1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2002 Doug Rabson 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include "opt_compat.h" 33 #include "opt_inet.h" 34 #include "opt_inet6.h" 35 #include "opt_ktrace.h" 36 37 #define __ELF_WORD_SIZE 32 38 39 #ifdef COMPAT_FREEBSD11 40 #define _WANT_FREEBSD11_KEVENT 41 #endif 42 43 #include <sys/param.h> 44 #include <sys/bus.h> 45 #include <sys/capsicum.h> 46 #include <sys/clock.h> 47 #include <sys/exec.h> 48 #include <sys/fcntl.h> 49 #include <sys/filedesc.h> 50 #include <sys/imgact.h> 51 #include <sys/jail.h> 52 #include <sys/kernel.h> 53 #include <sys/limits.h> 54 #include <sys/linker.h> 55 #include <sys/lock.h> 56 #include <sys/malloc.h> 57 #include <sys/file.h> /* Must come after sys/malloc.h */ 58 #include <sys/imgact.h> 59 #include <sys/mbuf.h> 60 #include <sys/mman.h> 61 #include <sys/module.h> 62 #include <sys/mount.h> 63 #include <sys/mutex.h> 64 #include <sys/namei.h> 65 #include <sys/proc.h> 66 #include <sys/procctl.h> 67 #include <sys/reboot.h> 68 #include <sys/resource.h> 69 #include <sys/resourcevar.h> 70 #include <sys/selinfo.h> 71 #include <sys/eventvar.h> /* Must come after sys/selinfo.h */ 72 #include <sys/pipe.h> /* Must come after sys/selinfo.h */ 73 #include <sys/signal.h> 74 #include <sys/signalvar.h> 75 #include <sys/socket.h> 76 #include <sys/socketvar.h> 77 #include <sys/stat.h> 78 #include <sys/syscall.h> 79 #include <sys/syscallsubr.h> 80 #include <sys/sysctl.h> 81 #include <sys/sysent.h> 82 #include <sys/sysproto.h> 83 #include <sys/systm.h> 84 #include <sys/thr.h> 85 #include <sys/unistd.h> 86 #include <sys/ucontext.h> 87 #include <sys/vnode.h> 88 #include <sys/wait.h> 89 #include <sys/ipc.h> 90 #include <sys/msg.h> 91 #include <sys/sem.h> 92 #include <sys/shm.h> 93 #ifdef KTRACE 94 #include <sys/ktrace.h> 95 #endif 96 97 #ifdef INET 98 #include <netinet/in.h> 99 #endif 100 101 #include <vm/vm.h> 102 #include <vm/vm_param.h> 103 #include <vm/pmap.h> 104 #include <vm/vm_map.h> 105 #include <vm/vm_object.h> 106 #include <vm/vm_extern.h> 107 108 #include <machine/cpu.h> 109 #include <machine/elf.h> 110 111 #include <security/audit/audit.h> 112 113 #include <compat/freebsd32/freebsd32_util.h> 114 #include <compat/freebsd32/freebsd32.h> 115 #include <compat/freebsd32/freebsd32_ipc.h> 116 #include <compat/freebsd32/freebsd32_misc.h> 117 #include <compat/freebsd32/freebsd32_signal.h> 118 #include <compat/freebsd32/freebsd32_proto.h> 119 120 FEATURE(compat_freebsd_32bit, "Compatible with 32-bit FreeBSD"); 121 122 #ifdef __amd64__ 123 CTASSERT(sizeof(struct timeval32) == 8); 124 CTASSERT(sizeof(struct timespec32) == 8); 125 CTASSERT(sizeof(struct itimerval32) == 16); 126 CTASSERT(sizeof(struct bintime32) == 12); 127 #endif 128 CTASSERT(sizeof(struct statfs32) == 256); 129 #ifdef __amd64__ 130 CTASSERT(sizeof(struct rusage32) == 72); 131 #endif 132 CTASSERT(sizeof(struct sigaltstack32) == 12); 133 #ifdef __amd64__ 134 CTASSERT(sizeof(struct kevent32) == 56); 135 #else 136 CTASSERT(sizeof(struct kevent32) == 64); 137 #endif 138 CTASSERT(sizeof(struct iovec32) == 8); 139 CTASSERT(sizeof(struct msghdr32) == 28); 140 #ifdef __amd64__ 141 CTASSERT(sizeof(struct stat32) == 208); 142 CTASSERT(sizeof(struct freebsd11_stat32) == 96); 143 #endif 144 CTASSERT(sizeof(struct sigaction32) == 24); 145 146 static int freebsd32_kevent_copyout(void *arg, struct kevent *kevp, int count); 147 static int freebsd32_kevent_copyin(void *arg, struct kevent *kevp, int count); 148 static int freebsd32_user_clock_nanosleep(struct thread *td, clockid_t clock_id, 149 int flags, const struct timespec32 *ua_rqtp, struct timespec32 *ua_rmtp); 150 151 void 152 freebsd32_rusage_out(const struct rusage *s, struct rusage32 *s32) 153 { 154 155 TV_CP(*s, *s32, ru_utime); 156 TV_CP(*s, *s32, ru_stime); 157 CP(*s, *s32, ru_maxrss); 158 CP(*s, *s32, ru_ixrss); 159 CP(*s, *s32, ru_idrss); 160 CP(*s, *s32, ru_isrss); 161 CP(*s, *s32, ru_minflt); 162 CP(*s, *s32, ru_majflt); 163 CP(*s, *s32, ru_nswap); 164 CP(*s, *s32, ru_inblock); 165 CP(*s, *s32, ru_oublock); 166 CP(*s, *s32, ru_msgsnd); 167 CP(*s, *s32, ru_msgrcv); 168 CP(*s, *s32, ru_nsignals); 169 CP(*s, *s32, ru_nvcsw); 170 CP(*s, *s32, ru_nivcsw); 171 } 172 173 int 174 freebsd32_wait4(struct thread *td, struct freebsd32_wait4_args *uap) 175 { 176 int error, status; 177 struct rusage32 ru32; 178 struct rusage ru, *rup; 179 180 if (uap->rusage != NULL) 181 rup = &ru; 182 else 183 rup = NULL; 184 error = kern_wait(td, uap->pid, &status, uap->options, rup); 185 if (error) 186 return (error); 187 if (uap->status != NULL) 188 error = copyout(&status, uap->status, sizeof(status)); 189 if (uap->rusage != NULL && error == 0) { 190 freebsd32_rusage_out(&ru, &ru32); 191 error = copyout(&ru32, uap->rusage, sizeof(ru32)); 192 } 193 return (error); 194 } 195 196 int 197 freebsd32_wait6(struct thread *td, struct freebsd32_wait6_args *uap) 198 { 199 struct wrusage32 wru32; 200 struct __wrusage wru, *wrup; 201 struct siginfo32 si32; 202 struct __siginfo si, *sip; 203 int error, status; 204 205 if (uap->wrusage != NULL) 206 wrup = &wru; 207 else 208 wrup = NULL; 209 if (uap->info != NULL) { 210 sip = &si; 211 bzero(sip, sizeof(*sip)); 212 } else 213 sip = NULL; 214 error = kern_wait6(td, uap->idtype, PAIR32TO64(id_t, uap->id), 215 &status, uap->options, wrup, sip); 216 if (error != 0) 217 return (error); 218 if (uap->status != NULL) 219 error = copyout(&status, uap->status, sizeof(status)); 220 if (uap->wrusage != NULL && error == 0) { 221 freebsd32_rusage_out(&wru.wru_self, &wru32.wru_self); 222 freebsd32_rusage_out(&wru.wru_children, &wru32.wru_children); 223 error = copyout(&wru32, uap->wrusage, sizeof(wru32)); 224 } 225 if (uap->info != NULL && error == 0) { 226 siginfo_to_siginfo32 (&si, &si32); 227 error = copyout(&si32, uap->info, sizeof(si32)); 228 } 229 return (error); 230 } 231 232 #ifdef COMPAT_FREEBSD4 233 static void 234 copy_statfs(struct statfs *in, struct statfs32 *out) 235 { 236 237 statfs_scale_blocks(in, INT32_MAX); 238 bzero(out, sizeof(*out)); 239 CP(*in, *out, f_bsize); 240 out->f_iosize = MIN(in->f_iosize, INT32_MAX); 241 CP(*in, *out, f_blocks); 242 CP(*in, *out, f_bfree); 243 CP(*in, *out, f_bavail); 244 out->f_files = MIN(in->f_files, INT32_MAX); 245 out->f_ffree = MIN(in->f_ffree, INT32_MAX); 246 CP(*in, *out, f_fsid); 247 CP(*in, *out, f_owner); 248 CP(*in, *out, f_type); 249 CP(*in, *out, f_flags); 250 out->f_syncwrites = MIN(in->f_syncwrites, INT32_MAX); 251 out->f_asyncwrites = MIN(in->f_asyncwrites, INT32_MAX); 252 strlcpy(out->f_fstypename, 253 in->f_fstypename, MFSNAMELEN); 254 strlcpy(out->f_mntonname, 255 in->f_mntonname, min(MNAMELEN, FREEBSD4_MNAMELEN)); 256 out->f_syncreads = MIN(in->f_syncreads, INT32_MAX); 257 out->f_asyncreads = MIN(in->f_asyncreads, INT32_MAX); 258 strlcpy(out->f_mntfromname, 259 in->f_mntfromname, min(MNAMELEN, FREEBSD4_MNAMELEN)); 260 } 261 #endif 262 263 #ifdef COMPAT_FREEBSD4 264 int 265 freebsd4_freebsd32_getfsstat(struct thread *td, 266 struct freebsd4_freebsd32_getfsstat_args *uap) 267 { 268 struct statfs *buf, *sp; 269 struct statfs32 stat32; 270 size_t count, size, copycount; 271 int error; 272 273 count = uap->bufsize / sizeof(struct statfs32); 274 size = count * sizeof(struct statfs); 275 error = kern_getfsstat(td, &buf, size, &count, UIO_SYSSPACE, uap->mode); 276 if (size > 0) { 277 sp = buf; 278 copycount = count; 279 while (copycount > 0 && error == 0) { 280 copy_statfs(sp, &stat32); 281 error = copyout(&stat32, uap->buf, sizeof(stat32)); 282 sp++; 283 uap->buf++; 284 copycount--; 285 } 286 free(buf, M_STATFS); 287 } 288 if (error == 0) 289 td->td_retval[0] = count; 290 return (error); 291 } 292 #endif 293 294 #ifdef COMPAT_FREEBSD10 295 int 296 freebsd10_freebsd32_pipe(struct thread *td, 297 struct freebsd10_freebsd32_pipe_args *uap) { 298 299 return (freebsd10_pipe(td, (struct freebsd10_pipe_args*)uap)); 300 } 301 #endif 302 303 int 304 freebsd32_sigaltstack(struct thread *td, 305 struct freebsd32_sigaltstack_args *uap) 306 { 307 struct sigaltstack32 s32; 308 struct sigaltstack ss, oss, *ssp; 309 int error; 310 311 if (uap->ss != NULL) { 312 error = copyin(uap->ss, &s32, sizeof(s32)); 313 if (error) 314 return (error); 315 PTRIN_CP(s32, ss, ss_sp); 316 CP(s32, ss, ss_size); 317 CP(s32, ss, ss_flags); 318 ssp = &ss; 319 } else 320 ssp = NULL; 321 error = kern_sigaltstack(td, ssp, &oss); 322 if (error == 0 && uap->oss != NULL) { 323 PTROUT_CP(oss, s32, ss_sp); 324 CP(oss, s32, ss_size); 325 CP(oss, s32, ss_flags); 326 error = copyout(&s32, uap->oss, sizeof(s32)); 327 } 328 return (error); 329 } 330 331 /* 332 * Custom version of exec_copyin_args() so that we can translate 333 * the pointers. 334 */ 335 int 336 freebsd32_exec_copyin_args(struct image_args *args, char *fname, 337 enum uio_seg segflg, u_int32_t *argv, u_int32_t *envv) 338 { 339 char *argp, *envp; 340 u_int32_t *p32, arg; 341 size_t length; 342 int error; 343 344 bzero(args, sizeof(*args)); 345 if (argv == NULL) 346 return (EFAULT); 347 348 /* 349 * Allocate demand-paged memory for the file name, argument, and 350 * environment strings. 351 */ 352 error = exec_alloc_args(args); 353 if (error != 0) 354 return (error); 355 356 /* 357 * Copy the file name. 358 */ 359 if (fname != NULL) { 360 args->fname = args->buf; 361 error = (segflg == UIO_SYSSPACE) ? 362 copystr(fname, args->fname, PATH_MAX, &length) : 363 copyinstr(fname, args->fname, PATH_MAX, &length); 364 if (error != 0) 365 goto err_exit; 366 } else 367 length = 0; 368 369 args->begin_argv = args->buf + length; 370 args->endp = args->begin_argv; 371 args->stringspace = ARG_MAX; 372 373 /* 374 * extract arguments first 375 */ 376 p32 = argv; 377 for (;;) { 378 error = copyin(p32++, &arg, sizeof(arg)); 379 if (error) 380 goto err_exit; 381 if (arg == 0) 382 break; 383 argp = PTRIN(arg); 384 error = copyinstr(argp, args->endp, args->stringspace, &length); 385 if (error) { 386 if (error == ENAMETOOLONG) 387 error = E2BIG; 388 goto err_exit; 389 } 390 args->stringspace -= length; 391 args->endp += length; 392 args->argc++; 393 } 394 395 args->begin_envv = args->endp; 396 397 /* 398 * extract environment strings 399 */ 400 if (envv) { 401 p32 = envv; 402 for (;;) { 403 error = copyin(p32++, &arg, sizeof(arg)); 404 if (error) 405 goto err_exit; 406 if (arg == 0) 407 break; 408 envp = PTRIN(arg); 409 error = copyinstr(envp, args->endp, args->stringspace, 410 &length); 411 if (error) { 412 if (error == ENAMETOOLONG) 413 error = E2BIG; 414 goto err_exit; 415 } 416 args->stringspace -= length; 417 args->endp += length; 418 args->envc++; 419 } 420 } 421 422 return (0); 423 424 err_exit: 425 exec_free_args(args); 426 return (error); 427 } 428 429 int 430 freebsd32_execve(struct thread *td, struct freebsd32_execve_args *uap) 431 { 432 struct image_args eargs; 433 struct vmspace *oldvmspace; 434 int error; 435 436 error = pre_execve(td, &oldvmspace); 437 if (error != 0) 438 return (error); 439 error = freebsd32_exec_copyin_args(&eargs, uap->fname, UIO_USERSPACE, 440 uap->argv, uap->envv); 441 if (error == 0) 442 error = kern_execve(td, &eargs, NULL); 443 post_execve(td, error, oldvmspace); 444 return (error); 445 } 446 447 int 448 freebsd32_fexecve(struct thread *td, struct freebsd32_fexecve_args *uap) 449 { 450 struct image_args eargs; 451 struct vmspace *oldvmspace; 452 int error; 453 454 error = pre_execve(td, &oldvmspace); 455 if (error != 0) 456 return (error); 457 error = freebsd32_exec_copyin_args(&eargs, NULL, UIO_SYSSPACE, 458 uap->argv, uap->envv); 459 if (error == 0) { 460 eargs.fd = uap->fd; 461 error = kern_execve(td, &eargs, NULL); 462 } 463 post_execve(td, error, oldvmspace); 464 return (error); 465 } 466 467 #if defined(COMPAT_FREEBSD11) 468 int 469 freebsd11_freebsd32_mknod(struct thread *td, 470 struct freebsd11_freebsd32_mknod_args *uap) 471 { 472 473 return (kern_mknodat(td, AT_FDCWD, uap->path, UIO_USERSPACE, uap->mode, 474 uap->dev)); 475 } 476 477 int 478 freebsd11_freebsd32_mknodat(struct thread *td, 479 struct freebsd11_freebsd32_mknodat_args *uap) 480 { 481 482 return (kern_mknodat(td, uap->fd, uap->path, UIO_USERSPACE, uap->mode, 483 uap->dev)); 484 } 485 #endif /* COMPAT_FREEBSD11 */ 486 487 int 488 freebsd32_mprotect(struct thread *td, struct freebsd32_mprotect_args *uap) 489 { 490 int prot; 491 492 prot = uap->prot; 493 #if defined(__amd64__) 494 if (i386_read_exec && (prot & PROT_READ) != 0) 495 prot |= PROT_EXEC; 496 #endif 497 return (kern_mprotect(td, (uintptr_t)PTRIN(uap->addr), uap->len, 498 prot)); 499 } 500 501 int 502 freebsd32_mmap(struct thread *td, struct freebsd32_mmap_args *uap) 503 { 504 int prot; 505 506 prot = uap->prot; 507 #if defined(__amd64__) 508 if (i386_read_exec && (prot & PROT_READ)) 509 prot |= PROT_EXEC; 510 #endif 511 512 return (kern_mmap(td, (uintptr_t)uap->addr, uap->len, prot, 513 uap->flags, uap->fd, PAIR32TO64(off_t, uap->pos))); 514 } 515 516 #ifdef COMPAT_FREEBSD6 517 int 518 freebsd6_freebsd32_mmap(struct thread *td, 519 struct freebsd6_freebsd32_mmap_args *uap) 520 { 521 int prot; 522 523 prot = uap->prot; 524 #if defined(__amd64__) 525 if (i386_read_exec && (prot & PROT_READ)) 526 prot |= PROT_EXEC; 527 #endif 528 529 return (kern_mmap(td, (uintptr_t)uap->addr, uap->len, prot, 530 uap->flags, uap->fd, PAIR32TO64(off_t, uap->pos))); 531 } 532 #endif 533 534 int 535 freebsd32_setitimer(struct thread *td, struct freebsd32_setitimer_args *uap) 536 { 537 struct itimerval itv, oitv, *itvp; 538 struct itimerval32 i32; 539 int error; 540 541 if (uap->itv != NULL) { 542 error = copyin(uap->itv, &i32, sizeof(i32)); 543 if (error) 544 return (error); 545 TV_CP(i32, itv, it_interval); 546 TV_CP(i32, itv, it_value); 547 itvp = &itv; 548 } else 549 itvp = NULL; 550 error = kern_setitimer(td, uap->which, itvp, &oitv); 551 if (error || uap->oitv == NULL) 552 return (error); 553 TV_CP(oitv, i32, it_interval); 554 TV_CP(oitv, i32, it_value); 555 return (copyout(&i32, uap->oitv, sizeof(i32))); 556 } 557 558 int 559 freebsd32_getitimer(struct thread *td, struct freebsd32_getitimer_args *uap) 560 { 561 struct itimerval itv; 562 struct itimerval32 i32; 563 int error; 564 565 error = kern_getitimer(td, uap->which, &itv); 566 if (error || uap->itv == NULL) 567 return (error); 568 TV_CP(itv, i32, it_interval); 569 TV_CP(itv, i32, it_value); 570 return (copyout(&i32, uap->itv, sizeof(i32))); 571 } 572 573 int 574 freebsd32_select(struct thread *td, struct freebsd32_select_args *uap) 575 { 576 struct timeval32 tv32; 577 struct timeval tv, *tvp; 578 int error; 579 580 if (uap->tv != NULL) { 581 error = copyin(uap->tv, &tv32, sizeof(tv32)); 582 if (error) 583 return (error); 584 CP(tv32, tv, tv_sec); 585 CP(tv32, tv, tv_usec); 586 tvp = &tv; 587 } else 588 tvp = NULL; 589 /* 590 * XXX Do pointers need PTRIN()? 591 */ 592 return (kern_select(td, uap->nd, uap->in, uap->ou, uap->ex, tvp, 593 sizeof(int32_t) * 8)); 594 } 595 596 int 597 freebsd32_pselect(struct thread *td, struct freebsd32_pselect_args *uap) 598 { 599 struct timespec32 ts32; 600 struct timespec ts; 601 struct timeval tv, *tvp; 602 sigset_t set, *uset; 603 int error; 604 605 if (uap->ts != NULL) { 606 error = copyin(uap->ts, &ts32, sizeof(ts32)); 607 if (error != 0) 608 return (error); 609 CP(ts32, ts, tv_sec); 610 CP(ts32, ts, tv_nsec); 611 TIMESPEC_TO_TIMEVAL(&tv, &ts); 612 tvp = &tv; 613 } else 614 tvp = NULL; 615 if (uap->sm != NULL) { 616 error = copyin(uap->sm, &set, sizeof(set)); 617 if (error != 0) 618 return (error); 619 uset = &set; 620 } else 621 uset = NULL; 622 /* 623 * XXX Do pointers need PTRIN()? 624 */ 625 error = kern_pselect(td, uap->nd, uap->in, uap->ou, uap->ex, tvp, 626 uset, sizeof(int32_t) * 8); 627 return (error); 628 } 629 630 /* 631 * Copy 'count' items into the destination list pointed to by uap->eventlist. 632 */ 633 static int 634 freebsd32_kevent_copyout(void *arg, struct kevent *kevp, int count) 635 { 636 struct freebsd32_kevent_args *uap; 637 struct kevent32 ks32[KQ_NEVENTS]; 638 uint64_t e; 639 int i, j, error; 640 641 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count)); 642 uap = (struct freebsd32_kevent_args *)arg; 643 644 for (i = 0; i < count; i++) { 645 CP(kevp[i], ks32[i], ident); 646 CP(kevp[i], ks32[i], filter); 647 CP(kevp[i], ks32[i], flags); 648 CP(kevp[i], ks32[i], fflags); 649 #if BYTE_ORDER == LITTLE_ENDIAN 650 ks32[i].data1 = kevp[i].data; 651 ks32[i].data2 = kevp[i].data >> 32; 652 #else 653 ks32[i].data1 = kevp[i].data >> 32; 654 ks32[i].data2 = kevp[i].data; 655 #endif 656 PTROUT_CP(kevp[i], ks32[i], udata); 657 for (j = 0; j < nitems(kevp->ext); j++) { 658 e = kevp[i].ext[j]; 659 #if BYTE_ORDER == LITTLE_ENDIAN 660 ks32[i].ext64[2 * j] = e; 661 ks32[i].ext64[2 * j + 1] = e >> 32; 662 #else 663 ks32[i].ext64[2 * j] = e >> 32; 664 ks32[i].ext64[2 * j + 1] = e; 665 #endif 666 } 667 } 668 error = copyout(ks32, uap->eventlist, count * sizeof *ks32); 669 if (error == 0) 670 uap->eventlist += count; 671 return (error); 672 } 673 674 /* 675 * Copy 'count' items from the list pointed to by uap->changelist. 676 */ 677 static int 678 freebsd32_kevent_copyin(void *arg, struct kevent *kevp, int count) 679 { 680 struct freebsd32_kevent_args *uap; 681 struct kevent32 ks32[KQ_NEVENTS]; 682 uint64_t e; 683 int i, j, error; 684 685 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count)); 686 uap = (struct freebsd32_kevent_args *)arg; 687 688 error = copyin(uap->changelist, ks32, count * sizeof *ks32); 689 if (error) 690 goto done; 691 uap->changelist += count; 692 693 for (i = 0; i < count; i++) { 694 CP(ks32[i], kevp[i], ident); 695 CP(ks32[i], kevp[i], filter); 696 CP(ks32[i], kevp[i], flags); 697 CP(ks32[i], kevp[i], fflags); 698 kevp[i].data = PAIR32TO64(uint64_t, ks32[i].data); 699 PTRIN_CP(ks32[i], kevp[i], udata); 700 for (j = 0; j < nitems(kevp->ext); j++) { 701 #if BYTE_ORDER == LITTLE_ENDIAN 702 e = ks32[i].ext64[2 * j + 1]; 703 e <<= 32; 704 e += ks32[i].ext64[2 * j]; 705 #else 706 e = ks32[i].ext64[2 * j]; 707 e <<= 32; 708 e += ks32[i].ext64[2 * j + 1]; 709 #endif 710 kevp[i].ext[j] = e; 711 } 712 } 713 done: 714 return (error); 715 } 716 717 int 718 freebsd32_kevent(struct thread *td, struct freebsd32_kevent_args *uap) 719 { 720 struct timespec32 ts32; 721 struct timespec ts, *tsp; 722 struct kevent_copyops k_ops = { 723 .arg = uap, 724 .k_copyout = freebsd32_kevent_copyout, 725 .k_copyin = freebsd32_kevent_copyin, 726 }; 727 #ifdef KTRACE 728 struct kevent32 *eventlist = uap->eventlist; 729 #endif 730 int error; 731 732 if (uap->timeout) { 733 error = copyin(uap->timeout, &ts32, sizeof(ts32)); 734 if (error) 735 return (error); 736 CP(ts32, ts, tv_sec); 737 CP(ts32, ts, tv_nsec); 738 tsp = &ts; 739 } else 740 tsp = NULL; 741 #ifdef KTRACE 742 if (KTRPOINT(td, KTR_STRUCT_ARRAY)) 743 ktrstructarray("kevent32", UIO_USERSPACE, uap->changelist, 744 uap->nchanges, sizeof(struct kevent32)); 745 #endif 746 error = kern_kevent(td, uap->fd, uap->nchanges, uap->nevents, 747 &k_ops, tsp); 748 #ifdef KTRACE 749 if (error == 0 && KTRPOINT(td, KTR_STRUCT_ARRAY)) 750 ktrstructarray("kevent32", UIO_USERSPACE, eventlist, 751 td->td_retval[0], sizeof(struct kevent32)); 752 #endif 753 return (error); 754 } 755 756 #ifdef COMPAT_FREEBSD11 757 static int 758 freebsd32_kevent11_copyout(void *arg, struct kevent *kevp, int count) 759 { 760 struct freebsd11_freebsd32_kevent_args *uap; 761 struct kevent32_freebsd11 ks32[KQ_NEVENTS]; 762 int i, error; 763 764 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count)); 765 uap = (struct freebsd11_freebsd32_kevent_args *)arg; 766 767 for (i = 0; i < count; i++) { 768 CP(kevp[i], ks32[i], ident); 769 CP(kevp[i], ks32[i], filter); 770 CP(kevp[i], ks32[i], flags); 771 CP(kevp[i], ks32[i], fflags); 772 CP(kevp[i], ks32[i], data); 773 PTROUT_CP(kevp[i], ks32[i], udata); 774 } 775 error = copyout(ks32, uap->eventlist, count * sizeof *ks32); 776 if (error == 0) 777 uap->eventlist += count; 778 return (error); 779 } 780 781 /* 782 * Copy 'count' items from the list pointed to by uap->changelist. 783 */ 784 static int 785 freebsd32_kevent11_copyin(void *arg, struct kevent *kevp, int count) 786 { 787 struct freebsd11_freebsd32_kevent_args *uap; 788 struct kevent32_freebsd11 ks32[KQ_NEVENTS]; 789 int i, j, error; 790 791 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count)); 792 uap = (struct freebsd11_freebsd32_kevent_args *)arg; 793 794 error = copyin(uap->changelist, ks32, count * sizeof *ks32); 795 if (error) 796 goto done; 797 uap->changelist += count; 798 799 for (i = 0; i < count; i++) { 800 CP(ks32[i], kevp[i], ident); 801 CP(ks32[i], kevp[i], filter); 802 CP(ks32[i], kevp[i], flags); 803 CP(ks32[i], kevp[i], fflags); 804 CP(ks32[i], kevp[i], data); 805 PTRIN_CP(ks32[i], kevp[i], udata); 806 for (j = 0; j < nitems(kevp->ext); j++) 807 kevp[i].ext[j] = 0; 808 } 809 done: 810 return (error); 811 } 812 813 int 814 freebsd11_freebsd32_kevent(struct thread *td, 815 struct freebsd11_freebsd32_kevent_args *uap) 816 { 817 struct timespec32 ts32; 818 struct timespec ts, *tsp; 819 struct kevent_copyops k_ops = { 820 .arg = uap, 821 .k_copyout = freebsd32_kevent11_copyout, 822 .k_copyin = freebsd32_kevent11_copyin, 823 }; 824 #ifdef KTRACE 825 struct kevent32_freebsd11 *eventlist = uap->eventlist; 826 #endif 827 int error; 828 829 if (uap->timeout) { 830 error = copyin(uap->timeout, &ts32, sizeof(ts32)); 831 if (error) 832 return (error); 833 CP(ts32, ts, tv_sec); 834 CP(ts32, ts, tv_nsec); 835 tsp = &ts; 836 } else 837 tsp = NULL; 838 #ifdef KTRACE 839 if (KTRPOINT(td, KTR_STRUCT_ARRAY)) 840 ktrstructarray("kevent32_freebsd11", UIO_USERSPACE, 841 uap->changelist, uap->nchanges, 842 sizeof(struct kevent32_freebsd11)); 843 #endif 844 error = kern_kevent(td, uap->fd, uap->nchanges, uap->nevents, 845 &k_ops, tsp); 846 #ifdef KTRACE 847 if (error == 0 && KTRPOINT(td, KTR_STRUCT_ARRAY)) 848 ktrstructarray("kevent32_freebsd11", UIO_USERSPACE, 849 eventlist, td->td_retval[0], 850 sizeof(struct kevent32_freebsd11)); 851 #endif 852 return (error); 853 } 854 #endif 855 856 int 857 freebsd32_gettimeofday(struct thread *td, 858 struct freebsd32_gettimeofday_args *uap) 859 { 860 struct timeval atv; 861 struct timeval32 atv32; 862 struct timezone rtz; 863 int error = 0; 864 865 if (uap->tp) { 866 microtime(&atv); 867 CP(atv, atv32, tv_sec); 868 CP(atv, atv32, tv_usec); 869 error = copyout(&atv32, uap->tp, sizeof (atv32)); 870 } 871 if (error == 0 && uap->tzp != NULL) { 872 rtz.tz_minuteswest = tz_minuteswest; 873 rtz.tz_dsttime = tz_dsttime; 874 error = copyout(&rtz, uap->tzp, sizeof (rtz)); 875 } 876 return (error); 877 } 878 879 int 880 freebsd32_getrusage(struct thread *td, struct freebsd32_getrusage_args *uap) 881 { 882 struct rusage32 s32; 883 struct rusage s; 884 int error; 885 886 error = kern_getrusage(td, uap->who, &s); 887 if (error) 888 return (error); 889 if (uap->rusage != NULL) { 890 freebsd32_rusage_out(&s, &s32); 891 error = copyout(&s32, uap->rusage, sizeof(s32)); 892 } 893 return (error); 894 } 895 896 static int 897 freebsd32_copyinuio(struct iovec32 *iovp, u_int iovcnt, struct uio **uiop) 898 { 899 struct iovec32 iov32; 900 struct iovec *iov; 901 struct uio *uio; 902 u_int iovlen; 903 int error, i; 904 905 *uiop = NULL; 906 if (iovcnt > UIO_MAXIOV) 907 return (EINVAL); 908 iovlen = iovcnt * sizeof(struct iovec); 909 uio = malloc(iovlen + sizeof *uio, M_IOV, M_WAITOK); 910 iov = (struct iovec *)(uio + 1); 911 for (i = 0; i < iovcnt; i++) { 912 error = copyin(&iovp[i], &iov32, sizeof(struct iovec32)); 913 if (error) { 914 free(uio, M_IOV); 915 return (error); 916 } 917 iov[i].iov_base = PTRIN(iov32.iov_base); 918 iov[i].iov_len = iov32.iov_len; 919 } 920 uio->uio_iov = iov; 921 uio->uio_iovcnt = iovcnt; 922 uio->uio_segflg = UIO_USERSPACE; 923 uio->uio_offset = -1; 924 uio->uio_resid = 0; 925 for (i = 0; i < iovcnt; i++) { 926 if (iov->iov_len > INT_MAX - uio->uio_resid) { 927 free(uio, M_IOV); 928 return (EINVAL); 929 } 930 uio->uio_resid += iov->iov_len; 931 iov++; 932 } 933 *uiop = uio; 934 return (0); 935 } 936 937 int 938 freebsd32_readv(struct thread *td, struct freebsd32_readv_args *uap) 939 { 940 struct uio *auio; 941 int error; 942 943 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 944 if (error) 945 return (error); 946 error = kern_readv(td, uap->fd, auio); 947 free(auio, M_IOV); 948 return (error); 949 } 950 951 int 952 freebsd32_writev(struct thread *td, struct freebsd32_writev_args *uap) 953 { 954 struct uio *auio; 955 int error; 956 957 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 958 if (error) 959 return (error); 960 error = kern_writev(td, uap->fd, auio); 961 free(auio, M_IOV); 962 return (error); 963 } 964 965 int 966 freebsd32_preadv(struct thread *td, struct freebsd32_preadv_args *uap) 967 { 968 struct uio *auio; 969 int error; 970 971 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 972 if (error) 973 return (error); 974 error = kern_preadv(td, uap->fd, auio, PAIR32TO64(off_t,uap->offset)); 975 free(auio, M_IOV); 976 return (error); 977 } 978 979 int 980 freebsd32_pwritev(struct thread *td, struct freebsd32_pwritev_args *uap) 981 { 982 struct uio *auio; 983 int error; 984 985 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 986 if (error) 987 return (error); 988 error = kern_pwritev(td, uap->fd, auio, PAIR32TO64(off_t,uap->offset)); 989 free(auio, M_IOV); 990 return (error); 991 } 992 993 int 994 freebsd32_copyiniov(struct iovec32 *iovp32, u_int iovcnt, struct iovec **iovp, 995 int error) 996 { 997 struct iovec32 iov32; 998 struct iovec *iov; 999 u_int iovlen; 1000 int i; 1001 1002 *iovp = NULL; 1003 if (iovcnt > UIO_MAXIOV) 1004 return (error); 1005 iovlen = iovcnt * sizeof(struct iovec); 1006 iov = malloc(iovlen, M_IOV, M_WAITOK); 1007 for (i = 0; i < iovcnt; i++) { 1008 error = copyin(&iovp32[i], &iov32, sizeof(struct iovec32)); 1009 if (error) { 1010 free(iov, M_IOV); 1011 return (error); 1012 } 1013 iov[i].iov_base = PTRIN(iov32.iov_base); 1014 iov[i].iov_len = iov32.iov_len; 1015 } 1016 *iovp = iov; 1017 return (0); 1018 } 1019 1020 static int 1021 freebsd32_copyinmsghdr(struct msghdr32 *msg32, struct msghdr *msg) 1022 { 1023 struct msghdr32 m32; 1024 int error; 1025 1026 error = copyin(msg32, &m32, sizeof(m32)); 1027 if (error) 1028 return (error); 1029 msg->msg_name = PTRIN(m32.msg_name); 1030 msg->msg_namelen = m32.msg_namelen; 1031 msg->msg_iov = PTRIN(m32.msg_iov); 1032 msg->msg_iovlen = m32.msg_iovlen; 1033 msg->msg_control = PTRIN(m32.msg_control); 1034 msg->msg_controllen = m32.msg_controllen; 1035 msg->msg_flags = m32.msg_flags; 1036 return (0); 1037 } 1038 1039 static int 1040 freebsd32_copyoutmsghdr(struct msghdr *msg, struct msghdr32 *msg32) 1041 { 1042 struct msghdr32 m32; 1043 int error; 1044 1045 m32.msg_name = PTROUT(msg->msg_name); 1046 m32.msg_namelen = msg->msg_namelen; 1047 m32.msg_iov = PTROUT(msg->msg_iov); 1048 m32.msg_iovlen = msg->msg_iovlen; 1049 m32.msg_control = PTROUT(msg->msg_control); 1050 m32.msg_controllen = msg->msg_controllen; 1051 m32.msg_flags = msg->msg_flags; 1052 error = copyout(&m32, msg32, sizeof(m32)); 1053 return (error); 1054 } 1055 1056 #ifndef __mips__ 1057 #define FREEBSD32_ALIGNBYTES (sizeof(int) - 1) 1058 #else 1059 #define FREEBSD32_ALIGNBYTES (sizeof(long) - 1) 1060 #endif 1061 #define FREEBSD32_ALIGN(p) \ 1062 (((u_long)(p) + FREEBSD32_ALIGNBYTES) & ~FREEBSD32_ALIGNBYTES) 1063 #define FREEBSD32_CMSG_SPACE(l) \ 1064 (FREEBSD32_ALIGN(sizeof(struct cmsghdr)) + FREEBSD32_ALIGN(l)) 1065 1066 #define FREEBSD32_CMSG_DATA(cmsg) ((unsigned char *)(cmsg) + \ 1067 FREEBSD32_ALIGN(sizeof(struct cmsghdr))) 1068 1069 static size_t 1070 freebsd32_cmsg_convert(struct cmsghdr *cm, void *data, socklen_t datalen) 1071 { 1072 size_t copylen; 1073 union { 1074 struct timespec32 ts; 1075 struct timeval32 tv; 1076 struct bintime32 bt; 1077 } tmp32; 1078 1079 union { 1080 struct timespec ts; 1081 struct timeval tv; 1082 struct bintime bt; 1083 } *in; 1084 1085 in = data; 1086 copylen = 0; 1087 switch (cm->cmsg_level) { 1088 case SOL_SOCKET: 1089 switch (cm->cmsg_type) { 1090 case SCM_TIMESTAMP: 1091 TV_CP(*in, tmp32, tv); 1092 copylen = sizeof(tmp32.tv); 1093 break; 1094 1095 case SCM_BINTIME: 1096 BT_CP(*in, tmp32, bt); 1097 copylen = sizeof(tmp32.bt); 1098 break; 1099 1100 case SCM_REALTIME: 1101 case SCM_MONOTONIC: 1102 TS_CP(*in, tmp32, ts); 1103 copylen = sizeof(tmp32.ts); 1104 break; 1105 1106 default: 1107 break; 1108 } 1109 1110 default: 1111 break; 1112 } 1113 1114 if (copylen == 0) 1115 return (datalen); 1116 1117 KASSERT((datalen >= copylen), ("corrupted cmsghdr")); 1118 1119 bcopy(&tmp32, data, copylen); 1120 return (copylen); 1121 } 1122 1123 static int 1124 freebsd32_copy_msg_out(struct msghdr *msg, struct mbuf *control) 1125 { 1126 struct cmsghdr *cm; 1127 void *data; 1128 socklen_t clen, datalen, datalen_out; 1129 int error; 1130 caddr_t ctlbuf; 1131 int len, maxlen, copylen; 1132 struct mbuf *m; 1133 error = 0; 1134 1135 len = msg->msg_controllen; 1136 maxlen = msg->msg_controllen; 1137 msg->msg_controllen = 0; 1138 1139 m = control; 1140 ctlbuf = msg->msg_control; 1141 1142 while (m && len > 0) { 1143 cm = mtod(m, struct cmsghdr *); 1144 clen = m->m_len; 1145 1146 while (cm != NULL) { 1147 1148 if (sizeof(struct cmsghdr) > clen || 1149 cm->cmsg_len > clen) { 1150 error = EINVAL; 1151 break; 1152 } 1153 1154 data = CMSG_DATA(cm); 1155 datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data; 1156 datalen_out = freebsd32_cmsg_convert(cm, data, datalen); 1157 1158 /* Adjust message length */ 1159 cm->cmsg_len = FREEBSD32_ALIGN(sizeof(struct cmsghdr)) + 1160 datalen_out; 1161 1162 /* Copy cmsghdr */ 1163 copylen = sizeof(struct cmsghdr); 1164 if (len < copylen) { 1165 msg->msg_flags |= MSG_CTRUNC; 1166 copylen = len; 1167 } 1168 1169 error = copyout(cm, ctlbuf, copylen); 1170 if (error) 1171 goto exit; 1172 1173 ctlbuf += FREEBSD32_ALIGN(copylen); 1174 len -= FREEBSD32_ALIGN(copylen); 1175 1176 if (len <= 0) 1177 break; 1178 1179 /* Copy data */ 1180 copylen = datalen_out; 1181 if (len < copylen) { 1182 msg->msg_flags |= MSG_CTRUNC; 1183 copylen = len; 1184 } 1185 1186 error = copyout(data, ctlbuf, copylen); 1187 if (error) 1188 goto exit; 1189 1190 ctlbuf += FREEBSD32_ALIGN(copylen); 1191 len -= FREEBSD32_ALIGN(copylen); 1192 1193 if (CMSG_SPACE(datalen) < clen) { 1194 clen -= CMSG_SPACE(datalen); 1195 cm = (struct cmsghdr *) 1196 ((caddr_t)cm + CMSG_SPACE(datalen)); 1197 } else { 1198 clen = 0; 1199 cm = NULL; 1200 } 1201 } 1202 m = m->m_next; 1203 } 1204 1205 msg->msg_controllen = (len <= 0) ? maxlen : ctlbuf - (caddr_t)msg->msg_control; 1206 1207 exit: 1208 return (error); 1209 1210 } 1211 1212 int 1213 freebsd32_recvmsg(td, uap) 1214 struct thread *td; 1215 struct freebsd32_recvmsg_args /* { 1216 int s; 1217 struct msghdr32 *msg; 1218 int flags; 1219 } */ *uap; 1220 { 1221 struct msghdr msg; 1222 struct msghdr32 m32; 1223 struct iovec *uiov, *iov; 1224 struct mbuf *control = NULL; 1225 struct mbuf **controlp; 1226 1227 int error; 1228 error = copyin(uap->msg, &m32, sizeof(m32)); 1229 if (error) 1230 return (error); 1231 error = freebsd32_copyinmsghdr(uap->msg, &msg); 1232 if (error) 1233 return (error); 1234 error = freebsd32_copyiniov(PTRIN(m32.msg_iov), m32.msg_iovlen, &iov, 1235 EMSGSIZE); 1236 if (error) 1237 return (error); 1238 msg.msg_flags = uap->flags; 1239 uiov = msg.msg_iov; 1240 msg.msg_iov = iov; 1241 1242 controlp = (msg.msg_control != NULL) ? &control : NULL; 1243 error = kern_recvit(td, uap->s, &msg, UIO_USERSPACE, controlp); 1244 if (error == 0) { 1245 msg.msg_iov = uiov; 1246 1247 if (control != NULL) 1248 error = freebsd32_copy_msg_out(&msg, control); 1249 else 1250 msg.msg_controllen = 0; 1251 1252 if (error == 0) 1253 error = freebsd32_copyoutmsghdr(&msg, uap->msg); 1254 } 1255 free(iov, M_IOV); 1256 1257 if (control != NULL) 1258 m_freem(control); 1259 1260 return (error); 1261 } 1262 1263 /* 1264 * Copy-in the array of control messages constructed using alignment 1265 * and padding suitable for a 32-bit environment and construct an 1266 * mbuf using alignment and padding suitable for a 64-bit kernel. 1267 * The alignment and padding are defined indirectly by CMSG_DATA(), 1268 * CMSG_SPACE() and CMSG_LEN(). 1269 */ 1270 static int 1271 freebsd32_copyin_control(struct mbuf **mp, caddr_t buf, u_int buflen) 1272 { 1273 struct mbuf *m; 1274 void *md; 1275 u_int idx, len, msglen; 1276 int error; 1277 1278 buflen = FREEBSD32_ALIGN(buflen); 1279 1280 if (buflen > MCLBYTES) 1281 return (EINVAL); 1282 1283 /* 1284 * Iterate over the buffer and get the length of each message 1285 * in there. This has 32-bit alignment and padding. Use it to 1286 * determine the length of these messages when using 64-bit 1287 * alignment and padding. 1288 */ 1289 idx = 0; 1290 len = 0; 1291 while (idx < buflen) { 1292 error = copyin(buf + idx, &msglen, sizeof(msglen)); 1293 if (error) 1294 return (error); 1295 if (msglen < sizeof(struct cmsghdr)) 1296 return (EINVAL); 1297 msglen = FREEBSD32_ALIGN(msglen); 1298 if (idx + msglen > buflen) 1299 return (EINVAL); 1300 idx += msglen; 1301 msglen += CMSG_ALIGN(sizeof(struct cmsghdr)) - 1302 FREEBSD32_ALIGN(sizeof(struct cmsghdr)); 1303 len += CMSG_ALIGN(msglen); 1304 } 1305 1306 if (len > MCLBYTES) 1307 return (EINVAL); 1308 1309 m = m_get(M_WAITOK, MT_CONTROL); 1310 if (len > MLEN) 1311 MCLGET(m, M_WAITOK); 1312 m->m_len = len; 1313 1314 md = mtod(m, void *); 1315 while (buflen > 0) { 1316 error = copyin(buf, md, sizeof(struct cmsghdr)); 1317 if (error) 1318 break; 1319 msglen = *(u_int *)md; 1320 msglen = FREEBSD32_ALIGN(msglen); 1321 1322 /* Modify the message length to account for alignment. */ 1323 *(u_int *)md = msglen + CMSG_ALIGN(sizeof(struct cmsghdr)) - 1324 FREEBSD32_ALIGN(sizeof(struct cmsghdr)); 1325 1326 md = (char *)md + CMSG_ALIGN(sizeof(struct cmsghdr)); 1327 buf += FREEBSD32_ALIGN(sizeof(struct cmsghdr)); 1328 buflen -= FREEBSD32_ALIGN(sizeof(struct cmsghdr)); 1329 1330 msglen -= FREEBSD32_ALIGN(sizeof(struct cmsghdr)); 1331 if (msglen > 0) { 1332 error = copyin(buf, md, msglen); 1333 if (error) 1334 break; 1335 md = (char *)md + CMSG_ALIGN(msglen); 1336 buf += msglen; 1337 buflen -= msglen; 1338 } 1339 } 1340 1341 if (error) 1342 m_free(m); 1343 else 1344 *mp = m; 1345 return (error); 1346 } 1347 1348 int 1349 freebsd32_sendmsg(struct thread *td, 1350 struct freebsd32_sendmsg_args *uap) 1351 { 1352 struct msghdr msg; 1353 struct msghdr32 m32; 1354 struct iovec *iov; 1355 struct mbuf *control = NULL; 1356 struct sockaddr *to = NULL; 1357 int error; 1358 1359 error = copyin(uap->msg, &m32, sizeof(m32)); 1360 if (error) 1361 return (error); 1362 error = freebsd32_copyinmsghdr(uap->msg, &msg); 1363 if (error) 1364 return (error); 1365 error = freebsd32_copyiniov(PTRIN(m32.msg_iov), m32.msg_iovlen, &iov, 1366 EMSGSIZE); 1367 if (error) 1368 return (error); 1369 msg.msg_iov = iov; 1370 if (msg.msg_name != NULL) { 1371 error = getsockaddr(&to, msg.msg_name, msg.msg_namelen); 1372 if (error) { 1373 to = NULL; 1374 goto out; 1375 } 1376 msg.msg_name = to; 1377 } 1378 1379 if (msg.msg_control) { 1380 if (msg.msg_controllen < sizeof(struct cmsghdr)) { 1381 error = EINVAL; 1382 goto out; 1383 } 1384 1385 error = freebsd32_copyin_control(&control, msg.msg_control, 1386 msg.msg_controllen); 1387 if (error) 1388 goto out; 1389 1390 msg.msg_control = NULL; 1391 msg.msg_controllen = 0; 1392 } 1393 1394 error = kern_sendit(td, uap->s, &msg, uap->flags, control, 1395 UIO_USERSPACE); 1396 1397 out: 1398 free(iov, M_IOV); 1399 if (to) 1400 free(to, M_SONAME); 1401 return (error); 1402 } 1403 1404 int 1405 freebsd32_recvfrom(struct thread *td, 1406 struct freebsd32_recvfrom_args *uap) 1407 { 1408 struct msghdr msg; 1409 struct iovec aiov; 1410 int error; 1411 1412 if (uap->fromlenaddr) { 1413 error = copyin(PTRIN(uap->fromlenaddr), &msg.msg_namelen, 1414 sizeof(msg.msg_namelen)); 1415 if (error) 1416 return (error); 1417 } else { 1418 msg.msg_namelen = 0; 1419 } 1420 1421 msg.msg_name = PTRIN(uap->from); 1422 msg.msg_iov = &aiov; 1423 msg.msg_iovlen = 1; 1424 aiov.iov_base = PTRIN(uap->buf); 1425 aiov.iov_len = uap->len; 1426 msg.msg_control = NULL; 1427 msg.msg_flags = uap->flags; 1428 error = kern_recvit(td, uap->s, &msg, UIO_USERSPACE, NULL); 1429 if (error == 0 && uap->fromlenaddr) 1430 error = copyout(&msg.msg_namelen, PTRIN(uap->fromlenaddr), 1431 sizeof (msg.msg_namelen)); 1432 return (error); 1433 } 1434 1435 int 1436 freebsd32_settimeofday(struct thread *td, 1437 struct freebsd32_settimeofday_args *uap) 1438 { 1439 struct timeval32 tv32; 1440 struct timeval tv, *tvp; 1441 struct timezone tz, *tzp; 1442 int error; 1443 1444 if (uap->tv) { 1445 error = copyin(uap->tv, &tv32, sizeof(tv32)); 1446 if (error) 1447 return (error); 1448 CP(tv32, tv, tv_sec); 1449 CP(tv32, tv, tv_usec); 1450 tvp = &tv; 1451 } else 1452 tvp = NULL; 1453 if (uap->tzp) { 1454 error = copyin(uap->tzp, &tz, sizeof(tz)); 1455 if (error) 1456 return (error); 1457 tzp = &tz; 1458 } else 1459 tzp = NULL; 1460 return (kern_settimeofday(td, tvp, tzp)); 1461 } 1462 1463 int 1464 freebsd32_utimes(struct thread *td, struct freebsd32_utimes_args *uap) 1465 { 1466 struct timeval32 s32[2]; 1467 struct timeval s[2], *sp; 1468 int error; 1469 1470 if (uap->tptr != NULL) { 1471 error = copyin(uap->tptr, s32, sizeof(s32)); 1472 if (error) 1473 return (error); 1474 CP(s32[0], s[0], tv_sec); 1475 CP(s32[0], s[0], tv_usec); 1476 CP(s32[1], s[1], tv_sec); 1477 CP(s32[1], s[1], tv_usec); 1478 sp = s; 1479 } else 1480 sp = NULL; 1481 return (kern_utimesat(td, AT_FDCWD, uap->path, UIO_USERSPACE, 1482 sp, UIO_SYSSPACE)); 1483 } 1484 1485 int 1486 freebsd32_lutimes(struct thread *td, struct freebsd32_lutimes_args *uap) 1487 { 1488 struct timeval32 s32[2]; 1489 struct timeval s[2], *sp; 1490 int error; 1491 1492 if (uap->tptr != NULL) { 1493 error = copyin(uap->tptr, s32, sizeof(s32)); 1494 if (error) 1495 return (error); 1496 CP(s32[0], s[0], tv_sec); 1497 CP(s32[0], s[0], tv_usec); 1498 CP(s32[1], s[1], tv_sec); 1499 CP(s32[1], s[1], tv_usec); 1500 sp = s; 1501 } else 1502 sp = NULL; 1503 return (kern_lutimes(td, uap->path, UIO_USERSPACE, sp, UIO_SYSSPACE)); 1504 } 1505 1506 int 1507 freebsd32_futimes(struct thread *td, struct freebsd32_futimes_args *uap) 1508 { 1509 struct timeval32 s32[2]; 1510 struct timeval s[2], *sp; 1511 int error; 1512 1513 if (uap->tptr != NULL) { 1514 error = copyin(uap->tptr, s32, sizeof(s32)); 1515 if (error) 1516 return (error); 1517 CP(s32[0], s[0], tv_sec); 1518 CP(s32[0], s[0], tv_usec); 1519 CP(s32[1], s[1], tv_sec); 1520 CP(s32[1], s[1], tv_usec); 1521 sp = s; 1522 } else 1523 sp = NULL; 1524 return (kern_futimes(td, uap->fd, sp, UIO_SYSSPACE)); 1525 } 1526 1527 int 1528 freebsd32_futimesat(struct thread *td, struct freebsd32_futimesat_args *uap) 1529 { 1530 struct timeval32 s32[2]; 1531 struct timeval s[2], *sp; 1532 int error; 1533 1534 if (uap->times != NULL) { 1535 error = copyin(uap->times, s32, sizeof(s32)); 1536 if (error) 1537 return (error); 1538 CP(s32[0], s[0], tv_sec); 1539 CP(s32[0], s[0], tv_usec); 1540 CP(s32[1], s[1], tv_sec); 1541 CP(s32[1], s[1], tv_usec); 1542 sp = s; 1543 } else 1544 sp = NULL; 1545 return (kern_utimesat(td, uap->fd, uap->path, UIO_USERSPACE, 1546 sp, UIO_SYSSPACE)); 1547 } 1548 1549 int 1550 freebsd32_futimens(struct thread *td, struct freebsd32_futimens_args *uap) 1551 { 1552 struct timespec32 ts32[2]; 1553 struct timespec ts[2], *tsp; 1554 int error; 1555 1556 if (uap->times != NULL) { 1557 error = copyin(uap->times, ts32, sizeof(ts32)); 1558 if (error) 1559 return (error); 1560 CP(ts32[0], ts[0], tv_sec); 1561 CP(ts32[0], ts[0], tv_nsec); 1562 CP(ts32[1], ts[1], tv_sec); 1563 CP(ts32[1], ts[1], tv_nsec); 1564 tsp = ts; 1565 } else 1566 tsp = NULL; 1567 return (kern_futimens(td, uap->fd, tsp, UIO_SYSSPACE)); 1568 } 1569 1570 int 1571 freebsd32_utimensat(struct thread *td, struct freebsd32_utimensat_args *uap) 1572 { 1573 struct timespec32 ts32[2]; 1574 struct timespec ts[2], *tsp; 1575 int error; 1576 1577 if (uap->times != NULL) { 1578 error = copyin(uap->times, ts32, sizeof(ts32)); 1579 if (error) 1580 return (error); 1581 CP(ts32[0], ts[0], tv_sec); 1582 CP(ts32[0], ts[0], tv_nsec); 1583 CP(ts32[1], ts[1], tv_sec); 1584 CP(ts32[1], ts[1], tv_nsec); 1585 tsp = ts; 1586 } else 1587 tsp = NULL; 1588 return (kern_utimensat(td, uap->fd, uap->path, UIO_USERSPACE, 1589 tsp, UIO_SYSSPACE, uap->flag)); 1590 } 1591 1592 int 1593 freebsd32_adjtime(struct thread *td, struct freebsd32_adjtime_args *uap) 1594 { 1595 struct timeval32 tv32; 1596 struct timeval delta, olddelta, *deltap; 1597 int error; 1598 1599 if (uap->delta) { 1600 error = copyin(uap->delta, &tv32, sizeof(tv32)); 1601 if (error) 1602 return (error); 1603 CP(tv32, delta, tv_sec); 1604 CP(tv32, delta, tv_usec); 1605 deltap = δ 1606 } else 1607 deltap = NULL; 1608 error = kern_adjtime(td, deltap, &olddelta); 1609 if (uap->olddelta && error == 0) { 1610 CP(olddelta, tv32, tv_sec); 1611 CP(olddelta, tv32, tv_usec); 1612 error = copyout(&tv32, uap->olddelta, sizeof(tv32)); 1613 } 1614 return (error); 1615 } 1616 1617 #ifdef COMPAT_FREEBSD4 1618 int 1619 freebsd4_freebsd32_statfs(struct thread *td, struct freebsd4_freebsd32_statfs_args *uap) 1620 { 1621 struct statfs32 s32; 1622 struct statfs *sp; 1623 int error; 1624 1625 sp = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK); 1626 error = kern_statfs(td, uap->path, UIO_USERSPACE, sp); 1627 if (error == 0) { 1628 copy_statfs(sp, &s32); 1629 error = copyout(&s32, uap->buf, sizeof(s32)); 1630 } 1631 free(sp, M_STATFS); 1632 return (error); 1633 } 1634 #endif 1635 1636 #ifdef COMPAT_FREEBSD4 1637 int 1638 freebsd4_freebsd32_fstatfs(struct thread *td, struct freebsd4_freebsd32_fstatfs_args *uap) 1639 { 1640 struct statfs32 s32; 1641 struct statfs *sp; 1642 int error; 1643 1644 sp = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK); 1645 error = kern_fstatfs(td, uap->fd, sp); 1646 if (error == 0) { 1647 copy_statfs(sp, &s32); 1648 error = copyout(&s32, uap->buf, sizeof(s32)); 1649 } 1650 free(sp, M_STATFS); 1651 return (error); 1652 } 1653 #endif 1654 1655 #ifdef COMPAT_FREEBSD4 1656 int 1657 freebsd4_freebsd32_fhstatfs(struct thread *td, struct freebsd4_freebsd32_fhstatfs_args *uap) 1658 { 1659 struct statfs32 s32; 1660 struct statfs *sp; 1661 fhandle_t fh; 1662 int error; 1663 1664 if ((error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t))) != 0) 1665 return (error); 1666 sp = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK); 1667 error = kern_fhstatfs(td, fh, sp); 1668 if (error == 0) { 1669 copy_statfs(sp, &s32); 1670 error = copyout(&s32, uap->buf, sizeof(s32)); 1671 } 1672 free(sp, M_STATFS); 1673 return (error); 1674 } 1675 #endif 1676 1677 int 1678 freebsd32_pread(struct thread *td, struct freebsd32_pread_args *uap) 1679 { 1680 1681 return (kern_pread(td, uap->fd, uap->buf, uap->nbyte, 1682 PAIR32TO64(off_t, uap->offset))); 1683 } 1684 1685 int 1686 freebsd32_pwrite(struct thread *td, struct freebsd32_pwrite_args *uap) 1687 { 1688 1689 return (kern_pwrite(td, uap->fd, uap->buf, uap->nbyte, 1690 PAIR32TO64(off_t, uap->offset))); 1691 } 1692 1693 #ifdef COMPAT_43 1694 int 1695 ofreebsd32_lseek(struct thread *td, struct ofreebsd32_lseek_args *uap) 1696 { 1697 1698 return (kern_lseek(td, uap->fd, uap->offset, uap->whence)); 1699 } 1700 #endif 1701 1702 int 1703 freebsd32_lseek(struct thread *td, struct freebsd32_lseek_args *uap) 1704 { 1705 int error; 1706 off_t pos; 1707 1708 error = kern_lseek(td, uap->fd, PAIR32TO64(off_t, uap->offset), 1709 uap->whence); 1710 /* Expand the quad return into two parts for eax and edx */ 1711 pos = td->td_uretoff.tdu_off; 1712 td->td_retval[RETVAL_LO] = pos & 0xffffffff; /* %eax */ 1713 td->td_retval[RETVAL_HI] = pos >> 32; /* %edx */ 1714 return error; 1715 } 1716 1717 int 1718 freebsd32_truncate(struct thread *td, struct freebsd32_truncate_args *uap) 1719 { 1720 1721 return (kern_truncate(td, uap->path, UIO_USERSPACE, 1722 PAIR32TO64(off_t, uap->length))); 1723 } 1724 1725 int 1726 freebsd32_ftruncate(struct thread *td, struct freebsd32_ftruncate_args *uap) 1727 { 1728 1729 return (kern_ftruncate(td, uap->fd, PAIR32TO64(off_t, uap->length))); 1730 } 1731 1732 #ifdef COMPAT_43 1733 int 1734 ofreebsd32_getdirentries(struct thread *td, 1735 struct ofreebsd32_getdirentries_args *uap) 1736 { 1737 struct ogetdirentries_args ap; 1738 int error; 1739 long loff; 1740 int32_t loff_cut; 1741 1742 ap.fd = uap->fd; 1743 ap.buf = uap->buf; 1744 ap.count = uap->count; 1745 ap.basep = NULL; 1746 error = kern_ogetdirentries(td, &ap, &loff); 1747 if (error == 0) { 1748 loff_cut = loff; 1749 error = copyout(&loff_cut, uap->basep, sizeof(int32_t)); 1750 } 1751 return (error); 1752 } 1753 #endif 1754 1755 #if defined(COMPAT_FREEBSD11) 1756 int 1757 freebsd11_freebsd32_getdirentries(struct thread *td, 1758 struct freebsd11_freebsd32_getdirentries_args *uap) 1759 { 1760 long base; 1761 int32_t base32; 1762 int error; 1763 1764 error = freebsd11_kern_getdirentries(td, uap->fd, uap->buf, uap->count, 1765 &base, NULL); 1766 if (error) 1767 return (error); 1768 if (uap->basep != NULL) { 1769 base32 = base; 1770 error = copyout(&base32, uap->basep, sizeof(int32_t)); 1771 } 1772 return (error); 1773 } 1774 1775 int 1776 freebsd11_freebsd32_getdents(struct thread *td, 1777 struct freebsd11_freebsd32_getdents_args *uap) 1778 { 1779 struct freebsd11_freebsd32_getdirentries_args ap; 1780 1781 ap.fd = uap->fd; 1782 ap.buf = uap->buf; 1783 ap.count = uap->count; 1784 ap.basep = NULL; 1785 return (freebsd11_freebsd32_getdirentries(td, &ap)); 1786 } 1787 #endif /* COMPAT_FREEBSD11 */ 1788 1789 int 1790 freebsd32_getdirentries(struct thread *td, 1791 struct freebsd32_getdirentries_args *uap) 1792 { 1793 long base; 1794 int32_t base32; 1795 int error; 1796 1797 error = kern_getdirentries(td, uap->fd, uap->buf, uap->count, &base, 1798 NULL, UIO_USERSPACE); 1799 if (error) 1800 return (error); 1801 if (uap->basep != NULL) { 1802 base32 = base; 1803 error = copyout(&base32, uap->basep, sizeof(int32_t)); 1804 } 1805 return (error); 1806 } 1807 1808 #ifdef COMPAT_FREEBSD6 1809 /* versions with the 'int pad' argument */ 1810 int 1811 freebsd6_freebsd32_pread(struct thread *td, struct freebsd6_freebsd32_pread_args *uap) 1812 { 1813 1814 return (kern_pread(td, uap->fd, uap->buf, uap->nbyte, 1815 PAIR32TO64(off_t, uap->offset))); 1816 } 1817 1818 int 1819 freebsd6_freebsd32_pwrite(struct thread *td, struct freebsd6_freebsd32_pwrite_args *uap) 1820 { 1821 1822 return (kern_pwrite(td, uap->fd, uap->buf, uap->nbyte, 1823 PAIR32TO64(off_t, uap->offset))); 1824 } 1825 1826 int 1827 freebsd6_freebsd32_lseek(struct thread *td, struct freebsd6_freebsd32_lseek_args *uap) 1828 { 1829 int error; 1830 off_t pos; 1831 1832 error = kern_lseek(td, uap->fd, PAIR32TO64(off_t, uap->offset), 1833 uap->whence); 1834 /* Expand the quad return into two parts for eax and edx */ 1835 pos = *(off_t *)(td->td_retval); 1836 td->td_retval[RETVAL_LO] = pos & 0xffffffff; /* %eax */ 1837 td->td_retval[RETVAL_HI] = pos >> 32; /* %edx */ 1838 return error; 1839 } 1840 1841 int 1842 freebsd6_freebsd32_truncate(struct thread *td, struct freebsd6_freebsd32_truncate_args *uap) 1843 { 1844 1845 return (kern_truncate(td, uap->path, UIO_USERSPACE, 1846 PAIR32TO64(off_t, uap->length))); 1847 } 1848 1849 int 1850 freebsd6_freebsd32_ftruncate(struct thread *td, struct freebsd6_freebsd32_ftruncate_args *uap) 1851 { 1852 1853 return (kern_ftruncate(td, uap->fd, PAIR32TO64(off_t, uap->length))); 1854 } 1855 #endif /* COMPAT_FREEBSD6 */ 1856 1857 struct sf_hdtr32 { 1858 uint32_t headers; 1859 int hdr_cnt; 1860 uint32_t trailers; 1861 int trl_cnt; 1862 }; 1863 1864 static int 1865 freebsd32_do_sendfile(struct thread *td, 1866 struct freebsd32_sendfile_args *uap, int compat) 1867 { 1868 struct sf_hdtr32 hdtr32; 1869 struct sf_hdtr hdtr; 1870 struct uio *hdr_uio, *trl_uio; 1871 struct file *fp; 1872 cap_rights_t rights; 1873 struct iovec32 *iov32; 1874 off_t offset, sbytes; 1875 int error; 1876 1877 offset = PAIR32TO64(off_t, uap->offset); 1878 if (offset < 0) 1879 return (EINVAL); 1880 1881 hdr_uio = trl_uio = NULL; 1882 1883 if (uap->hdtr != NULL) { 1884 error = copyin(uap->hdtr, &hdtr32, sizeof(hdtr32)); 1885 if (error) 1886 goto out; 1887 PTRIN_CP(hdtr32, hdtr, headers); 1888 CP(hdtr32, hdtr, hdr_cnt); 1889 PTRIN_CP(hdtr32, hdtr, trailers); 1890 CP(hdtr32, hdtr, trl_cnt); 1891 1892 if (hdtr.headers != NULL) { 1893 iov32 = PTRIN(hdtr32.headers); 1894 error = freebsd32_copyinuio(iov32, 1895 hdtr32.hdr_cnt, &hdr_uio); 1896 if (error) 1897 goto out; 1898 #ifdef COMPAT_FREEBSD4 1899 /* 1900 * In FreeBSD < 5.0 the nbytes to send also included 1901 * the header. If compat is specified subtract the 1902 * header size from nbytes. 1903 */ 1904 if (compat) { 1905 if (uap->nbytes > hdr_uio->uio_resid) 1906 uap->nbytes -= hdr_uio->uio_resid; 1907 else 1908 uap->nbytes = 0; 1909 } 1910 #endif 1911 } 1912 if (hdtr.trailers != NULL) { 1913 iov32 = PTRIN(hdtr32.trailers); 1914 error = freebsd32_copyinuio(iov32, 1915 hdtr32.trl_cnt, &trl_uio); 1916 if (error) 1917 goto out; 1918 } 1919 } 1920 1921 AUDIT_ARG_FD(uap->fd); 1922 1923 if ((error = fget_read(td, uap->fd, 1924 cap_rights_init(&rights, CAP_PREAD), &fp)) != 0) 1925 goto out; 1926 1927 error = fo_sendfile(fp, uap->s, hdr_uio, trl_uio, offset, 1928 uap->nbytes, &sbytes, uap->flags, td); 1929 fdrop(fp, td); 1930 1931 if (uap->sbytes != NULL) 1932 copyout(&sbytes, uap->sbytes, sizeof(off_t)); 1933 1934 out: 1935 if (hdr_uio) 1936 free(hdr_uio, M_IOV); 1937 if (trl_uio) 1938 free(trl_uio, M_IOV); 1939 return (error); 1940 } 1941 1942 #ifdef COMPAT_FREEBSD4 1943 int 1944 freebsd4_freebsd32_sendfile(struct thread *td, 1945 struct freebsd4_freebsd32_sendfile_args *uap) 1946 { 1947 return (freebsd32_do_sendfile(td, 1948 (struct freebsd32_sendfile_args *)uap, 1)); 1949 } 1950 #endif 1951 1952 int 1953 freebsd32_sendfile(struct thread *td, struct freebsd32_sendfile_args *uap) 1954 { 1955 1956 return (freebsd32_do_sendfile(td, uap, 0)); 1957 } 1958 1959 static void 1960 copy_stat(struct stat *in, struct stat32 *out) 1961 { 1962 1963 CP(*in, *out, st_dev); 1964 CP(*in, *out, st_ino); 1965 CP(*in, *out, st_mode); 1966 CP(*in, *out, st_nlink); 1967 CP(*in, *out, st_uid); 1968 CP(*in, *out, st_gid); 1969 CP(*in, *out, st_rdev); 1970 TS_CP(*in, *out, st_atim); 1971 TS_CP(*in, *out, st_mtim); 1972 TS_CP(*in, *out, st_ctim); 1973 CP(*in, *out, st_size); 1974 CP(*in, *out, st_blocks); 1975 CP(*in, *out, st_blksize); 1976 CP(*in, *out, st_flags); 1977 CP(*in, *out, st_gen); 1978 TS_CP(*in, *out, st_birthtim); 1979 out->st_padding0 = 0; 1980 out->st_padding1 = 0; 1981 #ifdef __STAT32_TIME_T_EXT 1982 out->st_atim_ext = 0; 1983 out->st_mtim_ext = 0; 1984 out->st_ctim_ext = 0; 1985 out->st_btim_ext = 0; 1986 #endif 1987 bzero(out->st_spare, sizeof(out->st_spare)); 1988 } 1989 1990 #ifdef COMPAT_43 1991 static void 1992 copy_ostat(struct stat *in, struct ostat32 *out) 1993 { 1994 1995 CP(*in, *out, st_dev); 1996 CP(*in, *out, st_ino); 1997 CP(*in, *out, st_mode); 1998 CP(*in, *out, st_nlink); 1999 CP(*in, *out, st_uid); 2000 CP(*in, *out, st_gid); 2001 CP(*in, *out, st_rdev); 2002 CP(*in, *out, st_size); 2003 TS_CP(*in, *out, st_atim); 2004 TS_CP(*in, *out, st_mtim); 2005 TS_CP(*in, *out, st_ctim); 2006 CP(*in, *out, st_blksize); 2007 CP(*in, *out, st_blocks); 2008 CP(*in, *out, st_flags); 2009 CP(*in, *out, st_gen); 2010 } 2011 #endif 2012 2013 #ifdef COMPAT_43 2014 int 2015 ofreebsd32_stat(struct thread *td, struct ofreebsd32_stat_args *uap) 2016 { 2017 struct stat sb; 2018 struct ostat32 sb32; 2019 int error; 2020 2021 error = kern_statat(td, 0, AT_FDCWD, uap->path, UIO_USERSPACE, 2022 &sb, NULL); 2023 if (error) 2024 return (error); 2025 copy_ostat(&sb, &sb32); 2026 error = copyout(&sb32, uap->ub, sizeof (sb32)); 2027 return (error); 2028 } 2029 #endif 2030 2031 int 2032 freebsd32_fstat(struct thread *td, struct freebsd32_fstat_args *uap) 2033 { 2034 struct stat ub; 2035 struct stat32 ub32; 2036 int error; 2037 2038 error = kern_fstat(td, uap->fd, &ub); 2039 if (error) 2040 return (error); 2041 copy_stat(&ub, &ub32); 2042 error = copyout(&ub32, uap->ub, sizeof(ub32)); 2043 return (error); 2044 } 2045 2046 #ifdef COMPAT_43 2047 int 2048 ofreebsd32_fstat(struct thread *td, struct ofreebsd32_fstat_args *uap) 2049 { 2050 struct stat ub; 2051 struct ostat32 ub32; 2052 int error; 2053 2054 error = kern_fstat(td, uap->fd, &ub); 2055 if (error) 2056 return (error); 2057 copy_ostat(&ub, &ub32); 2058 error = copyout(&ub32, uap->ub, sizeof(ub32)); 2059 return (error); 2060 } 2061 #endif 2062 2063 int 2064 freebsd32_fstatat(struct thread *td, struct freebsd32_fstatat_args *uap) 2065 { 2066 struct stat ub; 2067 struct stat32 ub32; 2068 int error; 2069 2070 error = kern_statat(td, uap->flag, uap->fd, uap->path, UIO_USERSPACE, 2071 &ub, NULL); 2072 if (error) 2073 return (error); 2074 copy_stat(&ub, &ub32); 2075 error = copyout(&ub32, uap->buf, sizeof(ub32)); 2076 return (error); 2077 } 2078 2079 #ifdef COMPAT_43 2080 int 2081 ofreebsd32_lstat(struct thread *td, struct ofreebsd32_lstat_args *uap) 2082 { 2083 struct stat sb; 2084 struct ostat32 sb32; 2085 int error; 2086 2087 error = kern_statat(td, AT_SYMLINK_NOFOLLOW, AT_FDCWD, uap->path, 2088 UIO_USERSPACE, &sb, NULL); 2089 if (error) 2090 return (error); 2091 copy_ostat(&sb, &sb32); 2092 error = copyout(&sb32, uap->ub, sizeof (sb32)); 2093 return (error); 2094 } 2095 #endif 2096 2097 int 2098 freebsd32_fhstat(struct thread *td, struct freebsd32_fhstat_args *uap) 2099 { 2100 struct stat sb; 2101 struct stat32 sb32; 2102 struct fhandle fh; 2103 int error; 2104 2105 error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t)); 2106 if (error != 0) 2107 return (error); 2108 error = kern_fhstat(td, fh, &sb); 2109 if (error != 0) 2110 return (error); 2111 copy_stat(&sb, &sb32); 2112 error = copyout(&sb32, uap->sb, sizeof (sb32)); 2113 return (error); 2114 } 2115 2116 #if defined(COMPAT_FREEBSD11) 2117 extern int ino64_trunc_error; 2118 2119 static int 2120 freebsd11_cvtstat32(struct stat *in, struct freebsd11_stat32 *out) 2121 { 2122 2123 CP(*in, *out, st_ino); 2124 if (in->st_ino != out->st_ino) { 2125 switch (ino64_trunc_error) { 2126 default: 2127 case 0: 2128 break; 2129 case 1: 2130 return (EOVERFLOW); 2131 case 2: 2132 out->st_ino = UINT32_MAX; 2133 break; 2134 } 2135 } 2136 CP(*in, *out, st_nlink); 2137 if (in->st_nlink != out->st_nlink) { 2138 switch (ino64_trunc_error) { 2139 default: 2140 case 0: 2141 break; 2142 case 1: 2143 return (EOVERFLOW); 2144 case 2: 2145 out->st_nlink = UINT16_MAX; 2146 break; 2147 } 2148 } 2149 CP(*in, *out, st_dev); 2150 CP(*in, *out, st_mode); 2151 CP(*in, *out, st_uid); 2152 CP(*in, *out, st_gid); 2153 CP(*in, *out, st_rdev); 2154 TS_CP(*in, *out, st_atim); 2155 TS_CP(*in, *out, st_mtim); 2156 TS_CP(*in, *out, st_ctim); 2157 CP(*in, *out, st_size); 2158 CP(*in, *out, st_blocks); 2159 CP(*in, *out, st_blksize); 2160 CP(*in, *out, st_flags); 2161 CP(*in, *out, st_gen); 2162 TS_CP(*in, *out, st_birthtim); 2163 out->st_lspare = 0; 2164 bzero((char *)&out->st_birthtim + sizeof(out->st_birthtim), 2165 sizeof(*out) - offsetof(struct freebsd11_stat32, 2166 st_birthtim) - sizeof(out->st_birthtim)); 2167 return (0); 2168 } 2169 2170 int 2171 freebsd11_freebsd32_stat(struct thread *td, 2172 struct freebsd11_freebsd32_stat_args *uap) 2173 { 2174 struct stat sb; 2175 struct freebsd11_stat32 sb32; 2176 int error; 2177 2178 error = kern_statat(td, 0, AT_FDCWD, uap->path, UIO_USERSPACE, 2179 &sb, NULL); 2180 if (error != 0) 2181 return (error); 2182 error = freebsd11_cvtstat32(&sb, &sb32); 2183 if (error == 0) 2184 error = copyout(&sb32, uap->ub, sizeof (sb32)); 2185 return (error); 2186 } 2187 2188 int 2189 freebsd11_freebsd32_fstat(struct thread *td, 2190 struct freebsd11_freebsd32_fstat_args *uap) 2191 { 2192 struct stat sb; 2193 struct freebsd11_stat32 sb32; 2194 int error; 2195 2196 error = kern_fstat(td, uap->fd, &sb); 2197 if (error != 0) 2198 return (error); 2199 error = freebsd11_cvtstat32(&sb, &sb32); 2200 if (error == 0) 2201 error = copyout(&sb32, uap->ub, sizeof (sb32)); 2202 return (error); 2203 } 2204 2205 int 2206 freebsd11_freebsd32_fstatat(struct thread *td, 2207 struct freebsd11_freebsd32_fstatat_args *uap) 2208 { 2209 struct stat sb; 2210 struct freebsd11_stat32 sb32; 2211 int error; 2212 2213 error = kern_statat(td, uap->flag, uap->fd, uap->path, UIO_USERSPACE, 2214 &sb, NULL); 2215 if (error != 0) 2216 return (error); 2217 error = freebsd11_cvtstat32(&sb, &sb32); 2218 if (error == 0) 2219 error = copyout(&sb32, uap->buf, sizeof (sb32)); 2220 return (error); 2221 } 2222 2223 int 2224 freebsd11_freebsd32_lstat(struct thread *td, 2225 struct freebsd11_freebsd32_lstat_args *uap) 2226 { 2227 struct stat sb; 2228 struct freebsd11_stat32 sb32; 2229 int error; 2230 2231 error = kern_statat(td, AT_SYMLINK_NOFOLLOW, AT_FDCWD, uap->path, 2232 UIO_USERSPACE, &sb, NULL); 2233 if (error != 0) 2234 return (error); 2235 error = freebsd11_cvtstat32(&sb, &sb32); 2236 if (error == 0) 2237 error = copyout(&sb32, uap->ub, sizeof (sb32)); 2238 return (error); 2239 } 2240 2241 int 2242 freebsd11_freebsd32_fhstat(struct thread *td, 2243 struct freebsd11_freebsd32_fhstat_args *uap) 2244 { 2245 struct stat sb; 2246 struct freebsd11_stat32 sb32; 2247 struct fhandle fh; 2248 int error; 2249 2250 error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t)); 2251 if (error != 0) 2252 return (error); 2253 error = kern_fhstat(td, fh, &sb); 2254 if (error != 0) 2255 return (error); 2256 error = freebsd11_cvtstat32(&sb, &sb32); 2257 if (error == 0) 2258 error = copyout(&sb32, uap->sb, sizeof (sb32)); 2259 return (error); 2260 } 2261 #endif 2262 2263 int 2264 freebsd32_sysctl(struct thread *td, struct freebsd32_sysctl_args *uap) 2265 { 2266 int error, name[CTL_MAXNAME]; 2267 size_t j, oldlen; 2268 uint32_t tmp; 2269 2270 if (uap->namelen > CTL_MAXNAME || uap->namelen < 2) 2271 return (EINVAL); 2272 error = copyin(uap->name, name, uap->namelen * sizeof(int)); 2273 if (error) 2274 return (error); 2275 if (uap->oldlenp) { 2276 error = fueword32(uap->oldlenp, &tmp); 2277 oldlen = tmp; 2278 } else { 2279 oldlen = 0; 2280 } 2281 if (error != 0) 2282 return (EFAULT); 2283 error = userland_sysctl(td, name, uap->namelen, 2284 uap->old, &oldlen, 1, 2285 uap->new, uap->newlen, &j, SCTL_MASK32); 2286 if (error && error != ENOMEM) 2287 return (error); 2288 if (uap->oldlenp) 2289 suword32(uap->oldlenp, j); 2290 return (0); 2291 } 2292 2293 int 2294 freebsd32_jail(struct thread *td, struct freebsd32_jail_args *uap) 2295 { 2296 uint32_t version; 2297 int error; 2298 struct jail j; 2299 2300 error = copyin(uap->jail, &version, sizeof(uint32_t)); 2301 if (error) 2302 return (error); 2303 2304 switch (version) { 2305 case 0: 2306 { 2307 /* FreeBSD single IPv4 jails. */ 2308 struct jail32_v0 j32_v0; 2309 2310 bzero(&j, sizeof(struct jail)); 2311 error = copyin(uap->jail, &j32_v0, sizeof(struct jail32_v0)); 2312 if (error) 2313 return (error); 2314 CP(j32_v0, j, version); 2315 PTRIN_CP(j32_v0, j, path); 2316 PTRIN_CP(j32_v0, j, hostname); 2317 j.ip4s = htonl(j32_v0.ip_number); /* jail_v0 is host order */ 2318 break; 2319 } 2320 2321 case 1: 2322 /* 2323 * Version 1 was used by multi-IPv4 jail implementations 2324 * that never made it into the official kernel. 2325 */ 2326 return (EINVAL); 2327 2328 case 2: /* JAIL_API_VERSION */ 2329 { 2330 /* FreeBSD multi-IPv4/IPv6,noIP jails. */ 2331 struct jail32 j32; 2332 2333 error = copyin(uap->jail, &j32, sizeof(struct jail32)); 2334 if (error) 2335 return (error); 2336 CP(j32, j, version); 2337 PTRIN_CP(j32, j, path); 2338 PTRIN_CP(j32, j, hostname); 2339 PTRIN_CP(j32, j, jailname); 2340 CP(j32, j, ip4s); 2341 CP(j32, j, ip6s); 2342 PTRIN_CP(j32, j, ip4); 2343 PTRIN_CP(j32, j, ip6); 2344 break; 2345 } 2346 2347 default: 2348 /* Sci-Fi jails are not supported, sorry. */ 2349 return (EINVAL); 2350 } 2351 return (kern_jail(td, &j)); 2352 } 2353 2354 int 2355 freebsd32_jail_set(struct thread *td, struct freebsd32_jail_set_args *uap) 2356 { 2357 struct uio *auio; 2358 int error; 2359 2360 /* Check that we have an even number of iovecs. */ 2361 if (uap->iovcnt & 1) 2362 return (EINVAL); 2363 2364 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 2365 if (error) 2366 return (error); 2367 error = kern_jail_set(td, auio, uap->flags); 2368 free(auio, M_IOV); 2369 return (error); 2370 } 2371 2372 int 2373 freebsd32_jail_get(struct thread *td, struct freebsd32_jail_get_args *uap) 2374 { 2375 struct iovec32 iov32; 2376 struct uio *auio; 2377 int error, i; 2378 2379 /* Check that we have an even number of iovecs. */ 2380 if (uap->iovcnt & 1) 2381 return (EINVAL); 2382 2383 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 2384 if (error) 2385 return (error); 2386 error = kern_jail_get(td, auio, uap->flags); 2387 if (error == 0) 2388 for (i = 0; i < uap->iovcnt; i++) { 2389 PTROUT_CP(auio->uio_iov[i], iov32, iov_base); 2390 CP(auio->uio_iov[i], iov32, iov_len); 2391 error = copyout(&iov32, uap->iovp + i, sizeof(iov32)); 2392 if (error != 0) 2393 break; 2394 } 2395 free(auio, M_IOV); 2396 return (error); 2397 } 2398 2399 int 2400 freebsd32_sigaction(struct thread *td, struct freebsd32_sigaction_args *uap) 2401 { 2402 struct sigaction32 s32; 2403 struct sigaction sa, osa, *sap; 2404 int error; 2405 2406 if (uap->act) { 2407 error = copyin(uap->act, &s32, sizeof(s32)); 2408 if (error) 2409 return (error); 2410 sa.sa_handler = PTRIN(s32.sa_u); 2411 CP(s32, sa, sa_flags); 2412 CP(s32, sa, sa_mask); 2413 sap = &sa; 2414 } else 2415 sap = NULL; 2416 error = kern_sigaction(td, uap->sig, sap, &osa, 0); 2417 if (error == 0 && uap->oact != NULL) { 2418 s32.sa_u = PTROUT(osa.sa_handler); 2419 CP(osa, s32, sa_flags); 2420 CP(osa, s32, sa_mask); 2421 error = copyout(&s32, uap->oact, sizeof(s32)); 2422 } 2423 return (error); 2424 } 2425 2426 #ifdef COMPAT_FREEBSD4 2427 int 2428 freebsd4_freebsd32_sigaction(struct thread *td, 2429 struct freebsd4_freebsd32_sigaction_args *uap) 2430 { 2431 struct sigaction32 s32; 2432 struct sigaction sa, osa, *sap; 2433 int error; 2434 2435 if (uap->act) { 2436 error = copyin(uap->act, &s32, sizeof(s32)); 2437 if (error) 2438 return (error); 2439 sa.sa_handler = PTRIN(s32.sa_u); 2440 CP(s32, sa, sa_flags); 2441 CP(s32, sa, sa_mask); 2442 sap = &sa; 2443 } else 2444 sap = NULL; 2445 error = kern_sigaction(td, uap->sig, sap, &osa, KSA_FREEBSD4); 2446 if (error == 0 && uap->oact != NULL) { 2447 s32.sa_u = PTROUT(osa.sa_handler); 2448 CP(osa, s32, sa_flags); 2449 CP(osa, s32, sa_mask); 2450 error = copyout(&s32, uap->oact, sizeof(s32)); 2451 } 2452 return (error); 2453 } 2454 #endif 2455 2456 #ifdef COMPAT_43 2457 struct osigaction32 { 2458 u_int32_t sa_u; 2459 osigset_t sa_mask; 2460 int sa_flags; 2461 }; 2462 2463 #define ONSIG 32 2464 2465 int 2466 ofreebsd32_sigaction(struct thread *td, 2467 struct ofreebsd32_sigaction_args *uap) 2468 { 2469 struct osigaction32 s32; 2470 struct sigaction sa, osa, *sap; 2471 int error; 2472 2473 if (uap->signum <= 0 || uap->signum >= ONSIG) 2474 return (EINVAL); 2475 2476 if (uap->nsa) { 2477 error = copyin(uap->nsa, &s32, sizeof(s32)); 2478 if (error) 2479 return (error); 2480 sa.sa_handler = PTRIN(s32.sa_u); 2481 CP(s32, sa, sa_flags); 2482 OSIG2SIG(s32.sa_mask, sa.sa_mask); 2483 sap = &sa; 2484 } else 2485 sap = NULL; 2486 error = kern_sigaction(td, uap->signum, sap, &osa, KSA_OSIGSET); 2487 if (error == 0 && uap->osa != NULL) { 2488 s32.sa_u = PTROUT(osa.sa_handler); 2489 CP(osa, s32, sa_flags); 2490 SIG2OSIG(osa.sa_mask, s32.sa_mask); 2491 error = copyout(&s32, uap->osa, sizeof(s32)); 2492 } 2493 return (error); 2494 } 2495 2496 int 2497 ofreebsd32_sigprocmask(struct thread *td, 2498 struct ofreebsd32_sigprocmask_args *uap) 2499 { 2500 sigset_t set, oset; 2501 int error; 2502 2503 OSIG2SIG(uap->mask, set); 2504 error = kern_sigprocmask(td, uap->how, &set, &oset, SIGPROCMASK_OLD); 2505 SIG2OSIG(oset, td->td_retval[0]); 2506 return (error); 2507 } 2508 2509 int 2510 ofreebsd32_sigpending(struct thread *td, 2511 struct ofreebsd32_sigpending_args *uap) 2512 { 2513 struct proc *p = td->td_proc; 2514 sigset_t siglist; 2515 2516 PROC_LOCK(p); 2517 siglist = p->p_siglist; 2518 SIGSETOR(siglist, td->td_siglist); 2519 PROC_UNLOCK(p); 2520 SIG2OSIG(siglist, td->td_retval[0]); 2521 return (0); 2522 } 2523 2524 struct sigvec32 { 2525 u_int32_t sv_handler; 2526 int sv_mask; 2527 int sv_flags; 2528 }; 2529 2530 int 2531 ofreebsd32_sigvec(struct thread *td, 2532 struct ofreebsd32_sigvec_args *uap) 2533 { 2534 struct sigvec32 vec; 2535 struct sigaction sa, osa, *sap; 2536 int error; 2537 2538 if (uap->signum <= 0 || uap->signum >= ONSIG) 2539 return (EINVAL); 2540 2541 if (uap->nsv) { 2542 error = copyin(uap->nsv, &vec, sizeof(vec)); 2543 if (error) 2544 return (error); 2545 sa.sa_handler = PTRIN(vec.sv_handler); 2546 OSIG2SIG(vec.sv_mask, sa.sa_mask); 2547 sa.sa_flags = vec.sv_flags; 2548 sa.sa_flags ^= SA_RESTART; 2549 sap = &sa; 2550 } else 2551 sap = NULL; 2552 error = kern_sigaction(td, uap->signum, sap, &osa, KSA_OSIGSET); 2553 if (error == 0 && uap->osv != NULL) { 2554 vec.sv_handler = PTROUT(osa.sa_handler); 2555 SIG2OSIG(osa.sa_mask, vec.sv_mask); 2556 vec.sv_flags = osa.sa_flags; 2557 vec.sv_flags &= ~SA_NOCLDWAIT; 2558 vec.sv_flags ^= SA_RESTART; 2559 error = copyout(&vec, uap->osv, sizeof(vec)); 2560 } 2561 return (error); 2562 } 2563 2564 int 2565 ofreebsd32_sigblock(struct thread *td, 2566 struct ofreebsd32_sigblock_args *uap) 2567 { 2568 sigset_t set, oset; 2569 2570 OSIG2SIG(uap->mask, set); 2571 kern_sigprocmask(td, SIG_BLOCK, &set, &oset, 0); 2572 SIG2OSIG(oset, td->td_retval[0]); 2573 return (0); 2574 } 2575 2576 int 2577 ofreebsd32_sigsetmask(struct thread *td, 2578 struct ofreebsd32_sigsetmask_args *uap) 2579 { 2580 sigset_t set, oset; 2581 2582 OSIG2SIG(uap->mask, set); 2583 kern_sigprocmask(td, SIG_SETMASK, &set, &oset, 0); 2584 SIG2OSIG(oset, td->td_retval[0]); 2585 return (0); 2586 } 2587 2588 int 2589 ofreebsd32_sigsuspend(struct thread *td, 2590 struct ofreebsd32_sigsuspend_args *uap) 2591 { 2592 sigset_t mask; 2593 2594 OSIG2SIG(uap->mask, mask); 2595 return (kern_sigsuspend(td, mask)); 2596 } 2597 2598 struct sigstack32 { 2599 u_int32_t ss_sp; 2600 int ss_onstack; 2601 }; 2602 2603 int 2604 ofreebsd32_sigstack(struct thread *td, 2605 struct ofreebsd32_sigstack_args *uap) 2606 { 2607 struct sigstack32 s32; 2608 struct sigstack nss, oss; 2609 int error = 0, unss; 2610 2611 if (uap->nss != NULL) { 2612 error = copyin(uap->nss, &s32, sizeof(s32)); 2613 if (error) 2614 return (error); 2615 nss.ss_sp = PTRIN(s32.ss_sp); 2616 CP(s32, nss, ss_onstack); 2617 unss = 1; 2618 } else { 2619 unss = 0; 2620 } 2621 oss.ss_sp = td->td_sigstk.ss_sp; 2622 oss.ss_onstack = sigonstack(cpu_getstack(td)); 2623 if (unss) { 2624 td->td_sigstk.ss_sp = nss.ss_sp; 2625 td->td_sigstk.ss_size = 0; 2626 td->td_sigstk.ss_flags |= (nss.ss_onstack & SS_ONSTACK); 2627 td->td_pflags |= TDP_ALTSTACK; 2628 } 2629 if (uap->oss != NULL) { 2630 s32.ss_sp = PTROUT(oss.ss_sp); 2631 CP(oss, s32, ss_onstack); 2632 error = copyout(&s32, uap->oss, sizeof(s32)); 2633 } 2634 return (error); 2635 } 2636 #endif 2637 2638 int 2639 freebsd32_nanosleep(struct thread *td, struct freebsd32_nanosleep_args *uap) 2640 { 2641 2642 return (freebsd32_user_clock_nanosleep(td, CLOCK_REALTIME, 2643 TIMER_RELTIME, uap->rqtp, uap->rmtp)); 2644 } 2645 2646 int 2647 freebsd32_clock_nanosleep(struct thread *td, 2648 struct freebsd32_clock_nanosleep_args *uap) 2649 { 2650 int error; 2651 2652 error = freebsd32_user_clock_nanosleep(td, uap->clock_id, uap->flags, 2653 uap->rqtp, uap->rmtp); 2654 return (kern_posix_error(td, error)); 2655 } 2656 2657 static int 2658 freebsd32_user_clock_nanosleep(struct thread *td, clockid_t clock_id, 2659 int flags, const struct timespec32 *ua_rqtp, struct timespec32 *ua_rmtp) 2660 { 2661 struct timespec32 rmt32, rqt32; 2662 struct timespec rmt, rqt; 2663 int error; 2664 2665 error = copyin(ua_rqtp, &rqt32, sizeof(rqt32)); 2666 if (error) 2667 return (error); 2668 2669 CP(rqt32, rqt, tv_sec); 2670 CP(rqt32, rqt, tv_nsec); 2671 2672 if (ua_rmtp != NULL && (flags & TIMER_ABSTIME) == 0 && 2673 !useracc(ua_rmtp, sizeof(rmt32), VM_PROT_WRITE)) 2674 return (EFAULT); 2675 error = kern_clock_nanosleep(td, clock_id, flags, &rqt, &rmt); 2676 if (error == EINTR && ua_rmtp != NULL && (flags & TIMER_ABSTIME) == 0) { 2677 int error2; 2678 2679 CP(rmt, rmt32, tv_sec); 2680 CP(rmt, rmt32, tv_nsec); 2681 2682 error2 = copyout(&rmt32, ua_rmtp, sizeof(rmt32)); 2683 if (error2) 2684 error = error2; 2685 } 2686 return (error); 2687 } 2688 2689 int 2690 freebsd32_clock_gettime(struct thread *td, 2691 struct freebsd32_clock_gettime_args *uap) 2692 { 2693 struct timespec ats; 2694 struct timespec32 ats32; 2695 int error; 2696 2697 error = kern_clock_gettime(td, uap->clock_id, &ats); 2698 if (error == 0) { 2699 CP(ats, ats32, tv_sec); 2700 CP(ats, ats32, tv_nsec); 2701 error = copyout(&ats32, uap->tp, sizeof(ats32)); 2702 } 2703 return (error); 2704 } 2705 2706 int 2707 freebsd32_clock_settime(struct thread *td, 2708 struct freebsd32_clock_settime_args *uap) 2709 { 2710 struct timespec ats; 2711 struct timespec32 ats32; 2712 int error; 2713 2714 error = copyin(uap->tp, &ats32, sizeof(ats32)); 2715 if (error) 2716 return (error); 2717 CP(ats32, ats, tv_sec); 2718 CP(ats32, ats, tv_nsec); 2719 2720 return (kern_clock_settime(td, uap->clock_id, &ats)); 2721 } 2722 2723 int 2724 freebsd32_clock_getres(struct thread *td, 2725 struct freebsd32_clock_getres_args *uap) 2726 { 2727 struct timespec ts; 2728 struct timespec32 ts32; 2729 int error; 2730 2731 if (uap->tp == NULL) 2732 return (0); 2733 error = kern_clock_getres(td, uap->clock_id, &ts); 2734 if (error == 0) { 2735 CP(ts, ts32, tv_sec); 2736 CP(ts, ts32, tv_nsec); 2737 error = copyout(&ts32, uap->tp, sizeof(ts32)); 2738 } 2739 return (error); 2740 } 2741 2742 int freebsd32_ktimer_create(struct thread *td, 2743 struct freebsd32_ktimer_create_args *uap) 2744 { 2745 struct sigevent32 ev32; 2746 struct sigevent ev, *evp; 2747 int error, id; 2748 2749 if (uap->evp == NULL) { 2750 evp = NULL; 2751 } else { 2752 evp = &ev; 2753 error = copyin(uap->evp, &ev32, sizeof(ev32)); 2754 if (error != 0) 2755 return (error); 2756 error = convert_sigevent32(&ev32, &ev); 2757 if (error != 0) 2758 return (error); 2759 } 2760 error = kern_ktimer_create(td, uap->clock_id, evp, &id, -1); 2761 if (error == 0) { 2762 error = copyout(&id, uap->timerid, sizeof(int)); 2763 if (error != 0) 2764 kern_ktimer_delete(td, id); 2765 } 2766 return (error); 2767 } 2768 2769 int 2770 freebsd32_ktimer_settime(struct thread *td, 2771 struct freebsd32_ktimer_settime_args *uap) 2772 { 2773 struct itimerspec32 val32, oval32; 2774 struct itimerspec val, oval, *ovalp; 2775 int error; 2776 2777 error = copyin(uap->value, &val32, sizeof(val32)); 2778 if (error != 0) 2779 return (error); 2780 ITS_CP(val32, val); 2781 ovalp = uap->ovalue != NULL ? &oval : NULL; 2782 error = kern_ktimer_settime(td, uap->timerid, uap->flags, &val, ovalp); 2783 if (error == 0 && uap->ovalue != NULL) { 2784 ITS_CP(oval, oval32); 2785 error = copyout(&oval32, uap->ovalue, sizeof(oval32)); 2786 } 2787 return (error); 2788 } 2789 2790 int 2791 freebsd32_ktimer_gettime(struct thread *td, 2792 struct freebsd32_ktimer_gettime_args *uap) 2793 { 2794 struct itimerspec32 val32; 2795 struct itimerspec val; 2796 int error; 2797 2798 error = kern_ktimer_gettime(td, uap->timerid, &val); 2799 if (error == 0) { 2800 ITS_CP(val, val32); 2801 error = copyout(&val32, uap->value, sizeof(val32)); 2802 } 2803 return (error); 2804 } 2805 2806 int 2807 freebsd32_clock_getcpuclockid2(struct thread *td, 2808 struct freebsd32_clock_getcpuclockid2_args *uap) 2809 { 2810 clockid_t clk_id; 2811 int error; 2812 2813 error = kern_clock_getcpuclockid2(td, PAIR32TO64(id_t, uap->id), 2814 uap->which, &clk_id); 2815 if (error == 0) 2816 error = copyout(&clk_id, uap->clock_id, sizeof(clockid_t)); 2817 return (error); 2818 } 2819 2820 int 2821 freebsd32_thr_new(struct thread *td, 2822 struct freebsd32_thr_new_args *uap) 2823 { 2824 struct thr_param32 param32; 2825 struct thr_param param; 2826 int error; 2827 2828 if (uap->param_size < 0 || 2829 uap->param_size > sizeof(struct thr_param32)) 2830 return (EINVAL); 2831 bzero(¶m, sizeof(struct thr_param)); 2832 bzero(¶m32, sizeof(struct thr_param32)); 2833 error = copyin(uap->param, ¶m32, uap->param_size); 2834 if (error != 0) 2835 return (error); 2836 param.start_func = PTRIN(param32.start_func); 2837 param.arg = PTRIN(param32.arg); 2838 param.stack_base = PTRIN(param32.stack_base); 2839 param.stack_size = param32.stack_size; 2840 param.tls_base = PTRIN(param32.tls_base); 2841 param.tls_size = param32.tls_size; 2842 param.child_tid = PTRIN(param32.child_tid); 2843 param.parent_tid = PTRIN(param32.parent_tid); 2844 param.flags = param32.flags; 2845 param.rtp = PTRIN(param32.rtp); 2846 param.spare[0] = PTRIN(param32.spare[0]); 2847 param.spare[1] = PTRIN(param32.spare[1]); 2848 param.spare[2] = PTRIN(param32.spare[2]); 2849 2850 return (kern_thr_new(td, ¶m)); 2851 } 2852 2853 int 2854 freebsd32_thr_suspend(struct thread *td, struct freebsd32_thr_suspend_args *uap) 2855 { 2856 struct timespec32 ts32; 2857 struct timespec ts, *tsp; 2858 int error; 2859 2860 error = 0; 2861 tsp = NULL; 2862 if (uap->timeout != NULL) { 2863 error = copyin((const void *)uap->timeout, (void *)&ts32, 2864 sizeof(struct timespec32)); 2865 if (error != 0) 2866 return (error); 2867 ts.tv_sec = ts32.tv_sec; 2868 ts.tv_nsec = ts32.tv_nsec; 2869 tsp = &ts; 2870 } 2871 return (kern_thr_suspend(td, tsp)); 2872 } 2873 2874 void 2875 siginfo_to_siginfo32(const siginfo_t *src, struct siginfo32 *dst) 2876 { 2877 bzero(dst, sizeof(*dst)); 2878 dst->si_signo = src->si_signo; 2879 dst->si_errno = src->si_errno; 2880 dst->si_code = src->si_code; 2881 dst->si_pid = src->si_pid; 2882 dst->si_uid = src->si_uid; 2883 dst->si_status = src->si_status; 2884 dst->si_addr = (uintptr_t)src->si_addr; 2885 dst->si_value.sival_int = src->si_value.sival_int; 2886 dst->si_timerid = src->si_timerid; 2887 dst->si_overrun = src->si_overrun; 2888 } 2889 2890 #ifndef _FREEBSD32_SYSPROTO_H_ 2891 struct freebsd32_sigqueue_args { 2892 pid_t pid; 2893 int signum; 2894 /* union sigval32 */ int value; 2895 }; 2896 #endif 2897 int 2898 freebsd32_sigqueue(struct thread *td, struct freebsd32_sigqueue_args *uap) 2899 { 2900 union sigval sv; 2901 2902 /* 2903 * On 32-bit ABIs, sival_int and sival_ptr are the same. 2904 * On 64-bit little-endian ABIs, the low bits are the same. 2905 * In 64-bit big-endian ABIs, sival_int overlaps with 2906 * sival_ptr's HIGH bits. We choose to support sival_int 2907 * rather than sival_ptr in this case as it seems to be 2908 * more common. 2909 */ 2910 bzero(&sv, sizeof(sv)); 2911 sv.sival_int = uap->value; 2912 2913 return (kern_sigqueue(td, uap->pid, uap->signum, &sv)); 2914 } 2915 2916 int 2917 freebsd32_sigtimedwait(struct thread *td, struct freebsd32_sigtimedwait_args *uap) 2918 { 2919 struct timespec32 ts32; 2920 struct timespec ts; 2921 struct timespec *timeout; 2922 sigset_t set; 2923 ksiginfo_t ksi; 2924 struct siginfo32 si32; 2925 int error; 2926 2927 if (uap->timeout) { 2928 error = copyin(uap->timeout, &ts32, sizeof(ts32)); 2929 if (error) 2930 return (error); 2931 ts.tv_sec = ts32.tv_sec; 2932 ts.tv_nsec = ts32.tv_nsec; 2933 timeout = &ts; 2934 } else 2935 timeout = NULL; 2936 2937 error = copyin(uap->set, &set, sizeof(set)); 2938 if (error) 2939 return (error); 2940 2941 error = kern_sigtimedwait(td, set, &ksi, timeout); 2942 if (error) 2943 return (error); 2944 2945 if (uap->info) { 2946 siginfo_to_siginfo32(&ksi.ksi_info, &si32); 2947 error = copyout(&si32, uap->info, sizeof(struct siginfo32)); 2948 } 2949 2950 if (error == 0) 2951 td->td_retval[0] = ksi.ksi_signo; 2952 return (error); 2953 } 2954 2955 /* 2956 * MPSAFE 2957 */ 2958 int 2959 freebsd32_sigwaitinfo(struct thread *td, struct freebsd32_sigwaitinfo_args *uap) 2960 { 2961 ksiginfo_t ksi; 2962 struct siginfo32 si32; 2963 sigset_t set; 2964 int error; 2965 2966 error = copyin(uap->set, &set, sizeof(set)); 2967 if (error) 2968 return (error); 2969 2970 error = kern_sigtimedwait(td, set, &ksi, NULL); 2971 if (error) 2972 return (error); 2973 2974 if (uap->info) { 2975 siginfo_to_siginfo32(&ksi.ksi_info, &si32); 2976 error = copyout(&si32, uap->info, sizeof(struct siginfo32)); 2977 } 2978 if (error == 0) 2979 td->td_retval[0] = ksi.ksi_signo; 2980 return (error); 2981 } 2982 2983 int 2984 freebsd32_cpuset_setid(struct thread *td, 2985 struct freebsd32_cpuset_setid_args *uap) 2986 { 2987 2988 return (kern_cpuset_setid(td, uap->which, 2989 PAIR32TO64(id_t, uap->id), uap->setid)); 2990 } 2991 2992 int 2993 freebsd32_cpuset_getid(struct thread *td, 2994 struct freebsd32_cpuset_getid_args *uap) 2995 { 2996 2997 return (kern_cpuset_getid(td, uap->level, uap->which, 2998 PAIR32TO64(id_t, uap->id), uap->setid)); 2999 } 3000 3001 int 3002 freebsd32_cpuset_getaffinity(struct thread *td, 3003 struct freebsd32_cpuset_getaffinity_args *uap) 3004 { 3005 3006 return (kern_cpuset_getaffinity(td, uap->level, uap->which, 3007 PAIR32TO64(id_t,uap->id), uap->cpusetsize, uap->mask)); 3008 } 3009 3010 int 3011 freebsd32_cpuset_setaffinity(struct thread *td, 3012 struct freebsd32_cpuset_setaffinity_args *uap) 3013 { 3014 3015 return (kern_cpuset_setaffinity(td, uap->level, uap->which, 3016 PAIR32TO64(id_t,uap->id), uap->cpusetsize, uap->mask)); 3017 } 3018 3019 int 3020 freebsd32_nmount(struct thread *td, 3021 struct freebsd32_nmount_args /* { 3022 struct iovec *iovp; 3023 unsigned int iovcnt; 3024 int flags; 3025 } */ *uap) 3026 { 3027 struct uio *auio; 3028 uint64_t flags; 3029 int error; 3030 3031 /* 3032 * Mount flags are now 64-bits. On 32-bit archtectures only 3033 * 32-bits are passed in, but from here on everything handles 3034 * 64-bit flags correctly. 3035 */ 3036 flags = uap->flags; 3037 3038 AUDIT_ARG_FFLAGS(flags); 3039 3040 /* 3041 * Filter out MNT_ROOTFS. We do not want clients of nmount() in 3042 * userspace to set this flag, but we must filter it out if we want 3043 * MNT_UPDATE on the root file system to work. 3044 * MNT_ROOTFS should only be set by the kernel when mounting its 3045 * root file system. 3046 */ 3047 flags &= ~MNT_ROOTFS; 3048 3049 /* 3050 * check that we have an even number of iovec's 3051 * and that we have at least two options. 3052 */ 3053 if ((uap->iovcnt & 1) || (uap->iovcnt < 4)) 3054 return (EINVAL); 3055 3056 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 3057 if (error) 3058 return (error); 3059 error = vfs_donmount(td, flags, auio); 3060 3061 free(auio, M_IOV); 3062 return error; 3063 } 3064 3065 #if 0 3066 int 3067 freebsd32_xxx(struct thread *td, struct freebsd32_xxx_args *uap) 3068 { 3069 struct yyy32 *p32, s32; 3070 struct yyy *p = NULL, s; 3071 struct xxx_arg ap; 3072 int error; 3073 3074 if (uap->zzz) { 3075 error = copyin(uap->zzz, &s32, sizeof(s32)); 3076 if (error) 3077 return (error); 3078 /* translate in */ 3079 p = &s; 3080 } 3081 error = kern_xxx(td, p); 3082 if (error) 3083 return (error); 3084 if (uap->zzz) { 3085 /* translate out */ 3086 error = copyout(&s32, p32, sizeof(s32)); 3087 } 3088 return (error); 3089 } 3090 #endif 3091 3092 int 3093 syscall32_register(int *offset, struct sysent *new_sysent, 3094 struct sysent *old_sysent, int flags) 3095 { 3096 3097 if ((flags & ~SY_THR_STATIC) != 0) 3098 return (EINVAL); 3099 3100 if (*offset == NO_SYSCALL) { 3101 int i; 3102 3103 for (i = 1; i < SYS_MAXSYSCALL; ++i) 3104 if (freebsd32_sysent[i].sy_call == 3105 (sy_call_t *)lkmnosys) 3106 break; 3107 if (i == SYS_MAXSYSCALL) 3108 return (ENFILE); 3109 *offset = i; 3110 } else if (*offset < 0 || *offset >= SYS_MAXSYSCALL) 3111 return (EINVAL); 3112 else if (freebsd32_sysent[*offset].sy_call != (sy_call_t *)lkmnosys && 3113 freebsd32_sysent[*offset].sy_call != (sy_call_t *)lkmressys) 3114 return (EEXIST); 3115 3116 *old_sysent = freebsd32_sysent[*offset]; 3117 freebsd32_sysent[*offset] = *new_sysent; 3118 atomic_store_rel_32(&freebsd32_sysent[*offset].sy_thrcnt, flags); 3119 return (0); 3120 } 3121 3122 int 3123 syscall32_deregister(int *offset, struct sysent *old_sysent) 3124 { 3125 3126 if (*offset == 0) 3127 return (0); 3128 3129 freebsd32_sysent[*offset] = *old_sysent; 3130 return (0); 3131 } 3132 3133 int 3134 syscall32_module_handler(struct module *mod, int what, void *arg) 3135 { 3136 struct syscall_module_data *data = (struct syscall_module_data*)arg; 3137 modspecific_t ms; 3138 int error; 3139 3140 switch (what) { 3141 case MOD_LOAD: 3142 error = syscall32_register(data->offset, data->new_sysent, 3143 &data->old_sysent, SY_THR_STATIC_KLD); 3144 if (error) { 3145 /* Leave a mark so we know to safely unload below. */ 3146 data->offset = NULL; 3147 return error; 3148 } 3149 ms.intval = *data->offset; 3150 MOD_XLOCK; 3151 module_setspecific(mod, &ms); 3152 MOD_XUNLOCK; 3153 if (data->chainevh) 3154 error = data->chainevh(mod, what, data->chainarg); 3155 return (error); 3156 case MOD_UNLOAD: 3157 /* 3158 * MOD_LOAD failed, so just return without calling the 3159 * chained handler since we didn't pass along the MOD_LOAD 3160 * event. 3161 */ 3162 if (data->offset == NULL) 3163 return (0); 3164 if (data->chainevh) { 3165 error = data->chainevh(mod, what, data->chainarg); 3166 if (error) 3167 return (error); 3168 } 3169 error = syscall32_deregister(data->offset, &data->old_sysent); 3170 return (error); 3171 default: 3172 error = EOPNOTSUPP; 3173 if (data->chainevh) 3174 error = data->chainevh(mod, what, data->chainarg); 3175 return (error); 3176 } 3177 } 3178 3179 int 3180 syscall32_helper_register(struct syscall_helper_data *sd, int flags) 3181 { 3182 struct syscall_helper_data *sd1; 3183 int error; 3184 3185 for (sd1 = sd; sd1->syscall_no != NO_SYSCALL; sd1++) { 3186 error = syscall32_register(&sd1->syscall_no, &sd1->new_sysent, 3187 &sd1->old_sysent, flags); 3188 if (error != 0) { 3189 syscall32_helper_unregister(sd); 3190 return (error); 3191 } 3192 sd1->registered = 1; 3193 } 3194 return (0); 3195 } 3196 3197 int 3198 syscall32_helper_unregister(struct syscall_helper_data *sd) 3199 { 3200 struct syscall_helper_data *sd1; 3201 3202 for (sd1 = sd; sd1->registered != 0; sd1++) { 3203 syscall32_deregister(&sd1->syscall_no, &sd1->old_sysent); 3204 sd1->registered = 0; 3205 } 3206 return (0); 3207 } 3208 3209 register_t * 3210 freebsd32_copyout_strings(struct image_params *imgp) 3211 { 3212 int argc, envc, i; 3213 u_int32_t *vectp; 3214 char *stringp; 3215 uintptr_t destp; 3216 u_int32_t *stack_base; 3217 struct freebsd32_ps_strings *arginfo; 3218 char canary[sizeof(long) * 8]; 3219 int32_t pagesizes32[MAXPAGESIZES]; 3220 size_t execpath_len; 3221 int szsigcode; 3222 3223 /* 3224 * Calculate string base and vector table pointers. 3225 * Also deal with signal trampoline code for this exec type. 3226 */ 3227 if (imgp->execpath != NULL && imgp->auxargs != NULL) 3228 execpath_len = strlen(imgp->execpath) + 1; 3229 else 3230 execpath_len = 0; 3231 arginfo = (struct freebsd32_ps_strings *)curproc->p_sysent-> 3232 sv_psstrings; 3233 if (imgp->proc->p_sysent->sv_sigcode_base == 0) 3234 szsigcode = *(imgp->proc->p_sysent->sv_szsigcode); 3235 else 3236 szsigcode = 0; 3237 destp = (uintptr_t)arginfo; 3238 3239 /* 3240 * install sigcode 3241 */ 3242 if (szsigcode != 0) { 3243 destp -= szsigcode; 3244 destp = rounddown2(destp, sizeof(uint32_t)); 3245 copyout(imgp->proc->p_sysent->sv_sigcode, (void *)destp, 3246 szsigcode); 3247 } 3248 3249 /* 3250 * Copy the image path for the rtld. 3251 */ 3252 if (execpath_len != 0) { 3253 destp -= execpath_len; 3254 imgp->execpathp = destp; 3255 copyout(imgp->execpath, (void *)destp, execpath_len); 3256 } 3257 3258 /* 3259 * Prepare the canary for SSP. 3260 */ 3261 arc4rand(canary, sizeof(canary), 0); 3262 destp -= sizeof(canary); 3263 imgp->canary = destp; 3264 copyout(canary, (void *)destp, sizeof(canary)); 3265 imgp->canarylen = sizeof(canary); 3266 3267 /* 3268 * Prepare the pagesizes array. 3269 */ 3270 for (i = 0; i < MAXPAGESIZES; i++) 3271 pagesizes32[i] = (uint32_t)pagesizes[i]; 3272 destp -= sizeof(pagesizes32); 3273 destp = rounddown2(destp, sizeof(uint32_t)); 3274 imgp->pagesizes = destp; 3275 copyout(pagesizes32, (void *)destp, sizeof(pagesizes32)); 3276 imgp->pagesizeslen = sizeof(pagesizes32); 3277 3278 destp -= ARG_MAX - imgp->args->stringspace; 3279 destp = rounddown2(destp, sizeof(uint32_t)); 3280 3281 /* 3282 * If we have a valid auxargs ptr, prepare some room 3283 * on the stack. 3284 */ 3285 if (imgp->auxargs) { 3286 /* 3287 * 'AT_COUNT*2' is size for the ELF Auxargs data. This is for 3288 * lower compatibility. 3289 */ 3290 imgp->auxarg_size = (imgp->auxarg_size) ? imgp->auxarg_size 3291 : (AT_COUNT * 2); 3292 /* 3293 * The '+ 2' is for the null pointers at the end of each of 3294 * the arg and env vector sets,and imgp->auxarg_size is room 3295 * for argument of Runtime loader. 3296 */ 3297 vectp = (u_int32_t *) (destp - (imgp->args->argc + 3298 imgp->args->envc + 2 + imgp->auxarg_size + execpath_len) * 3299 sizeof(u_int32_t)); 3300 } else { 3301 /* 3302 * The '+ 2' is for the null pointers at the end of each of 3303 * the arg and env vector sets 3304 */ 3305 vectp = (u_int32_t *)(destp - (imgp->args->argc + 3306 imgp->args->envc + 2) * sizeof(u_int32_t)); 3307 } 3308 3309 /* 3310 * vectp also becomes our initial stack base 3311 */ 3312 stack_base = vectp; 3313 3314 stringp = imgp->args->begin_argv; 3315 argc = imgp->args->argc; 3316 envc = imgp->args->envc; 3317 /* 3318 * Copy out strings - arguments and environment. 3319 */ 3320 copyout(stringp, (void *)destp, ARG_MAX - imgp->args->stringspace); 3321 3322 /* 3323 * Fill in "ps_strings" struct for ps, w, etc. 3324 */ 3325 suword32(&arginfo->ps_argvstr, (u_int32_t)(intptr_t)vectp); 3326 suword32(&arginfo->ps_nargvstr, argc); 3327 3328 /* 3329 * Fill in argument portion of vector table. 3330 */ 3331 for (; argc > 0; --argc) { 3332 suword32(vectp++, (u_int32_t)(intptr_t)destp); 3333 while (*stringp++ != 0) 3334 destp++; 3335 destp++; 3336 } 3337 3338 /* a null vector table pointer separates the argp's from the envp's */ 3339 suword32(vectp++, 0); 3340 3341 suword32(&arginfo->ps_envstr, (u_int32_t)(intptr_t)vectp); 3342 suword32(&arginfo->ps_nenvstr, envc); 3343 3344 /* 3345 * Fill in environment portion of vector table. 3346 */ 3347 for (; envc > 0; --envc) { 3348 suword32(vectp++, (u_int32_t)(intptr_t)destp); 3349 while (*stringp++ != 0) 3350 destp++; 3351 destp++; 3352 } 3353 3354 /* end of vector table is a null pointer */ 3355 suword32(vectp, 0); 3356 3357 return ((register_t *)stack_base); 3358 } 3359 3360 int 3361 freebsd32_kldstat(struct thread *td, struct freebsd32_kldstat_args *uap) 3362 { 3363 struct kld_file_stat *stat; 3364 struct kld32_file_stat *stat32; 3365 int error, version; 3366 3367 if ((error = copyin(&uap->stat->version, &version, sizeof(version))) 3368 != 0) 3369 return (error); 3370 if (version != sizeof(struct kld32_file_stat_1) && 3371 version != sizeof(struct kld32_file_stat)) 3372 return (EINVAL); 3373 3374 stat = malloc(sizeof(*stat), M_TEMP, M_WAITOK | M_ZERO); 3375 stat32 = malloc(sizeof(*stat32), M_TEMP, M_WAITOK | M_ZERO); 3376 error = kern_kldstat(td, uap->fileid, stat); 3377 if (error == 0) { 3378 bcopy(&stat->name[0], &stat32->name[0], sizeof(stat->name)); 3379 CP(*stat, *stat32, refs); 3380 CP(*stat, *stat32, id); 3381 PTROUT_CP(*stat, *stat32, address); 3382 CP(*stat, *stat32, size); 3383 bcopy(&stat->pathname[0], &stat32->pathname[0], 3384 sizeof(stat->pathname)); 3385 error = copyout(stat32, uap->stat, version); 3386 } 3387 free(stat, M_TEMP); 3388 free(stat32, M_TEMP); 3389 return (error); 3390 } 3391 3392 int 3393 freebsd32_posix_fallocate(struct thread *td, 3394 struct freebsd32_posix_fallocate_args *uap) 3395 { 3396 int error; 3397 3398 error = kern_posix_fallocate(td, uap->fd, 3399 PAIR32TO64(off_t, uap->offset), PAIR32TO64(off_t, uap->len)); 3400 return (kern_posix_error(td, error)); 3401 } 3402 3403 int 3404 freebsd32_posix_fadvise(struct thread *td, 3405 struct freebsd32_posix_fadvise_args *uap) 3406 { 3407 int error; 3408 3409 error = kern_posix_fadvise(td, uap->fd, PAIR32TO64(off_t, uap->offset), 3410 PAIR32TO64(off_t, uap->len), uap->advice); 3411 return (kern_posix_error(td, error)); 3412 } 3413 3414 int 3415 convert_sigevent32(struct sigevent32 *sig32, struct sigevent *sig) 3416 { 3417 3418 CP(*sig32, *sig, sigev_notify); 3419 switch (sig->sigev_notify) { 3420 case SIGEV_NONE: 3421 break; 3422 case SIGEV_THREAD_ID: 3423 CP(*sig32, *sig, sigev_notify_thread_id); 3424 /* FALLTHROUGH */ 3425 case SIGEV_SIGNAL: 3426 CP(*sig32, *sig, sigev_signo); 3427 PTRIN_CP(*sig32, *sig, sigev_value.sival_ptr); 3428 break; 3429 case SIGEV_KEVENT: 3430 CP(*sig32, *sig, sigev_notify_kqueue); 3431 CP(*sig32, *sig, sigev_notify_kevent_flags); 3432 PTRIN_CP(*sig32, *sig, sigev_value.sival_ptr); 3433 break; 3434 default: 3435 return (EINVAL); 3436 } 3437 return (0); 3438 } 3439 3440 int 3441 freebsd32_procctl(struct thread *td, struct freebsd32_procctl_args *uap) 3442 { 3443 void *data; 3444 union { 3445 struct procctl_reaper_status rs; 3446 struct procctl_reaper_pids rp; 3447 struct procctl_reaper_kill rk; 3448 } x; 3449 union { 3450 struct procctl_reaper_pids32 rp; 3451 } x32; 3452 int error, error1, flags; 3453 3454 switch (uap->com) { 3455 case PROC_SPROTECT: 3456 case PROC_TRACE_CTL: 3457 case PROC_TRAPCAP_CTL: 3458 error = copyin(PTRIN(uap->data), &flags, sizeof(flags)); 3459 if (error != 0) 3460 return (error); 3461 data = &flags; 3462 break; 3463 case PROC_REAP_ACQUIRE: 3464 case PROC_REAP_RELEASE: 3465 if (uap->data != NULL) 3466 return (EINVAL); 3467 data = NULL; 3468 break; 3469 case PROC_REAP_STATUS: 3470 data = &x.rs; 3471 break; 3472 case PROC_REAP_GETPIDS: 3473 error = copyin(uap->data, &x32.rp, sizeof(x32.rp)); 3474 if (error != 0) 3475 return (error); 3476 CP(x32.rp, x.rp, rp_count); 3477 PTRIN_CP(x32.rp, x.rp, rp_pids); 3478 data = &x.rp; 3479 break; 3480 case PROC_REAP_KILL: 3481 error = copyin(uap->data, &x.rk, sizeof(x.rk)); 3482 if (error != 0) 3483 return (error); 3484 data = &x.rk; 3485 break; 3486 case PROC_TRACE_STATUS: 3487 case PROC_TRAPCAP_STATUS: 3488 data = &flags; 3489 break; 3490 default: 3491 return (EINVAL); 3492 } 3493 error = kern_procctl(td, uap->idtype, PAIR32TO64(id_t, uap->id), 3494 uap->com, data); 3495 switch (uap->com) { 3496 case PROC_REAP_STATUS: 3497 if (error == 0) 3498 error = copyout(&x.rs, uap->data, sizeof(x.rs)); 3499 break; 3500 case PROC_REAP_KILL: 3501 error1 = copyout(&x.rk, uap->data, sizeof(x.rk)); 3502 if (error == 0) 3503 error = error1; 3504 break; 3505 case PROC_TRACE_STATUS: 3506 case PROC_TRAPCAP_STATUS: 3507 if (error == 0) 3508 error = copyout(&flags, uap->data, sizeof(flags)); 3509 break; 3510 } 3511 return (error); 3512 } 3513 3514 int 3515 freebsd32_fcntl(struct thread *td, struct freebsd32_fcntl_args *uap) 3516 { 3517 long tmp; 3518 3519 switch (uap->cmd) { 3520 /* 3521 * Do unsigned conversion for arg when operation 3522 * interprets it as flags or pointer. 3523 */ 3524 case F_SETLK_REMOTE: 3525 case F_SETLKW: 3526 case F_SETLK: 3527 case F_GETLK: 3528 case F_SETFD: 3529 case F_SETFL: 3530 case F_OGETLK: 3531 case F_OSETLK: 3532 case F_OSETLKW: 3533 tmp = (unsigned int)(uap->arg); 3534 break; 3535 default: 3536 tmp = uap->arg; 3537 break; 3538 } 3539 return (kern_fcntl_freebsd(td, uap->fd, uap->cmd, tmp)); 3540 } 3541 3542 int 3543 freebsd32_ppoll(struct thread *td, struct freebsd32_ppoll_args *uap) 3544 { 3545 struct timespec32 ts32; 3546 struct timespec ts, *tsp; 3547 sigset_t set, *ssp; 3548 int error; 3549 3550 if (uap->ts != NULL) { 3551 error = copyin(uap->ts, &ts32, sizeof(ts32)); 3552 if (error != 0) 3553 return (error); 3554 CP(ts32, ts, tv_sec); 3555 CP(ts32, ts, tv_nsec); 3556 tsp = &ts; 3557 } else 3558 tsp = NULL; 3559 if (uap->set != NULL) { 3560 error = copyin(uap->set, &set, sizeof(set)); 3561 if (error != 0) 3562 return (error); 3563 ssp = &set; 3564 } else 3565 ssp = NULL; 3566 3567 return (kern_poll(td, uap->fds, uap->nfds, tsp, ssp)); 3568 } 3569