1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2002 Doug Rabson 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include "opt_inet.h" 33 #include "opt_inet6.h" 34 #include "opt_ktrace.h" 35 36 #define __ELF_WORD_SIZE 32 37 38 #ifdef COMPAT_FREEBSD11 39 #define _WANT_FREEBSD11_KEVENT 40 #endif 41 42 #include <sys/param.h> 43 #include <sys/bus.h> 44 #include <sys/capsicum.h> 45 #include <sys/clock.h> 46 #include <sys/exec.h> 47 #include <sys/fcntl.h> 48 #include <sys/filedesc.h> 49 #include <sys/imgact.h> 50 #include <sys/jail.h> 51 #include <sys/kernel.h> 52 #include <sys/limits.h> 53 #include <sys/linker.h> 54 #include <sys/lock.h> 55 #include <sys/malloc.h> 56 #include <sys/file.h> /* Must come after sys/malloc.h */ 57 #include <sys/imgact.h> 58 #include <sys/mbuf.h> 59 #include <sys/mman.h> 60 #include <sys/module.h> 61 #include <sys/mount.h> 62 #include <sys/mutex.h> 63 #include <sys/namei.h> 64 #include <sys/proc.h> 65 #include <sys/procctl.h> 66 #include <sys/ptrace.h> 67 #include <sys/reboot.h> 68 #include <sys/resource.h> 69 #include <sys/resourcevar.h> 70 #include <sys/selinfo.h> 71 #include <sys/eventvar.h> /* Must come after sys/selinfo.h */ 72 #include <sys/pipe.h> /* Must come after sys/selinfo.h */ 73 #include <sys/signal.h> 74 #include <sys/signalvar.h> 75 #include <sys/socket.h> 76 #include <sys/socketvar.h> 77 #include <sys/stat.h> 78 #include <sys/syscall.h> 79 #include <sys/syscallsubr.h> 80 #include <sys/sysctl.h> 81 #include <sys/sysent.h> 82 #include <sys/sysproto.h> 83 #include <sys/systm.h> 84 #include <sys/thr.h> 85 #include <sys/timex.h> 86 #include <sys/unistd.h> 87 #include <sys/ucontext.h> 88 #include <sys/umtx.h> 89 #include <sys/vnode.h> 90 #include <sys/wait.h> 91 #include <sys/ipc.h> 92 #include <sys/msg.h> 93 #include <sys/sem.h> 94 #include <sys/shm.h> 95 #ifdef KTRACE 96 #include <sys/ktrace.h> 97 #endif 98 99 #ifdef INET 100 #include <netinet/in.h> 101 #endif 102 103 #include <vm/vm.h> 104 #include <vm/vm_param.h> 105 #include <vm/pmap.h> 106 #include <vm/vm_map.h> 107 #include <vm/vm_object.h> 108 #include <vm/vm_extern.h> 109 110 #include <machine/cpu.h> 111 #include <machine/elf.h> 112 #ifdef __amd64__ 113 #include <machine/md_var.h> 114 #endif 115 116 #include <security/audit/audit.h> 117 118 #include <compat/freebsd32/freebsd32_util.h> 119 #include <compat/freebsd32/freebsd32.h> 120 #include <compat/freebsd32/freebsd32_ipc.h> 121 #include <compat/freebsd32/freebsd32_misc.h> 122 #include <compat/freebsd32/freebsd32_signal.h> 123 #include <compat/freebsd32/freebsd32_proto.h> 124 125 FEATURE(compat_freebsd_32bit, "Compatible with 32-bit FreeBSD"); 126 127 struct ptrace_io_desc32 { 128 int piod_op; 129 uint32_t piod_offs; 130 uint32_t piod_addr; 131 uint32_t piod_len; 132 }; 133 134 struct ptrace_sc_ret32 { 135 uint32_t sr_retval[2]; 136 int sr_error; 137 }; 138 139 struct ptrace_vm_entry32 { 140 int pve_entry; 141 int pve_timestamp; 142 uint32_t pve_start; 143 uint32_t pve_end; 144 uint32_t pve_offset; 145 u_int pve_prot; 146 u_int pve_pathlen; 147 int32_t pve_fileid; 148 u_int pve_fsid; 149 uint32_t pve_path; 150 }; 151 152 #ifdef __amd64__ 153 CTASSERT(sizeof(struct timeval32) == 8); 154 CTASSERT(sizeof(struct timespec32) == 8); 155 CTASSERT(sizeof(struct itimerval32) == 16); 156 CTASSERT(sizeof(struct bintime32) == 12); 157 #endif 158 CTASSERT(sizeof(struct statfs32) == 256); 159 #ifdef __amd64__ 160 CTASSERT(sizeof(struct rusage32) == 72); 161 #endif 162 CTASSERT(sizeof(struct sigaltstack32) == 12); 163 #ifdef __amd64__ 164 CTASSERT(sizeof(struct kevent32) == 56); 165 #else 166 CTASSERT(sizeof(struct kevent32) == 64); 167 #endif 168 CTASSERT(sizeof(struct iovec32) == 8); 169 CTASSERT(sizeof(struct msghdr32) == 28); 170 #ifdef __amd64__ 171 CTASSERT(sizeof(struct stat32) == 208); 172 CTASSERT(sizeof(struct freebsd11_stat32) == 96); 173 #endif 174 CTASSERT(sizeof(struct sigaction32) == 24); 175 176 static int freebsd32_kevent_copyout(void *arg, struct kevent *kevp, int count); 177 static int freebsd32_kevent_copyin(void *arg, struct kevent *kevp, int count); 178 static int freebsd32_user_clock_nanosleep(struct thread *td, clockid_t clock_id, 179 int flags, const struct timespec32 *ua_rqtp, struct timespec32 *ua_rmtp); 180 181 void 182 freebsd32_rusage_out(const struct rusage *s, struct rusage32 *s32) 183 { 184 185 TV_CP(*s, *s32, ru_utime); 186 TV_CP(*s, *s32, ru_stime); 187 CP(*s, *s32, ru_maxrss); 188 CP(*s, *s32, ru_ixrss); 189 CP(*s, *s32, ru_idrss); 190 CP(*s, *s32, ru_isrss); 191 CP(*s, *s32, ru_minflt); 192 CP(*s, *s32, ru_majflt); 193 CP(*s, *s32, ru_nswap); 194 CP(*s, *s32, ru_inblock); 195 CP(*s, *s32, ru_oublock); 196 CP(*s, *s32, ru_msgsnd); 197 CP(*s, *s32, ru_msgrcv); 198 CP(*s, *s32, ru_nsignals); 199 CP(*s, *s32, ru_nvcsw); 200 CP(*s, *s32, ru_nivcsw); 201 } 202 203 int 204 freebsd32_wait4(struct thread *td, struct freebsd32_wait4_args *uap) 205 { 206 int error, status; 207 struct rusage32 ru32; 208 struct rusage ru, *rup; 209 210 if (uap->rusage != NULL) 211 rup = &ru; 212 else 213 rup = NULL; 214 error = kern_wait(td, uap->pid, &status, uap->options, rup); 215 if (error) 216 return (error); 217 if (uap->status != NULL) 218 error = copyout(&status, uap->status, sizeof(status)); 219 if (uap->rusage != NULL && error == 0) { 220 freebsd32_rusage_out(&ru, &ru32); 221 error = copyout(&ru32, uap->rusage, sizeof(ru32)); 222 } 223 return (error); 224 } 225 226 int 227 freebsd32_wait6(struct thread *td, struct freebsd32_wait6_args *uap) 228 { 229 struct wrusage32 wru32; 230 struct __wrusage wru, *wrup; 231 struct siginfo32 si32; 232 struct __siginfo si, *sip; 233 int error, status; 234 235 if (uap->wrusage != NULL) 236 wrup = &wru; 237 else 238 wrup = NULL; 239 if (uap->info != NULL) { 240 sip = &si; 241 bzero(sip, sizeof(*sip)); 242 } else 243 sip = NULL; 244 error = kern_wait6(td, uap->idtype, PAIR32TO64(id_t, uap->id), 245 &status, uap->options, wrup, sip); 246 if (error != 0) 247 return (error); 248 if (uap->status != NULL) 249 error = copyout(&status, uap->status, sizeof(status)); 250 if (uap->wrusage != NULL && error == 0) { 251 freebsd32_rusage_out(&wru.wru_self, &wru32.wru_self); 252 freebsd32_rusage_out(&wru.wru_children, &wru32.wru_children); 253 error = copyout(&wru32, uap->wrusage, sizeof(wru32)); 254 } 255 if (uap->info != NULL && error == 0) { 256 siginfo_to_siginfo32 (&si, &si32); 257 error = copyout(&si32, uap->info, sizeof(si32)); 258 } 259 return (error); 260 } 261 262 #ifdef COMPAT_FREEBSD4 263 static void 264 copy_statfs(struct statfs *in, struct statfs32 *out) 265 { 266 267 statfs_scale_blocks(in, INT32_MAX); 268 bzero(out, sizeof(*out)); 269 CP(*in, *out, f_bsize); 270 out->f_iosize = MIN(in->f_iosize, INT32_MAX); 271 CP(*in, *out, f_blocks); 272 CP(*in, *out, f_bfree); 273 CP(*in, *out, f_bavail); 274 out->f_files = MIN(in->f_files, INT32_MAX); 275 out->f_ffree = MIN(in->f_ffree, INT32_MAX); 276 CP(*in, *out, f_fsid); 277 CP(*in, *out, f_owner); 278 CP(*in, *out, f_type); 279 CP(*in, *out, f_flags); 280 out->f_syncwrites = MIN(in->f_syncwrites, INT32_MAX); 281 out->f_asyncwrites = MIN(in->f_asyncwrites, INT32_MAX); 282 strlcpy(out->f_fstypename, 283 in->f_fstypename, MFSNAMELEN); 284 strlcpy(out->f_mntonname, 285 in->f_mntonname, min(MNAMELEN, FREEBSD4_MNAMELEN)); 286 out->f_syncreads = MIN(in->f_syncreads, INT32_MAX); 287 out->f_asyncreads = MIN(in->f_asyncreads, INT32_MAX); 288 strlcpy(out->f_mntfromname, 289 in->f_mntfromname, min(MNAMELEN, FREEBSD4_MNAMELEN)); 290 } 291 #endif 292 293 #ifdef COMPAT_FREEBSD4 294 int 295 freebsd4_freebsd32_getfsstat(struct thread *td, 296 struct freebsd4_freebsd32_getfsstat_args *uap) 297 { 298 struct statfs *buf, *sp; 299 struct statfs32 stat32; 300 size_t count, size, copycount; 301 int error; 302 303 count = uap->bufsize / sizeof(struct statfs32); 304 size = count * sizeof(struct statfs); 305 error = kern_getfsstat(td, &buf, size, &count, UIO_SYSSPACE, uap->mode); 306 if (size > 0) { 307 sp = buf; 308 copycount = count; 309 while (copycount > 0 && error == 0) { 310 copy_statfs(sp, &stat32); 311 error = copyout(&stat32, uap->buf, sizeof(stat32)); 312 sp++; 313 uap->buf++; 314 copycount--; 315 } 316 free(buf, M_STATFS); 317 } 318 if (error == 0) 319 td->td_retval[0] = count; 320 return (error); 321 } 322 #endif 323 324 #ifdef COMPAT_FREEBSD10 325 int 326 freebsd10_freebsd32_pipe(struct thread *td, 327 struct freebsd10_freebsd32_pipe_args *uap) { 328 return (freebsd10_pipe(td, (struct freebsd10_pipe_args*)uap)); 329 } 330 #endif 331 332 int 333 freebsd32_sigaltstack(struct thread *td, 334 struct freebsd32_sigaltstack_args *uap) 335 { 336 struct sigaltstack32 s32; 337 struct sigaltstack ss, oss, *ssp; 338 int error; 339 340 if (uap->ss != NULL) { 341 error = copyin(uap->ss, &s32, sizeof(s32)); 342 if (error) 343 return (error); 344 PTRIN_CP(s32, ss, ss_sp); 345 CP(s32, ss, ss_size); 346 CP(s32, ss, ss_flags); 347 ssp = &ss; 348 } else 349 ssp = NULL; 350 error = kern_sigaltstack(td, ssp, &oss); 351 if (error == 0 && uap->oss != NULL) { 352 PTROUT_CP(oss, s32, ss_sp); 353 CP(oss, s32, ss_size); 354 CP(oss, s32, ss_flags); 355 error = copyout(&s32, uap->oss, sizeof(s32)); 356 } 357 return (error); 358 } 359 360 /* 361 * Custom version of exec_copyin_args() so that we can translate 362 * the pointers. 363 */ 364 int 365 freebsd32_exec_copyin_args(struct image_args *args, const char *fname, 366 enum uio_seg segflg, u_int32_t *argv, u_int32_t *envv) 367 { 368 char *argp, *envp; 369 u_int32_t *p32, arg; 370 int error; 371 372 bzero(args, sizeof(*args)); 373 if (argv == NULL) 374 return (EFAULT); 375 376 /* 377 * Allocate demand-paged memory for the file name, argument, and 378 * environment strings. 379 */ 380 error = exec_alloc_args(args); 381 if (error != 0) 382 return (error); 383 384 /* 385 * Copy the file name. 386 */ 387 error = exec_args_add_fname(args, fname, segflg); 388 if (error != 0) 389 goto err_exit; 390 391 /* 392 * extract arguments first 393 */ 394 p32 = argv; 395 for (;;) { 396 error = copyin(p32++, &arg, sizeof(arg)); 397 if (error) 398 goto err_exit; 399 if (arg == 0) 400 break; 401 argp = PTRIN(arg); 402 error = exec_args_add_arg(args, argp, UIO_USERSPACE); 403 if (error != 0) 404 goto err_exit; 405 } 406 407 /* 408 * extract environment strings 409 */ 410 if (envv) { 411 p32 = envv; 412 for (;;) { 413 error = copyin(p32++, &arg, sizeof(arg)); 414 if (error) 415 goto err_exit; 416 if (arg == 0) 417 break; 418 envp = PTRIN(arg); 419 error = exec_args_add_env(args, envp, UIO_USERSPACE); 420 if (error != 0) 421 goto err_exit; 422 } 423 } 424 425 return (0); 426 427 err_exit: 428 exec_free_args(args); 429 return (error); 430 } 431 432 int 433 freebsd32_execve(struct thread *td, struct freebsd32_execve_args *uap) 434 { 435 struct image_args eargs; 436 struct vmspace *oldvmspace; 437 int error; 438 439 error = pre_execve(td, &oldvmspace); 440 if (error != 0) 441 return (error); 442 error = freebsd32_exec_copyin_args(&eargs, uap->fname, UIO_USERSPACE, 443 uap->argv, uap->envv); 444 if (error == 0) 445 error = kern_execve(td, &eargs, NULL, oldvmspace); 446 post_execve(td, error, oldvmspace); 447 AUDIT_SYSCALL_EXIT(error == EJUSTRETURN ? 0 : error, td); 448 return (error); 449 } 450 451 int 452 freebsd32_fexecve(struct thread *td, struct freebsd32_fexecve_args *uap) 453 { 454 struct image_args eargs; 455 struct vmspace *oldvmspace; 456 int error; 457 458 error = pre_execve(td, &oldvmspace); 459 if (error != 0) 460 return (error); 461 error = freebsd32_exec_copyin_args(&eargs, NULL, UIO_SYSSPACE, 462 uap->argv, uap->envv); 463 if (error == 0) { 464 eargs.fd = uap->fd; 465 error = kern_execve(td, &eargs, NULL, oldvmspace); 466 } 467 post_execve(td, error, oldvmspace); 468 AUDIT_SYSCALL_EXIT(error == EJUSTRETURN ? 0 : error, td); 469 return (error); 470 } 471 472 int 473 freebsd32_mknodat(struct thread *td, struct freebsd32_mknodat_args *uap) 474 { 475 476 return (kern_mknodat(td, uap->fd, uap->path, UIO_USERSPACE, 477 uap->mode, PAIR32TO64(dev_t, uap->dev))); 478 } 479 480 int 481 freebsd32_mprotect(struct thread *td, struct freebsd32_mprotect_args *uap) 482 { 483 int prot; 484 485 prot = uap->prot; 486 #if defined(__amd64__) 487 if (i386_read_exec && (prot & PROT_READ) != 0) 488 prot |= PROT_EXEC; 489 #endif 490 return (kern_mprotect(td, (uintptr_t)PTRIN(uap->addr), uap->len, 491 prot)); 492 } 493 494 int 495 freebsd32_mmap(struct thread *td, struct freebsd32_mmap_args *uap) 496 { 497 int prot; 498 499 prot = uap->prot; 500 #if defined(__amd64__) 501 if (i386_read_exec && (prot & PROT_READ)) 502 prot |= PROT_EXEC; 503 #endif 504 505 return (kern_mmap(td, &(struct mmap_req){ 506 .mr_hint = (uintptr_t)uap->addr, 507 .mr_len = uap->len, 508 .mr_prot = prot, 509 .mr_flags = uap->flags, 510 .mr_fd = uap->fd, 511 .mr_pos = PAIR32TO64(off_t, uap->pos), 512 })); 513 } 514 515 #ifdef COMPAT_FREEBSD6 516 int 517 freebsd6_freebsd32_mmap(struct thread *td, 518 struct freebsd6_freebsd32_mmap_args *uap) 519 { 520 int prot; 521 522 prot = uap->prot; 523 #if defined(__amd64__) 524 if (i386_read_exec && (prot & PROT_READ)) 525 prot |= PROT_EXEC; 526 #endif 527 528 return (kern_mmap(td, &(struct mmap_req){ 529 .mr_hint = (uintptr_t)uap->addr, 530 .mr_len = uap->len, 531 .mr_prot = prot, 532 .mr_flags = uap->flags, 533 .mr_fd = uap->fd, 534 .mr_pos = PAIR32TO64(off_t, uap->pos), 535 })); 536 } 537 #endif 538 539 int 540 freebsd32_setitimer(struct thread *td, struct freebsd32_setitimer_args *uap) 541 { 542 struct itimerval itv, oitv, *itvp; 543 struct itimerval32 i32; 544 int error; 545 546 if (uap->itv != NULL) { 547 error = copyin(uap->itv, &i32, sizeof(i32)); 548 if (error) 549 return (error); 550 TV_CP(i32, itv, it_interval); 551 TV_CP(i32, itv, it_value); 552 itvp = &itv; 553 } else 554 itvp = NULL; 555 error = kern_setitimer(td, uap->which, itvp, &oitv); 556 if (error || uap->oitv == NULL) 557 return (error); 558 TV_CP(oitv, i32, it_interval); 559 TV_CP(oitv, i32, it_value); 560 return (copyout(&i32, uap->oitv, sizeof(i32))); 561 } 562 563 int 564 freebsd32_getitimer(struct thread *td, struct freebsd32_getitimer_args *uap) 565 { 566 struct itimerval itv; 567 struct itimerval32 i32; 568 int error; 569 570 error = kern_getitimer(td, uap->which, &itv); 571 if (error || uap->itv == NULL) 572 return (error); 573 TV_CP(itv, i32, it_interval); 574 TV_CP(itv, i32, it_value); 575 return (copyout(&i32, uap->itv, sizeof(i32))); 576 } 577 578 int 579 freebsd32_select(struct thread *td, struct freebsd32_select_args *uap) 580 { 581 struct timeval32 tv32; 582 struct timeval tv, *tvp; 583 int error; 584 585 if (uap->tv != NULL) { 586 error = copyin(uap->tv, &tv32, sizeof(tv32)); 587 if (error) 588 return (error); 589 CP(tv32, tv, tv_sec); 590 CP(tv32, tv, tv_usec); 591 tvp = &tv; 592 } else 593 tvp = NULL; 594 /* 595 * XXX Do pointers need PTRIN()? 596 */ 597 return (kern_select(td, uap->nd, uap->in, uap->ou, uap->ex, tvp, 598 sizeof(int32_t) * 8)); 599 } 600 601 int 602 freebsd32_pselect(struct thread *td, struct freebsd32_pselect_args *uap) 603 { 604 struct timespec32 ts32; 605 struct timespec ts; 606 struct timeval tv, *tvp; 607 sigset_t set, *uset; 608 int error; 609 610 if (uap->ts != NULL) { 611 error = copyin(uap->ts, &ts32, sizeof(ts32)); 612 if (error != 0) 613 return (error); 614 CP(ts32, ts, tv_sec); 615 CP(ts32, ts, tv_nsec); 616 TIMESPEC_TO_TIMEVAL(&tv, &ts); 617 tvp = &tv; 618 } else 619 tvp = NULL; 620 if (uap->sm != NULL) { 621 error = copyin(uap->sm, &set, sizeof(set)); 622 if (error != 0) 623 return (error); 624 uset = &set; 625 } else 626 uset = NULL; 627 /* 628 * XXX Do pointers need PTRIN()? 629 */ 630 error = kern_pselect(td, uap->nd, uap->in, uap->ou, uap->ex, tvp, 631 uset, sizeof(int32_t) * 8); 632 return (error); 633 } 634 635 /* 636 * Copy 'count' items into the destination list pointed to by uap->eventlist. 637 */ 638 static int 639 freebsd32_kevent_copyout(void *arg, struct kevent *kevp, int count) 640 { 641 struct freebsd32_kevent_args *uap; 642 struct kevent32 ks32[KQ_NEVENTS]; 643 uint64_t e; 644 int i, j, error; 645 646 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count)); 647 uap = (struct freebsd32_kevent_args *)arg; 648 649 for (i = 0; i < count; i++) { 650 CP(kevp[i], ks32[i], ident); 651 CP(kevp[i], ks32[i], filter); 652 CP(kevp[i], ks32[i], flags); 653 CP(kevp[i], ks32[i], fflags); 654 #if BYTE_ORDER == LITTLE_ENDIAN 655 ks32[i].data1 = kevp[i].data; 656 ks32[i].data2 = kevp[i].data >> 32; 657 #else 658 ks32[i].data1 = kevp[i].data >> 32; 659 ks32[i].data2 = kevp[i].data; 660 #endif 661 PTROUT_CP(kevp[i], ks32[i], udata); 662 for (j = 0; j < nitems(kevp->ext); j++) { 663 e = kevp[i].ext[j]; 664 #if BYTE_ORDER == LITTLE_ENDIAN 665 ks32[i].ext64[2 * j] = e; 666 ks32[i].ext64[2 * j + 1] = e >> 32; 667 #else 668 ks32[i].ext64[2 * j] = e >> 32; 669 ks32[i].ext64[2 * j + 1] = e; 670 #endif 671 } 672 } 673 error = copyout(ks32, uap->eventlist, count * sizeof *ks32); 674 if (error == 0) 675 uap->eventlist += count; 676 return (error); 677 } 678 679 /* 680 * Copy 'count' items from the list pointed to by uap->changelist. 681 */ 682 static int 683 freebsd32_kevent_copyin(void *arg, struct kevent *kevp, int count) 684 { 685 struct freebsd32_kevent_args *uap; 686 struct kevent32 ks32[KQ_NEVENTS]; 687 uint64_t e; 688 int i, j, error; 689 690 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count)); 691 uap = (struct freebsd32_kevent_args *)arg; 692 693 error = copyin(uap->changelist, ks32, count * sizeof *ks32); 694 if (error) 695 goto done; 696 uap->changelist += count; 697 698 for (i = 0; i < count; i++) { 699 CP(ks32[i], kevp[i], ident); 700 CP(ks32[i], kevp[i], filter); 701 CP(ks32[i], kevp[i], flags); 702 CP(ks32[i], kevp[i], fflags); 703 kevp[i].data = PAIR32TO64(uint64_t, ks32[i].data); 704 PTRIN_CP(ks32[i], kevp[i], udata); 705 for (j = 0; j < nitems(kevp->ext); j++) { 706 #if BYTE_ORDER == LITTLE_ENDIAN 707 e = ks32[i].ext64[2 * j + 1]; 708 e <<= 32; 709 e += ks32[i].ext64[2 * j]; 710 #else 711 e = ks32[i].ext64[2 * j]; 712 e <<= 32; 713 e += ks32[i].ext64[2 * j + 1]; 714 #endif 715 kevp[i].ext[j] = e; 716 } 717 } 718 done: 719 return (error); 720 } 721 722 int 723 freebsd32_kevent(struct thread *td, struct freebsd32_kevent_args *uap) 724 { 725 struct timespec32 ts32; 726 struct timespec ts, *tsp; 727 struct kevent_copyops k_ops = { 728 .arg = uap, 729 .k_copyout = freebsd32_kevent_copyout, 730 .k_copyin = freebsd32_kevent_copyin, 731 }; 732 #ifdef KTRACE 733 struct kevent32 *eventlist = uap->eventlist; 734 #endif 735 int error; 736 737 if (uap->timeout) { 738 error = copyin(uap->timeout, &ts32, sizeof(ts32)); 739 if (error) 740 return (error); 741 CP(ts32, ts, tv_sec); 742 CP(ts32, ts, tv_nsec); 743 tsp = &ts; 744 } else 745 tsp = NULL; 746 #ifdef KTRACE 747 if (KTRPOINT(td, KTR_STRUCT_ARRAY)) 748 ktrstructarray("kevent32", UIO_USERSPACE, uap->changelist, 749 uap->nchanges, sizeof(struct kevent32)); 750 #endif 751 error = kern_kevent(td, uap->fd, uap->nchanges, uap->nevents, 752 &k_ops, tsp); 753 #ifdef KTRACE 754 if (error == 0 && KTRPOINT(td, KTR_STRUCT_ARRAY)) 755 ktrstructarray("kevent32", UIO_USERSPACE, eventlist, 756 td->td_retval[0], sizeof(struct kevent32)); 757 #endif 758 return (error); 759 } 760 761 #ifdef COMPAT_FREEBSD11 762 static int 763 freebsd32_kevent11_copyout(void *arg, struct kevent *kevp, int count) 764 { 765 struct freebsd11_freebsd32_kevent_args *uap; 766 struct kevent32_freebsd11 ks32[KQ_NEVENTS]; 767 int i, error; 768 769 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count)); 770 uap = (struct freebsd11_freebsd32_kevent_args *)arg; 771 772 for (i = 0; i < count; i++) { 773 CP(kevp[i], ks32[i], ident); 774 CP(kevp[i], ks32[i], filter); 775 CP(kevp[i], ks32[i], flags); 776 CP(kevp[i], ks32[i], fflags); 777 CP(kevp[i], ks32[i], data); 778 PTROUT_CP(kevp[i], ks32[i], udata); 779 } 780 error = copyout(ks32, uap->eventlist, count * sizeof *ks32); 781 if (error == 0) 782 uap->eventlist += count; 783 return (error); 784 } 785 786 /* 787 * Copy 'count' items from the list pointed to by uap->changelist. 788 */ 789 static int 790 freebsd32_kevent11_copyin(void *arg, struct kevent *kevp, int count) 791 { 792 struct freebsd11_freebsd32_kevent_args *uap; 793 struct kevent32_freebsd11 ks32[KQ_NEVENTS]; 794 int i, j, error; 795 796 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count)); 797 uap = (struct freebsd11_freebsd32_kevent_args *)arg; 798 799 error = copyin(uap->changelist, ks32, count * sizeof *ks32); 800 if (error) 801 goto done; 802 uap->changelist += count; 803 804 for (i = 0; i < count; i++) { 805 CP(ks32[i], kevp[i], ident); 806 CP(ks32[i], kevp[i], filter); 807 CP(ks32[i], kevp[i], flags); 808 CP(ks32[i], kevp[i], fflags); 809 CP(ks32[i], kevp[i], data); 810 PTRIN_CP(ks32[i], kevp[i], udata); 811 for (j = 0; j < nitems(kevp->ext); j++) 812 kevp[i].ext[j] = 0; 813 } 814 done: 815 return (error); 816 } 817 818 int 819 freebsd11_freebsd32_kevent(struct thread *td, 820 struct freebsd11_freebsd32_kevent_args *uap) 821 { 822 struct timespec32 ts32; 823 struct timespec ts, *tsp; 824 struct kevent_copyops k_ops = { 825 .arg = uap, 826 .k_copyout = freebsd32_kevent11_copyout, 827 .k_copyin = freebsd32_kevent11_copyin, 828 }; 829 #ifdef KTRACE 830 struct kevent32_freebsd11 *eventlist = uap->eventlist; 831 #endif 832 int error; 833 834 if (uap->timeout) { 835 error = copyin(uap->timeout, &ts32, sizeof(ts32)); 836 if (error) 837 return (error); 838 CP(ts32, ts, tv_sec); 839 CP(ts32, ts, tv_nsec); 840 tsp = &ts; 841 } else 842 tsp = NULL; 843 #ifdef KTRACE 844 if (KTRPOINT(td, KTR_STRUCT_ARRAY)) 845 ktrstructarray("kevent32_freebsd11", UIO_USERSPACE, 846 uap->changelist, uap->nchanges, 847 sizeof(struct kevent32_freebsd11)); 848 #endif 849 error = kern_kevent(td, uap->fd, uap->nchanges, uap->nevents, 850 &k_ops, tsp); 851 #ifdef KTRACE 852 if (error == 0 && KTRPOINT(td, KTR_STRUCT_ARRAY)) 853 ktrstructarray("kevent32_freebsd11", UIO_USERSPACE, 854 eventlist, td->td_retval[0], 855 sizeof(struct kevent32_freebsd11)); 856 #endif 857 return (error); 858 } 859 #endif 860 861 int 862 freebsd32_gettimeofday(struct thread *td, 863 struct freebsd32_gettimeofday_args *uap) 864 { 865 struct timeval atv; 866 struct timeval32 atv32; 867 struct timezone rtz; 868 int error = 0; 869 870 if (uap->tp) { 871 microtime(&atv); 872 CP(atv, atv32, tv_sec); 873 CP(atv, atv32, tv_usec); 874 error = copyout(&atv32, uap->tp, sizeof (atv32)); 875 } 876 if (error == 0 && uap->tzp != NULL) { 877 rtz.tz_minuteswest = 0; 878 rtz.tz_dsttime = 0; 879 error = copyout(&rtz, uap->tzp, sizeof (rtz)); 880 } 881 return (error); 882 } 883 884 int 885 freebsd32_getrusage(struct thread *td, struct freebsd32_getrusage_args *uap) 886 { 887 struct rusage32 s32; 888 struct rusage s; 889 int error; 890 891 error = kern_getrusage(td, uap->who, &s); 892 if (error == 0) { 893 freebsd32_rusage_out(&s, &s32); 894 error = copyout(&s32, uap->rusage, sizeof(s32)); 895 } 896 return (error); 897 } 898 899 static void 900 ptrace_lwpinfo_to32(const struct ptrace_lwpinfo *pl, 901 struct ptrace_lwpinfo32 *pl32) 902 { 903 904 bzero(pl32, sizeof(*pl32)); 905 pl32->pl_lwpid = pl->pl_lwpid; 906 pl32->pl_event = pl->pl_event; 907 pl32->pl_flags = pl->pl_flags; 908 pl32->pl_sigmask = pl->pl_sigmask; 909 pl32->pl_siglist = pl->pl_siglist; 910 siginfo_to_siginfo32(&pl->pl_siginfo, &pl32->pl_siginfo); 911 strcpy(pl32->pl_tdname, pl->pl_tdname); 912 pl32->pl_child_pid = pl->pl_child_pid; 913 pl32->pl_syscall_code = pl->pl_syscall_code; 914 pl32->pl_syscall_narg = pl->pl_syscall_narg; 915 } 916 917 static void 918 ptrace_sc_ret_to32(const struct ptrace_sc_ret *psr, 919 struct ptrace_sc_ret32 *psr32) 920 { 921 922 bzero(psr32, sizeof(*psr32)); 923 psr32->sr_retval[0] = psr->sr_retval[0]; 924 psr32->sr_retval[1] = psr->sr_retval[1]; 925 psr32->sr_error = psr->sr_error; 926 } 927 928 int 929 freebsd32_ptrace(struct thread *td, struct freebsd32_ptrace_args *uap) 930 { 931 union { 932 struct ptrace_io_desc piod; 933 struct ptrace_lwpinfo pl; 934 struct ptrace_vm_entry pve; 935 struct dbreg32 dbreg; 936 struct fpreg32 fpreg; 937 struct reg32 reg; 938 register_t args[nitems(td->td_sa.args)]; 939 struct ptrace_sc_ret psr; 940 int ptevents; 941 } r; 942 union { 943 struct ptrace_io_desc32 piod; 944 struct ptrace_lwpinfo32 pl; 945 struct ptrace_vm_entry32 pve; 946 uint32_t args[nitems(td->td_sa.args)]; 947 struct ptrace_sc_ret32 psr; 948 } r32; 949 void *addr; 950 int data, error = 0, i; 951 952 AUDIT_ARG_PID(uap->pid); 953 AUDIT_ARG_CMD(uap->req); 954 AUDIT_ARG_VALUE(uap->data); 955 addr = &r; 956 data = uap->data; 957 switch (uap->req) { 958 case PT_GET_EVENT_MASK: 959 case PT_GET_SC_ARGS: 960 case PT_GET_SC_RET: 961 break; 962 case PT_LWPINFO: 963 if (uap->data > sizeof(r32.pl)) 964 return (EINVAL); 965 966 /* 967 * Pass size of native structure in 'data'. Truncate 968 * if necessary to avoid siginfo. 969 */ 970 data = sizeof(r.pl); 971 if (uap->data < offsetof(struct ptrace_lwpinfo32, pl_siginfo) + 972 sizeof(struct siginfo32)) 973 data = offsetof(struct ptrace_lwpinfo, pl_siginfo); 974 break; 975 case PT_GETREGS: 976 bzero(&r.reg, sizeof(r.reg)); 977 break; 978 case PT_GETFPREGS: 979 bzero(&r.fpreg, sizeof(r.fpreg)); 980 break; 981 case PT_GETDBREGS: 982 bzero(&r.dbreg, sizeof(r.dbreg)); 983 break; 984 case PT_SETREGS: 985 error = copyin(uap->addr, &r.reg, sizeof(r.reg)); 986 break; 987 case PT_SETFPREGS: 988 error = copyin(uap->addr, &r.fpreg, sizeof(r.fpreg)); 989 break; 990 case PT_SETDBREGS: 991 error = copyin(uap->addr, &r.dbreg, sizeof(r.dbreg)); 992 break; 993 case PT_SET_EVENT_MASK: 994 if (uap->data != sizeof(r.ptevents)) 995 error = EINVAL; 996 else 997 error = copyin(uap->addr, &r.ptevents, uap->data); 998 break; 999 case PT_IO: 1000 error = copyin(uap->addr, &r32.piod, sizeof(r32.piod)); 1001 if (error) 1002 break; 1003 CP(r32.piod, r.piod, piod_op); 1004 PTRIN_CP(r32.piod, r.piod, piod_offs); 1005 PTRIN_CP(r32.piod, r.piod, piod_addr); 1006 CP(r32.piod, r.piod, piod_len); 1007 break; 1008 case PT_VM_ENTRY: 1009 error = copyin(uap->addr, &r32.pve, sizeof(r32.pve)); 1010 if (error) 1011 break; 1012 1013 CP(r32.pve, r.pve, pve_entry); 1014 CP(r32.pve, r.pve, pve_timestamp); 1015 CP(r32.pve, r.pve, pve_start); 1016 CP(r32.pve, r.pve, pve_end); 1017 CP(r32.pve, r.pve, pve_offset); 1018 CP(r32.pve, r.pve, pve_prot); 1019 CP(r32.pve, r.pve, pve_pathlen); 1020 CP(r32.pve, r.pve, pve_fileid); 1021 CP(r32.pve, r.pve, pve_fsid); 1022 PTRIN_CP(r32.pve, r.pve, pve_path); 1023 break; 1024 default: 1025 addr = uap->addr; 1026 break; 1027 } 1028 if (error) 1029 return (error); 1030 1031 error = kern_ptrace(td, uap->req, uap->pid, addr, data); 1032 if (error) 1033 return (error); 1034 1035 switch (uap->req) { 1036 case PT_VM_ENTRY: 1037 CP(r.pve, r32.pve, pve_entry); 1038 CP(r.pve, r32.pve, pve_timestamp); 1039 CP(r.pve, r32.pve, pve_start); 1040 CP(r.pve, r32.pve, pve_end); 1041 CP(r.pve, r32.pve, pve_offset); 1042 CP(r.pve, r32.pve, pve_prot); 1043 CP(r.pve, r32.pve, pve_pathlen); 1044 CP(r.pve, r32.pve, pve_fileid); 1045 CP(r.pve, r32.pve, pve_fsid); 1046 error = copyout(&r32.pve, uap->addr, sizeof(r32.pve)); 1047 break; 1048 case PT_IO: 1049 CP(r.piod, r32.piod, piod_len); 1050 error = copyout(&r32.piod, uap->addr, sizeof(r32.piod)); 1051 break; 1052 case PT_GETREGS: 1053 error = copyout(&r.reg, uap->addr, sizeof(r.reg)); 1054 break; 1055 case PT_GETFPREGS: 1056 error = copyout(&r.fpreg, uap->addr, sizeof(r.fpreg)); 1057 break; 1058 case PT_GETDBREGS: 1059 error = copyout(&r.dbreg, uap->addr, sizeof(r.dbreg)); 1060 break; 1061 case PT_GET_EVENT_MASK: 1062 /* NB: The size in uap->data is validated in kern_ptrace(). */ 1063 error = copyout(&r.ptevents, uap->addr, uap->data); 1064 break; 1065 case PT_LWPINFO: 1066 ptrace_lwpinfo_to32(&r.pl, &r32.pl); 1067 error = copyout(&r32.pl, uap->addr, uap->data); 1068 break; 1069 case PT_GET_SC_ARGS: 1070 for (i = 0; i < nitems(r.args); i++) 1071 r32.args[i] = (uint32_t)r.args[i]; 1072 error = copyout(r32.args, uap->addr, MIN(uap->data, 1073 sizeof(r32.args))); 1074 break; 1075 case PT_GET_SC_RET: 1076 ptrace_sc_ret_to32(&r.psr, &r32.psr); 1077 error = copyout(&r32.psr, uap->addr, MIN(uap->data, 1078 sizeof(r32.psr))); 1079 break; 1080 } 1081 1082 return (error); 1083 } 1084 1085 int 1086 freebsd32_copyinuio(struct iovec32 *iovp, u_int iovcnt, struct uio **uiop) 1087 { 1088 struct iovec32 iov32; 1089 struct iovec *iov; 1090 struct uio *uio; 1091 u_int iovlen; 1092 int error, i; 1093 1094 *uiop = NULL; 1095 if (iovcnt > UIO_MAXIOV) 1096 return (EINVAL); 1097 iovlen = iovcnt * sizeof(struct iovec); 1098 uio = malloc(iovlen + sizeof *uio, M_IOV, M_WAITOK); 1099 iov = (struct iovec *)(uio + 1); 1100 for (i = 0; i < iovcnt; i++) { 1101 error = copyin(&iovp[i], &iov32, sizeof(struct iovec32)); 1102 if (error) { 1103 free(uio, M_IOV); 1104 return (error); 1105 } 1106 iov[i].iov_base = PTRIN(iov32.iov_base); 1107 iov[i].iov_len = iov32.iov_len; 1108 } 1109 uio->uio_iov = iov; 1110 uio->uio_iovcnt = iovcnt; 1111 uio->uio_segflg = UIO_USERSPACE; 1112 uio->uio_offset = -1; 1113 uio->uio_resid = 0; 1114 for (i = 0; i < iovcnt; i++) { 1115 if (iov->iov_len > INT_MAX - uio->uio_resid) { 1116 free(uio, M_IOV); 1117 return (EINVAL); 1118 } 1119 uio->uio_resid += iov->iov_len; 1120 iov++; 1121 } 1122 *uiop = uio; 1123 return (0); 1124 } 1125 1126 int 1127 freebsd32_readv(struct thread *td, struct freebsd32_readv_args *uap) 1128 { 1129 struct uio *auio; 1130 int error; 1131 1132 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 1133 if (error) 1134 return (error); 1135 error = kern_readv(td, uap->fd, auio); 1136 free(auio, M_IOV); 1137 return (error); 1138 } 1139 1140 int 1141 freebsd32_writev(struct thread *td, struct freebsd32_writev_args *uap) 1142 { 1143 struct uio *auio; 1144 int error; 1145 1146 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 1147 if (error) 1148 return (error); 1149 error = kern_writev(td, uap->fd, auio); 1150 free(auio, M_IOV); 1151 return (error); 1152 } 1153 1154 int 1155 freebsd32_preadv(struct thread *td, struct freebsd32_preadv_args *uap) 1156 { 1157 struct uio *auio; 1158 int error; 1159 1160 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 1161 if (error) 1162 return (error); 1163 error = kern_preadv(td, uap->fd, auio, PAIR32TO64(off_t,uap->offset)); 1164 free(auio, M_IOV); 1165 return (error); 1166 } 1167 1168 int 1169 freebsd32_pwritev(struct thread *td, struct freebsd32_pwritev_args *uap) 1170 { 1171 struct uio *auio; 1172 int error; 1173 1174 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 1175 if (error) 1176 return (error); 1177 error = kern_pwritev(td, uap->fd, auio, PAIR32TO64(off_t,uap->offset)); 1178 free(auio, M_IOV); 1179 return (error); 1180 } 1181 1182 int 1183 freebsd32_copyiniov(struct iovec32 *iovp32, u_int iovcnt, struct iovec **iovp, 1184 int error) 1185 { 1186 struct iovec32 iov32; 1187 struct iovec *iov; 1188 u_int iovlen; 1189 int i; 1190 1191 *iovp = NULL; 1192 if (iovcnt > UIO_MAXIOV) 1193 return (error); 1194 iovlen = iovcnt * sizeof(struct iovec); 1195 iov = malloc(iovlen, M_IOV, M_WAITOK); 1196 for (i = 0; i < iovcnt; i++) { 1197 error = copyin(&iovp32[i], &iov32, sizeof(struct iovec32)); 1198 if (error) { 1199 free(iov, M_IOV); 1200 return (error); 1201 } 1202 iov[i].iov_base = PTRIN(iov32.iov_base); 1203 iov[i].iov_len = iov32.iov_len; 1204 } 1205 *iovp = iov; 1206 return (0); 1207 } 1208 1209 static int 1210 freebsd32_copyinmsghdr(struct msghdr32 *msg32, struct msghdr *msg) 1211 { 1212 struct msghdr32 m32; 1213 int error; 1214 1215 error = copyin(msg32, &m32, sizeof(m32)); 1216 if (error) 1217 return (error); 1218 msg->msg_name = PTRIN(m32.msg_name); 1219 msg->msg_namelen = m32.msg_namelen; 1220 msg->msg_iov = PTRIN(m32.msg_iov); 1221 msg->msg_iovlen = m32.msg_iovlen; 1222 msg->msg_control = PTRIN(m32.msg_control); 1223 msg->msg_controllen = m32.msg_controllen; 1224 msg->msg_flags = m32.msg_flags; 1225 return (0); 1226 } 1227 1228 static int 1229 freebsd32_copyoutmsghdr(struct msghdr *msg, struct msghdr32 *msg32) 1230 { 1231 struct msghdr32 m32; 1232 int error; 1233 1234 m32.msg_name = PTROUT(msg->msg_name); 1235 m32.msg_namelen = msg->msg_namelen; 1236 m32.msg_iov = PTROUT(msg->msg_iov); 1237 m32.msg_iovlen = msg->msg_iovlen; 1238 m32.msg_control = PTROUT(msg->msg_control); 1239 m32.msg_controllen = msg->msg_controllen; 1240 m32.msg_flags = msg->msg_flags; 1241 error = copyout(&m32, msg32, sizeof(m32)); 1242 return (error); 1243 } 1244 1245 #ifndef __mips__ 1246 #define FREEBSD32_ALIGNBYTES (sizeof(int) - 1) 1247 #else 1248 #define FREEBSD32_ALIGNBYTES (sizeof(long) - 1) 1249 #endif 1250 #define FREEBSD32_ALIGN(p) \ 1251 (((u_long)(p) + FREEBSD32_ALIGNBYTES) & ~FREEBSD32_ALIGNBYTES) 1252 #define FREEBSD32_CMSG_SPACE(l) \ 1253 (FREEBSD32_ALIGN(sizeof(struct cmsghdr)) + FREEBSD32_ALIGN(l)) 1254 1255 #define FREEBSD32_CMSG_DATA(cmsg) ((unsigned char *)(cmsg) + \ 1256 FREEBSD32_ALIGN(sizeof(struct cmsghdr))) 1257 1258 static size_t 1259 freebsd32_cmsg_convert(const struct cmsghdr *cm, void *data, socklen_t datalen) 1260 { 1261 size_t copylen; 1262 union { 1263 struct timespec32 ts; 1264 struct timeval32 tv; 1265 struct bintime32 bt; 1266 } tmp32; 1267 1268 union { 1269 struct timespec ts; 1270 struct timeval tv; 1271 struct bintime bt; 1272 } *in; 1273 1274 in = data; 1275 copylen = 0; 1276 switch (cm->cmsg_level) { 1277 case SOL_SOCKET: 1278 switch (cm->cmsg_type) { 1279 case SCM_TIMESTAMP: 1280 TV_CP(*in, tmp32, tv); 1281 copylen = sizeof(tmp32.tv); 1282 break; 1283 1284 case SCM_BINTIME: 1285 BT_CP(*in, tmp32, bt); 1286 copylen = sizeof(tmp32.bt); 1287 break; 1288 1289 case SCM_REALTIME: 1290 case SCM_MONOTONIC: 1291 TS_CP(*in, tmp32, ts); 1292 copylen = sizeof(tmp32.ts); 1293 break; 1294 1295 default: 1296 break; 1297 } 1298 1299 default: 1300 break; 1301 } 1302 1303 if (copylen == 0) 1304 return (datalen); 1305 1306 KASSERT((datalen >= copylen), ("corrupted cmsghdr")); 1307 1308 bcopy(&tmp32, data, copylen); 1309 return (copylen); 1310 } 1311 1312 static int 1313 freebsd32_copy_msg_out(struct msghdr *msg, struct mbuf *control) 1314 { 1315 struct cmsghdr *cm; 1316 void *data; 1317 socklen_t clen, datalen, datalen_out, oldclen; 1318 int error; 1319 caddr_t ctlbuf; 1320 int len, maxlen, copylen; 1321 struct mbuf *m; 1322 error = 0; 1323 1324 len = msg->msg_controllen; 1325 maxlen = msg->msg_controllen; 1326 msg->msg_controllen = 0; 1327 1328 ctlbuf = msg->msg_control; 1329 for (m = control; m != NULL && len > 0; m = m->m_next) { 1330 cm = mtod(m, struct cmsghdr *); 1331 clen = m->m_len; 1332 while (cm != NULL) { 1333 if (sizeof(struct cmsghdr) > clen || 1334 cm->cmsg_len > clen) { 1335 error = EINVAL; 1336 break; 1337 } 1338 1339 data = CMSG_DATA(cm); 1340 datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data; 1341 datalen_out = freebsd32_cmsg_convert(cm, data, datalen); 1342 1343 /* 1344 * Copy out the message header. Preserve the native 1345 * message size in case we need to inspect the message 1346 * contents later. 1347 */ 1348 copylen = sizeof(struct cmsghdr); 1349 if (len < copylen) { 1350 msg->msg_flags |= MSG_CTRUNC; 1351 m_dispose_extcontrolm(m); 1352 goto exit; 1353 } 1354 oldclen = cm->cmsg_len; 1355 cm->cmsg_len = FREEBSD32_ALIGN(sizeof(struct cmsghdr)) + 1356 datalen_out; 1357 error = copyout(cm, ctlbuf, copylen); 1358 cm->cmsg_len = oldclen; 1359 if (error != 0) 1360 goto exit; 1361 1362 ctlbuf += FREEBSD32_ALIGN(copylen); 1363 len -= FREEBSD32_ALIGN(copylen); 1364 1365 copylen = datalen_out; 1366 if (len < copylen) { 1367 msg->msg_flags |= MSG_CTRUNC; 1368 m_dispose_extcontrolm(m); 1369 break; 1370 } 1371 1372 /* Copy out the message data. */ 1373 error = copyout(data, ctlbuf, copylen); 1374 if (error) 1375 goto exit; 1376 1377 ctlbuf += FREEBSD32_ALIGN(copylen); 1378 len -= FREEBSD32_ALIGN(copylen); 1379 1380 if (CMSG_SPACE(datalen) < clen) { 1381 clen -= CMSG_SPACE(datalen); 1382 cm = (struct cmsghdr *) 1383 ((caddr_t)cm + CMSG_SPACE(datalen)); 1384 } else { 1385 clen = 0; 1386 cm = NULL; 1387 } 1388 1389 msg->msg_controllen += 1390 FREEBSD32_CMSG_SPACE(datalen_out); 1391 } 1392 } 1393 if (len == 0 && m != NULL) { 1394 msg->msg_flags |= MSG_CTRUNC; 1395 m_dispose_extcontrolm(m); 1396 } 1397 1398 exit: 1399 return (error); 1400 } 1401 1402 int 1403 freebsd32_recvmsg(td, uap) 1404 struct thread *td; 1405 struct freebsd32_recvmsg_args /* { 1406 int s; 1407 struct msghdr32 *msg; 1408 int flags; 1409 } */ *uap; 1410 { 1411 struct msghdr msg; 1412 struct msghdr32 m32; 1413 struct iovec *uiov, *iov; 1414 struct mbuf *control = NULL; 1415 struct mbuf **controlp; 1416 1417 int error; 1418 error = copyin(uap->msg, &m32, sizeof(m32)); 1419 if (error) 1420 return (error); 1421 error = freebsd32_copyinmsghdr(uap->msg, &msg); 1422 if (error) 1423 return (error); 1424 error = freebsd32_copyiniov(PTRIN(m32.msg_iov), m32.msg_iovlen, &iov, 1425 EMSGSIZE); 1426 if (error) 1427 return (error); 1428 msg.msg_flags = uap->flags; 1429 uiov = msg.msg_iov; 1430 msg.msg_iov = iov; 1431 1432 controlp = (msg.msg_control != NULL) ? &control : NULL; 1433 error = kern_recvit(td, uap->s, &msg, UIO_USERSPACE, controlp); 1434 if (error == 0) { 1435 msg.msg_iov = uiov; 1436 1437 if (control != NULL) 1438 error = freebsd32_copy_msg_out(&msg, control); 1439 else 1440 msg.msg_controllen = 0; 1441 1442 if (error == 0) 1443 error = freebsd32_copyoutmsghdr(&msg, uap->msg); 1444 } 1445 free(iov, M_IOV); 1446 1447 if (control != NULL) { 1448 if (error != 0) 1449 m_dispose_extcontrolm(control); 1450 m_freem(control); 1451 } 1452 1453 return (error); 1454 } 1455 1456 /* 1457 * Copy-in the array of control messages constructed using alignment 1458 * and padding suitable for a 32-bit environment and construct an 1459 * mbuf using alignment and padding suitable for a 64-bit kernel. 1460 * The alignment and padding are defined indirectly by CMSG_DATA(), 1461 * CMSG_SPACE() and CMSG_LEN(). 1462 */ 1463 static int 1464 freebsd32_copyin_control(struct mbuf **mp, caddr_t buf, u_int buflen) 1465 { 1466 struct cmsghdr *cm; 1467 struct mbuf *m; 1468 void *in, *in1, *md; 1469 u_int msglen, outlen; 1470 int error; 1471 1472 if (buflen > MCLBYTES) 1473 return (EINVAL); 1474 1475 in = malloc(buflen, M_TEMP, M_WAITOK); 1476 error = copyin(buf, in, buflen); 1477 if (error != 0) 1478 goto out; 1479 1480 /* 1481 * Make a pass over the input buffer to determine the amount of space 1482 * required for 64 bit-aligned copies of the control messages. 1483 */ 1484 in1 = in; 1485 outlen = 0; 1486 while (buflen > 0) { 1487 if (buflen < sizeof(*cm)) { 1488 error = EINVAL; 1489 break; 1490 } 1491 cm = (struct cmsghdr *)in1; 1492 if (cm->cmsg_len < FREEBSD32_ALIGN(sizeof(*cm))) { 1493 error = EINVAL; 1494 break; 1495 } 1496 msglen = FREEBSD32_ALIGN(cm->cmsg_len); 1497 if (msglen > buflen || msglen < cm->cmsg_len) { 1498 error = EINVAL; 1499 break; 1500 } 1501 buflen -= msglen; 1502 1503 in1 = (char *)in1 + msglen; 1504 outlen += CMSG_ALIGN(sizeof(*cm)) + 1505 CMSG_ALIGN(msglen - FREEBSD32_ALIGN(sizeof(*cm))); 1506 } 1507 if (error == 0 && outlen > MCLBYTES) { 1508 /* 1509 * XXXMJ This implies that the upper limit on 32-bit aligned 1510 * control messages is less than MCLBYTES, and so we are not 1511 * perfectly compatible. However, there is no platform 1512 * guarantee that mbuf clusters larger than MCLBYTES can be 1513 * allocated. 1514 */ 1515 error = EINVAL; 1516 } 1517 if (error != 0) 1518 goto out; 1519 1520 m = m_get2(outlen, M_WAITOK, MT_CONTROL, 0); 1521 m->m_len = outlen; 1522 md = mtod(m, void *); 1523 1524 /* 1525 * Make a second pass over input messages, copying them into the output 1526 * buffer. 1527 */ 1528 in1 = in; 1529 while (outlen > 0) { 1530 /* Copy the message header and align the length field. */ 1531 cm = md; 1532 memcpy(cm, in1, sizeof(*cm)); 1533 msglen = cm->cmsg_len - FREEBSD32_ALIGN(sizeof(*cm)); 1534 cm->cmsg_len = CMSG_ALIGN(sizeof(*cm)) + msglen; 1535 1536 /* Copy the message body. */ 1537 in1 = (char *)in1 + FREEBSD32_ALIGN(sizeof(*cm)); 1538 md = (char *)md + CMSG_ALIGN(sizeof(*cm)); 1539 memcpy(md, in1, msglen); 1540 in1 = (char *)in1 + FREEBSD32_ALIGN(msglen); 1541 md = (char *)md + CMSG_ALIGN(msglen); 1542 KASSERT(outlen >= CMSG_ALIGN(sizeof(*cm)) + CMSG_ALIGN(msglen), 1543 ("outlen %u underflow, msglen %u", outlen, msglen)); 1544 outlen -= CMSG_ALIGN(sizeof(*cm)) + CMSG_ALIGN(msglen); 1545 } 1546 1547 *mp = m; 1548 out: 1549 free(in, M_TEMP); 1550 return (error); 1551 } 1552 1553 int 1554 freebsd32_sendmsg(struct thread *td, 1555 struct freebsd32_sendmsg_args *uap) 1556 { 1557 struct msghdr msg; 1558 struct msghdr32 m32; 1559 struct iovec *iov; 1560 struct mbuf *control = NULL; 1561 struct sockaddr *to = NULL; 1562 int error; 1563 1564 error = copyin(uap->msg, &m32, sizeof(m32)); 1565 if (error) 1566 return (error); 1567 error = freebsd32_copyinmsghdr(uap->msg, &msg); 1568 if (error) 1569 return (error); 1570 error = freebsd32_copyiniov(PTRIN(m32.msg_iov), m32.msg_iovlen, &iov, 1571 EMSGSIZE); 1572 if (error) 1573 return (error); 1574 msg.msg_iov = iov; 1575 if (msg.msg_name != NULL) { 1576 error = getsockaddr(&to, msg.msg_name, msg.msg_namelen); 1577 if (error) { 1578 to = NULL; 1579 goto out; 1580 } 1581 msg.msg_name = to; 1582 } 1583 1584 if (msg.msg_control) { 1585 if (msg.msg_controllen < sizeof(struct cmsghdr)) { 1586 error = EINVAL; 1587 goto out; 1588 } 1589 1590 error = freebsd32_copyin_control(&control, msg.msg_control, 1591 msg.msg_controllen); 1592 if (error) 1593 goto out; 1594 1595 msg.msg_control = NULL; 1596 msg.msg_controllen = 0; 1597 } 1598 1599 error = kern_sendit(td, uap->s, &msg, uap->flags, control, 1600 UIO_USERSPACE); 1601 1602 out: 1603 free(iov, M_IOV); 1604 if (to) 1605 free(to, M_SONAME); 1606 return (error); 1607 } 1608 1609 int 1610 freebsd32_recvfrom(struct thread *td, 1611 struct freebsd32_recvfrom_args *uap) 1612 { 1613 struct msghdr msg; 1614 struct iovec aiov; 1615 int error; 1616 1617 if (uap->fromlenaddr) { 1618 error = copyin(PTRIN(uap->fromlenaddr), &msg.msg_namelen, 1619 sizeof(msg.msg_namelen)); 1620 if (error) 1621 return (error); 1622 } else { 1623 msg.msg_namelen = 0; 1624 } 1625 1626 msg.msg_name = PTRIN(uap->from); 1627 msg.msg_iov = &aiov; 1628 msg.msg_iovlen = 1; 1629 aiov.iov_base = PTRIN(uap->buf); 1630 aiov.iov_len = uap->len; 1631 msg.msg_control = NULL; 1632 msg.msg_flags = uap->flags; 1633 error = kern_recvit(td, uap->s, &msg, UIO_USERSPACE, NULL); 1634 if (error == 0 && uap->fromlenaddr) 1635 error = copyout(&msg.msg_namelen, PTRIN(uap->fromlenaddr), 1636 sizeof (msg.msg_namelen)); 1637 return (error); 1638 } 1639 1640 int 1641 freebsd32_settimeofday(struct thread *td, 1642 struct freebsd32_settimeofday_args *uap) 1643 { 1644 struct timeval32 tv32; 1645 struct timeval tv, *tvp; 1646 struct timezone tz, *tzp; 1647 int error; 1648 1649 if (uap->tv) { 1650 error = copyin(uap->tv, &tv32, sizeof(tv32)); 1651 if (error) 1652 return (error); 1653 CP(tv32, tv, tv_sec); 1654 CP(tv32, tv, tv_usec); 1655 tvp = &tv; 1656 } else 1657 tvp = NULL; 1658 if (uap->tzp) { 1659 error = copyin(uap->tzp, &tz, sizeof(tz)); 1660 if (error) 1661 return (error); 1662 tzp = &tz; 1663 } else 1664 tzp = NULL; 1665 return (kern_settimeofday(td, tvp, tzp)); 1666 } 1667 1668 int 1669 freebsd32_utimes(struct thread *td, struct freebsd32_utimes_args *uap) 1670 { 1671 struct timeval32 s32[2]; 1672 struct timeval s[2], *sp; 1673 int error; 1674 1675 if (uap->tptr != NULL) { 1676 error = copyin(uap->tptr, s32, sizeof(s32)); 1677 if (error) 1678 return (error); 1679 CP(s32[0], s[0], tv_sec); 1680 CP(s32[0], s[0], tv_usec); 1681 CP(s32[1], s[1], tv_sec); 1682 CP(s32[1], s[1], tv_usec); 1683 sp = s; 1684 } else 1685 sp = NULL; 1686 return (kern_utimesat(td, AT_FDCWD, uap->path, UIO_USERSPACE, 1687 sp, UIO_SYSSPACE)); 1688 } 1689 1690 int 1691 freebsd32_lutimes(struct thread *td, struct freebsd32_lutimes_args *uap) 1692 { 1693 struct timeval32 s32[2]; 1694 struct timeval s[2], *sp; 1695 int error; 1696 1697 if (uap->tptr != NULL) { 1698 error = copyin(uap->tptr, s32, sizeof(s32)); 1699 if (error) 1700 return (error); 1701 CP(s32[0], s[0], tv_sec); 1702 CP(s32[0], s[0], tv_usec); 1703 CP(s32[1], s[1], tv_sec); 1704 CP(s32[1], s[1], tv_usec); 1705 sp = s; 1706 } else 1707 sp = NULL; 1708 return (kern_lutimes(td, uap->path, UIO_USERSPACE, sp, UIO_SYSSPACE)); 1709 } 1710 1711 int 1712 freebsd32_futimes(struct thread *td, struct freebsd32_futimes_args *uap) 1713 { 1714 struct timeval32 s32[2]; 1715 struct timeval s[2], *sp; 1716 int error; 1717 1718 if (uap->tptr != NULL) { 1719 error = copyin(uap->tptr, s32, sizeof(s32)); 1720 if (error) 1721 return (error); 1722 CP(s32[0], s[0], tv_sec); 1723 CP(s32[0], s[0], tv_usec); 1724 CP(s32[1], s[1], tv_sec); 1725 CP(s32[1], s[1], tv_usec); 1726 sp = s; 1727 } else 1728 sp = NULL; 1729 return (kern_futimes(td, uap->fd, sp, UIO_SYSSPACE)); 1730 } 1731 1732 int 1733 freebsd32_futimesat(struct thread *td, struct freebsd32_futimesat_args *uap) 1734 { 1735 struct timeval32 s32[2]; 1736 struct timeval s[2], *sp; 1737 int error; 1738 1739 if (uap->times != NULL) { 1740 error = copyin(uap->times, s32, sizeof(s32)); 1741 if (error) 1742 return (error); 1743 CP(s32[0], s[0], tv_sec); 1744 CP(s32[0], s[0], tv_usec); 1745 CP(s32[1], s[1], tv_sec); 1746 CP(s32[1], s[1], tv_usec); 1747 sp = s; 1748 } else 1749 sp = NULL; 1750 return (kern_utimesat(td, uap->fd, uap->path, UIO_USERSPACE, 1751 sp, UIO_SYSSPACE)); 1752 } 1753 1754 int 1755 freebsd32_futimens(struct thread *td, struct freebsd32_futimens_args *uap) 1756 { 1757 struct timespec32 ts32[2]; 1758 struct timespec ts[2], *tsp; 1759 int error; 1760 1761 if (uap->times != NULL) { 1762 error = copyin(uap->times, ts32, sizeof(ts32)); 1763 if (error) 1764 return (error); 1765 CP(ts32[0], ts[0], tv_sec); 1766 CP(ts32[0], ts[0], tv_nsec); 1767 CP(ts32[1], ts[1], tv_sec); 1768 CP(ts32[1], ts[1], tv_nsec); 1769 tsp = ts; 1770 } else 1771 tsp = NULL; 1772 return (kern_futimens(td, uap->fd, tsp, UIO_SYSSPACE)); 1773 } 1774 1775 int 1776 freebsd32_utimensat(struct thread *td, struct freebsd32_utimensat_args *uap) 1777 { 1778 struct timespec32 ts32[2]; 1779 struct timespec ts[2], *tsp; 1780 int error; 1781 1782 if (uap->times != NULL) { 1783 error = copyin(uap->times, ts32, sizeof(ts32)); 1784 if (error) 1785 return (error); 1786 CP(ts32[0], ts[0], tv_sec); 1787 CP(ts32[0], ts[0], tv_nsec); 1788 CP(ts32[1], ts[1], tv_sec); 1789 CP(ts32[1], ts[1], tv_nsec); 1790 tsp = ts; 1791 } else 1792 tsp = NULL; 1793 return (kern_utimensat(td, uap->fd, uap->path, UIO_USERSPACE, 1794 tsp, UIO_SYSSPACE, uap->flag)); 1795 } 1796 1797 int 1798 freebsd32_adjtime(struct thread *td, struct freebsd32_adjtime_args *uap) 1799 { 1800 struct timeval32 tv32; 1801 struct timeval delta, olddelta, *deltap; 1802 int error; 1803 1804 if (uap->delta) { 1805 error = copyin(uap->delta, &tv32, sizeof(tv32)); 1806 if (error) 1807 return (error); 1808 CP(tv32, delta, tv_sec); 1809 CP(tv32, delta, tv_usec); 1810 deltap = δ 1811 } else 1812 deltap = NULL; 1813 error = kern_adjtime(td, deltap, &olddelta); 1814 if (uap->olddelta && error == 0) { 1815 CP(olddelta, tv32, tv_sec); 1816 CP(olddelta, tv32, tv_usec); 1817 error = copyout(&tv32, uap->olddelta, sizeof(tv32)); 1818 } 1819 return (error); 1820 } 1821 1822 #ifdef COMPAT_FREEBSD4 1823 int 1824 freebsd4_freebsd32_statfs(struct thread *td, struct freebsd4_freebsd32_statfs_args *uap) 1825 { 1826 struct statfs32 s32; 1827 struct statfs *sp; 1828 int error; 1829 1830 sp = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK); 1831 error = kern_statfs(td, uap->path, UIO_USERSPACE, sp); 1832 if (error == 0) { 1833 copy_statfs(sp, &s32); 1834 error = copyout(&s32, uap->buf, sizeof(s32)); 1835 } 1836 free(sp, M_STATFS); 1837 return (error); 1838 } 1839 #endif 1840 1841 #ifdef COMPAT_FREEBSD4 1842 int 1843 freebsd4_freebsd32_fstatfs(struct thread *td, struct freebsd4_freebsd32_fstatfs_args *uap) 1844 { 1845 struct statfs32 s32; 1846 struct statfs *sp; 1847 int error; 1848 1849 sp = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK); 1850 error = kern_fstatfs(td, uap->fd, sp); 1851 if (error == 0) { 1852 copy_statfs(sp, &s32); 1853 error = copyout(&s32, uap->buf, sizeof(s32)); 1854 } 1855 free(sp, M_STATFS); 1856 return (error); 1857 } 1858 #endif 1859 1860 #ifdef COMPAT_FREEBSD4 1861 int 1862 freebsd4_freebsd32_fhstatfs(struct thread *td, struct freebsd4_freebsd32_fhstatfs_args *uap) 1863 { 1864 struct statfs32 s32; 1865 struct statfs *sp; 1866 fhandle_t fh; 1867 int error; 1868 1869 if ((error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t))) != 0) 1870 return (error); 1871 sp = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK); 1872 error = kern_fhstatfs(td, fh, sp); 1873 if (error == 0) { 1874 copy_statfs(sp, &s32); 1875 error = copyout(&s32, uap->buf, sizeof(s32)); 1876 } 1877 free(sp, M_STATFS); 1878 return (error); 1879 } 1880 #endif 1881 1882 int 1883 freebsd32_pread(struct thread *td, struct freebsd32_pread_args *uap) 1884 { 1885 1886 return (kern_pread(td, uap->fd, uap->buf, uap->nbyte, 1887 PAIR32TO64(off_t, uap->offset))); 1888 } 1889 1890 int 1891 freebsd32_pwrite(struct thread *td, struct freebsd32_pwrite_args *uap) 1892 { 1893 1894 return (kern_pwrite(td, uap->fd, uap->buf, uap->nbyte, 1895 PAIR32TO64(off_t, uap->offset))); 1896 } 1897 1898 #ifdef COMPAT_43 1899 int 1900 ofreebsd32_lseek(struct thread *td, struct ofreebsd32_lseek_args *uap) 1901 { 1902 1903 return (kern_lseek(td, uap->fd, uap->offset, uap->whence)); 1904 } 1905 #endif 1906 1907 int 1908 freebsd32_lseek(struct thread *td, struct freebsd32_lseek_args *uap) 1909 { 1910 int error; 1911 off_t pos; 1912 1913 error = kern_lseek(td, uap->fd, PAIR32TO64(off_t, uap->offset), 1914 uap->whence); 1915 /* Expand the quad return into two parts for eax and edx */ 1916 pos = td->td_uretoff.tdu_off; 1917 td->td_retval[RETVAL_LO] = pos & 0xffffffff; /* %eax */ 1918 td->td_retval[RETVAL_HI] = pos >> 32; /* %edx */ 1919 return error; 1920 } 1921 1922 int 1923 freebsd32_truncate(struct thread *td, struct freebsd32_truncate_args *uap) 1924 { 1925 1926 return (kern_truncate(td, uap->path, UIO_USERSPACE, 1927 PAIR32TO64(off_t, uap->length))); 1928 } 1929 1930 int 1931 freebsd32_ftruncate(struct thread *td, struct freebsd32_ftruncate_args *uap) 1932 { 1933 1934 return (kern_ftruncate(td, uap->fd, PAIR32TO64(off_t, uap->length))); 1935 } 1936 1937 #ifdef COMPAT_43 1938 int 1939 ofreebsd32_getdirentries(struct thread *td, 1940 struct ofreebsd32_getdirentries_args *uap) 1941 { 1942 struct ogetdirentries_args ap; 1943 int error; 1944 long loff; 1945 int32_t loff_cut; 1946 1947 ap.fd = uap->fd; 1948 ap.buf = uap->buf; 1949 ap.count = uap->count; 1950 ap.basep = NULL; 1951 error = kern_ogetdirentries(td, &ap, &loff); 1952 if (error == 0) { 1953 loff_cut = loff; 1954 error = copyout(&loff_cut, uap->basep, sizeof(int32_t)); 1955 } 1956 return (error); 1957 } 1958 #endif 1959 1960 #if defined(COMPAT_FREEBSD11) 1961 int 1962 freebsd11_freebsd32_getdirentries(struct thread *td, 1963 struct freebsd11_freebsd32_getdirentries_args *uap) 1964 { 1965 long base; 1966 int32_t base32; 1967 int error; 1968 1969 error = freebsd11_kern_getdirentries(td, uap->fd, uap->buf, uap->count, 1970 &base, NULL); 1971 if (error) 1972 return (error); 1973 if (uap->basep != NULL) { 1974 base32 = base; 1975 error = copyout(&base32, uap->basep, sizeof(int32_t)); 1976 } 1977 return (error); 1978 } 1979 1980 int 1981 freebsd11_freebsd32_getdents(struct thread *td, 1982 struct freebsd11_freebsd32_getdents_args *uap) 1983 { 1984 struct freebsd11_freebsd32_getdirentries_args ap; 1985 1986 ap.fd = uap->fd; 1987 ap.buf = uap->buf; 1988 ap.count = uap->count; 1989 ap.basep = NULL; 1990 return (freebsd11_freebsd32_getdirentries(td, &ap)); 1991 } 1992 #endif /* COMPAT_FREEBSD11 */ 1993 1994 #ifdef COMPAT_FREEBSD6 1995 /* versions with the 'int pad' argument */ 1996 int 1997 freebsd6_freebsd32_pread(struct thread *td, struct freebsd6_freebsd32_pread_args *uap) 1998 { 1999 2000 return (kern_pread(td, uap->fd, uap->buf, uap->nbyte, 2001 PAIR32TO64(off_t, uap->offset))); 2002 } 2003 2004 int 2005 freebsd6_freebsd32_pwrite(struct thread *td, struct freebsd6_freebsd32_pwrite_args *uap) 2006 { 2007 2008 return (kern_pwrite(td, uap->fd, uap->buf, uap->nbyte, 2009 PAIR32TO64(off_t, uap->offset))); 2010 } 2011 2012 int 2013 freebsd6_freebsd32_lseek(struct thread *td, struct freebsd6_freebsd32_lseek_args *uap) 2014 { 2015 int error; 2016 off_t pos; 2017 2018 error = kern_lseek(td, uap->fd, PAIR32TO64(off_t, uap->offset), 2019 uap->whence); 2020 /* Expand the quad return into two parts for eax and edx */ 2021 pos = *(off_t *)(td->td_retval); 2022 td->td_retval[RETVAL_LO] = pos & 0xffffffff; /* %eax */ 2023 td->td_retval[RETVAL_HI] = pos >> 32; /* %edx */ 2024 return error; 2025 } 2026 2027 int 2028 freebsd6_freebsd32_truncate(struct thread *td, struct freebsd6_freebsd32_truncate_args *uap) 2029 { 2030 2031 return (kern_truncate(td, uap->path, UIO_USERSPACE, 2032 PAIR32TO64(off_t, uap->length))); 2033 } 2034 2035 int 2036 freebsd6_freebsd32_ftruncate(struct thread *td, struct freebsd6_freebsd32_ftruncate_args *uap) 2037 { 2038 2039 return (kern_ftruncate(td, uap->fd, PAIR32TO64(off_t, uap->length))); 2040 } 2041 #endif /* COMPAT_FREEBSD6 */ 2042 2043 struct sf_hdtr32 { 2044 uint32_t headers; 2045 int hdr_cnt; 2046 uint32_t trailers; 2047 int trl_cnt; 2048 }; 2049 2050 static int 2051 freebsd32_do_sendfile(struct thread *td, 2052 struct freebsd32_sendfile_args *uap, int compat) 2053 { 2054 struct sf_hdtr32 hdtr32; 2055 struct sf_hdtr hdtr; 2056 struct uio *hdr_uio, *trl_uio; 2057 struct file *fp; 2058 cap_rights_t rights; 2059 struct iovec32 *iov32; 2060 off_t offset, sbytes; 2061 int error; 2062 2063 offset = PAIR32TO64(off_t, uap->offset); 2064 if (offset < 0) 2065 return (EINVAL); 2066 2067 hdr_uio = trl_uio = NULL; 2068 2069 if (uap->hdtr != NULL) { 2070 error = copyin(uap->hdtr, &hdtr32, sizeof(hdtr32)); 2071 if (error) 2072 goto out; 2073 PTRIN_CP(hdtr32, hdtr, headers); 2074 CP(hdtr32, hdtr, hdr_cnt); 2075 PTRIN_CP(hdtr32, hdtr, trailers); 2076 CP(hdtr32, hdtr, trl_cnt); 2077 2078 if (hdtr.headers != NULL) { 2079 iov32 = PTRIN(hdtr32.headers); 2080 error = freebsd32_copyinuio(iov32, 2081 hdtr32.hdr_cnt, &hdr_uio); 2082 if (error) 2083 goto out; 2084 #ifdef COMPAT_FREEBSD4 2085 /* 2086 * In FreeBSD < 5.0 the nbytes to send also included 2087 * the header. If compat is specified subtract the 2088 * header size from nbytes. 2089 */ 2090 if (compat) { 2091 if (uap->nbytes > hdr_uio->uio_resid) 2092 uap->nbytes -= hdr_uio->uio_resid; 2093 else 2094 uap->nbytes = 0; 2095 } 2096 #endif 2097 } 2098 if (hdtr.trailers != NULL) { 2099 iov32 = PTRIN(hdtr32.trailers); 2100 error = freebsd32_copyinuio(iov32, 2101 hdtr32.trl_cnt, &trl_uio); 2102 if (error) 2103 goto out; 2104 } 2105 } 2106 2107 AUDIT_ARG_FD(uap->fd); 2108 2109 if ((error = fget_read(td, uap->fd, 2110 cap_rights_init_one(&rights, CAP_PREAD), &fp)) != 0) 2111 goto out; 2112 2113 error = fo_sendfile(fp, uap->s, hdr_uio, trl_uio, offset, 2114 uap->nbytes, &sbytes, uap->flags, td); 2115 fdrop(fp, td); 2116 2117 if (uap->sbytes != NULL) 2118 copyout(&sbytes, uap->sbytes, sizeof(off_t)); 2119 2120 out: 2121 if (hdr_uio) 2122 free(hdr_uio, M_IOV); 2123 if (trl_uio) 2124 free(trl_uio, M_IOV); 2125 return (error); 2126 } 2127 2128 #ifdef COMPAT_FREEBSD4 2129 int 2130 freebsd4_freebsd32_sendfile(struct thread *td, 2131 struct freebsd4_freebsd32_sendfile_args *uap) 2132 { 2133 return (freebsd32_do_sendfile(td, 2134 (struct freebsd32_sendfile_args *)uap, 1)); 2135 } 2136 #endif 2137 2138 int 2139 freebsd32_sendfile(struct thread *td, struct freebsd32_sendfile_args *uap) 2140 { 2141 2142 return (freebsd32_do_sendfile(td, uap, 0)); 2143 } 2144 2145 static void 2146 copy_stat(struct stat *in, struct stat32 *out) 2147 { 2148 2149 CP(*in, *out, st_dev); 2150 CP(*in, *out, st_ino); 2151 CP(*in, *out, st_mode); 2152 CP(*in, *out, st_nlink); 2153 CP(*in, *out, st_uid); 2154 CP(*in, *out, st_gid); 2155 CP(*in, *out, st_rdev); 2156 TS_CP(*in, *out, st_atim); 2157 TS_CP(*in, *out, st_mtim); 2158 TS_CP(*in, *out, st_ctim); 2159 CP(*in, *out, st_size); 2160 CP(*in, *out, st_blocks); 2161 CP(*in, *out, st_blksize); 2162 CP(*in, *out, st_flags); 2163 CP(*in, *out, st_gen); 2164 TS_CP(*in, *out, st_birthtim); 2165 out->st_padding0 = 0; 2166 out->st_padding1 = 0; 2167 #ifdef __STAT32_TIME_T_EXT 2168 out->st_atim_ext = 0; 2169 out->st_mtim_ext = 0; 2170 out->st_ctim_ext = 0; 2171 out->st_btim_ext = 0; 2172 #endif 2173 bzero(out->st_spare, sizeof(out->st_spare)); 2174 } 2175 2176 #ifdef COMPAT_43 2177 static void 2178 copy_ostat(struct stat *in, struct ostat32 *out) 2179 { 2180 2181 bzero(out, sizeof(*out)); 2182 CP(*in, *out, st_dev); 2183 CP(*in, *out, st_ino); 2184 CP(*in, *out, st_mode); 2185 CP(*in, *out, st_nlink); 2186 CP(*in, *out, st_uid); 2187 CP(*in, *out, st_gid); 2188 CP(*in, *out, st_rdev); 2189 out->st_size = MIN(in->st_size, INT32_MAX); 2190 TS_CP(*in, *out, st_atim); 2191 TS_CP(*in, *out, st_mtim); 2192 TS_CP(*in, *out, st_ctim); 2193 CP(*in, *out, st_blksize); 2194 CP(*in, *out, st_blocks); 2195 CP(*in, *out, st_flags); 2196 CP(*in, *out, st_gen); 2197 } 2198 #endif 2199 2200 #ifdef COMPAT_43 2201 int 2202 ofreebsd32_stat(struct thread *td, struct ofreebsd32_stat_args *uap) 2203 { 2204 struct stat sb; 2205 struct ostat32 sb32; 2206 int error; 2207 2208 error = kern_statat(td, 0, AT_FDCWD, uap->path, UIO_USERSPACE, 2209 &sb, NULL); 2210 if (error) 2211 return (error); 2212 copy_ostat(&sb, &sb32); 2213 error = copyout(&sb32, uap->ub, sizeof (sb32)); 2214 return (error); 2215 } 2216 #endif 2217 2218 int 2219 freebsd32_fstat(struct thread *td, struct freebsd32_fstat_args *uap) 2220 { 2221 struct stat ub; 2222 struct stat32 ub32; 2223 int error; 2224 2225 error = kern_fstat(td, uap->fd, &ub); 2226 if (error) 2227 return (error); 2228 copy_stat(&ub, &ub32); 2229 error = copyout(&ub32, uap->ub, sizeof(ub32)); 2230 return (error); 2231 } 2232 2233 #ifdef COMPAT_43 2234 int 2235 ofreebsd32_fstat(struct thread *td, struct ofreebsd32_fstat_args *uap) 2236 { 2237 struct stat ub; 2238 struct ostat32 ub32; 2239 int error; 2240 2241 error = kern_fstat(td, uap->fd, &ub); 2242 if (error) 2243 return (error); 2244 copy_ostat(&ub, &ub32); 2245 error = copyout(&ub32, uap->ub, sizeof(ub32)); 2246 return (error); 2247 } 2248 #endif 2249 2250 int 2251 freebsd32_fstatat(struct thread *td, struct freebsd32_fstatat_args *uap) 2252 { 2253 struct stat ub; 2254 struct stat32 ub32; 2255 int error; 2256 2257 error = kern_statat(td, uap->flag, uap->fd, uap->path, UIO_USERSPACE, 2258 &ub, NULL); 2259 if (error) 2260 return (error); 2261 copy_stat(&ub, &ub32); 2262 error = copyout(&ub32, uap->buf, sizeof(ub32)); 2263 return (error); 2264 } 2265 2266 #ifdef COMPAT_43 2267 int 2268 ofreebsd32_lstat(struct thread *td, struct ofreebsd32_lstat_args *uap) 2269 { 2270 struct stat sb; 2271 struct ostat32 sb32; 2272 int error; 2273 2274 error = kern_statat(td, AT_SYMLINK_NOFOLLOW, AT_FDCWD, uap->path, 2275 UIO_USERSPACE, &sb, NULL); 2276 if (error) 2277 return (error); 2278 copy_ostat(&sb, &sb32); 2279 error = copyout(&sb32, uap->ub, sizeof (sb32)); 2280 return (error); 2281 } 2282 #endif 2283 2284 int 2285 freebsd32_fhstat(struct thread *td, struct freebsd32_fhstat_args *uap) 2286 { 2287 struct stat sb; 2288 struct stat32 sb32; 2289 struct fhandle fh; 2290 int error; 2291 2292 error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t)); 2293 if (error != 0) 2294 return (error); 2295 error = kern_fhstat(td, fh, &sb); 2296 if (error != 0) 2297 return (error); 2298 copy_stat(&sb, &sb32); 2299 error = copyout(&sb32, uap->sb, sizeof (sb32)); 2300 return (error); 2301 } 2302 2303 #if defined(COMPAT_FREEBSD11) 2304 extern int ino64_trunc_error; 2305 2306 static int 2307 freebsd11_cvtstat32(struct stat *in, struct freebsd11_stat32 *out) 2308 { 2309 2310 CP(*in, *out, st_ino); 2311 if (in->st_ino != out->st_ino) { 2312 switch (ino64_trunc_error) { 2313 default: 2314 case 0: 2315 break; 2316 case 1: 2317 return (EOVERFLOW); 2318 case 2: 2319 out->st_ino = UINT32_MAX; 2320 break; 2321 } 2322 } 2323 CP(*in, *out, st_nlink); 2324 if (in->st_nlink != out->st_nlink) { 2325 switch (ino64_trunc_error) { 2326 default: 2327 case 0: 2328 break; 2329 case 1: 2330 return (EOVERFLOW); 2331 case 2: 2332 out->st_nlink = UINT16_MAX; 2333 break; 2334 } 2335 } 2336 out->st_dev = in->st_dev; 2337 if (out->st_dev != in->st_dev) { 2338 switch (ino64_trunc_error) { 2339 default: 2340 break; 2341 case 1: 2342 return (EOVERFLOW); 2343 } 2344 } 2345 CP(*in, *out, st_mode); 2346 CP(*in, *out, st_uid); 2347 CP(*in, *out, st_gid); 2348 out->st_rdev = in->st_rdev; 2349 if (out->st_rdev != in->st_rdev) { 2350 switch (ino64_trunc_error) { 2351 default: 2352 break; 2353 case 1: 2354 return (EOVERFLOW); 2355 } 2356 } 2357 TS_CP(*in, *out, st_atim); 2358 TS_CP(*in, *out, st_mtim); 2359 TS_CP(*in, *out, st_ctim); 2360 CP(*in, *out, st_size); 2361 CP(*in, *out, st_blocks); 2362 CP(*in, *out, st_blksize); 2363 CP(*in, *out, st_flags); 2364 CP(*in, *out, st_gen); 2365 TS_CP(*in, *out, st_birthtim); 2366 out->st_lspare = 0; 2367 bzero((char *)&out->st_birthtim + sizeof(out->st_birthtim), 2368 sizeof(*out) - offsetof(struct freebsd11_stat32, 2369 st_birthtim) - sizeof(out->st_birthtim)); 2370 return (0); 2371 } 2372 2373 int 2374 freebsd11_freebsd32_stat(struct thread *td, 2375 struct freebsd11_freebsd32_stat_args *uap) 2376 { 2377 struct stat sb; 2378 struct freebsd11_stat32 sb32; 2379 int error; 2380 2381 error = kern_statat(td, 0, AT_FDCWD, uap->path, UIO_USERSPACE, 2382 &sb, NULL); 2383 if (error != 0) 2384 return (error); 2385 error = freebsd11_cvtstat32(&sb, &sb32); 2386 if (error == 0) 2387 error = copyout(&sb32, uap->ub, sizeof (sb32)); 2388 return (error); 2389 } 2390 2391 int 2392 freebsd11_freebsd32_fstat(struct thread *td, 2393 struct freebsd11_freebsd32_fstat_args *uap) 2394 { 2395 struct stat sb; 2396 struct freebsd11_stat32 sb32; 2397 int error; 2398 2399 error = kern_fstat(td, uap->fd, &sb); 2400 if (error != 0) 2401 return (error); 2402 error = freebsd11_cvtstat32(&sb, &sb32); 2403 if (error == 0) 2404 error = copyout(&sb32, uap->ub, sizeof (sb32)); 2405 return (error); 2406 } 2407 2408 int 2409 freebsd11_freebsd32_fstatat(struct thread *td, 2410 struct freebsd11_freebsd32_fstatat_args *uap) 2411 { 2412 struct stat sb; 2413 struct freebsd11_stat32 sb32; 2414 int error; 2415 2416 error = kern_statat(td, uap->flag, uap->fd, uap->path, UIO_USERSPACE, 2417 &sb, NULL); 2418 if (error != 0) 2419 return (error); 2420 error = freebsd11_cvtstat32(&sb, &sb32); 2421 if (error == 0) 2422 error = copyout(&sb32, uap->buf, sizeof (sb32)); 2423 return (error); 2424 } 2425 2426 int 2427 freebsd11_freebsd32_lstat(struct thread *td, 2428 struct freebsd11_freebsd32_lstat_args *uap) 2429 { 2430 struct stat sb; 2431 struct freebsd11_stat32 sb32; 2432 int error; 2433 2434 error = kern_statat(td, AT_SYMLINK_NOFOLLOW, AT_FDCWD, uap->path, 2435 UIO_USERSPACE, &sb, NULL); 2436 if (error != 0) 2437 return (error); 2438 error = freebsd11_cvtstat32(&sb, &sb32); 2439 if (error == 0) 2440 error = copyout(&sb32, uap->ub, sizeof (sb32)); 2441 return (error); 2442 } 2443 2444 int 2445 freebsd11_freebsd32_fhstat(struct thread *td, 2446 struct freebsd11_freebsd32_fhstat_args *uap) 2447 { 2448 struct stat sb; 2449 struct freebsd11_stat32 sb32; 2450 struct fhandle fh; 2451 int error; 2452 2453 error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t)); 2454 if (error != 0) 2455 return (error); 2456 error = kern_fhstat(td, fh, &sb); 2457 if (error != 0) 2458 return (error); 2459 error = freebsd11_cvtstat32(&sb, &sb32); 2460 if (error == 0) 2461 error = copyout(&sb32, uap->sb, sizeof (sb32)); 2462 return (error); 2463 } 2464 #endif 2465 2466 int 2467 freebsd32___sysctl(struct thread *td, struct freebsd32___sysctl_args *uap) 2468 { 2469 int error, name[CTL_MAXNAME]; 2470 size_t j, oldlen; 2471 uint32_t tmp; 2472 2473 if (uap->namelen > CTL_MAXNAME || uap->namelen < 2) 2474 return (EINVAL); 2475 error = copyin(uap->name, name, uap->namelen * sizeof(int)); 2476 if (error) 2477 return (error); 2478 if (uap->oldlenp) { 2479 error = fueword32(uap->oldlenp, &tmp); 2480 oldlen = tmp; 2481 } else { 2482 oldlen = 0; 2483 } 2484 if (error != 0) 2485 return (EFAULT); 2486 error = userland_sysctl(td, name, uap->namelen, 2487 uap->old, &oldlen, 1, 2488 uap->new, uap->newlen, &j, SCTL_MASK32); 2489 if (error) 2490 return (error); 2491 if (uap->oldlenp) 2492 suword32(uap->oldlenp, j); 2493 return (0); 2494 } 2495 2496 int 2497 freebsd32___sysctlbyname(struct thread *td, 2498 struct freebsd32___sysctlbyname_args *uap) 2499 { 2500 size_t oldlen, rv; 2501 int error; 2502 uint32_t tmp; 2503 2504 if (uap->oldlenp != NULL) { 2505 error = fueword32(uap->oldlenp, &tmp); 2506 oldlen = tmp; 2507 } else { 2508 error = oldlen = 0; 2509 } 2510 if (error != 0) 2511 return (EFAULT); 2512 error = kern___sysctlbyname(td, uap->name, uap->namelen, uap->old, 2513 &oldlen, uap->new, uap->newlen, &rv, SCTL_MASK32, 1); 2514 if (error != 0) 2515 return (error); 2516 if (uap->oldlenp != NULL) 2517 error = suword32(uap->oldlenp, rv); 2518 2519 return (error); 2520 } 2521 2522 int 2523 freebsd32_jail(struct thread *td, struct freebsd32_jail_args *uap) 2524 { 2525 uint32_t version; 2526 int error; 2527 struct jail j; 2528 2529 error = copyin(uap->jail, &version, sizeof(uint32_t)); 2530 if (error) 2531 return (error); 2532 2533 switch (version) { 2534 case 0: 2535 { 2536 /* FreeBSD single IPv4 jails. */ 2537 struct jail32_v0 j32_v0; 2538 2539 bzero(&j, sizeof(struct jail)); 2540 error = copyin(uap->jail, &j32_v0, sizeof(struct jail32_v0)); 2541 if (error) 2542 return (error); 2543 CP(j32_v0, j, version); 2544 PTRIN_CP(j32_v0, j, path); 2545 PTRIN_CP(j32_v0, j, hostname); 2546 j.ip4s = htonl(j32_v0.ip_number); /* jail_v0 is host order */ 2547 break; 2548 } 2549 2550 case 1: 2551 /* 2552 * Version 1 was used by multi-IPv4 jail implementations 2553 * that never made it into the official kernel. 2554 */ 2555 return (EINVAL); 2556 2557 case 2: /* JAIL_API_VERSION */ 2558 { 2559 /* FreeBSD multi-IPv4/IPv6,noIP jails. */ 2560 struct jail32 j32; 2561 2562 error = copyin(uap->jail, &j32, sizeof(struct jail32)); 2563 if (error) 2564 return (error); 2565 CP(j32, j, version); 2566 PTRIN_CP(j32, j, path); 2567 PTRIN_CP(j32, j, hostname); 2568 PTRIN_CP(j32, j, jailname); 2569 CP(j32, j, ip4s); 2570 CP(j32, j, ip6s); 2571 PTRIN_CP(j32, j, ip4); 2572 PTRIN_CP(j32, j, ip6); 2573 break; 2574 } 2575 2576 default: 2577 /* Sci-Fi jails are not supported, sorry. */ 2578 return (EINVAL); 2579 } 2580 return (kern_jail(td, &j)); 2581 } 2582 2583 int 2584 freebsd32_jail_set(struct thread *td, struct freebsd32_jail_set_args *uap) 2585 { 2586 struct uio *auio; 2587 int error; 2588 2589 /* Check that we have an even number of iovecs. */ 2590 if (uap->iovcnt & 1) 2591 return (EINVAL); 2592 2593 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 2594 if (error) 2595 return (error); 2596 error = kern_jail_set(td, auio, uap->flags); 2597 free(auio, M_IOV); 2598 return (error); 2599 } 2600 2601 int 2602 freebsd32_jail_get(struct thread *td, struct freebsd32_jail_get_args *uap) 2603 { 2604 struct iovec32 iov32; 2605 struct uio *auio; 2606 int error, i; 2607 2608 /* Check that we have an even number of iovecs. */ 2609 if (uap->iovcnt & 1) 2610 return (EINVAL); 2611 2612 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 2613 if (error) 2614 return (error); 2615 error = kern_jail_get(td, auio, uap->flags); 2616 if (error == 0) 2617 for (i = 0; i < uap->iovcnt; i++) { 2618 PTROUT_CP(auio->uio_iov[i], iov32, iov_base); 2619 CP(auio->uio_iov[i], iov32, iov_len); 2620 error = copyout(&iov32, uap->iovp + i, sizeof(iov32)); 2621 if (error != 0) 2622 break; 2623 } 2624 free(auio, M_IOV); 2625 return (error); 2626 } 2627 2628 int 2629 freebsd32_sigaction(struct thread *td, struct freebsd32_sigaction_args *uap) 2630 { 2631 struct sigaction32 s32; 2632 struct sigaction sa, osa, *sap; 2633 int error; 2634 2635 if (uap->act) { 2636 error = copyin(uap->act, &s32, sizeof(s32)); 2637 if (error) 2638 return (error); 2639 sa.sa_handler = PTRIN(s32.sa_u); 2640 CP(s32, sa, sa_flags); 2641 CP(s32, sa, sa_mask); 2642 sap = &sa; 2643 } else 2644 sap = NULL; 2645 error = kern_sigaction(td, uap->sig, sap, &osa, 0); 2646 if (error == 0 && uap->oact != NULL) { 2647 s32.sa_u = PTROUT(osa.sa_handler); 2648 CP(osa, s32, sa_flags); 2649 CP(osa, s32, sa_mask); 2650 error = copyout(&s32, uap->oact, sizeof(s32)); 2651 } 2652 return (error); 2653 } 2654 2655 #ifdef COMPAT_FREEBSD4 2656 int 2657 freebsd4_freebsd32_sigaction(struct thread *td, 2658 struct freebsd4_freebsd32_sigaction_args *uap) 2659 { 2660 struct sigaction32 s32; 2661 struct sigaction sa, osa, *sap; 2662 int error; 2663 2664 if (uap->act) { 2665 error = copyin(uap->act, &s32, sizeof(s32)); 2666 if (error) 2667 return (error); 2668 sa.sa_handler = PTRIN(s32.sa_u); 2669 CP(s32, sa, sa_flags); 2670 CP(s32, sa, sa_mask); 2671 sap = &sa; 2672 } else 2673 sap = NULL; 2674 error = kern_sigaction(td, uap->sig, sap, &osa, KSA_FREEBSD4); 2675 if (error == 0 && uap->oact != NULL) { 2676 s32.sa_u = PTROUT(osa.sa_handler); 2677 CP(osa, s32, sa_flags); 2678 CP(osa, s32, sa_mask); 2679 error = copyout(&s32, uap->oact, sizeof(s32)); 2680 } 2681 return (error); 2682 } 2683 #endif 2684 2685 #ifdef COMPAT_43 2686 struct osigaction32 { 2687 u_int32_t sa_u; 2688 osigset_t sa_mask; 2689 int sa_flags; 2690 }; 2691 2692 #define ONSIG 32 2693 2694 int 2695 ofreebsd32_sigaction(struct thread *td, 2696 struct ofreebsd32_sigaction_args *uap) 2697 { 2698 struct osigaction32 s32; 2699 struct sigaction sa, osa, *sap; 2700 int error; 2701 2702 if (uap->signum <= 0 || uap->signum >= ONSIG) 2703 return (EINVAL); 2704 2705 if (uap->nsa) { 2706 error = copyin(uap->nsa, &s32, sizeof(s32)); 2707 if (error) 2708 return (error); 2709 sa.sa_handler = PTRIN(s32.sa_u); 2710 CP(s32, sa, sa_flags); 2711 OSIG2SIG(s32.sa_mask, sa.sa_mask); 2712 sap = &sa; 2713 } else 2714 sap = NULL; 2715 error = kern_sigaction(td, uap->signum, sap, &osa, KSA_OSIGSET); 2716 if (error == 0 && uap->osa != NULL) { 2717 s32.sa_u = PTROUT(osa.sa_handler); 2718 CP(osa, s32, sa_flags); 2719 SIG2OSIG(osa.sa_mask, s32.sa_mask); 2720 error = copyout(&s32, uap->osa, sizeof(s32)); 2721 } 2722 return (error); 2723 } 2724 2725 int 2726 ofreebsd32_sigprocmask(struct thread *td, 2727 struct ofreebsd32_sigprocmask_args *uap) 2728 { 2729 sigset_t set, oset; 2730 int error; 2731 2732 OSIG2SIG(uap->mask, set); 2733 error = kern_sigprocmask(td, uap->how, &set, &oset, SIGPROCMASK_OLD); 2734 SIG2OSIG(oset, td->td_retval[0]); 2735 return (error); 2736 } 2737 2738 int 2739 ofreebsd32_sigpending(struct thread *td, 2740 struct ofreebsd32_sigpending_args *uap) 2741 { 2742 struct proc *p = td->td_proc; 2743 sigset_t siglist; 2744 2745 PROC_LOCK(p); 2746 siglist = p->p_siglist; 2747 SIGSETOR(siglist, td->td_siglist); 2748 PROC_UNLOCK(p); 2749 SIG2OSIG(siglist, td->td_retval[0]); 2750 return (0); 2751 } 2752 2753 struct sigvec32 { 2754 u_int32_t sv_handler; 2755 int sv_mask; 2756 int sv_flags; 2757 }; 2758 2759 int 2760 ofreebsd32_sigvec(struct thread *td, 2761 struct ofreebsd32_sigvec_args *uap) 2762 { 2763 struct sigvec32 vec; 2764 struct sigaction sa, osa, *sap; 2765 int error; 2766 2767 if (uap->signum <= 0 || uap->signum >= ONSIG) 2768 return (EINVAL); 2769 2770 if (uap->nsv) { 2771 error = copyin(uap->nsv, &vec, sizeof(vec)); 2772 if (error) 2773 return (error); 2774 sa.sa_handler = PTRIN(vec.sv_handler); 2775 OSIG2SIG(vec.sv_mask, sa.sa_mask); 2776 sa.sa_flags = vec.sv_flags; 2777 sa.sa_flags ^= SA_RESTART; 2778 sap = &sa; 2779 } else 2780 sap = NULL; 2781 error = kern_sigaction(td, uap->signum, sap, &osa, KSA_OSIGSET); 2782 if (error == 0 && uap->osv != NULL) { 2783 vec.sv_handler = PTROUT(osa.sa_handler); 2784 SIG2OSIG(osa.sa_mask, vec.sv_mask); 2785 vec.sv_flags = osa.sa_flags; 2786 vec.sv_flags &= ~SA_NOCLDWAIT; 2787 vec.sv_flags ^= SA_RESTART; 2788 error = copyout(&vec, uap->osv, sizeof(vec)); 2789 } 2790 return (error); 2791 } 2792 2793 int 2794 ofreebsd32_sigblock(struct thread *td, 2795 struct ofreebsd32_sigblock_args *uap) 2796 { 2797 sigset_t set, oset; 2798 2799 OSIG2SIG(uap->mask, set); 2800 kern_sigprocmask(td, SIG_BLOCK, &set, &oset, 0); 2801 SIG2OSIG(oset, td->td_retval[0]); 2802 return (0); 2803 } 2804 2805 int 2806 ofreebsd32_sigsetmask(struct thread *td, 2807 struct ofreebsd32_sigsetmask_args *uap) 2808 { 2809 sigset_t set, oset; 2810 2811 OSIG2SIG(uap->mask, set); 2812 kern_sigprocmask(td, SIG_SETMASK, &set, &oset, 0); 2813 SIG2OSIG(oset, td->td_retval[0]); 2814 return (0); 2815 } 2816 2817 int 2818 ofreebsd32_sigsuspend(struct thread *td, 2819 struct ofreebsd32_sigsuspend_args *uap) 2820 { 2821 sigset_t mask; 2822 2823 OSIG2SIG(uap->mask, mask); 2824 return (kern_sigsuspend(td, mask)); 2825 } 2826 2827 struct sigstack32 { 2828 u_int32_t ss_sp; 2829 int ss_onstack; 2830 }; 2831 2832 int 2833 ofreebsd32_sigstack(struct thread *td, 2834 struct ofreebsd32_sigstack_args *uap) 2835 { 2836 struct sigstack32 s32; 2837 struct sigstack nss, oss; 2838 int error = 0, unss; 2839 2840 if (uap->nss != NULL) { 2841 error = copyin(uap->nss, &s32, sizeof(s32)); 2842 if (error) 2843 return (error); 2844 nss.ss_sp = PTRIN(s32.ss_sp); 2845 CP(s32, nss, ss_onstack); 2846 unss = 1; 2847 } else { 2848 unss = 0; 2849 } 2850 oss.ss_sp = td->td_sigstk.ss_sp; 2851 oss.ss_onstack = sigonstack(cpu_getstack(td)); 2852 if (unss) { 2853 td->td_sigstk.ss_sp = nss.ss_sp; 2854 td->td_sigstk.ss_size = 0; 2855 td->td_sigstk.ss_flags |= (nss.ss_onstack & SS_ONSTACK); 2856 td->td_pflags |= TDP_ALTSTACK; 2857 } 2858 if (uap->oss != NULL) { 2859 s32.ss_sp = PTROUT(oss.ss_sp); 2860 CP(oss, s32, ss_onstack); 2861 error = copyout(&s32, uap->oss, sizeof(s32)); 2862 } 2863 return (error); 2864 } 2865 #endif 2866 2867 int 2868 freebsd32_nanosleep(struct thread *td, struct freebsd32_nanosleep_args *uap) 2869 { 2870 2871 return (freebsd32_user_clock_nanosleep(td, CLOCK_REALTIME, 2872 TIMER_RELTIME, uap->rqtp, uap->rmtp)); 2873 } 2874 2875 int 2876 freebsd32_clock_nanosleep(struct thread *td, 2877 struct freebsd32_clock_nanosleep_args *uap) 2878 { 2879 int error; 2880 2881 error = freebsd32_user_clock_nanosleep(td, uap->clock_id, uap->flags, 2882 uap->rqtp, uap->rmtp); 2883 return (kern_posix_error(td, error)); 2884 } 2885 2886 static int 2887 freebsd32_user_clock_nanosleep(struct thread *td, clockid_t clock_id, 2888 int flags, const struct timespec32 *ua_rqtp, struct timespec32 *ua_rmtp) 2889 { 2890 struct timespec32 rmt32, rqt32; 2891 struct timespec rmt, rqt; 2892 int error, error2; 2893 2894 error = copyin(ua_rqtp, &rqt32, sizeof(rqt32)); 2895 if (error) 2896 return (error); 2897 2898 CP(rqt32, rqt, tv_sec); 2899 CP(rqt32, rqt, tv_nsec); 2900 2901 error = kern_clock_nanosleep(td, clock_id, flags, &rqt, &rmt); 2902 if (error == EINTR && ua_rmtp != NULL && (flags & TIMER_ABSTIME) == 0) { 2903 CP(rmt, rmt32, tv_sec); 2904 CP(rmt, rmt32, tv_nsec); 2905 2906 error2 = copyout(&rmt32, ua_rmtp, sizeof(rmt32)); 2907 if (error2 != 0) 2908 error = error2; 2909 } 2910 return (error); 2911 } 2912 2913 int 2914 freebsd32_clock_gettime(struct thread *td, 2915 struct freebsd32_clock_gettime_args *uap) 2916 { 2917 struct timespec ats; 2918 struct timespec32 ats32; 2919 int error; 2920 2921 error = kern_clock_gettime(td, uap->clock_id, &ats); 2922 if (error == 0) { 2923 CP(ats, ats32, tv_sec); 2924 CP(ats, ats32, tv_nsec); 2925 error = copyout(&ats32, uap->tp, sizeof(ats32)); 2926 } 2927 return (error); 2928 } 2929 2930 int 2931 freebsd32_clock_settime(struct thread *td, 2932 struct freebsd32_clock_settime_args *uap) 2933 { 2934 struct timespec ats; 2935 struct timespec32 ats32; 2936 int error; 2937 2938 error = copyin(uap->tp, &ats32, sizeof(ats32)); 2939 if (error) 2940 return (error); 2941 CP(ats32, ats, tv_sec); 2942 CP(ats32, ats, tv_nsec); 2943 2944 return (kern_clock_settime(td, uap->clock_id, &ats)); 2945 } 2946 2947 int 2948 freebsd32_clock_getres(struct thread *td, 2949 struct freebsd32_clock_getres_args *uap) 2950 { 2951 struct timespec ts; 2952 struct timespec32 ts32; 2953 int error; 2954 2955 if (uap->tp == NULL) 2956 return (0); 2957 error = kern_clock_getres(td, uap->clock_id, &ts); 2958 if (error == 0) { 2959 CP(ts, ts32, tv_sec); 2960 CP(ts, ts32, tv_nsec); 2961 error = copyout(&ts32, uap->tp, sizeof(ts32)); 2962 } 2963 return (error); 2964 } 2965 2966 int freebsd32_ktimer_create(struct thread *td, 2967 struct freebsd32_ktimer_create_args *uap) 2968 { 2969 struct sigevent32 ev32; 2970 struct sigevent ev, *evp; 2971 int error, id; 2972 2973 if (uap->evp == NULL) { 2974 evp = NULL; 2975 } else { 2976 evp = &ev; 2977 error = copyin(uap->evp, &ev32, sizeof(ev32)); 2978 if (error != 0) 2979 return (error); 2980 error = convert_sigevent32(&ev32, &ev); 2981 if (error != 0) 2982 return (error); 2983 } 2984 error = kern_ktimer_create(td, uap->clock_id, evp, &id, -1); 2985 if (error == 0) { 2986 error = copyout(&id, uap->timerid, sizeof(int)); 2987 if (error != 0) 2988 kern_ktimer_delete(td, id); 2989 } 2990 return (error); 2991 } 2992 2993 int 2994 freebsd32_ktimer_settime(struct thread *td, 2995 struct freebsd32_ktimer_settime_args *uap) 2996 { 2997 struct itimerspec32 val32, oval32; 2998 struct itimerspec val, oval, *ovalp; 2999 int error; 3000 3001 error = copyin(uap->value, &val32, sizeof(val32)); 3002 if (error != 0) 3003 return (error); 3004 ITS_CP(val32, val); 3005 ovalp = uap->ovalue != NULL ? &oval : NULL; 3006 error = kern_ktimer_settime(td, uap->timerid, uap->flags, &val, ovalp); 3007 if (error == 0 && uap->ovalue != NULL) { 3008 ITS_CP(oval, oval32); 3009 error = copyout(&oval32, uap->ovalue, sizeof(oval32)); 3010 } 3011 return (error); 3012 } 3013 3014 int 3015 freebsd32_ktimer_gettime(struct thread *td, 3016 struct freebsd32_ktimer_gettime_args *uap) 3017 { 3018 struct itimerspec32 val32; 3019 struct itimerspec val; 3020 int error; 3021 3022 error = kern_ktimer_gettime(td, uap->timerid, &val); 3023 if (error == 0) { 3024 ITS_CP(val, val32); 3025 error = copyout(&val32, uap->value, sizeof(val32)); 3026 } 3027 return (error); 3028 } 3029 3030 int 3031 freebsd32_clock_getcpuclockid2(struct thread *td, 3032 struct freebsd32_clock_getcpuclockid2_args *uap) 3033 { 3034 clockid_t clk_id; 3035 int error; 3036 3037 error = kern_clock_getcpuclockid2(td, PAIR32TO64(id_t, uap->id), 3038 uap->which, &clk_id); 3039 if (error == 0) 3040 error = copyout(&clk_id, uap->clock_id, sizeof(clockid_t)); 3041 return (error); 3042 } 3043 3044 int 3045 freebsd32_thr_new(struct thread *td, 3046 struct freebsd32_thr_new_args *uap) 3047 { 3048 struct thr_param32 param32; 3049 struct thr_param param; 3050 int error; 3051 3052 if (uap->param_size < 0 || 3053 uap->param_size > sizeof(struct thr_param32)) 3054 return (EINVAL); 3055 bzero(¶m, sizeof(struct thr_param)); 3056 bzero(¶m32, sizeof(struct thr_param32)); 3057 error = copyin(uap->param, ¶m32, uap->param_size); 3058 if (error != 0) 3059 return (error); 3060 param.start_func = PTRIN(param32.start_func); 3061 param.arg = PTRIN(param32.arg); 3062 param.stack_base = PTRIN(param32.stack_base); 3063 param.stack_size = param32.stack_size; 3064 param.tls_base = PTRIN(param32.tls_base); 3065 param.tls_size = param32.tls_size; 3066 param.child_tid = PTRIN(param32.child_tid); 3067 param.parent_tid = PTRIN(param32.parent_tid); 3068 param.flags = param32.flags; 3069 param.rtp = PTRIN(param32.rtp); 3070 param.spare[0] = PTRIN(param32.spare[0]); 3071 param.spare[1] = PTRIN(param32.spare[1]); 3072 param.spare[2] = PTRIN(param32.spare[2]); 3073 3074 return (kern_thr_new(td, ¶m)); 3075 } 3076 3077 int 3078 freebsd32_thr_suspend(struct thread *td, struct freebsd32_thr_suspend_args *uap) 3079 { 3080 struct timespec32 ts32; 3081 struct timespec ts, *tsp; 3082 int error; 3083 3084 error = 0; 3085 tsp = NULL; 3086 if (uap->timeout != NULL) { 3087 error = copyin((const void *)uap->timeout, (void *)&ts32, 3088 sizeof(struct timespec32)); 3089 if (error != 0) 3090 return (error); 3091 ts.tv_sec = ts32.tv_sec; 3092 ts.tv_nsec = ts32.tv_nsec; 3093 tsp = &ts; 3094 } 3095 return (kern_thr_suspend(td, tsp)); 3096 } 3097 3098 void 3099 siginfo_to_siginfo32(const siginfo_t *src, struct siginfo32 *dst) 3100 { 3101 bzero(dst, sizeof(*dst)); 3102 dst->si_signo = src->si_signo; 3103 dst->si_errno = src->si_errno; 3104 dst->si_code = src->si_code; 3105 dst->si_pid = src->si_pid; 3106 dst->si_uid = src->si_uid; 3107 dst->si_status = src->si_status; 3108 dst->si_addr = (uintptr_t)src->si_addr; 3109 dst->si_value.sival_int = src->si_value.sival_int; 3110 dst->si_timerid = src->si_timerid; 3111 dst->si_overrun = src->si_overrun; 3112 } 3113 3114 #ifndef _FREEBSD32_SYSPROTO_H_ 3115 struct freebsd32_sigqueue_args { 3116 pid_t pid; 3117 int signum; 3118 /* union sigval32 */ int value; 3119 }; 3120 #endif 3121 int 3122 freebsd32_sigqueue(struct thread *td, struct freebsd32_sigqueue_args *uap) 3123 { 3124 union sigval sv; 3125 3126 /* 3127 * On 32-bit ABIs, sival_int and sival_ptr are the same. 3128 * On 64-bit little-endian ABIs, the low bits are the same. 3129 * In 64-bit big-endian ABIs, sival_int overlaps with 3130 * sival_ptr's HIGH bits. We choose to support sival_int 3131 * rather than sival_ptr in this case as it seems to be 3132 * more common. 3133 */ 3134 bzero(&sv, sizeof(sv)); 3135 sv.sival_int = uap->value; 3136 3137 return (kern_sigqueue(td, uap->pid, uap->signum, &sv)); 3138 } 3139 3140 int 3141 freebsd32_sigtimedwait(struct thread *td, struct freebsd32_sigtimedwait_args *uap) 3142 { 3143 struct timespec32 ts32; 3144 struct timespec ts; 3145 struct timespec *timeout; 3146 sigset_t set; 3147 ksiginfo_t ksi; 3148 struct siginfo32 si32; 3149 int error; 3150 3151 if (uap->timeout) { 3152 error = copyin(uap->timeout, &ts32, sizeof(ts32)); 3153 if (error) 3154 return (error); 3155 ts.tv_sec = ts32.tv_sec; 3156 ts.tv_nsec = ts32.tv_nsec; 3157 timeout = &ts; 3158 } else 3159 timeout = NULL; 3160 3161 error = copyin(uap->set, &set, sizeof(set)); 3162 if (error) 3163 return (error); 3164 3165 error = kern_sigtimedwait(td, set, &ksi, timeout); 3166 if (error) 3167 return (error); 3168 3169 if (uap->info) { 3170 siginfo_to_siginfo32(&ksi.ksi_info, &si32); 3171 error = copyout(&si32, uap->info, sizeof(struct siginfo32)); 3172 } 3173 3174 if (error == 0) 3175 td->td_retval[0] = ksi.ksi_signo; 3176 return (error); 3177 } 3178 3179 /* 3180 * MPSAFE 3181 */ 3182 int 3183 freebsd32_sigwaitinfo(struct thread *td, struct freebsd32_sigwaitinfo_args *uap) 3184 { 3185 ksiginfo_t ksi; 3186 struct siginfo32 si32; 3187 sigset_t set; 3188 int error; 3189 3190 error = copyin(uap->set, &set, sizeof(set)); 3191 if (error) 3192 return (error); 3193 3194 error = kern_sigtimedwait(td, set, &ksi, NULL); 3195 if (error) 3196 return (error); 3197 3198 if (uap->info) { 3199 siginfo_to_siginfo32(&ksi.ksi_info, &si32); 3200 error = copyout(&si32, uap->info, sizeof(struct siginfo32)); 3201 } 3202 if (error == 0) 3203 td->td_retval[0] = ksi.ksi_signo; 3204 return (error); 3205 } 3206 3207 int 3208 freebsd32_cpuset_setid(struct thread *td, 3209 struct freebsd32_cpuset_setid_args *uap) 3210 { 3211 3212 return (kern_cpuset_setid(td, uap->which, 3213 PAIR32TO64(id_t, uap->id), uap->setid)); 3214 } 3215 3216 int 3217 freebsd32_cpuset_getid(struct thread *td, 3218 struct freebsd32_cpuset_getid_args *uap) 3219 { 3220 3221 return (kern_cpuset_getid(td, uap->level, uap->which, 3222 PAIR32TO64(id_t, uap->id), uap->setid)); 3223 } 3224 3225 int 3226 freebsd32_cpuset_getaffinity(struct thread *td, 3227 struct freebsd32_cpuset_getaffinity_args *uap) 3228 { 3229 3230 return (kern_cpuset_getaffinity(td, uap->level, uap->which, 3231 PAIR32TO64(id_t,uap->id), uap->cpusetsize, uap->mask)); 3232 } 3233 3234 int 3235 freebsd32_cpuset_setaffinity(struct thread *td, 3236 struct freebsd32_cpuset_setaffinity_args *uap) 3237 { 3238 3239 return (kern_cpuset_setaffinity(td, uap->level, uap->which, 3240 PAIR32TO64(id_t,uap->id), uap->cpusetsize, uap->mask)); 3241 } 3242 3243 int 3244 freebsd32_cpuset_getdomain(struct thread *td, 3245 struct freebsd32_cpuset_getdomain_args *uap) 3246 { 3247 3248 return (kern_cpuset_getdomain(td, uap->level, uap->which, 3249 PAIR32TO64(id_t,uap->id), uap->domainsetsize, uap->mask, uap->policy)); 3250 } 3251 3252 int 3253 freebsd32_cpuset_setdomain(struct thread *td, 3254 struct freebsd32_cpuset_setdomain_args *uap) 3255 { 3256 3257 return (kern_cpuset_setdomain(td, uap->level, uap->which, 3258 PAIR32TO64(id_t,uap->id), uap->domainsetsize, uap->mask, uap->policy)); 3259 } 3260 3261 int 3262 freebsd32_nmount(struct thread *td, 3263 struct freebsd32_nmount_args /* { 3264 struct iovec *iovp; 3265 unsigned int iovcnt; 3266 int flags; 3267 } */ *uap) 3268 { 3269 struct uio *auio; 3270 uint64_t flags; 3271 int error; 3272 3273 /* 3274 * Mount flags are now 64-bits. On 32-bit archtectures only 3275 * 32-bits are passed in, but from here on everything handles 3276 * 64-bit flags correctly. 3277 */ 3278 flags = uap->flags; 3279 3280 AUDIT_ARG_FFLAGS(flags); 3281 3282 /* 3283 * Filter out MNT_ROOTFS. We do not want clients of nmount() in 3284 * userspace to set this flag, but we must filter it out if we want 3285 * MNT_UPDATE on the root file system to work. 3286 * MNT_ROOTFS should only be set by the kernel when mounting its 3287 * root file system. 3288 */ 3289 flags &= ~MNT_ROOTFS; 3290 3291 /* 3292 * check that we have an even number of iovec's 3293 * and that we have at least two options. 3294 */ 3295 if ((uap->iovcnt & 1) || (uap->iovcnt < 4)) 3296 return (EINVAL); 3297 3298 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 3299 if (error) 3300 return (error); 3301 error = vfs_donmount(td, flags, auio); 3302 3303 free(auio, M_IOV); 3304 return error; 3305 } 3306 3307 #if 0 3308 int 3309 freebsd32_xxx(struct thread *td, struct freebsd32_xxx_args *uap) 3310 { 3311 struct yyy32 *p32, s32; 3312 struct yyy *p = NULL, s; 3313 struct xxx_arg ap; 3314 int error; 3315 3316 if (uap->zzz) { 3317 error = copyin(uap->zzz, &s32, sizeof(s32)); 3318 if (error) 3319 return (error); 3320 /* translate in */ 3321 p = &s; 3322 } 3323 error = kern_xxx(td, p); 3324 if (error) 3325 return (error); 3326 if (uap->zzz) { 3327 /* translate out */ 3328 error = copyout(&s32, p32, sizeof(s32)); 3329 } 3330 return (error); 3331 } 3332 #endif 3333 3334 int 3335 syscall32_module_handler(struct module *mod, int what, void *arg) 3336 { 3337 3338 return (kern_syscall_module_handler(freebsd32_sysent, mod, what, arg)); 3339 } 3340 3341 int 3342 syscall32_helper_register(struct syscall_helper_data *sd, int flags) 3343 { 3344 3345 return (kern_syscall_helper_register(freebsd32_sysent, sd, flags)); 3346 } 3347 3348 int 3349 syscall32_helper_unregister(struct syscall_helper_data *sd) 3350 { 3351 3352 return (kern_syscall_helper_unregister(freebsd32_sysent, sd)); 3353 } 3354 3355 int 3356 freebsd32_copyout_strings(struct image_params *imgp, uintptr_t *stack_base) 3357 { 3358 int argc, envc, i; 3359 u_int32_t *vectp; 3360 char *stringp; 3361 uintptr_t destp, ustringp; 3362 struct freebsd32_ps_strings *arginfo; 3363 char canary[sizeof(long) * 8]; 3364 int32_t pagesizes32[MAXPAGESIZES]; 3365 size_t execpath_len; 3366 int error, szsigcode; 3367 3368 /* 3369 * Calculate string base and vector table pointers. 3370 * Also deal with signal trampoline code for this exec type. 3371 */ 3372 if (imgp->execpath != NULL && imgp->auxargs != NULL) 3373 execpath_len = strlen(imgp->execpath) + 1; 3374 else 3375 execpath_len = 0; 3376 arginfo = (struct freebsd32_ps_strings *)curproc->p_sysent-> 3377 sv_psstrings; 3378 imgp->ps_strings = arginfo; 3379 if (imgp->proc->p_sysent->sv_sigcode_base == 0) 3380 szsigcode = *(imgp->proc->p_sysent->sv_szsigcode); 3381 else 3382 szsigcode = 0; 3383 destp = (uintptr_t)arginfo; 3384 3385 /* 3386 * install sigcode 3387 */ 3388 if (szsigcode != 0) { 3389 destp -= szsigcode; 3390 destp = rounddown2(destp, sizeof(uint32_t)); 3391 error = copyout(imgp->proc->p_sysent->sv_sigcode, (void *)destp, 3392 szsigcode); 3393 if (error != 0) 3394 return (error); 3395 } 3396 3397 /* 3398 * Copy the image path for the rtld. 3399 */ 3400 if (execpath_len != 0) { 3401 destp -= execpath_len; 3402 imgp->execpathp = (void *)destp; 3403 error = copyout(imgp->execpath, imgp->execpathp, execpath_len); 3404 if (error != 0) 3405 return (error); 3406 } 3407 3408 /* 3409 * Prepare the canary for SSP. 3410 */ 3411 arc4rand(canary, sizeof(canary), 0); 3412 destp -= sizeof(canary); 3413 imgp->canary = (void *)destp; 3414 error = copyout(canary, imgp->canary, sizeof(canary)); 3415 if (error != 0) 3416 return (error); 3417 imgp->canarylen = sizeof(canary); 3418 3419 /* 3420 * Prepare the pagesizes array. 3421 */ 3422 for (i = 0; i < MAXPAGESIZES; i++) 3423 pagesizes32[i] = (uint32_t)pagesizes[i]; 3424 destp -= sizeof(pagesizes32); 3425 destp = rounddown2(destp, sizeof(uint32_t)); 3426 imgp->pagesizes = (void *)destp; 3427 error = copyout(pagesizes32, imgp->pagesizes, sizeof(pagesizes32)); 3428 if (error != 0) 3429 return (error); 3430 imgp->pagesizeslen = sizeof(pagesizes32); 3431 3432 /* 3433 * Allocate room for the argument and environment strings. 3434 */ 3435 destp -= ARG_MAX - imgp->args->stringspace; 3436 destp = rounddown2(destp, sizeof(uint32_t)); 3437 ustringp = destp; 3438 3439 exec_stackgap(imgp, &destp); 3440 3441 if (imgp->auxargs) { 3442 /* 3443 * Allocate room on the stack for the ELF auxargs 3444 * array. It has up to AT_COUNT entries. 3445 */ 3446 destp -= AT_COUNT * sizeof(Elf32_Auxinfo); 3447 destp = rounddown2(destp, sizeof(uint32_t)); 3448 } 3449 3450 vectp = (uint32_t *)destp; 3451 3452 /* 3453 * Allocate room for the argv[] and env vectors including the 3454 * terminating NULL pointers. 3455 */ 3456 vectp -= imgp->args->argc + 1 + imgp->args->envc + 1; 3457 3458 /* 3459 * vectp also becomes our initial stack base 3460 */ 3461 *stack_base = (uintptr_t)vectp; 3462 3463 stringp = imgp->args->begin_argv; 3464 argc = imgp->args->argc; 3465 envc = imgp->args->envc; 3466 /* 3467 * Copy out strings - arguments and environment. 3468 */ 3469 error = copyout(stringp, (void *)ustringp, 3470 ARG_MAX - imgp->args->stringspace); 3471 if (error != 0) 3472 return (error); 3473 3474 /* 3475 * Fill in "ps_strings" struct for ps, w, etc. 3476 */ 3477 imgp->argv = vectp; 3478 if (suword32(&arginfo->ps_argvstr, (u_int32_t)(intptr_t)vectp) != 0 || 3479 suword32(&arginfo->ps_nargvstr, argc) != 0) 3480 return (EFAULT); 3481 3482 /* 3483 * Fill in argument portion of vector table. 3484 */ 3485 for (; argc > 0; --argc) { 3486 if (suword32(vectp++, ustringp) != 0) 3487 return (EFAULT); 3488 while (*stringp++ != 0) 3489 ustringp++; 3490 ustringp++; 3491 } 3492 3493 /* a null vector table pointer separates the argp's from the envp's */ 3494 if (suword32(vectp++, 0) != 0) 3495 return (EFAULT); 3496 3497 imgp->envv = vectp; 3498 if (suword32(&arginfo->ps_envstr, (u_int32_t)(intptr_t)vectp) != 0 || 3499 suword32(&arginfo->ps_nenvstr, envc) != 0) 3500 return (EFAULT); 3501 3502 /* 3503 * Fill in environment portion of vector table. 3504 */ 3505 for (; envc > 0; --envc) { 3506 if (suword32(vectp++, ustringp) != 0) 3507 return (EFAULT); 3508 while (*stringp++ != 0) 3509 ustringp++; 3510 ustringp++; 3511 } 3512 3513 /* end of vector table is a null pointer */ 3514 if (suword32(vectp, 0) != 0) 3515 return (EFAULT); 3516 3517 if (imgp->auxargs) { 3518 vectp++; 3519 error = imgp->sysent->sv_copyout_auxargs(imgp, 3520 (uintptr_t)vectp); 3521 if (error != 0) 3522 return (error); 3523 } 3524 3525 return (0); 3526 } 3527 3528 int 3529 freebsd32_kldstat(struct thread *td, struct freebsd32_kldstat_args *uap) 3530 { 3531 struct kld_file_stat *stat; 3532 struct kld32_file_stat *stat32; 3533 int error, version; 3534 3535 if ((error = copyin(&uap->stat->version, &version, sizeof(version))) 3536 != 0) 3537 return (error); 3538 if (version != sizeof(struct kld32_file_stat_1) && 3539 version != sizeof(struct kld32_file_stat)) 3540 return (EINVAL); 3541 3542 stat = malloc(sizeof(*stat), M_TEMP, M_WAITOK | M_ZERO); 3543 stat32 = malloc(sizeof(*stat32), M_TEMP, M_WAITOK | M_ZERO); 3544 error = kern_kldstat(td, uap->fileid, stat); 3545 if (error == 0) { 3546 bcopy(&stat->name[0], &stat32->name[0], sizeof(stat->name)); 3547 CP(*stat, *stat32, refs); 3548 CP(*stat, *stat32, id); 3549 PTROUT_CP(*stat, *stat32, address); 3550 CP(*stat, *stat32, size); 3551 bcopy(&stat->pathname[0], &stat32->pathname[0], 3552 sizeof(stat->pathname)); 3553 stat32->version = version; 3554 error = copyout(stat32, uap->stat, version); 3555 } 3556 free(stat, M_TEMP); 3557 free(stat32, M_TEMP); 3558 return (error); 3559 } 3560 3561 int 3562 freebsd32_posix_fallocate(struct thread *td, 3563 struct freebsd32_posix_fallocate_args *uap) 3564 { 3565 int error; 3566 3567 error = kern_posix_fallocate(td, uap->fd, 3568 PAIR32TO64(off_t, uap->offset), PAIR32TO64(off_t, uap->len)); 3569 return (kern_posix_error(td, error)); 3570 } 3571 3572 int 3573 freebsd32_posix_fadvise(struct thread *td, 3574 struct freebsd32_posix_fadvise_args *uap) 3575 { 3576 int error; 3577 3578 error = kern_posix_fadvise(td, uap->fd, PAIR32TO64(off_t, uap->offset), 3579 PAIR32TO64(off_t, uap->len), uap->advice); 3580 return (kern_posix_error(td, error)); 3581 } 3582 3583 int 3584 convert_sigevent32(struct sigevent32 *sig32, struct sigevent *sig) 3585 { 3586 3587 CP(*sig32, *sig, sigev_notify); 3588 switch (sig->sigev_notify) { 3589 case SIGEV_NONE: 3590 break; 3591 case SIGEV_THREAD_ID: 3592 CP(*sig32, *sig, sigev_notify_thread_id); 3593 /* FALLTHROUGH */ 3594 case SIGEV_SIGNAL: 3595 CP(*sig32, *sig, sigev_signo); 3596 PTRIN_CP(*sig32, *sig, sigev_value.sival_ptr); 3597 break; 3598 case SIGEV_KEVENT: 3599 CP(*sig32, *sig, sigev_notify_kqueue); 3600 CP(*sig32, *sig, sigev_notify_kevent_flags); 3601 PTRIN_CP(*sig32, *sig, sigev_value.sival_ptr); 3602 break; 3603 default: 3604 return (EINVAL); 3605 } 3606 return (0); 3607 } 3608 3609 int 3610 freebsd32_procctl(struct thread *td, struct freebsd32_procctl_args *uap) 3611 { 3612 void *data; 3613 union { 3614 struct procctl_reaper_status rs; 3615 struct procctl_reaper_pids rp; 3616 struct procctl_reaper_kill rk; 3617 } x; 3618 union { 3619 struct procctl_reaper_pids32 rp; 3620 } x32; 3621 int error, error1, flags, signum; 3622 3623 if (uap->com >= PROC_PROCCTL_MD_MIN) 3624 return (cpu_procctl(td, uap->idtype, PAIR32TO64(id_t, uap->id), 3625 uap->com, PTRIN(uap->data))); 3626 3627 switch (uap->com) { 3628 case PROC_ASLR_CTL: 3629 case PROC_PROTMAX_CTL: 3630 case PROC_SPROTECT: 3631 case PROC_STACKGAP_CTL: 3632 case PROC_TRACE_CTL: 3633 case PROC_TRAPCAP_CTL: 3634 error = copyin(PTRIN(uap->data), &flags, sizeof(flags)); 3635 if (error != 0) 3636 return (error); 3637 data = &flags; 3638 break; 3639 case PROC_REAP_ACQUIRE: 3640 case PROC_REAP_RELEASE: 3641 if (uap->data != NULL) 3642 return (EINVAL); 3643 data = NULL; 3644 break; 3645 case PROC_REAP_STATUS: 3646 data = &x.rs; 3647 break; 3648 case PROC_REAP_GETPIDS: 3649 error = copyin(uap->data, &x32.rp, sizeof(x32.rp)); 3650 if (error != 0) 3651 return (error); 3652 CP(x32.rp, x.rp, rp_count); 3653 PTRIN_CP(x32.rp, x.rp, rp_pids); 3654 data = &x.rp; 3655 break; 3656 case PROC_REAP_KILL: 3657 error = copyin(uap->data, &x.rk, sizeof(x.rk)); 3658 if (error != 0) 3659 return (error); 3660 data = &x.rk; 3661 break; 3662 case PROC_ASLR_STATUS: 3663 case PROC_PROTMAX_STATUS: 3664 case PROC_STACKGAP_STATUS: 3665 case PROC_TRACE_STATUS: 3666 case PROC_TRAPCAP_STATUS: 3667 data = &flags; 3668 break; 3669 case PROC_PDEATHSIG_CTL: 3670 error = copyin(uap->data, &signum, sizeof(signum)); 3671 if (error != 0) 3672 return (error); 3673 data = &signum; 3674 break; 3675 case PROC_PDEATHSIG_STATUS: 3676 data = &signum; 3677 break; 3678 default: 3679 return (EINVAL); 3680 } 3681 error = kern_procctl(td, uap->idtype, PAIR32TO64(id_t, uap->id), 3682 uap->com, data); 3683 switch (uap->com) { 3684 case PROC_REAP_STATUS: 3685 if (error == 0) 3686 error = copyout(&x.rs, uap->data, sizeof(x.rs)); 3687 break; 3688 case PROC_REAP_KILL: 3689 error1 = copyout(&x.rk, uap->data, sizeof(x.rk)); 3690 if (error == 0) 3691 error = error1; 3692 break; 3693 case PROC_ASLR_STATUS: 3694 case PROC_PROTMAX_STATUS: 3695 case PROC_STACKGAP_STATUS: 3696 case PROC_TRACE_STATUS: 3697 case PROC_TRAPCAP_STATUS: 3698 if (error == 0) 3699 error = copyout(&flags, uap->data, sizeof(flags)); 3700 break; 3701 case PROC_PDEATHSIG_STATUS: 3702 if (error == 0) 3703 error = copyout(&signum, uap->data, sizeof(signum)); 3704 break; 3705 } 3706 return (error); 3707 } 3708 3709 int 3710 freebsd32_fcntl(struct thread *td, struct freebsd32_fcntl_args *uap) 3711 { 3712 long tmp; 3713 3714 switch (uap->cmd) { 3715 /* 3716 * Do unsigned conversion for arg when operation 3717 * interprets it as flags or pointer. 3718 */ 3719 case F_SETLK_REMOTE: 3720 case F_SETLKW: 3721 case F_SETLK: 3722 case F_GETLK: 3723 case F_SETFD: 3724 case F_SETFL: 3725 case F_OGETLK: 3726 case F_OSETLK: 3727 case F_OSETLKW: 3728 tmp = (unsigned int)(uap->arg); 3729 break; 3730 default: 3731 tmp = uap->arg; 3732 break; 3733 } 3734 return (kern_fcntl_freebsd(td, uap->fd, uap->cmd, tmp)); 3735 } 3736 3737 int 3738 freebsd32_ppoll(struct thread *td, struct freebsd32_ppoll_args *uap) 3739 { 3740 struct timespec32 ts32; 3741 struct timespec ts, *tsp; 3742 sigset_t set, *ssp; 3743 int error; 3744 3745 if (uap->ts != NULL) { 3746 error = copyin(uap->ts, &ts32, sizeof(ts32)); 3747 if (error != 0) 3748 return (error); 3749 CP(ts32, ts, tv_sec); 3750 CP(ts32, ts, tv_nsec); 3751 tsp = &ts; 3752 } else 3753 tsp = NULL; 3754 if (uap->set != NULL) { 3755 error = copyin(uap->set, &set, sizeof(set)); 3756 if (error != 0) 3757 return (error); 3758 ssp = &set; 3759 } else 3760 ssp = NULL; 3761 3762 return (kern_poll(td, uap->fds, uap->nfds, tsp, ssp)); 3763 } 3764 3765 int 3766 freebsd32_sched_rr_get_interval(struct thread *td, 3767 struct freebsd32_sched_rr_get_interval_args *uap) 3768 { 3769 struct timespec ts; 3770 struct timespec32 ts32; 3771 int error; 3772 3773 error = kern_sched_rr_get_interval(td, uap->pid, &ts); 3774 if (error == 0) { 3775 CP(ts, ts32, tv_sec); 3776 CP(ts, ts32, tv_nsec); 3777 error = copyout(&ts32, uap->interval, sizeof(ts32)); 3778 } 3779 return (error); 3780 } 3781 3782 static void 3783 timex_to_32(struct timex32 *dst, struct timex *src) 3784 { 3785 CP(*src, *dst, modes); 3786 CP(*src, *dst, offset); 3787 CP(*src, *dst, freq); 3788 CP(*src, *dst, maxerror); 3789 CP(*src, *dst, esterror); 3790 CP(*src, *dst, status); 3791 CP(*src, *dst, constant); 3792 CP(*src, *dst, precision); 3793 CP(*src, *dst, tolerance); 3794 CP(*src, *dst, ppsfreq); 3795 CP(*src, *dst, jitter); 3796 CP(*src, *dst, shift); 3797 CP(*src, *dst, stabil); 3798 CP(*src, *dst, jitcnt); 3799 CP(*src, *dst, calcnt); 3800 CP(*src, *dst, errcnt); 3801 CP(*src, *dst, stbcnt); 3802 } 3803 3804 static void 3805 timex_from_32(struct timex *dst, struct timex32 *src) 3806 { 3807 CP(*src, *dst, modes); 3808 CP(*src, *dst, offset); 3809 CP(*src, *dst, freq); 3810 CP(*src, *dst, maxerror); 3811 CP(*src, *dst, esterror); 3812 CP(*src, *dst, status); 3813 CP(*src, *dst, constant); 3814 CP(*src, *dst, precision); 3815 CP(*src, *dst, tolerance); 3816 CP(*src, *dst, ppsfreq); 3817 CP(*src, *dst, jitter); 3818 CP(*src, *dst, shift); 3819 CP(*src, *dst, stabil); 3820 CP(*src, *dst, jitcnt); 3821 CP(*src, *dst, calcnt); 3822 CP(*src, *dst, errcnt); 3823 CP(*src, *dst, stbcnt); 3824 } 3825 3826 int 3827 freebsd32_ntp_adjtime(struct thread *td, struct freebsd32_ntp_adjtime_args *uap) 3828 { 3829 struct timex tx; 3830 struct timex32 tx32; 3831 int error, retval; 3832 3833 error = copyin(uap->tp, &tx32, sizeof(tx32)); 3834 if (error == 0) { 3835 timex_from_32(&tx, &tx32); 3836 error = kern_ntp_adjtime(td, &tx, &retval); 3837 if (error == 0) { 3838 timex_to_32(&tx32, &tx); 3839 error = copyout(&tx32, uap->tp, sizeof(tx32)); 3840 if (error == 0) 3841 td->td_retval[0] = retval; 3842 } 3843 } 3844 return (error); 3845 } 3846