1 /*- 2 * Copyright (c) 2002 Doug Rabson 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include "opt_compat.h" 31 #include "opt_inet.h" 32 #include "opt_inet6.h" 33 34 #define __ELF_WORD_SIZE 32 35 36 #include <sys/param.h> 37 #include <sys/bus.h> 38 #include <sys/clock.h> 39 #include <sys/exec.h> 40 #include <sys/fcntl.h> 41 #include <sys/filedesc.h> 42 #include <sys/imgact.h> 43 #include <sys/jail.h> 44 #include <sys/kernel.h> 45 #include <sys/limits.h> 46 #include <sys/linker.h> 47 #include <sys/lock.h> 48 #include <sys/malloc.h> 49 #include <sys/file.h> /* Must come after sys/malloc.h */ 50 #include <sys/imgact.h> 51 #include <sys/mbuf.h> 52 #include <sys/mman.h> 53 #include <sys/module.h> 54 #include <sys/mount.h> 55 #include <sys/mutex.h> 56 #include <sys/namei.h> 57 #include <sys/proc.h> 58 #include <sys/reboot.h> 59 #include <sys/resource.h> 60 #include <sys/resourcevar.h> 61 #include <sys/selinfo.h> 62 #include <sys/eventvar.h> /* Must come after sys/selinfo.h */ 63 #include <sys/pipe.h> /* Must come after sys/selinfo.h */ 64 #include <sys/signal.h> 65 #include <sys/signalvar.h> 66 #include <sys/socket.h> 67 #include <sys/socketvar.h> 68 #include <sys/stat.h> 69 #include <sys/syscall.h> 70 #include <sys/syscallsubr.h> 71 #include <sys/sysctl.h> 72 #include <sys/sysent.h> 73 #include <sys/sysproto.h> 74 #include <sys/systm.h> 75 #include <sys/thr.h> 76 #include <sys/unistd.h> 77 #include <sys/ucontext.h> 78 #include <sys/vnode.h> 79 #include <sys/wait.h> 80 #include <sys/ipc.h> 81 #include <sys/msg.h> 82 #include <sys/sem.h> 83 #include <sys/shm.h> 84 85 #ifdef INET 86 #include <netinet/in.h> 87 #endif 88 89 #include <vm/vm.h> 90 #include <vm/vm_param.h> 91 #include <vm/pmap.h> 92 #include <vm/vm_map.h> 93 #include <vm/vm_object.h> 94 #include <vm/vm_extern.h> 95 96 #include <machine/cpu.h> 97 #include <machine/elf.h> 98 99 #include <security/audit/audit.h> 100 101 #include <compat/freebsd32/freebsd32_util.h> 102 #include <compat/freebsd32/freebsd32.h> 103 #include <compat/freebsd32/freebsd32_ipc.h> 104 #include <compat/freebsd32/freebsd32_signal.h> 105 #include <compat/freebsd32/freebsd32_proto.h> 106 107 CTASSERT(sizeof(struct timeval32) == 8); 108 CTASSERT(sizeof(struct timespec32) == 8); 109 CTASSERT(sizeof(struct itimerval32) == 16); 110 CTASSERT(sizeof(struct statfs32) == 256); 111 CTASSERT(sizeof(struct rusage32) == 72); 112 CTASSERT(sizeof(struct sigaltstack32) == 12); 113 CTASSERT(sizeof(struct kevent32) == 20); 114 CTASSERT(sizeof(struct iovec32) == 8); 115 CTASSERT(sizeof(struct msghdr32) == 28); 116 CTASSERT(sizeof(struct stat32) == 96); 117 CTASSERT(sizeof(struct sigaction32) == 24); 118 119 static int freebsd32_kevent_copyout(void *arg, struct kevent *kevp, int count); 120 static int freebsd32_kevent_copyin(void *arg, struct kevent *kevp, int count); 121 122 #if BYTE_ORDER == BIG_ENDIAN 123 #define PAIR32TO64(type, name) ((name ## 2) | ((type)(name ## 1) << 32)) 124 #define RETVAL_HI 0 125 #define RETVAL_LO 1 126 #else 127 #define PAIR32TO64(type, name) ((name ## 1) | ((type)(name ## 2) << 32)) 128 #define RETVAL_HI 1 129 #define RETVAL_LO 0 130 #endif 131 132 void 133 freebsd32_rusage_out(const struct rusage *s, struct rusage32 *s32) 134 { 135 136 TV_CP(*s, *s32, ru_utime); 137 TV_CP(*s, *s32, ru_stime); 138 CP(*s, *s32, ru_maxrss); 139 CP(*s, *s32, ru_ixrss); 140 CP(*s, *s32, ru_idrss); 141 CP(*s, *s32, ru_isrss); 142 CP(*s, *s32, ru_minflt); 143 CP(*s, *s32, ru_majflt); 144 CP(*s, *s32, ru_nswap); 145 CP(*s, *s32, ru_inblock); 146 CP(*s, *s32, ru_oublock); 147 CP(*s, *s32, ru_msgsnd); 148 CP(*s, *s32, ru_msgrcv); 149 CP(*s, *s32, ru_nsignals); 150 CP(*s, *s32, ru_nvcsw); 151 CP(*s, *s32, ru_nivcsw); 152 } 153 154 int 155 freebsd32_wait4(struct thread *td, struct freebsd32_wait4_args *uap) 156 { 157 int error, status; 158 struct rusage32 ru32; 159 struct rusage ru, *rup; 160 161 if (uap->rusage != NULL) 162 rup = &ru; 163 else 164 rup = NULL; 165 error = kern_wait(td, uap->pid, &status, uap->options, rup); 166 if (error) 167 return (error); 168 if (uap->status != NULL) 169 error = copyout(&status, uap->status, sizeof(status)); 170 if (uap->rusage != NULL && error == 0) { 171 freebsd32_rusage_out(&ru, &ru32); 172 error = copyout(&ru32, uap->rusage, sizeof(ru32)); 173 } 174 return (error); 175 } 176 177 #ifdef COMPAT_FREEBSD4 178 static void 179 copy_statfs(struct statfs *in, struct statfs32 *out) 180 { 181 182 statfs_scale_blocks(in, INT32_MAX); 183 bzero(out, sizeof(*out)); 184 CP(*in, *out, f_bsize); 185 out->f_iosize = MIN(in->f_iosize, INT32_MAX); 186 CP(*in, *out, f_blocks); 187 CP(*in, *out, f_bfree); 188 CP(*in, *out, f_bavail); 189 out->f_files = MIN(in->f_files, INT32_MAX); 190 out->f_ffree = MIN(in->f_ffree, INT32_MAX); 191 CP(*in, *out, f_fsid); 192 CP(*in, *out, f_owner); 193 CP(*in, *out, f_type); 194 CP(*in, *out, f_flags); 195 out->f_syncwrites = MIN(in->f_syncwrites, INT32_MAX); 196 out->f_asyncwrites = MIN(in->f_asyncwrites, INT32_MAX); 197 strlcpy(out->f_fstypename, 198 in->f_fstypename, MFSNAMELEN); 199 strlcpy(out->f_mntonname, 200 in->f_mntonname, min(MNAMELEN, FREEBSD4_MNAMELEN)); 201 out->f_syncreads = MIN(in->f_syncreads, INT32_MAX); 202 out->f_asyncreads = MIN(in->f_asyncreads, INT32_MAX); 203 strlcpy(out->f_mntfromname, 204 in->f_mntfromname, min(MNAMELEN, FREEBSD4_MNAMELEN)); 205 } 206 #endif 207 208 #ifdef COMPAT_FREEBSD4 209 int 210 freebsd4_freebsd32_getfsstat(struct thread *td, struct freebsd4_freebsd32_getfsstat_args *uap) 211 { 212 struct statfs *buf, *sp; 213 struct statfs32 stat32; 214 size_t count, size; 215 int error; 216 217 count = uap->bufsize / sizeof(struct statfs32); 218 size = count * sizeof(struct statfs); 219 error = kern_getfsstat(td, &buf, size, UIO_SYSSPACE, uap->flags); 220 if (size > 0) { 221 count = td->td_retval[0]; 222 sp = buf; 223 while (count > 0 && error == 0) { 224 copy_statfs(sp, &stat32); 225 error = copyout(&stat32, uap->buf, sizeof(stat32)); 226 sp++; 227 uap->buf++; 228 count--; 229 } 230 free(buf, M_TEMP); 231 } 232 return (error); 233 } 234 #endif 235 236 int 237 freebsd32_sigaltstack(struct thread *td, 238 struct freebsd32_sigaltstack_args *uap) 239 { 240 struct sigaltstack32 s32; 241 struct sigaltstack ss, oss, *ssp; 242 int error; 243 244 if (uap->ss != NULL) { 245 error = copyin(uap->ss, &s32, sizeof(s32)); 246 if (error) 247 return (error); 248 PTRIN_CP(s32, ss, ss_sp); 249 CP(s32, ss, ss_size); 250 CP(s32, ss, ss_flags); 251 ssp = &ss; 252 } else 253 ssp = NULL; 254 error = kern_sigaltstack(td, ssp, &oss); 255 if (error == 0 && uap->oss != NULL) { 256 PTROUT_CP(oss, s32, ss_sp); 257 CP(oss, s32, ss_size); 258 CP(oss, s32, ss_flags); 259 error = copyout(&s32, uap->oss, sizeof(s32)); 260 } 261 return (error); 262 } 263 264 /* 265 * Custom version of exec_copyin_args() so that we can translate 266 * the pointers. 267 */ 268 int 269 freebsd32_exec_copyin_args(struct image_args *args, char *fname, 270 enum uio_seg segflg, u_int32_t *argv, u_int32_t *envv) 271 { 272 char *argp, *envp; 273 u_int32_t *p32, arg; 274 size_t length; 275 int error; 276 277 bzero(args, sizeof(*args)); 278 if (argv == NULL) 279 return (EFAULT); 280 281 /* 282 * Allocate demand-paged memory for the file name, argument, and 283 * environment strings. 284 */ 285 error = exec_alloc_args(args); 286 if (error != 0) 287 return (error); 288 289 /* 290 * Copy the file name. 291 */ 292 if (fname != NULL) { 293 args->fname = args->buf; 294 error = (segflg == UIO_SYSSPACE) ? 295 copystr(fname, args->fname, PATH_MAX, &length) : 296 copyinstr(fname, args->fname, PATH_MAX, &length); 297 if (error != 0) 298 goto err_exit; 299 } else 300 length = 0; 301 302 args->begin_argv = args->buf + length; 303 args->endp = args->begin_argv; 304 args->stringspace = ARG_MAX; 305 306 /* 307 * extract arguments first 308 */ 309 p32 = argv; 310 for (;;) { 311 error = copyin(p32++, &arg, sizeof(arg)); 312 if (error) 313 goto err_exit; 314 if (arg == 0) 315 break; 316 argp = PTRIN(arg); 317 error = copyinstr(argp, args->endp, args->stringspace, &length); 318 if (error) { 319 if (error == ENAMETOOLONG) 320 error = E2BIG; 321 goto err_exit; 322 } 323 args->stringspace -= length; 324 args->endp += length; 325 args->argc++; 326 } 327 328 args->begin_envv = args->endp; 329 330 /* 331 * extract environment strings 332 */ 333 if (envv) { 334 p32 = envv; 335 for (;;) { 336 error = copyin(p32++, &arg, sizeof(arg)); 337 if (error) 338 goto err_exit; 339 if (arg == 0) 340 break; 341 envp = PTRIN(arg); 342 error = copyinstr(envp, args->endp, args->stringspace, 343 &length); 344 if (error) { 345 if (error == ENAMETOOLONG) 346 error = E2BIG; 347 goto err_exit; 348 } 349 args->stringspace -= length; 350 args->endp += length; 351 args->envc++; 352 } 353 } 354 355 return (0); 356 357 err_exit: 358 exec_free_args(args); 359 return (error); 360 } 361 362 int 363 freebsd32_execve(struct thread *td, struct freebsd32_execve_args *uap) 364 { 365 struct image_args eargs; 366 int error; 367 368 error = freebsd32_exec_copyin_args(&eargs, uap->fname, UIO_USERSPACE, 369 uap->argv, uap->envv); 370 if (error == 0) 371 error = kern_execve(td, &eargs, NULL); 372 return (error); 373 } 374 375 int 376 freebsd32_fexecve(struct thread *td, struct freebsd32_fexecve_args *uap) 377 { 378 struct image_args eargs; 379 int error; 380 381 error = freebsd32_exec_copyin_args(&eargs, NULL, UIO_SYSSPACE, 382 uap->argv, uap->envv); 383 if (error == 0) { 384 eargs.fd = uap->fd; 385 error = kern_execve(td, &eargs, NULL); 386 } 387 return (error); 388 } 389 390 #ifdef __ia64__ 391 static int 392 freebsd32_mmap_partial(struct thread *td, vm_offset_t start, vm_offset_t end, 393 int prot, int fd, off_t pos) 394 { 395 vm_map_t map; 396 vm_map_entry_t entry; 397 int rv; 398 399 map = &td->td_proc->p_vmspace->vm_map; 400 if (fd != -1) 401 prot |= VM_PROT_WRITE; 402 403 if (vm_map_lookup_entry(map, start, &entry)) { 404 if ((entry->protection & prot) != prot) { 405 rv = vm_map_protect(map, 406 trunc_page(start), 407 round_page(end), 408 entry->protection | prot, 409 FALSE); 410 if (rv != KERN_SUCCESS) 411 return (EINVAL); 412 } 413 } else { 414 vm_offset_t addr = trunc_page(start); 415 rv = vm_map_find(map, 0, 0, 416 &addr, PAGE_SIZE, FALSE, prot, 417 VM_PROT_ALL, 0); 418 if (rv != KERN_SUCCESS) 419 return (EINVAL); 420 } 421 422 if (fd != -1) { 423 struct pread_args r; 424 r.fd = fd; 425 r.buf = (void *) start; 426 r.nbyte = end - start; 427 r.offset = pos; 428 return (sys_pread(td, &r)); 429 } else { 430 while (start < end) { 431 subyte((void *) start, 0); 432 start++; 433 } 434 return (0); 435 } 436 } 437 #endif 438 439 int 440 freebsd32_mprotect(struct thread *td, struct freebsd32_mprotect_args *uap) 441 { 442 struct mprotect_args ap; 443 444 ap.addr = PTRIN(uap->addr); 445 ap.len = uap->len; 446 ap.prot = uap->prot; 447 #if defined(__amd64__) || defined(__ia64__) 448 if (i386_read_exec && (ap.prot & PROT_READ) != 0) 449 ap.prot |= PROT_EXEC; 450 #endif 451 return (sys_mprotect(td, &ap)); 452 } 453 454 int 455 freebsd32_mmap(struct thread *td, struct freebsd32_mmap_args *uap) 456 { 457 struct mmap_args ap; 458 vm_offset_t addr = (vm_offset_t) uap->addr; 459 vm_size_t len = uap->len; 460 int prot = uap->prot; 461 int flags = uap->flags; 462 int fd = uap->fd; 463 off_t pos = PAIR32TO64(off_t,uap->pos); 464 #ifdef __ia64__ 465 vm_size_t pageoff; 466 int error; 467 468 /* 469 * Attempt to handle page size hassles. 470 */ 471 pageoff = (pos & PAGE_MASK); 472 if (flags & MAP_FIXED) { 473 vm_offset_t start, end; 474 start = addr; 475 end = addr + len; 476 477 if (start != trunc_page(start)) { 478 error = freebsd32_mmap_partial(td, start, 479 round_page(start), prot, 480 fd, pos); 481 if (fd != -1) 482 pos += round_page(start) - start; 483 start = round_page(start); 484 } 485 if (end != round_page(end)) { 486 vm_offset_t t = trunc_page(end); 487 error = freebsd32_mmap_partial(td, t, end, 488 prot, fd, 489 pos + t - start); 490 end = trunc_page(end); 491 } 492 if (end > start && fd != -1 && (pos & PAGE_MASK)) { 493 /* 494 * We can't map this region at all. The specified 495 * address doesn't have the same alignment as the file 496 * position. Fake the mapping by simply reading the 497 * entire region into memory. First we need to make 498 * sure the region exists. 499 */ 500 vm_map_t map; 501 struct pread_args r; 502 int rv; 503 504 prot |= VM_PROT_WRITE; 505 map = &td->td_proc->p_vmspace->vm_map; 506 rv = vm_map_remove(map, start, end); 507 if (rv != KERN_SUCCESS) 508 return (EINVAL); 509 rv = vm_map_find(map, 0, 0, 510 &start, end - start, FALSE, 511 prot, VM_PROT_ALL, 0); 512 if (rv != KERN_SUCCESS) 513 return (EINVAL); 514 r.fd = fd; 515 r.buf = (void *) start; 516 r.nbyte = end - start; 517 r.offset = pos; 518 error = sys_pread(td, &r); 519 if (error) 520 return (error); 521 522 td->td_retval[0] = addr; 523 return (0); 524 } 525 if (end == start) { 526 /* 527 * After dealing with the ragged ends, there 528 * might be none left. 529 */ 530 td->td_retval[0] = addr; 531 return (0); 532 } 533 addr = start; 534 len = end - start; 535 } 536 #endif 537 538 #if defined(__amd64__) || defined(__ia64__) 539 if (i386_read_exec && (prot & PROT_READ)) 540 prot |= PROT_EXEC; 541 #endif 542 543 ap.addr = (void *) addr; 544 ap.len = len; 545 ap.prot = prot; 546 ap.flags = flags; 547 ap.fd = fd; 548 ap.pos = pos; 549 550 return (sys_mmap(td, &ap)); 551 } 552 553 #ifdef COMPAT_FREEBSD6 554 int 555 freebsd6_freebsd32_mmap(struct thread *td, struct freebsd6_freebsd32_mmap_args *uap) 556 { 557 struct freebsd32_mmap_args ap; 558 559 ap.addr = uap->addr; 560 ap.len = uap->len; 561 ap.prot = uap->prot; 562 ap.flags = uap->flags; 563 ap.fd = uap->fd; 564 ap.pos1 = uap->pos1; 565 ap.pos2 = uap->pos2; 566 567 return (freebsd32_mmap(td, &ap)); 568 } 569 #endif 570 571 int 572 freebsd32_setitimer(struct thread *td, struct freebsd32_setitimer_args *uap) 573 { 574 struct itimerval itv, oitv, *itvp; 575 struct itimerval32 i32; 576 int error; 577 578 if (uap->itv != NULL) { 579 error = copyin(uap->itv, &i32, sizeof(i32)); 580 if (error) 581 return (error); 582 TV_CP(i32, itv, it_interval); 583 TV_CP(i32, itv, it_value); 584 itvp = &itv; 585 } else 586 itvp = NULL; 587 error = kern_setitimer(td, uap->which, itvp, &oitv); 588 if (error || uap->oitv == NULL) 589 return (error); 590 TV_CP(oitv, i32, it_interval); 591 TV_CP(oitv, i32, it_value); 592 return (copyout(&i32, uap->oitv, sizeof(i32))); 593 } 594 595 int 596 freebsd32_getitimer(struct thread *td, struct freebsd32_getitimer_args *uap) 597 { 598 struct itimerval itv; 599 struct itimerval32 i32; 600 int error; 601 602 error = kern_getitimer(td, uap->which, &itv); 603 if (error || uap->itv == NULL) 604 return (error); 605 TV_CP(itv, i32, it_interval); 606 TV_CP(itv, i32, it_value); 607 return (copyout(&i32, uap->itv, sizeof(i32))); 608 } 609 610 int 611 freebsd32_select(struct thread *td, struct freebsd32_select_args *uap) 612 { 613 struct timeval32 tv32; 614 struct timeval tv, *tvp; 615 int error; 616 617 if (uap->tv != NULL) { 618 error = copyin(uap->tv, &tv32, sizeof(tv32)); 619 if (error) 620 return (error); 621 CP(tv32, tv, tv_sec); 622 CP(tv32, tv, tv_usec); 623 tvp = &tv; 624 } else 625 tvp = NULL; 626 /* 627 * XXX Do pointers need PTRIN()? 628 */ 629 return (kern_select(td, uap->nd, uap->in, uap->ou, uap->ex, tvp, 630 sizeof(int32_t) * 8)); 631 } 632 633 int 634 freebsd32_pselect(struct thread *td, struct freebsd32_pselect_args *uap) 635 { 636 struct timespec32 ts32; 637 struct timespec ts; 638 struct timeval tv, *tvp; 639 sigset_t set, *uset; 640 int error; 641 642 if (uap->ts != NULL) { 643 error = copyin(uap->ts, &ts32, sizeof(ts32)); 644 if (error != 0) 645 return (error); 646 CP(ts32, ts, tv_sec); 647 CP(ts32, ts, tv_nsec); 648 TIMESPEC_TO_TIMEVAL(&tv, &ts); 649 tvp = &tv; 650 } else 651 tvp = NULL; 652 if (uap->sm != NULL) { 653 error = copyin(uap->sm, &set, sizeof(set)); 654 if (error != 0) 655 return (error); 656 uset = &set; 657 } else 658 uset = NULL; 659 /* 660 * XXX Do pointers need PTRIN()? 661 */ 662 error = kern_pselect(td, uap->nd, uap->in, uap->ou, uap->ex, tvp, 663 uset, sizeof(int32_t) * 8); 664 return (error); 665 } 666 667 /* 668 * Copy 'count' items into the destination list pointed to by uap->eventlist. 669 */ 670 static int 671 freebsd32_kevent_copyout(void *arg, struct kevent *kevp, int count) 672 { 673 struct freebsd32_kevent_args *uap; 674 struct kevent32 ks32[KQ_NEVENTS]; 675 int i, error = 0; 676 677 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count)); 678 uap = (struct freebsd32_kevent_args *)arg; 679 680 for (i = 0; i < count; i++) { 681 CP(kevp[i], ks32[i], ident); 682 CP(kevp[i], ks32[i], filter); 683 CP(kevp[i], ks32[i], flags); 684 CP(kevp[i], ks32[i], fflags); 685 CP(kevp[i], ks32[i], data); 686 PTROUT_CP(kevp[i], ks32[i], udata); 687 } 688 error = copyout(ks32, uap->eventlist, count * sizeof *ks32); 689 if (error == 0) 690 uap->eventlist += count; 691 return (error); 692 } 693 694 /* 695 * Copy 'count' items from the list pointed to by uap->changelist. 696 */ 697 static int 698 freebsd32_kevent_copyin(void *arg, struct kevent *kevp, int count) 699 { 700 struct freebsd32_kevent_args *uap; 701 struct kevent32 ks32[KQ_NEVENTS]; 702 int i, error = 0; 703 704 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count)); 705 uap = (struct freebsd32_kevent_args *)arg; 706 707 error = copyin(uap->changelist, ks32, count * sizeof *ks32); 708 if (error) 709 goto done; 710 uap->changelist += count; 711 712 for (i = 0; i < count; i++) { 713 CP(ks32[i], kevp[i], ident); 714 CP(ks32[i], kevp[i], filter); 715 CP(ks32[i], kevp[i], flags); 716 CP(ks32[i], kevp[i], fflags); 717 CP(ks32[i], kevp[i], data); 718 PTRIN_CP(ks32[i], kevp[i], udata); 719 } 720 done: 721 return (error); 722 } 723 724 int 725 freebsd32_kevent(struct thread *td, struct freebsd32_kevent_args *uap) 726 { 727 struct timespec32 ts32; 728 struct timespec ts, *tsp; 729 struct kevent_copyops k_ops = { uap, 730 freebsd32_kevent_copyout, 731 freebsd32_kevent_copyin}; 732 int error; 733 734 735 if (uap->timeout) { 736 error = copyin(uap->timeout, &ts32, sizeof(ts32)); 737 if (error) 738 return (error); 739 CP(ts32, ts, tv_sec); 740 CP(ts32, ts, tv_nsec); 741 tsp = &ts; 742 } else 743 tsp = NULL; 744 error = kern_kevent(td, uap->fd, uap->nchanges, uap->nevents, 745 &k_ops, tsp); 746 return (error); 747 } 748 749 int 750 freebsd32_gettimeofday(struct thread *td, 751 struct freebsd32_gettimeofday_args *uap) 752 { 753 struct timeval atv; 754 struct timeval32 atv32; 755 struct timezone rtz; 756 int error = 0; 757 758 if (uap->tp) { 759 microtime(&atv); 760 CP(atv, atv32, tv_sec); 761 CP(atv, atv32, tv_usec); 762 error = copyout(&atv32, uap->tp, sizeof (atv32)); 763 } 764 if (error == 0 && uap->tzp != NULL) { 765 rtz.tz_minuteswest = tz_minuteswest; 766 rtz.tz_dsttime = tz_dsttime; 767 error = copyout(&rtz, uap->tzp, sizeof (rtz)); 768 } 769 return (error); 770 } 771 772 int 773 freebsd32_getrusage(struct thread *td, struct freebsd32_getrusage_args *uap) 774 { 775 struct rusage32 s32; 776 struct rusage s; 777 int error; 778 779 error = kern_getrusage(td, uap->who, &s); 780 if (error) 781 return (error); 782 if (uap->rusage != NULL) { 783 freebsd32_rusage_out(&s, &s32); 784 error = copyout(&s32, uap->rusage, sizeof(s32)); 785 } 786 return (error); 787 } 788 789 static int 790 freebsd32_copyinuio(struct iovec32 *iovp, u_int iovcnt, struct uio **uiop) 791 { 792 struct iovec32 iov32; 793 struct iovec *iov; 794 struct uio *uio; 795 u_int iovlen; 796 int error, i; 797 798 *uiop = NULL; 799 if (iovcnt > UIO_MAXIOV) 800 return (EINVAL); 801 iovlen = iovcnt * sizeof(struct iovec); 802 uio = malloc(iovlen + sizeof *uio, M_IOV, M_WAITOK); 803 iov = (struct iovec *)(uio + 1); 804 for (i = 0; i < iovcnt; i++) { 805 error = copyin(&iovp[i], &iov32, sizeof(struct iovec32)); 806 if (error) { 807 free(uio, M_IOV); 808 return (error); 809 } 810 iov[i].iov_base = PTRIN(iov32.iov_base); 811 iov[i].iov_len = iov32.iov_len; 812 } 813 uio->uio_iov = iov; 814 uio->uio_iovcnt = iovcnt; 815 uio->uio_segflg = UIO_USERSPACE; 816 uio->uio_offset = -1; 817 uio->uio_resid = 0; 818 for (i = 0; i < iovcnt; i++) { 819 if (iov->iov_len > INT_MAX - uio->uio_resid) { 820 free(uio, M_IOV); 821 return (EINVAL); 822 } 823 uio->uio_resid += iov->iov_len; 824 iov++; 825 } 826 *uiop = uio; 827 return (0); 828 } 829 830 int 831 freebsd32_readv(struct thread *td, struct freebsd32_readv_args *uap) 832 { 833 struct uio *auio; 834 int error; 835 836 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 837 if (error) 838 return (error); 839 error = kern_readv(td, uap->fd, auio); 840 free(auio, M_IOV); 841 return (error); 842 } 843 844 int 845 freebsd32_writev(struct thread *td, struct freebsd32_writev_args *uap) 846 { 847 struct uio *auio; 848 int error; 849 850 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 851 if (error) 852 return (error); 853 error = kern_writev(td, uap->fd, auio); 854 free(auio, M_IOV); 855 return (error); 856 } 857 858 int 859 freebsd32_preadv(struct thread *td, struct freebsd32_preadv_args *uap) 860 { 861 struct uio *auio; 862 int error; 863 864 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 865 if (error) 866 return (error); 867 error = kern_preadv(td, uap->fd, auio, PAIR32TO64(off_t,uap->offset)); 868 free(auio, M_IOV); 869 return (error); 870 } 871 872 int 873 freebsd32_pwritev(struct thread *td, struct freebsd32_pwritev_args *uap) 874 { 875 struct uio *auio; 876 int error; 877 878 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 879 if (error) 880 return (error); 881 error = kern_pwritev(td, uap->fd, auio, PAIR32TO64(off_t,uap->offset)); 882 free(auio, M_IOV); 883 return (error); 884 } 885 886 int 887 freebsd32_copyiniov(struct iovec32 *iovp32, u_int iovcnt, struct iovec **iovp, 888 int error) 889 { 890 struct iovec32 iov32; 891 struct iovec *iov; 892 u_int iovlen; 893 int i; 894 895 *iovp = NULL; 896 if (iovcnt > UIO_MAXIOV) 897 return (error); 898 iovlen = iovcnt * sizeof(struct iovec); 899 iov = malloc(iovlen, M_IOV, M_WAITOK); 900 for (i = 0; i < iovcnt; i++) { 901 error = copyin(&iovp32[i], &iov32, sizeof(struct iovec32)); 902 if (error) { 903 free(iov, M_IOV); 904 return (error); 905 } 906 iov[i].iov_base = PTRIN(iov32.iov_base); 907 iov[i].iov_len = iov32.iov_len; 908 } 909 *iovp = iov; 910 return (0); 911 } 912 913 static int 914 freebsd32_copyinmsghdr(struct msghdr32 *msg32, struct msghdr *msg) 915 { 916 struct msghdr32 m32; 917 int error; 918 919 error = copyin(msg32, &m32, sizeof(m32)); 920 if (error) 921 return (error); 922 msg->msg_name = PTRIN(m32.msg_name); 923 msg->msg_namelen = m32.msg_namelen; 924 msg->msg_iov = PTRIN(m32.msg_iov); 925 msg->msg_iovlen = m32.msg_iovlen; 926 msg->msg_control = PTRIN(m32.msg_control); 927 msg->msg_controllen = m32.msg_controllen; 928 msg->msg_flags = m32.msg_flags; 929 return (0); 930 } 931 932 static int 933 freebsd32_copyoutmsghdr(struct msghdr *msg, struct msghdr32 *msg32) 934 { 935 struct msghdr32 m32; 936 int error; 937 938 m32.msg_name = PTROUT(msg->msg_name); 939 m32.msg_namelen = msg->msg_namelen; 940 m32.msg_iov = PTROUT(msg->msg_iov); 941 m32.msg_iovlen = msg->msg_iovlen; 942 m32.msg_control = PTROUT(msg->msg_control); 943 m32.msg_controllen = msg->msg_controllen; 944 m32.msg_flags = msg->msg_flags; 945 error = copyout(&m32, msg32, sizeof(m32)); 946 return (error); 947 } 948 949 #define FREEBSD32_ALIGNBYTES (sizeof(int) - 1) 950 #define FREEBSD32_ALIGN(p) \ 951 (((u_long)(p) + FREEBSD32_ALIGNBYTES) & ~FREEBSD32_ALIGNBYTES) 952 #define FREEBSD32_CMSG_SPACE(l) \ 953 (FREEBSD32_ALIGN(sizeof(struct cmsghdr)) + FREEBSD32_ALIGN(l)) 954 955 #define FREEBSD32_CMSG_DATA(cmsg) ((unsigned char *)(cmsg) + \ 956 FREEBSD32_ALIGN(sizeof(struct cmsghdr))) 957 static int 958 freebsd32_copy_msg_out(struct msghdr *msg, struct mbuf *control) 959 { 960 struct cmsghdr *cm; 961 void *data; 962 socklen_t clen, datalen; 963 int error; 964 caddr_t ctlbuf; 965 int len, maxlen, copylen; 966 struct mbuf *m; 967 error = 0; 968 969 len = msg->msg_controllen; 970 maxlen = msg->msg_controllen; 971 msg->msg_controllen = 0; 972 973 m = control; 974 ctlbuf = msg->msg_control; 975 976 while (m && len > 0) { 977 cm = mtod(m, struct cmsghdr *); 978 clen = m->m_len; 979 980 while (cm != NULL) { 981 982 if (sizeof(struct cmsghdr) > clen || 983 cm->cmsg_len > clen) { 984 error = EINVAL; 985 break; 986 } 987 988 data = CMSG_DATA(cm); 989 datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data; 990 991 /* Adjust message length */ 992 cm->cmsg_len = FREEBSD32_ALIGN(sizeof(struct cmsghdr)) + 993 datalen; 994 995 996 /* Copy cmsghdr */ 997 copylen = sizeof(struct cmsghdr); 998 if (len < copylen) { 999 msg->msg_flags |= MSG_CTRUNC; 1000 copylen = len; 1001 } 1002 1003 error = copyout(cm,ctlbuf,copylen); 1004 if (error) 1005 goto exit; 1006 1007 ctlbuf += FREEBSD32_ALIGN(copylen); 1008 len -= FREEBSD32_ALIGN(copylen); 1009 1010 if (len <= 0) 1011 break; 1012 1013 /* Copy data */ 1014 copylen = datalen; 1015 if (len < copylen) { 1016 msg->msg_flags |= MSG_CTRUNC; 1017 copylen = len; 1018 } 1019 1020 error = copyout(data,ctlbuf,copylen); 1021 if (error) 1022 goto exit; 1023 1024 ctlbuf += FREEBSD32_ALIGN(copylen); 1025 len -= FREEBSD32_ALIGN(copylen); 1026 1027 if (CMSG_SPACE(datalen) < clen) { 1028 clen -= CMSG_SPACE(datalen); 1029 cm = (struct cmsghdr *) 1030 ((caddr_t)cm + CMSG_SPACE(datalen)); 1031 } else { 1032 clen = 0; 1033 cm = NULL; 1034 } 1035 } 1036 m = m->m_next; 1037 } 1038 1039 msg->msg_controllen = (len <= 0) ? maxlen : ctlbuf - (caddr_t)msg->msg_control; 1040 1041 exit: 1042 return (error); 1043 1044 } 1045 1046 int 1047 freebsd32_recvmsg(td, uap) 1048 struct thread *td; 1049 struct freebsd32_recvmsg_args /* { 1050 int s; 1051 struct msghdr32 *msg; 1052 int flags; 1053 } */ *uap; 1054 { 1055 struct msghdr msg; 1056 struct msghdr32 m32; 1057 struct iovec *uiov, *iov; 1058 struct mbuf *control = NULL; 1059 struct mbuf **controlp; 1060 1061 int error; 1062 error = copyin(uap->msg, &m32, sizeof(m32)); 1063 if (error) 1064 return (error); 1065 error = freebsd32_copyinmsghdr(uap->msg, &msg); 1066 if (error) 1067 return (error); 1068 error = freebsd32_copyiniov(PTRIN(m32.msg_iov), m32.msg_iovlen, &iov, 1069 EMSGSIZE); 1070 if (error) 1071 return (error); 1072 msg.msg_flags = uap->flags; 1073 uiov = msg.msg_iov; 1074 msg.msg_iov = iov; 1075 1076 controlp = (msg.msg_control != NULL) ? &control : NULL; 1077 error = kern_recvit(td, uap->s, &msg, UIO_USERSPACE, controlp); 1078 if (error == 0) { 1079 msg.msg_iov = uiov; 1080 1081 if (control != NULL) 1082 error = freebsd32_copy_msg_out(&msg, control); 1083 else 1084 msg.msg_controllen = 0; 1085 1086 if (error == 0) 1087 error = freebsd32_copyoutmsghdr(&msg, uap->msg); 1088 } 1089 free(iov, M_IOV); 1090 1091 if (control != NULL) 1092 m_freem(control); 1093 1094 return (error); 1095 } 1096 1097 1098 static int 1099 freebsd32_convert_msg_in(struct mbuf **controlp) 1100 { 1101 struct mbuf *control = *controlp; 1102 struct cmsghdr *cm = mtod(control, struct cmsghdr *); 1103 void *data; 1104 socklen_t clen = control->m_len, datalen; 1105 int error; 1106 1107 error = 0; 1108 *controlp = NULL; 1109 1110 while (cm != NULL) { 1111 if (sizeof(struct cmsghdr) > clen || cm->cmsg_len > clen) { 1112 error = EINVAL; 1113 break; 1114 } 1115 1116 data = FREEBSD32_CMSG_DATA(cm); 1117 datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data; 1118 1119 *controlp = sbcreatecontrol(data, datalen, cm->cmsg_type, 1120 cm->cmsg_level); 1121 controlp = &(*controlp)->m_next; 1122 1123 if (FREEBSD32_CMSG_SPACE(datalen) < clen) { 1124 clen -= FREEBSD32_CMSG_SPACE(datalen); 1125 cm = (struct cmsghdr *) 1126 ((caddr_t)cm + FREEBSD32_CMSG_SPACE(datalen)); 1127 } else { 1128 clen = 0; 1129 cm = NULL; 1130 } 1131 } 1132 1133 m_freem(control); 1134 return (error); 1135 } 1136 1137 1138 int 1139 freebsd32_sendmsg(struct thread *td, 1140 struct freebsd32_sendmsg_args *uap) 1141 { 1142 struct msghdr msg; 1143 struct msghdr32 m32; 1144 struct iovec *iov; 1145 struct mbuf *control = NULL; 1146 struct sockaddr *to = NULL; 1147 int error; 1148 1149 error = copyin(uap->msg, &m32, sizeof(m32)); 1150 if (error) 1151 return (error); 1152 error = freebsd32_copyinmsghdr(uap->msg, &msg); 1153 if (error) 1154 return (error); 1155 error = freebsd32_copyiniov(PTRIN(m32.msg_iov), m32.msg_iovlen, &iov, 1156 EMSGSIZE); 1157 if (error) 1158 return (error); 1159 msg.msg_iov = iov; 1160 if (msg.msg_name != NULL) { 1161 error = getsockaddr(&to, msg.msg_name, msg.msg_namelen); 1162 if (error) { 1163 to = NULL; 1164 goto out; 1165 } 1166 msg.msg_name = to; 1167 } 1168 1169 if (msg.msg_control) { 1170 if (msg.msg_controllen < sizeof(struct cmsghdr)) { 1171 error = EINVAL; 1172 goto out; 1173 } 1174 1175 error = sockargs(&control, msg.msg_control, 1176 msg.msg_controllen, MT_CONTROL); 1177 if (error) 1178 goto out; 1179 1180 error = freebsd32_convert_msg_in(&control); 1181 if (error) 1182 goto out; 1183 } 1184 1185 error = kern_sendit(td, uap->s, &msg, uap->flags, control, 1186 UIO_USERSPACE); 1187 1188 out: 1189 free(iov, M_IOV); 1190 if (to) 1191 free(to, M_SONAME); 1192 return (error); 1193 } 1194 1195 int 1196 freebsd32_recvfrom(struct thread *td, 1197 struct freebsd32_recvfrom_args *uap) 1198 { 1199 struct msghdr msg; 1200 struct iovec aiov; 1201 int error; 1202 1203 if (uap->fromlenaddr) { 1204 error = copyin(PTRIN(uap->fromlenaddr), &msg.msg_namelen, 1205 sizeof(msg.msg_namelen)); 1206 if (error) 1207 return (error); 1208 } else { 1209 msg.msg_namelen = 0; 1210 } 1211 1212 msg.msg_name = PTRIN(uap->from); 1213 msg.msg_iov = &aiov; 1214 msg.msg_iovlen = 1; 1215 aiov.iov_base = PTRIN(uap->buf); 1216 aiov.iov_len = uap->len; 1217 msg.msg_control = NULL; 1218 msg.msg_flags = uap->flags; 1219 error = kern_recvit(td, uap->s, &msg, UIO_USERSPACE, NULL); 1220 if (error == 0 && uap->fromlenaddr) 1221 error = copyout(&msg.msg_namelen, PTRIN(uap->fromlenaddr), 1222 sizeof (msg.msg_namelen)); 1223 return (error); 1224 } 1225 1226 int 1227 freebsd32_settimeofday(struct thread *td, 1228 struct freebsd32_settimeofday_args *uap) 1229 { 1230 struct timeval32 tv32; 1231 struct timeval tv, *tvp; 1232 struct timezone tz, *tzp; 1233 int error; 1234 1235 if (uap->tv) { 1236 error = copyin(uap->tv, &tv32, sizeof(tv32)); 1237 if (error) 1238 return (error); 1239 CP(tv32, tv, tv_sec); 1240 CP(tv32, tv, tv_usec); 1241 tvp = &tv; 1242 } else 1243 tvp = NULL; 1244 if (uap->tzp) { 1245 error = copyin(uap->tzp, &tz, sizeof(tz)); 1246 if (error) 1247 return (error); 1248 tzp = &tz; 1249 } else 1250 tzp = NULL; 1251 return (kern_settimeofday(td, tvp, tzp)); 1252 } 1253 1254 int 1255 freebsd32_utimes(struct thread *td, struct freebsd32_utimes_args *uap) 1256 { 1257 struct timeval32 s32[2]; 1258 struct timeval s[2], *sp; 1259 int error; 1260 1261 if (uap->tptr != NULL) { 1262 error = copyin(uap->tptr, s32, sizeof(s32)); 1263 if (error) 1264 return (error); 1265 CP(s32[0], s[0], tv_sec); 1266 CP(s32[0], s[0], tv_usec); 1267 CP(s32[1], s[1], tv_sec); 1268 CP(s32[1], s[1], tv_usec); 1269 sp = s; 1270 } else 1271 sp = NULL; 1272 return (kern_utimes(td, uap->path, UIO_USERSPACE, sp, UIO_SYSSPACE)); 1273 } 1274 1275 int 1276 freebsd32_lutimes(struct thread *td, struct freebsd32_lutimes_args *uap) 1277 { 1278 struct timeval32 s32[2]; 1279 struct timeval s[2], *sp; 1280 int error; 1281 1282 if (uap->tptr != NULL) { 1283 error = copyin(uap->tptr, s32, sizeof(s32)); 1284 if (error) 1285 return (error); 1286 CP(s32[0], s[0], tv_sec); 1287 CP(s32[0], s[0], tv_usec); 1288 CP(s32[1], s[1], tv_sec); 1289 CP(s32[1], s[1], tv_usec); 1290 sp = s; 1291 } else 1292 sp = NULL; 1293 return (kern_lutimes(td, uap->path, UIO_USERSPACE, sp, UIO_SYSSPACE)); 1294 } 1295 1296 int 1297 freebsd32_futimes(struct thread *td, struct freebsd32_futimes_args *uap) 1298 { 1299 struct timeval32 s32[2]; 1300 struct timeval s[2], *sp; 1301 int error; 1302 1303 if (uap->tptr != NULL) { 1304 error = copyin(uap->tptr, s32, sizeof(s32)); 1305 if (error) 1306 return (error); 1307 CP(s32[0], s[0], tv_sec); 1308 CP(s32[0], s[0], tv_usec); 1309 CP(s32[1], s[1], tv_sec); 1310 CP(s32[1], s[1], tv_usec); 1311 sp = s; 1312 } else 1313 sp = NULL; 1314 return (kern_futimes(td, uap->fd, sp, UIO_SYSSPACE)); 1315 } 1316 1317 int 1318 freebsd32_futimesat(struct thread *td, struct freebsd32_futimesat_args *uap) 1319 { 1320 struct timeval32 s32[2]; 1321 struct timeval s[2], *sp; 1322 int error; 1323 1324 if (uap->times != NULL) { 1325 error = copyin(uap->times, s32, sizeof(s32)); 1326 if (error) 1327 return (error); 1328 CP(s32[0], s[0], tv_sec); 1329 CP(s32[0], s[0], tv_usec); 1330 CP(s32[1], s[1], tv_sec); 1331 CP(s32[1], s[1], tv_usec); 1332 sp = s; 1333 } else 1334 sp = NULL; 1335 return (kern_utimesat(td, uap->fd, uap->path, UIO_USERSPACE, 1336 sp, UIO_SYSSPACE)); 1337 } 1338 1339 int 1340 freebsd32_adjtime(struct thread *td, struct freebsd32_adjtime_args *uap) 1341 { 1342 struct timeval32 tv32; 1343 struct timeval delta, olddelta, *deltap; 1344 int error; 1345 1346 if (uap->delta) { 1347 error = copyin(uap->delta, &tv32, sizeof(tv32)); 1348 if (error) 1349 return (error); 1350 CP(tv32, delta, tv_sec); 1351 CP(tv32, delta, tv_usec); 1352 deltap = δ 1353 } else 1354 deltap = NULL; 1355 error = kern_adjtime(td, deltap, &olddelta); 1356 if (uap->olddelta && error == 0) { 1357 CP(olddelta, tv32, tv_sec); 1358 CP(olddelta, tv32, tv_usec); 1359 error = copyout(&tv32, uap->olddelta, sizeof(tv32)); 1360 } 1361 return (error); 1362 } 1363 1364 #ifdef COMPAT_FREEBSD4 1365 int 1366 freebsd4_freebsd32_statfs(struct thread *td, struct freebsd4_freebsd32_statfs_args *uap) 1367 { 1368 struct statfs32 s32; 1369 struct statfs s; 1370 int error; 1371 1372 error = kern_statfs(td, uap->path, UIO_USERSPACE, &s); 1373 if (error) 1374 return (error); 1375 copy_statfs(&s, &s32); 1376 return (copyout(&s32, uap->buf, sizeof(s32))); 1377 } 1378 #endif 1379 1380 #ifdef COMPAT_FREEBSD4 1381 int 1382 freebsd4_freebsd32_fstatfs(struct thread *td, struct freebsd4_freebsd32_fstatfs_args *uap) 1383 { 1384 struct statfs32 s32; 1385 struct statfs s; 1386 int error; 1387 1388 error = kern_fstatfs(td, uap->fd, &s); 1389 if (error) 1390 return (error); 1391 copy_statfs(&s, &s32); 1392 return (copyout(&s32, uap->buf, sizeof(s32))); 1393 } 1394 #endif 1395 1396 #ifdef COMPAT_FREEBSD4 1397 int 1398 freebsd4_freebsd32_fhstatfs(struct thread *td, struct freebsd4_freebsd32_fhstatfs_args *uap) 1399 { 1400 struct statfs32 s32; 1401 struct statfs s; 1402 fhandle_t fh; 1403 int error; 1404 1405 if ((error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t))) != 0) 1406 return (error); 1407 error = kern_fhstatfs(td, fh, &s); 1408 if (error) 1409 return (error); 1410 copy_statfs(&s, &s32); 1411 return (copyout(&s32, uap->buf, sizeof(s32))); 1412 } 1413 #endif 1414 1415 int 1416 freebsd32_pread(struct thread *td, struct freebsd32_pread_args *uap) 1417 { 1418 struct pread_args ap; 1419 1420 ap.fd = uap->fd; 1421 ap.buf = uap->buf; 1422 ap.nbyte = uap->nbyte; 1423 ap.offset = PAIR32TO64(off_t,uap->offset); 1424 return (sys_pread(td, &ap)); 1425 } 1426 1427 int 1428 freebsd32_pwrite(struct thread *td, struct freebsd32_pwrite_args *uap) 1429 { 1430 struct pwrite_args ap; 1431 1432 ap.fd = uap->fd; 1433 ap.buf = uap->buf; 1434 ap.nbyte = uap->nbyte; 1435 ap.offset = PAIR32TO64(off_t,uap->offset); 1436 return (sys_pwrite(td, &ap)); 1437 } 1438 1439 #ifdef COMPAT_43 1440 int 1441 ofreebsd32_lseek(struct thread *td, struct ofreebsd32_lseek_args *uap) 1442 { 1443 struct lseek_args nuap; 1444 1445 nuap.fd = uap->fd; 1446 nuap.offset = uap->offset; 1447 nuap.whence = uap->whence; 1448 return (sys_lseek(td, &nuap)); 1449 } 1450 #endif 1451 1452 int 1453 freebsd32_lseek(struct thread *td, struct freebsd32_lseek_args *uap) 1454 { 1455 int error; 1456 struct lseek_args ap; 1457 off_t pos; 1458 1459 ap.fd = uap->fd; 1460 ap.offset = PAIR32TO64(off_t,uap->offset); 1461 ap.whence = uap->whence; 1462 error = sys_lseek(td, &ap); 1463 /* Expand the quad return into two parts for eax and edx */ 1464 pos = *(off_t *)(td->td_retval); 1465 td->td_retval[RETVAL_LO] = pos & 0xffffffff; /* %eax */ 1466 td->td_retval[RETVAL_HI] = pos >> 32; /* %edx */ 1467 return error; 1468 } 1469 1470 int 1471 freebsd32_truncate(struct thread *td, struct freebsd32_truncate_args *uap) 1472 { 1473 struct truncate_args ap; 1474 1475 ap.path = uap->path; 1476 ap.length = PAIR32TO64(off_t,uap->length); 1477 return (sys_truncate(td, &ap)); 1478 } 1479 1480 int 1481 freebsd32_ftruncate(struct thread *td, struct freebsd32_ftruncate_args *uap) 1482 { 1483 struct ftruncate_args ap; 1484 1485 ap.fd = uap->fd; 1486 ap.length = PAIR32TO64(off_t,uap->length); 1487 return (sys_ftruncate(td, &ap)); 1488 } 1489 1490 #ifdef COMPAT_43 1491 int 1492 ofreebsd32_getdirentries(struct thread *td, 1493 struct ofreebsd32_getdirentries_args *uap) 1494 { 1495 struct ogetdirentries_args ap; 1496 int error; 1497 long loff; 1498 int32_t loff_cut; 1499 1500 ap.fd = uap->fd; 1501 ap.buf = uap->buf; 1502 ap.count = uap->count; 1503 ap.basep = NULL; 1504 error = kern_ogetdirentries(td, &ap, &loff); 1505 if (error == 0) { 1506 loff_cut = loff; 1507 error = copyout(&loff_cut, uap->basep, sizeof(int32_t)); 1508 } 1509 return (error); 1510 } 1511 #endif 1512 1513 int 1514 freebsd32_getdirentries(struct thread *td, 1515 struct freebsd32_getdirentries_args *uap) 1516 { 1517 long base; 1518 int32_t base32; 1519 int error; 1520 1521 error = kern_getdirentries(td, uap->fd, uap->buf, uap->count, &base); 1522 if (error) 1523 return (error); 1524 if (uap->basep != NULL) { 1525 base32 = base; 1526 error = copyout(&base32, uap->basep, sizeof(int32_t)); 1527 } 1528 return (error); 1529 } 1530 1531 #ifdef COMPAT_FREEBSD6 1532 /* versions with the 'int pad' argument */ 1533 int 1534 freebsd6_freebsd32_pread(struct thread *td, struct freebsd6_freebsd32_pread_args *uap) 1535 { 1536 struct pread_args ap; 1537 1538 ap.fd = uap->fd; 1539 ap.buf = uap->buf; 1540 ap.nbyte = uap->nbyte; 1541 ap.offset = PAIR32TO64(off_t,uap->offset); 1542 return (sys_pread(td, &ap)); 1543 } 1544 1545 int 1546 freebsd6_freebsd32_pwrite(struct thread *td, struct freebsd6_freebsd32_pwrite_args *uap) 1547 { 1548 struct pwrite_args ap; 1549 1550 ap.fd = uap->fd; 1551 ap.buf = uap->buf; 1552 ap.nbyte = uap->nbyte; 1553 ap.offset = PAIR32TO64(off_t,uap->offset); 1554 return (sys_pwrite(td, &ap)); 1555 } 1556 1557 int 1558 freebsd6_freebsd32_lseek(struct thread *td, struct freebsd6_freebsd32_lseek_args *uap) 1559 { 1560 int error; 1561 struct lseek_args ap; 1562 off_t pos; 1563 1564 ap.fd = uap->fd; 1565 ap.offset = PAIR32TO64(off_t,uap->offset); 1566 ap.whence = uap->whence; 1567 error = sys_lseek(td, &ap); 1568 /* Expand the quad return into two parts for eax and edx */ 1569 pos = *(off_t *)(td->td_retval); 1570 td->td_retval[RETVAL_LO] = pos & 0xffffffff; /* %eax */ 1571 td->td_retval[RETVAL_HI] = pos >> 32; /* %edx */ 1572 return error; 1573 } 1574 1575 int 1576 freebsd6_freebsd32_truncate(struct thread *td, struct freebsd6_freebsd32_truncate_args *uap) 1577 { 1578 struct truncate_args ap; 1579 1580 ap.path = uap->path; 1581 ap.length = PAIR32TO64(off_t,uap->length); 1582 return (sys_truncate(td, &ap)); 1583 } 1584 1585 int 1586 freebsd6_freebsd32_ftruncate(struct thread *td, struct freebsd6_freebsd32_ftruncate_args *uap) 1587 { 1588 struct ftruncate_args ap; 1589 1590 ap.fd = uap->fd; 1591 ap.length = PAIR32TO64(off_t,uap->length); 1592 return (sys_ftruncate(td, &ap)); 1593 } 1594 #endif /* COMPAT_FREEBSD6 */ 1595 1596 struct sf_hdtr32 { 1597 uint32_t headers; 1598 int hdr_cnt; 1599 uint32_t trailers; 1600 int trl_cnt; 1601 }; 1602 1603 static int 1604 freebsd32_do_sendfile(struct thread *td, 1605 struct freebsd32_sendfile_args *uap, int compat) 1606 { 1607 struct sendfile_args ap; 1608 struct sf_hdtr32 hdtr32; 1609 struct sf_hdtr hdtr; 1610 struct uio *hdr_uio, *trl_uio; 1611 struct iovec32 *iov32; 1612 int error; 1613 1614 hdr_uio = trl_uio = NULL; 1615 1616 ap.fd = uap->fd; 1617 ap.s = uap->s; 1618 ap.offset = PAIR32TO64(off_t,uap->offset); 1619 ap.nbytes = uap->nbytes; 1620 ap.hdtr = (struct sf_hdtr *)uap->hdtr; /* XXX not used */ 1621 ap.sbytes = uap->sbytes; 1622 ap.flags = uap->flags; 1623 1624 if (uap->hdtr != NULL) { 1625 error = copyin(uap->hdtr, &hdtr32, sizeof(hdtr32)); 1626 if (error) 1627 goto out; 1628 PTRIN_CP(hdtr32, hdtr, headers); 1629 CP(hdtr32, hdtr, hdr_cnt); 1630 PTRIN_CP(hdtr32, hdtr, trailers); 1631 CP(hdtr32, hdtr, trl_cnt); 1632 1633 if (hdtr.headers != NULL) { 1634 iov32 = PTRIN(hdtr32.headers); 1635 error = freebsd32_copyinuio(iov32, 1636 hdtr32.hdr_cnt, &hdr_uio); 1637 if (error) 1638 goto out; 1639 } 1640 if (hdtr.trailers != NULL) { 1641 iov32 = PTRIN(hdtr32.trailers); 1642 error = freebsd32_copyinuio(iov32, 1643 hdtr32.trl_cnt, &trl_uio); 1644 if (error) 1645 goto out; 1646 } 1647 } 1648 1649 error = kern_sendfile(td, &ap, hdr_uio, trl_uio, compat); 1650 out: 1651 if (hdr_uio) 1652 free(hdr_uio, M_IOV); 1653 if (trl_uio) 1654 free(trl_uio, M_IOV); 1655 return (error); 1656 } 1657 1658 #ifdef COMPAT_FREEBSD4 1659 int 1660 freebsd4_freebsd32_sendfile(struct thread *td, 1661 struct freebsd4_freebsd32_sendfile_args *uap) 1662 { 1663 return (freebsd32_do_sendfile(td, 1664 (struct freebsd32_sendfile_args *)uap, 1)); 1665 } 1666 #endif 1667 1668 int 1669 freebsd32_sendfile(struct thread *td, struct freebsd32_sendfile_args *uap) 1670 { 1671 1672 return (freebsd32_do_sendfile(td, uap, 0)); 1673 } 1674 1675 static void 1676 copy_stat(struct stat *in, struct stat32 *out) 1677 { 1678 1679 CP(*in, *out, st_dev); 1680 CP(*in, *out, st_ino); 1681 CP(*in, *out, st_mode); 1682 CP(*in, *out, st_nlink); 1683 CP(*in, *out, st_uid); 1684 CP(*in, *out, st_gid); 1685 CP(*in, *out, st_rdev); 1686 TS_CP(*in, *out, st_atim); 1687 TS_CP(*in, *out, st_mtim); 1688 TS_CP(*in, *out, st_ctim); 1689 CP(*in, *out, st_size); 1690 CP(*in, *out, st_blocks); 1691 CP(*in, *out, st_blksize); 1692 CP(*in, *out, st_flags); 1693 CP(*in, *out, st_gen); 1694 TS_CP(*in, *out, st_birthtim); 1695 } 1696 1697 #ifdef COMPAT_43 1698 static void 1699 copy_ostat(struct stat *in, struct ostat32 *out) 1700 { 1701 1702 CP(*in, *out, st_dev); 1703 CP(*in, *out, st_ino); 1704 CP(*in, *out, st_mode); 1705 CP(*in, *out, st_nlink); 1706 CP(*in, *out, st_uid); 1707 CP(*in, *out, st_gid); 1708 CP(*in, *out, st_rdev); 1709 CP(*in, *out, st_size); 1710 TS_CP(*in, *out, st_atim); 1711 TS_CP(*in, *out, st_mtim); 1712 TS_CP(*in, *out, st_ctim); 1713 CP(*in, *out, st_blksize); 1714 CP(*in, *out, st_blocks); 1715 CP(*in, *out, st_flags); 1716 CP(*in, *out, st_gen); 1717 } 1718 #endif 1719 1720 int 1721 freebsd32_stat(struct thread *td, struct freebsd32_stat_args *uap) 1722 { 1723 struct stat sb; 1724 struct stat32 sb32; 1725 int error; 1726 1727 error = kern_stat(td, uap->path, UIO_USERSPACE, &sb); 1728 if (error) 1729 return (error); 1730 copy_stat(&sb, &sb32); 1731 error = copyout(&sb32, uap->ub, sizeof (sb32)); 1732 return (error); 1733 } 1734 1735 #ifdef COMPAT_43 1736 int 1737 ofreebsd32_stat(struct thread *td, struct ofreebsd32_stat_args *uap) 1738 { 1739 struct stat sb; 1740 struct ostat32 sb32; 1741 int error; 1742 1743 error = kern_stat(td, uap->path, UIO_USERSPACE, &sb); 1744 if (error) 1745 return (error); 1746 copy_ostat(&sb, &sb32); 1747 error = copyout(&sb32, uap->ub, sizeof (sb32)); 1748 return (error); 1749 } 1750 #endif 1751 1752 int 1753 freebsd32_fstat(struct thread *td, struct freebsd32_fstat_args *uap) 1754 { 1755 struct stat ub; 1756 struct stat32 ub32; 1757 int error; 1758 1759 error = kern_fstat(td, uap->fd, &ub); 1760 if (error) 1761 return (error); 1762 copy_stat(&ub, &ub32); 1763 error = copyout(&ub32, uap->ub, sizeof(ub32)); 1764 return (error); 1765 } 1766 1767 #ifdef COMPAT_43 1768 int 1769 ofreebsd32_fstat(struct thread *td, struct ofreebsd32_fstat_args *uap) 1770 { 1771 struct stat ub; 1772 struct ostat32 ub32; 1773 int error; 1774 1775 error = kern_fstat(td, uap->fd, &ub); 1776 if (error) 1777 return (error); 1778 copy_ostat(&ub, &ub32); 1779 error = copyout(&ub32, uap->ub, sizeof(ub32)); 1780 return (error); 1781 } 1782 #endif 1783 1784 int 1785 freebsd32_fstatat(struct thread *td, struct freebsd32_fstatat_args *uap) 1786 { 1787 struct stat ub; 1788 struct stat32 ub32; 1789 int error; 1790 1791 error = kern_statat(td, uap->flag, uap->fd, uap->path, UIO_USERSPACE, &ub); 1792 if (error) 1793 return (error); 1794 copy_stat(&ub, &ub32); 1795 error = copyout(&ub32, uap->buf, sizeof(ub32)); 1796 return (error); 1797 } 1798 1799 int 1800 freebsd32_lstat(struct thread *td, struct freebsd32_lstat_args *uap) 1801 { 1802 struct stat sb; 1803 struct stat32 sb32; 1804 int error; 1805 1806 error = kern_lstat(td, uap->path, UIO_USERSPACE, &sb); 1807 if (error) 1808 return (error); 1809 copy_stat(&sb, &sb32); 1810 error = copyout(&sb32, uap->ub, sizeof (sb32)); 1811 return (error); 1812 } 1813 1814 #ifdef COMPAT_43 1815 int 1816 ofreebsd32_lstat(struct thread *td, struct ofreebsd32_lstat_args *uap) 1817 { 1818 struct stat sb; 1819 struct ostat32 sb32; 1820 int error; 1821 1822 error = kern_lstat(td, uap->path, UIO_USERSPACE, &sb); 1823 if (error) 1824 return (error); 1825 copy_ostat(&sb, &sb32); 1826 error = copyout(&sb32, uap->ub, sizeof (sb32)); 1827 return (error); 1828 } 1829 #endif 1830 1831 int 1832 freebsd32_sysctl(struct thread *td, struct freebsd32_sysctl_args *uap) 1833 { 1834 int error, name[CTL_MAXNAME]; 1835 size_t j, oldlen; 1836 1837 if (uap->namelen > CTL_MAXNAME || uap->namelen < 2) 1838 return (EINVAL); 1839 error = copyin(uap->name, name, uap->namelen * sizeof(int)); 1840 if (error) 1841 return (error); 1842 if (uap->oldlenp) 1843 oldlen = fuword32(uap->oldlenp); 1844 else 1845 oldlen = 0; 1846 error = userland_sysctl(td, name, uap->namelen, 1847 uap->old, &oldlen, 1, 1848 uap->new, uap->newlen, &j, SCTL_MASK32); 1849 if (error && error != ENOMEM) 1850 return (error); 1851 if (uap->oldlenp) 1852 suword32(uap->oldlenp, j); 1853 return (0); 1854 } 1855 1856 int 1857 freebsd32_jail(struct thread *td, struct freebsd32_jail_args *uap) 1858 { 1859 uint32_t version; 1860 int error; 1861 struct jail j; 1862 1863 error = copyin(uap->jail, &version, sizeof(uint32_t)); 1864 if (error) 1865 return (error); 1866 1867 switch (version) { 1868 case 0: 1869 { 1870 /* FreeBSD single IPv4 jails. */ 1871 struct jail32_v0 j32_v0; 1872 1873 bzero(&j, sizeof(struct jail)); 1874 error = copyin(uap->jail, &j32_v0, sizeof(struct jail32_v0)); 1875 if (error) 1876 return (error); 1877 CP(j32_v0, j, version); 1878 PTRIN_CP(j32_v0, j, path); 1879 PTRIN_CP(j32_v0, j, hostname); 1880 j.ip4s = j32_v0.ip_number; 1881 break; 1882 } 1883 1884 case 1: 1885 /* 1886 * Version 1 was used by multi-IPv4 jail implementations 1887 * that never made it into the official kernel. 1888 */ 1889 return (EINVAL); 1890 1891 case 2: /* JAIL_API_VERSION */ 1892 { 1893 /* FreeBSD multi-IPv4/IPv6,noIP jails. */ 1894 struct jail32 j32; 1895 1896 error = copyin(uap->jail, &j32, sizeof(struct jail32)); 1897 if (error) 1898 return (error); 1899 CP(j32, j, version); 1900 PTRIN_CP(j32, j, path); 1901 PTRIN_CP(j32, j, hostname); 1902 PTRIN_CP(j32, j, jailname); 1903 CP(j32, j, ip4s); 1904 CP(j32, j, ip6s); 1905 PTRIN_CP(j32, j, ip4); 1906 PTRIN_CP(j32, j, ip6); 1907 break; 1908 } 1909 1910 default: 1911 /* Sci-Fi jails are not supported, sorry. */ 1912 return (EINVAL); 1913 } 1914 return (kern_jail(td, &j)); 1915 } 1916 1917 int 1918 freebsd32_jail_set(struct thread *td, struct freebsd32_jail_set_args *uap) 1919 { 1920 struct uio *auio; 1921 int error; 1922 1923 /* Check that we have an even number of iovecs. */ 1924 if (uap->iovcnt & 1) 1925 return (EINVAL); 1926 1927 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 1928 if (error) 1929 return (error); 1930 error = kern_jail_set(td, auio, uap->flags); 1931 free(auio, M_IOV); 1932 return (error); 1933 } 1934 1935 int 1936 freebsd32_jail_get(struct thread *td, struct freebsd32_jail_get_args *uap) 1937 { 1938 struct iovec32 iov32; 1939 struct uio *auio; 1940 int error, i; 1941 1942 /* Check that we have an even number of iovecs. */ 1943 if (uap->iovcnt & 1) 1944 return (EINVAL); 1945 1946 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 1947 if (error) 1948 return (error); 1949 error = kern_jail_get(td, auio, uap->flags); 1950 if (error == 0) 1951 for (i = 0; i < uap->iovcnt; i++) { 1952 PTROUT_CP(auio->uio_iov[i], iov32, iov_base); 1953 CP(auio->uio_iov[i], iov32, iov_len); 1954 error = copyout(&iov32, uap->iovp + i, sizeof(iov32)); 1955 if (error != 0) 1956 break; 1957 } 1958 free(auio, M_IOV); 1959 return (error); 1960 } 1961 1962 int 1963 freebsd32_sigaction(struct thread *td, struct freebsd32_sigaction_args *uap) 1964 { 1965 struct sigaction32 s32; 1966 struct sigaction sa, osa, *sap; 1967 int error; 1968 1969 if (uap->act) { 1970 error = copyin(uap->act, &s32, sizeof(s32)); 1971 if (error) 1972 return (error); 1973 sa.sa_handler = PTRIN(s32.sa_u); 1974 CP(s32, sa, sa_flags); 1975 CP(s32, sa, sa_mask); 1976 sap = &sa; 1977 } else 1978 sap = NULL; 1979 error = kern_sigaction(td, uap->sig, sap, &osa, 0); 1980 if (error == 0 && uap->oact != NULL) { 1981 s32.sa_u = PTROUT(osa.sa_handler); 1982 CP(osa, s32, sa_flags); 1983 CP(osa, s32, sa_mask); 1984 error = copyout(&s32, uap->oact, sizeof(s32)); 1985 } 1986 return (error); 1987 } 1988 1989 #ifdef COMPAT_FREEBSD4 1990 int 1991 freebsd4_freebsd32_sigaction(struct thread *td, 1992 struct freebsd4_freebsd32_sigaction_args *uap) 1993 { 1994 struct sigaction32 s32; 1995 struct sigaction sa, osa, *sap; 1996 int error; 1997 1998 if (uap->act) { 1999 error = copyin(uap->act, &s32, sizeof(s32)); 2000 if (error) 2001 return (error); 2002 sa.sa_handler = PTRIN(s32.sa_u); 2003 CP(s32, sa, sa_flags); 2004 CP(s32, sa, sa_mask); 2005 sap = &sa; 2006 } else 2007 sap = NULL; 2008 error = kern_sigaction(td, uap->sig, sap, &osa, KSA_FREEBSD4); 2009 if (error == 0 && uap->oact != NULL) { 2010 s32.sa_u = PTROUT(osa.sa_handler); 2011 CP(osa, s32, sa_flags); 2012 CP(osa, s32, sa_mask); 2013 error = copyout(&s32, uap->oact, sizeof(s32)); 2014 } 2015 return (error); 2016 } 2017 #endif 2018 2019 #ifdef COMPAT_43 2020 struct osigaction32 { 2021 u_int32_t sa_u; 2022 osigset_t sa_mask; 2023 int sa_flags; 2024 }; 2025 2026 #define ONSIG 32 2027 2028 int 2029 ofreebsd32_sigaction(struct thread *td, 2030 struct ofreebsd32_sigaction_args *uap) 2031 { 2032 struct osigaction32 s32; 2033 struct sigaction sa, osa, *sap; 2034 int error; 2035 2036 if (uap->signum <= 0 || uap->signum >= ONSIG) 2037 return (EINVAL); 2038 2039 if (uap->nsa) { 2040 error = copyin(uap->nsa, &s32, sizeof(s32)); 2041 if (error) 2042 return (error); 2043 sa.sa_handler = PTRIN(s32.sa_u); 2044 CP(s32, sa, sa_flags); 2045 OSIG2SIG(s32.sa_mask, sa.sa_mask); 2046 sap = &sa; 2047 } else 2048 sap = NULL; 2049 error = kern_sigaction(td, uap->signum, sap, &osa, KSA_OSIGSET); 2050 if (error == 0 && uap->osa != NULL) { 2051 s32.sa_u = PTROUT(osa.sa_handler); 2052 CP(osa, s32, sa_flags); 2053 SIG2OSIG(osa.sa_mask, s32.sa_mask); 2054 error = copyout(&s32, uap->osa, sizeof(s32)); 2055 } 2056 return (error); 2057 } 2058 2059 int 2060 ofreebsd32_sigprocmask(struct thread *td, 2061 struct ofreebsd32_sigprocmask_args *uap) 2062 { 2063 sigset_t set, oset; 2064 int error; 2065 2066 OSIG2SIG(uap->mask, set); 2067 error = kern_sigprocmask(td, uap->how, &set, &oset, SIGPROCMASK_OLD); 2068 SIG2OSIG(oset, td->td_retval[0]); 2069 return (error); 2070 } 2071 2072 int 2073 ofreebsd32_sigpending(struct thread *td, 2074 struct ofreebsd32_sigpending_args *uap) 2075 { 2076 struct proc *p = td->td_proc; 2077 sigset_t siglist; 2078 2079 PROC_LOCK(p); 2080 siglist = p->p_siglist; 2081 SIGSETOR(siglist, td->td_siglist); 2082 PROC_UNLOCK(p); 2083 SIG2OSIG(siglist, td->td_retval[0]); 2084 return (0); 2085 } 2086 2087 struct sigvec32 { 2088 u_int32_t sv_handler; 2089 int sv_mask; 2090 int sv_flags; 2091 }; 2092 2093 int 2094 ofreebsd32_sigvec(struct thread *td, 2095 struct ofreebsd32_sigvec_args *uap) 2096 { 2097 struct sigvec32 vec; 2098 struct sigaction sa, osa, *sap; 2099 int error; 2100 2101 if (uap->signum <= 0 || uap->signum >= ONSIG) 2102 return (EINVAL); 2103 2104 if (uap->nsv) { 2105 error = copyin(uap->nsv, &vec, sizeof(vec)); 2106 if (error) 2107 return (error); 2108 sa.sa_handler = PTRIN(vec.sv_handler); 2109 OSIG2SIG(vec.sv_mask, sa.sa_mask); 2110 sa.sa_flags = vec.sv_flags; 2111 sa.sa_flags ^= SA_RESTART; 2112 sap = &sa; 2113 } else 2114 sap = NULL; 2115 error = kern_sigaction(td, uap->signum, sap, &osa, KSA_OSIGSET); 2116 if (error == 0 && uap->osv != NULL) { 2117 vec.sv_handler = PTROUT(osa.sa_handler); 2118 SIG2OSIG(osa.sa_mask, vec.sv_mask); 2119 vec.sv_flags = osa.sa_flags; 2120 vec.sv_flags &= ~SA_NOCLDWAIT; 2121 vec.sv_flags ^= SA_RESTART; 2122 error = copyout(&vec, uap->osv, sizeof(vec)); 2123 } 2124 return (error); 2125 } 2126 2127 int 2128 ofreebsd32_sigblock(struct thread *td, 2129 struct ofreebsd32_sigblock_args *uap) 2130 { 2131 sigset_t set, oset; 2132 2133 OSIG2SIG(uap->mask, set); 2134 kern_sigprocmask(td, SIG_BLOCK, &set, &oset, 0); 2135 SIG2OSIG(oset, td->td_retval[0]); 2136 return (0); 2137 } 2138 2139 int 2140 ofreebsd32_sigsetmask(struct thread *td, 2141 struct ofreebsd32_sigsetmask_args *uap) 2142 { 2143 sigset_t set, oset; 2144 2145 OSIG2SIG(uap->mask, set); 2146 kern_sigprocmask(td, SIG_SETMASK, &set, &oset, 0); 2147 SIG2OSIG(oset, td->td_retval[0]); 2148 return (0); 2149 } 2150 2151 int 2152 ofreebsd32_sigsuspend(struct thread *td, 2153 struct ofreebsd32_sigsuspend_args *uap) 2154 { 2155 sigset_t mask; 2156 2157 OSIG2SIG(uap->mask, mask); 2158 return (kern_sigsuspend(td, mask)); 2159 } 2160 2161 struct sigstack32 { 2162 u_int32_t ss_sp; 2163 int ss_onstack; 2164 }; 2165 2166 int 2167 ofreebsd32_sigstack(struct thread *td, 2168 struct ofreebsd32_sigstack_args *uap) 2169 { 2170 struct sigstack32 s32; 2171 struct sigstack nss, oss; 2172 int error = 0, unss; 2173 2174 if (uap->nss != NULL) { 2175 error = copyin(uap->nss, &s32, sizeof(s32)); 2176 if (error) 2177 return (error); 2178 nss.ss_sp = PTRIN(s32.ss_sp); 2179 CP(s32, nss, ss_onstack); 2180 unss = 1; 2181 } else { 2182 unss = 0; 2183 } 2184 oss.ss_sp = td->td_sigstk.ss_sp; 2185 oss.ss_onstack = sigonstack(cpu_getstack(td)); 2186 if (unss) { 2187 td->td_sigstk.ss_sp = nss.ss_sp; 2188 td->td_sigstk.ss_size = 0; 2189 td->td_sigstk.ss_flags |= (nss.ss_onstack & SS_ONSTACK); 2190 td->td_pflags |= TDP_ALTSTACK; 2191 } 2192 if (uap->oss != NULL) { 2193 s32.ss_sp = PTROUT(oss.ss_sp); 2194 CP(oss, s32, ss_onstack); 2195 error = copyout(&s32, uap->oss, sizeof(s32)); 2196 } 2197 return (error); 2198 } 2199 #endif 2200 2201 int 2202 freebsd32_nanosleep(struct thread *td, struct freebsd32_nanosleep_args *uap) 2203 { 2204 struct timespec32 rmt32, rqt32; 2205 struct timespec rmt, rqt; 2206 int error; 2207 2208 error = copyin(uap->rqtp, &rqt32, sizeof(rqt32)); 2209 if (error) 2210 return (error); 2211 2212 CP(rqt32, rqt, tv_sec); 2213 CP(rqt32, rqt, tv_nsec); 2214 2215 if (uap->rmtp && 2216 !useracc((caddr_t)uap->rmtp, sizeof(rmt), VM_PROT_WRITE)) 2217 return (EFAULT); 2218 error = kern_nanosleep(td, &rqt, &rmt); 2219 if (error && uap->rmtp) { 2220 int error2; 2221 2222 CP(rmt, rmt32, tv_sec); 2223 CP(rmt, rmt32, tv_nsec); 2224 2225 error2 = copyout(&rmt32, uap->rmtp, sizeof(rmt32)); 2226 if (error2) 2227 error = error2; 2228 } 2229 return (error); 2230 } 2231 2232 int 2233 freebsd32_clock_gettime(struct thread *td, 2234 struct freebsd32_clock_gettime_args *uap) 2235 { 2236 struct timespec ats; 2237 struct timespec32 ats32; 2238 int error; 2239 2240 error = kern_clock_gettime(td, uap->clock_id, &ats); 2241 if (error == 0) { 2242 CP(ats, ats32, tv_sec); 2243 CP(ats, ats32, tv_nsec); 2244 error = copyout(&ats32, uap->tp, sizeof(ats32)); 2245 } 2246 return (error); 2247 } 2248 2249 int 2250 freebsd32_clock_settime(struct thread *td, 2251 struct freebsd32_clock_settime_args *uap) 2252 { 2253 struct timespec ats; 2254 struct timespec32 ats32; 2255 int error; 2256 2257 error = copyin(uap->tp, &ats32, sizeof(ats32)); 2258 if (error) 2259 return (error); 2260 CP(ats32, ats, tv_sec); 2261 CP(ats32, ats, tv_nsec); 2262 2263 return (kern_clock_settime(td, uap->clock_id, &ats)); 2264 } 2265 2266 int 2267 freebsd32_clock_getres(struct thread *td, 2268 struct freebsd32_clock_getres_args *uap) 2269 { 2270 struct timespec ts; 2271 struct timespec32 ts32; 2272 int error; 2273 2274 if (uap->tp == NULL) 2275 return (0); 2276 error = kern_clock_getres(td, uap->clock_id, &ts); 2277 if (error == 0) { 2278 CP(ts, ts32, tv_sec); 2279 CP(ts, ts32, tv_nsec); 2280 error = copyout(&ts32, uap->tp, sizeof(ts32)); 2281 } 2282 return (error); 2283 } 2284 2285 int 2286 freebsd32_thr_new(struct thread *td, 2287 struct freebsd32_thr_new_args *uap) 2288 { 2289 struct thr_param32 param32; 2290 struct thr_param param; 2291 int error; 2292 2293 if (uap->param_size < 0 || 2294 uap->param_size > sizeof(struct thr_param32)) 2295 return (EINVAL); 2296 bzero(¶m, sizeof(struct thr_param)); 2297 bzero(¶m32, sizeof(struct thr_param32)); 2298 error = copyin(uap->param, ¶m32, uap->param_size); 2299 if (error != 0) 2300 return (error); 2301 param.start_func = PTRIN(param32.start_func); 2302 param.arg = PTRIN(param32.arg); 2303 param.stack_base = PTRIN(param32.stack_base); 2304 param.stack_size = param32.stack_size; 2305 param.tls_base = PTRIN(param32.tls_base); 2306 param.tls_size = param32.tls_size; 2307 param.child_tid = PTRIN(param32.child_tid); 2308 param.parent_tid = PTRIN(param32.parent_tid); 2309 param.flags = param32.flags; 2310 param.rtp = PTRIN(param32.rtp); 2311 param.spare[0] = PTRIN(param32.spare[0]); 2312 param.spare[1] = PTRIN(param32.spare[1]); 2313 param.spare[2] = PTRIN(param32.spare[2]); 2314 2315 return (kern_thr_new(td, ¶m)); 2316 } 2317 2318 int 2319 freebsd32_thr_suspend(struct thread *td, struct freebsd32_thr_suspend_args *uap) 2320 { 2321 struct timespec32 ts32; 2322 struct timespec ts, *tsp; 2323 int error; 2324 2325 error = 0; 2326 tsp = NULL; 2327 if (uap->timeout != NULL) { 2328 error = copyin((const void *)uap->timeout, (void *)&ts32, 2329 sizeof(struct timespec32)); 2330 if (error != 0) 2331 return (error); 2332 ts.tv_sec = ts32.tv_sec; 2333 ts.tv_nsec = ts32.tv_nsec; 2334 tsp = &ts; 2335 } 2336 return (kern_thr_suspend(td, tsp)); 2337 } 2338 2339 void 2340 siginfo_to_siginfo32(const siginfo_t *src, struct siginfo32 *dst) 2341 { 2342 bzero(dst, sizeof(*dst)); 2343 dst->si_signo = src->si_signo; 2344 dst->si_errno = src->si_errno; 2345 dst->si_code = src->si_code; 2346 dst->si_pid = src->si_pid; 2347 dst->si_uid = src->si_uid; 2348 dst->si_status = src->si_status; 2349 dst->si_addr = (uintptr_t)src->si_addr; 2350 dst->si_value.sigval_int = src->si_value.sival_int; 2351 dst->si_timerid = src->si_timerid; 2352 dst->si_overrun = src->si_overrun; 2353 } 2354 2355 int 2356 freebsd32_sigtimedwait(struct thread *td, struct freebsd32_sigtimedwait_args *uap) 2357 { 2358 struct timespec32 ts32; 2359 struct timespec ts; 2360 struct timespec *timeout; 2361 sigset_t set; 2362 ksiginfo_t ksi; 2363 struct siginfo32 si32; 2364 int error; 2365 2366 if (uap->timeout) { 2367 error = copyin(uap->timeout, &ts32, sizeof(ts32)); 2368 if (error) 2369 return (error); 2370 ts.tv_sec = ts32.tv_sec; 2371 ts.tv_nsec = ts32.tv_nsec; 2372 timeout = &ts; 2373 } else 2374 timeout = NULL; 2375 2376 error = copyin(uap->set, &set, sizeof(set)); 2377 if (error) 2378 return (error); 2379 2380 error = kern_sigtimedwait(td, set, &ksi, timeout); 2381 if (error) 2382 return (error); 2383 2384 if (uap->info) { 2385 siginfo_to_siginfo32(&ksi.ksi_info, &si32); 2386 error = copyout(&si32, uap->info, sizeof(struct siginfo32)); 2387 } 2388 2389 if (error == 0) 2390 td->td_retval[0] = ksi.ksi_signo; 2391 return (error); 2392 } 2393 2394 /* 2395 * MPSAFE 2396 */ 2397 int 2398 freebsd32_sigwaitinfo(struct thread *td, struct freebsd32_sigwaitinfo_args *uap) 2399 { 2400 ksiginfo_t ksi; 2401 struct siginfo32 si32; 2402 sigset_t set; 2403 int error; 2404 2405 error = copyin(uap->set, &set, sizeof(set)); 2406 if (error) 2407 return (error); 2408 2409 error = kern_sigtimedwait(td, set, &ksi, NULL); 2410 if (error) 2411 return (error); 2412 2413 if (uap->info) { 2414 siginfo_to_siginfo32(&ksi.ksi_info, &si32); 2415 error = copyout(&si32, uap->info, sizeof(struct siginfo32)); 2416 } 2417 if (error == 0) 2418 td->td_retval[0] = ksi.ksi_signo; 2419 return (error); 2420 } 2421 2422 int 2423 freebsd32_cpuset_setid(struct thread *td, 2424 struct freebsd32_cpuset_setid_args *uap) 2425 { 2426 struct cpuset_setid_args ap; 2427 2428 ap.which = uap->which; 2429 ap.id = PAIR32TO64(id_t,uap->id); 2430 ap.setid = uap->setid; 2431 2432 return (sys_cpuset_setid(td, &ap)); 2433 } 2434 2435 int 2436 freebsd32_cpuset_getid(struct thread *td, 2437 struct freebsd32_cpuset_getid_args *uap) 2438 { 2439 struct cpuset_getid_args ap; 2440 2441 ap.level = uap->level; 2442 ap.which = uap->which; 2443 ap.id = PAIR32TO64(id_t,uap->id); 2444 ap.setid = uap->setid; 2445 2446 return (sys_cpuset_getid(td, &ap)); 2447 } 2448 2449 int 2450 freebsd32_cpuset_getaffinity(struct thread *td, 2451 struct freebsd32_cpuset_getaffinity_args *uap) 2452 { 2453 struct cpuset_getaffinity_args ap; 2454 2455 ap.level = uap->level; 2456 ap.which = uap->which; 2457 ap.id = PAIR32TO64(id_t,uap->id); 2458 ap.cpusetsize = uap->cpusetsize; 2459 ap.mask = uap->mask; 2460 2461 return (sys_cpuset_getaffinity(td, &ap)); 2462 } 2463 2464 int 2465 freebsd32_cpuset_setaffinity(struct thread *td, 2466 struct freebsd32_cpuset_setaffinity_args *uap) 2467 { 2468 struct cpuset_setaffinity_args ap; 2469 2470 ap.level = uap->level; 2471 ap.which = uap->which; 2472 ap.id = PAIR32TO64(id_t,uap->id); 2473 ap.cpusetsize = uap->cpusetsize; 2474 ap.mask = uap->mask; 2475 2476 return (sys_cpuset_setaffinity(td, &ap)); 2477 } 2478 2479 int 2480 freebsd32_nmount(struct thread *td, 2481 struct freebsd32_nmount_args /* { 2482 struct iovec *iovp; 2483 unsigned int iovcnt; 2484 int flags; 2485 } */ *uap) 2486 { 2487 struct uio *auio; 2488 int error; 2489 2490 AUDIT_ARG_FFLAGS(uap->flags); 2491 2492 /* 2493 * Filter out MNT_ROOTFS. We do not want clients of nmount() in 2494 * userspace to set this flag, but we must filter it out if we want 2495 * MNT_UPDATE on the root file system to work. 2496 * MNT_ROOTFS should only be set by the kernel when mounting its 2497 * root file system. 2498 */ 2499 uap->flags &= ~MNT_ROOTFS; 2500 2501 /* 2502 * check that we have an even number of iovec's 2503 * and that we have at least two options. 2504 */ 2505 if ((uap->iovcnt & 1) || (uap->iovcnt < 4)) 2506 return (EINVAL); 2507 2508 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 2509 if (error) 2510 return (error); 2511 error = vfs_donmount(td, uap->flags, auio); 2512 2513 free(auio, M_IOV); 2514 return error; 2515 } 2516 2517 #if 0 2518 int 2519 freebsd32_xxx(struct thread *td, struct freebsd32_xxx_args *uap) 2520 { 2521 struct yyy32 *p32, s32; 2522 struct yyy *p = NULL, s; 2523 struct xxx_arg ap; 2524 int error; 2525 2526 if (uap->zzz) { 2527 error = copyin(uap->zzz, &s32, sizeof(s32)); 2528 if (error) 2529 return (error); 2530 /* translate in */ 2531 p = &s; 2532 } 2533 error = kern_xxx(td, p); 2534 if (error) 2535 return (error); 2536 if (uap->zzz) { 2537 /* translate out */ 2538 error = copyout(&s32, p32, sizeof(s32)); 2539 } 2540 return (error); 2541 } 2542 #endif 2543 2544 int 2545 syscall32_register(int *offset, struct sysent *new_sysent, 2546 struct sysent *old_sysent) 2547 { 2548 if (*offset == NO_SYSCALL) { 2549 int i; 2550 2551 for (i = 1; i < SYS_MAXSYSCALL; ++i) 2552 if (freebsd32_sysent[i].sy_call == 2553 (sy_call_t *)lkmnosys) 2554 break; 2555 if (i == SYS_MAXSYSCALL) 2556 return (ENFILE); 2557 *offset = i; 2558 } else if (*offset < 0 || *offset >= SYS_MAXSYSCALL) 2559 return (EINVAL); 2560 else if (freebsd32_sysent[*offset].sy_call != (sy_call_t *)lkmnosys && 2561 freebsd32_sysent[*offset].sy_call != (sy_call_t *)lkmressys) 2562 return (EEXIST); 2563 2564 *old_sysent = freebsd32_sysent[*offset]; 2565 freebsd32_sysent[*offset] = *new_sysent; 2566 return 0; 2567 } 2568 2569 int 2570 syscall32_deregister(int *offset, struct sysent *old_sysent) 2571 { 2572 2573 if (*offset) 2574 freebsd32_sysent[*offset] = *old_sysent; 2575 return 0; 2576 } 2577 2578 int 2579 syscall32_module_handler(struct module *mod, int what, void *arg) 2580 { 2581 struct syscall_module_data *data = (struct syscall_module_data*)arg; 2582 modspecific_t ms; 2583 int error; 2584 2585 switch (what) { 2586 case MOD_LOAD: 2587 error = syscall32_register(data->offset, data->new_sysent, 2588 &data->old_sysent); 2589 if (error) { 2590 /* Leave a mark so we know to safely unload below. */ 2591 data->offset = NULL; 2592 return error; 2593 } 2594 ms.intval = *data->offset; 2595 MOD_XLOCK; 2596 module_setspecific(mod, &ms); 2597 MOD_XUNLOCK; 2598 if (data->chainevh) 2599 error = data->chainevh(mod, what, data->chainarg); 2600 return (error); 2601 case MOD_UNLOAD: 2602 /* 2603 * MOD_LOAD failed, so just return without calling the 2604 * chained handler since we didn't pass along the MOD_LOAD 2605 * event. 2606 */ 2607 if (data->offset == NULL) 2608 return (0); 2609 if (data->chainevh) { 2610 error = data->chainevh(mod, what, data->chainarg); 2611 if (error) 2612 return (error); 2613 } 2614 error = syscall32_deregister(data->offset, &data->old_sysent); 2615 return (error); 2616 default: 2617 error = EOPNOTSUPP; 2618 if (data->chainevh) 2619 error = data->chainevh(mod, what, data->chainarg); 2620 return (error); 2621 } 2622 } 2623 2624 int 2625 syscall32_helper_register(struct syscall_helper_data *sd) 2626 { 2627 struct syscall_helper_data *sd1; 2628 int error; 2629 2630 for (sd1 = sd; sd1->syscall_no != NO_SYSCALL; sd1++) { 2631 error = syscall32_register(&sd1->syscall_no, &sd1->new_sysent, 2632 &sd1->old_sysent); 2633 if (error != 0) { 2634 syscall32_helper_unregister(sd); 2635 return (error); 2636 } 2637 sd1->registered = 1; 2638 } 2639 return (0); 2640 } 2641 2642 int 2643 syscall32_helper_unregister(struct syscall_helper_data *sd) 2644 { 2645 struct syscall_helper_data *sd1; 2646 2647 for (sd1 = sd; sd1->registered != 0; sd1++) { 2648 syscall32_deregister(&sd1->syscall_no, &sd1->old_sysent); 2649 sd1->registered = 0; 2650 } 2651 return (0); 2652 } 2653 2654 register_t * 2655 freebsd32_copyout_strings(struct image_params *imgp) 2656 { 2657 int argc, envc, i; 2658 u_int32_t *vectp; 2659 char *stringp, *destp; 2660 u_int32_t *stack_base; 2661 struct freebsd32_ps_strings *arginfo; 2662 char canary[sizeof(long) * 8]; 2663 int32_t pagesizes32[MAXPAGESIZES]; 2664 size_t execpath_len; 2665 int szsigcode; 2666 2667 /* 2668 * Calculate string base and vector table pointers. 2669 * Also deal with signal trampoline code for this exec type. 2670 */ 2671 if (imgp->execpath != NULL && imgp->auxargs != NULL) 2672 execpath_len = strlen(imgp->execpath) + 1; 2673 else 2674 execpath_len = 0; 2675 arginfo = (struct freebsd32_ps_strings *)curproc->p_sysent-> 2676 sv_psstrings; 2677 if (imgp->proc->p_sysent->sv_sigcode_base == 0) 2678 szsigcode = *(imgp->proc->p_sysent->sv_szsigcode); 2679 else 2680 szsigcode = 0; 2681 destp = (caddr_t)arginfo - szsigcode - SPARE_USRSPACE - 2682 roundup(execpath_len, sizeof(char *)) - 2683 roundup(sizeof(canary), sizeof(char *)) - 2684 roundup(sizeof(pagesizes32), sizeof(char *)) - 2685 roundup((ARG_MAX - imgp->args->stringspace), sizeof(char *)); 2686 2687 /* 2688 * install sigcode 2689 */ 2690 if (szsigcode != 0) 2691 copyout(imgp->proc->p_sysent->sv_sigcode, 2692 ((caddr_t)arginfo - szsigcode), szsigcode); 2693 2694 /* 2695 * Copy the image path for the rtld. 2696 */ 2697 if (execpath_len != 0) { 2698 imgp->execpathp = (uintptr_t)arginfo - szsigcode - execpath_len; 2699 copyout(imgp->execpath, (void *)imgp->execpathp, 2700 execpath_len); 2701 } 2702 2703 /* 2704 * Prepare the canary for SSP. 2705 */ 2706 arc4rand(canary, sizeof(canary), 0); 2707 imgp->canary = (uintptr_t)arginfo - szsigcode - execpath_len - 2708 sizeof(canary); 2709 copyout(canary, (void *)imgp->canary, sizeof(canary)); 2710 imgp->canarylen = sizeof(canary); 2711 2712 /* 2713 * Prepare the pagesizes array. 2714 */ 2715 for (i = 0; i < MAXPAGESIZES; i++) 2716 pagesizes32[i] = (uint32_t)pagesizes[i]; 2717 imgp->pagesizes = (uintptr_t)arginfo - szsigcode - execpath_len - 2718 roundup(sizeof(canary), sizeof(char *)) - sizeof(pagesizes32); 2719 copyout(pagesizes32, (void *)imgp->pagesizes, sizeof(pagesizes32)); 2720 imgp->pagesizeslen = sizeof(pagesizes32); 2721 2722 /* 2723 * If we have a valid auxargs ptr, prepare some room 2724 * on the stack. 2725 */ 2726 if (imgp->auxargs) { 2727 /* 2728 * 'AT_COUNT*2' is size for the ELF Auxargs data. This is for 2729 * lower compatibility. 2730 */ 2731 imgp->auxarg_size = (imgp->auxarg_size) ? imgp->auxarg_size 2732 : (AT_COUNT * 2); 2733 /* 2734 * The '+ 2' is for the null pointers at the end of each of 2735 * the arg and env vector sets,and imgp->auxarg_size is room 2736 * for argument of Runtime loader. 2737 */ 2738 vectp = (u_int32_t *) (destp - (imgp->args->argc + 2739 imgp->args->envc + 2 + imgp->auxarg_size + execpath_len) * 2740 sizeof(u_int32_t)); 2741 } else 2742 /* 2743 * The '+ 2' is for the null pointers at the end of each of 2744 * the arg and env vector sets 2745 */ 2746 vectp = (u_int32_t *) 2747 (destp - (imgp->args->argc + imgp->args->envc + 2) * sizeof(u_int32_t)); 2748 2749 /* 2750 * vectp also becomes our initial stack base 2751 */ 2752 stack_base = vectp; 2753 2754 stringp = imgp->args->begin_argv; 2755 argc = imgp->args->argc; 2756 envc = imgp->args->envc; 2757 /* 2758 * Copy out strings - arguments and environment. 2759 */ 2760 copyout(stringp, destp, ARG_MAX - imgp->args->stringspace); 2761 2762 /* 2763 * Fill in "ps_strings" struct for ps, w, etc. 2764 */ 2765 suword32(&arginfo->ps_argvstr, (u_int32_t)(intptr_t)vectp); 2766 suword32(&arginfo->ps_nargvstr, argc); 2767 2768 /* 2769 * Fill in argument portion of vector table. 2770 */ 2771 for (; argc > 0; --argc) { 2772 suword32(vectp++, (u_int32_t)(intptr_t)destp); 2773 while (*stringp++ != 0) 2774 destp++; 2775 destp++; 2776 } 2777 2778 /* a null vector table pointer separates the argp's from the envp's */ 2779 suword32(vectp++, 0); 2780 2781 suword32(&arginfo->ps_envstr, (u_int32_t)(intptr_t)vectp); 2782 suword32(&arginfo->ps_nenvstr, envc); 2783 2784 /* 2785 * Fill in environment portion of vector table. 2786 */ 2787 for (; envc > 0; --envc) { 2788 suword32(vectp++, (u_int32_t)(intptr_t)destp); 2789 while (*stringp++ != 0) 2790 destp++; 2791 destp++; 2792 } 2793 2794 /* end of vector table is a null pointer */ 2795 suword32(vectp, 0); 2796 2797 return ((register_t *)stack_base); 2798 } 2799 2800 int 2801 freebsd32_kldstat(struct thread *td, struct freebsd32_kldstat_args *uap) 2802 { 2803 struct kld_file_stat stat; 2804 struct kld32_file_stat stat32; 2805 int error, version; 2806 2807 if ((error = copyin(&uap->stat->version, &version, sizeof(version))) 2808 != 0) 2809 return (error); 2810 if (version != sizeof(struct kld32_file_stat_1) && 2811 version != sizeof(struct kld32_file_stat)) 2812 return (EINVAL); 2813 2814 error = kern_kldstat(td, uap->fileid, &stat); 2815 if (error != 0) 2816 return (error); 2817 2818 bcopy(&stat.name[0], &stat32.name[0], sizeof(stat.name)); 2819 CP(stat, stat32, refs); 2820 CP(stat, stat32, id); 2821 PTROUT_CP(stat, stat32, address); 2822 CP(stat, stat32, size); 2823 bcopy(&stat.pathname[0], &stat32.pathname[0], sizeof(stat.pathname)); 2824 return (copyout(&stat32, uap->stat, version)); 2825 } 2826 2827 int 2828 freebsd32_posix_fallocate(struct thread *td, 2829 struct freebsd32_posix_fallocate_args *uap) 2830 { 2831 2832 return (kern_posix_fallocate(td, uap->fd, 2833 PAIR32TO64(off_t, uap->offset), PAIR32TO64(off_t, uap->len))); 2834 } 2835 2836 int 2837 freebsd32_posix_fadvise(struct thread *td, 2838 struct freebsd32_posix_fadvise_args *uap) 2839 { 2840 2841 return (kern_posix_fadvise(td, uap->fd, PAIR32TO64(off_t, uap->offset), 2842 PAIR32TO64(off_t, uap->len), uap->advice)); 2843 } 2844