xref: /freebsd/sys/compat/freebsd32/freebsd32_misc.c (revision bc3f5ec90bde2f3a5e4021d133c89793d68b8c73)
1 /*-
2  * Copyright (c) 2002 Doug Rabson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include "opt_compat.h"
31 #include "opt_inet.h"
32 #include "opt_inet6.h"
33 
34 #define __ELF_WORD_SIZE 32
35 
36 #include <sys/param.h>
37 #include <sys/bus.h>
38 #include <sys/capability.h>
39 #include <sys/clock.h>
40 #include <sys/exec.h>
41 #include <sys/fcntl.h>
42 #include <sys/filedesc.h>
43 #include <sys/imgact.h>
44 #include <sys/jail.h>
45 #include <sys/kernel.h>
46 #include <sys/limits.h>
47 #include <sys/linker.h>
48 #include <sys/lock.h>
49 #include <sys/malloc.h>
50 #include <sys/file.h>		/* Must come after sys/malloc.h */
51 #include <sys/imgact.h>
52 #include <sys/mbuf.h>
53 #include <sys/mman.h>
54 #include <sys/module.h>
55 #include <sys/mount.h>
56 #include <sys/mutex.h>
57 #include <sys/namei.h>
58 #include <sys/proc.h>
59 #include <sys/procctl.h>
60 #include <sys/reboot.h>
61 #include <sys/resource.h>
62 #include <sys/resourcevar.h>
63 #include <sys/selinfo.h>
64 #include <sys/eventvar.h>	/* Must come after sys/selinfo.h */
65 #include <sys/pipe.h>		/* Must come after sys/selinfo.h */
66 #include <sys/signal.h>
67 #include <sys/signalvar.h>
68 #include <sys/socket.h>
69 #include <sys/socketvar.h>
70 #include <sys/stat.h>
71 #include <sys/syscall.h>
72 #include <sys/syscallsubr.h>
73 #include <sys/sysctl.h>
74 #include <sys/sysent.h>
75 #include <sys/sysproto.h>
76 #include <sys/systm.h>
77 #include <sys/thr.h>
78 #include <sys/unistd.h>
79 #include <sys/ucontext.h>
80 #include <sys/vnode.h>
81 #include <sys/wait.h>
82 #include <sys/ipc.h>
83 #include <sys/msg.h>
84 #include <sys/sem.h>
85 #include <sys/shm.h>
86 #include <sys/condvar.h>
87 #include <sys/sf_buf.h>
88 #include <sys/sf_sync.h>
89 #include <sys/sf_base.h>
90 
91 #ifdef INET
92 #include <netinet/in.h>
93 #endif
94 
95 #include <vm/vm.h>
96 #include <vm/vm_param.h>
97 #include <vm/pmap.h>
98 #include <vm/vm_map.h>
99 #include <vm/vm_object.h>
100 #include <vm/vm_extern.h>
101 
102 #include <machine/cpu.h>
103 #include <machine/elf.h>
104 
105 #include <security/audit/audit.h>
106 
107 #include <compat/freebsd32/freebsd32_util.h>
108 #include <compat/freebsd32/freebsd32.h>
109 #include <compat/freebsd32/freebsd32_ipc.h>
110 #include <compat/freebsd32/freebsd32_misc.h>
111 #include <compat/freebsd32/freebsd32_signal.h>
112 #include <compat/freebsd32/freebsd32_proto.h>
113 
114 FEATURE(compat_freebsd_32bit, "Compatible with 32-bit FreeBSD");
115 
116 #ifndef __mips__
117 CTASSERT(sizeof(struct timeval32) == 8);
118 CTASSERT(sizeof(struct timespec32) == 8);
119 CTASSERT(sizeof(struct itimerval32) == 16);
120 #endif
121 CTASSERT(sizeof(struct statfs32) == 256);
122 #ifndef __mips__
123 CTASSERT(sizeof(struct rusage32) == 72);
124 #endif
125 CTASSERT(sizeof(struct sigaltstack32) == 12);
126 CTASSERT(sizeof(struct kevent32) == 20);
127 CTASSERT(sizeof(struct iovec32) == 8);
128 CTASSERT(sizeof(struct msghdr32) == 28);
129 #ifndef __mips__
130 CTASSERT(sizeof(struct stat32) == 96);
131 #endif
132 CTASSERT(sizeof(struct sigaction32) == 24);
133 
134 static int freebsd32_kevent_copyout(void *arg, struct kevent *kevp, int count);
135 static int freebsd32_kevent_copyin(void *arg, struct kevent *kevp, int count);
136 
137 void
138 freebsd32_rusage_out(const struct rusage *s, struct rusage32 *s32)
139 {
140 
141 	TV_CP(*s, *s32, ru_utime);
142 	TV_CP(*s, *s32, ru_stime);
143 	CP(*s, *s32, ru_maxrss);
144 	CP(*s, *s32, ru_ixrss);
145 	CP(*s, *s32, ru_idrss);
146 	CP(*s, *s32, ru_isrss);
147 	CP(*s, *s32, ru_minflt);
148 	CP(*s, *s32, ru_majflt);
149 	CP(*s, *s32, ru_nswap);
150 	CP(*s, *s32, ru_inblock);
151 	CP(*s, *s32, ru_oublock);
152 	CP(*s, *s32, ru_msgsnd);
153 	CP(*s, *s32, ru_msgrcv);
154 	CP(*s, *s32, ru_nsignals);
155 	CP(*s, *s32, ru_nvcsw);
156 	CP(*s, *s32, ru_nivcsw);
157 }
158 
159 int
160 freebsd32_wait4(struct thread *td, struct freebsd32_wait4_args *uap)
161 {
162 	int error, status;
163 	struct rusage32 ru32;
164 	struct rusage ru, *rup;
165 
166 	if (uap->rusage != NULL)
167 		rup = &ru;
168 	else
169 		rup = NULL;
170 	error = kern_wait(td, uap->pid, &status, uap->options, rup);
171 	if (error)
172 		return (error);
173 	if (uap->status != NULL)
174 		error = copyout(&status, uap->status, sizeof(status));
175 	if (uap->rusage != NULL && error == 0) {
176 		freebsd32_rusage_out(&ru, &ru32);
177 		error = copyout(&ru32, uap->rusage, sizeof(ru32));
178 	}
179 	return (error);
180 }
181 
182 int
183 freebsd32_wait6(struct thread *td, struct freebsd32_wait6_args *uap)
184 {
185 	struct wrusage32 wru32;
186 	struct __wrusage wru, *wrup;
187 	struct siginfo32 si32;
188 	struct __siginfo si, *sip;
189 	int error, status;
190 
191 	if (uap->wrusage != NULL)
192 		wrup = &wru;
193 	else
194 		wrup = NULL;
195 	if (uap->info != NULL) {
196 		sip = &si;
197 		bzero(sip, sizeof(*sip));
198 	} else
199 		sip = NULL;
200 	error = kern_wait6(td, uap->idtype, PAIR32TO64(id_t, uap->id),
201 	    &status, uap->options, wrup, sip);
202 	if (error != 0)
203 		return (error);
204 	if (uap->status != NULL)
205 		error = copyout(&status, uap->status, sizeof(status));
206 	if (uap->wrusage != NULL && error == 0) {
207 		freebsd32_rusage_out(&wru.wru_self, &wru32.wru_self);
208 		freebsd32_rusage_out(&wru.wru_children, &wru32.wru_children);
209 		error = copyout(&wru32, uap->wrusage, sizeof(wru32));
210 	}
211 	if (uap->info != NULL && error == 0) {
212 		siginfo_to_siginfo32 (&si, &si32);
213 		error = copyout(&si32, uap->info, sizeof(si32));
214 	}
215 	return (error);
216 }
217 
218 #ifdef COMPAT_FREEBSD4
219 static void
220 copy_statfs(struct statfs *in, struct statfs32 *out)
221 {
222 
223 	statfs_scale_blocks(in, INT32_MAX);
224 	bzero(out, sizeof(*out));
225 	CP(*in, *out, f_bsize);
226 	out->f_iosize = MIN(in->f_iosize, INT32_MAX);
227 	CP(*in, *out, f_blocks);
228 	CP(*in, *out, f_bfree);
229 	CP(*in, *out, f_bavail);
230 	out->f_files = MIN(in->f_files, INT32_MAX);
231 	out->f_ffree = MIN(in->f_ffree, INT32_MAX);
232 	CP(*in, *out, f_fsid);
233 	CP(*in, *out, f_owner);
234 	CP(*in, *out, f_type);
235 	CP(*in, *out, f_flags);
236 	out->f_syncwrites = MIN(in->f_syncwrites, INT32_MAX);
237 	out->f_asyncwrites = MIN(in->f_asyncwrites, INT32_MAX);
238 	strlcpy(out->f_fstypename,
239 	      in->f_fstypename, MFSNAMELEN);
240 	strlcpy(out->f_mntonname,
241 	      in->f_mntonname, min(MNAMELEN, FREEBSD4_MNAMELEN));
242 	out->f_syncreads = MIN(in->f_syncreads, INT32_MAX);
243 	out->f_asyncreads = MIN(in->f_asyncreads, INT32_MAX);
244 	strlcpy(out->f_mntfromname,
245 	      in->f_mntfromname, min(MNAMELEN, FREEBSD4_MNAMELEN));
246 }
247 #endif
248 
249 #ifdef COMPAT_FREEBSD4
250 int
251 freebsd4_freebsd32_getfsstat(struct thread *td, struct freebsd4_freebsd32_getfsstat_args *uap)
252 {
253 	struct statfs *buf, *sp;
254 	struct statfs32 stat32;
255 	size_t count, size;
256 	int error;
257 
258 	count = uap->bufsize / sizeof(struct statfs32);
259 	size = count * sizeof(struct statfs);
260 	error = kern_getfsstat(td, &buf, size, UIO_SYSSPACE, uap->flags);
261 	if (size > 0) {
262 		count = td->td_retval[0];
263 		sp = buf;
264 		while (count > 0 && error == 0) {
265 			copy_statfs(sp, &stat32);
266 			error = copyout(&stat32, uap->buf, sizeof(stat32));
267 			sp++;
268 			uap->buf++;
269 			count--;
270 		}
271 		free(buf, M_TEMP);
272 	}
273 	return (error);
274 }
275 #endif
276 
277 int
278 freebsd32_sigaltstack(struct thread *td,
279 		      struct freebsd32_sigaltstack_args *uap)
280 {
281 	struct sigaltstack32 s32;
282 	struct sigaltstack ss, oss, *ssp;
283 	int error;
284 
285 	if (uap->ss != NULL) {
286 		error = copyin(uap->ss, &s32, sizeof(s32));
287 		if (error)
288 			return (error);
289 		PTRIN_CP(s32, ss, ss_sp);
290 		CP(s32, ss, ss_size);
291 		CP(s32, ss, ss_flags);
292 		ssp = &ss;
293 	} else
294 		ssp = NULL;
295 	error = kern_sigaltstack(td, ssp, &oss);
296 	if (error == 0 && uap->oss != NULL) {
297 		PTROUT_CP(oss, s32, ss_sp);
298 		CP(oss, s32, ss_size);
299 		CP(oss, s32, ss_flags);
300 		error = copyout(&s32, uap->oss, sizeof(s32));
301 	}
302 	return (error);
303 }
304 
305 /*
306  * Custom version of exec_copyin_args() so that we can translate
307  * the pointers.
308  */
309 int
310 freebsd32_exec_copyin_args(struct image_args *args, char *fname,
311     enum uio_seg segflg, u_int32_t *argv, u_int32_t *envv)
312 {
313 	char *argp, *envp;
314 	u_int32_t *p32, arg;
315 	size_t length;
316 	int error;
317 
318 	bzero(args, sizeof(*args));
319 	if (argv == NULL)
320 		return (EFAULT);
321 
322 	/*
323 	 * Allocate demand-paged memory for the file name, argument, and
324 	 * environment strings.
325 	 */
326 	error = exec_alloc_args(args);
327 	if (error != 0)
328 		return (error);
329 
330 	/*
331 	 * Copy the file name.
332 	 */
333 	if (fname != NULL) {
334 		args->fname = args->buf;
335 		error = (segflg == UIO_SYSSPACE) ?
336 		    copystr(fname, args->fname, PATH_MAX, &length) :
337 		    copyinstr(fname, args->fname, PATH_MAX, &length);
338 		if (error != 0)
339 			goto err_exit;
340 	} else
341 		length = 0;
342 
343 	args->begin_argv = args->buf + length;
344 	args->endp = args->begin_argv;
345 	args->stringspace = ARG_MAX;
346 
347 	/*
348 	 * extract arguments first
349 	 */
350 	p32 = argv;
351 	for (;;) {
352 		error = copyin(p32++, &arg, sizeof(arg));
353 		if (error)
354 			goto err_exit;
355 		if (arg == 0)
356 			break;
357 		argp = PTRIN(arg);
358 		error = copyinstr(argp, args->endp, args->stringspace, &length);
359 		if (error) {
360 			if (error == ENAMETOOLONG)
361 				error = E2BIG;
362 			goto err_exit;
363 		}
364 		args->stringspace -= length;
365 		args->endp += length;
366 		args->argc++;
367 	}
368 
369 	args->begin_envv = args->endp;
370 
371 	/*
372 	 * extract environment strings
373 	 */
374 	if (envv) {
375 		p32 = envv;
376 		for (;;) {
377 			error = copyin(p32++, &arg, sizeof(arg));
378 			if (error)
379 				goto err_exit;
380 			if (arg == 0)
381 				break;
382 			envp = PTRIN(arg);
383 			error = copyinstr(envp, args->endp, args->stringspace,
384 			    &length);
385 			if (error) {
386 				if (error == ENAMETOOLONG)
387 					error = E2BIG;
388 				goto err_exit;
389 			}
390 			args->stringspace -= length;
391 			args->endp += length;
392 			args->envc++;
393 		}
394 	}
395 
396 	return (0);
397 
398 err_exit:
399 	exec_free_args(args);
400 	return (error);
401 }
402 
403 int
404 freebsd32_execve(struct thread *td, struct freebsd32_execve_args *uap)
405 {
406 	struct image_args eargs;
407 	int error;
408 
409 	error = freebsd32_exec_copyin_args(&eargs, uap->fname, UIO_USERSPACE,
410 	    uap->argv, uap->envv);
411 	if (error == 0)
412 		error = kern_execve(td, &eargs, NULL);
413 	return (error);
414 }
415 
416 int
417 freebsd32_fexecve(struct thread *td, struct freebsd32_fexecve_args *uap)
418 {
419 	struct image_args eargs;
420 	int error;
421 
422 	error = freebsd32_exec_copyin_args(&eargs, NULL, UIO_SYSSPACE,
423 	    uap->argv, uap->envv);
424 	if (error == 0) {
425 		eargs.fd = uap->fd;
426 		error = kern_execve(td, &eargs, NULL);
427 	}
428 	return (error);
429 }
430 
431 #ifdef __ia64__
432 static int
433 freebsd32_mmap_partial(struct thread *td, vm_offset_t start, vm_offset_t end,
434 		       int prot, int fd, off_t pos)
435 {
436 	vm_map_t map;
437 	vm_map_entry_t entry;
438 	int rv;
439 
440 	map = &td->td_proc->p_vmspace->vm_map;
441 	if (fd != -1)
442 		prot |= VM_PROT_WRITE;
443 
444 	if (vm_map_lookup_entry(map, start, &entry)) {
445 		if ((entry->protection & prot) != prot) {
446 			rv = vm_map_protect(map,
447 					    trunc_page(start),
448 					    round_page(end),
449 					    entry->protection | prot,
450 					    FALSE);
451 			if (rv != KERN_SUCCESS)
452 				return (EINVAL);
453 		}
454 	} else {
455 		vm_offset_t addr = trunc_page(start);
456 		rv = vm_map_find(map, NULL, 0, &addr, PAGE_SIZE, 0,
457 		    VMFS_NO_SPACE, prot, VM_PROT_ALL, 0);
458 		if (rv != KERN_SUCCESS)
459 			return (EINVAL);
460 	}
461 
462 	if (fd != -1) {
463 		struct pread_args r;
464 		r.fd = fd;
465 		r.buf = (void *) start;
466 		r.nbyte = end - start;
467 		r.offset = pos;
468 		return (sys_pread(td, &r));
469 	} else {
470 		while (start < end) {
471 			subyte((void *) start, 0);
472 			start++;
473 		}
474 		return (0);
475 	}
476 }
477 #endif
478 
479 int
480 freebsd32_mprotect(struct thread *td, struct freebsd32_mprotect_args *uap)
481 {
482 	struct mprotect_args ap;
483 
484 	ap.addr = PTRIN(uap->addr);
485 	ap.len = uap->len;
486 	ap.prot = uap->prot;
487 #if defined(__amd64__) || defined(__ia64__)
488 	if (i386_read_exec && (ap.prot & PROT_READ) != 0)
489 		ap.prot |= PROT_EXEC;
490 #endif
491 	return (sys_mprotect(td, &ap));
492 }
493 
494 int
495 freebsd32_mmap(struct thread *td, struct freebsd32_mmap_args *uap)
496 {
497 	struct mmap_args ap;
498 	vm_offset_t addr = (vm_offset_t) uap->addr;
499 	vm_size_t len	 = uap->len;
500 	int prot	 = uap->prot;
501 	int flags	 = uap->flags;
502 	int fd		 = uap->fd;
503 	off_t pos	 = PAIR32TO64(off_t,uap->pos);
504 #ifdef __ia64__
505 	vm_size_t pageoff;
506 	int error;
507 
508 	/*
509 	 * Attempt to handle page size hassles.
510 	 */
511 	pageoff = (pos & PAGE_MASK);
512 	if (flags & MAP_FIXED) {
513 		vm_offset_t start, end;
514 		start = addr;
515 		end = addr + len;
516 
517 		if (start != trunc_page(start)) {
518 			error = freebsd32_mmap_partial(td, start,
519 						       round_page(start), prot,
520 						       fd, pos);
521 			if (fd != -1)
522 				pos += round_page(start) - start;
523 			start = round_page(start);
524 		}
525 		if (end != round_page(end)) {
526 			vm_offset_t t = trunc_page(end);
527 			error = freebsd32_mmap_partial(td, t, end,
528 						  prot, fd,
529 						  pos + t - start);
530 			end = trunc_page(end);
531 		}
532 		if (end > start && fd != -1 && (pos & PAGE_MASK)) {
533 			/*
534 			 * We can't map this region at all. The specified
535 			 * address doesn't have the same alignment as the file
536 			 * position. Fake the mapping by simply reading the
537 			 * entire region into memory. First we need to make
538 			 * sure the region exists.
539 			 */
540 			vm_map_t map;
541 			struct pread_args r;
542 			int rv;
543 
544 			prot |= VM_PROT_WRITE;
545 			map = &td->td_proc->p_vmspace->vm_map;
546 			rv = vm_map_remove(map, start, end);
547 			if (rv != KERN_SUCCESS)
548 				return (EINVAL);
549 			rv = vm_map_find(map, NULL, 0, &start, end - start,
550 			    0, VMFS_NO_SPACE, prot, VM_PROT_ALL, 0);
551 			if (rv != KERN_SUCCESS)
552 				return (EINVAL);
553 			r.fd = fd;
554 			r.buf = (void *) start;
555 			r.nbyte = end - start;
556 			r.offset = pos;
557 			error = sys_pread(td, &r);
558 			if (error)
559 				return (error);
560 
561 			td->td_retval[0] = addr;
562 			return (0);
563 		}
564 		if (end == start) {
565 			/*
566 			 * After dealing with the ragged ends, there
567 			 * might be none left.
568 			 */
569 			td->td_retval[0] = addr;
570 			return (0);
571 		}
572 		addr = start;
573 		len = end - start;
574 	}
575 #endif
576 
577 #if defined(__amd64__) || defined(__ia64__)
578 	if (i386_read_exec && (prot & PROT_READ))
579 		prot |= PROT_EXEC;
580 #endif
581 
582 	ap.addr = (void *) addr;
583 	ap.len = len;
584 	ap.prot = prot;
585 	ap.flags = flags;
586 	ap.fd = fd;
587 	ap.pos = pos;
588 
589 	return (sys_mmap(td, &ap));
590 }
591 
592 #ifdef COMPAT_FREEBSD6
593 int
594 freebsd6_freebsd32_mmap(struct thread *td, struct freebsd6_freebsd32_mmap_args *uap)
595 {
596 	struct freebsd32_mmap_args ap;
597 
598 	ap.addr = uap->addr;
599 	ap.len = uap->len;
600 	ap.prot = uap->prot;
601 	ap.flags = uap->flags;
602 	ap.fd = uap->fd;
603 	ap.pos1 = uap->pos1;
604 	ap.pos2 = uap->pos2;
605 
606 	return (freebsd32_mmap(td, &ap));
607 }
608 #endif
609 
610 int
611 freebsd32_setitimer(struct thread *td, struct freebsd32_setitimer_args *uap)
612 {
613 	struct itimerval itv, oitv, *itvp;
614 	struct itimerval32 i32;
615 	int error;
616 
617 	if (uap->itv != NULL) {
618 		error = copyin(uap->itv, &i32, sizeof(i32));
619 		if (error)
620 			return (error);
621 		TV_CP(i32, itv, it_interval);
622 		TV_CP(i32, itv, it_value);
623 		itvp = &itv;
624 	} else
625 		itvp = NULL;
626 	error = kern_setitimer(td, uap->which, itvp, &oitv);
627 	if (error || uap->oitv == NULL)
628 		return (error);
629 	TV_CP(oitv, i32, it_interval);
630 	TV_CP(oitv, i32, it_value);
631 	return (copyout(&i32, uap->oitv, sizeof(i32)));
632 }
633 
634 int
635 freebsd32_getitimer(struct thread *td, struct freebsd32_getitimer_args *uap)
636 {
637 	struct itimerval itv;
638 	struct itimerval32 i32;
639 	int error;
640 
641 	error = kern_getitimer(td, uap->which, &itv);
642 	if (error || uap->itv == NULL)
643 		return (error);
644 	TV_CP(itv, i32, it_interval);
645 	TV_CP(itv, i32, it_value);
646 	return (copyout(&i32, uap->itv, sizeof(i32)));
647 }
648 
649 int
650 freebsd32_select(struct thread *td, struct freebsd32_select_args *uap)
651 {
652 	struct timeval32 tv32;
653 	struct timeval tv, *tvp;
654 	int error;
655 
656 	if (uap->tv != NULL) {
657 		error = copyin(uap->tv, &tv32, sizeof(tv32));
658 		if (error)
659 			return (error);
660 		CP(tv32, tv, tv_sec);
661 		CP(tv32, tv, tv_usec);
662 		tvp = &tv;
663 	} else
664 		tvp = NULL;
665 	/*
666 	 * XXX Do pointers need PTRIN()?
667 	 */
668 	return (kern_select(td, uap->nd, uap->in, uap->ou, uap->ex, tvp,
669 	    sizeof(int32_t) * 8));
670 }
671 
672 int
673 freebsd32_pselect(struct thread *td, struct freebsd32_pselect_args *uap)
674 {
675 	struct timespec32 ts32;
676 	struct timespec ts;
677 	struct timeval tv, *tvp;
678 	sigset_t set, *uset;
679 	int error;
680 
681 	if (uap->ts != NULL) {
682 		error = copyin(uap->ts, &ts32, sizeof(ts32));
683 		if (error != 0)
684 			return (error);
685 		CP(ts32, ts, tv_sec);
686 		CP(ts32, ts, tv_nsec);
687 		TIMESPEC_TO_TIMEVAL(&tv, &ts);
688 		tvp = &tv;
689 	} else
690 		tvp = NULL;
691 	if (uap->sm != NULL) {
692 		error = copyin(uap->sm, &set, sizeof(set));
693 		if (error != 0)
694 			return (error);
695 		uset = &set;
696 	} else
697 		uset = NULL;
698 	/*
699 	 * XXX Do pointers need PTRIN()?
700 	 */
701 	error = kern_pselect(td, uap->nd, uap->in, uap->ou, uap->ex, tvp,
702 	    uset, sizeof(int32_t) * 8);
703 	return (error);
704 }
705 
706 /*
707  * Copy 'count' items into the destination list pointed to by uap->eventlist.
708  */
709 static int
710 freebsd32_kevent_copyout(void *arg, struct kevent *kevp, int count)
711 {
712 	struct freebsd32_kevent_args *uap;
713 	struct kevent32	ks32[KQ_NEVENTS];
714 	int i, error = 0;
715 
716 	KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
717 	uap = (struct freebsd32_kevent_args *)arg;
718 
719 	for (i = 0; i < count; i++) {
720 		CP(kevp[i], ks32[i], ident);
721 		CP(kevp[i], ks32[i], filter);
722 		CP(kevp[i], ks32[i], flags);
723 		CP(kevp[i], ks32[i], fflags);
724 		CP(kevp[i], ks32[i], data);
725 		PTROUT_CP(kevp[i], ks32[i], udata);
726 	}
727 	error = copyout(ks32, uap->eventlist, count * sizeof *ks32);
728 	if (error == 0)
729 		uap->eventlist += count;
730 	return (error);
731 }
732 
733 /*
734  * Copy 'count' items from the list pointed to by uap->changelist.
735  */
736 static int
737 freebsd32_kevent_copyin(void *arg, struct kevent *kevp, int count)
738 {
739 	struct freebsd32_kevent_args *uap;
740 	struct kevent32	ks32[KQ_NEVENTS];
741 	int i, error = 0;
742 
743 	KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
744 	uap = (struct freebsd32_kevent_args *)arg;
745 
746 	error = copyin(uap->changelist, ks32, count * sizeof *ks32);
747 	if (error)
748 		goto done;
749 	uap->changelist += count;
750 
751 	for (i = 0; i < count; i++) {
752 		CP(ks32[i], kevp[i], ident);
753 		CP(ks32[i], kevp[i], filter);
754 		CP(ks32[i], kevp[i], flags);
755 		CP(ks32[i], kevp[i], fflags);
756 		CP(ks32[i], kevp[i], data);
757 		PTRIN_CP(ks32[i], kevp[i], udata);
758 	}
759 done:
760 	return (error);
761 }
762 
763 int
764 freebsd32_kevent(struct thread *td, struct freebsd32_kevent_args *uap)
765 {
766 	struct timespec32 ts32;
767 	struct timespec ts, *tsp;
768 	struct kevent_copyops k_ops = { uap,
769 					freebsd32_kevent_copyout,
770 					freebsd32_kevent_copyin};
771 	int error;
772 
773 
774 	if (uap->timeout) {
775 		error = copyin(uap->timeout, &ts32, sizeof(ts32));
776 		if (error)
777 			return (error);
778 		CP(ts32, ts, tv_sec);
779 		CP(ts32, ts, tv_nsec);
780 		tsp = &ts;
781 	} else
782 		tsp = NULL;
783 	error = kern_kevent(td, uap->fd, uap->nchanges, uap->nevents,
784 	    &k_ops, tsp);
785 	return (error);
786 }
787 
788 int
789 freebsd32_gettimeofday(struct thread *td,
790 		       struct freebsd32_gettimeofday_args *uap)
791 {
792 	struct timeval atv;
793 	struct timeval32 atv32;
794 	struct timezone rtz;
795 	int error = 0;
796 
797 	if (uap->tp) {
798 		microtime(&atv);
799 		CP(atv, atv32, tv_sec);
800 		CP(atv, atv32, tv_usec);
801 		error = copyout(&atv32, uap->tp, sizeof (atv32));
802 	}
803 	if (error == 0 && uap->tzp != NULL) {
804 		rtz.tz_minuteswest = tz_minuteswest;
805 		rtz.tz_dsttime = tz_dsttime;
806 		error = copyout(&rtz, uap->tzp, sizeof (rtz));
807 	}
808 	return (error);
809 }
810 
811 int
812 freebsd32_getrusage(struct thread *td, struct freebsd32_getrusage_args *uap)
813 {
814 	struct rusage32 s32;
815 	struct rusage s;
816 	int error;
817 
818 	error = kern_getrusage(td, uap->who, &s);
819 	if (error)
820 		return (error);
821 	if (uap->rusage != NULL) {
822 		freebsd32_rusage_out(&s, &s32);
823 		error = copyout(&s32, uap->rusage, sizeof(s32));
824 	}
825 	return (error);
826 }
827 
828 static int
829 freebsd32_copyinuio(struct iovec32 *iovp, u_int iovcnt, struct uio **uiop)
830 {
831 	struct iovec32 iov32;
832 	struct iovec *iov;
833 	struct uio *uio;
834 	u_int iovlen;
835 	int error, i;
836 
837 	*uiop = NULL;
838 	if (iovcnt > UIO_MAXIOV)
839 		return (EINVAL);
840 	iovlen = iovcnt * sizeof(struct iovec);
841 	uio = malloc(iovlen + sizeof *uio, M_IOV, M_WAITOK);
842 	iov = (struct iovec *)(uio + 1);
843 	for (i = 0; i < iovcnt; i++) {
844 		error = copyin(&iovp[i], &iov32, sizeof(struct iovec32));
845 		if (error) {
846 			free(uio, M_IOV);
847 			return (error);
848 		}
849 		iov[i].iov_base = PTRIN(iov32.iov_base);
850 		iov[i].iov_len = iov32.iov_len;
851 	}
852 	uio->uio_iov = iov;
853 	uio->uio_iovcnt = iovcnt;
854 	uio->uio_segflg = UIO_USERSPACE;
855 	uio->uio_offset = -1;
856 	uio->uio_resid = 0;
857 	for (i = 0; i < iovcnt; i++) {
858 		if (iov->iov_len > INT_MAX - uio->uio_resid) {
859 			free(uio, M_IOV);
860 			return (EINVAL);
861 		}
862 		uio->uio_resid += iov->iov_len;
863 		iov++;
864 	}
865 	*uiop = uio;
866 	return (0);
867 }
868 
869 int
870 freebsd32_readv(struct thread *td, struct freebsd32_readv_args *uap)
871 {
872 	struct uio *auio;
873 	int error;
874 
875 	error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio);
876 	if (error)
877 		return (error);
878 	error = kern_readv(td, uap->fd, auio);
879 	free(auio, M_IOV);
880 	return (error);
881 }
882 
883 int
884 freebsd32_writev(struct thread *td, struct freebsd32_writev_args *uap)
885 {
886 	struct uio *auio;
887 	int error;
888 
889 	error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio);
890 	if (error)
891 		return (error);
892 	error = kern_writev(td, uap->fd, auio);
893 	free(auio, M_IOV);
894 	return (error);
895 }
896 
897 int
898 freebsd32_preadv(struct thread *td, struct freebsd32_preadv_args *uap)
899 {
900 	struct uio *auio;
901 	int error;
902 
903 	error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio);
904 	if (error)
905 		return (error);
906 	error = kern_preadv(td, uap->fd, auio, PAIR32TO64(off_t,uap->offset));
907 	free(auio, M_IOV);
908 	return (error);
909 }
910 
911 int
912 freebsd32_pwritev(struct thread *td, struct freebsd32_pwritev_args *uap)
913 {
914 	struct uio *auio;
915 	int error;
916 
917 	error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio);
918 	if (error)
919 		return (error);
920 	error = kern_pwritev(td, uap->fd, auio, PAIR32TO64(off_t,uap->offset));
921 	free(auio, M_IOV);
922 	return (error);
923 }
924 
925 int
926 freebsd32_copyiniov(struct iovec32 *iovp32, u_int iovcnt, struct iovec **iovp,
927     int error)
928 {
929 	struct iovec32 iov32;
930 	struct iovec *iov;
931 	u_int iovlen;
932 	int i;
933 
934 	*iovp = NULL;
935 	if (iovcnt > UIO_MAXIOV)
936 		return (error);
937 	iovlen = iovcnt * sizeof(struct iovec);
938 	iov = malloc(iovlen, M_IOV, M_WAITOK);
939 	for (i = 0; i < iovcnt; i++) {
940 		error = copyin(&iovp32[i], &iov32, sizeof(struct iovec32));
941 		if (error) {
942 			free(iov, M_IOV);
943 			return (error);
944 		}
945 		iov[i].iov_base = PTRIN(iov32.iov_base);
946 		iov[i].iov_len = iov32.iov_len;
947 	}
948 	*iovp = iov;
949 	return (0);
950 }
951 
952 static int
953 freebsd32_copyinmsghdr(struct msghdr32 *msg32, struct msghdr *msg)
954 {
955 	struct msghdr32 m32;
956 	int error;
957 
958 	error = copyin(msg32, &m32, sizeof(m32));
959 	if (error)
960 		return (error);
961 	msg->msg_name = PTRIN(m32.msg_name);
962 	msg->msg_namelen = m32.msg_namelen;
963 	msg->msg_iov = PTRIN(m32.msg_iov);
964 	msg->msg_iovlen = m32.msg_iovlen;
965 	msg->msg_control = PTRIN(m32.msg_control);
966 	msg->msg_controllen = m32.msg_controllen;
967 	msg->msg_flags = m32.msg_flags;
968 	return (0);
969 }
970 
971 static int
972 freebsd32_copyoutmsghdr(struct msghdr *msg, struct msghdr32 *msg32)
973 {
974 	struct msghdr32 m32;
975 	int error;
976 
977 	m32.msg_name = PTROUT(msg->msg_name);
978 	m32.msg_namelen = msg->msg_namelen;
979 	m32.msg_iov = PTROUT(msg->msg_iov);
980 	m32.msg_iovlen = msg->msg_iovlen;
981 	m32.msg_control = PTROUT(msg->msg_control);
982 	m32.msg_controllen = msg->msg_controllen;
983 	m32.msg_flags = msg->msg_flags;
984 	error = copyout(&m32, msg32, sizeof(m32));
985 	return (error);
986 }
987 
988 #ifndef __mips__
989 #define FREEBSD32_ALIGNBYTES	(sizeof(int) - 1)
990 #else
991 #define FREEBSD32_ALIGNBYTES	(sizeof(long) - 1)
992 #endif
993 #define FREEBSD32_ALIGN(p)	\
994 	(((u_long)(p) + FREEBSD32_ALIGNBYTES) & ~FREEBSD32_ALIGNBYTES)
995 #define	FREEBSD32_CMSG_SPACE(l)	\
996 	(FREEBSD32_ALIGN(sizeof(struct cmsghdr)) + FREEBSD32_ALIGN(l))
997 
998 #define	FREEBSD32_CMSG_DATA(cmsg)	((unsigned char *)(cmsg) + \
999 				 FREEBSD32_ALIGN(sizeof(struct cmsghdr)))
1000 static int
1001 freebsd32_copy_msg_out(struct msghdr *msg, struct mbuf *control)
1002 {
1003 	struct cmsghdr *cm;
1004 	void *data;
1005 	socklen_t clen, datalen;
1006 	int error;
1007 	caddr_t ctlbuf;
1008 	int len, maxlen, copylen;
1009 	struct mbuf *m;
1010 	error = 0;
1011 
1012 	len    = msg->msg_controllen;
1013 	maxlen = msg->msg_controllen;
1014 	msg->msg_controllen = 0;
1015 
1016 	m = control;
1017 	ctlbuf = msg->msg_control;
1018 
1019 	while (m && len > 0) {
1020 		cm = mtod(m, struct cmsghdr *);
1021 		clen = m->m_len;
1022 
1023 		while (cm != NULL) {
1024 
1025 			if (sizeof(struct cmsghdr) > clen ||
1026 			    cm->cmsg_len > clen) {
1027 				error = EINVAL;
1028 				break;
1029 			}
1030 
1031 			data   = CMSG_DATA(cm);
1032 			datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data;
1033 
1034 			/* Adjust message length */
1035 			cm->cmsg_len = FREEBSD32_ALIGN(sizeof(struct cmsghdr)) +
1036 			    datalen;
1037 
1038 
1039 			/* Copy cmsghdr */
1040 			copylen = sizeof(struct cmsghdr);
1041 			if (len < copylen) {
1042 				msg->msg_flags |= MSG_CTRUNC;
1043 				copylen = len;
1044 			}
1045 
1046 			error = copyout(cm,ctlbuf,copylen);
1047 			if (error)
1048 				goto exit;
1049 
1050 			ctlbuf += FREEBSD32_ALIGN(copylen);
1051 			len    -= FREEBSD32_ALIGN(copylen);
1052 
1053 			if (len <= 0)
1054 				break;
1055 
1056 			/* Copy data */
1057 			copylen = datalen;
1058 			if (len < copylen) {
1059 				msg->msg_flags |= MSG_CTRUNC;
1060 				copylen = len;
1061 			}
1062 
1063 			error = copyout(data,ctlbuf,copylen);
1064 			if (error)
1065 				goto exit;
1066 
1067 			ctlbuf += FREEBSD32_ALIGN(copylen);
1068 			len    -= FREEBSD32_ALIGN(copylen);
1069 
1070 			if (CMSG_SPACE(datalen) < clen) {
1071 				clen -= CMSG_SPACE(datalen);
1072 				cm = (struct cmsghdr *)
1073 					((caddr_t)cm + CMSG_SPACE(datalen));
1074 			} else {
1075 				clen = 0;
1076 				cm = NULL;
1077 			}
1078 		}
1079 		m = m->m_next;
1080 	}
1081 
1082 	msg->msg_controllen = (len <= 0) ? maxlen :  ctlbuf - (caddr_t)msg->msg_control;
1083 
1084 exit:
1085 	return (error);
1086 
1087 }
1088 
1089 int
1090 freebsd32_recvmsg(td, uap)
1091 	struct thread *td;
1092 	struct freebsd32_recvmsg_args /* {
1093 		int	s;
1094 		struct	msghdr32 *msg;
1095 		int	flags;
1096 	} */ *uap;
1097 {
1098 	struct msghdr msg;
1099 	struct msghdr32 m32;
1100 	struct iovec *uiov, *iov;
1101 	struct mbuf *control = NULL;
1102 	struct mbuf **controlp;
1103 
1104 	int error;
1105 	error = copyin(uap->msg, &m32, sizeof(m32));
1106 	if (error)
1107 		return (error);
1108 	error = freebsd32_copyinmsghdr(uap->msg, &msg);
1109 	if (error)
1110 		return (error);
1111 	error = freebsd32_copyiniov(PTRIN(m32.msg_iov), m32.msg_iovlen, &iov,
1112 	    EMSGSIZE);
1113 	if (error)
1114 		return (error);
1115 	msg.msg_flags = uap->flags;
1116 	uiov = msg.msg_iov;
1117 	msg.msg_iov = iov;
1118 
1119 	controlp = (msg.msg_control != NULL) ?  &control : NULL;
1120 	error = kern_recvit(td, uap->s, &msg, UIO_USERSPACE, controlp);
1121 	if (error == 0) {
1122 		msg.msg_iov = uiov;
1123 
1124 		if (control != NULL)
1125 			error = freebsd32_copy_msg_out(&msg, control);
1126 		else
1127 			msg.msg_controllen = 0;
1128 
1129 		if (error == 0)
1130 			error = freebsd32_copyoutmsghdr(&msg, uap->msg);
1131 	}
1132 	free(iov, M_IOV);
1133 
1134 	if (control != NULL)
1135 		m_freem(control);
1136 
1137 	return (error);
1138 }
1139 
1140 
1141 static int
1142 freebsd32_convert_msg_in(struct mbuf **controlp)
1143 {
1144 	struct mbuf *control = *controlp;
1145 	struct cmsghdr *cm = mtod(control, struct cmsghdr *);
1146 	void *data;
1147 	socklen_t clen = control->m_len, datalen;
1148 	int error;
1149 
1150 	error = 0;
1151 	*controlp = NULL;
1152 
1153 	while (cm != NULL) {
1154 		if (sizeof(struct cmsghdr) > clen || cm->cmsg_len > clen) {
1155 			error = EINVAL;
1156 			break;
1157 		}
1158 
1159 		data = FREEBSD32_CMSG_DATA(cm);
1160 		datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data;
1161 
1162 		*controlp = sbcreatecontrol(data, datalen, cm->cmsg_type,
1163 		    cm->cmsg_level);
1164 		controlp = &(*controlp)->m_next;
1165 
1166 		if (FREEBSD32_CMSG_SPACE(datalen) < clen) {
1167 			clen -= FREEBSD32_CMSG_SPACE(datalen);
1168 			cm = (struct cmsghdr *)
1169 				((caddr_t)cm + FREEBSD32_CMSG_SPACE(datalen));
1170 		} else {
1171 			clen = 0;
1172 			cm = NULL;
1173 		}
1174 	}
1175 
1176 	m_freem(control);
1177 	return (error);
1178 }
1179 
1180 
1181 int
1182 freebsd32_sendmsg(struct thread *td,
1183 		  struct freebsd32_sendmsg_args *uap)
1184 {
1185 	struct msghdr msg;
1186 	struct msghdr32 m32;
1187 	struct iovec *iov;
1188 	struct mbuf *control = NULL;
1189 	struct sockaddr *to = NULL;
1190 	int error;
1191 
1192 	error = copyin(uap->msg, &m32, sizeof(m32));
1193 	if (error)
1194 		return (error);
1195 	error = freebsd32_copyinmsghdr(uap->msg, &msg);
1196 	if (error)
1197 		return (error);
1198 	error = freebsd32_copyiniov(PTRIN(m32.msg_iov), m32.msg_iovlen, &iov,
1199 	    EMSGSIZE);
1200 	if (error)
1201 		return (error);
1202 	msg.msg_iov = iov;
1203 	if (msg.msg_name != NULL) {
1204 		error = getsockaddr(&to, msg.msg_name, msg.msg_namelen);
1205 		if (error) {
1206 			to = NULL;
1207 			goto out;
1208 		}
1209 		msg.msg_name = to;
1210 	}
1211 
1212 	if (msg.msg_control) {
1213 		if (msg.msg_controllen < sizeof(struct cmsghdr)) {
1214 			error = EINVAL;
1215 			goto out;
1216 		}
1217 
1218 		error = sockargs(&control, msg.msg_control,
1219 		    msg.msg_controllen, MT_CONTROL);
1220 		if (error)
1221 			goto out;
1222 
1223 		error = freebsd32_convert_msg_in(&control);
1224 		if (error)
1225 			goto out;
1226 	}
1227 
1228 	error = kern_sendit(td, uap->s, &msg, uap->flags, control,
1229 	    UIO_USERSPACE);
1230 
1231 out:
1232 	free(iov, M_IOV);
1233 	if (to)
1234 		free(to, M_SONAME);
1235 	return (error);
1236 }
1237 
1238 int
1239 freebsd32_recvfrom(struct thread *td,
1240 		   struct freebsd32_recvfrom_args *uap)
1241 {
1242 	struct msghdr msg;
1243 	struct iovec aiov;
1244 	int error;
1245 
1246 	if (uap->fromlenaddr) {
1247 		error = copyin(PTRIN(uap->fromlenaddr), &msg.msg_namelen,
1248 		    sizeof(msg.msg_namelen));
1249 		if (error)
1250 			return (error);
1251 	} else {
1252 		msg.msg_namelen = 0;
1253 	}
1254 
1255 	msg.msg_name = PTRIN(uap->from);
1256 	msg.msg_iov = &aiov;
1257 	msg.msg_iovlen = 1;
1258 	aiov.iov_base = PTRIN(uap->buf);
1259 	aiov.iov_len = uap->len;
1260 	msg.msg_control = NULL;
1261 	msg.msg_flags = uap->flags;
1262 	error = kern_recvit(td, uap->s, &msg, UIO_USERSPACE, NULL);
1263 	if (error == 0 && uap->fromlenaddr)
1264 		error = copyout(&msg.msg_namelen, PTRIN(uap->fromlenaddr),
1265 		    sizeof (msg.msg_namelen));
1266 	return (error);
1267 }
1268 
1269 int
1270 freebsd32_settimeofday(struct thread *td,
1271 		       struct freebsd32_settimeofday_args *uap)
1272 {
1273 	struct timeval32 tv32;
1274 	struct timeval tv, *tvp;
1275 	struct timezone tz, *tzp;
1276 	int error;
1277 
1278 	if (uap->tv) {
1279 		error = copyin(uap->tv, &tv32, sizeof(tv32));
1280 		if (error)
1281 			return (error);
1282 		CP(tv32, tv, tv_sec);
1283 		CP(tv32, tv, tv_usec);
1284 		tvp = &tv;
1285 	} else
1286 		tvp = NULL;
1287 	if (uap->tzp) {
1288 		error = copyin(uap->tzp, &tz, sizeof(tz));
1289 		if (error)
1290 			return (error);
1291 		tzp = &tz;
1292 	} else
1293 		tzp = NULL;
1294 	return (kern_settimeofday(td, tvp, tzp));
1295 }
1296 
1297 int
1298 freebsd32_utimes(struct thread *td, struct freebsd32_utimes_args *uap)
1299 {
1300 	struct timeval32 s32[2];
1301 	struct timeval s[2], *sp;
1302 	int error;
1303 
1304 	if (uap->tptr != NULL) {
1305 		error = copyin(uap->tptr, s32, sizeof(s32));
1306 		if (error)
1307 			return (error);
1308 		CP(s32[0], s[0], tv_sec);
1309 		CP(s32[0], s[0], tv_usec);
1310 		CP(s32[1], s[1], tv_sec);
1311 		CP(s32[1], s[1], tv_usec);
1312 		sp = s;
1313 	} else
1314 		sp = NULL;
1315 	return (kern_utimes(td, uap->path, UIO_USERSPACE, sp, UIO_SYSSPACE));
1316 }
1317 
1318 int
1319 freebsd32_lutimes(struct thread *td, struct freebsd32_lutimes_args *uap)
1320 {
1321 	struct timeval32 s32[2];
1322 	struct timeval s[2], *sp;
1323 	int error;
1324 
1325 	if (uap->tptr != NULL) {
1326 		error = copyin(uap->tptr, s32, sizeof(s32));
1327 		if (error)
1328 			return (error);
1329 		CP(s32[0], s[0], tv_sec);
1330 		CP(s32[0], s[0], tv_usec);
1331 		CP(s32[1], s[1], tv_sec);
1332 		CP(s32[1], s[1], tv_usec);
1333 		sp = s;
1334 	} else
1335 		sp = NULL;
1336 	return (kern_lutimes(td, uap->path, UIO_USERSPACE, sp, UIO_SYSSPACE));
1337 }
1338 
1339 int
1340 freebsd32_futimes(struct thread *td, struct freebsd32_futimes_args *uap)
1341 {
1342 	struct timeval32 s32[2];
1343 	struct timeval s[2], *sp;
1344 	int error;
1345 
1346 	if (uap->tptr != NULL) {
1347 		error = copyin(uap->tptr, s32, sizeof(s32));
1348 		if (error)
1349 			return (error);
1350 		CP(s32[0], s[0], tv_sec);
1351 		CP(s32[0], s[0], tv_usec);
1352 		CP(s32[1], s[1], tv_sec);
1353 		CP(s32[1], s[1], tv_usec);
1354 		sp = s;
1355 	} else
1356 		sp = NULL;
1357 	return (kern_futimes(td, uap->fd, sp, UIO_SYSSPACE));
1358 }
1359 
1360 int
1361 freebsd32_futimesat(struct thread *td, struct freebsd32_futimesat_args *uap)
1362 {
1363 	struct timeval32 s32[2];
1364 	struct timeval s[2], *sp;
1365 	int error;
1366 
1367 	if (uap->times != NULL) {
1368 		error = copyin(uap->times, s32, sizeof(s32));
1369 		if (error)
1370 			return (error);
1371 		CP(s32[0], s[0], tv_sec);
1372 		CP(s32[0], s[0], tv_usec);
1373 		CP(s32[1], s[1], tv_sec);
1374 		CP(s32[1], s[1], tv_usec);
1375 		sp = s;
1376 	} else
1377 		sp = NULL;
1378 	return (kern_utimesat(td, uap->fd, uap->path, UIO_USERSPACE,
1379 		sp, UIO_SYSSPACE));
1380 }
1381 
1382 int
1383 freebsd32_adjtime(struct thread *td, struct freebsd32_adjtime_args *uap)
1384 {
1385 	struct timeval32 tv32;
1386 	struct timeval delta, olddelta, *deltap;
1387 	int error;
1388 
1389 	if (uap->delta) {
1390 		error = copyin(uap->delta, &tv32, sizeof(tv32));
1391 		if (error)
1392 			return (error);
1393 		CP(tv32, delta, tv_sec);
1394 		CP(tv32, delta, tv_usec);
1395 		deltap = &delta;
1396 	} else
1397 		deltap = NULL;
1398 	error = kern_adjtime(td, deltap, &olddelta);
1399 	if (uap->olddelta && error == 0) {
1400 		CP(olddelta, tv32, tv_sec);
1401 		CP(olddelta, tv32, tv_usec);
1402 		error = copyout(&tv32, uap->olddelta, sizeof(tv32));
1403 	}
1404 	return (error);
1405 }
1406 
1407 #ifdef COMPAT_FREEBSD4
1408 int
1409 freebsd4_freebsd32_statfs(struct thread *td, struct freebsd4_freebsd32_statfs_args *uap)
1410 {
1411 	struct statfs32 s32;
1412 	struct statfs s;
1413 	int error;
1414 
1415 	error = kern_statfs(td, uap->path, UIO_USERSPACE, &s);
1416 	if (error)
1417 		return (error);
1418 	copy_statfs(&s, &s32);
1419 	return (copyout(&s32, uap->buf, sizeof(s32)));
1420 }
1421 #endif
1422 
1423 #ifdef COMPAT_FREEBSD4
1424 int
1425 freebsd4_freebsd32_fstatfs(struct thread *td, struct freebsd4_freebsd32_fstatfs_args *uap)
1426 {
1427 	struct statfs32 s32;
1428 	struct statfs s;
1429 	int error;
1430 
1431 	error = kern_fstatfs(td, uap->fd, &s);
1432 	if (error)
1433 		return (error);
1434 	copy_statfs(&s, &s32);
1435 	return (copyout(&s32, uap->buf, sizeof(s32)));
1436 }
1437 #endif
1438 
1439 #ifdef COMPAT_FREEBSD4
1440 int
1441 freebsd4_freebsd32_fhstatfs(struct thread *td, struct freebsd4_freebsd32_fhstatfs_args *uap)
1442 {
1443 	struct statfs32 s32;
1444 	struct statfs s;
1445 	fhandle_t fh;
1446 	int error;
1447 
1448 	if ((error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t))) != 0)
1449 		return (error);
1450 	error = kern_fhstatfs(td, fh, &s);
1451 	if (error)
1452 		return (error);
1453 	copy_statfs(&s, &s32);
1454 	return (copyout(&s32, uap->buf, sizeof(s32)));
1455 }
1456 #endif
1457 
1458 int
1459 freebsd32_pread(struct thread *td, struct freebsd32_pread_args *uap)
1460 {
1461 	struct pread_args ap;
1462 
1463 	ap.fd = uap->fd;
1464 	ap.buf = uap->buf;
1465 	ap.nbyte = uap->nbyte;
1466 	ap.offset = PAIR32TO64(off_t,uap->offset);
1467 	return (sys_pread(td, &ap));
1468 }
1469 
1470 int
1471 freebsd32_pwrite(struct thread *td, struct freebsd32_pwrite_args *uap)
1472 {
1473 	struct pwrite_args ap;
1474 
1475 	ap.fd = uap->fd;
1476 	ap.buf = uap->buf;
1477 	ap.nbyte = uap->nbyte;
1478 	ap.offset = PAIR32TO64(off_t,uap->offset);
1479 	return (sys_pwrite(td, &ap));
1480 }
1481 
1482 #ifdef COMPAT_43
1483 int
1484 ofreebsd32_lseek(struct thread *td, struct ofreebsd32_lseek_args *uap)
1485 {
1486 	struct lseek_args nuap;
1487 
1488 	nuap.fd = uap->fd;
1489 	nuap.offset = uap->offset;
1490 	nuap.whence = uap->whence;
1491 	return (sys_lseek(td, &nuap));
1492 }
1493 #endif
1494 
1495 int
1496 freebsd32_lseek(struct thread *td, struct freebsd32_lseek_args *uap)
1497 {
1498 	int error;
1499 	struct lseek_args ap;
1500 	off_t pos;
1501 
1502 	ap.fd = uap->fd;
1503 	ap.offset = PAIR32TO64(off_t,uap->offset);
1504 	ap.whence = uap->whence;
1505 	error = sys_lseek(td, &ap);
1506 	/* Expand the quad return into two parts for eax and edx */
1507 	pos = *(off_t *)(td->td_retval);
1508 	td->td_retval[RETVAL_LO] = pos & 0xffffffff;	/* %eax */
1509 	td->td_retval[RETVAL_HI] = pos >> 32;		/* %edx */
1510 	return error;
1511 }
1512 
1513 int
1514 freebsd32_truncate(struct thread *td, struct freebsd32_truncate_args *uap)
1515 {
1516 	struct truncate_args ap;
1517 
1518 	ap.path = uap->path;
1519 	ap.length = PAIR32TO64(off_t,uap->length);
1520 	return (sys_truncate(td, &ap));
1521 }
1522 
1523 int
1524 freebsd32_ftruncate(struct thread *td, struct freebsd32_ftruncate_args *uap)
1525 {
1526 	struct ftruncate_args ap;
1527 
1528 	ap.fd = uap->fd;
1529 	ap.length = PAIR32TO64(off_t,uap->length);
1530 	return (sys_ftruncate(td, &ap));
1531 }
1532 
1533 #ifdef COMPAT_43
1534 int
1535 ofreebsd32_getdirentries(struct thread *td,
1536     struct ofreebsd32_getdirentries_args *uap)
1537 {
1538 	struct ogetdirentries_args ap;
1539 	int error;
1540 	long loff;
1541 	int32_t loff_cut;
1542 
1543 	ap.fd = uap->fd;
1544 	ap.buf = uap->buf;
1545 	ap.count = uap->count;
1546 	ap.basep = NULL;
1547 	error = kern_ogetdirentries(td, &ap, &loff);
1548 	if (error == 0) {
1549 		loff_cut = loff;
1550 		error = copyout(&loff_cut, uap->basep, sizeof(int32_t));
1551 	}
1552 	return (error);
1553 }
1554 #endif
1555 
1556 int
1557 freebsd32_getdirentries(struct thread *td,
1558     struct freebsd32_getdirentries_args *uap)
1559 {
1560 	long base;
1561 	int32_t base32;
1562 	int error;
1563 
1564 	error = kern_getdirentries(td, uap->fd, uap->buf, uap->count, &base,
1565 	    NULL, UIO_USERSPACE);
1566 	if (error)
1567 		return (error);
1568 	if (uap->basep != NULL) {
1569 		base32 = base;
1570 		error = copyout(&base32, uap->basep, sizeof(int32_t));
1571 	}
1572 	return (error);
1573 }
1574 
1575 #ifdef COMPAT_FREEBSD6
1576 /* versions with the 'int pad' argument */
1577 int
1578 freebsd6_freebsd32_pread(struct thread *td, struct freebsd6_freebsd32_pread_args *uap)
1579 {
1580 	struct pread_args ap;
1581 
1582 	ap.fd = uap->fd;
1583 	ap.buf = uap->buf;
1584 	ap.nbyte = uap->nbyte;
1585 	ap.offset = PAIR32TO64(off_t,uap->offset);
1586 	return (sys_pread(td, &ap));
1587 }
1588 
1589 int
1590 freebsd6_freebsd32_pwrite(struct thread *td, struct freebsd6_freebsd32_pwrite_args *uap)
1591 {
1592 	struct pwrite_args ap;
1593 
1594 	ap.fd = uap->fd;
1595 	ap.buf = uap->buf;
1596 	ap.nbyte = uap->nbyte;
1597 	ap.offset = PAIR32TO64(off_t,uap->offset);
1598 	return (sys_pwrite(td, &ap));
1599 }
1600 
1601 int
1602 freebsd6_freebsd32_lseek(struct thread *td, struct freebsd6_freebsd32_lseek_args *uap)
1603 {
1604 	int error;
1605 	struct lseek_args ap;
1606 	off_t pos;
1607 
1608 	ap.fd = uap->fd;
1609 	ap.offset = PAIR32TO64(off_t,uap->offset);
1610 	ap.whence = uap->whence;
1611 	error = sys_lseek(td, &ap);
1612 	/* Expand the quad return into two parts for eax and edx */
1613 	pos = *(off_t *)(td->td_retval);
1614 	td->td_retval[RETVAL_LO] = pos & 0xffffffff;	/* %eax */
1615 	td->td_retval[RETVAL_HI] = pos >> 32;		/* %edx */
1616 	return error;
1617 }
1618 
1619 int
1620 freebsd6_freebsd32_truncate(struct thread *td, struct freebsd6_freebsd32_truncate_args *uap)
1621 {
1622 	struct truncate_args ap;
1623 
1624 	ap.path = uap->path;
1625 	ap.length = PAIR32TO64(off_t,uap->length);
1626 	return (sys_truncate(td, &ap));
1627 }
1628 
1629 int
1630 freebsd6_freebsd32_ftruncate(struct thread *td, struct freebsd6_freebsd32_ftruncate_args *uap)
1631 {
1632 	struct ftruncate_args ap;
1633 
1634 	ap.fd = uap->fd;
1635 	ap.length = PAIR32TO64(off_t,uap->length);
1636 	return (sys_ftruncate(td, &ap));
1637 }
1638 #endif /* COMPAT_FREEBSD6 */
1639 
1640 struct sf_hdtr32 {
1641 	uint32_t headers;
1642 	int hdr_cnt;
1643 	uint32_t trailers;
1644 	int trl_cnt;
1645 };
1646 
1647 struct sf_hdtr_kq32 {
1648 	int kq_fd;
1649 	uint32_t kq_flags;
1650 	uint32_t kq_udata;	/* 32-bit void ptr */
1651 	uint32_t kq_ident;	/* 32-bit uintptr_t */
1652 };
1653 
1654 static int
1655 freebsd32_do_sendfile(struct thread *td,
1656     struct freebsd32_sendfile_args *uap, int compat)
1657 {
1658 	struct sf_hdtr32 hdtr32;
1659 	struct sf_hdtr hdtr;
1660 	struct sf_hdtr_kq32 hdtr_kq32;
1661 	struct sf_hdtr_kq hdtr_kq;
1662 	struct uio *hdr_uio, *trl_uio;
1663 	struct iovec32 *iov32;
1664 	off_t offset;
1665 	int error;
1666 	off_t sbytes;
1667 	struct sendfile_sync *sfs;
1668 	int do_kqueue = 0;
1669 
1670 	offset = PAIR32TO64(off_t, uap->offset);
1671 	if (offset < 0)
1672 		return (EINVAL);
1673 
1674 	hdr_uio = trl_uio = NULL;
1675 	sfs = NULL;
1676 
1677 	if (uap->hdtr != NULL) {
1678 		error = copyin(uap->hdtr, &hdtr32, sizeof(hdtr32));
1679 		if (error)
1680 			goto out;
1681 		PTRIN_CP(hdtr32, hdtr, headers);
1682 		CP(hdtr32, hdtr, hdr_cnt);
1683 		PTRIN_CP(hdtr32, hdtr, trailers);
1684 		CP(hdtr32, hdtr, trl_cnt);
1685 
1686 		if (hdtr.headers != NULL) {
1687 			iov32 = PTRIN(hdtr32.headers);
1688 			error = freebsd32_copyinuio(iov32,
1689 			    hdtr32.hdr_cnt, &hdr_uio);
1690 			if (error)
1691 				goto out;
1692 		}
1693 		if (hdtr.trailers != NULL) {
1694 			iov32 = PTRIN(hdtr32.trailers);
1695 			error = freebsd32_copyinuio(iov32,
1696 			    hdtr32.trl_cnt, &trl_uio);
1697 			if (error)
1698 				goto out;
1699 		}
1700 
1701 		/*
1702 		 * If SF_KQUEUE is set, then we need to also copy in
1703 		 * the kqueue data after the normal hdtr set and set do_kqueue=1.
1704 		 */
1705 		if (uap->flags & SF_KQUEUE) {
1706 			error = copyin(((char *) uap->hdtr) + sizeof(hdtr32),
1707 			    &hdtr_kq32,
1708 			    sizeof(hdtr_kq32));
1709 			if (error != 0)
1710 				goto out;
1711 
1712 			/* 32->64 bit fields */
1713 			CP(hdtr_kq32, hdtr_kq, kq_fd);
1714 			CP(hdtr_kq32, hdtr_kq, kq_flags);
1715 			PTRIN_CP(hdtr_kq32, hdtr_kq, kq_udata);
1716 			CP(hdtr_kq32, hdtr_kq, kq_ident);
1717 			do_kqueue = 1;
1718 		}
1719 	}
1720 
1721 
1722 	/* Call sendfile */
1723 	/* XXX stack depth! */
1724 	error = _do_sendfile(td, uap->fd, uap->s, uap->flags, compat,
1725 	    offset, uap->nbytes, &sbytes, hdr_uio, trl_uio, &hdtr_kq);
1726 
1727 	if (uap->sbytes != NULL)
1728 		copyout(&sbytes, uap->sbytes, sizeof(off_t));
1729 
1730 out:
1731 	if (hdr_uio)
1732 		free(hdr_uio, M_IOV);
1733 	if (trl_uio)
1734 		free(trl_uio, M_IOV);
1735 	return (error);
1736 }
1737 
1738 #ifdef COMPAT_FREEBSD4
1739 int
1740 freebsd4_freebsd32_sendfile(struct thread *td,
1741     struct freebsd4_freebsd32_sendfile_args *uap)
1742 {
1743 	return (freebsd32_do_sendfile(td,
1744 	    (struct freebsd32_sendfile_args *)uap, 1));
1745 }
1746 #endif
1747 
1748 int
1749 freebsd32_sendfile(struct thread *td, struct freebsd32_sendfile_args *uap)
1750 {
1751 
1752 	return (freebsd32_do_sendfile(td, uap, 0));
1753 }
1754 
1755 static void
1756 copy_stat(struct stat *in, struct stat32 *out)
1757 {
1758 
1759 	CP(*in, *out, st_dev);
1760 	CP(*in, *out, st_ino);
1761 	CP(*in, *out, st_mode);
1762 	CP(*in, *out, st_nlink);
1763 	CP(*in, *out, st_uid);
1764 	CP(*in, *out, st_gid);
1765 	CP(*in, *out, st_rdev);
1766 	TS_CP(*in, *out, st_atim);
1767 	TS_CP(*in, *out, st_mtim);
1768 	TS_CP(*in, *out, st_ctim);
1769 	CP(*in, *out, st_size);
1770 	CP(*in, *out, st_blocks);
1771 	CP(*in, *out, st_blksize);
1772 	CP(*in, *out, st_flags);
1773 	CP(*in, *out, st_gen);
1774 	TS_CP(*in, *out, st_birthtim);
1775 }
1776 
1777 #ifdef COMPAT_43
1778 static void
1779 copy_ostat(struct stat *in, struct ostat32 *out)
1780 {
1781 
1782 	CP(*in, *out, st_dev);
1783 	CP(*in, *out, st_ino);
1784 	CP(*in, *out, st_mode);
1785 	CP(*in, *out, st_nlink);
1786 	CP(*in, *out, st_uid);
1787 	CP(*in, *out, st_gid);
1788 	CP(*in, *out, st_rdev);
1789 	CP(*in, *out, st_size);
1790 	TS_CP(*in, *out, st_atim);
1791 	TS_CP(*in, *out, st_mtim);
1792 	TS_CP(*in, *out, st_ctim);
1793 	CP(*in, *out, st_blksize);
1794 	CP(*in, *out, st_blocks);
1795 	CP(*in, *out, st_flags);
1796 	CP(*in, *out, st_gen);
1797 }
1798 #endif
1799 
1800 int
1801 freebsd32_stat(struct thread *td, struct freebsd32_stat_args *uap)
1802 {
1803 	struct stat sb;
1804 	struct stat32 sb32;
1805 	int error;
1806 
1807 	error = kern_stat(td, uap->path, UIO_USERSPACE, &sb);
1808 	if (error)
1809 		return (error);
1810 	copy_stat(&sb, &sb32);
1811 	error = copyout(&sb32, uap->ub, sizeof (sb32));
1812 	return (error);
1813 }
1814 
1815 #ifdef COMPAT_43
1816 int
1817 ofreebsd32_stat(struct thread *td, struct ofreebsd32_stat_args *uap)
1818 {
1819 	struct stat sb;
1820 	struct ostat32 sb32;
1821 	int error;
1822 
1823 	error = kern_stat(td, uap->path, UIO_USERSPACE, &sb);
1824 	if (error)
1825 		return (error);
1826 	copy_ostat(&sb, &sb32);
1827 	error = copyout(&sb32, uap->ub, sizeof (sb32));
1828 	return (error);
1829 }
1830 #endif
1831 
1832 int
1833 freebsd32_fstat(struct thread *td, struct freebsd32_fstat_args *uap)
1834 {
1835 	struct stat ub;
1836 	struct stat32 ub32;
1837 	int error;
1838 
1839 	error = kern_fstat(td, uap->fd, &ub);
1840 	if (error)
1841 		return (error);
1842 	copy_stat(&ub, &ub32);
1843 	error = copyout(&ub32, uap->ub, sizeof(ub32));
1844 	return (error);
1845 }
1846 
1847 #ifdef COMPAT_43
1848 int
1849 ofreebsd32_fstat(struct thread *td, struct ofreebsd32_fstat_args *uap)
1850 {
1851 	struct stat ub;
1852 	struct ostat32 ub32;
1853 	int error;
1854 
1855 	error = kern_fstat(td, uap->fd, &ub);
1856 	if (error)
1857 		return (error);
1858 	copy_ostat(&ub, &ub32);
1859 	error = copyout(&ub32, uap->ub, sizeof(ub32));
1860 	return (error);
1861 }
1862 #endif
1863 
1864 int
1865 freebsd32_fstatat(struct thread *td, struct freebsd32_fstatat_args *uap)
1866 {
1867 	struct stat ub;
1868 	struct stat32 ub32;
1869 	int error;
1870 
1871 	error = kern_statat(td, uap->flag, uap->fd, uap->path, UIO_USERSPACE, &ub);
1872 	if (error)
1873 		return (error);
1874 	copy_stat(&ub, &ub32);
1875 	error = copyout(&ub32, uap->buf, sizeof(ub32));
1876 	return (error);
1877 }
1878 
1879 int
1880 freebsd32_lstat(struct thread *td, struct freebsd32_lstat_args *uap)
1881 {
1882 	struct stat sb;
1883 	struct stat32 sb32;
1884 	int error;
1885 
1886 	error = kern_lstat(td, uap->path, UIO_USERSPACE, &sb);
1887 	if (error)
1888 		return (error);
1889 	copy_stat(&sb, &sb32);
1890 	error = copyout(&sb32, uap->ub, sizeof (sb32));
1891 	return (error);
1892 }
1893 
1894 #ifdef COMPAT_43
1895 int
1896 ofreebsd32_lstat(struct thread *td, struct ofreebsd32_lstat_args *uap)
1897 {
1898 	struct stat sb;
1899 	struct ostat32 sb32;
1900 	int error;
1901 
1902 	error = kern_lstat(td, uap->path, UIO_USERSPACE, &sb);
1903 	if (error)
1904 		return (error);
1905 	copy_ostat(&sb, &sb32);
1906 	error = copyout(&sb32, uap->ub, sizeof (sb32));
1907 	return (error);
1908 }
1909 #endif
1910 
1911 int
1912 freebsd32_sysctl(struct thread *td, struct freebsd32_sysctl_args *uap)
1913 {
1914 	int error, name[CTL_MAXNAME];
1915 	size_t j, oldlen;
1916 
1917 	if (uap->namelen > CTL_MAXNAME || uap->namelen < 2)
1918 		return (EINVAL);
1919  	error = copyin(uap->name, name, uap->namelen * sizeof(int));
1920  	if (error)
1921 		return (error);
1922 	if (uap->oldlenp)
1923 		oldlen = fuword32(uap->oldlenp);
1924 	else
1925 		oldlen = 0;
1926 	error = userland_sysctl(td, name, uap->namelen,
1927 		uap->old, &oldlen, 1,
1928 		uap->new, uap->newlen, &j, SCTL_MASK32);
1929 	if (error && error != ENOMEM)
1930 		return (error);
1931 	if (uap->oldlenp)
1932 		suword32(uap->oldlenp, j);
1933 	return (0);
1934 }
1935 
1936 int
1937 freebsd32_jail(struct thread *td, struct freebsd32_jail_args *uap)
1938 {
1939 	uint32_t version;
1940 	int error;
1941 	struct jail j;
1942 
1943 	error = copyin(uap->jail, &version, sizeof(uint32_t));
1944 	if (error)
1945 		return (error);
1946 
1947 	switch (version) {
1948 	case 0:
1949 	{
1950 		/* FreeBSD single IPv4 jails. */
1951 		struct jail32_v0 j32_v0;
1952 
1953 		bzero(&j, sizeof(struct jail));
1954 		error = copyin(uap->jail, &j32_v0, sizeof(struct jail32_v0));
1955 		if (error)
1956 			return (error);
1957 		CP(j32_v0, j, version);
1958 		PTRIN_CP(j32_v0, j, path);
1959 		PTRIN_CP(j32_v0, j, hostname);
1960 		j.ip4s = htonl(j32_v0.ip_number);	/* jail_v0 is host order */
1961 		break;
1962 	}
1963 
1964 	case 1:
1965 		/*
1966 		 * Version 1 was used by multi-IPv4 jail implementations
1967 		 * that never made it into the official kernel.
1968 		 */
1969 		return (EINVAL);
1970 
1971 	case 2:	/* JAIL_API_VERSION */
1972 	{
1973 		/* FreeBSD multi-IPv4/IPv6,noIP jails. */
1974 		struct jail32 j32;
1975 
1976 		error = copyin(uap->jail, &j32, sizeof(struct jail32));
1977 		if (error)
1978 			return (error);
1979 		CP(j32, j, version);
1980 		PTRIN_CP(j32, j, path);
1981 		PTRIN_CP(j32, j, hostname);
1982 		PTRIN_CP(j32, j, jailname);
1983 		CP(j32, j, ip4s);
1984 		CP(j32, j, ip6s);
1985 		PTRIN_CP(j32, j, ip4);
1986 		PTRIN_CP(j32, j, ip6);
1987 		break;
1988 	}
1989 
1990 	default:
1991 		/* Sci-Fi jails are not supported, sorry. */
1992 		return (EINVAL);
1993 	}
1994 	return (kern_jail(td, &j));
1995 }
1996 
1997 int
1998 freebsd32_jail_set(struct thread *td, struct freebsd32_jail_set_args *uap)
1999 {
2000 	struct uio *auio;
2001 	int error;
2002 
2003 	/* Check that we have an even number of iovecs. */
2004 	if (uap->iovcnt & 1)
2005 		return (EINVAL);
2006 
2007 	error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio);
2008 	if (error)
2009 		return (error);
2010 	error = kern_jail_set(td, auio, uap->flags);
2011 	free(auio, M_IOV);
2012 	return (error);
2013 }
2014 
2015 int
2016 freebsd32_jail_get(struct thread *td, struct freebsd32_jail_get_args *uap)
2017 {
2018 	struct iovec32 iov32;
2019 	struct uio *auio;
2020 	int error, i;
2021 
2022 	/* Check that we have an even number of iovecs. */
2023 	if (uap->iovcnt & 1)
2024 		return (EINVAL);
2025 
2026 	error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio);
2027 	if (error)
2028 		return (error);
2029 	error = kern_jail_get(td, auio, uap->flags);
2030 	if (error == 0)
2031 		for (i = 0; i < uap->iovcnt; i++) {
2032 			PTROUT_CP(auio->uio_iov[i], iov32, iov_base);
2033 			CP(auio->uio_iov[i], iov32, iov_len);
2034 			error = copyout(&iov32, uap->iovp + i, sizeof(iov32));
2035 			if (error != 0)
2036 				break;
2037 		}
2038 	free(auio, M_IOV);
2039 	return (error);
2040 }
2041 
2042 int
2043 freebsd32_sigaction(struct thread *td, struct freebsd32_sigaction_args *uap)
2044 {
2045 	struct sigaction32 s32;
2046 	struct sigaction sa, osa, *sap;
2047 	int error;
2048 
2049 	if (uap->act) {
2050 		error = copyin(uap->act, &s32, sizeof(s32));
2051 		if (error)
2052 			return (error);
2053 		sa.sa_handler = PTRIN(s32.sa_u);
2054 		CP(s32, sa, sa_flags);
2055 		CP(s32, sa, sa_mask);
2056 		sap = &sa;
2057 	} else
2058 		sap = NULL;
2059 	error = kern_sigaction(td, uap->sig, sap, &osa, 0);
2060 	if (error == 0 && uap->oact != NULL) {
2061 		s32.sa_u = PTROUT(osa.sa_handler);
2062 		CP(osa, s32, sa_flags);
2063 		CP(osa, s32, sa_mask);
2064 		error = copyout(&s32, uap->oact, sizeof(s32));
2065 	}
2066 	return (error);
2067 }
2068 
2069 #ifdef COMPAT_FREEBSD4
2070 int
2071 freebsd4_freebsd32_sigaction(struct thread *td,
2072 			     struct freebsd4_freebsd32_sigaction_args *uap)
2073 {
2074 	struct sigaction32 s32;
2075 	struct sigaction sa, osa, *sap;
2076 	int error;
2077 
2078 	if (uap->act) {
2079 		error = copyin(uap->act, &s32, sizeof(s32));
2080 		if (error)
2081 			return (error);
2082 		sa.sa_handler = PTRIN(s32.sa_u);
2083 		CP(s32, sa, sa_flags);
2084 		CP(s32, sa, sa_mask);
2085 		sap = &sa;
2086 	} else
2087 		sap = NULL;
2088 	error = kern_sigaction(td, uap->sig, sap, &osa, KSA_FREEBSD4);
2089 	if (error == 0 && uap->oact != NULL) {
2090 		s32.sa_u = PTROUT(osa.sa_handler);
2091 		CP(osa, s32, sa_flags);
2092 		CP(osa, s32, sa_mask);
2093 		error = copyout(&s32, uap->oact, sizeof(s32));
2094 	}
2095 	return (error);
2096 }
2097 #endif
2098 
2099 #ifdef COMPAT_43
2100 struct osigaction32 {
2101 	u_int32_t	sa_u;
2102 	osigset_t	sa_mask;
2103 	int		sa_flags;
2104 };
2105 
2106 #define	ONSIG	32
2107 
2108 int
2109 ofreebsd32_sigaction(struct thread *td,
2110 			     struct ofreebsd32_sigaction_args *uap)
2111 {
2112 	struct osigaction32 s32;
2113 	struct sigaction sa, osa, *sap;
2114 	int error;
2115 
2116 	if (uap->signum <= 0 || uap->signum >= ONSIG)
2117 		return (EINVAL);
2118 
2119 	if (uap->nsa) {
2120 		error = copyin(uap->nsa, &s32, sizeof(s32));
2121 		if (error)
2122 			return (error);
2123 		sa.sa_handler = PTRIN(s32.sa_u);
2124 		CP(s32, sa, sa_flags);
2125 		OSIG2SIG(s32.sa_mask, sa.sa_mask);
2126 		sap = &sa;
2127 	} else
2128 		sap = NULL;
2129 	error = kern_sigaction(td, uap->signum, sap, &osa, KSA_OSIGSET);
2130 	if (error == 0 && uap->osa != NULL) {
2131 		s32.sa_u = PTROUT(osa.sa_handler);
2132 		CP(osa, s32, sa_flags);
2133 		SIG2OSIG(osa.sa_mask, s32.sa_mask);
2134 		error = copyout(&s32, uap->osa, sizeof(s32));
2135 	}
2136 	return (error);
2137 }
2138 
2139 int
2140 ofreebsd32_sigprocmask(struct thread *td,
2141 			       struct ofreebsd32_sigprocmask_args *uap)
2142 {
2143 	sigset_t set, oset;
2144 	int error;
2145 
2146 	OSIG2SIG(uap->mask, set);
2147 	error = kern_sigprocmask(td, uap->how, &set, &oset, SIGPROCMASK_OLD);
2148 	SIG2OSIG(oset, td->td_retval[0]);
2149 	return (error);
2150 }
2151 
2152 int
2153 ofreebsd32_sigpending(struct thread *td,
2154 			      struct ofreebsd32_sigpending_args *uap)
2155 {
2156 	struct proc *p = td->td_proc;
2157 	sigset_t siglist;
2158 
2159 	PROC_LOCK(p);
2160 	siglist = p->p_siglist;
2161 	SIGSETOR(siglist, td->td_siglist);
2162 	PROC_UNLOCK(p);
2163 	SIG2OSIG(siglist, td->td_retval[0]);
2164 	return (0);
2165 }
2166 
2167 struct sigvec32 {
2168 	u_int32_t	sv_handler;
2169 	int		sv_mask;
2170 	int		sv_flags;
2171 };
2172 
2173 int
2174 ofreebsd32_sigvec(struct thread *td,
2175 			  struct ofreebsd32_sigvec_args *uap)
2176 {
2177 	struct sigvec32 vec;
2178 	struct sigaction sa, osa, *sap;
2179 	int error;
2180 
2181 	if (uap->signum <= 0 || uap->signum >= ONSIG)
2182 		return (EINVAL);
2183 
2184 	if (uap->nsv) {
2185 		error = copyin(uap->nsv, &vec, sizeof(vec));
2186 		if (error)
2187 			return (error);
2188 		sa.sa_handler = PTRIN(vec.sv_handler);
2189 		OSIG2SIG(vec.sv_mask, sa.sa_mask);
2190 		sa.sa_flags = vec.sv_flags;
2191 		sa.sa_flags ^= SA_RESTART;
2192 		sap = &sa;
2193 	} else
2194 		sap = NULL;
2195 	error = kern_sigaction(td, uap->signum, sap, &osa, KSA_OSIGSET);
2196 	if (error == 0 && uap->osv != NULL) {
2197 		vec.sv_handler = PTROUT(osa.sa_handler);
2198 		SIG2OSIG(osa.sa_mask, vec.sv_mask);
2199 		vec.sv_flags = osa.sa_flags;
2200 		vec.sv_flags &= ~SA_NOCLDWAIT;
2201 		vec.sv_flags ^= SA_RESTART;
2202 		error = copyout(&vec, uap->osv, sizeof(vec));
2203 	}
2204 	return (error);
2205 }
2206 
2207 int
2208 ofreebsd32_sigblock(struct thread *td,
2209 			    struct ofreebsd32_sigblock_args *uap)
2210 {
2211 	sigset_t set, oset;
2212 
2213 	OSIG2SIG(uap->mask, set);
2214 	kern_sigprocmask(td, SIG_BLOCK, &set, &oset, 0);
2215 	SIG2OSIG(oset, td->td_retval[0]);
2216 	return (0);
2217 }
2218 
2219 int
2220 ofreebsd32_sigsetmask(struct thread *td,
2221 			      struct ofreebsd32_sigsetmask_args *uap)
2222 {
2223 	sigset_t set, oset;
2224 
2225 	OSIG2SIG(uap->mask, set);
2226 	kern_sigprocmask(td, SIG_SETMASK, &set, &oset, 0);
2227 	SIG2OSIG(oset, td->td_retval[0]);
2228 	return (0);
2229 }
2230 
2231 int
2232 ofreebsd32_sigsuspend(struct thread *td,
2233 			      struct ofreebsd32_sigsuspend_args *uap)
2234 {
2235 	sigset_t mask;
2236 
2237 	OSIG2SIG(uap->mask, mask);
2238 	return (kern_sigsuspend(td, mask));
2239 }
2240 
2241 struct sigstack32 {
2242 	u_int32_t	ss_sp;
2243 	int		ss_onstack;
2244 };
2245 
2246 int
2247 ofreebsd32_sigstack(struct thread *td,
2248 			    struct ofreebsd32_sigstack_args *uap)
2249 {
2250 	struct sigstack32 s32;
2251 	struct sigstack nss, oss;
2252 	int error = 0, unss;
2253 
2254 	if (uap->nss != NULL) {
2255 		error = copyin(uap->nss, &s32, sizeof(s32));
2256 		if (error)
2257 			return (error);
2258 		nss.ss_sp = PTRIN(s32.ss_sp);
2259 		CP(s32, nss, ss_onstack);
2260 		unss = 1;
2261 	} else {
2262 		unss = 0;
2263 	}
2264 	oss.ss_sp = td->td_sigstk.ss_sp;
2265 	oss.ss_onstack = sigonstack(cpu_getstack(td));
2266 	if (unss) {
2267 		td->td_sigstk.ss_sp = nss.ss_sp;
2268 		td->td_sigstk.ss_size = 0;
2269 		td->td_sigstk.ss_flags |= (nss.ss_onstack & SS_ONSTACK);
2270 		td->td_pflags |= TDP_ALTSTACK;
2271 	}
2272 	if (uap->oss != NULL) {
2273 		s32.ss_sp = PTROUT(oss.ss_sp);
2274 		CP(oss, s32, ss_onstack);
2275 		error = copyout(&s32, uap->oss, sizeof(s32));
2276 	}
2277 	return (error);
2278 }
2279 #endif
2280 
2281 int
2282 freebsd32_nanosleep(struct thread *td, struct freebsd32_nanosleep_args *uap)
2283 {
2284 	struct timespec32 rmt32, rqt32;
2285 	struct timespec rmt, rqt;
2286 	int error;
2287 
2288 	error = copyin(uap->rqtp, &rqt32, sizeof(rqt32));
2289 	if (error)
2290 		return (error);
2291 
2292 	CP(rqt32, rqt, tv_sec);
2293 	CP(rqt32, rqt, tv_nsec);
2294 
2295 	if (uap->rmtp &&
2296 	    !useracc((caddr_t)uap->rmtp, sizeof(rmt), VM_PROT_WRITE))
2297 		return (EFAULT);
2298 	error = kern_nanosleep(td, &rqt, &rmt);
2299 	if (error && uap->rmtp) {
2300 		int error2;
2301 
2302 		CP(rmt, rmt32, tv_sec);
2303 		CP(rmt, rmt32, tv_nsec);
2304 
2305 		error2 = copyout(&rmt32, uap->rmtp, sizeof(rmt32));
2306 		if (error2)
2307 			error = error2;
2308 	}
2309 	return (error);
2310 }
2311 
2312 int
2313 freebsd32_clock_gettime(struct thread *td,
2314 			struct freebsd32_clock_gettime_args *uap)
2315 {
2316 	struct timespec	ats;
2317 	struct timespec32 ats32;
2318 	int error;
2319 
2320 	error = kern_clock_gettime(td, uap->clock_id, &ats);
2321 	if (error == 0) {
2322 		CP(ats, ats32, tv_sec);
2323 		CP(ats, ats32, tv_nsec);
2324 		error = copyout(&ats32, uap->tp, sizeof(ats32));
2325 	}
2326 	return (error);
2327 }
2328 
2329 int
2330 freebsd32_clock_settime(struct thread *td,
2331 			struct freebsd32_clock_settime_args *uap)
2332 {
2333 	struct timespec	ats;
2334 	struct timespec32 ats32;
2335 	int error;
2336 
2337 	error = copyin(uap->tp, &ats32, sizeof(ats32));
2338 	if (error)
2339 		return (error);
2340 	CP(ats32, ats, tv_sec);
2341 	CP(ats32, ats, tv_nsec);
2342 
2343 	return (kern_clock_settime(td, uap->clock_id, &ats));
2344 }
2345 
2346 int
2347 freebsd32_clock_getres(struct thread *td,
2348 		       struct freebsd32_clock_getres_args *uap)
2349 {
2350 	struct timespec	ts;
2351 	struct timespec32 ts32;
2352 	int error;
2353 
2354 	if (uap->tp == NULL)
2355 		return (0);
2356 	error = kern_clock_getres(td, uap->clock_id, &ts);
2357 	if (error == 0) {
2358 		CP(ts, ts32, tv_sec);
2359 		CP(ts, ts32, tv_nsec);
2360 		error = copyout(&ts32, uap->tp, sizeof(ts32));
2361 	}
2362 	return (error);
2363 }
2364 
2365 int freebsd32_ktimer_create(struct thread *td,
2366     struct freebsd32_ktimer_create_args *uap)
2367 {
2368 	struct sigevent32 ev32;
2369 	struct sigevent ev, *evp;
2370 	int error, id;
2371 
2372 	if (uap->evp == NULL) {
2373 		evp = NULL;
2374 	} else {
2375 		evp = &ev;
2376 		error = copyin(uap->evp, &ev32, sizeof(ev32));
2377 		if (error != 0)
2378 			return (error);
2379 		error = convert_sigevent32(&ev32, &ev);
2380 		if (error != 0)
2381 			return (error);
2382 	}
2383 	error = kern_ktimer_create(td, uap->clock_id, evp, &id, -1);
2384 	if (error == 0) {
2385 		error = copyout(&id, uap->timerid, sizeof(int));
2386 		if (error != 0)
2387 			kern_ktimer_delete(td, id);
2388 	}
2389 	return (error);
2390 }
2391 
2392 int
2393 freebsd32_ktimer_settime(struct thread *td,
2394     struct freebsd32_ktimer_settime_args *uap)
2395 {
2396 	struct itimerspec32 val32, oval32;
2397 	struct itimerspec val, oval, *ovalp;
2398 	int error;
2399 
2400 	error = copyin(uap->value, &val32, sizeof(val32));
2401 	if (error != 0)
2402 		return (error);
2403 	ITS_CP(val32, val);
2404 	ovalp = uap->ovalue != NULL ? &oval : NULL;
2405 	error = kern_ktimer_settime(td, uap->timerid, uap->flags, &val, ovalp);
2406 	if (error == 0 && uap->ovalue != NULL) {
2407 		ITS_CP(oval, oval32);
2408 		error = copyout(&oval32, uap->ovalue, sizeof(oval32));
2409 	}
2410 	return (error);
2411 }
2412 
2413 int
2414 freebsd32_ktimer_gettime(struct thread *td,
2415     struct freebsd32_ktimer_gettime_args *uap)
2416 {
2417 	struct itimerspec32 val32;
2418 	struct itimerspec val;
2419 	int error;
2420 
2421 	error = kern_ktimer_gettime(td, uap->timerid, &val);
2422 	if (error == 0) {
2423 		ITS_CP(val, val32);
2424 		error = copyout(&val32, uap->value, sizeof(val32));
2425 	}
2426 	return (error);
2427 }
2428 
2429 int
2430 freebsd32_clock_getcpuclockid2(struct thread *td,
2431     struct freebsd32_clock_getcpuclockid2_args *uap)
2432 {
2433 	clockid_t clk_id;
2434 	int error;
2435 
2436 	error = kern_clock_getcpuclockid2(td, PAIR32TO64(id_t, uap->id),
2437 	    uap->which, &clk_id);
2438 	if (error == 0)
2439 		error = copyout(&clk_id, uap->clock_id, sizeof(clockid_t));
2440 	return (error);
2441 }
2442 
2443 int
2444 freebsd32_thr_new(struct thread *td,
2445 		  struct freebsd32_thr_new_args *uap)
2446 {
2447 	struct thr_param32 param32;
2448 	struct thr_param param;
2449 	int error;
2450 
2451 	if (uap->param_size < 0 ||
2452 	    uap->param_size > sizeof(struct thr_param32))
2453 		return (EINVAL);
2454 	bzero(&param, sizeof(struct thr_param));
2455 	bzero(&param32, sizeof(struct thr_param32));
2456 	error = copyin(uap->param, &param32, uap->param_size);
2457 	if (error != 0)
2458 		return (error);
2459 	param.start_func = PTRIN(param32.start_func);
2460 	param.arg = PTRIN(param32.arg);
2461 	param.stack_base = PTRIN(param32.stack_base);
2462 	param.stack_size = param32.stack_size;
2463 	param.tls_base = PTRIN(param32.tls_base);
2464 	param.tls_size = param32.tls_size;
2465 	param.child_tid = PTRIN(param32.child_tid);
2466 	param.parent_tid = PTRIN(param32.parent_tid);
2467 	param.flags = param32.flags;
2468 	param.rtp = PTRIN(param32.rtp);
2469 	param.spare[0] = PTRIN(param32.spare[0]);
2470 	param.spare[1] = PTRIN(param32.spare[1]);
2471 	param.spare[2] = PTRIN(param32.spare[2]);
2472 
2473 	return (kern_thr_new(td, &param));
2474 }
2475 
2476 int
2477 freebsd32_thr_suspend(struct thread *td, struct freebsd32_thr_suspend_args *uap)
2478 {
2479 	struct timespec32 ts32;
2480 	struct timespec ts, *tsp;
2481 	int error;
2482 
2483 	error = 0;
2484 	tsp = NULL;
2485 	if (uap->timeout != NULL) {
2486 		error = copyin((const void *)uap->timeout, (void *)&ts32,
2487 		    sizeof(struct timespec32));
2488 		if (error != 0)
2489 			return (error);
2490 		ts.tv_sec = ts32.tv_sec;
2491 		ts.tv_nsec = ts32.tv_nsec;
2492 		tsp = &ts;
2493 	}
2494 	return (kern_thr_suspend(td, tsp));
2495 }
2496 
2497 void
2498 siginfo_to_siginfo32(const siginfo_t *src, struct siginfo32 *dst)
2499 {
2500 	bzero(dst, sizeof(*dst));
2501 	dst->si_signo = src->si_signo;
2502 	dst->si_errno = src->si_errno;
2503 	dst->si_code = src->si_code;
2504 	dst->si_pid = src->si_pid;
2505 	dst->si_uid = src->si_uid;
2506 	dst->si_status = src->si_status;
2507 	dst->si_addr = (uintptr_t)src->si_addr;
2508 	dst->si_value.sival_int = src->si_value.sival_int;
2509 	dst->si_timerid = src->si_timerid;
2510 	dst->si_overrun = src->si_overrun;
2511 }
2512 
2513 int
2514 freebsd32_sigtimedwait(struct thread *td, struct freebsd32_sigtimedwait_args *uap)
2515 {
2516 	struct timespec32 ts32;
2517 	struct timespec ts;
2518 	struct timespec *timeout;
2519 	sigset_t set;
2520 	ksiginfo_t ksi;
2521 	struct siginfo32 si32;
2522 	int error;
2523 
2524 	if (uap->timeout) {
2525 		error = copyin(uap->timeout, &ts32, sizeof(ts32));
2526 		if (error)
2527 			return (error);
2528 		ts.tv_sec = ts32.tv_sec;
2529 		ts.tv_nsec = ts32.tv_nsec;
2530 		timeout = &ts;
2531 	} else
2532 		timeout = NULL;
2533 
2534 	error = copyin(uap->set, &set, sizeof(set));
2535 	if (error)
2536 		return (error);
2537 
2538 	error = kern_sigtimedwait(td, set, &ksi, timeout);
2539 	if (error)
2540 		return (error);
2541 
2542 	if (uap->info) {
2543 		siginfo_to_siginfo32(&ksi.ksi_info, &si32);
2544 		error = copyout(&si32, uap->info, sizeof(struct siginfo32));
2545 	}
2546 
2547 	if (error == 0)
2548 		td->td_retval[0] = ksi.ksi_signo;
2549 	return (error);
2550 }
2551 
2552 /*
2553  * MPSAFE
2554  */
2555 int
2556 freebsd32_sigwaitinfo(struct thread *td, struct freebsd32_sigwaitinfo_args *uap)
2557 {
2558 	ksiginfo_t ksi;
2559 	struct siginfo32 si32;
2560 	sigset_t set;
2561 	int error;
2562 
2563 	error = copyin(uap->set, &set, sizeof(set));
2564 	if (error)
2565 		return (error);
2566 
2567 	error = kern_sigtimedwait(td, set, &ksi, NULL);
2568 	if (error)
2569 		return (error);
2570 
2571 	if (uap->info) {
2572 		siginfo_to_siginfo32(&ksi.ksi_info, &si32);
2573 		error = copyout(&si32, uap->info, sizeof(struct siginfo32));
2574 	}
2575 	if (error == 0)
2576 		td->td_retval[0] = ksi.ksi_signo;
2577 	return (error);
2578 }
2579 
2580 int
2581 freebsd32_cpuset_setid(struct thread *td,
2582     struct freebsd32_cpuset_setid_args *uap)
2583 {
2584 	struct cpuset_setid_args ap;
2585 
2586 	ap.which = uap->which;
2587 	ap.id = PAIR32TO64(id_t,uap->id);
2588 	ap.setid = uap->setid;
2589 
2590 	return (sys_cpuset_setid(td, &ap));
2591 }
2592 
2593 int
2594 freebsd32_cpuset_getid(struct thread *td,
2595     struct freebsd32_cpuset_getid_args *uap)
2596 {
2597 	struct cpuset_getid_args ap;
2598 
2599 	ap.level = uap->level;
2600 	ap.which = uap->which;
2601 	ap.id = PAIR32TO64(id_t,uap->id);
2602 	ap.setid = uap->setid;
2603 
2604 	return (sys_cpuset_getid(td, &ap));
2605 }
2606 
2607 int
2608 freebsd32_cpuset_getaffinity(struct thread *td,
2609     struct freebsd32_cpuset_getaffinity_args *uap)
2610 {
2611 	struct cpuset_getaffinity_args ap;
2612 
2613 	ap.level = uap->level;
2614 	ap.which = uap->which;
2615 	ap.id = PAIR32TO64(id_t,uap->id);
2616 	ap.cpusetsize = uap->cpusetsize;
2617 	ap.mask = uap->mask;
2618 
2619 	return (sys_cpuset_getaffinity(td, &ap));
2620 }
2621 
2622 int
2623 freebsd32_cpuset_setaffinity(struct thread *td,
2624     struct freebsd32_cpuset_setaffinity_args *uap)
2625 {
2626 	struct cpuset_setaffinity_args ap;
2627 
2628 	ap.level = uap->level;
2629 	ap.which = uap->which;
2630 	ap.id = PAIR32TO64(id_t,uap->id);
2631 	ap.cpusetsize = uap->cpusetsize;
2632 	ap.mask = uap->mask;
2633 
2634 	return (sys_cpuset_setaffinity(td, &ap));
2635 }
2636 
2637 int
2638 freebsd32_nmount(struct thread *td,
2639     struct freebsd32_nmount_args /* {
2640     	struct iovec *iovp;
2641     	unsigned int iovcnt;
2642     	int flags;
2643     } */ *uap)
2644 {
2645 	struct uio *auio;
2646 	uint64_t flags;
2647 	int error;
2648 
2649 	/*
2650 	 * Mount flags are now 64-bits. On 32-bit archtectures only
2651 	 * 32-bits are passed in, but from here on everything handles
2652 	 * 64-bit flags correctly.
2653 	 */
2654 	flags = uap->flags;
2655 
2656 	AUDIT_ARG_FFLAGS(flags);
2657 
2658 	/*
2659 	 * Filter out MNT_ROOTFS.  We do not want clients of nmount() in
2660 	 * userspace to set this flag, but we must filter it out if we want
2661 	 * MNT_UPDATE on the root file system to work.
2662 	 * MNT_ROOTFS should only be set by the kernel when mounting its
2663 	 * root file system.
2664 	 */
2665 	flags &= ~MNT_ROOTFS;
2666 
2667 	/*
2668 	 * check that we have an even number of iovec's
2669 	 * and that we have at least two options.
2670 	 */
2671 	if ((uap->iovcnt & 1) || (uap->iovcnt < 4))
2672 		return (EINVAL);
2673 
2674 	error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio);
2675 	if (error)
2676 		return (error);
2677 	error = vfs_donmount(td, flags, auio);
2678 
2679 	free(auio, M_IOV);
2680 	return error;
2681 }
2682 
2683 #if 0
2684 int
2685 freebsd32_xxx(struct thread *td, struct freebsd32_xxx_args *uap)
2686 {
2687 	struct yyy32 *p32, s32;
2688 	struct yyy *p = NULL, s;
2689 	struct xxx_arg ap;
2690 	int error;
2691 
2692 	if (uap->zzz) {
2693 		error = copyin(uap->zzz, &s32, sizeof(s32));
2694 		if (error)
2695 			return (error);
2696 		/* translate in */
2697 		p = &s;
2698 	}
2699 	error = kern_xxx(td, p);
2700 	if (error)
2701 		return (error);
2702 	if (uap->zzz) {
2703 		/* translate out */
2704 		error = copyout(&s32, p32, sizeof(s32));
2705 	}
2706 	return (error);
2707 }
2708 #endif
2709 
2710 int
2711 syscall32_register(int *offset, struct sysent *new_sysent,
2712     struct sysent *old_sysent)
2713 {
2714 	if (*offset == NO_SYSCALL) {
2715 		int i;
2716 
2717 		for (i = 1; i < SYS_MAXSYSCALL; ++i)
2718 			if (freebsd32_sysent[i].sy_call ==
2719 			    (sy_call_t *)lkmnosys)
2720 				break;
2721 		if (i == SYS_MAXSYSCALL)
2722 			return (ENFILE);
2723 		*offset = i;
2724 	} else if (*offset < 0 || *offset >= SYS_MAXSYSCALL)
2725 		return (EINVAL);
2726 	else if (freebsd32_sysent[*offset].sy_call != (sy_call_t *)lkmnosys &&
2727 	    freebsd32_sysent[*offset].sy_call != (sy_call_t *)lkmressys)
2728 		return (EEXIST);
2729 
2730 	*old_sysent = freebsd32_sysent[*offset];
2731 	freebsd32_sysent[*offset] = *new_sysent;
2732 	return 0;
2733 }
2734 
2735 int
2736 syscall32_deregister(int *offset, struct sysent *old_sysent)
2737 {
2738 
2739 	if (*offset)
2740 		freebsd32_sysent[*offset] = *old_sysent;
2741 	return 0;
2742 }
2743 
2744 int
2745 syscall32_module_handler(struct module *mod, int what, void *arg)
2746 {
2747 	struct syscall_module_data *data = (struct syscall_module_data*)arg;
2748 	modspecific_t ms;
2749 	int error;
2750 
2751 	switch (what) {
2752 	case MOD_LOAD:
2753 		error = syscall32_register(data->offset, data->new_sysent,
2754 		    &data->old_sysent);
2755 		if (error) {
2756 			/* Leave a mark so we know to safely unload below. */
2757 			data->offset = NULL;
2758 			return error;
2759 		}
2760 		ms.intval = *data->offset;
2761 		MOD_XLOCK;
2762 		module_setspecific(mod, &ms);
2763 		MOD_XUNLOCK;
2764 		if (data->chainevh)
2765 			error = data->chainevh(mod, what, data->chainarg);
2766 		return (error);
2767 	case MOD_UNLOAD:
2768 		/*
2769 		 * MOD_LOAD failed, so just return without calling the
2770 		 * chained handler since we didn't pass along the MOD_LOAD
2771 		 * event.
2772 		 */
2773 		if (data->offset == NULL)
2774 			return (0);
2775 		if (data->chainevh) {
2776 			error = data->chainevh(mod, what, data->chainarg);
2777 			if (error)
2778 				return (error);
2779 		}
2780 		error = syscall32_deregister(data->offset, &data->old_sysent);
2781 		return (error);
2782 	default:
2783 		error = EOPNOTSUPP;
2784 		if (data->chainevh)
2785 			error = data->chainevh(mod, what, data->chainarg);
2786 		return (error);
2787 	}
2788 }
2789 
2790 int
2791 syscall32_helper_register(struct syscall_helper_data *sd)
2792 {
2793 	struct syscall_helper_data *sd1;
2794 	int error;
2795 
2796 	for (sd1 = sd; sd1->syscall_no != NO_SYSCALL; sd1++) {
2797 		error = syscall32_register(&sd1->syscall_no, &sd1->new_sysent,
2798 		    &sd1->old_sysent);
2799 		if (error != 0) {
2800 			syscall32_helper_unregister(sd);
2801 			return (error);
2802 		}
2803 		sd1->registered = 1;
2804 	}
2805 	return (0);
2806 }
2807 
2808 int
2809 syscall32_helper_unregister(struct syscall_helper_data *sd)
2810 {
2811 	struct syscall_helper_data *sd1;
2812 
2813 	for (sd1 = sd; sd1->registered != 0; sd1++) {
2814 		syscall32_deregister(&sd1->syscall_no, &sd1->old_sysent);
2815 		sd1->registered = 0;
2816 	}
2817 	return (0);
2818 }
2819 
2820 register_t *
2821 freebsd32_copyout_strings(struct image_params *imgp)
2822 {
2823 	int argc, envc, i;
2824 	u_int32_t *vectp;
2825 	char *stringp, *destp;
2826 	u_int32_t *stack_base;
2827 	struct freebsd32_ps_strings *arginfo;
2828 	char canary[sizeof(long) * 8];
2829 	int32_t pagesizes32[MAXPAGESIZES];
2830 	size_t execpath_len;
2831 	int szsigcode;
2832 
2833 	/*
2834 	 * Calculate string base and vector table pointers.
2835 	 * Also deal with signal trampoline code for this exec type.
2836 	 */
2837 	if (imgp->execpath != NULL && imgp->auxargs != NULL)
2838 		execpath_len = strlen(imgp->execpath) + 1;
2839 	else
2840 		execpath_len = 0;
2841 	arginfo = (struct freebsd32_ps_strings *)curproc->p_sysent->
2842 	    sv_psstrings;
2843 	if (imgp->proc->p_sysent->sv_sigcode_base == 0)
2844 		szsigcode = *(imgp->proc->p_sysent->sv_szsigcode);
2845 	else
2846 		szsigcode = 0;
2847 	destp =	(caddr_t)arginfo - szsigcode - SPARE_USRSPACE -
2848 	    roundup(execpath_len, sizeof(char *)) -
2849 	    roundup(sizeof(canary), sizeof(char *)) -
2850 	    roundup(sizeof(pagesizes32), sizeof(char *)) -
2851 	    roundup((ARG_MAX - imgp->args->stringspace), sizeof(char *));
2852 
2853 	/*
2854 	 * install sigcode
2855 	 */
2856 	if (szsigcode != 0)
2857 		copyout(imgp->proc->p_sysent->sv_sigcode,
2858 			((caddr_t)arginfo - szsigcode), szsigcode);
2859 
2860 	/*
2861 	 * Copy the image path for the rtld.
2862 	 */
2863 	if (execpath_len != 0) {
2864 		imgp->execpathp = (uintptr_t)arginfo - szsigcode - execpath_len;
2865 		copyout(imgp->execpath, (void *)imgp->execpathp,
2866 		    execpath_len);
2867 	}
2868 
2869 	/*
2870 	 * Prepare the canary for SSP.
2871 	 */
2872 	arc4rand(canary, sizeof(canary), 0);
2873 	imgp->canary = (uintptr_t)arginfo - szsigcode - execpath_len -
2874 	    sizeof(canary);
2875 	copyout(canary, (void *)imgp->canary, sizeof(canary));
2876 	imgp->canarylen = sizeof(canary);
2877 
2878 	/*
2879 	 * Prepare the pagesizes array.
2880 	 */
2881 	for (i = 0; i < MAXPAGESIZES; i++)
2882 		pagesizes32[i] = (uint32_t)pagesizes[i];
2883 	imgp->pagesizes = (uintptr_t)arginfo - szsigcode - execpath_len -
2884 	    roundup(sizeof(canary), sizeof(char *)) - sizeof(pagesizes32);
2885 	copyout(pagesizes32, (void *)imgp->pagesizes, sizeof(pagesizes32));
2886 	imgp->pagesizeslen = sizeof(pagesizes32);
2887 
2888 	/*
2889 	 * If we have a valid auxargs ptr, prepare some room
2890 	 * on the stack.
2891 	 */
2892 	if (imgp->auxargs) {
2893 		/*
2894 		 * 'AT_COUNT*2' is size for the ELF Auxargs data. This is for
2895 		 * lower compatibility.
2896 		 */
2897 		imgp->auxarg_size = (imgp->auxarg_size) ? imgp->auxarg_size
2898 			: (AT_COUNT * 2);
2899 		/*
2900 		 * The '+ 2' is for the null pointers at the end of each of
2901 		 * the arg and env vector sets,and imgp->auxarg_size is room
2902 		 * for argument of Runtime loader.
2903 		 */
2904 		vectp = (u_int32_t *) (destp - (imgp->args->argc +
2905 		    imgp->args->envc + 2 + imgp->auxarg_size + execpath_len) *
2906 		    sizeof(u_int32_t));
2907 	} else
2908 		/*
2909 		 * The '+ 2' is for the null pointers at the end of each of
2910 		 * the arg and env vector sets
2911 		 */
2912 		vectp = (u_int32_t *)
2913 			(destp - (imgp->args->argc + imgp->args->envc + 2) * sizeof(u_int32_t));
2914 
2915 	/*
2916 	 * vectp also becomes our initial stack base
2917 	 */
2918 	stack_base = vectp;
2919 
2920 	stringp = imgp->args->begin_argv;
2921 	argc = imgp->args->argc;
2922 	envc = imgp->args->envc;
2923 	/*
2924 	 * Copy out strings - arguments and environment.
2925 	 */
2926 	copyout(stringp, destp, ARG_MAX - imgp->args->stringspace);
2927 
2928 	/*
2929 	 * Fill in "ps_strings" struct for ps, w, etc.
2930 	 */
2931 	suword32(&arginfo->ps_argvstr, (u_int32_t)(intptr_t)vectp);
2932 	suword32(&arginfo->ps_nargvstr, argc);
2933 
2934 	/*
2935 	 * Fill in argument portion of vector table.
2936 	 */
2937 	for (; argc > 0; --argc) {
2938 		suword32(vectp++, (u_int32_t)(intptr_t)destp);
2939 		while (*stringp++ != 0)
2940 			destp++;
2941 		destp++;
2942 	}
2943 
2944 	/* a null vector table pointer separates the argp's from the envp's */
2945 	suword32(vectp++, 0);
2946 
2947 	suword32(&arginfo->ps_envstr, (u_int32_t)(intptr_t)vectp);
2948 	suword32(&arginfo->ps_nenvstr, envc);
2949 
2950 	/*
2951 	 * Fill in environment portion of vector table.
2952 	 */
2953 	for (; envc > 0; --envc) {
2954 		suword32(vectp++, (u_int32_t)(intptr_t)destp);
2955 		while (*stringp++ != 0)
2956 			destp++;
2957 		destp++;
2958 	}
2959 
2960 	/* end of vector table is a null pointer */
2961 	suword32(vectp, 0);
2962 
2963 	return ((register_t *)stack_base);
2964 }
2965 
2966 int
2967 freebsd32_kldstat(struct thread *td, struct freebsd32_kldstat_args *uap)
2968 {
2969 	struct kld_file_stat stat;
2970 	struct kld32_file_stat stat32;
2971 	int error, version;
2972 
2973 	if ((error = copyin(&uap->stat->version, &version, sizeof(version)))
2974 	    != 0)
2975 		return (error);
2976 	if (version != sizeof(struct kld32_file_stat_1) &&
2977 	    version != sizeof(struct kld32_file_stat))
2978 		return (EINVAL);
2979 
2980 	error = kern_kldstat(td, uap->fileid, &stat);
2981 	if (error != 0)
2982 		return (error);
2983 
2984 	bcopy(&stat.name[0], &stat32.name[0], sizeof(stat.name));
2985 	CP(stat, stat32, refs);
2986 	CP(stat, stat32, id);
2987 	PTROUT_CP(stat, stat32, address);
2988 	CP(stat, stat32, size);
2989 	bcopy(&stat.pathname[0], &stat32.pathname[0], sizeof(stat.pathname));
2990 	return (copyout(&stat32, uap->stat, version));
2991 }
2992 
2993 int
2994 freebsd32_posix_fallocate(struct thread *td,
2995     struct freebsd32_posix_fallocate_args *uap)
2996 {
2997 
2998 	td->td_retval[0] = kern_posix_fallocate(td, uap->fd,
2999 	    PAIR32TO64(off_t, uap->offset), PAIR32TO64(off_t, uap->len));
3000 	return (0);
3001 }
3002 
3003 int
3004 freebsd32_posix_fadvise(struct thread *td,
3005     struct freebsd32_posix_fadvise_args *uap)
3006 {
3007 
3008 	td->td_retval[0] = kern_posix_fadvise(td, uap->fd,
3009 	    PAIR32TO64(off_t, uap->offset), PAIR32TO64(off_t, uap->len),
3010 	    uap->advice);
3011 	return (0);
3012 }
3013 
3014 int
3015 convert_sigevent32(struct sigevent32 *sig32, struct sigevent *sig)
3016 {
3017 
3018 	CP(*sig32, *sig, sigev_notify);
3019 	switch (sig->sigev_notify) {
3020 	case SIGEV_NONE:
3021 		break;
3022 	case SIGEV_THREAD_ID:
3023 		CP(*sig32, *sig, sigev_notify_thread_id);
3024 		/* FALLTHROUGH */
3025 	case SIGEV_SIGNAL:
3026 		CP(*sig32, *sig, sigev_signo);
3027 		PTRIN_CP(*sig32, *sig, sigev_value.sival_ptr);
3028 		break;
3029 	case SIGEV_KEVENT:
3030 		CP(*sig32, *sig, sigev_notify_kqueue);
3031 		CP(*sig32, *sig, sigev_notify_kevent_flags);
3032 		PTRIN_CP(*sig32, *sig, sigev_value.sival_ptr);
3033 		break;
3034 	default:
3035 		return (EINVAL);
3036 	}
3037 	return (0);
3038 }
3039 
3040 int
3041 freebsd32_procctl(struct thread *td, struct freebsd32_procctl_args *uap)
3042 {
3043 	void *data;
3044 	int error, flags;
3045 
3046 	switch (uap->com) {
3047 	case PROC_SPROTECT:
3048 		error = copyin(PTRIN(uap->data), &flags, sizeof(flags));
3049 		if (error)
3050 			return (error);
3051 		data = &flags;
3052 		break;
3053 	default:
3054 		return (EINVAL);
3055 	}
3056 	return (kern_procctl(td, uap->idtype, PAIR32TO64(id_t, uap->id),
3057 	    uap->com, data));
3058 }
3059