigned conversion for arg when operation 3729 * interprets it as flags or pointer. 3730 */ 3731 case F_SETLK_REMOTE: 3732 case F_SETLKW: 3733 case F_SETLK: 3734 case F_GETLK: 3735 case F_SETFD: 3736 case F_SETFL: 3737 case F_OGETLK: 3738 case F_OSETLK: 3739 case F_OSETLKW: 3740 tmp = (unsigned int)(uap->arg); 3741 break; 3742 default: 3743 tmp = uap->arg; 3744 break; 3745 } 3746 return (kern_fcntl_freebsd(td, uap->fd, uap->cmd, tmp)); 3747 } 3748 3749 int 3750 freebsd32_ppoll(struct thread *td, struct freebsd32_ppoll_args *uap) 3751 { 3752 struct timespec32 ts32; 3753 struct timespec ts, *tsp; 3754 sigset_t set, *ssp; 3755 int error; 3756 3757 if (uap->ts != NULL) { 3758 error = copyin(uap->ts, &ts32, sizeof(ts32)); 3759 if (error != 0) 3760 return (error); 3761 CP(ts32, ts, tv_sec); 3762 CP(ts32, ts, tv_nsec); 3763 tsp = &ts; 3764 } else 3765 tsp = NULL; 3766 if (uap->set != NULL) { 3767 error = copyin(uap->set, &set, sizeof(set)); 3768 if (error != 0) 3769 return (error); 3770 ssp = &set; 3771 } else 3772 ssp = NULL; 3773 3774 return (kern_poll(td, uap->fds, uap->nfds, tsp, ssp)); 3775 } 3776 3777 int 3778 freebsd32_sched_rr_get_interval(struct thread *td, 3779 struct freebsd32_sched_rr_get_interval_args *uap) 3780 { 3781 struct timespec ts; 3782 struct timespec32 ts32; 3783 int error; 3784 3785 error = kern_sched_rr_get_interval(td, uap->pid, &ts); 3786 if (error == 0) { 3787 CP(ts, ts32, tv_sec); 3788 CP(ts, ts32, tv_nsec); 3789 error = copyout(&ts32, uap->interval, sizeof(ts32)); 3790 } 3791 return (error); 3792 } 3793 3794 static void 3795 timex_to_32(struct timex32 *dst, struct timex *src) 3796 { 3797 CP(*src, *dst, modes); 3798 CP(*src, *dst, offset); 3799 CP(*src, *dst, freq); 3800 CP(*src, *dst, maxerror); 3801 CP(*src, *dst, esterror); 3802 CP(*src, *dst, status); 3803 CP(*src, *dst, constant); 3804 CP(*src, *dst, precision); 3805 CP(*src, *dst, tolerance); 3806 CP(*src, *dst, ppsfreq); 3807 CP(*src, *dst, jitter); 3808 CP(*src, *dst, shift); 3809 CP(*src, *dst, stabil); 3810 CP(*src, *dst, jitcnt); 3811 CP(*src, *dst, calcnt); 3812 CP(*src, *dst, errcnt); 3813 CP(*src, *dst, stbcnt); 3814 } 3815 3816 static void 3817 timex_from_32(struct timex *dst, struct timex32 *src) 3818 { 3819 CP(*src, *dst, modes); 3820 CP(*src, *dst, offset); 3821 CP(*src, *dst, freq); 3822 CP(*src, *dst, maxerror); 3823 CP(*src, *dst, esterror); 3824 CP(*src, *dst, status); 3825 CP(*src, *dst, constant); 3826 CP(*src, *dst, precision); 3827 CP(*src, *dst, tolerance); 3828 CP(*src, *dst, ppsfreq); 3829 CP(*src, *dst, jitter); 3830 CP(*src, *dst, shift); 3831 CP(*src, *dst, stabil); 3832 CP(*src, *dst, jitcnt); 3833 CP(*src, *dst, calcnt); 3834 CP(*src, *dst, errcnt); 3835 CP(*src, *dst, stbcnt); 3836 } 3837 3838 int 3839 freebsd32_ntp_adjtime(struct thread *td, struct freebsd32_ntp_adjtime_args *uap) 3840 { 3841 struct timex tx; 3842 struct timex32 tx32; 3843 int error, retval; 3844 3845 error = copyin(uap->tp, &tx32, sizeof(tx32)); 3846 if (error == 0) { 3847 timex_from_32(&tx, &tx32); 3848 error = kern_ntp_adjtime(td, &tx, &retval); 3849 if (error == 0) { 3850 timex_to_32(&tx32, &tx); 3851 error = copyout(&tx32, uap->tp, sizeof(tx32)); 3852 if (error == 0) 3853 td->td_retval[0] = retval; 3854 } 3855 } 3856 return (error); 3857 } 3858