xref: /freebsd/sys/compat/freebsd32/freebsd32_misc.c (revision cd8537910406e68d4719136a5b0cf6d23bb1b23b)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2002 Doug Rabson
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include "opt_inet.h"
33 #include "opt_inet6.h"
34 #include "opt_ktrace.h"
35 
36 #define __ELF_WORD_SIZE 32
37 
38 #ifdef COMPAT_FREEBSD11
39 #define	_WANT_FREEBSD11_KEVENT
40 #endif
41 
42 #include <sys/param.h>
43 #include <sys/bus.h>
44 #include <sys/capsicum.h>
45 #include <sys/clock.h>
46 #include <sys/exec.h>
47 #include <sys/fcntl.h>
48 #include <sys/filedesc.h>
49 #include <sys/imgact.h>
50 #include <sys/jail.h>
51 #include <sys/kernel.h>
52 #include <sys/limits.h>
53 #include <sys/linker.h>
54 #include <sys/lock.h>
55 #include <sys/malloc.h>
56 #include <sys/file.h>		/* Must come after sys/malloc.h */
57 #include <sys/imgact.h>
58 #include <sys/mbuf.h>
59 #include <sys/mman.h>
60 #include <sys/module.h>
61 #include <sys/mount.h>
62 #include <sys/mutex.h>
63 #include <sys/namei.h>
64 #include <sys/proc.h>
65 #include <sys/procctl.h>
66 #include <sys/ptrace.h>
67 #include <sys/reboot.h>
68 #include <sys/resource.h>
69 #include <sys/resourcevar.h>
70 #include <sys/selinfo.h>
71 #include <sys/eventvar.h>	/* Must come after sys/selinfo.h */
72 #include <sys/pipe.h>		/* Must come after sys/selinfo.h */
73 #include <sys/signal.h>
74 #include <sys/signalvar.h>
75 #include <sys/socket.h>
76 #include <sys/socketvar.h>
77 #include <sys/stat.h>
78 #include <sys/syscall.h>
79 #include <sys/syscallsubr.h>
80 #include <sys/sysctl.h>
81 #include <sys/sysent.h>
82 #include <sys/sysproto.h>
83 #include <sys/systm.h>
84 #include <sys/thr.h>
85 #include <sys/unistd.h>
86 #include <sys/ucontext.h>
87 #include <sys/umtx.h>
88 #include <sys/vnode.h>
89 #include <sys/wait.h>
90 #include <sys/ipc.h>
91 #include <sys/msg.h>
92 #include <sys/sem.h>
93 #include <sys/shm.h>
94 #ifdef KTRACE
95 #include <sys/ktrace.h>
96 #endif
97 
98 #ifdef INET
99 #include <netinet/in.h>
100 #endif
101 
102 #include <vm/vm.h>
103 #include <vm/vm_param.h>
104 #include <vm/pmap.h>
105 #include <vm/vm_map.h>
106 #include <vm/vm_object.h>
107 #include <vm/vm_extern.h>
108 
109 #include <machine/cpu.h>
110 #include <machine/elf.h>
111 #ifdef __amd64__
112 #include <machine/md_var.h>
113 #endif
114 
115 #include <security/audit/audit.h>
116 
117 #include <compat/freebsd32/freebsd32_util.h>
118 #include <compat/freebsd32/freebsd32.h>
119 #include <compat/freebsd32/freebsd32_ipc.h>
120 #include <compat/freebsd32/freebsd32_misc.h>
121 #include <compat/freebsd32/freebsd32_signal.h>
122 #include <compat/freebsd32/freebsd32_proto.h>
123 
124 FEATURE(compat_freebsd_32bit, "Compatible with 32-bit FreeBSD");
125 
126 struct ptrace_io_desc32 {
127 	int		piod_op;
128 	uint32_t	piod_offs;
129 	uint32_t	piod_addr;
130 	uint32_t	piod_len;
131 };
132 
133 struct ptrace_sc_ret32 {
134 	uint32_t	sr_retval[2];
135 	int		sr_error;
136 };
137 
138 struct ptrace_vm_entry32 {
139 	int		pve_entry;
140 	int		pve_timestamp;
141 	uint32_t	pve_start;
142 	uint32_t	pve_end;
143 	uint32_t	pve_offset;
144 	u_int		pve_prot;
145 	u_int		pve_pathlen;
146 	int32_t		pve_fileid;
147 	u_int		pve_fsid;
148 	uint32_t	pve_path;
149 };
150 
151 #ifdef __amd64__
152 CTASSERT(sizeof(struct timeval32) == 8);
153 CTASSERT(sizeof(struct timespec32) == 8);
154 CTASSERT(sizeof(struct itimerval32) == 16);
155 CTASSERT(sizeof(struct bintime32) == 12);
156 #endif
157 CTASSERT(sizeof(struct statfs32) == 256);
158 #ifdef __amd64__
159 CTASSERT(sizeof(struct rusage32) == 72);
160 #endif
161 CTASSERT(sizeof(struct sigaltstack32) == 12);
162 #ifdef __amd64__
163 CTASSERT(sizeof(struct kevent32) == 56);
164 #else
165 CTASSERT(sizeof(struct kevent32) == 64);
166 #endif
167 CTASSERT(sizeof(struct iovec32) == 8);
168 CTASSERT(sizeof(struct msghdr32) == 28);
169 #ifdef __amd64__
170 CTASSERT(sizeof(struct stat32) == 208);
171 CTASSERT(sizeof(struct freebsd11_stat32) == 96);
172 #endif
173 CTASSERT(sizeof(struct sigaction32) == 24);
174 
175 static int freebsd32_kevent_copyout(void *arg, struct kevent *kevp, int count);
176 static int freebsd32_kevent_copyin(void *arg, struct kevent *kevp, int count);
177 static int freebsd32_user_clock_nanosleep(struct thread *td, clockid_t clock_id,
178     int flags, const struct timespec32 *ua_rqtp, struct timespec32 *ua_rmtp);
179 
180 void
181 freebsd32_rusage_out(const struct rusage *s, struct rusage32 *s32)
182 {
183 
184 	TV_CP(*s, *s32, ru_utime);
185 	TV_CP(*s, *s32, ru_stime);
186 	CP(*s, *s32, ru_maxrss);
187 	CP(*s, *s32, ru_ixrss);
188 	CP(*s, *s32, ru_idrss);
189 	CP(*s, *s32, ru_isrss);
190 	CP(*s, *s32, ru_minflt);
191 	CP(*s, *s32, ru_majflt);
192 	CP(*s, *s32, ru_nswap);
193 	CP(*s, *s32, ru_inblock);
194 	CP(*s, *s32, ru_oublock);
195 	CP(*s, *s32, ru_msgsnd);
196 	CP(*s, *s32, ru_msgrcv);
197 	CP(*s, *s32, ru_nsignals);
198 	CP(*s, *s32, ru_nvcsw);
199 	CP(*s, *s32, ru_nivcsw);
200 }
201 
202 int
203 freebsd32_wait4(struct thread *td, struct freebsd32_wait4_args *uap)
204 {
205 	int error, status;
206 	struct rusage32 ru32;
207 	struct rusage ru, *rup;
208 
209 	if (uap->rusage != NULL)
210 		rup = &ru;
211 	else
212 		rup = NULL;
213 	error = kern_wait(td, uap->pid, &status, uap->options, rup);
214 	if (error)
215 		return (error);
216 	if (uap->status != NULL)
217 		error = copyout(&status, uap->status, sizeof(status));
218 	if (uap->rusage != NULL && error == 0) {
219 		freebsd32_rusage_out(&ru, &ru32);
220 		error = copyout(&ru32, uap->rusage, sizeof(ru32));
221 	}
222 	return (error);
223 }
224 
225 int
226 freebsd32_wait6(struct thread *td, struct freebsd32_wait6_args *uap)
227 {
228 	struct wrusage32 wru32;
229 	struct __wrusage wru, *wrup;
230 	struct siginfo32 si32;
231 	struct __siginfo si, *sip;
232 	int error, status;
233 
234 	if (uap->wrusage != NULL)
235 		wrup = &wru;
236 	else
237 		wrup = NULL;
238 	if (uap->info != NULL) {
239 		sip = &si;
240 		bzero(sip, sizeof(*sip));
241 	} else
242 		sip = NULL;
243 	error = kern_wait6(td, uap->idtype, PAIR32TO64(id_t, uap->id),
244 	    &status, uap->options, wrup, sip);
245 	if (error != 0)
246 		return (error);
247 	if (uap->status != NULL)
248 		error = copyout(&status, uap->status, sizeof(status));
249 	if (uap->wrusage != NULL && error == 0) {
250 		freebsd32_rusage_out(&wru.wru_self, &wru32.wru_self);
251 		freebsd32_rusage_out(&wru.wru_children, &wru32.wru_children);
252 		error = copyout(&wru32, uap->wrusage, sizeof(wru32));
253 	}
254 	if (uap->info != NULL && error == 0) {
255 		siginfo_to_siginfo32 (&si, &si32);
256 		error = copyout(&si32, uap->info, sizeof(si32));
257 	}
258 	return (error);
259 }
260 
261 #ifdef COMPAT_FREEBSD4
262 static void
263 copy_statfs(struct statfs *in, struct statfs32 *out)
264 {
265 
266 	statfs_scale_blocks(in, INT32_MAX);
267 	bzero(out, sizeof(*out));
268 	CP(*in, *out, f_bsize);
269 	out->f_iosize = MIN(in->f_iosize, INT32_MAX);
270 	CP(*in, *out, f_blocks);
271 	CP(*in, *out, f_bfree);
272 	CP(*in, *out, f_bavail);
273 	out->f_files = MIN(in->f_files, INT32_MAX);
274 	out->f_ffree = MIN(in->f_ffree, INT32_MAX);
275 	CP(*in, *out, f_fsid);
276 	CP(*in, *out, f_owner);
277 	CP(*in, *out, f_type);
278 	CP(*in, *out, f_flags);
279 	out->f_syncwrites = MIN(in->f_syncwrites, INT32_MAX);
280 	out->f_asyncwrites = MIN(in->f_asyncwrites, INT32_MAX);
281 	strlcpy(out->f_fstypename,
282 	      in->f_fstypename, MFSNAMELEN);
283 	strlcpy(out->f_mntonname,
284 	      in->f_mntonname, min(MNAMELEN, FREEBSD4_MNAMELEN));
285 	out->f_syncreads = MIN(in->f_syncreads, INT32_MAX);
286 	out->f_asyncreads = MIN(in->f_asyncreads, INT32_MAX);
287 	strlcpy(out->f_mntfromname,
288 	      in->f_mntfromname, min(MNAMELEN, FREEBSD4_MNAMELEN));
289 }
290 #endif
291 
292 #ifdef COMPAT_FREEBSD4
293 int
294 freebsd4_freebsd32_getfsstat(struct thread *td,
295     struct freebsd4_freebsd32_getfsstat_args *uap)
296 {
297 	struct statfs *buf, *sp;
298 	struct statfs32 stat32;
299 	size_t count, size, copycount;
300 	int error;
301 
302 	count = uap->bufsize / sizeof(struct statfs32);
303 	size = count * sizeof(struct statfs);
304 	error = kern_getfsstat(td, &buf, size, &count, UIO_SYSSPACE, uap->mode);
305 	if (size > 0) {
306 		sp = buf;
307 		copycount = count;
308 		while (copycount > 0 && error == 0) {
309 			copy_statfs(sp, &stat32);
310 			error = copyout(&stat32, uap->buf, sizeof(stat32));
311 			sp++;
312 			uap->buf++;
313 			copycount--;
314 		}
315 		free(buf, M_STATFS);
316 	}
317 	if (error == 0)
318 		td->td_retval[0] = count;
319 	return (error);
320 }
321 #endif
322 
323 #ifdef COMPAT_FREEBSD10
324 int
325 freebsd10_freebsd32_pipe(struct thread *td,
326     struct freebsd10_freebsd32_pipe_args *uap) {
327 	return (freebsd10_pipe(td, (struct freebsd10_pipe_args*)uap));
328 }
329 #endif
330 
331 int
332 freebsd32_sigaltstack(struct thread *td,
333 		      struct freebsd32_sigaltstack_args *uap)
334 {
335 	struct sigaltstack32 s32;
336 	struct sigaltstack ss, oss, *ssp;
337 	int error;
338 
339 	if (uap->ss != NULL) {
340 		error = copyin(uap->ss, &s32, sizeof(s32));
341 		if (error)
342 			return (error);
343 		PTRIN_CP(s32, ss, ss_sp);
344 		CP(s32, ss, ss_size);
345 		CP(s32, ss, ss_flags);
346 		ssp = &ss;
347 	} else
348 		ssp = NULL;
349 	error = kern_sigaltstack(td, ssp, &oss);
350 	if (error == 0 && uap->oss != NULL) {
351 		PTROUT_CP(oss, s32, ss_sp);
352 		CP(oss, s32, ss_size);
353 		CP(oss, s32, ss_flags);
354 		error = copyout(&s32, uap->oss, sizeof(s32));
355 	}
356 	return (error);
357 }
358 
359 /*
360  * Custom version of exec_copyin_args() so that we can translate
361  * the pointers.
362  */
363 int
364 freebsd32_exec_copyin_args(struct image_args *args, const char *fname,
365     enum uio_seg segflg, u_int32_t *argv, u_int32_t *envv)
366 {
367 	char *argp, *envp;
368 	u_int32_t *p32, arg;
369 	int error;
370 
371 	bzero(args, sizeof(*args));
372 	if (argv == NULL)
373 		return (EFAULT);
374 
375 	/*
376 	 * Allocate demand-paged memory for the file name, argument, and
377 	 * environment strings.
378 	 */
379 	error = exec_alloc_args(args);
380 	if (error != 0)
381 		return (error);
382 
383 	/*
384 	 * Copy the file name.
385 	 */
386 	error = exec_args_add_fname(args, fname, segflg);
387 	if (error != 0)
388 		goto err_exit;
389 
390 	/*
391 	 * extract arguments first
392 	 */
393 	p32 = argv;
394 	for (;;) {
395 		error = copyin(p32++, &arg, sizeof(arg));
396 		if (error)
397 			goto err_exit;
398 		if (arg == 0)
399 			break;
400 		argp = PTRIN(arg);
401 		error = exec_args_add_arg(args, argp, UIO_USERSPACE);
402 		if (error != 0)
403 			goto err_exit;
404 	}
405 
406 	/*
407 	 * extract environment strings
408 	 */
409 	if (envv) {
410 		p32 = envv;
411 		for (;;) {
412 			error = copyin(p32++, &arg, sizeof(arg));
413 			if (error)
414 				goto err_exit;
415 			if (arg == 0)
416 				break;
417 			envp = PTRIN(arg);
418 			error = exec_args_add_env(args, envp, UIO_USERSPACE);
419 			if (error != 0)
420 				goto err_exit;
421 		}
422 	}
423 
424 	return (0);
425 
426 err_exit:
427 	exec_free_args(args);
428 	return (error);
429 }
430 
431 int
432 freebsd32_execve(struct thread *td, struct freebsd32_execve_args *uap)
433 {
434 	struct image_args eargs;
435 	struct vmspace *oldvmspace;
436 	int error;
437 
438 	error = pre_execve(td, &oldvmspace);
439 	if (error != 0)
440 		return (error);
441 	error = freebsd32_exec_copyin_args(&eargs, uap->fname, UIO_USERSPACE,
442 	    uap->argv, uap->envv);
443 	if (error == 0)
444 		error = kern_execve(td, &eargs, NULL, oldvmspace);
445 	post_execve(td, error, oldvmspace);
446 	AUDIT_SYSCALL_EXIT(error == EJUSTRETURN ? 0 : error, td);
447 	return (error);
448 }
449 
450 int
451 freebsd32_fexecve(struct thread *td, struct freebsd32_fexecve_args *uap)
452 {
453 	struct image_args eargs;
454 	struct vmspace *oldvmspace;
455 	int error;
456 
457 	error = pre_execve(td, &oldvmspace);
458 	if (error != 0)
459 		return (error);
460 	error = freebsd32_exec_copyin_args(&eargs, NULL, UIO_SYSSPACE,
461 	    uap->argv, uap->envv);
462 	if (error == 0) {
463 		eargs.fd = uap->fd;
464 		error = kern_execve(td, &eargs, NULL, oldvmspace);
465 	}
466 	post_execve(td, error, oldvmspace);
467 	AUDIT_SYSCALL_EXIT(error == EJUSTRETURN ? 0 : error, td);
468 	return (error);
469 }
470 
471 int
472 freebsd32_mknodat(struct thread *td, struct freebsd32_mknodat_args *uap)
473 {
474 
475 	return (kern_mknodat(td, uap->fd, uap->path, UIO_USERSPACE,
476 	    uap->mode, PAIR32TO64(dev_t, uap->dev)));
477 }
478 
479 int
480 freebsd32_mprotect(struct thread *td, struct freebsd32_mprotect_args *uap)
481 {
482 	int prot;
483 
484 	prot = uap->prot;
485 #if defined(__amd64__)
486 	if (i386_read_exec && (prot & PROT_READ) != 0)
487 		prot |= PROT_EXEC;
488 #endif
489 	return (kern_mprotect(td, (uintptr_t)PTRIN(uap->addr), uap->len,
490 	    prot));
491 }
492 
493 int
494 freebsd32_mmap(struct thread *td, struct freebsd32_mmap_args *uap)
495 {
496 	int prot;
497 
498 	prot = uap->prot;
499 #if defined(__amd64__)
500 	if (i386_read_exec && (prot & PROT_READ))
501 		prot |= PROT_EXEC;
502 #endif
503 
504 	return (kern_mmap(td, (uintptr_t)uap->addr, uap->len, prot,
505 	    uap->flags, uap->fd, PAIR32TO64(off_t, uap->pos)));
506 }
507 
508 #ifdef COMPAT_FREEBSD6
509 int
510 freebsd6_freebsd32_mmap(struct thread *td,
511     struct freebsd6_freebsd32_mmap_args *uap)
512 {
513 	int prot;
514 
515 	prot = uap->prot;
516 #if defined(__amd64__)
517 	if (i386_read_exec && (prot & PROT_READ))
518 		prot |= PROT_EXEC;
519 #endif
520 
521 	return (kern_mmap(td, (uintptr_t)uap->addr, uap->len, prot,
522 	    uap->flags, uap->fd, PAIR32TO64(off_t, uap->pos)));
523 }
524 #endif
525 
526 int
527 freebsd32_setitimer(struct thread *td, struct freebsd32_setitimer_args *uap)
528 {
529 	struct itimerval itv, oitv, *itvp;
530 	struct itimerval32 i32;
531 	int error;
532 
533 	if (uap->itv != NULL) {
534 		error = copyin(uap->itv, &i32, sizeof(i32));
535 		if (error)
536 			return (error);
537 		TV_CP(i32, itv, it_interval);
538 		TV_CP(i32, itv, it_value);
539 		itvp = &itv;
540 	} else
541 		itvp = NULL;
542 	error = kern_setitimer(td, uap->which, itvp, &oitv);
543 	if (error || uap->oitv == NULL)
544 		return (error);
545 	TV_CP(oitv, i32, it_interval);
546 	TV_CP(oitv, i32, it_value);
547 	return (copyout(&i32, uap->oitv, sizeof(i32)));
548 }
549 
550 int
551 freebsd32_getitimer(struct thread *td, struct freebsd32_getitimer_args *uap)
552 {
553 	struct itimerval itv;
554 	struct itimerval32 i32;
555 	int error;
556 
557 	error = kern_getitimer(td, uap->which, &itv);
558 	if (error || uap->itv == NULL)
559 		return (error);
560 	TV_CP(itv, i32, it_interval);
561 	TV_CP(itv, i32, it_value);
562 	return (copyout(&i32, uap->itv, sizeof(i32)));
563 }
564 
565 int
566 freebsd32_select(struct thread *td, struct freebsd32_select_args *uap)
567 {
568 	struct timeval32 tv32;
569 	struct timeval tv, *tvp;
570 	int error;
571 
572 	if (uap->tv != NULL) {
573 		error = copyin(uap->tv, &tv32, sizeof(tv32));
574 		if (error)
575 			return (error);
576 		CP(tv32, tv, tv_sec);
577 		CP(tv32, tv, tv_usec);
578 		tvp = &tv;
579 	} else
580 		tvp = NULL;
581 	/*
582 	 * XXX Do pointers need PTRIN()?
583 	 */
584 	return (kern_select(td, uap->nd, uap->in, uap->ou, uap->ex, tvp,
585 	    sizeof(int32_t) * 8));
586 }
587 
588 int
589 freebsd32_pselect(struct thread *td, struct freebsd32_pselect_args *uap)
590 {
591 	struct timespec32 ts32;
592 	struct timespec ts;
593 	struct timeval tv, *tvp;
594 	sigset_t set, *uset;
595 	int error;
596 
597 	if (uap->ts != NULL) {
598 		error = copyin(uap->ts, &ts32, sizeof(ts32));
599 		if (error != 0)
600 			return (error);
601 		CP(ts32, ts, tv_sec);
602 		CP(ts32, ts, tv_nsec);
603 		TIMESPEC_TO_TIMEVAL(&tv, &ts);
604 		tvp = &tv;
605 	} else
606 		tvp = NULL;
607 	if (uap->sm != NULL) {
608 		error = copyin(uap->sm, &set, sizeof(set));
609 		if (error != 0)
610 			return (error);
611 		uset = &set;
612 	} else
613 		uset = NULL;
614 	/*
615 	 * XXX Do pointers need PTRIN()?
616 	 */
617 	error = kern_pselect(td, uap->nd, uap->in, uap->ou, uap->ex, tvp,
618 	    uset, sizeof(int32_t) * 8);
619 	return (error);
620 }
621 
622 /*
623  * Copy 'count' items into the destination list pointed to by uap->eventlist.
624  */
625 static int
626 freebsd32_kevent_copyout(void *arg, struct kevent *kevp, int count)
627 {
628 	struct freebsd32_kevent_args *uap;
629 	struct kevent32	ks32[KQ_NEVENTS];
630 	uint64_t e;
631 	int i, j, error;
632 
633 	KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
634 	uap = (struct freebsd32_kevent_args *)arg;
635 
636 	for (i = 0; i < count; i++) {
637 		CP(kevp[i], ks32[i], ident);
638 		CP(kevp[i], ks32[i], filter);
639 		CP(kevp[i], ks32[i], flags);
640 		CP(kevp[i], ks32[i], fflags);
641 #if BYTE_ORDER == LITTLE_ENDIAN
642 		ks32[i].data1 = kevp[i].data;
643 		ks32[i].data2 = kevp[i].data >> 32;
644 #else
645 		ks32[i].data1 = kevp[i].data >> 32;
646 		ks32[i].data2 = kevp[i].data;
647 #endif
648 		PTROUT_CP(kevp[i], ks32[i], udata);
649 		for (j = 0; j < nitems(kevp->ext); j++) {
650 			e = kevp[i].ext[j];
651 #if BYTE_ORDER == LITTLE_ENDIAN
652 			ks32[i].ext64[2 * j] = e;
653 			ks32[i].ext64[2 * j + 1] = e >> 32;
654 #else
655 			ks32[i].ext64[2 * j] = e >> 32;
656 			ks32[i].ext64[2 * j + 1] = e;
657 #endif
658 		}
659 	}
660 	error = copyout(ks32, uap->eventlist, count * sizeof *ks32);
661 	if (error == 0)
662 		uap->eventlist += count;
663 	return (error);
664 }
665 
666 /*
667  * Copy 'count' items from the list pointed to by uap->changelist.
668  */
669 static int
670 freebsd32_kevent_copyin(void *arg, struct kevent *kevp, int count)
671 {
672 	struct freebsd32_kevent_args *uap;
673 	struct kevent32	ks32[KQ_NEVENTS];
674 	uint64_t e;
675 	int i, j, error;
676 
677 	KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
678 	uap = (struct freebsd32_kevent_args *)arg;
679 
680 	error = copyin(uap->changelist, ks32, count * sizeof *ks32);
681 	if (error)
682 		goto done;
683 	uap->changelist += count;
684 
685 	for (i = 0; i < count; i++) {
686 		CP(ks32[i], kevp[i], ident);
687 		CP(ks32[i], kevp[i], filter);
688 		CP(ks32[i], kevp[i], flags);
689 		CP(ks32[i], kevp[i], fflags);
690 		kevp[i].data = PAIR32TO64(uint64_t, ks32[i].data);
691 		PTRIN_CP(ks32[i], kevp[i], udata);
692 		for (j = 0; j < nitems(kevp->ext); j++) {
693 #if BYTE_ORDER == LITTLE_ENDIAN
694 			e = ks32[i].ext64[2 * j + 1];
695 			e <<= 32;
696 			e += ks32[i].ext64[2 * j];
697 #else
698 			e = ks32[i].ext64[2 * j];
699 			e <<= 32;
700 			e += ks32[i].ext64[2 * j + 1];
701 #endif
702 			kevp[i].ext[j] = e;
703 		}
704 	}
705 done:
706 	return (error);
707 }
708 
709 int
710 freebsd32_kevent(struct thread *td, struct freebsd32_kevent_args *uap)
711 {
712 	struct timespec32 ts32;
713 	struct timespec ts, *tsp;
714 	struct kevent_copyops k_ops = {
715 		.arg = uap,
716 		.k_copyout = freebsd32_kevent_copyout,
717 		.k_copyin = freebsd32_kevent_copyin,
718 	};
719 #ifdef KTRACE
720 	struct kevent32 *eventlist = uap->eventlist;
721 #endif
722 	int error;
723 
724 	if (uap->timeout) {
725 		error = copyin(uap->timeout, &ts32, sizeof(ts32));
726 		if (error)
727 			return (error);
728 		CP(ts32, ts, tv_sec);
729 		CP(ts32, ts, tv_nsec);
730 		tsp = &ts;
731 	} else
732 		tsp = NULL;
733 #ifdef KTRACE
734 	if (KTRPOINT(td, KTR_STRUCT_ARRAY))
735 		ktrstructarray("kevent32", UIO_USERSPACE, uap->changelist,
736 		    uap->nchanges, sizeof(struct kevent32));
737 #endif
738 	error = kern_kevent(td, uap->fd, uap->nchanges, uap->nevents,
739 	    &k_ops, tsp);
740 #ifdef KTRACE
741 	if (error == 0 && KTRPOINT(td, KTR_STRUCT_ARRAY))
742 		ktrstructarray("kevent32", UIO_USERSPACE, eventlist,
743 		    td->td_retval[0], sizeof(struct kevent32));
744 #endif
745 	return (error);
746 }
747 
748 #ifdef COMPAT_FREEBSD11
749 static int
750 freebsd32_kevent11_copyout(void *arg, struct kevent *kevp, int count)
751 {
752 	struct freebsd11_freebsd32_kevent_args *uap;
753 	struct kevent32_freebsd11 ks32[KQ_NEVENTS];
754 	int i, error;
755 
756 	KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
757 	uap = (struct freebsd11_freebsd32_kevent_args *)arg;
758 
759 	for (i = 0; i < count; i++) {
760 		CP(kevp[i], ks32[i], ident);
761 		CP(kevp[i], ks32[i], filter);
762 		CP(kevp[i], ks32[i], flags);
763 		CP(kevp[i], ks32[i], fflags);
764 		CP(kevp[i], ks32[i], data);
765 		PTROUT_CP(kevp[i], ks32[i], udata);
766 	}
767 	error = copyout(ks32, uap->eventlist, count * sizeof *ks32);
768 	if (error == 0)
769 		uap->eventlist += count;
770 	return (error);
771 }
772 
773 /*
774  * Copy 'count' items from the list pointed to by uap->changelist.
775  */
776 static int
777 freebsd32_kevent11_copyin(void *arg, struct kevent *kevp, int count)
778 {
779 	struct freebsd11_freebsd32_kevent_args *uap;
780 	struct kevent32_freebsd11 ks32[KQ_NEVENTS];
781 	int i, j, error;
782 
783 	KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
784 	uap = (struct freebsd11_freebsd32_kevent_args *)arg;
785 
786 	error = copyin(uap->changelist, ks32, count * sizeof *ks32);
787 	if (error)
788 		goto done;
789 	uap->changelist += count;
790 
791 	for (i = 0; i < count; i++) {
792 		CP(ks32[i], kevp[i], ident);
793 		CP(ks32[i], kevp[i], filter);
794 		CP(ks32[i], kevp[i], flags);
795 		CP(ks32[i], kevp[i], fflags);
796 		CP(ks32[i], kevp[i], data);
797 		PTRIN_CP(ks32[i], kevp[i], udata);
798 		for (j = 0; j < nitems(kevp->ext); j++)
799 			kevp[i].ext[j] = 0;
800 	}
801 done:
802 	return (error);
803 }
804 
805 int
806 freebsd11_freebsd32_kevent(struct thread *td,
807     struct freebsd11_freebsd32_kevent_args *uap)
808 {
809 	struct timespec32 ts32;
810 	struct timespec ts, *tsp;
811 	struct kevent_copyops k_ops = {
812 		.arg = uap,
813 		.k_copyout = freebsd32_kevent11_copyout,
814 		.k_copyin = freebsd32_kevent11_copyin,
815 	};
816 #ifdef KTRACE
817 	struct kevent32_freebsd11 *eventlist = uap->eventlist;
818 #endif
819 	int error;
820 
821 	if (uap->timeout) {
822 		error = copyin(uap->timeout, &ts32, sizeof(ts32));
823 		if (error)
824 			return (error);
825 		CP(ts32, ts, tv_sec);
826 		CP(ts32, ts, tv_nsec);
827 		tsp = &ts;
828 	} else
829 		tsp = NULL;
830 #ifdef KTRACE
831 	if (KTRPOINT(td, KTR_STRUCT_ARRAY))
832 		ktrstructarray("kevent32_freebsd11", UIO_USERSPACE,
833 		    uap->changelist, uap->nchanges,
834 		    sizeof(struct kevent32_freebsd11));
835 #endif
836 	error = kern_kevent(td, uap->fd, uap->nchanges, uap->nevents,
837 	    &k_ops, tsp);
838 #ifdef KTRACE
839 	if (error == 0 && KTRPOINT(td, KTR_STRUCT_ARRAY))
840 		ktrstructarray("kevent32_freebsd11", UIO_USERSPACE,
841 		    eventlist, td->td_retval[0],
842 		    sizeof(struct kevent32_freebsd11));
843 #endif
844 	return (error);
845 }
846 #endif
847 
848 int
849 freebsd32_gettimeofday(struct thread *td,
850 		       struct freebsd32_gettimeofday_args *uap)
851 {
852 	struct timeval atv;
853 	struct timeval32 atv32;
854 	struct timezone rtz;
855 	int error = 0;
856 
857 	if (uap->tp) {
858 		microtime(&atv);
859 		CP(atv, atv32, tv_sec);
860 		CP(atv, atv32, tv_usec);
861 		error = copyout(&atv32, uap->tp, sizeof (atv32));
862 	}
863 	if (error == 0 && uap->tzp != NULL) {
864 		rtz.tz_minuteswest = 0;
865 		rtz.tz_dsttime = 0;
866 		error = copyout(&rtz, uap->tzp, sizeof (rtz));
867 	}
868 	return (error);
869 }
870 
871 int
872 freebsd32_getrusage(struct thread *td, struct freebsd32_getrusage_args *uap)
873 {
874 	struct rusage32 s32;
875 	struct rusage s;
876 	int error;
877 
878 	error = kern_getrusage(td, uap->who, &s);
879 	if (error == 0) {
880 		freebsd32_rusage_out(&s, &s32);
881 		error = copyout(&s32, uap->rusage, sizeof(s32));
882 	}
883 	return (error);
884 }
885 
886 static void
887 ptrace_lwpinfo_to32(const struct ptrace_lwpinfo *pl,
888     struct ptrace_lwpinfo32 *pl32)
889 {
890 
891 	bzero(pl32, sizeof(*pl32));
892 	pl32->pl_lwpid = pl->pl_lwpid;
893 	pl32->pl_event = pl->pl_event;
894 	pl32->pl_flags = pl->pl_flags;
895 	pl32->pl_sigmask = pl->pl_sigmask;
896 	pl32->pl_siglist = pl->pl_siglist;
897 	siginfo_to_siginfo32(&pl->pl_siginfo, &pl32->pl_siginfo);
898 	strcpy(pl32->pl_tdname, pl->pl_tdname);
899 	pl32->pl_child_pid = pl->pl_child_pid;
900 	pl32->pl_syscall_code = pl->pl_syscall_code;
901 	pl32->pl_syscall_narg = pl->pl_syscall_narg;
902 }
903 
904 static void
905 ptrace_sc_ret_to32(const struct ptrace_sc_ret *psr,
906     struct ptrace_sc_ret32 *psr32)
907 {
908 
909 	bzero(psr32, sizeof(*psr32));
910 	psr32->sr_retval[0] = psr->sr_retval[0];
911 	psr32->sr_retval[1] = psr->sr_retval[1];
912 	psr32->sr_error = psr->sr_error;
913 }
914 
915 int
916 freebsd32_ptrace(struct thread *td, struct freebsd32_ptrace_args *uap)
917 {
918 	union {
919 		struct ptrace_io_desc piod;
920 		struct ptrace_lwpinfo pl;
921 		struct ptrace_vm_entry pve;
922 		struct dbreg32 dbreg;
923 		struct fpreg32 fpreg;
924 		struct reg32 reg;
925 		register_t args[nitems(td->td_sa.args)];
926 		struct ptrace_sc_ret psr;
927 		int ptevents;
928 	} r;
929 	union {
930 		struct ptrace_io_desc32 piod;
931 		struct ptrace_lwpinfo32 pl;
932 		struct ptrace_vm_entry32 pve;
933 		uint32_t args[nitems(td->td_sa.args)];
934 		struct ptrace_sc_ret32 psr;
935 	} r32;
936 	void *addr;
937 	int data, error = 0, i;
938 
939 	AUDIT_ARG_PID(uap->pid);
940 	AUDIT_ARG_CMD(uap->req);
941 	AUDIT_ARG_VALUE(uap->data);
942 	addr = &r;
943 	data = uap->data;
944 	switch (uap->req) {
945 	case PT_GET_EVENT_MASK:
946 	case PT_GET_SC_ARGS:
947 	case PT_GET_SC_RET:
948 		break;
949 	case PT_LWPINFO:
950 		if (uap->data > sizeof(r32.pl))
951 			return (EINVAL);
952 
953 		/*
954 		 * Pass size of native structure in 'data'.  Truncate
955 		 * if necessary to avoid siginfo.
956 		 */
957 		data = sizeof(r.pl);
958 		if (uap->data < offsetof(struct ptrace_lwpinfo32, pl_siginfo) +
959 		    sizeof(struct siginfo32))
960 			data = offsetof(struct ptrace_lwpinfo, pl_siginfo);
961 		break;
962 	case PT_GETREGS:
963 		bzero(&r.reg, sizeof(r.reg));
964 		break;
965 	case PT_GETFPREGS:
966 		bzero(&r.fpreg, sizeof(r.fpreg));
967 		break;
968 	case PT_GETDBREGS:
969 		bzero(&r.dbreg, sizeof(r.dbreg));
970 		break;
971 	case PT_SETREGS:
972 		error = copyin(uap->addr, &r.reg, sizeof(r.reg));
973 		break;
974 	case PT_SETFPREGS:
975 		error = copyin(uap->addr, &r.fpreg, sizeof(r.fpreg));
976 		break;
977 	case PT_SETDBREGS:
978 		error = copyin(uap->addr, &r.dbreg, sizeof(r.dbreg));
979 		break;
980 	case PT_SET_EVENT_MASK:
981 		if (uap->data != sizeof(r.ptevents))
982 			error = EINVAL;
983 		else
984 			error = copyin(uap->addr, &r.ptevents, uap->data);
985 		break;
986 	case PT_IO:
987 		error = copyin(uap->addr, &r32.piod, sizeof(r32.piod));
988 		if (error)
989 			break;
990 		CP(r32.piod, r.piod, piod_op);
991 		PTRIN_CP(r32.piod, r.piod, piod_offs);
992 		PTRIN_CP(r32.piod, r.piod, piod_addr);
993 		CP(r32.piod, r.piod, piod_len);
994 		break;
995 	case PT_VM_ENTRY:
996 		error = copyin(uap->addr, &r32.pve, sizeof(r32.pve));
997 		if (error)
998 			break;
999 
1000 		CP(r32.pve, r.pve, pve_entry);
1001 		CP(r32.pve, r.pve, pve_timestamp);
1002 		CP(r32.pve, r.pve, pve_start);
1003 		CP(r32.pve, r.pve, pve_end);
1004 		CP(r32.pve, r.pve, pve_offset);
1005 		CP(r32.pve, r.pve, pve_prot);
1006 		CP(r32.pve, r.pve, pve_pathlen);
1007 		CP(r32.pve, r.pve, pve_fileid);
1008 		CP(r32.pve, r.pve, pve_fsid);
1009 		PTRIN_CP(r32.pve, r.pve, pve_path);
1010 		break;
1011 	default:
1012 		addr = uap->addr;
1013 		break;
1014 	}
1015 	if (error)
1016 		return (error);
1017 
1018 	error = kern_ptrace(td, uap->req, uap->pid, addr, data);
1019 	if (error)
1020 		return (error);
1021 
1022 	switch (uap->req) {
1023 	case PT_VM_ENTRY:
1024 		CP(r.pve, r32.pve, pve_entry);
1025 		CP(r.pve, r32.pve, pve_timestamp);
1026 		CP(r.pve, r32.pve, pve_start);
1027 		CP(r.pve, r32.pve, pve_end);
1028 		CP(r.pve, r32.pve, pve_offset);
1029 		CP(r.pve, r32.pve, pve_prot);
1030 		CP(r.pve, r32.pve, pve_pathlen);
1031 		CP(r.pve, r32.pve, pve_fileid);
1032 		CP(r.pve, r32.pve, pve_fsid);
1033 		error = copyout(&r32.pve, uap->addr, sizeof(r32.pve));
1034 		break;
1035 	case PT_IO:
1036 		CP(r.piod, r32.piod, piod_len);
1037 		error = copyout(&r32.piod, uap->addr, sizeof(r32.piod));
1038 		break;
1039 	case PT_GETREGS:
1040 		error = copyout(&r.reg, uap->addr, sizeof(r.reg));
1041 		break;
1042 	case PT_GETFPREGS:
1043 		error = copyout(&r.fpreg, uap->addr, sizeof(r.fpreg));
1044 		break;
1045 	case PT_GETDBREGS:
1046 		error = copyout(&r.dbreg, uap->addr, sizeof(r.dbreg));
1047 		break;
1048 	case PT_GET_EVENT_MASK:
1049 		/* NB: The size in uap->data is validated in kern_ptrace(). */
1050 		error = copyout(&r.ptevents, uap->addr, uap->data);
1051 		break;
1052 	case PT_LWPINFO:
1053 		ptrace_lwpinfo_to32(&r.pl, &r32.pl);
1054 		error = copyout(&r32.pl, uap->addr, uap->data);
1055 		break;
1056 	case PT_GET_SC_ARGS:
1057 		for (i = 0; i < nitems(r.args); i++)
1058 			r32.args[i] = (uint32_t)r.args[i];
1059 		error = copyout(r32.args, uap->addr, MIN(uap->data,
1060 		    sizeof(r32.args)));
1061 		break;
1062 	case PT_GET_SC_RET:
1063 		ptrace_sc_ret_to32(&r.psr, &r32.psr);
1064 		error = copyout(&r32.psr, uap->addr, MIN(uap->data,
1065 		    sizeof(r32.psr)));
1066 		break;
1067 	}
1068 
1069 	return (error);
1070 }
1071 
1072 static int
1073 freebsd32_copyinuio(struct iovec32 *iovp, u_int iovcnt, struct uio **uiop)
1074 {
1075 	struct iovec32 iov32;
1076 	struct iovec *iov;
1077 	struct uio *uio;
1078 	u_int iovlen;
1079 	int error, i;
1080 
1081 	*uiop = NULL;
1082 	if (iovcnt > UIO_MAXIOV)
1083 		return (EINVAL);
1084 	iovlen = iovcnt * sizeof(struct iovec);
1085 	uio = malloc(iovlen + sizeof *uio, M_IOV, M_WAITOK);
1086 	iov = (struct iovec *)(uio + 1);
1087 	for (i = 0; i < iovcnt; i++) {
1088 		error = copyin(&iovp[i], &iov32, sizeof(struct iovec32));
1089 		if (error) {
1090 			free(uio, M_IOV);
1091 			return (error);
1092 		}
1093 		iov[i].iov_base = PTRIN(iov32.iov_base);
1094 		iov[i].iov_len = iov32.iov_len;
1095 	}
1096 	uio->uio_iov = iov;
1097 	uio->uio_iovcnt = iovcnt;
1098 	uio->uio_segflg = UIO_USERSPACE;
1099 	uio->uio_offset = -1;
1100 	uio->uio_resid = 0;
1101 	for (i = 0; i < iovcnt; i++) {
1102 		if (iov->iov_len > INT_MAX - uio->uio_resid) {
1103 			free(uio, M_IOV);
1104 			return (EINVAL);
1105 		}
1106 		uio->uio_resid += iov->iov_len;
1107 		iov++;
1108 	}
1109 	*uiop = uio;
1110 	return (0);
1111 }
1112 
1113 int
1114 freebsd32_readv(struct thread *td, struct freebsd32_readv_args *uap)
1115 {
1116 	struct uio *auio;
1117 	int error;
1118 
1119 	error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio);
1120 	if (error)
1121 		return (error);
1122 	error = kern_readv(td, uap->fd, auio);
1123 	free(auio, M_IOV);
1124 	return (error);
1125 }
1126 
1127 int
1128 freebsd32_writev(struct thread *td, struct freebsd32_writev_args *uap)
1129 {
1130 	struct uio *auio;
1131 	int error;
1132 
1133 	error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio);
1134 	if (error)
1135 		return (error);
1136 	error = kern_writev(td, uap->fd, auio);
1137 	free(auio, M_IOV);
1138 	return (error);
1139 }
1140 
1141 int
1142 freebsd32_preadv(struct thread *td, struct freebsd32_preadv_args *uap)
1143 {
1144 	struct uio *auio;
1145 	int error;
1146 
1147 	error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio);
1148 	if (error)
1149 		return (error);
1150 	error = kern_preadv(td, uap->fd, auio, PAIR32TO64(off_t,uap->offset));
1151 	free(auio, M_IOV);
1152 	return (error);
1153 }
1154 
1155 int
1156 freebsd32_pwritev(struct thread *td, struct freebsd32_pwritev_args *uap)
1157 {
1158 	struct uio *auio;
1159 	int error;
1160 
1161 	error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio);
1162 	if (error)
1163 		return (error);
1164 	error = kern_pwritev(td, uap->fd, auio, PAIR32TO64(off_t,uap->offset));
1165 	free(auio, M_IOV);
1166 	return (error);
1167 }
1168 
1169 int
1170 freebsd32_copyiniov(struct iovec32 *iovp32, u_int iovcnt, struct iovec **iovp,
1171     int error)
1172 {
1173 	struct iovec32 iov32;
1174 	struct iovec *iov;
1175 	u_int iovlen;
1176 	int i;
1177 
1178 	*iovp = NULL;
1179 	if (iovcnt > UIO_MAXIOV)
1180 		return (error);
1181 	iovlen = iovcnt * sizeof(struct iovec);
1182 	iov = malloc(iovlen, M_IOV, M_WAITOK);
1183 	for (i = 0; i < iovcnt; i++) {
1184 		error = copyin(&iovp32[i], &iov32, sizeof(struct iovec32));
1185 		if (error) {
1186 			free(iov, M_IOV);
1187 			return (error);
1188 		}
1189 		iov[i].iov_base = PTRIN(iov32.iov_base);
1190 		iov[i].iov_len = iov32.iov_len;
1191 	}
1192 	*iovp = iov;
1193 	return (0);
1194 }
1195 
1196 static int
1197 freebsd32_copyinmsghdr(struct msghdr32 *msg32, struct msghdr *msg)
1198 {
1199 	struct msghdr32 m32;
1200 	int error;
1201 
1202 	error = copyin(msg32, &m32, sizeof(m32));
1203 	if (error)
1204 		return (error);
1205 	msg->msg_name = PTRIN(m32.msg_name);
1206 	msg->msg_namelen = m32.msg_namelen;
1207 	msg->msg_iov = PTRIN(m32.msg_iov);
1208 	msg->msg_iovlen = m32.msg_iovlen;
1209 	msg->msg_control = PTRIN(m32.msg_control);
1210 	msg->msg_controllen = m32.msg_controllen;
1211 	msg->msg_flags = m32.msg_flags;
1212 	return (0);
1213 }
1214 
1215 static int
1216 freebsd32_copyoutmsghdr(struct msghdr *msg, struct msghdr32 *msg32)
1217 {
1218 	struct msghdr32 m32;
1219 	int error;
1220 
1221 	m32.msg_name = PTROUT(msg->msg_name);
1222 	m32.msg_namelen = msg->msg_namelen;
1223 	m32.msg_iov = PTROUT(msg->msg_iov);
1224 	m32.msg_iovlen = msg->msg_iovlen;
1225 	m32.msg_control = PTROUT(msg->msg_control);
1226 	m32.msg_controllen = msg->msg_controllen;
1227 	m32.msg_flags = msg->msg_flags;
1228 	error = copyout(&m32, msg32, sizeof(m32));
1229 	return (error);
1230 }
1231 
1232 #ifndef __mips__
1233 #define FREEBSD32_ALIGNBYTES	(sizeof(int) - 1)
1234 #else
1235 #define FREEBSD32_ALIGNBYTES	(sizeof(long) - 1)
1236 #endif
1237 #define FREEBSD32_ALIGN(p)	\
1238 	(((u_long)(p) + FREEBSD32_ALIGNBYTES) & ~FREEBSD32_ALIGNBYTES)
1239 #define	FREEBSD32_CMSG_SPACE(l)	\
1240 	(FREEBSD32_ALIGN(sizeof(struct cmsghdr)) + FREEBSD32_ALIGN(l))
1241 
1242 #define	FREEBSD32_CMSG_DATA(cmsg)	((unsigned char *)(cmsg) + \
1243 				 FREEBSD32_ALIGN(sizeof(struct cmsghdr)))
1244 
1245 static size_t
1246 freebsd32_cmsg_convert(const struct cmsghdr *cm, void *data, socklen_t datalen)
1247 {
1248 	size_t copylen;
1249 	union {
1250 		struct timespec32 ts;
1251 		struct timeval32 tv;
1252 		struct bintime32 bt;
1253 	} tmp32;
1254 
1255 	union {
1256 		struct timespec ts;
1257 		struct timeval tv;
1258 		struct bintime bt;
1259 	} *in;
1260 
1261 	in = data;
1262 	copylen = 0;
1263 	switch (cm->cmsg_level) {
1264 	case SOL_SOCKET:
1265 		switch (cm->cmsg_type) {
1266 		case SCM_TIMESTAMP:
1267 			TV_CP(*in, tmp32, tv);
1268 			copylen = sizeof(tmp32.tv);
1269 			break;
1270 
1271 		case SCM_BINTIME:
1272 			BT_CP(*in, tmp32, bt);
1273 			copylen = sizeof(tmp32.bt);
1274 			break;
1275 
1276 		case SCM_REALTIME:
1277 		case SCM_MONOTONIC:
1278 			TS_CP(*in, tmp32, ts);
1279 			copylen = sizeof(tmp32.ts);
1280 			break;
1281 
1282 		default:
1283 			break;
1284 		}
1285 
1286 	default:
1287 		break;
1288 	}
1289 
1290 	if (copylen == 0)
1291 		return (datalen);
1292 
1293 	KASSERT((datalen >= copylen), ("corrupted cmsghdr"));
1294 
1295 	bcopy(&tmp32, data, copylen);
1296 	return (copylen);
1297 }
1298 
1299 static int
1300 freebsd32_copy_msg_out(struct msghdr *msg, struct mbuf *control)
1301 {
1302 	struct cmsghdr *cm;
1303 	void *data;
1304 	socklen_t clen, datalen, datalen_out, oldclen;
1305 	int error;
1306 	caddr_t ctlbuf;
1307 	int len, maxlen, copylen;
1308 	struct mbuf *m;
1309 	error = 0;
1310 
1311 	len    = msg->msg_controllen;
1312 	maxlen = msg->msg_controllen;
1313 	msg->msg_controllen = 0;
1314 
1315 	ctlbuf = msg->msg_control;
1316 	for (m = control; m != NULL && len > 0; m = m->m_next) {
1317 		cm = mtod(m, struct cmsghdr *);
1318 		clen = m->m_len;
1319 		while (cm != NULL) {
1320 			if (sizeof(struct cmsghdr) > clen ||
1321 			    cm->cmsg_len > clen) {
1322 				error = EINVAL;
1323 				break;
1324 			}
1325 
1326 			data   = CMSG_DATA(cm);
1327 			datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data;
1328 			datalen_out = freebsd32_cmsg_convert(cm, data, datalen);
1329 
1330 			/*
1331 			 * Copy out the message header.  Preserve the native
1332 			 * message size in case we need to inspect the message
1333 			 * contents later.
1334 			 */
1335 			copylen = sizeof(struct cmsghdr);
1336 			if (len < copylen) {
1337 				msg->msg_flags |= MSG_CTRUNC;
1338 				m_dispose_extcontrolm(m);
1339 				goto exit;
1340 			}
1341 			oldclen = cm->cmsg_len;
1342 			cm->cmsg_len = FREEBSD32_ALIGN(sizeof(struct cmsghdr)) +
1343 			    datalen_out;
1344 			error = copyout(cm, ctlbuf, copylen);
1345 			cm->cmsg_len = oldclen;
1346 			if (error != 0)
1347 				goto exit;
1348 
1349 			ctlbuf += FREEBSD32_ALIGN(copylen);
1350 			len    -= FREEBSD32_ALIGN(copylen);
1351 
1352 			copylen = datalen_out;
1353 			if (len < copylen) {
1354 				msg->msg_flags |= MSG_CTRUNC;
1355 				m_dispose_extcontrolm(m);
1356 				break;
1357 			}
1358 
1359 			/* Copy out the message data. */
1360 			error = copyout(data, ctlbuf, copylen);
1361 			if (error)
1362 				goto exit;
1363 
1364 			ctlbuf += FREEBSD32_ALIGN(copylen);
1365 			len    -= FREEBSD32_ALIGN(copylen);
1366 
1367 			if (CMSG_SPACE(datalen) < clen) {
1368 				clen -= CMSG_SPACE(datalen);
1369 				cm = (struct cmsghdr *)
1370 				    ((caddr_t)cm + CMSG_SPACE(datalen));
1371 			} else {
1372 				clen = 0;
1373 				cm = NULL;
1374 			}
1375 
1376 			msg->msg_controllen +=
1377 			    FREEBSD32_CMSG_SPACE(datalen_out);
1378 		}
1379 	}
1380 	if (len == 0 && m != NULL) {
1381 		msg->msg_flags |= MSG_CTRUNC;
1382 		m_dispose_extcontrolm(m);
1383 	}
1384 
1385 exit:
1386 	return (error);
1387 }
1388 
1389 int
1390 freebsd32_recvmsg(td, uap)
1391 	struct thread *td;
1392 	struct freebsd32_recvmsg_args /* {
1393 		int	s;
1394 		struct	msghdr32 *msg;
1395 		int	flags;
1396 	} */ *uap;
1397 {
1398 	struct msghdr msg;
1399 	struct msghdr32 m32;
1400 	struct iovec *uiov, *iov;
1401 	struct mbuf *control = NULL;
1402 	struct mbuf **controlp;
1403 
1404 	int error;
1405 	error = copyin(uap->msg, &m32, sizeof(m32));
1406 	if (error)
1407 		return (error);
1408 	error = freebsd32_copyinmsghdr(uap->msg, &msg);
1409 	if (error)
1410 		return (error);
1411 	error = freebsd32_copyiniov(PTRIN(m32.msg_iov), m32.msg_iovlen, &iov,
1412 	    EMSGSIZE);
1413 	if (error)
1414 		return (error);
1415 	msg.msg_flags = uap->flags;
1416 	uiov = msg.msg_iov;
1417 	msg.msg_iov = iov;
1418 
1419 	controlp = (msg.msg_control != NULL) ?  &control : NULL;
1420 	error = kern_recvit(td, uap->s, &msg, UIO_USERSPACE, controlp);
1421 	if (error == 0) {
1422 		msg.msg_iov = uiov;
1423 
1424 		if (control != NULL)
1425 			error = freebsd32_copy_msg_out(&msg, control);
1426 		else
1427 			msg.msg_controllen = 0;
1428 
1429 		if (error == 0)
1430 			error = freebsd32_copyoutmsghdr(&msg, uap->msg);
1431 	}
1432 	free(iov, M_IOV);
1433 
1434 	if (control != NULL) {
1435 		if (error != 0)
1436 			m_dispose_extcontrolm(control);
1437 		m_freem(control);
1438 	}
1439 
1440 	return (error);
1441 }
1442 
1443 /*
1444  * Copy-in the array of control messages constructed using alignment
1445  * and padding suitable for a 32-bit environment and construct an
1446  * mbuf using alignment and padding suitable for a 64-bit kernel.
1447  * The alignment and padding are defined indirectly by CMSG_DATA(),
1448  * CMSG_SPACE() and CMSG_LEN().
1449  */
1450 static int
1451 freebsd32_copyin_control(struct mbuf **mp, caddr_t buf, u_int buflen)
1452 {
1453 	struct cmsghdr *cm;
1454 	struct mbuf *m;
1455 	void *in, *in1, *md;
1456 	u_int msglen, outlen;
1457 	int error;
1458 
1459 	if (buflen > MCLBYTES)
1460 		return (EINVAL);
1461 
1462 	in = malloc(buflen, M_TEMP, M_WAITOK);
1463 	error = copyin(buf, in, buflen);
1464 	if (error != 0)
1465 		goto out;
1466 
1467 	/*
1468 	 * Make a pass over the input buffer to determine the amount of space
1469 	 * required for 64 bit-aligned copies of the control messages.
1470 	 */
1471 	in1 = in;
1472 	outlen = 0;
1473 	while (buflen > 0) {
1474 		if (buflen < sizeof(*cm)) {
1475 			error = EINVAL;
1476 			break;
1477 		}
1478 		cm = (struct cmsghdr *)in1;
1479 		if (cm->cmsg_len < FREEBSD32_ALIGN(sizeof(*cm))) {
1480 			error = EINVAL;
1481 			break;
1482 		}
1483 		msglen = FREEBSD32_ALIGN(cm->cmsg_len);
1484 		if (msglen > buflen || msglen < cm->cmsg_len) {
1485 			error = EINVAL;
1486 			break;
1487 		}
1488 		buflen -= msglen;
1489 
1490 		in1 = (char *)in1 + msglen;
1491 		outlen += CMSG_ALIGN(sizeof(*cm)) +
1492 		    CMSG_ALIGN(msglen - FREEBSD32_ALIGN(sizeof(*cm)));
1493 	}
1494 	if (error == 0 && outlen > MCLBYTES) {
1495 		/*
1496 		 * XXXMJ This implies that the upper limit on 32-bit aligned
1497 		 * control messages is less than MCLBYTES, and so we are not
1498 		 * perfectly compatible.  However, there is no platform
1499 		 * guarantee that mbuf clusters larger than MCLBYTES can be
1500 		 * allocated.
1501 		 */
1502 		error = EINVAL;
1503 	}
1504 	if (error != 0)
1505 		goto out;
1506 
1507 	m = m_get2(outlen, M_WAITOK, MT_CONTROL, 0);
1508 	m->m_len = outlen;
1509 	md = mtod(m, void *);
1510 
1511 	/*
1512 	 * Make a second pass over input messages, copying them into the output
1513 	 * buffer.
1514 	 */
1515 	in1 = in;
1516 	while (outlen > 0) {
1517 		/* Copy the message header and align the length field. */
1518 		cm = md;
1519 		memcpy(cm, in1, sizeof(*cm));
1520 		msglen = cm->cmsg_len - FREEBSD32_ALIGN(sizeof(*cm));
1521 		cm->cmsg_len = CMSG_ALIGN(sizeof(*cm)) + msglen;
1522 
1523 		/* Copy the message body. */
1524 		in1 = (char *)in1 + FREEBSD32_ALIGN(sizeof(*cm));
1525 		md = (char *)md + CMSG_ALIGN(sizeof(*cm));
1526 		memcpy(md, in1, msglen);
1527 		in1 = (char *)in1 + FREEBSD32_ALIGN(msglen);
1528 		md = (char *)md + CMSG_ALIGN(msglen);
1529 		KASSERT(outlen >= CMSG_ALIGN(sizeof(*cm)) + CMSG_ALIGN(msglen),
1530 		    ("outlen %u underflow, msglen %u", outlen, msglen));
1531 		outlen -= CMSG_ALIGN(sizeof(*cm)) + CMSG_ALIGN(msglen);
1532 	}
1533 
1534 	*mp = m;
1535 out:
1536 	free(in, M_TEMP);
1537 	return (error);
1538 }
1539 
1540 int
1541 freebsd32_sendmsg(struct thread *td,
1542 		  struct freebsd32_sendmsg_args *uap)
1543 {
1544 	struct msghdr msg;
1545 	struct msghdr32 m32;
1546 	struct iovec *iov;
1547 	struct mbuf *control = NULL;
1548 	struct sockaddr *to = NULL;
1549 	int error;
1550 
1551 	error = copyin(uap->msg, &m32, sizeof(m32));
1552 	if (error)
1553 		return (error);
1554 	error = freebsd32_copyinmsghdr(uap->msg, &msg);
1555 	if (error)
1556 		return (error);
1557 	error = freebsd32_copyiniov(PTRIN(m32.msg_iov), m32.msg_iovlen, &iov,
1558 	    EMSGSIZE);
1559 	if (error)
1560 		return (error);
1561 	msg.msg_iov = iov;
1562 	if (msg.msg_name != NULL) {
1563 		error = getsockaddr(&to, msg.msg_name, msg.msg_namelen);
1564 		if (error) {
1565 			to = NULL;
1566 			goto out;
1567 		}
1568 		msg.msg_name = to;
1569 	}
1570 
1571 	if (msg.msg_control) {
1572 		if (msg.msg_controllen < sizeof(struct cmsghdr)) {
1573 			error = EINVAL;
1574 			goto out;
1575 		}
1576 
1577 		error = freebsd32_copyin_control(&control, msg.msg_control,
1578 		    msg.msg_controllen);
1579 		if (error)
1580 			goto out;
1581 
1582 		msg.msg_control = NULL;
1583 		msg.msg_controllen = 0;
1584 	}
1585 
1586 	error = kern_sendit(td, uap->s, &msg, uap->flags, control,
1587 	    UIO_USERSPACE);
1588 
1589 out:
1590 	free(iov, M_IOV);
1591 	if (to)
1592 		free(to, M_SONAME);
1593 	return (error);
1594 }
1595 
1596 int
1597 freebsd32_recvfrom(struct thread *td,
1598 		   struct freebsd32_recvfrom_args *uap)
1599 {
1600 	struct msghdr msg;
1601 	struct iovec aiov;
1602 	int error;
1603 
1604 	if (uap->fromlenaddr) {
1605 		error = copyin(PTRIN(uap->fromlenaddr), &msg.msg_namelen,
1606 		    sizeof(msg.msg_namelen));
1607 		if (error)
1608 			return (error);
1609 	} else {
1610 		msg.msg_namelen = 0;
1611 	}
1612 
1613 	msg.msg_name = PTRIN(uap->from);
1614 	msg.msg_iov = &aiov;
1615 	msg.msg_iovlen = 1;
1616 	aiov.iov_base = PTRIN(uap->buf);
1617 	aiov.iov_len = uap->len;
1618 	msg.msg_control = NULL;
1619 	msg.msg_flags = uap->flags;
1620 	error = kern_recvit(td, uap->s, &msg, UIO_USERSPACE, NULL);
1621 	if (error == 0 && uap->fromlenaddr)
1622 		error = copyout(&msg.msg_namelen, PTRIN(uap->fromlenaddr),
1623 		    sizeof (msg.msg_namelen));
1624 	return (error);
1625 }
1626 
1627 int
1628 freebsd32_settimeofday(struct thread *td,
1629 		       struct freebsd32_settimeofday_args *uap)
1630 {
1631 	struct timeval32 tv32;
1632 	struct timeval tv, *tvp;
1633 	struct timezone tz, *tzp;
1634 	int error;
1635 
1636 	if (uap->tv) {
1637 		error = copyin(uap->tv, &tv32, sizeof(tv32));
1638 		if (error)
1639 			return (error);
1640 		CP(tv32, tv, tv_sec);
1641 		CP(tv32, tv, tv_usec);
1642 		tvp = &tv;
1643 	} else
1644 		tvp = NULL;
1645 	if (uap->tzp) {
1646 		error = copyin(uap->tzp, &tz, sizeof(tz));
1647 		if (error)
1648 			return (error);
1649 		tzp = &tz;
1650 	} else
1651 		tzp = NULL;
1652 	return (kern_settimeofday(td, tvp, tzp));
1653 }
1654 
1655 int
1656 freebsd32_utimes(struct thread *td, struct freebsd32_utimes_args *uap)
1657 {
1658 	struct timeval32 s32[2];
1659 	struct timeval s[2], *sp;
1660 	int error;
1661 
1662 	if (uap->tptr != NULL) {
1663 		error = copyin(uap->tptr, s32, sizeof(s32));
1664 		if (error)
1665 			return (error);
1666 		CP(s32[0], s[0], tv_sec);
1667 		CP(s32[0], s[0], tv_usec);
1668 		CP(s32[1], s[1], tv_sec);
1669 		CP(s32[1], s[1], tv_usec);
1670 		sp = s;
1671 	} else
1672 		sp = NULL;
1673 	return (kern_utimesat(td, AT_FDCWD, uap->path, UIO_USERSPACE,
1674 	    sp, UIO_SYSSPACE));
1675 }
1676 
1677 int
1678 freebsd32_lutimes(struct thread *td, struct freebsd32_lutimes_args *uap)
1679 {
1680 	struct timeval32 s32[2];
1681 	struct timeval s[2], *sp;
1682 	int error;
1683 
1684 	if (uap->tptr != NULL) {
1685 		error = copyin(uap->tptr, s32, sizeof(s32));
1686 		if (error)
1687 			return (error);
1688 		CP(s32[0], s[0], tv_sec);
1689 		CP(s32[0], s[0], tv_usec);
1690 		CP(s32[1], s[1], tv_sec);
1691 		CP(s32[1], s[1], tv_usec);
1692 		sp = s;
1693 	} else
1694 		sp = NULL;
1695 	return (kern_lutimes(td, uap->path, UIO_USERSPACE, sp, UIO_SYSSPACE));
1696 }
1697 
1698 int
1699 freebsd32_futimes(struct thread *td, struct freebsd32_futimes_args *uap)
1700 {
1701 	struct timeval32 s32[2];
1702 	struct timeval s[2], *sp;
1703 	int error;
1704 
1705 	if (uap->tptr != NULL) {
1706 		error = copyin(uap->tptr, s32, sizeof(s32));
1707 		if (error)
1708 			return (error);
1709 		CP(s32[0], s[0], tv_sec);
1710 		CP(s32[0], s[0], tv_usec);
1711 		CP(s32[1], s[1], tv_sec);
1712 		CP(s32[1], s[1], tv_usec);
1713 		sp = s;
1714 	} else
1715 		sp = NULL;
1716 	return (kern_futimes(td, uap->fd, sp, UIO_SYSSPACE));
1717 }
1718 
1719 int
1720 freebsd32_futimesat(struct thread *td, struct freebsd32_futimesat_args *uap)
1721 {
1722 	struct timeval32 s32[2];
1723 	struct timeval s[2], *sp;
1724 	int error;
1725 
1726 	if (uap->times != NULL) {
1727 		error = copyin(uap->times, s32, sizeof(s32));
1728 		if (error)
1729 			return (error);
1730 		CP(s32[0], s[0], tv_sec);
1731 		CP(s32[0], s[0], tv_usec);
1732 		CP(s32[1], s[1], tv_sec);
1733 		CP(s32[1], s[1], tv_usec);
1734 		sp = s;
1735 	} else
1736 		sp = NULL;
1737 	return (kern_utimesat(td, uap->fd, uap->path, UIO_USERSPACE,
1738 		sp, UIO_SYSSPACE));
1739 }
1740 
1741 int
1742 freebsd32_futimens(struct thread *td, struct freebsd32_futimens_args *uap)
1743 {
1744 	struct timespec32 ts32[2];
1745 	struct timespec ts[2], *tsp;
1746 	int error;
1747 
1748 	if (uap->times != NULL) {
1749 		error = copyin(uap->times, ts32, sizeof(ts32));
1750 		if (error)
1751 			return (error);
1752 		CP(ts32[0], ts[0], tv_sec);
1753 		CP(ts32[0], ts[0], tv_nsec);
1754 		CP(ts32[1], ts[1], tv_sec);
1755 		CP(ts32[1], ts[1], tv_nsec);
1756 		tsp = ts;
1757 	} else
1758 		tsp = NULL;
1759 	return (kern_futimens(td, uap->fd, tsp, UIO_SYSSPACE));
1760 }
1761 
1762 int
1763 freebsd32_utimensat(struct thread *td, struct freebsd32_utimensat_args *uap)
1764 {
1765 	struct timespec32 ts32[2];
1766 	struct timespec ts[2], *tsp;
1767 	int error;
1768 
1769 	if (uap->times != NULL) {
1770 		error = copyin(uap->times, ts32, sizeof(ts32));
1771 		if (error)
1772 			return (error);
1773 		CP(ts32[0], ts[0], tv_sec);
1774 		CP(ts32[0], ts[0], tv_nsec);
1775 		CP(ts32[1], ts[1], tv_sec);
1776 		CP(ts32[1], ts[1], tv_nsec);
1777 		tsp = ts;
1778 	} else
1779 		tsp = NULL;
1780 	return (kern_utimensat(td, uap->fd, uap->path, UIO_USERSPACE,
1781 	    tsp, UIO_SYSSPACE, uap->flag));
1782 }
1783 
1784 int
1785 freebsd32_adjtime(struct thread *td, struct freebsd32_adjtime_args *uap)
1786 {
1787 	struct timeval32 tv32;
1788 	struct timeval delta, olddelta, *deltap;
1789 	int error;
1790 
1791 	if (uap->delta) {
1792 		error = copyin(uap->delta, &tv32, sizeof(tv32));
1793 		if (error)
1794 			return (error);
1795 		CP(tv32, delta, tv_sec);
1796 		CP(tv32, delta, tv_usec);
1797 		deltap = &delta;
1798 	} else
1799 		deltap = NULL;
1800 	error = kern_adjtime(td, deltap, &olddelta);
1801 	if (uap->olddelta && error == 0) {
1802 		CP(olddelta, tv32, tv_sec);
1803 		CP(olddelta, tv32, tv_usec);
1804 		error = copyout(&tv32, uap->olddelta, sizeof(tv32));
1805 	}
1806 	return (error);
1807 }
1808 
1809 #ifdef COMPAT_FREEBSD4
1810 int
1811 freebsd4_freebsd32_statfs(struct thread *td, struct freebsd4_freebsd32_statfs_args *uap)
1812 {
1813 	struct statfs32 s32;
1814 	struct statfs *sp;
1815 	int error;
1816 
1817 	sp = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK);
1818 	error = kern_statfs(td, uap->path, UIO_USERSPACE, sp);
1819 	if (error == 0) {
1820 		copy_statfs(sp, &s32);
1821 		error = copyout(&s32, uap->buf, sizeof(s32));
1822 	}
1823 	free(sp, M_STATFS);
1824 	return (error);
1825 }
1826 #endif
1827 
1828 #ifdef COMPAT_FREEBSD4
1829 int
1830 freebsd4_freebsd32_fstatfs(struct thread *td, struct freebsd4_freebsd32_fstatfs_args *uap)
1831 {
1832 	struct statfs32 s32;
1833 	struct statfs *sp;
1834 	int error;
1835 
1836 	sp = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK);
1837 	error = kern_fstatfs(td, uap->fd, sp);
1838 	if (error == 0) {
1839 		copy_statfs(sp, &s32);
1840 		error = copyout(&s32, uap->buf, sizeof(s32));
1841 	}
1842 	free(sp, M_STATFS);
1843 	return (error);
1844 }
1845 #endif
1846 
1847 #ifdef COMPAT_FREEBSD4
1848 int
1849 freebsd4_freebsd32_fhstatfs(struct thread *td, struct freebsd4_freebsd32_fhstatfs_args *uap)
1850 {
1851 	struct statfs32 s32;
1852 	struct statfs *sp;
1853 	fhandle_t fh;
1854 	int error;
1855 
1856 	if ((error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t))) != 0)
1857 		return (error);
1858 	sp = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK);
1859 	error = kern_fhstatfs(td, fh, sp);
1860 	if (error == 0) {
1861 		copy_statfs(sp, &s32);
1862 		error = copyout(&s32, uap->buf, sizeof(s32));
1863 	}
1864 	free(sp, M_STATFS);
1865 	return (error);
1866 }
1867 #endif
1868 
1869 int
1870 freebsd32_pread(struct thread *td, struct freebsd32_pread_args *uap)
1871 {
1872 
1873 	return (kern_pread(td, uap->fd, uap->buf, uap->nbyte,
1874 	    PAIR32TO64(off_t, uap->offset)));
1875 }
1876 
1877 int
1878 freebsd32_pwrite(struct thread *td, struct freebsd32_pwrite_args *uap)
1879 {
1880 
1881 	return (kern_pwrite(td, uap->fd, uap->buf, uap->nbyte,
1882 	    PAIR32TO64(off_t, uap->offset)));
1883 }
1884 
1885 #ifdef COMPAT_43
1886 int
1887 ofreebsd32_lseek(struct thread *td, struct ofreebsd32_lseek_args *uap)
1888 {
1889 
1890 	return (kern_lseek(td, uap->fd, uap->offset, uap->whence));
1891 }
1892 #endif
1893 
1894 int
1895 freebsd32_lseek(struct thread *td, struct freebsd32_lseek_args *uap)
1896 {
1897 	int error;
1898 	off_t pos;
1899 
1900 	error = kern_lseek(td, uap->fd, PAIR32TO64(off_t, uap->offset),
1901 	    uap->whence);
1902 	/* Expand the quad return into two parts for eax and edx */
1903 	pos = td->td_uretoff.tdu_off;
1904 	td->td_retval[RETVAL_LO] = pos & 0xffffffff;	/* %eax */
1905 	td->td_retval[RETVAL_HI] = pos >> 32;		/* %edx */
1906 	return error;
1907 }
1908 
1909 int
1910 freebsd32_truncate(struct thread *td, struct freebsd32_truncate_args *uap)
1911 {
1912 
1913 	return (kern_truncate(td, uap->path, UIO_USERSPACE,
1914 	    PAIR32TO64(off_t, uap->length)));
1915 }
1916 
1917 int
1918 freebsd32_ftruncate(struct thread *td, struct freebsd32_ftruncate_args *uap)
1919 {
1920 
1921 	return (kern_ftruncate(td, uap->fd, PAIR32TO64(off_t, uap->length)));
1922 }
1923 
1924 #ifdef COMPAT_43
1925 int
1926 ofreebsd32_getdirentries(struct thread *td,
1927     struct ofreebsd32_getdirentries_args *uap)
1928 {
1929 	struct ogetdirentries_args ap;
1930 	int error;
1931 	long loff;
1932 	int32_t loff_cut;
1933 
1934 	ap.fd = uap->fd;
1935 	ap.buf = uap->buf;
1936 	ap.count = uap->count;
1937 	ap.basep = NULL;
1938 	error = kern_ogetdirentries(td, &ap, &loff);
1939 	if (error == 0) {
1940 		loff_cut = loff;
1941 		error = copyout(&loff_cut, uap->basep, sizeof(int32_t));
1942 	}
1943 	return (error);
1944 }
1945 #endif
1946 
1947 #if defined(COMPAT_FREEBSD11)
1948 int
1949 freebsd11_freebsd32_getdirentries(struct thread *td,
1950     struct freebsd11_freebsd32_getdirentries_args *uap)
1951 {
1952 	long base;
1953 	int32_t base32;
1954 	int error;
1955 
1956 	error = freebsd11_kern_getdirentries(td, uap->fd, uap->buf, uap->count,
1957 	    &base, NULL);
1958 	if (error)
1959 		return (error);
1960 	if (uap->basep != NULL) {
1961 		base32 = base;
1962 		error = copyout(&base32, uap->basep, sizeof(int32_t));
1963 	}
1964 	return (error);
1965 }
1966 
1967 int
1968 freebsd11_freebsd32_getdents(struct thread *td,
1969     struct freebsd11_freebsd32_getdents_args *uap)
1970 {
1971 	struct freebsd11_freebsd32_getdirentries_args ap;
1972 
1973 	ap.fd = uap->fd;
1974 	ap.buf = uap->buf;
1975 	ap.count = uap->count;
1976 	ap.basep = NULL;
1977 	return (freebsd11_freebsd32_getdirentries(td, &ap));
1978 }
1979 #endif /* COMPAT_FREEBSD11 */
1980 
1981 #ifdef COMPAT_FREEBSD6
1982 /* versions with the 'int pad' argument */
1983 int
1984 freebsd6_freebsd32_pread(struct thread *td, struct freebsd6_freebsd32_pread_args *uap)
1985 {
1986 
1987 	return (kern_pread(td, uap->fd, uap->buf, uap->nbyte,
1988 	    PAIR32TO64(off_t, uap->offset)));
1989 }
1990 
1991 int
1992 freebsd6_freebsd32_pwrite(struct thread *td, struct freebsd6_freebsd32_pwrite_args *uap)
1993 {
1994 
1995 	return (kern_pwrite(td, uap->fd, uap->buf, uap->nbyte,
1996 	    PAIR32TO64(off_t, uap->offset)));
1997 }
1998 
1999 int
2000 freebsd6_freebsd32_lseek(struct thread *td, struct freebsd6_freebsd32_lseek_args *uap)
2001 {
2002 	int error;
2003 	off_t pos;
2004 
2005 	error = kern_lseek(td, uap->fd, PAIR32TO64(off_t, uap->offset),
2006 	    uap->whence);
2007 	/* Expand the quad return into two parts for eax and edx */
2008 	pos = *(off_t *)(td->td_retval);
2009 	td->td_retval[RETVAL_LO] = pos & 0xffffffff;	/* %eax */
2010 	td->td_retval[RETVAL_HI] = pos >> 32;		/* %edx */
2011 	return error;
2012 }
2013 
2014 int
2015 freebsd6_freebsd32_truncate(struct thread *td, struct freebsd6_freebsd32_truncate_args *uap)
2016 {
2017 
2018 	return (kern_truncate(td, uap->path, UIO_USERSPACE,
2019 	    PAIR32TO64(off_t, uap->length)));
2020 }
2021 
2022 int
2023 freebsd6_freebsd32_ftruncate(struct thread *td, struct freebsd6_freebsd32_ftruncate_args *uap)
2024 {
2025 
2026 	return (kern_ftruncate(td, uap->fd, PAIR32TO64(off_t, uap->length)));
2027 }
2028 #endif /* COMPAT_FREEBSD6 */
2029 
2030 struct sf_hdtr32 {
2031 	uint32_t headers;
2032 	int hdr_cnt;
2033 	uint32_t trailers;
2034 	int trl_cnt;
2035 };
2036 
2037 static int
2038 freebsd32_do_sendfile(struct thread *td,
2039     struct freebsd32_sendfile_args *uap, int compat)
2040 {
2041 	struct sf_hdtr32 hdtr32;
2042 	struct sf_hdtr hdtr;
2043 	struct uio *hdr_uio, *trl_uio;
2044 	struct file *fp;
2045 	cap_rights_t rights;
2046 	struct iovec32 *iov32;
2047 	off_t offset, sbytes;
2048 	int error;
2049 
2050 	offset = PAIR32TO64(off_t, uap->offset);
2051 	if (offset < 0)
2052 		return (EINVAL);
2053 
2054 	hdr_uio = trl_uio = NULL;
2055 
2056 	if (uap->hdtr != NULL) {
2057 		error = copyin(uap->hdtr, &hdtr32, sizeof(hdtr32));
2058 		if (error)
2059 			goto out;
2060 		PTRIN_CP(hdtr32, hdtr, headers);
2061 		CP(hdtr32, hdtr, hdr_cnt);
2062 		PTRIN_CP(hdtr32, hdtr, trailers);
2063 		CP(hdtr32, hdtr, trl_cnt);
2064 
2065 		if (hdtr.headers != NULL) {
2066 			iov32 = PTRIN(hdtr32.headers);
2067 			error = freebsd32_copyinuio(iov32,
2068 			    hdtr32.hdr_cnt, &hdr_uio);
2069 			if (error)
2070 				goto out;
2071 #ifdef COMPAT_FREEBSD4
2072 			/*
2073 			 * In FreeBSD < 5.0 the nbytes to send also included
2074 			 * the header.  If compat is specified subtract the
2075 			 * header size from nbytes.
2076 			 */
2077 			if (compat) {
2078 				if (uap->nbytes > hdr_uio->uio_resid)
2079 					uap->nbytes -= hdr_uio->uio_resid;
2080 				else
2081 					uap->nbytes = 0;
2082 			}
2083 #endif
2084 		}
2085 		if (hdtr.trailers != NULL) {
2086 			iov32 = PTRIN(hdtr32.trailers);
2087 			error = freebsd32_copyinuio(iov32,
2088 			    hdtr32.trl_cnt, &trl_uio);
2089 			if (error)
2090 				goto out;
2091 		}
2092 	}
2093 
2094 	AUDIT_ARG_FD(uap->fd);
2095 
2096 	if ((error = fget_read(td, uap->fd,
2097 	    cap_rights_init(&rights, CAP_PREAD), &fp)) != 0)
2098 		goto out;
2099 
2100 	error = fo_sendfile(fp, uap->s, hdr_uio, trl_uio, offset,
2101 	    uap->nbytes, &sbytes, uap->flags, td);
2102 	fdrop(fp, td);
2103 
2104 	if (uap->sbytes != NULL)
2105 		copyout(&sbytes, uap->sbytes, sizeof(off_t));
2106 
2107 out:
2108 	if (hdr_uio)
2109 		free(hdr_uio, M_IOV);
2110 	if (trl_uio)
2111 		free(trl_uio, M_IOV);
2112 	return (error);
2113 }
2114 
2115 #ifdef COMPAT_FREEBSD4
2116 int
2117 freebsd4_freebsd32_sendfile(struct thread *td,
2118     struct freebsd4_freebsd32_sendfile_args *uap)
2119 {
2120 	return (freebsd32_do_sendfile(td,
2121 	    (struct freebsd32_sendfile_args *)uap, 1));
2122 }
2123 #endif
2124 
2125 int
2126 freebsd32_sendfile(struct thread *td, struct freebsd32_sendfile_args *uap)
2127 {
2128 
2129 	return (freebsd32_do_sendfile(td, uap, 0));
2130 }
2131 
2132 static void
2133 copy_stat(struct stat *in, struct stat32 *out)
2134 {
2135 
2136 	CP(*in, *out, st_dev);
2137 	CP(*in, *out, st_ino);
2138 	CP(*in, *out, st_mode);
2139 	CP(*in, *out, st_nlink);
2140 	CP(*in, *out, st_uid);
2141 	CP(*in, *out, st_gid);
2142 	CP(*in, *out, st_rdev);
2143 	TS_CP(*in, *out, st_atim);
2144 	TS_CP(*in, *out, st_mtim);
2145 	TS_CP(*in, *out, st_ctim);
2146 	CP(*in, *out, st_size);
2147 	CP(*in, *out, st_blocks);
2148 	CP(*in, *out, st_blksize);
2149 	CP(*in, *out, st_flags);
2150 	CP(*in, *out, st_gen);
2151 	TS_CP(*in, *out, st_birthtim);
2152 	out->st_padding0 = 0;
2153 	out->st_padding1 = 0;
2154 #ifdef __STAT32_TIME_T_EXT
2155 	out->st_atim_ext = 0;
2156 	out->st_mtim_ext = 0;
2157 	out->st_ctim_ext = 0;
2158 	out->st_btim_ext = 0;
2159 #endif
2160 	bzero(out->st_spare, sizeof(out->st_spare));
2161 }
2162 
2163 #ifdef COMPAT_43
2164 static void
2165 copy_ostat(struct stat *in, struct ostat32 *out)
2166 {
2167 
2168 	bzero(out, sizeof(*out));
2169 	CP(*in, *out, st_dev);
2170 	CP(*in, *out, st_ino);
2171 	CP(*in, *out, st_mode);
2172 	CP(*in, *out, st_nlink);
2173 	CP(*in, *out, st_uid);
2174 	CP(*in, *out, st_gid);
2175 	CP(*in, *out, st_rdev);
2176 	out->st_size = MIN(in->st_size, INT32_MAX);
2177 	TS_CP(*in, *out, st_atim);
2178 	TS_CP(*in, *out, st_mtim);
2179 	TS_CP(*in, *out, st_ctim);
2180 	CP(*in, *out, st_blksize);
2181 	CP(*in, *out, st_blocks);
2182 	CP(*in, *out, st_flags);
2183 	CP(*in, *out, st_gen);
2184 }
2185 #endif
2186 
2187 #ifdef COMPAT_43
2188 int
2189 ofreebsd32_stat(struct thread *td, struct ofreebsd32_stat_args *uap)
2190 {
2191 	struct stat sb;
2192 	struct ostat32 sb32;
2193 	int error;
2194 
2195 	error = kern_statat(td, 0, AT_FDCWD, uap->path, UIO_USERSPACE,
2196 	    &sb, NULL);
2197 	if (error)
2198 		return (error);
2199 	copy_ostat(&sb, &sb32);
2200 	error = copyout(&sb32, uap->ub, sizeof (sb32));
2201 	return (error);
2202 }
2203 #endif
2204 
2205 int
2206 freebsd32_fstat(struct thread *td, struct freebsd32_fstat_args *uap)
2207 {
2208 	struct stat ub;
2209 	struct stat32 ub32;
2210 	int error;
2211 
2212 	error = kern_fstat(td, uap->fd, &ub);
2213 	if (error)
2214 		return (error);
2215 	copy_stat(&ub, &ub32);
2216 	error = copyout(&ub32, uap->ub, sizeof(ub32));
2217 	return (error);
2218 }
2219 
2220 #ifdef COMPAT_43
2221 int
2222 ofreebsd32_fstat(struct thread *td, struct ofreebsd32_fstat_args *uap)
2223 {
2224 	struct stat ub;
2225 	struct ostat32 ub32;
2226 	int error;
2227 
2228 	error = kern_fstat(td, uap->fd, &ub);
2229 	if (error)
2230 		return (error);
2231 	copy_ostat(&ub, &ub32);
2232 	error = copyout(&ub32, uap->ub, sizeof(ub32));
2233 	return (error);
2234 }
2235 #endif
2236 
2237 int
2238 freebsd32_fstatat(struct thread *td, struct freebsd32_fstatat_args *uap)
2239 {
2240 	struct stat ub;
2241 	struct stat32 ub32;
2242 	int error;
2243 
2244 	error = kern_statat(td, uap->flag, uap->fd, uap->path, UIO_USERSPACE,
2245 	    &ub, NULL);
2246 	if (error)
2247 		return (error);
2248 	copy_stat(&ub, &ub32);
2249 	error = copyout(&ub32, uap->buf, sizeof(ub32));
2250 	return (error);
2251 }
2252 
2253 #ifdef COMPAT_43
2254 int
2255 ofreebsd32_lstat(struct thread *td, struct ofreebsd32_lstat_args *uap)
2256 {
2257 	struct stat sb;
2258 	struct ostat32 sb32;
2259 	int error;
2260 
2261 	error = kern_statat(td, AT_SYMLINK_NOFOLLOW, AT_FDCWD, uap->path,
2262 	    UIO_USERSPACE, &sb, NULL);
2263 	if (error)
2264 		return (error);
2265 	copy_ostat(&sb, &sb32);
2266 	error = copyout(&sb32, uap->ub, sizeof (sb32));
2267 	return (error);
2268 }
2269 #endif
2270 
2271 int
2272 freebsd32_fhstat(struct thread *td, struct freebsd32_fhstat_args *uap)
2273 {
2274 	struct stat sb;
2275 	struct stat32 sb32;
2276 	struct fhandle fh;
2277 	int error;
2278 
2279 	error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t));
2280         if (error != 0)
2281                 return (error);
2282 	error = kern_fhstat(td, fh, &sb);
2283 	if (error != 0)
2284 		return (error);
2285 	copy_stat(&sb, &sb32);
2286 	error = copyout(&sb32, uap->sb, sizeof (sb32));
2287 	return (error);
2288 }
2289 
2290 #if defined(COMPAT_FREEBSD11)
2291 extern int ino64_trunc_error;
2292 
2293 static int
2294 freebsd11_cvtstat32(struct stat *in, struct freebsd11_stat32 *out)
2295 {
2296 
2297 	CP(*in, *out, st_ino);
2298 	if (in->st_ino != out->st_ino) {
2299 		switch (ino64_trunc_error) {
2300 		default:
2301 		case 0:
2302 			break;
2303 		case 1:
2304 			return (EOVERFLOW);
2305 		case 2:
2306 			out->st_ino = UINT32_MAX;
2307 			break;
2308 		}
2309 	}
2310 	CP(*in, *out, st_nlink);
2311 	if (in->st_nlink != out->st_nlink) {
2312 		switch (ino64_trunc_error) {
2313 		default:
2314 		case 0:
2315 			break;
2316 		case 1:
2317 			return (EOVERFLOW);
2318 		case 2:
2319 			out->st_nlink = UINT16_MAX;
2320 			break;
2321 		}
2322 	}
2323 	out->st_dev = in->st_dev;
2324 	if (out->st_dev != in->st_dev) {
2325 		switch (ino64_trunc_error) {
2326 		default:
2327 			break;
2328 		case 1:
2329 			return (EOVERFLOW);
2330 		}
2331 	}
2332 	CP(*in, *out, st_mode);
2333 	CP(*in, *out, st_uid);
2334 	CP(*in, *out, st_gid);
2335 	out->st_rdev = in->st_rdev;
2336 	if (out->st_rdev != in->st_rdev) {
2337 		switch (ino64_trunc_error) {
2338 		default:
2339 			break;
2340 		case 1:
2341 			return (EOVERFLOW);
2342 		}
2343 	}
2344 	TS_CP(*in, *out, st_atim);
2345 	TS_CP(*in, *out, st_mtim);
2346 	TS_CP(*in, *out, st_ctim);
2347 	CP(*in, *out, st_size);
2348 	CP(*in, *out, st_blocks);
2349 	CP(*in, *out, st_blksize);
2350 	CP(*in, *out, st_flags);
2351 	CP(*in, *out, st_gen);
2352 	TS_CP(*in, *out, st_birthtim);
2353 	out->st_lspare = 0;
2354 	bzero((char *)&out->st_birthtim + sizeof(out->st_birthtim),
2355 	    sizeof(*out) - offsetof(struct freebsd11_stat32,
2356 	    st_birthtim) - sizeof(out->st_birthtim));
2357 	return (0);
2358 }
2359 
2360 int
2361 freebsd11_freebsd32_stat(struct thread *td,
2362     struct freebsd11_freebsd32_stat_args *uap)
2363 {
2364 	struct stat sb;
2365 	struct freebsd11_stat32 sb32;
2366 	int error;
2367 
2368 	error = kern_statat(td, 0, AT_FDCWD, uap->path, UIO_USERSPACE,
2369 	    &sb, NULL);
2370 	if (error != 0)
2371 		return (error);
2372 	error = freebsd11_cvtstat32(&sb, &sb32);
2373 	if (error == 0)
2374 		error = copyout(&sb32, uap->ub, sizeof (sb32));
2375 	return (error);
2376 }
2377 
2378 int
2379 freebsd11_freebsd32_fstat(struct thread *td,
2380     struct freebsd11_freebsd32_fstat_args *uap)
2381 {
2382 	struct stat sb;
2383 	struct freebsd11_stat32 sb32;
2384 	int error;
2385 
2386 	error = kern_fstat(td, uap->fd, &sb);
2387 	if (error != 0)
2388 		return (error);
2389 	error = freebsd11_cvtstat32(&sb, &sb32);
2390 	if (error == 0)
2391 		error = copyout(&sb32, uap->ub, sizeof (sb32));
2392 	return (error);
2393 }
2394 
2395 int
2396 freebsd11_freebsd32_fstatat(struct thread *td,
2397     struct freebsd11_freebsd32_fstatat_args *uap)
2398 {
2399 	struct stat sb;
2400 	struct freebsd11_stat32 sb32;
2401 	int error;
2402 
2403 	error = kern_statat(td, uap->flag, uap->fd, uap->path, UIO_USERSPACE,
2404 	    &sb, NULL);
2405 	if (error != 0)
2406 		return (error);
2407 	error = freebsd11_cvtstat32(&sb, &sb32);
2408 	if (error == 0)
2409 		error = copyout(&sb32, uap->buf, sizeof (sb32));
2410 	return (error);
2411 }
2412 
2413 int
2414 freebsd11_freebsd32_lstat(struct thread *td,
2415     struct freebsd11_freebsd32_lstat_args *uap)
2416 {
2417 	struct stat sb;
2418 	struct freebsd11_stat32 sb32;
2419 	int error;
2420 
2421 	error = kern_statat(td, AT_SYMLINK_NOFOLLOW, AT_FDCWD, uap->path,
2422 	    UIO_USERSPACE, &sb, NULL);
2423 	if (error != 0)
2424 		return (error);
2425 	error = freebsd11_cvtstat32(&sb, &sb32);
2426 	if (error == 0)
2427 		error = copyout(&sb32, uap->ub, sizeof (sb32));
2428 	return (error);
2429 }
2430 
2431 int
2432 freebsd11_freebsd32_fhstat(struct thread *td,
2433     struct freebsd11_freebsd32_fhstat_args *uap)
2434 {
2435 	struct stat sb;
2436 	struct freebsd11_stat32 sb32;
2437 	struct fhandle fh;
2438 	int error;
2439 
2440 	error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t));
2441         if (error != 0)
2442                 return (error);
2443 	error = kern_fhstat(td, fh, &sb);
2444 	if (error != 0)
2445 		return (error);
2446 	error = freebsd11_cvtstat32(&sb, &sb32);
2447 	if (error == 0)
2448 		error = copyout(&sb32, uap->sb, sizeof (sb32));
2449 	return (error);
2450 }
2451 #endif
2452 
2453 int
2454 freebsd32___sysctl(struct thread *td, struct freebsd32___sysctl_args *uap)
2455 {
2456 	int error, name[CTL_MAXNAME];
2457 	size_t j, oldlen;
2458 	uint32_t tmp;
2459 
2460 	if (uap->namelen > CTL_MAXNAME || uap->namelen < 2)
2461 		return (EINVAL);
2462  	error = copyin(uap->name, name, uap->namelen * sizeof(int));
2463  	if (error)
2464 		return (error);
2465 	if (uap->oldlenp) {
2466 		error = fueword32(uap->oldlenp, &tmp);
2467 		oldlen = tmp;
2468 	} else {
2469 		oldlen = 0;
2470 	}
2471 	if (error != 0)
2472 		return (EFAULT);
2473 	error = userland_sysctl(td, name, uap->namelen,
2474 		uap->old, &oldlen, 1,
2475 		uap->new, uap->newlen, &j, SCTL_MASK32);
2476 	if (error)
2477 		return (error);
2478 	if (uap->oldlenp)
2479 		suword32(uap->oldlenp, j);
2480 	return (0);
2481 }
2482 
2483 int
2484 freebsd32___sysctlbyname(struct thread *td,
2485     struct freebsd32___sysctlbyname_args *uap)
2486 {
2487 	size_t oldlen, rv;
2488 	int error;
2489 	uint32_t tmp;
2490 
2491 	if (uap->oldlenp != NULL) {
2492 		error = fueword32(uap->oldlenp, &tmp);
2493 		oldlen = tmp;
2494 	} else {
2495 		error = oldlen = 0;
2496 	}
2497 	if (error != 0)
2498 		return (EFAULT);
2499 	error = kern___sysctlbyname(td, uap->name, uap->namelen, uap->old,
2500 	    &oldlen, uap->new, uap->newlen, &rv, SCTL_MASK32, 1);
2501 	if (error != 0)
2502 		return (error);
2503 	if (uap->oldlenp != NULL)
2504 		error = suword32(uap->oldlenp, rv);
2505 
2506 	return (error);
2507 }
2508 
2509 int
2510 freebsd32_jail(struct thread *td, struct freebsd32_jail_args *uap)
2511 {
2512 	uint32_t version;
2513 	int error;
2514 	struct jail j;
2515 
2516 	error = copyin(uap->jail, &version, sizeof(uint32_t));
2517 	if (error)
2518 		return (error);
2519 
2520 	switch (version) {
2521 	case 0:
2522 	{
2523 		/* FreeBSD single IPv4 jails. */
2524 		struct jail32_v0 j32_v0;
2525 
2526 		bzero(&j, sizeof(struct jail));
2527 		error = copyin(uap->jail, &j32_v0, sizeof(struct jail32_v0));
2528 		if (error)
2529 			return (error);
2530 		CP(j32_v0, j, version);
2531 		PTRIN_CP(j32_v0, j, path);
2532 		PTRIN_CP(j32_v0, j, hostname);
2533 		j.ip4s = htonl(j32_v0.ip_number);	/* jail_v0 is host order */
2534 		break;
2535 	}
2536 
2537 	case 1:
2538 		/*
2539 		 * Version 1 was used by multi-IPv4 jail implementations
2540 		 * that never made it into the official kernel.
2541 		 */
2542 		return (EINVAL);
2543 
2544 	case 2:	/* JAIL_API_VERSION */
2545 	{
2546 		/* FreeBSD multi-IPv4/IPv6,noIP jails. */
2547 		struct jail32 j32;
2548 
2549 		error = copyin(uap->jail, &j32, sizeof(struct jail32));
2550 		if (error)
2551 			return (error);
2552 		CP(j32, j, version);
2553 		PTRIN_CP(j32, j, path);
2554 		PTRIN_CP(j32, j, hostname);
2555 		PTRIN_CP(j32, j, jailname);
2556 		CP(j32, j, ip4s);
2557 		CP(j32, j, ip6s);
2558 		PTRIN_CP(j32, j, ip4);
2559 		PTRIN_CP(j32, j, ip6);
2560 		break;
2561 	}
2562 
2563 	default:
2564 		/* Sci-Fi jails are not supported, sorry. */
2565 		return (EINVAL);
2566 	}
2567 	return (kern_jail(td, &j));
2568 }
2569 
2570 int
2571 freebsd32_jail_set(struct thread *td, struct freebsd32_jail_set_args *uap)
2572 {
2573 	struct uio *auio;
2574 	int error;
2575 
2576 	/* Check that we have an even number of iovecs. */
2577 	if (uap->iovcnt & 1)
2578 		return (EINVAL);
2579 
2580 	error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio);
2581 	if (error)
2582 		return (error);
2583 	error = kern_jail_set(td, auio, uap->flags);
2584 	free(auio, M_IOV);
2585 	return (error);
2586 }
2587 
2588 int
2589 freebsd32_jail_get(struct thread *td, struct freebsd32_jail_get_args *uap)
2590 {
2591 	struct iovec32 iov32;
2592 	struct uio *auio;
2593 	int error, i;
2594 
2595 	/* Check that we have an even number of iovecs. */
2596 	if (uap->iovcnt & 1)
2597 		return (EINVAL);
2598 
2599 	error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio);
2600 	if (error)
2601 		return (error);
2602 	error = kern_jail_get(td, auio, uap->flags);
2603 	if (error == 0)
2604 		for (i = 0; i < uap->iovcnt; i++) {
2605 			PTROUT_CP(auio->uio_iov[i], iov32, iov_base);
2606 			CP(auio->uio_iov[i], iov32, iov_len);
2607 			error = copyout(&iov32, uap->iovp + i, sizeof(iov32));
2608 			if (error != 0)
2609 				break;
2610 		}
2611 	free(auio, M_IOV);
2612 	return (error);
2613 }
2614 
2615 int
2616 freebsd32_sigaction(struct thread *td, struct freebsd32_sigaction_args *uap)
2617 {
2618 	struct sigaction32 s32;
2619 	struct sigaction sa, osa, *sap;
2620 	int error;
2621 
2622 	if (uap->act) {
2623 		error = copyin(uap->act, &s32, sizeof(s32));
2624 		if (error)
2625 			return (error);
2626 		sa.sa_handler = PTRIN(s32.sa_u);
2627 		CP(s32, sa, sa_flags);
2628 		CP(s32, sa, sa_mask);
2629 		sap = &sa;
2630 	} else
2631 		sap = NULL;
2632 	error = kern_sigaction(td, uap->sig, sap, &osa, 0);
2633 	if (error == 0 && uap->oact != NULL) {
2634 		s32.sa_u = PTROUT(osa.sa_handler);
2635 		CP(osa, s32, sa_flags);
2636 		CP(osa, s32, sa_mask);
2637 		error = copyout(&s32, uap->oact, sizeof(s32));
2638 	}
2639 	return (error);
2640 }
2641 
2642 #ifdef COMPAT_FREEBSD4
2643 int
2644 freebsd4_freebsd32_sigaction(struct thread *td,
2645 			     struct freebsd4_freebsd32_sigaction_args *uap)
2646 {
2647 	struct sigaction32 s32;
2648 	struct sigaction sa, osa, *sap;
2649 	int error;
2650 
2651 	if (uap->act) {
2652 		error = copyin(uap->act, &s32, sizeof(s32));
2653 		if (error)
2654 			return (error);
2655 		sa.sa_handler = PTRIN(s32.sa_u);
2656 		CP(s32, sa, sa_flags);
2657 		CP(s32, sa, sa_mask);
2658 		sap = &sa;
2659 	} else
2660 		sap = NULL;
2661 	error = kern_sigaction(td, uap->sig, sap, &osa, KSA_FREEBSD4);
2662 	if (error == 0 && uap->oact != NULL) {
2663 		s32.sa_u = PTROUT(osa.sa_handler);
2664 		CP(osa, s32, sa_flags);
2665 		CP(osa, s32, sa_mask);
2666 		error = copyout(&s32, uap->oact, sizeof(s32));
2667 	}
2668 	return (error);
2669 }
2670 #endif
2671 
2672 #ifdef COMPAT_43
2673 struct osigaction32 {
2674 	u_int32_t	sa_u;
2675 	osigset_t	sa_mask;
2676 	int		sa_flags;
2677 };
2678 
2679 #define	ONSIG	32
2680 
2681 int
2682 ofreebsd32_sigaction(struct thread *td,
2683 			     struct ofreebsd32_sigaction_args *uap)
2684 {
2685 	struct osigaction32 s32;
2686 	struct sigaction sa, osa, *sap;
2687 	int error;
2688 
2689 	if (uap->signum <= 0 || uap->signum >= ONSIG)
2690 		return (EINVAL);
2691 
2692 	if (uap->nsa) {
2693 		error = copyin(uap->nsa, &s32, sizeof(s32));
2694 		if (error)
2695 			return (error);
2696 		sa.sa_handler = PTRIN(s32.sa_u);
2697 		CP(s32, sa, sa_flags);
2698 		OSIG2SIG(s32.sa_mask, sa.sa_mask);
2699 		sap = &sa;
2700 	} else
2701 		sap = NULL;
2702 	error = kern_sigaction(td, uap->signum, sap, &osa, KSA_OSIGSET);
2703 	if (error == 0 && uap->osa != NULL) {
2704 		s32.sa_u = PTROUT(osa.sa_handler);
2705 		CP(osa, s32, sa_flags);
2706 		SIG2OSIG(osa.sa_mask, s32.sa_mask);
2707 		error = copyout(&s32, uap->osa, sizeof(s32));
2708 	}
2709 	return (error);
2710 }
2711 
2712 int
2713 ofreebsd32_sigprocmask(struct thread *td,
2714 			       struct ofreebsd32_sigprocmask_args *uap)
2715 {
2716 	sigset_t set, oset;
2717 	int error;
2718 
2719 	OSIG2SIG(uap->mask, set);
2720 	error = kern_sigprocmask(td, uap->how, &set, &oset, SIGPROCMASK_OLD);
2721 	SIG2OSIG(oset, td->td_retval[0]);
2722 	return (error);
2723 }
2724 
2725 int
2726 ofreebsd32_sigpending(struct thread *td,
2727 			      struct ofreebsd32_sigpending_args *uap)
2728 {
2729 	struct proc *p = td->td_proc;
2730 	sigset_t siglist;
2731 
2732 	PROC_LOCK(p);
2733 	siglist = p->p_siglist;
2734 	SIGSETOR(siglist, td->td_siglist);
2735 	PROC_UNLOCK(p);
2736 	SIG2OSIG(siglist, td->td_retval[0]);
2737 	return (0);
2738 }
2739 
2740 struct sigvec32 {
2741 	u_int32_t	sv_handler;
2742 	int		sv_mask;
2743 	int		sv_flags;
2744 };
2745 
2746 int
2747 ofreebsd32_sigvec(struct thread *td,
2748 			  struct ofreebsd32_sigvec_args *uap)
2749 {
2750 	struct sigvec32 vec;
2751 	struct sigaction sa, osa, *sap;
2752 	int error;
2753 
2754 	if (uap->signum <= 0 || uap->signum >= ONSIG)
2755 		return (EINVAL);
2756 
2757 	if (uap->nsv) {
2758 		error = copyin(uap->nsv, &vec, sizeof(vec));
2759 		if (error)
2760 			return (error);
2761 		sa.sa_handler = PTRIN(vec.sv_handler);
2762 		OSIG2SIG(vec.sv_mask, sa.sa_mask);
2763 		sa.sa_flags = vec.sv_flags;
2764 		sa.sa_flags ^= SA_RESTART;
2765 		sap = &sa;
2766 	} else
2767 		sap = NULL;
2768 	error = kern_sigaction(td, uap->signum, sap, &osa, KSA_OSIGSET);
2769 	if (error == 0 && uap->osv != NULL) {
2770 		vec.sv_handler = PTROUT(osa.sa_handler);
2771 		SIG2OSIG(osa.sa_mask, vec.sv_mask);
2772 		vec.sv_flags = osa.sa_flags;
2773 		vec.sv_flags &= ~SA_NOCLDWAIT;
2774 		vec.sv_flags ^= SA_RESTART;
2775 		error = copyout(&vec, uap->osv, sizeof(vec));
2776 	}
2777 	return (error);
2778 }
2779 
2780 int
2781 ofreebsd32_sigblock(struct thread *td,
2782 			    struct ofreebsd32_sigblock_args *uap)
2783 {
2784 	sigset_t set, oset;
2785 
2786 	OSIG2SIG(uap->mask, set);
2787 	kern_sigprocmask(td, SIG_BLOCK, &set, &oset, 0);
2788 	SIG2OSIG(oset, td->td_retval[0]);
2789 	return (0);
2790 }
2791 
2792 int
2793 ofreebsd32_sigsetmask(struct thread *td,
2794 			      struct ofreebsd32_sigsetmask_args *uap)
2795 {
2796 	sigset_t set, oset;
2797 
2798 	OSIG2SIG(uap->mask, set);
2799 	kern_sigprocmask(td, SIG_SETMASK, &set, &oset, 0);
2800 	SIG2OSIG(oset, td->td_retval[0]);
2801 	return (0);
2802 }
2803 
2804 int
2805 ofreebsd32_sigsuspend(struct thread *td,
2806 			      struct ofreebsd32_sigsuspend_args *uap)
2807 {
2808 	sigset_t mask;
2809 
2810 	OSIG2SIG(uap->mask, mask);
2811 	return (kern_sigsuspend(td, mask));
2812 }
2813 
2814 struct sigstack32 {
2815 	u_int32_t	ss_sp;
2816 	int		ss_onstack;
2817 };
2818 
2819 int
2820 ofreebsd32_sigstack(struct thread *td,
2821 			    struct ofreebsd32_sigstack_args *uap)
2822 {
2823 	struct sigstack32 s32;
2824 	struct sigstack nss, oss;
2825 	int error = 0, unss;
2826 
2827 	if (uap->nss != NULL) {
2828 		error = copyin(uap->nss, &s32, sizeof(s32));
2829 		if (error)
2830 			return (error);
2831 		nss.ss_sp = PTRIN(s32.ss_sp);
2832 		CP(s32, nss, ss_onstack);
2833 		unss = 1;
2834 	} else {
2835 		unss = 0;
2836 	}
2837 	oss.ss_sp = td->td_sigstk.ss_sp;
2838 	oss.ss_onstack = sigonstack(cpu_getstack(td));
2839 	if (unss) {
2840 		td->td_sigstk.ss_sp = nss.ss_sp;
2841 		td->td_sigstk.ss_size = 0;
2842 		td->td_sigstk.ss_flags |= (nss.ss_onstack & SS_ONSTACK);
2843 		td->td_pflags |= TDP_ALTSTACK;
2844 	}
2845 	if (uap->oss != NULL) {
2846 		s32.ss_sp = PTROUT(oss.ss_sp);
2847 		CP(oss, s32, ss_onstack);
2848 		error = copyout(&s32, uap->oss, sizeof(s32));
2849 	}
2850 	return (error);
2851 }
2852 #endif
2853 
2854 int
2855 freebsd32_nanosleep(struct thread *td, struct freebsd32_nanosleep_args *uap)
2856 {
2857 
2858 	return (freebsd32_user_clock_nanosleep(td, CLOCK_REALTIME,
2859 	    TIMER_RELTIME, uap->rqtp, uap->rmtp));
2860 }
2861 
2862 int
2863 freebsd32_clock_nanosleep(struct thread *td,
2864     struct freebsd32_clock_nanosleep_args *uap)
2865 {
2866 	int error;
2867 
2868 	error = freebsd32_user_clock_nanosleep(td, uap->clock_id, uap->flags,
2869 	    uap->rqtp, uap->rmtp);
2870 	return (kern_posix_error(td, error));
2871 }
2872 
2873 static int
2874 freebsd32_user_clock_nanosleep(struct thread *td, clockid_t clock_id,
2875     int flags, const struct timespec32 *ua_rqtp, struct timespec32 *ua_rmtp)
2876 {
2877 	struct timespec32 rmt32, rqt32;
2878 	struct timespec rmt, rqt;
2879 	int error, error2;
2880 
2881 	error = copyin(ua_rqtp, &rqt32, sizeof(rqt32));
2882 	if (error)
2883 		return (error);
2884 
2885 	CP(rqt32, rqt, tv_sec);
2886 	CP(rqt32, rqt, tv_nsec);
2887 
2888 	error = kern_clock_nanosleep(td, clock_id, flags, &rqt, &rmt);
2889 	if (error == EINTR && ua_rmtp != NULL && (flags & TIMER_ABSTIME) == 0) {
2890 		CP(rmt, rmt32, tv_sec);
2891 		CP(rmt, rmt32, tv_nsec);
2892 
2893 		error2 = copyout(&rmt32, ua_rmtp, sizeof(rmt32));
2894 		if (error2 != 0)
2895 			error = error2;
2896 	}
2897 	return (error);
2898 }
2899 
2900 int
2901 freebsd32_clock_gettime(struct thread *td,
2902 			struct freebsd32_clock_gettime_args *uap)
2903 {
2904 	struct timespec	ats;
2905 	struct timespec32 ats32;
2906 	int error;
2907 
2908 	error = kern_clock_gettime(td, uap->clock_id, &ats);
2909 	if (error == 0) {
2910 		CP(ats, ats32, tv_sec);
2911 		CP(ats, ats32, tv_nsec);
2912 		error = copyout(&ats32, uap->tp, sizeof(ats32));
2913 	}
2914 	return (error);
2915 }
2916 
2917 int
2918 freebsd32_clock_settime(struct thread *td,
2919 			struct freebsd32_clock_settime_args *uap)
2920 {
2921 	struct timespec	ats;
2922 	struct timespec32 ats32;
2923 	int error;
2924 
2925 	error = copyin(uap->tp, &ats32, sizeof(ats32));
2926 	if (error)
2927 		return (error);
2928 	CP(ats32, ats, tv_sec);
2929 	CP(ats32, ats, tv_nsec);
2930 
2931 	return (kern_clock_settime(td, uap->clock_id, &ats));
2932 }
2933 
2934 int
2935 freebsd32_clock_getres(struct thread *td,
2936 		       struct freebsd32_clock_getres_args *uap)
2937 {
2938 	struct timespec	ts;
2939 	struct timespec32 ts32;
2940 	int error;
2941 
2942 	if (uap->tp == NULL)
2943 		return (0);
2944 	error = kern_clock_getres(td, uap->clock_id, &ts);
2945 	if (error == 0) {
2946 		CP(ts, ts32, tv_sec);
2947 		CP(ts, ts32, tv_nsec);
2948 		error = copyout(&ts32, uap->tp, sizeof(ts32));
2949 	}
2950 	return (error);
2951 }
2952 
2953 int freebsd32_ktimer_create(struct thread *td,
2954     struct freebsd32_ktimer_create_args *uap)
2955 {
2956 	struct sigevent32 ev32;
2957 	struct sigevent ev, *evp;
2958 	int error, id;
2959 
2960 	if (uap->evp == NULL) {
2961 		evp = NULL;
2962 	} else {
2963 		evp = &ev;
2964 		error = copyin(uap->evp, &ev32, sizeof(ev32));
2965 		if (error != 0)
2966 			return (error);
2967 		error = convert_sigevent32(&ev32, &ev);
2968 		if (error != 0)
2969 			return (error);
2970 	}
2971 	error = kern_ktimer_create(td, uap->clock_id, evp, &id, -1);
2972 	if (error == 0) {
2973 		error = copyout(&id, uap->timerid, sizeof(int));
2974 		if (error != 0)
2975 			kern_ktimer_delete(td, id);
2976 	}
2977 	return (error);
2978 }
2979 
2980 int
2981 freebsd32_ktimer_settime(struct thread *td,
2982     struct freebsd32_ktimer_settime_args *uap)
2983 {
2984 	struct itimerspec32 val32, oval32;
2985 	struct itimerspec val, oval, *ovalp;
2986 	int error;
2987 
2988 	error = copyin(uap->value, &val32, sizeof(val32));
2989 	if (error != 0)
2990 		return (error);
2991 	ITS_CP(val32, val);
2992 	ovalp = uap->ovalue != NULL ? &oval : NULL;
2993 	error = kern_ktimer_settime(td, uap->timerid, uap->flags, &val, ovalp);
2994 	if (error == 0 && uap->ovalue != NULL) {
2995 		ITS_CP(oval, oval32);
2996 		error = copyout(&oval32, uap->ovalue, sizeof(oval32));
2997 	}
2998 	return (error);
2999 }
3000 
3001 int
3002 freebsd32_ktimer_gettime(struct thread *td,
3003     struct freebsd32_ktimer_gettime_args *uap)
3004 {
3005 	struct itimerspec32 val32;
3006 	struct itimerspec val;
3007 	int error;
3008 
3009 	error = kern_ktimer_gettime(td, uap->timerid, &val);
3010 	if (error == 0) {
3011 		ITS_CP(val, val32);
3012 		error = copyout(&val32, uap->value, sizeof(val32));
3013 	}
3014 	return (error);
3015 }
3016 
3017 int
3018 freebsd32_clock_getcpuclockid2(struct thread *td,
3019     struct freebsd32_clock_getcpuclockid2_args *uap)
3020 {
3021 	clockid_t clk_id;
3022 	int error;
3023 
3024 	error = kern_clock_getcpuclockid2(td, PAIR32TO64(id_t, uap->id),
3025 	    uap->which, &clk_id);
3026 	if (error == 0)
3027 		error = copyout(&clk_id, uap->clock_id, sizeof(clockid_t));
3028 	return (error);
3029 }
3030 
3031 int
3032 freebsd32_thr_new(struct thread *td,
3033 		  struct freebsd32_thr_new_args *uap)
3034 {
3035 	struct thr_param32 param32;
3036 	struct thr_param param;
3037 	int error;
3038 
3039 	if (uap->param_size < 0 ||
3040 	    uap->param_size > sizeof(struct thr_param32))
3041 		return (EINVAL);
3042 	bzero(&param, sizeof(struct thr_param));
3043 	bzero(&param32, sizeof(struct thr_param32));
3044 	error = copyin(uap->param, &param32, uap->param_size);
3045 	if (error != 0)
3046 		return (error);
3047 	param.start_func = PTRIN(param32.start_func);
3048 	param.arg = PTRIN(param32.arg);
3049 	param.stack_base = PTRIN(param32.stack_base);
3050 	param.stack_size = param32.stack_size;
3051 	param.tls_base = PTRIN(param32.tls_base);
3052 	param.tls_size = param32.tls_size;
3053 	param.child_tid = PTRIN(param32.child_tid);
3054 	param.parent_tid = PTRIN(param32.parent_tid);
3055 	param.flags = param32.flags;
3056 	param.rtp = PTRIN(param32.rtp);
3057 	param.spare[0] = PTRIN(param32.spare[0]);
3058 	param.spare[1] = PTRIN(param32.spare[1]);
3059 	param.spare[2] = PTRIN(param32.spare[2]);
3060 
3061 	return (kern_thr_new(td, &param));
3062 }
3063 
3064 int
3065 freebsd32_thr_suspend(struct thread *td, struct freebsd32_thr_suspend_args *uap)
3066 {
3067 	struct timespec32 ts32;
3068 	struct timespec ts, *tsp;
3069 	int error;
3070 
3071 	error = 0;
3072 	tsp = NULL;
3073 	if (uap->timeout != NULL) {
3074 		error = copyin((const void *)uap->timeout, (void *)&ts32,
3075 		    sizeof(struct timespec32));
3076 		if (error != 0)
3077 			return (error);
3078 		ts.tv_sec = ts32.tv_sec;
3079 		ts.tv_nsec = ts32.tv_nsec;
3080 		tsp = &ts;
3081 	}
3082 	return (kern_thr_suspend(td, tsp));
3083 }
3084 
3085 void
3086 siginfo_to_siginfo32(const siginfo_t *src, struct siginfo32 *dst)
3087 {
3088 	bzero(dst, sizeof(*dst));
3089 	dst->si_signo = src->si_signo;
3090 	dst->si_errno = src->si_errno;
3091 	dst->si_code = src->si_code;
3092 	dst->si_pid = src->si_pid;
3093 	dst->si_uid = src->si_uid;
3094 	dst->si_status = src->si_status;
3095 	dst->si_addr = (uintptr_t)src->si_addr;
3096 	dst->si_value.sival_int = src->si_value.sival_int;
3097 	dst->si_timerid = src->si_timerid;
3098 	dst->si_overrun = src->si_overrun;
3099 }
3100 
3101 #ifndef _FREEBSD32_SYSPROTO_H_
3102 struct freebsd32_sigqueue_args {
3103         pid_t pid;
3104         int signum;
3105         /* union sigval32 */ int value;
3106 };
3107 #endif
3108 int
3109 freebsd32_sigqueue(struct thread *td, struct freebsd32_sigqueue_args *uap)
3110 {
3111 	union sigval sv;
3112 
3113 	/*
3114 	 * On 32-bit ABIs, sival_int and sival_ptr are the same.
3115 	 * On 64-bit little-endian ABIs, the low bits are the same.
3116 	 * In 64-bit big-endian ABIs, sival_int overlaps with
3117 	 * sival_ptr's HIGH bits.  We choose to support sival_int
3118 	 * rather than sival_ptr in this case as it seems to be
3119 	 * more common.
3120 	 */
3121 	bzero(&sv, sizeof(sv));
3122 	sv.sival_int = uap->value;
3123 
3124 	return (kern_sigqueue(td, uap->pid, uap->signum, &sv));
3125 }
3126 
3127 int
3128 freebsd32_sigtimedwait(struct thread *td, struct freebsd32_sigtimedwait_args *uap)
3129 {
3130 	struct timespec32 ts32;
3131 	struct timespec ts;
3132 	struct timespec *timeout;
3133 	sigset_t set;
3134 	ksiginfo_t ksi;
3135 	struct siginfo32 si32;
3136 	int error;
3137 
3138 	if (uap->timeout) {
3139 		error = copyin(uap->timeout, &ts32, sizeof(ts32));
3140 		if (error)
3141 			return (error);
3142 		ts.tv_sec = ts32.tv_sec;
3143 		ts.tv_nsec = ts32.tv_nsec;
3144 		timeout = &ts;
3145 	} else
3146 		timeout = NULL;
3147 
3148 	error = copyin(uap->set, &set, sizeof(set));
3149 	if (error)
3150 		return (error);
3151 
3152 	error = kern_sigtimedwait(td, set, &ksi, timeout);
3153 	if (error)
3154 		return (error);
3155 
3156 	if (uap->info) {
3157 		siginfo_to_siginfo32(&ksi.ksi_info, &si32);
3158 		error = copyout(&si32, uap->info, sizeof(struct siginfo32));
3159 	}
3160 
3161 	if (error == 0)
3162 		td->td_retval[0] = ksi.ksi_signo;
3163 	return (error);
3164 }
3165 
3166 /*
3167  * MPSAFE
3168  */
3169 int
3170 freebsd32_sigwaitinfo(struct thread *td, struct freebsd32_sigwaitinfo_args *uap)
3171 {
3172 	ksiginfo_t ksi;
3173 	struct siginfo32 si32;
3174 	sigset_t set;
3175 	int error;
3176 
3177 	error = copyin(uap->set, &set, sizeof(set));
3178 	if (error)
3179 		return (error);
3180 
3181 	error = kern_sigtimedwait(td, set, &ksi, NULL);
3182 	if (error)
3183 		return (error);
3184 
3185 	if (uap->info) {
3186 		siginfo_to_siginfo32(&ksi.ksi_info, &si32);
3187 		error = copyout(&si32, uap->info, sizeof(struct siginfo32));
3188 	}
3189 	if (error == 0)
3190 		td->td_retval[0] = ksi.ksi_signo;
3191 	return (error);
3192 }
3193 
3194 int
3195 freebsd32_cpuset_setid(struct thread *td,
3196     struct freebsd32_cpuset_setid_args *uap)
3197 {
3198 
3199 	return (kern_cpuset_setid(td, uap->which,
3200 	    PAIR32TO64(id_t, uap->id), uap->setid));
3201 }
3202 
3203 int
3204 freebsd32_cpuset_getid(struct thread *td,
3205     struct freebsd32_cpuset_getid_args *uap)
3206 {
3207 
3208 	return (kern_cpuset_getid(td, uap->level, uap->which,
3209 	    PAIR32TO64(id_t, uap->id), uap->setid));
3210 }
3211 
3212 int
3213 freebsd32_cpuset_getaffinity(struct thread *td,
3214     struct freebsd32_cpuset_getaffinity_args *uap)
3215 {
3216 
3217 	return (kern_cpuset_getaffinity(td, uap->level, uap->which,
3218 	    PAIR32TO64(id_t,uap->id), uap->cpusetsize, uap->mask));
3219 }
3220 
3221 int
3222 freebsd32_cpuset_setaffinity(struct thread *td,
3223     struct freebsd32_cpuset_setaffinity_args *uap)
3224 {
3225 
3226 	return (kern_cpuset_setaffinity(td, uap->level, uap->which,
3227 	    PAIR32TO64(id_t,uap->id), uap->cpusetsize, uap->mask));
3228 }
3229 
3230 int
3231 freebsd32_cpuset_getdomain(struct thread *td,
3232     struct freebsd32_cpuset_getdomain_args *uap)
3233 {
3234 
3235 	return (kern_cpuset_getdomain(td, uap->level, uap->which,
3236 	    PAIR32TO64(id_t,uap->id), uap->domainsetsize, uap->mask, uap->policy));
3237 }
3238 
3239 int
3240 freebsd32_cpuset_setdomain(struct thread *td,
3241     struct freebsd32_cpuset_setdomain_args *uap)
3242 {
3243 
3244 	return (kern_cpuset_setdomain(td, uap->level, uap->which,
3245 	    PAIR32TO64(id_t,uap->id), uap->domainsetsize, uap->mask, uap->policy));
3246 }
3247 
3248 int
3249 freebsd32_nmount(struct thread *td,
3250     struct freebsd32_nmount_args /* {
3251     	struct iovec *iovp;
3252     	unsigned int iovcnt;
3253     	int flags;
3254     } */ *uap)
3255 {
3256 	struct uio *auio;
3257 	uint64_t flags;
3258 	int error;
3259 
3260 	/*
3261 	 * Mount flags are now 64-bits. On 32-bit archtectures only
3262 	 * 32-bits are passed in, but from here on everything handles
3263 	 * 64-bit flags correctly.
3264 	 */
3265 	flags = uap->flags;
3266 
3267 	AUDIT_ARG_FFLAGS(flags);
3268 
3269 	/*
3270 	 * Filter out MNT_ROOTFS.  We do not want clients of nmount() in
3271 	 * userspace to set this flag, but we must filter it out if we want
3272 	 * MNT_UPDATE on the root file system to work.
3273 	 * MNT_ROOTFS should only be set by the kernel when mounting its
3274 	 * root file system.
3275 	 */
3276 	flags &= ~MNT_ROOTFS;
3277 
3278 	/*
3279 	 * check that we have an even number of iovec's
3280 	 * and that we have at least two options.
3281 	 */
3282 	if ((uap->iovcnt & 1) || (uap->iovcnt < 4))
3283 		return (EINVAL);
3284 
3285 	error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio);
3286 	if (error)
3287 		return (error);
3288 	error = vfs_donmount(td, flags, auio);
3289 
3290 	free(auio, M_IOV);
3291 	return error;
3292 }
3293 
3294 #if 0
3295 int
3296 freebsd32_xxx(struct thread *td, struct freebsd32_xxx_args *uap)
3297 {
3298 	struct yyy32 *p32, s32;
3299 	struct yyy *p = NULL, s;
3300 	struct xxx_arg ap;
3301 	int error;
3302 
3303 	if (uap->zzz) {
3304 		error = copyin(uap->zzz, &s32, sizeof(s32));
3305 		if (error)
3306 			return (error);
3307 		/* translate in */
3308 		p = &s;
3309 	}
3310 	error = kern_xxx(td, p);
3311 	if (error)
3312 		return (error);
3313 	if (uap->zzz) {
3314 		/* translate out */
3315 		error = copyout(&s32, p32, sizeof(s32));
3316 	}
3317 	return (error);
3318 }
3319 #endif
3320 
3321 int
3322 syscall32_module_handler(struct module *mod, int what, void *arg)
3323 {
3324 
3325 	return (kern_syscall_module_handler(freebsd32_sysent, mod, what, arg));
3326 }
3327 
3328 int
3329 syscall32_helper_register(struct syscall_helper_data *sd, int flags)
3330 {
3331 
3332 	return (kern_syscall_helper_register(freebsd32_sysent, sd, flags));
3333 }
3334 
3335 int
3336 syscall32_helper_unregister(struct syscall_helper_data *sd)
3337 {
3338 
3339 	return (kern_syscall_helper_unregister(freebsd32_sysent, sd));
3340 }
3341 
3342 int
3343 freebsd32_copyout_strings(struct image_params *imgp, uintptr_t *stack_base)
3344 {
3345 	int argc, envc, i;
3346 	u_int32_t *vectp;
3347 	char *stringp;
3348 	uintptr_t destp, ustringp;
3349 	struct freebsd32_ps_strings *arginfo;
3350 	char canary[sizeof(long) * 8];
3351 	int32_t pagesizes32[MAXPAGESIZES];
3352 	size_t execpath_len;
3353 	int error, szsigcode;
3354 
3355 	/*
3356 	 * Calculate string base and vector table pointers.
3357 	 * Also deal with signal trampoline code for this exec type.
3358 	 */
3359 	if (imgp->execpath != NULL && imgp->auxargs != NULL)
3360 		execpath_len = strlen(imgp->execpath) + 1;
3361 	else
3362 		execpath_len = 0;
3363 	arginfo = (struct freebsd32_ps_strings *)curproc->p_sysent->
3364 	    sv_psstrings;
3365 	imgp->ps_strings = arginfo;
3366 	if (imgp->proc->p_sysent->sv_sigcode_base == 0)
3367 		szsigcode = *(imgp->proc->p_sysent->sv_szsigcode);
3368 	else
3369 		szsigcode = 0;
3370 	destp =	(uintptr_t)arginfo;
3371 
3372 	/*
3373 	 * install sigcode
3374 	 */
3375 	if (szsigcode != 0) {
3376 		destp -= szsigcode;
3377 		destp = rounddown2(destp, sizeof(uint32_t));
3378 		error = copyout(imgp->proc->p_sysent->sv_sigcode, (void *)destp,
3379 		    szsigcode);
3380 		if (error != 0)
3381 			return (error);
3382 	}
3383 
3384 	/*
3385 	 * Copy the image path for the rtld.
3386 	 */
3387 	if (execpath_len != 0) {
3388 		destp -= execpath_len;
3389 		imgp->execpathp = (void *)destp;
3390 		error = copyout(imgp->execpath, imgp->execpathp, execpath_len);
3391 		if (error != 0)
3392 			return (error);
3393 	}
3394 
3395 	/*
3396 	 * Prepare the canary for SSP.
3397 	 */
3398 	arc4rand(canary, sizeof(canary), 0);
3399 	destp -= sizeof(canary);
3400 	imgp->canary = (void *)destp;
3401 	error = copyout(canary, imgp->canary, sizeof(canary));
3402 	if (error != 0)
3403 		return (error);
3404 	imgp->canarylen = sizeof(canary);
3405 
3406 	/*
3407 	 * Prepare the pagesizes array.
3408 	 */
3409 	for (i = 0; i < MAXPAGESIZES; i++)
3410 		pagesizes32[i] = (uint32_t)pagesizes[i];
3411 	destp -= sizeof(pagesizes32);
3412 	destp = rounddown2(destp, sizeof(uint32_t));
3413 	imgp->pagesizes = (void *)destp;
3414 	error = copyout(pagesizes32, imgp->pagesizes, sizeof(pagesizes32));
3415 	if (error != 0)
3416 		return (error);
3417 	imgp->pagesizeslen = sizeof(pagesizes32);
3418 
3419 	/*
3420 	 * Allocate room for the argument and environment strings.
3421 	 */
3422 	destp -= ARG_MAX - imgp->args->stringspace;
3423 	destp = rounddown2(destp, sizeof(uint32_t));
3424 	ustringp = destp;
3425 
3426 	if (imgp->sysent->sv_stackgap != NULL)
3427 		imgp->sysent->sv_stackgap(imgp, &destp);
3428 
3429 	if (imgp->auxargs) {
3430 		/*
3431 		 * Allocate room on the stack for the ELF auxargs
3432 		 * array.  It has up to AT_COUNT entries.
3433 		 */
3434 		destp -= AT_COUNT * sizeof(Elf32_Auxinfo);
3435 		destp = rounddown2(destp, sizeof(uint32_t));
3436 	}
3437 
3438 	vectp = (uint32_t *)destp;
3439 
3440 	/*
3441 	 * Allocate room for the argv[] and env vectors including the
3442 	 * terminating NULL pointers.
3443 	 */
3444 	vectp -= imgp->args->argc + 1 + imgp->args->envc + 1;
3445 
3446 	/*
3447 	 * vectp also becomes our initial stack base
3448 	 */
3449 	*stack_base = (uintptr_t)vectp;
3450 
3451 	stringp = imgp->args->begin_argv;
3452 	argc = imgp->args->argc;
3453 	envc = imgp->args->envc;
3454 	/*
3455 	 * Copy out strings - arguments and environment.
3456 	 */
3457 	error = copyout(stringp, (void *)ustringp,
3458 	    ARG_MAX - imgp->args->stringspace);
3459 	if (error != 0)
3460 		return (error);
3461 
3462 	/*
3463 	 * Fill in "ps_strings" struct for ps, w, etc.
3464 	 */
3465 	imgp->argv = vectp;
3466 	if (suword32(&arginfo->ps_argvstr, (u_int32_t)(intptr_t)vectp) != 0 ||
3467 	    suword32(&arginfo->ps_nargvstr, argc) != 0)
3468 		return (EFAULT);
3469 
3470 	/*
3471 	 * Fill in argument portion of vector table.
3472 	 */
3473 	for (; argc > 0; --argc) {
3474 		if (suword32(vectp++, ustringp) != 0)
3475 			return (EFAULT);
3476 		while (*stringp++ != 0)
3477 			ustringp++;
3478 		ustringp++;
3479 	}
3480 
3481 	/* a null vector table pointer separates the argp's from the envp's */
3482 	if (suword32(vectp++, 0) != 0)
3483 		return (EFAULT);
3484 
3485 	imgp->envv = vectp;
3486 	if (suword32(&arginfo->ps_envstr, (u_int32_t)(intptr_t)vectp) != 0 ||
3487 	    suword32(&arginfo->ps_nenvstr, envc) != 0)
3488 		return (EFAULT);
3489 
3490 	/*
3491 	 * Fill in environment portion of vector table.
3492 	 */
3493 	for (; envc > 0; --envc) {
3494 		if (suword32(vectp++, ustringp) != 0)
3495 			return (EFAULT);
3496 		while (*stringp++ != 0)
3497 			ustringp++;
3498 		ustringp++;
3499 	}
3500 
3501 	/* end of vector table is a null pointer */
3502 	if (suword32(vectp, 0) != 0)
3503 		return (EFAULT);
3504 
3505 	if (imgp->auxargs) {
3506 		vectp++;
3507 		error = imgp->sysent->sv_copyout_auxargs(imgp,
3508 		    (uintptr_t)vectp);
3509 		if (error != 0)
3510 			return (error);
3511 	}
3512 
3513 	return (0);
3514 }
3515 
3516 int
3517 freebsd32_kldstat(struct thread *td, struct freebsd32_kldstat_args *uap)
3518 {
3519 	struct kld_file_stat *stat;
3520 	struct kld32_file_stat *stat32;
3521 	int error, version;
3522 
3523 	if ((error = copyin(&uap->stat->version, &version, sizeof(version)))
3524 	    != 0)
3525 		return (error);
3526 	if (version != sizeof(struct kld32_file_stat_1) &&
3527 	    version != sizeof(struct kld32_file_stat))
3528 		return (EINVAL);
3529 
3530 	stat = malloc(sizeof(*stat), M_TEMP, M_WAITOK | M_ZERO);
3531 	stat32 = malloc(sizeof(*stat32), M_TEMP, M_WAITOK | M_ZERO);
3532 	error = kern_kldstat(td, uap->fileid, stat);
3533 	if (error == 0) {
3534 		bcopy(&stat->name[0], &stat32->name[0], sizeof(stat->name));
3535 		CP(*stat, *stat32, refs);
3536 		CP(*stat, *stat32, id);
3537 		PTROUT_CP(*stat, *stat32, address);
3538 		CP(*stat, *stat32, size);
3539 		bcopy(&stat->pathname[0], &stat32->pathname[0],
3540 		    sizeof(stat->pathname));
3541 		stat32->version  = version;
3542 		error = copyout(stat32, uap->stat, version);
3543 	}
3544 	free(stat, M_TEMP);
3545 	free(stat32, M_TEMP);
3546 	return (error);
3547 }
3548 
3549 int
3550 freebsd32_posix_fallocate(struct thread *td,
3551     struct freebsd32_posix_fallocate_args *uap)
3552 {
3553 	int error;
3554 
3555 	error = kern_posix_fallocate(td, uap->fd,
3556 	    PAIR32TO64(off_t, uap->offset), PAIR32TO64(off_t, uap->len));
3557 	return (kern_posix_error(td, error));
3558 }
3559 
3560 int
3561 freebsd32_posix_fadvise(struct thread *td,
3562     struct freebsd32_posix_fadvise_args *uap)
3563 {
3564 	int error;
3565 
3566 	error = kern_posix_fadvise(td, uap->fd, PAIR32TO64(off_t, uap->offset),
3567 	    PAIR32TO64(off_t, uap->len), uap->advice);
3568 	return (kern_posix_error(td, error));
3569 }
3570 
3571 int
3572 convert_sigevent32(struct sigevent32 *sig32, struct sigevent *sig)
3573 {
3574 
3575 	CP(*sig32, *sig, sigev_notify);
3576 	switch (sig->sigev_notify) {
3577 	case SIGEV_NONE:
3578 		break;
3579 	case SIGEV_THREAD_ID:
3580 		CP(*sig32, *sig, sigev_notify_thread_id);
3581 		/* FALLTHROUGH */
3582 	case SIGEV_SIGNAL:
3583 		CP(*sig32, *sig, sigev_signo);
3584 		PTRIN_CP(*sig32, *sig, sigev_value.sival_ptr);
3585 		break;
3586 	case SIGEV_KEVENT:
3587 		CP(*sig32, *sig, sigev_notify_kqueue);
3588 		CP(*sig32, *sig, sigev_notify_kevent_flags);
3589 		PTRIN_CP(*sig32, *sig, sigev_value.sival_ptr);
3590 		break;
3591 	default:
3592 		return (EINVAL);
3593 	}
3594 	return (0);
3595 }
3596 
3597 int
3598 freebsd32_procctl(struct thread *td, struct freebsd32_procctl_args *uap)
3599 {
3600 	void *data;
3601 	union {
3602 		struct procctl_reaper_status rs;
3603 		struct procctl_reaper_pids rp;
3604 		struct procctl_reaper_kill rk;
3605 	} x;
3606 	union {
3607 		struct procctl_reaper_pids32 rp;
3608 	} x32;
3609 	int error, error1, flags, signum;
3610 
3611 	if (uap->com >= PROC_PROCCTL_MD_MIN)
3612 		return (cpu_procctl(td, uap->idtype, PAIR32TO64(id_t, uap->id),
3613 		    uap->com, PTRIN(uap->data)));
3614 
3615 	switch (uap->com) {
3616 	case PROC_ASLR_CTL:
3617 	case PROC_PROTMAX_CTL:
3618 	case PROC_SPROTECT:
3619 	case PROC_STACKGAP_CTL:
3620 	case PROC_TRACE_CTL:
3621 	case PROC_TRAPCAP_CTL:
3622 		error = copyin(PTRIN(uap->data), &flags, sizeof(flags));
3623 		if (error != 0)
3624 			return (error);
3625 		data = &flags;
3626 		break;
3627 	case PROC_REAP_ACQUIRE:
3628 	case PROC_REAP_RELEASE:
3629 		if (uap->data != NULL)
3630 			return (EINVAL);
3631 		data = NULL;
3632 		break;
3633 	case PROC_REAP_STATUS:
3634 		data = &x.rs;
3635 		break;
3636 	case PROC_REAP_GETPIDS:
3637 		error = copyin(uap->data, &x32.rp, sizeof(x32.rp));
3638 		if (error != 0)
3639 			return (error);
3640 		CP(x32.rp, x.rp, rp_count);
3641 		PTRIN_CP(x32.rp, x.rp, rp_pids);
3642 		data = &x.rp;
3643 		break;
3644 	case PROC_REAP_KILL:
3645 		error = copyin(uap->data, &x.rk, sizeof(x.rk));
3646 		if (error != 0)
3647 			return (error);
3648 		data = &x.rk;
3649 		break;
3650 	case PROC_ASLR_STATUS:
3651 	case PROC_PROTMAX_STATUS:
3652 	case PROC_STACKGAP_STATUS:
3653 	case PROC_TRACE_STATUS:
3654 	case PROC_TRAPCAP_STATUS:
3655 		data = &flags;
3656 		break;
3657 	case PROC_PDEATHSIG_CTL:
3658 		error = copyin(uap->data, &signum, sizeof(signum));
3659 		if (error != 0)
3660 			return (error);
3661 		data = &signum;
3662 		break;
3663 	case PROC_PDEATHSIG_STATUS:
3664 		data = &signum;
3665 		break;
3666 	default:
3667 		return (EINVAL);
3668 	}
3669 	error = kern_procctl(td, uap->idtype, PAIR32TO64(id_t, uap->id),
3670 	    uap->com, data);
3671 	switch (uap->com) {
3672 	case PROC_REAP_STATUS:
3673 		if (error == 0)
3674 			error = copyout(&x.rs, uap->data, sizeof(x.rs));
3675 		break;
3676 	case PROC_REAP_KILL:
3677 		error1 = copyout(&x.rk, uap->data, sizeof(x.rk));
3678 		if (error == 0)
3679 			error = error1;
3680 		break;
3681 	case PROC_ASLR_STATUS:
3682 	case PROC_PROTMAX_STATUS:
3683 	case PROC_STACKGAP_STATUS:
3684 	case PROC_TRACE_STATUS:
3685 	case PROC_TRAPCAP_STATUS:
3686 		if (error == 0)
3687 			error = copyout(&flags, uap->data, sizeof(flags));
3688 		break;
3689 	case PROC_PDEATHSIG_STATUS:
3690 		if (error == 0)
3691 			error = copyout(&signum, uap->data, sizeof(signum));
3692 		break;
3693 	}
3694 	return (error);
3695 }
3696 
3697 int
3698 freebsd32_fcntl(struct thread *td, struct freebsd32_fcntl_args *uap)
3699 {
3700 	long tmp;
3701 
3702 	switch (uap->cmd) {
3703 	/*
3704 	 * Do unsigned conversion for arg when operation
3705 	 * interprets it as flags or pointer.
3706 	 */
3707 	case F_SETLK_REMOTE:
3708 	case F_SETLKW:
3709 	case F_SETLK:
3710 	case F_GETLK:
3711 	case F_SETFD:
3712 	case F_SETFL:
3713 	case F_OGETLK:
3714 	case F_OSETLK:
3715 	case F_OSETLKW:
3716 		tmp = (unsigned int)(uap->arg);
3717 		break;
3718 	default:
3719 		tmp = uap->arg;
3720 		break;
3721 	}
3722 	return (kern_fcntl_freebsd(td, uap->fd, uap->cmd, tmp));
3723 }
3724 
3725 int
3726 freebsd32_ppoll(struct thread *td, struct freebsd32_ppoll_args *uap)
3727 {
3728 	struct timespec32 ts32;
3729 	struct timespec ts, *tsp;
3730 	sigset_t set, *ssp;
3731 	int error;
3732 
3733 	if (uap->ts != NULL) {
3734 		error = copyin(uap->ts, &ts32, sizeof(ts32));
3735 		if (error != 0)
3736 			return (error);
3737 		CP(ts32, ts, tv_sec);
3738 		CP(ts32, ts, tv_nsec);
3739 		tsp = &ts;
3740 	} else
3741 		tsp = NULL;
3742 	if (uap->set != NULL) {
3743 		error = copyin(uap->set, &set, sizeof(set));
3744 		if (error != 0)
3745 			return (error);
3746 		ssp = &set;
3747 	} else
3748 		ssp = NULL;
3749 
3750 	return (kern_poll(td, uap->fds, uap->nfds, tsp, ssp));
3751 }
3752 
3753 int
3754 freebsd32_sched_rr_get_interval(struct thread *td,
3755     struct freebsd32_sched_rr_get_interval_args *uap)
3756 {
3757 	struct timespec ts;
3758 	struct timespec32 ts32;
3759 	int error;
3760 
3761 	error = kern_sched_rr_get_interval(td, uap->pid, &ts);
3762 	if (error == 0) {
3763 		CP(ts, ts32, tv_sec);
3764 		CP(ts, ts32, tv_nsec);
3765 		error = copyout(&ts32, uap->interval, sizeof(ts32));
3766 	}
3767 	return (error);
3768 }
3769