1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2002 Doug Rabson 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 #include "opt_ffclock.h" 31 #include "opt_inet.h" 32 #include "opt_inet6.h" 33 #include "opt_ktrace.h" 34 35 #define __ELF_WORD_SIZE 32 36 37 #ifdef COMPAT_FREEBSD11 38 #define _WANT_FREEBSD11_KEVENT 39 #endif 40 41 #include <sys/param.h> 42 #include <sys/bus.h> 43 #include <sys/capsicum.h> 44 #include <sys/clock.h> 45 #include <sys/exec.h> 46 #include <sys/fcntl.h> 47 #include <sys/filedesc.h> 48 #include <sys/imgact.h> 49 #include <sys/jail.h> 50 #include <sys/kernel.h> 51 #include <sys/limits.h> 52 #include <sys/linker.h> 53 #include <sys/lock.h> 54 #include <sys/malloc.h> 55 #include <sys/file.h> /* Must come after sys/malloc.h */ 56 #include <sys/imgact.h> 57 #include <sys/mbuf.h> 58 #include <sys/mman.h> 59 #include <sys/module.h> 60 #include <sys/mount.h> 61 #include <sys/mutex.h> 62 #include <sys/namei.h> 63 #include <sys/priv.h> 64 #include <sys/proc.h> 65 #include <sys/procctl.h> 66 #include <sys/ptrace.h> 67 #include <sys/reboot.h> 68 #include <sys/resource.h> 69 #include <sys/resourcevar.h> 70 #include <sys/selinfo.h> 71 #include <sys/eventvar.h> /* Must come after sys/selinfo.h */ 72 #include <sys/pipe.h> /* Must come after sys/selinfo.h */ 73 #include <sys/signal.h> 74 #include <sys/signalvar.h> 75 #include <sys/socket.h> 76 #include <sys/socketvar.h> 77 #include <sys/stat.h> 78 #include <sys/syscall.h> 79 #include <sys/syscallsubr.h> 80 #include <sys/sysctl.h> 81 #include <sys/sysent.h> 82 #include <sys/sysproto.h> 83 #include <sys/systm.h> 84 #include <sys/thr.h> 85 #include <sys/timerfd.h> 86 #include <sys/timex.h> 87 #include <sys/unistd.h> 88 #include <sys/ucontext.h> 89 #include <sys/ucred.h> 90 #include <sys/vnode.h> 91 #include <sys/wait.h> 92 #include <sys/ipc.h> 93 #include <sys/msg.h> 94 #include <sys/sem.h> 95 #include <sys/shm.h> 96 #include <sys/timeffc.h> 97 #ifdef KTRACE 98 #include <sys/ktrace.h> 99 #endif 100 101 #ifdef INET 102 #include <netinet/in.h> 103 #endif 104 105 #include <vm/vm.h> 106 #include <vm/vm_param.h> 107 #include <vm/pmap.h> 108 #include <vm/vm_map.h> 109 #include <vm/vm_object.h> 110 #include <vm/vm_extern.h> 111 112 #include <machine/cpu.h> 113 #include <machine/elf.h> 114 #ifdef __amd64__ 115 #include <machine/md_var.h> 116 #endif 117 118 #include <security/audit/audit.h> 119 #include <security/mac/mac_syscalls.h> 120 121 #include <compat/freebsd32/freebsd32_util.h> 122 #include <compat/freebsd32/freebsd32.h> 123 #include <compat/freebsd32/freebsd32_ipc.h> 124 #include <compat/freebsd32/freebsd32_misc.h> 125 #include <compat/freebsd32/freebsd32_signal.h> 126 #include <compat/freebsd32/freebsd32_proto.h> 127 128 int compat_freebsd_32bit = 1; 129 130 static void 131 register_compat32_feature(void *arg) 132 { 133 if (!compat_freebsd_32bit) 134 return; 135 136 FEATURE_ADD("compat_freebsd32", "Compatible with 32-bit FreeBSD"); 137 FEATURE_ADD("compat_freebsd_32bit", 138 "Compatible with 32-bit FreeBSD (legacy feature name)"); 139 } 140 SYSINIT(freebsd32, SI_SUB_EXEC, SI_ORDER_ANY, register_compat32_feature, 141 NULL); 142 143 struct ptrace_io_desc32 { 144 int piod_op; 145 uint32_t piod_offs; 146 uint32_t piod_addr; 147 uint32_t piod_len; 148 }; 149 150 struct ptrace_vm_entry32 { 151 int pve_entry; 152 int pve_timestamp; 153 uint32_t pve_start; 154 uint32_t pve_end; 155 uint32_t pve_offset; 156 u_int pve_prot; 157 u_int pve_pathlen; 158 int32_t pve_fileid; 159 u_int pve_fsid; 160 uint32_t pve_path; 161 }; 162 163 #ifdef __amd64__ 164 CTASSERT(sizeof(struct timeval32) == 8); 165 CTASSERT(sizeof(struct timespec32) == 8); 166 CTASSERT(sizeof(struct itimerval32) == 16); 167 CTASSERT(sizeof(struct bintime32) == 12); 168 #else 169 CTASSERT(sizeof(struct timeval32) == 16); 170 CTASSERT(sizeof(struct timespec32) == 16); 171 CTASSERT(sizeof(struct itimerval32) == 32); 172 CTASSERT(sizeof(struct bintime32) == 16); 173 #endif 174 CTASSERT(sizeof(struct ostatfs32) == 256); 175 #ifdef __amd64__ 176 CTASSERT(sizeof(struct rusage32) == 72); 177 #else 178 CTASSERT(sizeof(struct rusage32) == 88); 179 #endif 180 CTASSERT(sizeof(struct sigaltstack32) == 12); 181 #ifdef __amd64__ 182 CTASSERT(sizeof(struct kevent32) == 56); 183 #else 184 CTASSERT(sizeof(struct kevent32) == 64); 185 #endif 186 CTASSERT(sizeof(struct iovec32) == 8); 187 CTASSERT(sizeof(struct msghdr32) == 28); 188 #ifdef __amd64__ 189 CTASSERT(sizeof(struct stat32) == 208); 190 CTASSERT(sizeof(struct freebsd11_stat32) == 96); 191 #else 192 CTASSERT(sizeof(struct stat32) == 224); 193 CTASSERT(sizeof(struct freebsd11_stat32) == 120); 194 #endif 195 CTASSERT(sizeof(struct sigaction32) == 24); 196 197 static int freebsd32_kevent_copyout(void *arg, struct kevent *kevp, int count); 198 static int freebsd32_kevent_copyin(void *arg, struct kevent *kevp, int count); 199 static int freebsd32_user_clock_nanosleep(struct thread *td, clockid_t clock_id, 200 int flags, const struct timespec32 *ua_rqtp, struct timespec32 *ua_rmtp); 201 202 void 203 freebsd32_rusage_out(const struct rusage *s, struct rusage32 *s32) 204 { 205 206 TV_CP(*s, *s32, ru_utime); 207 TV_CP(*s, *s32, ru_stime); 208 CP(*s, *s32, ru_maxrss); 209 CP(*s, *s32, ru_ixrss); 210 CP(*s, *s32, ru_idrss); 211 CP(*s, *s32, ru_isrss); 212 CP(*s, *s32, ru_minflt); 213 CP(*s, *s32, ru_majflt); 214 CP(*s, *s32, ru_nswap); 215 CP(*s, *s32, ru_inblock); 216 CP(*s, *s32, ru_oublock); 217 CP(*s, *s32, ru_msgsnd); 218 CP(*s, *s32, ru_msgrcv); 219 CP(*s, *s32, ru_nsignals); 220 CP(*s, *s32, ru_nvcsw); 221 CP(*s, *s32, ru_nivcsw); 222 } 223 224 int 225 freebsd32_wait4(struct thread *td, struct freebsd32_wait4_args *uap) 226 { 227 int error, status; 228 struct rusage32 ru32; 229 struct rusage ru, *rup; 230 231 if (uap->rusage != NULL) 232 rup = &ru; 233 else 234 rup = NULL; 235 error = kern_wait(td, uap->pid, &status, uap->options, rup); 236 if (error) 237 return (error); 238 if (uap->status != NULL) 239 error = copyout(&status, uap->status, sizeof(status)); 240 if (uap->rusage != NULL && error == 0) { 241 freebsd32_rusage_out(&ru, &ru32); 242 error = copyout(&ru32, uap->rusage, sizeof(ru32)); 243 } 244 return (error); 245 } 246 247 int 248 freebsd32_wait6(struct thread *td, struct freebsd32_wait6_args *uap) 249 { 250 struct __wrusage32 wru32; 251 struct __wrusage wru, *wrup; 252 struct __siginfo32 si32; 253 struct __siginfo si, *sip; 254 int error, status; 255 256 if (uap->wrusage != NULL) 257 wrup = &wru; 258 else 259 wrup = NULL; 260 if (uap->info != NULL) { 261 sip = &si; 262 bzero(sip, sizeof(*sip)); 263 } else 264 sip = NULL; 265 error = kern_wait6(td, uap->idtype, PAIR32TO64(id_t, uap->id), 266 &status, uap->options, wrup, sip); 267 if (error != 0) 268 return (error); 269 if (uap->status != NULL) 270 error = copyout(&status, uap->status, sizeof(status)); 271 if (uap->wrusage != NULL && error == 0) { 272 freebsd32_rusage_out(&wru.wru_self, &wru32.wru_self); 273 freebsd32_rusage_out(&wru.wru_children, &wru32.wru_children); 274 error = copyout(&wru32, uap->wrusage, sizeof(wru32)); 275 } 276 if (uap->info != NULL && error == 0) { 277 siginfo_to_siginfo32 (&si, &si32); 278 error = copyout(&si32, uap->info, sizeof(si32)); 279 } 280 return (error); 281 } 282 283 #ifdef COMPAT_FREEBSD4 284 static void 285 copy_statfs(struct statfs *in, struct ostatfs32 *out) 286 { 287 288 statfs_scale_blocks(in, INT32_MAX); 289 bzero(out, sizeof(*out)); 290 CP(*in, *out, f_bsize); 291 out->f_iosize = MIN(in->f_iosize, INT32_MAX); 292 CP(*in, *out, f_blocks); 293 CP(*in, *out, f_bfree); 294 CP(*in, *out, f_bavail); 295 out->f_files = MIN(in->f_files, INT32_MAX); 296 out->f_ffree = MIN(in->f_ffree, INT32_MAX); 297 CP(*in, *out, f_fsid); 298 CP(*in, *out, f_owner); 299 CP(*in, *out, f_type); 300 CP(*in, *out, f_flags); 301 out->f_syncwrites = MIN(in->f_syncwrites, INT32_MAX); 302 out->f_asyncwrites = MIN(in->f_asyncwrites, INT32_MAX); 303 strlcpy(out->f_fstypename, 304 in->f_fstypename, MFSNAMELEN); 305 strlcpy(out->f_mntonname, 306 in->f_mntonname, min(MNAMELEN, FREEBSD4_OMNAMELEN)); 307 out->f_syncreads = MIN(in->f_syncreads, INT32_MAX); 308 out->f_asyncreads = MIN(in->f_asyncreads, INT32_MAX); 309 strlcpy(out->f_mntfromname, 310 in->f_mntfromname, min(MNAMELEN, FREEBSD4_OMNAMELEN)); 311 } 312 #endif 313 314 int 315 freebsd32_getfsstat(struct thread *td, struct freebsd32_getfsstat_args *uap) 316 { 317 size_t count; 318 int error; 319 320 if (uap->bufsize < 0 || uap->bufsize > SIZE_MAX) 321 return (EINVAL); 322 error = kern_getfsstat(td, &uap->buf, uap->bufsize, &count, 323 UIO_USERSPACE, uap->mode); 324 if (error == 0) 325 td->td_retval[0] = count; 326 return (error); 327 } 328 329 #ifdef COMPAT_FREEBSD4 330 int 331 freebsd4_freebsd32_getfsstat(struct thread *td, 332 struct freebsd4_freebsd32_getfsstat_args *uap) 333 { 334 struct statfs *buf, *sp; 335 struct ostatfs32 stat32; 336 size_t count, size, copycount; 337 int error; 338 339 count = uap->bufsize / sizeof(struct ostatfs32); 340 size = count * sizeof(struct statfs); 341 error = kern_getfsstat(td, &buf, size, &count, UIO_SYSSPACE, uap->mode); 342 if (size > 0) { 343 sp = buf; 344 copycount = count; 345 while (copycount > 0 && error == 0) { 346 copy_statfs(sp, &stat32); 347 error = copyout(&stat32, uap->buf, sizeof(stat32)); 348 sp++; 349 uap->buf++; 350 copycount--; 351 } 352 free(buf, M_STATFS); 353 } 354 if (error == 0) 355 td->td_retval[0] = count; 356 return (error); 357 } 358 #endif 359 360 #ifdef COMPAT_FREEBSD11 361 int 362 freebsd11_freebsd32_getfsstat(struct thread *td, 363 struct freebsd11_freebsd32_getfsstat_args *uap) 364 { 365 return(kern_freebsd11_getfsstat(td, uap->buf, uap->bufsize, 366 uap->mode)); 367 } 368 #endif 369 370 int 371 freebsd32_sigaltstack(struct thread *td, 372 struct freebsd32_sigaltstack_args *uap) 373 { 374 struct sigaltstack32 s32; 375 struct sigaltstack ss, oss, *ssp; 376 int error; 377 378 if (uap->ss != NULL) { 379 error = copyin(uap->ss, &s32, sizeof(s32)); 380 if (error) 381 return (error); 382 PTRIN_CP(s32, ss, ss_sp); 383 CP(s32, ss, ss_size); 384 CP(s32, ss, ss_flags); 385 ssp = &ss; 386 } else 387 ssp = NULL; 388 error = kern_sigaltstack(td, ssp, &oss); 389 if (error == 0 && uap->oss != NULL) { 390 PTROUT_CP(oss, s32, ss_sp); 391 CP(oss, s32, ss_size); 392 CP(oss, s32, ss_flags); 393 error = copyout(&s32, uap->oss, sizeof(s32)); 394 } 395 return (error); 396 } 397 398 /* 399 * Custom version of exec_copyin_args() so that we can translate 400 * the pointers. 401 */ 402 int 403 freebsd32_exec_copyin_args(struct image_args *args, const char *fname, 404 uint32_t *argv, uint32_t *envv) 405 { 406 char *argp, *envp; 407 uint32_t *p32, arg; 408 int error; 409 410 bzero(args, sizeof(*args)); 411 if (argv == NULL) 412 return (EFAULT); 413 414 /* 415 * Allocate demand-paged memory for the file name, argument, and 416 * environment strings. 417 */ 418 error = exec_alloc_args(args); 419 if (error != 0) 420 return (error); 421 422 /* 423 * Copy the file name. 424 */ 425 error = exec_args_add_fname(args, fname, UIO_USERSPACE); 426 if (error != 0) 427 goto err_exit; 428 429 /* 430 * extract arguments first 431 */ 432 p32 = argv; 433 for (;;) { 434 error = copyin(p32++, &arg, sizeof(arg)); 435 if (error) 436 goto err_exit; 437 if (arg == 0) 438 break; 439 argp = PTRIN(arg); 440 error = exec_args_add_arg(args, argp, UIO_USERSPACE); 441 if (error != 0) 442 goto err_exit; 443 } 444 445 /* 446 * extract environment strings 447 */ 448 if (envv) { 449 p32 = envv; 450 for (;;) { 451 error = copyin(p32++, &arg, sizeof(arg)); 452 if (error) 453 goto err_exit; 454 if (arg == 0) 455 break; 456 envp = PTRIN(arg); 457 error = exec_args_add_env(args, envp, UIO_USERSPACE); 458 if (error != 0) 459 goto err_exit; 460 } 461 } 462 463 return (0); 464 465 err_exit: 466 exec_free_args(args); 467 return (error); 468 } 469 470 int 471 freebsd32_execve(struct thread *td, struct freebsd32_execve_args *uap) 472 { 473 struct image_args eargs; 474 struct vmspace *oldvmspace; 475 int error; 476 477 error = pre_execve(td, &oldvmspace); 478 if (error != 0) 479 return (error); 480 error = freebsd32_exec_copyin_args(&eargs, uap->fname, uap->argv, 481 uap->envv); 482 if (error == 0) 483 error = kern_execve(td, &eargs, NULL, oldvmspace); 484 post_execve(td, error, oldvmspace); 485 AUDIT_SYSCALL_EXIT(error == EJUSTRETURN ? 0 : error, td); 486 return (error); 487 } 488 489 int 490 freebsd32_fexecve(struct thread *td, struct freebsd32_fexecve_args *uap) 491 { 492 struct image_args eargs; 493 struct vmspace *oldvmspace; 494 int error; 495 496 error = pre_execve(td, &oldvmspace); 497 if (error != 0) 498 return (error); 499 error = freebsd32_exec_copyin_args(&eargs, NULL, uap->argv, uap->envv); 500 if (error == 0) { 501 eargs.fd = uap->fd; 502 error = kern_execve(td, &eargs, NULL, oldvmspace); 503 } 504 post_execve(td, error, oldvmspace); 505 AUDIT_SYSCALL_EXIT(error == EJUSTRETURN ? 0 : error, td); 506 return (error); 507 } 508 509 int 510 freebsd32_mknodat(struct thread *td, struct freebsd32_mknodat_args *uap) 511 { 512 513 return (kern_mknodat(td, uap->fd, uap->path, UIO_USERSPACE, 514 uap->mode, PAIR32TO64(dev_t, uap->dev))); 515 } 516 517 int 518 freebsd32_mprotect(struct thread *td, struct freebsd32_mprotect_args *uap) 519 { 520 int prot; 521 522 prot = uap->prot; 523 #if defined(__amd64__) 524 if (i386_read_exec && (prot & PROT_READ) != 0) 525 prot |= PROT_EXEC; 526 #endif 527 return (kern_mprotect(td, (uintptr_t)PTRIN(uap->addr), uap->len, 528 prot, 0)); 529 } 530 531 int 532 freebsd32_mmap(struct thread *td, struct freebsd32_mmap_args *uap) 533 { 534 int prot; 535 536 prot = uap->prot; 537 #if defined(__amd64__) 538 if (i386_read_exec && (prot & PROT_READ)) 539 prot |= PROT_EXEC; 540 #endif 541 542 return (kern_mmap(td, &(struct mmap_req){ 543 .mr_hint = (uintptr_t)uap->addr, 544 .mr_len = uap->len, 545 .mr_prot = prot, 546 .mr_flags = uap->flags, 547 .mr_fd = uap->fd, 548 .mr_pos = PAIR32TO64(off_t, uap->pos), 549 })); 550 } 551 552 #ifdef COMPAT_FREEBSD6 553 int 554 freebsd6_freebsd32_mmap(struct thread *td, 555 struct freebsd6_freebsd32_mmap_args *uap) 556 { 557 int prot; 558 559 prot = uap->prot; 560 #if defined(__amd64__) 561 if (i386_read_exec && (prot & PROT_READ)) 562 prot |= PROT_EXEC; 563 #endif 564 565 return (kern_mmap(td, &(struct mmap_req){ 566 .mr_hint = (uintptr_t)uap->addr, 567 .mr_len = uap->len, 568 .mr_prot = prot, 569 .mr_flags = uap->flags, 570 .mr_fd = uap->fd, 571 .mr_pos = PAIR32TO64(off_t, uap->pos), 572 })); 573 } 574 #endif 575 576 #ifdef COMPAT_43 577 int 578 ofreebsd32_mmap(struct thread *td, struct ofreebsd32_mmap_args *uap) 579 { 580 return (kern_ommap(td, (uintptr_t)uap->addr, uap->len, uap->prot, 581 uap->flags, uap->fd, uap->pos)); 582 } 583 #endif 584 585 int 586 freebsd32_setitimer(struct thread *td, struct freebsd32_setitimer_args *uap) 587 { 588 struct itimerval itv, oitv, *itvp; 589 struct itimerval32 i32; 590 int error; 591 592 if (uap->itv != NULL) { 593 error = copyin(uap->itv, &i32, sizeof(i32)); 594 if (error) 595 return (error); 596 TV_CP(i32, itv, it_interval); 597 TV_CP(i32, itv, it_value); 598 itvp = &itv; 599 } else 600 itvp = NULL; 601 error = kern_setitimer(td, uap->which, itvp, &oitv); 602 if (error || uap->oitv == NULL) 603 return (error); 604 TV_CP(oitv, i32, it_interval); 605 TV_CP(oitv, i32, it_value); 606 return (copyout(&i32, uap->oitv, sizeof(i32))); 607 } 608 609 int 610 freebsd32_getitimer(struct thread *td, struct freebsd32_getitimer_args *uap) 611 { 612 struct itimerval itv; 613 struct itimerval32 i32; 614 int error; 615 616 error = kern_getitimer(td, uap->which, &itv); 617 if (error || uap->itv == NULL) 618 return (error); 619 TV_CP(itv, i32, it_interval); 620 TV_CP(itv, i32, it_value); 621 return (copyout(&i32, uap->itv, sizeof(i32))); 622 } 623 624 int 625 freebsd32_select(struct thread *td, struct freebsd32_select_args *uap) 626 { 627 struct timeval32 tv32; 628 struct timeval tv, *tvp; 629 int error; 630 631 if (uap->tv != NULL) { 632 error = copyin(uap->tv, &tv32, sizeof(tv32)); 633 if (error) 634 return (error); 635 CP(tv32, tv, tv_sec); 636 CP(tv32, tv, tv_usec); 637 tvp = &tv; 638 } else 639 tvp = NULL; 640 /* 641 * XXX Do pointers need PTRIN()? 642 */ 643 return (kern_select(td, uap->nd, uap->in, uap->ou, uap->ex, tvp, 644 sizeof(int32_t) * 8)); 645 } 646 647 int 648 freebsd32_pselect(struct thread *td, struct freebsd32_pselect_args *uap) 649 { 650 struct timespec32 ts32; 651 struct timespec ts; 652 struct timeval tv, *tvp; 653 sigset_t set, *uset; 654 int error; 655 656 if (uap->ts != NULL) { 657 error = copyin(uap->ts, &ts32, sizeof(ts32)); 658 if (error != 0) 659 return (error); 660 CP(ts32, ts, tv_sec); 661 CP(ts32, ts, tv_nsec); 662 TIMESPEC_TO_TIMEVAL(&tv, &ts); 663 tvp = &tv; 664 } else 665 tvp = NULL; 666 if (uap->sm != NULL) { 667 error = copyin(uap->sm, &set, sizeof(set)); 668 if (error != 0) 669 return (error); 670 uset = &set; 671 } else 672 uset = NULL; 673 /* 674 * XXX Do pointers need PTRIN()? 675 */ 676 error = kern_pselect(td, uap->nd, uap->in, uap->ou, uap->ex, tvp, 677 uset, sizeof(int32_t) * 8); 678 return (error); 679 } 680 681 static void 682 freebsd32_kevent_to_kevent32(const struct kevent *kevp, struct kevent32 *ks32) 683 { 684 uint64_t e; 685 int j; 686 687 CP(*kevp, *ks32, ident); 688 CP(*kevp, *ks32, filter); 689 CP(*kevp, *ks32, flags); 690 CP(*kevp, *ks32, fflags); 691 #if BYTE_ORDER == LITTLE_ENDIAN 692 ks32->data1 = kevp->data; 693 ks32->data2 = kevp->data >> 32; 694 #else 695 ks32->data1 = kevp->data >> 32; 696 ks32->data2 = kevp->data; 697 #endif 698 PTROUT_CP(*kevp, *ks32, udata); 699 for (j = 0; j < nitems(kevp->ext); j++) { 700 e = kevp->ext[j]; 701 #if BYTE_ORDER == LITTLE_ENDIAN 702 ks32->ext64[2 * j] = e; 703 ks32->ext64[2 * j + 1] = e >> 32; 704 #else 705 ks32->ext64[2 * j] = e >> 32; 706 ks32->ext64[2 * j + 1] = e; 707 #endif 708 } 709 } 710 711 void 712 freebsd32_kinfo_knote_to_32(const struct kinfo_knote *kin, 713 struct kinfo_knote32 *kin32) 714 { 715 memset(kin32, 0, sizeof(*kin32)); 716 CP(*kin, *kin32, knt_kq_fd); 717 freebsd32_kevent_to_kevent32(&kin->knt_event, &kin32->knt_event); 718 CP(*kin, *kin32, knt_status); 719 CP(*kin, *kin32, knt_extdata); 720 switch (kin->knt_extdata) { 721 case KNOTE_EXTDATA_NONE: 722 break; 723 case KNOTE_EXTDATA_VNODE: 724 CP(*kin, *kin32, knt_vnode.knt_vnode_type); 725 #if BYTE_ORDER == LITTLE_ENDIAN 726 kin32->knt_vnode.knt_vnode_fsid[0] = kin->knt_vnode. 727 knt_vnode_fsid; 728 kin32->knt_vnode.knt_vnode_fsid[1] = kin->knt_vnode. 729 knt_vnode_fsid >> 32; 730 kin32->knt_vnode.knt_vnode_fileid[0] = kin->knt_vnode. 731 knt_vnode_fileid; 732 kin32->knt_vnode.knt_vnode_fileid[1] = kin->knt_vnode. 733 knt_vnode_fileid >> 32; 734 #else 735 kin32->knt_vnode.knt_vnode_fsid[1] = kin->knt_vnode. 736 knt_vnode_fsid; 737 kin32->knt_vnode.knt_vnode_fsid[0] = kin->knt_vnode. 738 knt_vnode_fsid >> 32; 739 kin32->knt_vnode.knt_vnode_fileid[1] = kin->knt_vnode. 740 knt_vnode_fileid; 741 kin32->knt_vnode.knt_vnode_fileid[0] = kin->knt_vnode. 742 knt_vnode_fileid >> 32; 743 #endif 744 memcpy(kin32->knt_vnode.knt_vnode_fullpath, 745 kin->knt_vnode.knt_vnode_fullpath, PATH_MAX); 746 break; 747 case KNOTE_EXTDATA_PIPE: 748 #if BYTE_ORDER == LITTLE_ENDIAN 749 kin32->knt_pipe.knt_pipe_ino[0] = kin->knt_pipe.knt_pipe_ino; 750 kin32->knt_pipe.knt_pipe_ino[1] = kin->knt_pipe. 751 knt_pipe_ino >> 32; 752 #else 753 kin32->knt_pipe.knt_pipe_ino[1] = kin->knt_pipe.knt_pipe_ino; 754 kin32->knt_pipe.knt_pipe_ino[0] = kin->knt_pipe. 755 knt_pipe_ino >> 32; 756 #endif 757 break; 758 } 759 } 760 761 /* 762 * Copy 'count' items into the destination list pointed to by uap->eventlist. 763 */ 764 static int 765 freebsd32_kevent_copyout(void *arg, struct kevent *kevp, int count) 766 { 767 struct freebsd32_kevent_args *uap; 768 struct kevent32 ks32[KQ_NEVENTS]; 769 int i, error; 770 771 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count)); 772 uap = (struct freebsd32_kevent_args *)arg; 773 774 for (i = 0; i < count; i++) 775 freebsd32_kevent_to_kevent32(&kevp[i], &ks32[i]); 776 error = copyout(ks32, uap->eventlist, count * sizeof *ks32); 777 if (error == 0) 778 uap->eventlist += count; 779 return (error); 780 } 781 782 /* 783 * Copy 'count' items from the list pointed to by uap->changelist. 784 */ 785 static int 786 freebsd32_kevent_copyin(void *arg, struct kevent *kevp, int count) 787 { 788 struct freebsd32_kevent_args *uap; 789 struct kevent32 ks32[KQ_NEVENTS]; 790 uint64_t e; 791 int i, j, error; 792 793 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count)); 794 uap = (struct freebsd32_kevent_args *)arg; 795 796 error = copyin(uap->changelist, ks32, count * sizeof *ks32); 797 if (error) 798 goto done; 799 uap->changelist += count; 800 801 for (i = 0; i < count; i++) { 802 CP(ks32[i], kevp[i], ident); 803 CP(ks32[i], kevp[i], filter); 804 CP(ks32[i], kevp[i], flags); 805 CP(ks32[i], kevp[i], fflags); 806 kevp[i].data = PAIR32TO64(uint64_t, ks32[i].data); 807 PTRIN_CP(ks32[i], kevp[i], udata); 808 for (j = 0; j < nitems(kevp->ext); j++) { 809 #if BYTE_ORDER == LITTLE_ENDIAN 810 e = ks32[i].ext64[2 * j + 1]; 811 e <<= 32; 812 e += ks32[i].ext64[2 * j]; 813 #else 814 e = ks32[i].ext64[2 * j]; 815 e <<= 32; 816 e += ks32[i].ext64[2 * j + 1]; 817 #endif 818 kevp[i].ext[j] = e; 819 } 820 } 821 done: 822 return (error); 823 } 824 825 int 826 freebsd32_kevent(struct thread *td, struct freebsd32_kevent_args *uap) 827 { 828 struct timespec32 ts32; 829 struct timespec ts, *tsp; 830 struct kevent_copyops k_ops = { 831 .arg = uap, 832 .k_copyout = freebsd32_kevent_copyout, 833 .k_copyin = freebsd32_kevent_copyin, 834 }; 835 #ifdef KTRACE 836 struct kevent32 *eventlist = uap->eventlist; 837 #endif 838 int error; 839 840 if (uap->timeout) { 841 error = copyin(uap->timeout, &ts32, sizeof(ts32)); 842 if (error) 843 return (error); 844 CP(ts32, ts, tv_sec); 845 CP(ts32, ts, tv_nsec); 846 tsp = &ts; 847 } else 848 tsp = NULL; 849 #ifdef KTRACE 850 if (KTRPOINT(td, KTR_STRUCT_ARRAY)) 851 ktrstructarray("kevent32", UIO_USERSPACE, uap->changelist, 852 uap->nchanges, sizeof(struct kevent32)); 853 #endif 854 error = kern_kevent(td, uap->fd, uap->nchanges, uap->nevents, 855 &k_ops, tsp); 856 #ifdef KTRACE 857 if (error == 0 && KTRPOINT(td, KTR_STRUCT_ARRAY)) 858 ktrstructarray("kevent32", UIO_USERSPACE, eventlist, 859 td->td_retval[0], sizeof(struct kevent32)); 860 #endif 861 return (error); 862 } 863 864 #ifdef COMPAT_FREEBSD11 865 static int 866 freebsd32_kevent11_copyout(void *arg, struct kevent *kevp, int count) 867 { 868 struct freebsd11_freebsd32_kevent_args *uap; 869 struct freebsd11_kevent32 ks32[KQ_NEVENTS]; 870 int i, error; 871 872 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count)); 873 uap = (struct freebsd11_freebsd32_kevent_args *)arg; 874 875 for (i = 0; i < count; i++) { 876 CP(kevp[i], ks32[i], ident); 877 CP(kevp[i], ks32[i], filter); 878 CP(kevp[i], ks32[i], flags); 879 CP(kevp[i], ks32[i], fflags); 880 CP(kevp[i], ks32[i], data); 881 PTROUT_CP(kevp[i], ks32[i], udata); 882 } 883 error = copyout(ks32, uap->eventlist, count * sizeof *ks32); 884 if (error == 0) 885 uap->eventlist += count; 886 return (error); 887 } 888 889 /* 890 * Copy 'count' items from the list pointed to by uap->changelist. 891 */ 892 static int 893 freebsd32_kevent11_copyin(void *arg, struct kevent *kevp, int count) 894 { 895 struct freebsd11_freebsd32_kevent_args *uap; 896 struct freebsd11_kevent32 ks32[KQ_NEVENTS]; 897 int i, j, error; 898 899 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count)); 900 uap = (struct freebsd11_freebsd32_kevent_args *)arg; 901 902 error = copyin(uap->changelist, ks32, count * sizeof *ks32); 903 if (error) 904 goto done; 905 uap->changelist += count; 906 907 for (i = 0; i < count; i++) { 908 CP(ks32[i], kevp[i], ident); 909 CP(ks32[i], kevp[i], filter); 910 CP(ks32[i], kevp[i], flags); 911 CP(ks32[i], kevp[i], fflags); 912 CP(ks32[i], kevp[i], data); 913 PTRIN_CP(ks32[i], kevp[i], udata); 914 for (j = 0; j < nitems(kevp->ext); j++) 915 kevp[i].ext[j] = 0; 916 } 917 done: 918 return (error); 919 } 920 921 int 922 freebsd11_freebsd32_kevent(struct thread *td, 923 struct freebsd11_freebsd32_kevent_args *uap) 924 { 925 struct timespec32 ts32; 926 struct timespec ts, *tsp; 927 struct kevent_copyops k_ops = { 928 .arg = uap, 929 .k_copyout = freebsd32_kevent11_copyout, 930 .k_copyin = freebsd32_kevent11_copyin, 931 }; 932 #ifdef KTRACE 933 struct freebsd11_kevent32 *eventlist = uap->eventlist; 934 #endif 935 int error; 936 937 if (uap->timeout) { 938 error = copyin(uap->timeout, &ts32, sizeof(ts32)); 939 if (error) 940 return (error); 941 CP(ts32, ts, tv_sec); 942 CP(ts32, ts, tv_nsec); 943 tsp = &ts; 944 } else 945 tsp = NULL; 946 #ifdef KTRACE 947 if (KTRPOINT(td, KTR_STRUCT_ARRAY)) 948 ktrstructarray("freebsd11_kevent32", UIO_USERSPACE, 949 uap->changelist, uap->nchanges, 950 sizeof(struct freebsd11_kevent32)); 951 #endif 952 error = kern_kevent(td, uap->fd, uap->nchanges, uap->nevents, 953 &k_ops, tsp); 954 #ifdef KTRACE 955 if (error == 0 && KTRPOINT(td, KTR_STRUCT_ARRAY)) 956 ktrstructarray("freebsd11_kevent32", UIO_USERSPACE, 957 eventlist, td->td_retval[0], 958 sizeof(struct freebsd11_kevent32)); 959 #endif 960 return (error); 961 } 962 #endif 963 964 int 965 freebsd32_gettimeofday(struct thread *td, 966 struct freebsd32_gettimeofday_args *uap) 967 { 968 struct timeval atv; 969 struct timeval32 atv32; 970 struct timezone rtz; 971 int error = 0; 972 973 if (uap->tp) { 974 microtime(&atv); 975 CP(atv, atv32, tv_sec); 976 CP(atv, atv32, tv_usec); 977 error = copyout(&atv32, uap->tp, sizeof (atv32)); 978 } 979 if (error == 0 && uap->tzp != NULL) { 980 rtz.tz_minuteswest = 0; 981 rtz.tz_dsttime = 0; 982 error = copyout(&rtz, uap->tzp, sizeof (rtz)); 983 } 984 return (error); 985 } 986 987 int 988 freebsd32_getrusage(struct thread *td, struct freebsd32_getrusage_args *uap) 989 { 990 struct rusage32 s32; 991 struct rusage s; 992 int error; 993 994 error = kern_getrusage(td, uap->who, &s); 995 if (error == 0) { 996 freebsd32_rusage_out(&s, &s32); 997 error = copyout(&s32, uap->rusage, sizeof(s32)); 998 } 999 return (error); 1000 } 1001 1002 static void 1003 ptrace_lwpinfo_to32(const struct ptrace_lwpinfo *pl, 1004 struct ptrace_lwpinfo32 *pl32) 1005 { 1006 1007 bzero(pl32, sizeof(*pl32)); 1008 pl32->pl_lwpid = pl->pl_lwpid; 1009 pl32->pl_event = pl->pl_event; 1010 pl32->pl_flags = pl->pl_flags; 1011 pl32->pl_sigmask = pl->pl_sigmask; 1012 pl32->pl_siglist = pl->pl_siglist; 1013 siginfo_to_siginfo32(&pl->pl_siginfo, &pl32->pl_siginfo); 1014 strcpy(pl32->pl_tdname, pl->pl_tdname); 1015 pl32->pl_child_pid = pl->pl_child_pid; 1016 pl32->pl_syscall_code = pl->pl_syscall_code; 1017 pl32->pl_syscall_narg = pl->pl_syscall_narg; 1018 } 1019 1020 static void 1021 ptrace_sc_ret_to32(const struct ptrace_sc_ret *psr, 1022 struct ptrace_sc_ret32 *psr32) 1023 { 1024 1025 bzero(psr32, sizeof(*psr32)); 1026 psr32->sr_retval[0] = psr->sr_retval[0]; 1027 psr32->sr_retval[1] = psr->sr_retval[1]; 1028 psr32->sr_error = psr->sr_error; 1029 } 1030 1031 int 1032 freebsd32_ptrace(struct thread *td, struct freebsd32_ptrace_args *uap) 1033 { 1034 union { 1035 struct ptrace_io_desc piod; 1036 struct ptrace_lwpinfo pl; 1037 struct ptrace_vm_entry pve; 1038 struct ptrace_coredump pc; 1039 struct ptrace_sc_remote sr; 1040 struct dbreg32 dbreg; 1041 struct fpreg32 fpreg; 1042 struct reg32 reg; 1043 struct iovec vec; 1044 register_t args[nitems(td->td_sa.args)]; 1045 struct ptrace_sc_ret psr; 1046 int ptevents; 1047 } r; 1048 union { 1049 struct ptrace_io_desc32 piod; 1050 struct ptrace_lwpinfo32 pl; 1051 struct ptrace_vm_entry32 pve; 1052 struct ptrace_coredump32 pc; 1053 struct ptrace_sc_remote32 sr; 1054 uint32_t args[nitems(td->td_sa.args)]; 1055 struct ptrace_sc_ret32 psr; 1056 struct iovec32 vec; 1057 } r32; 1058 syscallarg_t pscr_args[nitems(td->td_sa.args)]; 1059 u_int pscr_args32[nitems(td->td_sa.args)]; 1060 void *addr; 1061 int data, error, i; 1062 1063 if (!allow_ptrace) 1064 return (ENOSYS); 1065 error = 0; 1066 1067 AUDIT_ARG_PID(uap->pid); 1068 AUDIT_ARG_CMD(uap->req); 1069 AUDIT_ARG_VALUE(uap->data); 1070 addr = &r; 1071 data = uap->data; 1072 switch (uap->req) { 1073 case PT_GET_EVENT_MASK: 1074 case PT_GET_SC_ARGS: 1075 case PT_GET_SC_RET: 1076 break; 1077 case PT_LWPINFO: 1078 if (uap->data > sizeof(r32.pl)) 1079 return (EINVAL); 1080 1081 /* 1082 * Pass size of native structure in 'data'. Truncate 1083 * if necessary to avoid siginfo. 1084 */ 1085 data = sizeof(r.pl); 1086 if (uap->data < offsetof(struct ptrace_lwpinfo32, pl_siginfo) + 1087 sizeof(struct __siginfo32)) 1088 data = offsetof(struct ptrace_lwpinfo, pl_siginfo); 1089 break; 1090 case PT_GETREGS: 1091 bzero(&r.reg, sizeof(r.reg)); 1092 break; 1093 case PT_GETFPREGS: 1094 bzero(&r.fpreg, sizeof(r.fpreg)); 1095 break; 1096 case PT_GETDBREGS: 1097 bzero(&r.dbreg, sizeof(r.dbreg)); 1098 break; 1099 case PT_SETREGS: 1100 error = copyin(uap->addr, &r.reg, sizeof(r.reg)); 1101 break; 1102 case PT_SETFPREGS: 1103 error = copyin(uap->addr, &r.fpreg, sizeof(r.fpreg)); 1104 break; 1105 case PT_SETDBREGS: 1106 error = copyin(uap->addr, &r.dbreg, sizeof(r.dbreg)); 1107 break; 1108 case PT_GETREGSET: 1109 case PT_SETREGSET: 1110 error = copyin(uap->addr, &r32.vec, sizeof(r32.vec)); 1111 if (error != 0) 1112 break; 1113 1114 r.vec.iov_len = r32.vec.iov_len; 1115 r.vec.iov_base = PTRIN(r32.vec.iov_base); 1116 break; 1117 case PT_SET_EVENT_MASK: 1118 if (uap->data != sizeof(r.ptevents)) 1119 error = EINVAL; 1120 else 1121 error = copyin(uap->addr, &r.ptevents, uap->data); 1122 break; 1123 case PT_IO: 1124 error = copyin(uap->addr, &r32.piod, sizeof(r32.piod)); 1125 if (error) 1126 break; 1127 CP(r32.piod, r.piod, piod_op); 1128 PTRIN_CP(r32.piod, r.piod, piod_offs); 1129 PTRIN_CP(r32.piod, r.piod, piod_addr); 1130 CP(r32.piod, r.piod, piod_len); 1131 break; 1132 case PT_VM_ENTRY: 1133 error = copyin(uap->addr, &r32.pve, sizeof(r32.pve)); 1134 if (error) 1135 break; 1136 1137 CP(r32.pve, r.pve, pve_entry); 1138 CP(r32.pve, r.pve, pve_timestamp); 1139 CP(r32.pve, r.pve, pve_start); 1140 CP(r32.pve, r.pve, pve_end); 1141 CP(r32.pve, r.pve, pve_offset); 1142 CP(r32.pve, r.pve, pve_prot); 1143 CP(r32.pve, r.pve, pve_pathlen); 1144 CP(r32.pve, r.pve, pve_fileid); 1145 CP(r32.pve, r.pve, pve_fsid); 1146 PTRIN_CP(r32.pve, r.pve, pve_path); 1147 break; 1148 case PT_COREDUMP: 1149 if (uap->data != sizeof(r32.pc)) 1150 error = EINVAL; 1151 else 1152 error = copyin(uap->addr, &r32.pc, uap->data); 1153 CP(r32.pc, r.pc, pc_fd); 1154 CP(r32.pc, r.pc, pc_flags); 1155 r.pc.pc_limit = PAIR32TO64(off_t, r32.pc.pc_limit); 1156 data = sizeof(r.pc); 1157 break; 1158 case PT_SC_REMOTE: 1159 if (uap->data != sizeof(r32.sr)) { 1160 error = EINVAL; 1161 break; 1162 } 1163 error = copyin(uap->addr, &r32.sr, uap->data); 1164 if (error != 0) 1165 break; 1166 CP(r32.sr, r.sr, pscr_syscall); 1167 CP(r32.sr, r.sr, pscr_nargs); 1168 if (r.sr.pscr_nargs > nitems(td->td_sa.args)) { 1169 error = EINVAL; 1170 break; 1171 } 1172 error = copyin(PTRIN(r32.sr.pscr_args), pscr_args32, 1173 sizeof(u_int) * r32.sr.pscr_nargs); 1174 if (error != 0) 1175 break; 1176 for (i = 0; i < r32.sr.pscr_nargs; i++) 1177 pscr_args[i] = pscr_args32[i]; 1178 r.sr.pscr_args = pscr_args; 1179 break; 1180 case PTINTERNAL_FIRST ... PTINTERNAL_LAST: 1181 error = EINVAL; 1182 break; 1183 default: 1184 addr = uap->addr; 1185 break; 1186 } 1187 if (error) 1188 return (error); 1189 1190 error = kern_ptrace(td, uap->req, uap->pid, addr, data); 1191 if (error) 1192 return (error); 1193 1194 switch (uap->req) { 1195 case PT_VM_ENTRY: 1196 CP(r.pve, r32.pve, pve_entry); 1197 CP(r.pve, r32.pve, pve_timestamp); 1198 CP(r.pve, r32.pve, pve_start); 1199 CP(r.pve, r32.pve, pve_end); 1200 CP(r.pve, r32.pve, pve_offset); 1201 CP(r.pve, r32.pve, pve_prot); 1202 CP(r.pve, r32.pve, pve_pathlen); 1203 CP(r.pve, r32.pve, pve_fileid); 1204 CP(r.pve, r32.pve, pve_fsid); 1205 error = copyout(&r32.pve, uap->addr, sizeof(r32.pve)); 1206 break; 1207 case PT_IO: 1208 CP(r.piod, r32.piod, piod_len); 1209 error = copyout(&r32.piod, uap->addr, sizeof(r32.piod)); 1210 break; 1211 case PT_GETREGS: 1212 error = copyout(&r.reg, uap->addr, sizeof(r.reg)); 1213 break; 1214 case PT_GETFPREGS: 1215 error = copyout(&r.fpreg, uap->addr, sizeof(r.fpreg)); 1216 break; 1217 case PT_GETDBREGS: 1218 error = copyout(&r.dbreg, uap->addr, sizeof(r.dbreg)); 1219 break; 1220 case PT_GETREGSET: 1221 r32.vec.iov_len = r.vec.iov_len; 1222 error = copyout(&r32.vec, uap->addr, sizeof(r32.vec)); 1223 break; 1224 case PT_GET_EVENT_MASK: 1225 /* NB: The size in uap->data is validated in kern_ptrace(). */ 1226 error = copyout(&r.ptevents, uap->addr, uap->data); 1227 break; 1228 case PT_LWPINFO: 1229 ptrace_lwpinfo_to32(&r.pl, &r32.pl); 1230 error = copyout(&r32.pl, uap->addr, uap->data); 1231 break; 1232 case PT_GET_SC_ARGS: 1233 for (i = 0; i < nitems(r.args); i++) 1234 r32.args[i] = (uint32_t)r.args[i]; 1235 error = copyout(r32.args, uap->addr, MIN(uap->data, 1236 sizeof(r32.args))); 1237 break; 1238 case PT_GET_SC_RET: 1239 ptrace_sc_ret_to32(&r.psr, &r32.psr); 1240 error = copyout(&r32.psr, uap->addr, MIN(uap->data, 1241 sizeof(r32.psr))); 1242 break; 1243 case PT_SC_REMOTE: 1244 ptrace_sc_ret_to32(&r.sr.pscr_ret, &r32.sr.pscr_ret); 1245 error = copyout(&r32.sr.pscr_ret, uap->addr + 1246 offsetof(struct ptrace_sc_remote32, pscr_ret), 1247 sizeof(r32.psr)); 1248 break; 1249 } 1250 1251 return (error); 1252 } 1253 1254 int 1255 freebsd32_copyinuio(const struct iovec32 *iovp, u_int iovcnt, struct uio **uiop) 1256 { 1257 struct iovec32 iov32; 1258 struct iovec *iov; 1259 struct uio *uio; 1260 int error, i; 1261 1262 *uiop = NULL; 1263 if (iovcnt > UIO_MAXIOV) 1264 return (EINVAL); 1265 uio = allocuio(iovcnt); 1266 iov = uio->uio_iov; 1267 for (i = 0; i < iovcnt; i++) { 1268 error = copyin(&iovp[i], &iov32, sizeof(struct iovec32)); 1269 if (error) { 1270 freeuio(uio); 1271 return (error); 1272 } 1273 iov[i].iov_base = PTRIN(iov32.iov_base); 1274 iov[i].iov_len = iov32.iov_len; 1275 } 1276 uio->uio_iovcnt = iovcnt; 1277 uio->uio_segflg = UIO_USERSPACE; 1278 uio->uio_offset = -1; 1279 uio->uio_resid = 0; 1280 for (i = 0; i < iovcnt; i++) { 1281 if (iov->iov_len > INT_MAX - uio->uio_resid) { 1282 freeuio(uio); 1283 return (EINVAL); 1284 } 1285 uio->uio_resid += iov->iov_len; 1286 iov++; 1287 } 1288 *uiop = uio; 1289 return (0); 1290 } 1291 1292 int 1293 freebsd32_readv(struct thread *td, struct freebsd32_readv_args *uap) 1294 { 1295 struct uio *auio; 1296 int error; 1297 1298 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 1299 if (error) 1300 return (error); 1301 error = kern_readv(td, uap->fd, auio); 1302 freeuio(auio); 1303 return (error); 1304 } 1305 1306 int 1307 freebsd32_writev(struct thread *td, struct freebsd32_writev_args *uap) 1308 { 1309 struct uio *auio; 1310 int error; 1311 1312 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 1313 if (error) 1314 return (error); 1315 error = kern_writev(td, uap->fd, auio); 1316 freeuio(auio); 1317 return (error); 1318 } 1319 1320 int 1321 freebsd32_preadv(struct thread *td, struct freebsd32_preadv_args *uap) 1322 { 1323 struct uio *auio; 1324 int error; 1325 1326 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 1327 if (error) 1328 return (error); 1329 error = kern_preadv(td, uap->fd, auio, PAIR32TO64(off_t,uap->offset)); 1330 freeuio(auio); 1331 return (error); 1332 } 1333 1334 int 1335 freebsd32_pwritev(struct thread *td, struct freebsd32_pwritev_args *uap) 1336 { 1337 struct uio *auio; 1338 int error; 1339 1340 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 1341 if (error) 1342 return (error); 1343 error = kern_pwritev(td, uap->fd, auio, PAIR32TO64(off_t,uap->offset)); 1344 freeuio(auio); 1345 return (error); 1346 } 1347 1348 int 1349 freebsd32_copyiniov(struct iovec32 *iovp32, u_int iovcnt, struct iovec **iovp, 1350 int error) 1351 { 1352 struct iovec32 iov32; 1353 struct iovec *iov; 1354 u_int iovlen; 1355 int i; 1356 1357 *iovp = NULL; 1358 if (iovcnt > UIO_MAXIOV) 1359 return (error); 1360 iovlen = iovcnt * sizeof(struct iovec); 1361 iov = malloc(iovlen, M_IOV, M_WAITOK); 1362 for (i = 0; i < iovcnt; i++) { 1363 error = copyin(&iovp32[i], &iov32, sizeof(struct iovec32)); 1364 if (error) { 1365 free(iov, M_IOV); 1366 return (error); 1367 } 1368 iov[i].iov_base = PTRIN(iov32.iov_base); 1369 iov[i].iov_len = iov32.iov_len; 1370 } 1371 *iovp = iov; 1372 return (0); 1373 } 1374 1375 static int 1376 freebsd32_copyinmsghdr(const struct msghdr32 *msg32, struct msghdr *msg) 1377 { 1378 struct msghdr32 m32; 1379 int error; 1380 1381 error = copyin(msg32, &m32, sizeof(m32)); 1382 if (error) 1383 return (error); 1384 msg->msg_name = PTRIN(m32.msg_name); 1385 msg->msg_namelen = m32.msg_namelen; 1386 msg->msg_iov = PTRIN(m32.msg_iov); 1387 msg->msg_iovlen = m32.msg_iovlen; 1388 msg->msg_control = PTRIN(m32.msg_control); 1389 msg->msg_controllen = m32.msg_controllen; 1390 msg->msg_flags = m32.msg_flags; 1391 return (0); 1392 } 1393 1394 static int 1395 freebsd32_copyoutmsghdr(struct msghdr *msg, struct msghdr32 *msg32) 1396 { 1397 struct msghdr32 m32; 1398 int error; 1399 1400 m32.msg_name = PTROUT(msg->msg_name); 1401 m32.msg_namelen = msg->msg_namelen; 1402 m32.msg_iov = PTROUT(msg->msg_iov); 1403 m32.msg_iovlen = msg->msg_iovlen; 1404 m32.msg_control = PTROUT(msg->msg_control); 1405 m32.msg_controllen = msg->msg_controllen; 1406 m32.msg_flags = msg->msg_flags; 1407 error = copyout(&m32, msg32, sizeof(m32)); 1408 return (error); 1409 } 1410 1411 #define FREEBSD32_ALIGNBYTES (sizeof(int) - 1) 1412 #define FREEBSD32_ALIGN(p) \ 1413 (((u_long)(p) + FREEBSD32_ALIGNBYTES) & ~FREEBSD32_ALIGNBYTES) 1414 #define FREEBSD32_CMSG_SPACE(l) \ 1415 (FREEBSD32_ALIGN(sizeof(struct cmsghdr)) + FREEBSD32_ALIGN(l)) 1416 1417 #define FREEBSD32_CMSG_DATA(cmsg) ((unsigned char *)(cmsg) + \ 1418 FREEBSD32_ALIGN(sizeof(struct cmsghdr))) 1419 1420 static size_t 1421 freebsd32_cmsg_convert(const struct cmsghdr *cm, void *data, socklen_t datalen) 1422 { 1423 size_t copylen; 1424 union { 1425 struct timespec32 ts; 1426 struct timeval32 tv; 1427 struct bintime32 bt; 1428 } tmp32; 1429 1430 union { 1431 struct timespec ts; 1432 struct timeval tv; 1433 struct bintime bt; 1434 } *in; 1435 1436 in = data; 1437 copylen = 0; 1438 switch (cm->cmsg_level) { 1439 case SOL_SOCKET: 1440 switch (cm->cmsg_type) { 1441 case SCM_TIMESTAMP: 1442 TV_CP(*in, tmp32, tv); 1443 copylen = sizeof(tmp32.tv); 1444 break; 1445 1446 case SCM_BINTIME: 1447 BT_CP(*in, tmp32, bt); 1448 copylen = sizeof(tmp32.bt); 1449 break; 1450 1451 case SCM_REALTIME: 1452 case SCM_MONOTONIC: 1453 TS_CP(*in, tmp32, ts); 1454 copylen = sizeof(tmp32.ts); 1455 break; 1456 1457 default: 1458 break; 1459 } 1460 1461 default: 1462 break; 1463 } 1464 1465 if (copylen == 0) 1466 return (datalen); 1467 1468 KASSERT((datalen >= copylen), ("corrupted cmsghdr")); 1469 1470 bcopy(&tmp32, data, copylen); 1471 return (copylen); 1472 } 1473 1474 static int 1475 freebsd32_copy_msg_out(struct msghdr *msg, struct mbuf *control) 1476 { 1477 struct cmsghdr *cm; 1478 void *data; 1479 socklen_t clen, datalen, datalen_out, oldclen; 1480 int error; 1481 caddr_t ctlbuf; 1482 int len, copylen; 1483 struct mbuf *m; 1484 error = 0; 1485 1486 len = msg->msg_controllen; 1487 msg->msg_controllen = 0; 1488 1489 ctlbuf = msg->msg_control; 1490 for (m = control; m != NULL && len > 0; m = m->m_next) { 1491 cm = mtod(m, struct cmsghdr *); 1492 clen = m->m_len; 1493 while (cm != NULL) { 1494 if (sizeof(struct cmsghdr) > clen || 1495 cm->cmsg_len > clen) { 1496 error = EINVAL; 1497 break; 1498 } 1499 1500 data = CMSG_DATA(cm); 1501 datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data; 1502 datalen_out = freebsd32_cmsg_convert(cm, data, datalen); 1503 1504 /* 1505 * Copy out the message header. Preserve the native 1506 * message size in case we need to inspect the message 1507 * contents later. 1508 */ 1509 copylen = sizeof(struct cmsghdr); 1510 if (len < copylen) { 1511 msg->msg_flags |= MSG_CTRUNC; 1512 m_dispose_extcontrolm(m); 1513 goto exit; 1514 } 1515 oldclen = cm->cmsg_len; 1516 cm->cmsg_len = FREEBSD32_ALIGN(sizeof(struct cmsghdr)) + 1517 datalen_out; 1518 error = copyout(cm, ctlbuf, copylen); 1519 cm->cmsg_len = oldclen; 1520 if (error != 0) 1521 goto exit; 1522 1523 ctlbuf += FREEBSD32_ALIGN(copylen); 1524 len -= FREEBSD32_ALIGN(copylen); 1525 1526 copylen = datalen_out; 1527 if (len < copylen) { 1528 msg->msg_flags |= MSG_CTRUNC; 1529 m_dispose_extcontrolm(m); 1530 break; 1531 } 1532 1533 /* Copy out the message data. */ 1534 error = copyout(data, ctlbuf, copylen); 1535 if (error) 1536 goto exit; 1537 1538 ctlbuf += FREEBSD32_ALIGN(copylen); 1539 len -= FREEBSD32_ALIGN(copylen); 1540 1541 if (CMSG_SPACE(datalen) < clen) { 1542 clen -= CMSG_SPACE(datalen); 1543 cm = (struct cmsghdr *) 1544 ((caddr_t)cm + CMSG_SPACE(datalen)); 1545 } else { 1546 clen = 0; 1547 cm = NULL; 1548 } 1549 1550 msg->msg_controllen += 1551 FREEBSD32_CMSG_SPACE(datalen_out); 1552 } 1553 } 1554 if (len == 0 && m != NULL) { 1555 msg->msg_flags |= MSG_CTRUNC; 1556 m_dispose_extcontrolm(m); 1557 } 1558 1559 exit: 1560 return (error); 1561 } 1562 1563 int 1564 freebsd32_recvmsg(struct thread *td, struct freebsd32_recvmsg_args *uap) 1565 { 1566 struct msghdr msg; 1567 struct iovec *uiov, *iov; 1568 struct mbuf *control = NULL; 1569 struct mbuf **controlp; 1570 int error; 1571 1572 error = freebsd32_copyinmsghdr(uap->msg, &msg); 1573 if (error) 1574 return (error); 1575 error = freebsd32_copyiniov((void *)msg.msg_iov, msg.msg_iovlen, &iov, 1576 EMSGSIZE); 1577 if (error) 1578 return (error); 1579 msg.msg_flags = uap->flags; 1580 uiov = msg.msg_iov; 1581 msg.msg_iov = iov; 1582 1583 controlp = (msg.msg_control != NULL) ? &control : NULL; 1584 error = kern_recvit(td, uap->s, &msg, UIO_USERSPACE, controlp); 1585 if (error == 0) { 1586 msg.msg_iov = uiov; 1587 1588 if (control != NULL) 1589 error = freebsd32_copy_msg_out(&msg, control); 1590 else 1591 msg.msg_controllen = 0; 1592 1593 if (error == 0) 1594 error = freebsd32_copyoutmsghdr(&msg, uap->msg); 1595 } 1596 free(iov, M_IOV); 1597 1598 if (control != NULL) { 1599 if (error != 0) 1600 m_dispose_extcontrolm(control); 1601 m_freem(control); 1602 } 1603 1604 return (error); 1605 } 1606 1607 #ifdef COMPAT_43 1608 int 1609 ofreebsd32_recvmsg(struct thread *td, struct ofreebsd32_recvmsg_args *uap) 1610 { 1611 return (ENOSYS); 1612 } 1613 #endif 1614 1615 /* 1616 * Copy-in the array of control messages constructed using alignment 1617 * and padding suitable for a 32-bit environment and construct an 1618 * mbuf using alignment and padding suitable for a 64-bit kernel. 1619 * The alignment and padding are defined indirectly by CMSG_DATA(), 1620 * CMSG_SPACE() and CMSG_LEN(). 1621 */ 1622 static int 1623 freebsd32_copyin_control(struct mbuf **mp, caddr_t buf, u_int buflen) 1624 { 1625 struct cmsghdr *cm; 1626 struct mbuf *m; 1627 void *in, *in1, *md; 1628 u_int msglen, outlen; 1629 int error; 1630 1631 /* Enforce the size limit of the native implementation. */ 1632 if (buflen > MCLBYTES) 1633 return (EINVAL); 1634 1635 in = malloc(buflen, M_TEMP, M_WAITOK); 1636 error = copyin(buf, in, buflen); 1637 if (error != 0) 1638 goto out; 1639 1640 /* 1641 * Make a pass over the input buffer to determine the amount of space 1642 * required for 64 bit-aligned copies of the control messages. 1643 */ 1644 in1 = in; 1645 outlen = 0; 1646 while (buflen > 0) { 1647 if (buflen < sizeof(*cm)) { 1648 error = EINVAL; 1649 break; 1650 } 1651 cm = (struct cmsghdr *)in1; 1652 if (cm->cmsg_len < FREEBSD32_ALIGN(sizeof(*cm)) || 1653 cm->cmsg_len > buflen) { 1654 error = EINVAL; 1655 break; 1656 } 1657 msglen = FREEBSD32_ALIGN(cm->cmsg_len); 1658 if (msglen < cm->cmsg_len) { 1659 error = EINVAL; 1660 break; 1661 } 1662 /* The native ABI permits the final padding to be omitted. */ 1663 if (msglen > buflen) 1664 msglen = buflen; 1665 buflen -= msglen; 1666 1667 in1 = (char *)in1 + msglen; 1668 outlen += CMSG_ALIGN(sizeof(*cm)) + 1669 CMSG_ALIGN(msglen - FREEBSD32_ALIGN(sizeof(*cm))); 1670 } 1671 if (error != 0) 1672 goto out; 1673 1674 /* 1675 * Allocate up to MJUMPAGESIZE space for the re-aligned and 1676 * re-padded control messages. This allows a full MCLBYTES of 1677 * 32-bit sized and aligned messages to fit and avoids an ABI 1678 * mismatch with the native implementation. 1679 */ 1680 m = m_get2(outlen, M_WAITOK, MT_CONTROL, 0); 1681 if (m == NULL) { 1682 error = EINVAL; 1683 goto out; 1684 } 1685 m->m_len = outlen; 1686 md = mtod(m, void *); 1687 1688 /* 1689 * Make a second pass over input messages, copying them into the output 1690 * buffer. 1691 */ 1692 in1 = in; 1693 while (outlen > 0) { 1694 /* Copy the message header and align the length field. */ 1695 cm = md; 1696 memcpy(cm, in1, sizeof(*cm)); 1697 msglen = cm->cmsg_len - FREEBSD32_ALIGN(sizeof(*cm)); 1698 cm->cmsg_len = CMSG_ALIGN(sizeof(*cm)) + msglen; 1699 1700 /* Copy the message body. */ 1701 in1 = (char *)in1 + FREEBSD32_ALIGN(sizeof(*cm)); 1702 md = (char *)md + CMSG_ALIGN(sizeof(*cm)); 1703 memcpy(md, in1, msglen); 1704 in1 = (char *)in1 + FREEBSD32_ALIGN(msglen); 1705 md = (char *)md + CMSG_ALIGN(msglen); 1706 KASSERT(outlen >= CMSG_ALIGN(sizeof(*cm)) + CMSG_ALIGN(msglen), 1707 ("outlen %u underflow, msglen %u", outlen, msglen)); 1708 outlen -= CMSG_ALIGN(sizeof(*cm)) + CMSG_ALIGN(msglen); 1709 } 1710 1711 *mp = m; 1712 out: 1713 free(in, M_TEMP); 1714 return (error); 1715 } 1716 1717 int 1718 freebsd32_sendmsg(struct thread *td, struct freebsd32_sendmsg_args *uap) 1719 { 1720 struct msghdr msg; 1721 struct iovec *iov; 1722 struct mbuf *control = NULL; 1723 struct sockaddr *to = NULL; 1724 int error; 1725 1726 error = freebsd32_copyinmsghdr(uap->msg, &msg); 1727 if (error) 1728 return (error); 1729 error = freebsd32_copyiniov((void *)msg.msg_iov, msg.msg_iovlen, &iov, 1730 EMSGSIZE); 1731 if (error) 1732 return (error); 1733 msg.msg_iov = iov; 1734 if (msg.msg_name != NULL) { 1735 error = getsockaddr(&to, msg.msg_name, msg.msg_namelen); 1736 if (error) { 1737 to = NULL; 1738 goto out; 1739 } 1740 msg.msg_name = to; 1741 } 1742 1743 if (msg.msg_control) { 1744 if (msg.msg_controllen < sizeof(struct cmsghdr)) { 1745 error = EINVAL; 1746 goto out; 1747 } 1748 1749 error = freebsd32_copyin_control(&control, msg.msg_control, 1750 msg.msg_controllen); 1751 if (error) 1752 goto out; 1753 1754 msg.msg_control = NULL; 1755 msg.msg_controllen = 0; 1756 } 1757 1758 error = kern_sendit(td, uap->s, &msg, uap->flags, control, 1759 UIO_USERSPACE); 1760 1761 out: 1762 free(iov, M_IOV); 1763 if (to) 1764 free(to, M_SONAME); 1765 return (error); 1766 } 1767 1768 #ifdef COMPAT_43 1769 int 1770 ofreebsd32_sendmsg(struct thread *td, struct ofreebsd32_sendmsg_args *uap) 1771 { 1772 return (ENOSYS); 1773 } 1774 #endif 1775 1776 1777 int 1778 freebsd32_settimeofday(struct thread *td, 1779 struct freebsd32_settimeofday_args *uap) 1780 { 1781 struct timeval32 tv32; 1782 struct timeval tv, *tvp; 1783 struct timezone tz, *tzp; 1784 int error; 1785 1786 if (uap->tv) { 1787 error = copyin(uap->tv, &tv32, sizeof(tv32)); 1788 if (error) 1789 return (error); 1790 CP(tv32, tv, tv_sec); 1791 CP(tv32, tv, tv_usec); 1792 tvp = &tv; 1793 } else 1794 tvp = NULL; 1795 if (uap->tzp) { 1796 error = copyin(uap->tzp, &tz, sizeof(tz)); 1797 if (error) 1798 return (error); 1799 tzp = &tz; 1800 } else 1801 tzp = NULL; 1802 return (kern_settimeofday(td, tvp, tzp)); 1803 } 1804 1805 int 1806 freebsd32_utimes(struct thread *td, struct freebsd32_utimes_args *uap) 1807 { 1808 struct timeval32 s32[2]; 1809 struct timeval s[2], *sp; 1810 int error; 1811 1812 if (uap->tptr != NULL) { 1813 error = copyin(uap->tptr, s32, sizeof(s32)); 1814 if (error) 1815 return (error); 1816 CP(s32[0], s[0], tv_sec); 1817 CP(s32[0], s[0], tv_usec); 1818 CP(s32[1], s[1], tv_sec); 1819 CP(s32[1], s[1], tv_usec); 1820 sp = s; 1821 } else 1822 sp = NULL; 1823 return (kern_utimesat(td, AT_FDCWD, uap->path, UIO_USERSPACE, 1824 sp, UIO_SYSSPACE)); 1825 } 1826 1827 int 1828 freebsd32_lutimes(struct thread *td, struct freebsd32_lutimes_args *uap) 1829 { 1830 struct timeval32 s32[2]; 1831 struct timeval s[2], *sp; 1832 int error; 1833 1834 if (uap->tptr != NULL) { 1835 error = copyin(uap->tptr, s32, sizeof(s32)); 1836 if (error) 1837 return (error); 1838 CP(s32[0], s[0], tv_sec); 1839 CP(s32[0], s[0], tv_usec); 1840 CP(s32[1], s[1], tv_sec); 1841 CP(s32[1], s[1], tv_usec); 1842 sp = s; 1843 } else 1844 sp = NULL; 1845 return (kern_lutimes(td, uap->path, UIO_USERSPACE, sp, UIO_SYSSPACE)); 1846 } 1847 1848 int 1849 freebsd32_futimes(struct thread *td, struct freebsd32_futimes_args *uap) 1850 { 1851 struct timeval32 s32[2]; 1852 struct timeval s[2], *sp; 1853 int error; 1854 1855 if (uap->tptr != NULL) { 1856 error = copyin(uap->tptr, s32, sizeof(s32)); 1857 if (error) 1858 return (error); 1859 CP(s32[0], s[0], tv_sec); 1860 CP(s32[0], s[0], tv_usec); 1861 CP(s32[1], s[1], tv_sec); 1862 CP(s32[1], s[1], tv_usec); 1863 sp = s; 1864 } else 1865 sp = NULL; 1866 return (kern_futimes(td, uap->fd, sp, UIO_SYSSPACE)); 1867 } 1868 1869 int 1870 freebsd32_futimesat(struct thread *td, struct freebsd32_futimesat_args *uap) 1871 { 1872 struct timeval32 s32[2]; 1873 struct timeval s[2], *sp; 1874 int error; 1875 1876 if (uap->times != NULL) { 1877 error = copyin(uap->times, s32, sizeof(s32)); 1878 if (error) 1879 return (error); 1880 CP(s32[0], s[0], tv_sec); 1881 CP(s32[0], s[0], tv_usec); 1882 CP(s32[1], s[1], tv_sec); 1883 CP(s32[1], s[1], tv_usec); 1884 sp = s; 1885 } else 1886 sp = NULL; 1887 return (kern_utimesat(td, uap->fd, uap->path, UIO_USERSPACE, 1888 sp, UIO_SYSSPACE)); 1889 } 1890 1891 int 1892 freebsd32_futimens(struct thread *td, struct freebsd32_futimens_args *uap) 1893 { 1894 struct timespec32 ts32[2]; 1895 struct timespec ts[2], *tsp; 1896 int error; 1897 1898 if (uap->times != NULL) { 1899 error = copyin(uap->times, ts32, sizeof(ts32)); 1900 if (error) 1901 return (error); 1902 CP(ts32[0], ts[0], tv_sec); 1903 CP(ts32[0], ts[0], tv_nsec); 1904 CP(ts32[1], ts[1], tv_sec); 1905 CP(ts32[1], ts[1], tv_nsec); 1906 tsp = ts; 1907 } else 1908 tsp = NULL; 1909 return (kern_futimens(td, uap->fd, tsp, UIO_SYSSPACE)); 1910 } 1911 1912 int 1913 freebsd32_utimensat(struct thread *td, struct freebsd32_utimensat_args *uap) 1914 { 1915 struct timespec32 ts32[2]; 1916 struct timespec ts[2], *tsp; 1917 int error; 1918 1919 if (uap->times != NULL) { 1920 error = copyin(uap->times, ts32, sizeof(ts32)); 1921 if (error) 1922 return (error); 1923 CP(ts32[0], ts[0], tv_sec); 1924 CP(ts32[0], ts[0], tv_nsec); 1925 CP(ts32[1], ts[1], tv_sec); 1926 CP(ts32[1], ts[1], tv_nsec); 1927 tsp = ts; 1928 } else 1929 tsp = NULL; 1930 return (kern_utimensat(td, uap->fd, uap->path, UIO_USERSPACE, 1931 tsp, UIO_SYSSPACE, uap->flag)); 1932 } 1933 1934 int 1935 freebsd32_adjtime(struct thread *td, struct freebsd32_adjtime_args *uap) 1936 { 1937 struct timeval32 tv32; 1938 struct timeval delta, olddelta, *deltap; 1939 int error; 1940 1941 if (uap->delta) { 1942 error = copyin(uap->delta, &tv32, sizeof(tv32)); 1943 if (error) 1944 return (error); 1945 CP(tv32, delta, tv_sec); 1946 CP(tv32, delta, tv_usec); 1947 deltap = δ 1948 } else 1949 deltap = NULL; 1950 error = kern_adjtime(td, deltap, &olddelta); 1951 if (uap->olddelta && error == 0) { 1952 CP(olddelta, tv32, tv_sec); 1953 CP(olddelta, tv32, tv_usec); 1954 error = copyout(&tv32, uap->olddelta, sizeof(tv32)); 1955 } 1956 return (error); 1957 } 1958 1959 #ifdef COMPAT_FREEBSD4 1960 int 1961 freebsd4_freebsd32_statfs(struct thread *td, struct freebsd4_freebsd32_statfs_args *uap) 1962 { 1963 struct ostatfs32 s32; 1964 struct statfs *sp; 1965 int error; 1966 1967 sp = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK); 1968 error = kern_statfs(td, uap->path, UIO_USERSPACE, sp); 1969 if (error == 0) { 1970 copy_statfs(sp, &s32); 1971 error = copyout(&s32, uap->buf, sizeof(s32)); 1972 } 1973 free(sp, M_STATFS); 1974 return (error); 1975 } 1976 #endif 1977 1978 #ifdef COMPAT_FREEBSD4 1979 int 1980 freebsd4_freebsd32_fstatfs(struct thread *td, struct freebsd4_freebsd32_fstatfs_args *uap) 1981 { 1982 struct ostatfs32 s32; 1983 struct statfs *sp; 1984 int error; 1985 1986 sp = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK); 1987 error = kern_fstatfs(td, uap->fd, sp); 1988 if (error == 0) { 1989 copy_statfs(sp, &s32); 1990 error = copyout(&s32, uap->buf, sizeof(s32)); 1991 } 1992 free(sp, M_STATFS); 1993 return (error); 1994 } 1995 #endif 1996 1997 #ifdef COMPAT_FREEBSD4 1998 int 1999 freebsd4_freebsd32_fhstatfs(struct thread *td, struct freebsd4_freebsd32_fhstatfs_args *uap) 2000 { 2001 struct ostatfs32 s32; 2002 struct statfs *sp; 2003 fhandle_t fh; 2004 int error; 2005 2006 if ((error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t))) != 0) 2007 return (error); 2008 sp = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK); 2009 error = kern_fhstatfs(td, fh, sp); 2010 if (error == 0) { 2011 copy_statfs(sp, &s32); 2012 error = copyout(&s32, uap->buf, sizeof(s32)); 2013 } 2014 free(sp, M_STATFS); 2015 return (error); 2016 } 2017 #endif 2018 2019 int 2020 freebsd32_pread(struct thread *td, struct freebsd32_pread_args *uap) 2021 { 2022 2023 return (kern_pread(td, uap->fd, uap->buf, uap->nbyte, 2024 PAIR32TO64(off_t, uap->offset))); 2025 } 2026 2027 int 2028 freebsd32_pwrite(struct thread *td, struct freebsd32_pwrite_args *uap) 2029 { 2030 2031 return (kern_pwrite(td, uap->fd, uap->buf, uap->nbyte, 2032 PAIR32TO64(off_t, uap->offset))); 2033 } 2034 2035 #ifdef COMPAT_43 2036 int 2037 ofreebsd32_lseek(struct thread *td, struct ofreebsd32_lseek_args *uap) 2038 { 2039 2040 return (kern_lseek(td, uap->fd, uap->offset, uap->whence)); 2041 } 2042 #endif 2043 2044 int 2045 freebsd32_lseek(struct thread *td, struct freebsd32_lseek_args *uap) 2046 { 2047 int error; 2048 off_t pos; 2049 2050 error = kern_lseek(td, uap->fd, PAIR32TO64(off_t, uap->offset), 2051 uap->whence); 2052 /* Expand the quad return into two parts for eax and edx */ 2053 pos = td->td_uretoff.tdu_off; 2054 td->td_retval[RETVAL_LO] = pos & 0xffffffff; /* %eax */ 2055 td->td_retval[RETVAL_HI] = pos >> 32; /* %edx */ 2056 return error; 2057 } 2058 2059 int 2060 freebsd32_truncate(struct thread *td, struct freebsd32_truncate_args *uap) 2061 { 2062 2063 return (kern_truncate(td, uap->path, UIO_USERSPACE, 2064 PAIR32TO64(off_t, uap->length))); 2065 } 2066 2067 #ifdef COMPAT_43 2068 int 2069 ofreebsd32_truncate(struct thread *td, struct ofreebsd32_truncate_args *uap) 2070 { 2071 return (kern_truncate(td, uap->path, UIO_USERSPACE, uap->length)); 2072 } 2073 #endif 2074 2075 int 2076 freebsd32_ftruncate(struct thread *td, struct freebsd32_ftruncate_args *uap) 2077 { 2078 2079 return (kern_ftruncate(td, uap->fd, PAIR32TO64(off_t, uap->length))); 2080 } 2081 2082 #ifdef COMPAT_43 2083 int 2084 ofreebsd32_ftruncate(struct thread *td, struct ofreebsd32_ftruncate_args *uap) 2085 { 2086 return (kern_ftruncate(td, uap->fd, uap->length)); 2087 } 2088 2089 int 2090 ofreebsd32_getdirentries(struct thread *td, 2091 struct ofreebsd32_getdirentries_args *uap) 2092 { 2093 struct ogetdirentries_args ap; 2094 int error; 2095 long loff; 2096 int32_t loff_cut; 2097 2098 ap.fd = uap->fd; 2099 ap.buf = uap->buf; 2100 ap.count = uap->count; 2101 ap.basep = NULL; 2102 error = kern_ogetdirentries(td, &ap, &loff); 2103 if (error == 0) { 2104 loff_cut = loff; 2105 error = copyout(&loff_cut, uap->basep, sizeof(int32_t)); 2106 } 2107 return (error); 2108 } 2109 #endif 2110 2111 #if defined(COMPAT_FREEBSD11) 2112 int 2113 freebsd11_freebsd32_getdirentries(struct thread *td, 2114 struct freebsd11_freebsd32_getdirentries_args *uap) 2115 { 2116 long base; 2117 int32_t base32; 2118 int error; 2119 2120 error = freebsd11_kern_getdirentries(td, uap->fd, uap->buf, uap->count, 2121 &base, NULL); 2122 if (error) 2123 return (error); 2124 if (uap->basep != NULL) { 2125 base32 = base; 2126 error = copyout(&base32, uap->basep, sizeof(int32_t)); 2127 } 2128 return (error); 2129 } 2130 #endif /* COMPAT_FREEBSD11 */ 2131 2132 #ifdef COMPAT_FREEBSD6 2133 /* versions with the 'int pad' argument */ 2134 int 2135 freebsd6_freebsd32_pread(struct thread *td, struct freebsd6_freebsd32_pread_args *uap) 2136 { 2137 2138 return (kern_pread(td, uap->fd, uap->buf, uap->nbyte, 2139 PAIR32TO64(off_t, uap->offset))); 2140 } 2141 2142 int 2143 freebsd6_freebsd32_pwrite(struct thread *td, struct freebsd6_freebsd32_pwrite_args *uap) 2144 { 2145 2146 return (kern_pwrite(td, uap->fd, uap->buf, uap->nbyte, 2147 PAIR32TO64(off_t, uap->offset))); 2148 } 2149 2150 int 2151 freebsd6_freebsd32_lseek(struct thread *td, struct freebsd6_freebsd32_lseek_args *uap) 2152 { 2153 int error; 2154 off_t pos; 2155 2156 error = kern_lseek(td, uap->fd, PAIR32TO64(off_t, uap->offset), 2157 uap->whence); 2158 /* Expand the quad return into two parts for eax and edx */ 2159 pos = *(off_t *)(td->td_retval); 2160 td->td_retval[RETVAL_LO] = pos & 0xffffffff; /* %eax */ 2161 td->td_retval[RETVAL_HI] = pos >> 32; /* %edx */ 2162 return error; 2163 } 2164 2165 int 2166 freebsd6_freebsd32_truncate(struct thread *td, struct freebsd6_freebsd32_truncate_args *uap) 2167 { 2168 2169 return (kern_truncate(td, uap->path, UIO_USERSPACE, 2170 PAIR32TO64(off_t, uap->length))); 2171 } 2172 2173 int 2174 freebsd6_freebsd32_ftruncate(struct thread *td, struct freebsd6_freebsd32_ftruncate_args *uap) 2175 { 2176 2177 return (kern_ftruncate(td, uap->fd, PAIR32TO64(off_t, uap->length))); 2178 } 2179 #endif /* COMPAT_FREEBSD6 */ 2180 2181 struct sf_hdtr32 { 2182 uint32_t headers; 2183 int hdr_cnt; 2184 uint32_t trailers; 2185 int trl_cnt; 2186 }; 2187 2188 static int 2189 freebsd32_do_sendfile(struct thread *td, 2190 struct freebsd32_sendfile_args *uap, int compat) 2191 { 2192 struct sf_hdtr32 hdtr32; 2193 struct sf_hdtr hdtr; 2194 struct uio *hdr_uio, *trl_uio; 2195 struct file *fp; 2196 cap_rights_t rights; 2197 struct iovec32 *iov32; 2198 off_t offset, sbytes; 2199 int error; 2200 2201 offset = PAIR32TO64(off_t, uap->offset); 2202 if (offset < 0) 2203 return (EINVAL); 2204 2205 hdr_uio = trl_uio = NULL; 2206 2207 if (uap->hdtr != NULL) { 2208 error = copyin(uap->hdtr, &hdtr32, sizeof(hdtr32)); 2209 if (error) 2210 goto out; 2211 PTRIN_CP(hdtr32, hdtr, headers); 2212 CP(hdtr32, hdtr, hdr_cnt); 2213 PTRIN_CP(hdtr32, hdtr, trailers); 2214 CP(hdtr32, hdtr, trl_cnt); 2215 2216 if (hdtr.headers != NULL) { 2217 iov32 = PTRIN(hdtr32.headers); 2218 error = freebsd32_copyinuio(iov32, 2219 hdtr32.hdr_cnt, &hdr_uio); 2220 if (error) 2221 goto out; 2222 #ifdef COMPAT_FREEBSD4 2223 /* 2224 * In FreeBSD < 5.0 the nbytes to send also included 2225 * the header. If compat is specified subtract the 2226 * header size from nbytes. 2227 */ 2228 if (compat) { 2229 if (uap->nbytes > hdr_uio->uio_resid) 2230 uap->nbytes -= hdr_uio->uio_resid; 2231 else 2232 uap->nbytes = 0; 2233 } 2234 #endif 2235 } 2236 if (hdtr.trailers != NULL) { 2237 iov32 = PTRIN(hdtr32.trailers); 2238 error = freebsd32_copyinuio(iov32, 2239 hdtr32.trl_cnt, &trl_uio); 2240 if (error) 2241 goto out; 2242 } 2243 } 2244 2245 AUDIT_ARG_FD(uap->fd); 2246 2247 if ((error = fget_read(td, uap->fd, 2248 cap_rights_init_one(&rights, CAP_PREAD), &fp)) != 0) 2249 goto out; 2250 2251 error = fo_sendfile(fp, uap->s, hdr_uio, trl_uio, offset, 2252 uap->nbytes, &sbytes, uap->flags, td); 2253 fdrop(fp, td); 2254 2255 if (uap->sbytes != NULL) 2256 (void)copyout(&sbytes, uap->sbytes, sizeof(off_t)); 2257 2258 out: 2259 if (hdr_uio) 2260 freeuio(hdr_uio); 2261 if (trl_uio) 2262 freeuio(trl_uio); 2263 return (error); 2264 } 2265 2266 #ifdef COMPAT_FREEBSD4 2267 int 2268 freebsd4_freebsd32_sendfile(struct thread *td, 2269 struct freebsd4_freebsd32_sendfile_args *uap) 2270 { 2271 return (freebsd32_do_sendfile(td, 2272 (struct freebsd32_sendfile_args *)uap, 1)); 2273 } 2274 #endif 2275 2276 int 2277 freebsd32_sendfile(struct thread *td, struct freebsd32_sendfile_args *uap) 2278 { 2279 2280 return (freebsd32_do_sendfile(td, uap, 0)); 2281 } 2282 2283 static void 2284 copy_stat(struct stat *in, struct stat32 *out) 2285 { 2286 2287 #ifndef __amd64__ 2288 /* 2289 * 32-bit architectures other than i386 have 64-bit time_t. This 2290 * results in struct timespec32 with 12 bytes for tv_sec and tv_nsec, 2291 * and 4 bytes of padding. Zero the padding holes in struct stat32. 2292 */ 2293 bzero(&out->st_atim, sizeof(out->st_atim)); 2294 bzero(&out->st_mtim, sizeof(out->st_mtim)); 2295 bzero(&out->st_ctim, sizeof(out->st_ctim)); 2296 bzero(&out->st_birthtim, sizeof(out->st_birthtim)); 2297 #endif 2298 CP(*in, *out, st_dev); 2299 CP(*in, *out, st_ino); 2300 CP(*in, *out, st_mode); 2301 CP(*in, *out, st_nlink); 2302 CP(*in, *out, st_uid); 2303 CP(*in, *out, st_gid); 2304 CP(*in, *out, st_rdev); 2305 TS_CP(*in, *out, st_atim); 2306 TS_CP(*in, *out, st_mtim); 2307 TS_CP(*in, *out, st_ctim); 2308 CP(*in, *out, st_size); 2309 CP(*in, *out, st_blocks); 2310 CP(*in, *out, st_blksize); 2311 CP(*in, *out, st_flags); 2312 CP(*in, *out, st_gen); 2313 CP(*in, *out, st_filerev); 2314 CP(*in, *out, st_bsdflags); 2315 TS_CP(*in, *out, st_birthtim); 2316 out->st_padding1 = 0; 2317 #ifdef __STAT32_TIME_T_EXT 2318 out->st_atim_ext = 0; 2319 out->st_mtim_ext = 0; 2320 out->st_ctim_ext = 0; 2321 out->st_btim_ext = 0; 2322 #endif 2323 bzero(out->st_spare, sizeof(out->st_spare)); 2324 } 2325 2326 #ifdef COMPAT_43 2327 static void 2328 copy_ostat(struct stat *in, struct ostat32 *out) 2329 { 2330 2331 bzero(out, sizeof(*out)); 2332 CP(*in, *out, st_dev); 2333 CP(*in, *out, st_ino); 2334 CP(*in, *out, st_mode); 2335 CP(*in, *out, st_nlink); 2336 CP(*in, *out, st_uid); 2337 CP(*in, *out, st_gid); 2338 CP(*in, *out, st_rdev); 2339 out->st_size = MIN(in->st_size, INT32_MAX); 2340 TS_CP(*in, *out, st_atim); 2341 TS_CP(*in, *out, st_mtim); 2342 TS_CP(*in, *out, st_ctim); 2343 CP(*in, *out, st_blksize); 2344 CP(*in, *out, st_blocks); 2345 CP(*in, *out, st_flags); 2346 CP(*in, *out, st_gen); 2347 } 2348 #endif 2349 2350 #ifdef COMPAT_43 2351 int 2352 ofreebsd32_stat(struct thread *td, struct ofreebsd32_stat_args *uap) 2353 { 2354 struct stat sb; 2355 struct ostat32 sb32; 2356 int error; 2357 2358 error = kern_statat(td, 0, AT_FDCWD, uap->path, UIO_USERSPACE, &sb); 2359 if (error) 2360 return (error); 2361 copy_ostat(&sb, &sb32); 2362 error = copyout(&sb32, uap->ub, sizeof (sb32)); 2363 return (error); 2364 } 2365 #endif 2366 2367 int 2368 freebsd32_fstat(struct thread *td, struct freebsd32_fstat_args *uap) 2369 { 2370 struct stat ub; 2371 struct stat32 ub32; 2372 int error; 2373 2374 error = kern_fstat(td, uap->fd, &ub); 2375 if (error) 2376 return (error); 2377 copy_stat(&ub, &ub32); 2378 error = copyout(&ub32, uap->sb, sizeof(ub32)); 2379 return (error); 2380 } 2381 2382 #ifdef COMPAT_43 2383 int 2384 ofreebsd32_fstat(struct thread *td, struct ofreebsd32_fstat_args *uap) 2385 { 2386 struct stat ub; 2387 struct ostat32 ub32; 2388 int error; 2389 2390 error = kern_fstat(td, uap->fd, &ub); 2391 if (error) 2392 return (error); 2393 copy_ostat(&ub, &ub32); 2394 error = copyout(&ub32, uap->sb, sizeof(ub32)); 2395 return (error); 2396 } 2397 #endif 2398 2399 int 2400 freebsd32_fstatat(struct thread *td, struct freebsd32_fstatat_args *uap) 2401 { 2402 struct stat ub; 2403 struct stat32 ub32; 2404 int error; 2405 2406 error = kern_statat(td, uap->flag, uap->fd, uap->path, UIO_USERSPACE, 2407 &ub); 2408 if (error) 2409 return (error); 2410 copy_stat(&ub, &ub32); 2411 error = copyout(&ub32, uap->buf, sizeof(ub32)); 2412 return (error); 2413 } 2414 2415 #ifdef COMPAT_43 2416 int 2417 ofreebsd32_lstat(struct thread *td, struct ofreebsd32_lstat_args *uap) 2418 { 2419 struct stat sb; 2420 struct ostat32 sb32; 2421 int error; 2422 2423 error = kern_statat(td, AT_SYMLINK_NOFOLLOW, AT_FDCWD, uap->path, 2424 UIO_USERSPACE, &sb); 2425 if (error) 2426 return (error); 2427 copy_ostat(&sb, &sb32); 2428 error = copyout(&sb32, uap->ub, sizeof (sb32)); 2429 return (error); 2430 } 2431 #endif 2432 2433 int 2434 freebsd32_fhstat(struct thread *td, struct freebsd32_fhstat_args *uap) 2435 { 2436 struct stat sb; 2437 struct stat32 sb32; 2438 struct fhandle fh; 2439 int error; 2440 2441 error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t)); 2442 if (error != 0) 2443 return (error); 2444 error = kern_fhstat(td, fh, &sb); 2445 if (error != 0) 2446 return (error); 2447 copy_stat(&sb, &sb32); 2448 error = copyout(&sb32, uap->sb, sizeof (sb32)); 2449 return (error); 2450 } 2451 2452 #if defined(COMPAT_FREEBSD11) 2453 extern int ino64_trunc_error; 2454 2455 static int 2456 freebsd11_cvtstat32(struct stat *in, struct freebsd11_stat32 *out) 2457 { 2458 2459 #ifndef __amd64__ 2460 /* 2461 * 32-bit architectures other than i386 have 64-bit time_t. This 2462 * results in struct timespec32 with 12 bytes for tv_sec and tv_nsec, 2463 * and 4 bytes of padding. Zero the padding holes in freebsd11_stat32. 2464 */ 2465 bzero(&out->st_atim, sizeof(out->st_atim)); 2466 bzero(&out->st_mtim, sizeof(out->st_mtim)); 2467 bzero(&out->st_ctim, sizeof(out->st_ctim)); 2468 bzero(&out->st_birthtim, sizeof(out->st_birthtim)); 2469 #endif 2470 2471 CP(*in, *out, st_ino); 2472 if (in->st_ino != out->st_ino) { 2473 switch (ino64_trunc_error) { 2474 default: 2475 case 0: 2476 break; 2477 case 1: 2478 return (EOVERFLOW); 2479 case 2: 2480 out->st_ino = UINT32_MAX; 2481 break; 2482 } 2483 } 2484 CP(*in, *out, st_nlink); 2485 if (in->st_nlink != out->st_nlink) { 2486 switch (ino64_trunc_error) { 2487 default: 2488 case 0: 2489 break; 2490 case 1: 2491 return (EOVERFLOW); 2492 case 2: 2493 out->st_nlink = UINT16_MAX; 2494 break; 2495 } 2496 } 2497 out->st_dev = in->st_dev; 2498 if (out->st_dev != in->st_dev) { 2499 switch (ino64_trunc_error) { 2500 default: 2501 break; 2502 case 1: 2503 return (EOVERFLOW); 2504 } 2505 } 2506 CP(*in, *out, st_mode); 2507 CP(*in, *out, st_uid); 2508 CP(*in, *out, st_gid); 2509 out->st_rdev = in->st_rdev; 2510 if (out->st_rdev != in->st_rdev) { 2511 switch (ino64_trunc_error) { 2512 default: 2513 break; 2514 case 1: 2515 return (EOVERFLOW); 2516 } 2517 } 2518 TS_CP(*in, *out, st_atim); 2519 TS_CP(*in, *out, st_mtim); 2520 TS_CP(*in, *out, st_ctim); 2521 CP(*in, *out, st_size); 2522 CP(*in, *out, st_blocks); 2523 CP(*in, *out, st_blksize); 2524 CP(*in, *out, st_flags); 2525 CP(*in, *out, st_gen); 2526 TS_CP(*in, *out, st_birthtim); 2527 out->st_lspare = 0; 2528 bzero((char *)&out->st_birthtim + sizeof(out->st_birthtim), 2529 sizeof(*out) - offsetof(struct freebsd11_stat32, 2530 st_birthtim) - sizeof(out->st_birthtim)); 2531 return (0); 2532 } 2533 2534 int 2535 freebsd11_freebsd32_stat(struct thread *td, 2536 struct freebsd11_freebsd32_stat_args *uap) 2537 { 2538 struct stat sb; 2539 struct freebsd11_stat32 sb32; 2540 int error; 2541 2542 error = kern_statat(td, 0, AT_FDCWD, uap->path, UIO_USERSPACE, &sb); 2543 if (error != 0) 2544 return (error); 2545 error = freebsd11_cvtstat32(&sb, &sb32); 2546 if (error == 0) 2547 error = copyout(&sb32, uap->ub, sizeof (sb32)); 2548 return (error); 2549 } 2550 2551 int 2552 freebsd11_freebsd32_fstat(struct thread *td, 2553 struct freebsd11_freebsd32_fstat_args *uap) 2554 { 2555 struct stat sb; 2556 struct freebsd11_stat32 sb32; 2557 int error; 2558 2559 error = kern_fstat(td, uap->fd, &sb); 2560 if (error != 0) 2561 return (error); 2562 error = freebsd11_cvtstat32(&sb, &sb32); 2563 if (error == 0) 2564 error = copyout(&sb32, uap->sb, sizeof (sb32)); 2565 return (error); 2566 } 2567 2568 int 2569 freebsd11_freebsd32_fstatat(struct thread *td, 2570 struct freebsd11_freebsd32_fstatat_args *uap) 2571 { 2572 struct stat sb; 2573 struct freebsd11_stat32 sb32; 2574 int error; 2575 2576 error = kern_statat(td, uap->flag, uap->fd, uap->path, UIO_USERSPACE, 2577 &sb); 2578 if (error != 0) 2579 return (error); 2580 error = freebsd11_cvtstat32(&sb, &sb32); 2581 if (error == 0) 2582 error = copyout(&sb32, uap->buf, sizeof (sb32)); 2583 return (error); 2584 } 2585 2586 int 2587 freebsd11_freebsd32_lstat(struct thread *td, 2588 struct freebsd11_freebsd32_lstat_args *uap) 2589 { 2590 struct stat sb; 2591 struct freebsd11_stat32 sb32; 2592 int error; 2593 2594 error = kern_statat(td, AT_SYMLINK_NOFOLLOW, AT_FDCWD, uap->path, 2595 UIO_USERSPACE, &sb); 2596 if (error != 0) 2597 return (error); 2598 error = freebsd11_cvtstat32(&sb, &sb32); 2599 if (error == 0) 2600 error = copyout(&sb32, uap->ub, sizeof (sb32)); 2601 return (error); 2602 } 2603 2604 int 2605 freebsd11_freebsd32_fhstat(struct thread *td, 2606 struct freebsd11_freebsd32_fhstat_args *uap) 2607 { 2608 struct stat sb; 2609 struct freebsd11_stat32 sb32; 2610 struct fhandle fh; 2611 int error; 2612 2613 error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t)); 2614 if (error != 0) 2615 return (error); 2616 error = kern_fhstat(td, fh, &sb); 2617 if (error != 0) 2618 return (error); 2619 error = freebsd11_cvtstat32(&sb, &sb32); 2620 if (error == 0) 2621 error = copyout(&sb32, uap->sb, sizeof (sb32)); 2622 return (error); 2623 } 2624 2625 static int 2626 freebsd11_cvtnstat32(struct stat *sb, struct nstat32 *nsb32) 2627 { 2628 struct nstat nsb; 2629 int error; 2630 2631 error = freebsd11_cvtnstat(sb, &nsb); 2632 if (error != 0) 2633 return (error); 2634 2635 bzero(nsb32, sizeof(*nsb32)); 2636 CP(nsb, *nsb32, st_dev); 2637 CP(nsb, *nsb32, st_ino); 2638 CP(nsb, *nsb32, st_mode); 2639 CP(nsb, *nsb32, st_nlink); 2640 CP(nsb, *nsb32, st_uid); 2641 CP(nsb, *nsb32, st_gid); 2642 CP(nsb, *nsb32, st_rdev); 2643 CP(nsb, *nsb32, st_atim.tv_sec); 2644 CP(nsb, *nsb32, st_atim.tv_nsec); 2645 CP(nsb, *nsb32, st_mtim.tv_sec); 2646 CP(nsb, *nsb32, st_mtim.tv_nsec); 2647 CP(nsb, *nsb32, st_ctim.tv_sec); 2648 CP(nsb, *nsb32, st_ctim.tv_nsec); 2649 CP(nsb, *nsb32, st_size); 2650 CP(nsb, *nsb32, st_blocks); 2651 CP(nsb, *nsb32, st_blksize); 2652 CP(nsb, *nsb32, st_flags); 2653 CP(nsb, *nsb32, st_gen); 2654 CP(nsb, *nsb32, st_birthtim.tv_sec); 2655 CP(nsb, *nsb32, st_birthtim.tv_nsec); 2656 return (0); 2657 } 2658 2659 int 2660 freebsd11_freebsd32_nstat(struct thread *td, 2661 struct freebsd11_freebsd32_nstat_args *uap) 2662 { 2663 struct stat sb; 2664 struct nstat32 nsb; 2665 int error; 2666 2667 error = kern_statat(td, 0, AT_FDCWD, uap->path, UIO_USERSPACE, &sb); 2668 if (error != 0) 2669 return (error); 2670 error = freebsd11_cvtnstat32(&sb, &nsb); 2671 if (error != 0) 2672 error = copyout(&nsb, uap->ub, sizeof (nsb)); 2673 return (error); 2674 } 2675 2676 int 2677 freebsd11_freebsd32_nlstat(struct thread *td, 2678 struct freebsd11_freebsd32_nlstat_args *uap) 2679 { 2680 struct stat sb; 2681 struct nstat32 nsb; 2682 int error; 2683 2684 error = kern_statat(td, AT_SYMLINK_NOFOLLOW, AT_FDCWD, uap->path, 2685 UIO_USERSPACE, &sb); 2686 if (error != 0) 2687 return (error); 2688 error = freebsd11_cvtnstat32(&sb, &nsb); 2689 if (error == 0) 2690 error = copyout(&nsb, uap->ub, sizeof (nsb)); 2691 return (error); 2692 } 2693 2694 int 2695 freebsd11_freebsd32_nfstat(struct thread *td, 2696 struct freebsd11_freebsd32_nfstat_args *uap) 2697 { 2698 struct nstat32 nub; 2699 struct stat ub; 2700 int error; 2701 2702 error = kern_fstat(td, uap->fd, &ub); 2703 if (error != 0) 2704 return (error); 2705 error = freebsd11_cvtnstat32(&ub, &nub); 2706 if (error == 0) 2707 error = copyout(&nub, uap->sb, sizeof(nub)); 2708 return (error); 2709 } 2710 #endif 2711 2712 int 2713 freebsd32___sysctl(struct thread *td, struct freebsd32___sysctl_args *uap) 2714 { 2715 int error, name[CTL_MAXNAME]; 2716 size_t j, oldlen; 2717 uint32_t tmp; 2718 2719 if (uap->namelen > CTL_MAXNAME || uap->namelen < 2) 2720 return (EINVAL); 2721 error = copyin(uap->name, name, uap->namelen * sizeof(int)); 2722 if (error) 2723 return (error); 2724 if (uap->oldlenp) { 2725 error = fueword32(uap->oldlenp, &tmp); 2726 oldlen = tmp; 2727 } else { 2728 oldlen = 0; 2729 } 2730 if (error != 0) 2731 return (EFAULT); 2732 error = userland_sysctl(td, name, uap->namelen, 2733 uap->old, &oldlen, 1, 2734 uap->new, uap->newlen, &j, SCTL_MASK32); 2735 if (error) 2736 return (error); 2737 if (uap->oldlenp != NULL && suword32(uap->oldlenp, j) != 0) 2738 error = EFAULT; 2739 return (error); 2740 } 2741 2742 int 2743 freebsd32___sysctlbyname(struct thread *td, 2744 struct freebsd32___sysctlbyname_args *uap) 2745 { 2746 size_t oldlen, rv; 2747 int error; 2748 uint32_t tmp; 2749 2750 if (uap->oldlenp != NULL) { 2751 error = fueword32(uap->oldlenp, &tmp); 2752 oldlen = tmp; 2753 } else { 2754 error = oldlen = 0; 2755 } 2756 if (error != 0) 2757 return (EFAULT); 2758 error = kern___sysctlbyname(td, uap->name, uap->namelen, uap->old, 2759 &oldlen, uap->new, uap->newlen, &rv, SCTL_MASK32, 1); 2760 if (error != 0) 2761 return (error); 2762 if (uap->oldlenp != NULL && suword32(uap->oldlenp, rv) != 0) 2763 error = EFAULT; 2764 return (error); 2765 } 2766 2767 int 2768 freebsd32_jail(struct thread *td, struct freebsd32_jail_args *uap) 2769 { 2770 uint32_t version; 2771 int error; 2772 struct jail j; 2773 2774 error = copyin(uap->jail, &version, sizeof(uint32_t)); 2775 if (error) 2776 return (error); 2777 2778 switch (version) { 2779 case 0: 2780 { 2781 /* FreeBSD single IPv4 jails. */ 2782 struct jail32_v0 j32_v0; 2783 2784 bzero(&j, sizeof(struct jail)); 2785 error = copyin(uap->jail, &j32_v0, sizeof(struct jail32_v0)); 2786 if (error) 2787 return (error); 2788 CP(j32_v0, j, version); 2789 PTRIN_CP(j32_v0, j, path); 2790 PTRIN_CP(j32_v0, j, hostname); 2791 j.ip4s = htonl(j32_v0.ip_number); /* jail_v0 is host order */ 2792 break; 2793 } 2794 2795 case 1: 2796 /* 2797 * Version 1 was used by multi-IPv4 jail implementations 2798 * that never made it into the official kernel. 2799 */ 2800 return (EINVAL); 2801 2802 case 2: /* JAIL_API_VERSION */ 2803 { 2804 /* FreeBSD multi-IPv4/IPv6,noIP jails. */ 2805 struct jail32 j32; 2806 2807 error = copyin(uap->jail, &j32, sizeof(struct jail32)); 2808 if (error) 2809 return (error); 2810 CP(j32, j, version); 2811 PTRIN_CP(j32, j, path); 2812 PTRIN_CP(j32, j, hostname); 2813 PTRIN_CP(j32, j, jailname); 2814 CP(j32, j, ip4s); 2815 CP(j32, j, ip6s); 2816 PTRIN_CP(j32, j, ip4); 2817 PTRIN_CP(j32, j, ip6); 2818 break; 2819 } 2820 2821 default: 2822 /* Sci-Fi jails are not supported, sorry. */ 2823 return (EINVAL); 2824 } 2825 return (kern_jail(td, &j)); 2826 } 2827 2828 int 2829 freebsd32_jail_set(struct thread *td, struct freebsd32_jail_set_args *uap) 2830 { 2831 struct uio *auio; 2832 int error; 2833 2834 /* Check that we have an even number of iovecs. */ 2835 if (uap->iovcnt & 1) 2836 return (EINVAL); 2837 2838 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 2839 if (error) 2840 return (error); 2841 error = kern_jail_set(td, auio, uap->flags); 2842 freeuio(auio); 2843 return (error); 2844 } 2845 2846 int 2847 freebsd32_jail_get(struct thread *td, struct freebsd32_jail_get_args *uap) 2848 { 2849 struct iovec32 iov32; 2850 struct uio *auio; 2851 int error, i; 2852 2853 /* Check that we have an even number of iovecs. */ 2854 if (uap->iovcnt & 1) 2855 return (EINVAL); 2856 2857 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 2858 if (error) 2859 return (error); 2860 error = kern_jail_get(td, auio, uap->flags); 2861 if (error == 0) 2862 for (i = 0; i < uap->iovcnt; i++) { 2863 PTROUT_CP(auio->uio_iov[i], iov32, iov_base); 2864 CP(auio->uio_iov[i], iov32, iov_len); 2865 error = copyout(&iov32, uap->iovp + i, sizeof(iov32)); 2866 if (error != 0) 2867 break; 2868 } 2869 freeuio(auio); 2870 return (error); 2871 } 2872 2873 int 2874 freebsd32_sigaction(struct thread *td, struct freebsd32_sigaction_args *uap) 2875 { 2876 struct sigaction32 s32; 2877 struct sigaction sa, osa, *sap; 2878 int error; 2879 2880 if (uap->act) { 2881 error = copyin(uap->act, &s32, sizeof(s32)); 2882 if (error) 2883 return (error); 2884 sa.sa_handler = PTRIN(s32.sa_u); 2885 CP(s32, sa, sa_flags); 2886 CP(s32, sa, sa_mask); 2887 sap = &sa; 2888 } else 2889 sap = NULL; 2890 error = kern_sigaction(td, uap->sig, sap, &osa, 0); 2891 if (error == 0 && uap->oact != NULL) { 2892 s32.sa_u = PTROUT(osa.sa_handler); 2893 CP(osa, s32, sa_flags); 2894 CP(osa, s32, sa_mask); 2895 error = copyout(&s32, uap->oact, sizeof(s32)); 2896 } 2897 return (error); 2898 } 2899 2900 #ifdef COMPAT_FREEBSD4 2901 int 2902 freebsd4_freebsd32_sigaction(struct thread *td, 2903 struct freebsd4_freebsd32_sigaction_args *uap) 2904 { 2905 struct sigaction32 s32; 2906 struct sigaction sa, osa, *sap; 2907 int error; 2908 2909 if (uap->act) { 2910 error = copyin(uap->act, &s32, sizeof(s32)); 2911 if (error) 2912 return (error); 2913 sa.sa_handler = PTRIN(s32.sa_u); 2914 CP(s32, sa, sa_flags); 2915 CP(s32, sa, sa_mask); 2916 sap = &sa; 2917 } else 2918 sap = NULL; 2919 error = kern_sigaction(td, uap->sig, sap, &osa, KSA_FREEBSD4); 2920 if (error == 0 && uap->oact != NULL) { 2921 s32.sa_u = PTROUT(osa.sa_handler); 2922 CP(osa, s32, sa_flags); 2923 CP(osa, s32, sa_mask); 2924 error = copyout(&s32, uap->oact, sizeof(s32)); 2925 } 2926 return (error); 2927 } 2928 #endif 2929 2930 #ifdef COMPAT_43 2931 struct osigaction32 { 2932 uint32_t sa_u; 2933 osigset_t sa_mask; 2934 int sa_flags; 2935 }; 2936 2937 #define ONSIG 32 2938 2939 int 2940 ofreebsd32_sigaction(struct thread *td, 2941 struct ofreebsd32_sigaction_args *uap) 2942 { 2943 struct osigaction32 s32; 2944 struct sigaction sa, osa, *sap; 2945 int error; 2946 2947 if (uap->signum <= 0 || uap->signum >= ONSIG) 2948 return (EINVAL); 2949 2950 if (uap->nsa) { 2951 error = copyin(uap->nsa, &s32, sizeof(s32)); 2952 if (error) 2953 return (error); 2954 sa.sa_handler = PTRIN(s32.sa_u); 2955 CP(s32, sa, sa_flags); 2956 OSIG2SIG(s32.sa_mask, sa.sa_mask); 2957 sap = &sa; 2958 } else 2959 sap = NULL; 2960 error = kern_sigaction(td, uap->signum, sap, &osa, KSA_OSIGSET); 2961 if (error == 0 && uap->osa != NULL) { 2962 s32.sa_u = PTROUT(osa.sa_handler); 2963 CP(osa, s32, sa_flags); 2964 SIG2OSIG(osa.sa_mask, s32.sa_mask); 2965 error = copyout(&s32, uap->osa, sizeof(s32)); 2966 } 2967 return (error); 2968 } 2969 2970 struct sigvec32 { 2971 uint32_t sv_handler; 2972 int sv_mask; 2973 int sv_flags; 2974 }; 2975 2976 int 2977 ofreebsd32_sigvec(struct thread *td, 2978 struct ofreebsd32_sigvec_args *uap) 2979 { 2980 struct sigvec32 vec; 2981 struct sigaction sa, osa, *sap; 2982 int error; 2983 2984 if (uap->signum <= 0 || uap->signum >= ONSIG) 2985 return (EINVAL); 2986 2987 if (uap->nsv) { 2988 error = copyin(uap->nsv, &vec, sizeof(vec)); 2989 if (error) 2990 return (error); 2991 sa.sa_handler = PTRIN(vec.sv_handler); 2992 OSIG2SIG(vec.sv_mask, sa.sa_mask); 2993 sa.sa_flags = vec.sv_flags; 2994 sa.sa_flags ^= SA_RESTART; 2995 sap = &sa; 2996 } else 2997 sap = NULL; 2998 error = kern_sigaction(td, uap->signum, sap, &osa, KSA_OSIGSET); 2999 if (error == 0 && uap->osv != NULL) { 3000 vec.sv_handler = PTROUT(osa.sa_handler); 3001 SIG2OSIG(osa.sa_mask, vec.sv_mask); 3002 vec.sv_flags = osa.sa_flags; 3003 vec.sv_flags &= ~SA_NOCLDWAIT; 3004 vec.sv_flags ^= SA_RESTART; 3005 error = copyout(&vec, uap->osv, sizeof(vec)); 3006 } 3007 return (error); 3008 } 3009 3010 struct sigstack32 { 3011 uint32_t ss_sp; 3012 int ss_onstack; 3013 }; 3014 3015 int 3016 ofreebsd32_sigstack(struct thread *td, 3017 struct ofreebsd32_sigstack_args *uap) 3018 { 3019 struct sigstack32 s32; 3020 struct sigstack nss, oss; 3021 int error = 0, unss; 3022 3023 if (uap->nss != NULL) { 3024 error = copyin(uap->nss, &s32, sizeof(s32)); 3025 if (error) 3026 return (error); 3027 nss.ss_sp = PTRIN(s32.ss_sp); 3028 CP(s32, nss, ss_onstack); 3029 unss = 1; 3030 } else { 3031 unss = 0; 3032 } 3033 oss.ss_sp = td->td_sigstk.ss_sp; 3034 oss.ss_onstack = sigonstack(cpu_getstack(td)); 3035 if (unss) { 3036 td->td_sigstk.ss_sp = nss.ss_sp; 3037 td->td_sigstk.ss_size = 0; 3038 td->td_sigstk.ss_flags |= (nss.ss_onstack & SS_ONSTACK); 3039 td->td_pflags |= TDP_ALTSTACK; 3040 } 3041 if (uap->oss != NULL) { 3042 s32.ss_sp = PTROUT(oss.ss_sp); 3043 CP(oss, s32, ss_onstack); 3044 error = copyout(&s32, uap->oss, sizeof(s32)); 3045 } 3046 return (error); 3047 } 3048 #endif 3049 3050 int 3051 freebsd32_nanosleep(struct thread *td, struct freebsd32_nanosleep_args *uap) 3052 { 3053 3054 return (freebsd32_user_clock_nanosleep(td, CLOCK_REALTIME, 3055 TIMER_RELTIME, uap->rqtp, uap->rmtp)); 3056 } 3057 3058 int 3059 freebsd32_clock_nanosleep(struct thread *td, 3060 struct freebsd32_clock_nanosleep_args *uap) 3061 { 3062 int error; 3063 3064 error = freebsd32_user_clock_nanosleep(td, uap->clock_id, uap->flags, 3065 uap->rqtp, uap->rmtp); 3066 return (kern_posix_error(td, error)); 3067 } 3068 3069 static int 3070 freebsd32_user_clock_nanosleep(struct thread *td, clockid_t clock_id, 3071 int flags, const struct timespec32 *ua_rqtp, struct timespec32 *ua_rmtp) 3072 { 3073 struct timespec32 rmt32, rqt32; 3074 struct timespec rmt, rqt; 3075 int error, error2; 3076 3077 error = copyin(ua_rqtp, &rqt32, sizeof(rqt32)); 3078 if (error) 3079 return (error); 3080 3081 CP(rqt32, rqt, tv_sec); 3082 CP(rqt32, rqt, tv_nsec); 3083 3084 error = kern_clock_nanosleep(td, clock_id, flags, &rqt, &rmt); 3085 if (error == EINTR && ua_rmtp != NULL && (flags & TIMER_ABSTIME) == 0) { 3086 CP(rmt, rmt32, tv_sec); 3087 CP(rmt, rmt32, tv_nsec); 3088 3089 error2 = copyout(&rmt32, ua_rmtp, sizeof(rmt32)); 3090 if (error2 != 0) 3091 error = error2; 3092 } 3093 return (error); 3094 } 3095 3096 int 3097 freebsd32_clock_gettime(struct thread *td, 3098 struct freebsd32_clock_gettime_args *uap) 3099 { 3100 struct timespec ats; 3101 struct timespec32 ats32; 3102 int error; 3103 3104 error = kern_clock_gettime(td, uap->clock_id, &ats); 3105 if (error == 0) { 3106 CP(ats, ats32, tv_sec); 3107 CP(ats, ats32, tv_nsec); 3108 error = copyout(&ats32, uap->tp, sizeof(ats32)); 3109 } 3110 return (error); 3111 } 3112 3113 int 3114 freebsd32_clock_settime(struct thread *td, 3115 struct freebsd32_clock_settime_args *uap) 3116 { 3117 struct timespec ats; 3118 struct timespec32 ats32; 3119 int error; 3120 3121 error = copyin(uap->tp, &ats32, sizeof(ats32)); 3122 if (error) 3123 return (error); 3124 CP(ats32, ats, tv_sec); 3125 CP(ats32, ats, tv_nsec); 3126 3127 return (kern_clock_settime(td, uap->clock_id, &ats)); 3128 } 3129 3130 int 3131 freebsd32_clock_getres(struct thread *td, 3132 struct freebsd32_clock_getres_args *uap) 3133 { 3134 struct timespec ts; 3135 struct timespec32 ts32; 3136 int error; 3137 3138 if (uap->tp == NULL) 3139 return (0); 3140 error = kern_clock_getres(td, uap->clock_id, &ts); 3141 if (error == 0) { 3142 CP(ts, ts32, tv_sec); 3143 CP(ts, ts32, tv_nsec); 3144 error = copyout(&ts32, uap->tp, sizeof(ts32)); 3145 } 3146 return (error); 3147 } 3148 3149 int freebsd32_ktimer_create(struct thread *td, 3150 struct freebsd32_ktimer_create_args *uap) 3151 { 3152 struct sigevent32 ev32; 3153 struct sigevent ev, *evp; 3154 int error, id; 3155 3156 if (uap->evp == NULL) { 3157 evp = NULL; 3158 } else { 3159 evp = &ev; 3160 error = copyin(uap->evp, &ev32, sizeof(ev32)); 3161 if (error != 0) 3162 return (error); 3163 error = convert_sigevent32(&ev32, &ev); 3164 if (error != 0) 3165 return (error); 3166 } 3167 error = kern_ktimer_create(td, uap->clock_id, evp, &id, -1); 3168 if (error == 0) { 3169 error = copyout(&id, uap->timerid, sizeof(int)); 3170 if (error != 0) 3171 kern_ktimer_delete(td, id); 3172 } 3173 return (error); 3174 } 3175 3176 int 3177 freebsd32_ktimer_settime(struct thread *td, 3178 struct freebsd32_ktimer_settime_args *uap) 3179 { 3180 struct itimerspec32 val32, oval32; 3181 struct itimerspec val, oval, *ovalp; 3182 int error; 3183 3184 error = copyin(uap->value, &val32, sizeof(val32)); 3185 if (error != 0) 3186 return (error); 3187 ITS_CP(val32, val); 3188 ovalp = uap->ovalue != NULL ? &oval : NULL; 3189 error = kern_ktimer_settime(td, uap->timerid, uap->flags, &val, ovalp); 3190 if (error == 0 && uap->ovalue != NULL) { 3191 ITS_CP(oval, oval32); 3192 error = copyout(&oval32, uap->ovalue, sizeof(oval32)); 3193 } 3194 return (error); 3195 } 3196 3197 int 3198 freebsd32_ktimer_gettime(struct thread *td, 3199 struct freebsd32_ktimer_gettime_args *uap) 3200 { 3201 struct itimerspec32 val32; 3202 struct itimerspec val; 3203 int error; 3204 3205 error = kern_ktimer_gettime(td, uap->timerid, &val); 3206 if (error == 0) { 3207 ITS_CP(val, val32); 3208 error = copyout(&val32, uap->value, sizeof(val32)); 3209 } 3210 return (error); 3211 } 3212 3213 int 3214 freebsd32_timerfd_gettime(struct thread *td, 3215 struct freebsd32_timerfd_gettime_args *uap) 3216 { 3217 struct itimerspec curr_value; 3218 struct itimerspec32 curr_value32; 3219 int error; 3220 3221 error = kern_timerfd_gettime(td, uap->fd, &curr_value); 3222 if (error == 0) { 3223 CP(curr_value, curr_value32, it_value.tv_sec); 3224 CP(curr_value, curr_value32, it_value.tv_nsec); 3225 CP(curr_value, curr_value32, it_interval.tv_sec); 3226 CP(curr_value, curr_value32, it_interval.tv_nsec); 3227 error = copyout(&curr_value32, uap->curr_value, 3228 sizeof(curr_value32)); 3229 } 3230 3231 return (error); 3232 } 3233 3234 int 3235 freebsd32_timerfd_settime(struct thread *td, 3236 struct freebsd32_timerfd_settime_args *uap) 3237 { 3238 struct itimerspec new_value, old_value; 3239 struct itimerspec32 new_value32, old_value32; 3240 int error; 3241 3242 error = copyin(uap->new_value, &new_value32, sizeof(new_value32)); 3243 if (error != 0) 3244 return (error); 3245 CP(new_value32, new_value, it_value.tv_sec); 3246 CP(new_value32, new_value, it_value.tv_nsec); 3247 CP(new_value32, new_value, it_interval.tv_sec); 3248 CP(new_value32, new_value, it_interval.tv_nsec); 3249 if (uap->old_value == NULL) { 3250 error = kern_timerfd_settime(td, uap->fd, uap->flags, 3251 &new_value, NULL); 3252 } else { 3253 error = kern_timerfd_settime(td, uap->fd, uap->flags, 3254 &new_value, &old_value); 3255 if (error == 0) { 3256 CP(old_value, old_value32, it_value.tv_sec); 3257 CP(old_value, old_value32, it_value.tv_nsec); 3258 CP(old_value, old_value32, it_interval.tv_sec); 3259 CP(old_value, old_value32, it_interval.tv_nsec); 3260 error = copyout(&old_value32, uap->old_value, 3261 sizeof(old_value32)); 3262 } 3263 } 3264 return (error); 3265 } 3266 3267 int 3268 freebsd32_clock_getcpuclockid2(struct thread *td, 3269 struct freebsd32_clock_getcpuclockid2_args *uap) 3270 { 3271 clockid_t clk_id; 3272 int error; 3273 3274 error = kern_clock_getcpuclockid2(td, PAIR32TO64(id_t, uap->id), 3275 uap->which, &clk_id); 3276 if (error == 0) 3277 error = copyout(&clk_id, uap->clock_id, sizeof(clockid_t)); 3278 return (error); 3279 } 3280 3281 int 3282 freebsd32_thr_new(struct thread *td, 3283 struct freebsd32_thr_new_args *uap) 3284 { 3285 struct thr_param32 param32; 3286 struct thr_param param; 3287 int error; 3288 3289 if (uap->param_size < 0 || 3290 uap->param_size > sizeof(struct thr_param32)) 3291 return (EINVAL); 3292 bzero(¶m, sizeof(struct thr_param)); 3293 bzero(¶m32, sizeof(struct thr_param32)); 3294 error = copyin(uap->param, ¶m32, uap->param_size); 3295 if (error != 0) 3296 return (error); 3297 param.start_func = PTRIN(param32.start_func); 3298 param.arg = PTRIN(param32.arg); 3299 param.stack_base = PTRIN(param32.stack_base); 3300 param.stack_size = param32.stack_size; 3301 param.tls_base = PTRIN(param32.tls_base); 3302 param.tls_size = param32.tls_size; 3303 param.child_tid = PTRIN(param32.child_tid); 3304 param.parent_tid = PTRIN(param32.parent_tid); 3305 param.flags = param32.flags; 3306 param.rtp = PTRIN(param32.rtp); 3307 param.spare[0] = PTRIN(param32.spare[0]); 3308 param.spare[1] = PTRIN(param32.spare[1]); 3309 param.spare[2] = PTRIN(param32.spare[2]); 3310 3311 return (kern_thr_new(td, ¶m)); 3312 } 3313 3314 int 3315 freebsd32_thr_suspend(struct thread *td, struct freebsd32_thr_suspend_args *uap) 3316 { 3317 struct timespec32 ts32; 3318 struct timespec ts, *tsp; 3319 int error; 3320 3321 error = 0; 3322 tsp = NULL; 3323 if (uap->timeout != NULL) { 3324 error = copyin((const void *)uap->timeout, (void *)&ts32, 3325 sizeof(struct timespec32)); 3326 if (error != 0) 3327 return (error); 3328 ts.tv_sec = ts32.tv_sec; 3329 ts.tv_nsec = ts32.tv_nsec; 3330 tsp = &ts; 3331 } 3332 return (kern_thr_suspend(td, tsp)); 3333 } 3334 3335 void 3336 siginfo_to_siginfo32(const siginfo_t *src, struct __siginfo32 *dst) 3337 { 3338 bzero(dst, sizeof(*dst)); 3339 dst->si_signo = src->si_signo; 3340 dst->si_errno = src->si_errno; 3341 dst->si_code = src->si_code; 3342 dst->si_pid = src->si_pid; 3343 dst->si_uid = src->si_uid; 3344 dst->si_status = src->si_status; 3345 dst->si_addr = (uintptr_t)src->si_addr; 3346 dst->si_value.sival_int = src->si_value.sival_int; 3347 dst->si_timerid = src->si_timerid; 3348 dst->si_overrun = src->si_overrun; 3349 } 3350 3351 #ifndef _FREEBSD32_SYSPROTO_H_ 3352 struct freebsd32_sigqueue_args { 3353 pid_t pid; 3354 int signum; 3355 /* union sigval32 */ int value; 3356 }; 3357 #endif 3358 int 3359 freebsd32_sigqueue(struct thread *td, struct freebsd32_sigqueue_args *uap) 3360 { 3361 union sigval sv; 3362 3363 /* 3364 * On 32-bit ABIs, sival_int and sival_ptr are the same. 3365 * On 64-bit little-endian ABIs, the low bits are the same. 3366 * In 64-bit big-endian ABIs, sival_int overlaps with 3367 * sival_ptr's HIGH bits. We choose to support sival_int 3368 * rather than sival_ptr in this case as it seems to be 3369 * more common. 3370 */ 3371 bzero(&sv, sizeof(sv)); 3372 sv.sival_int = (uint32_t)(uint64_t)uap->value; 3373 3374 return (kern_sigqueue(td, uap->pid, uap->signum, &sv)); 3375 } 3376 3377 int 3378 freebsd32_sigtimedwait(struct thread *td, struct freebsd32_sigtimedwait_args *uap) 3379 { 3380 struct timespec32 ts32; 3381 struct timespec ts; 3382 struct timespec *timeout; 3383 sigset_t set; 3384 ksiginfo_t ksi; 3385 struct __siginfo32 si32; 3386 int error; 3387 3388 if (uap->timeout) { 3389 error = copyin(uap->timeout, &ts32, sizeof(ts32)); 3390 if (error) 3391 return (error); 3392 ts.tv_sec = ts32.tv_sec; 3393 ts.tv_nsec = ts32.tv_nsec; 3394 timeout = &ts; 3395 } else 3396 timeout = NULL; 3397 3398 error = copyin(uap->set, &set, sizeof(set)); 3399 if (error) 3400 return (error); 3401 3402 error = kern_sigtimedwait(td, set, &ksi, timeout); 3403 if (error) 3404 return (error); 3405 3406 if (uap->info) { 3407 siginfo_to_siginfo32(&ksi.ksi_info, &si32); 3408 error = copyout(&si32, uap->info, sizeof(struct __siginfo32)); 3409 } 3410 3411 if (error == 0) 3412 td->td_retval[0] = ksi.ksi_signo; 3413 return (error); 3414 } 3415 3416 /* 3417 * MPSAFE 3418 */ 3419 int 3420 freebsd32_sigwaitinfo(struct thread *td, struct freebsd32_sigwaitinfo_args *uap) 3421 { 3422 ksiginfo_t ksi; 3423 struct __siginfo32 si32; 3424 sigset_t set; 3425 int error; 3426 3427 error = copyin(uap->set, &set, sizeof(set)); 3428 if (error) 3429 return (error); 3430 3431 error = kern_sigtimedwait(td, set, &ksi, NULL); 3432 if (error) 3433 return (error); 3434 3435 if (uap->info) { 3436 siginfo_to_siginfo32(&ksi.ksi_info, &si32); 3437 error = copyout(&si32, uap->info, sizeof(struct __siginfo32)); 3438 } 3439 if (error == 0) 3440 td->td_retval[0] = ksi.ksi_signo; 3441 return (error); 3442 } 3443 3444 int 3445 freebsd32_cpuset_setid(struct thread *td, 3446 struct freebsd32_cpuset_setid_args *uap) 3447 { 3448 3449 return (kern_cpuset_setid(td, uap->which, 3450 PAIR32TO64(id_t, uap->id), uap->setid)); 3451 } 3452 3453 int 3454 freebsd32_cpuset_getid(struct thread *td, 3455 struct freebsd32_cpuset_getid_args *uap) 3456 { 3457 3458 return (kern_cpuset_getid(td, uap->level, uap->which, 3459 PAIR32TO64(id_t, uap->id), uap->setid)); 3460 } 3461 3462 static int 3463 copyin32_set(const void *u, void *k, size_t size) 3464 { 3465 #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 3466 int rv; 3467 struct bitset *kb = k; 3468 int *p; 3469 3470 rv = copyin(u, k, size); 3471 if (rv != 0) 3472 return (rv); 3473 3474 p = (int *)kb->__bits; 3475 /* Loop through swapping words. 3476 * `size' is in bytes, we need bits. */ 3477 for (int i = 0; i < __bitset_words(size * 8); i++) { 3478 int tmp = p[0]; 3479 p[0] = p[1]; 3480 p[1] = tmp; 3481 p += 2; 3482 } 3483 return (0); 3484 #else 3485 return (copyin(u, k, size)); 3486 #endif 3487 } 3488 3489 static int 3490 copyout32_set(const void *k, void *u, size_t size) 3491 { 3492 #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 3493 const struct bitset *kb = k; 3494 struct bitset *ub = u; 3495 const int *kp = (const int *)kb->__bits; 3496 int *up = (int *)ub->__bits; 3497 int rv; 3498 3499 for (int i = 0; i < __bitset_words(CPU_SETSIZE); i++) { 3500 /* `size' is in bytes, we need bits. */ 3501 for (int i = 0; i < __bitset_words(size * 8); i++) { 3502 rv = suword32(up, kp[1]); 3503 if (rv == 0) 3504 rv = suword32(up + 1, kp[0]); 3505 if (rv != 0) 3506 return (EFAULT); 3507 } 3508 } 3509 return (0); 3510 #else 3511 return (copyout(k, u, size)); 3512 #endif 3513 } 3514 3515 static const struct cpuset_copy_cb cpuset_copy32_cb = { 3516 .cpuset_copyin = copyin32_set, 3517 .cpuset_copyout = copyout32_set 3518 }; 3519 3520 int 3521 freebsd32_cpuset_getaffinity(struct thread *td, 3522 struct freebsd32_cpuset_getaffinity_args *uap) 3523 { 3524 3525 return (user_cpuset_getaffinity(td, uap->level, uap->which, 3526 PAIR32TO64(id_t,uap->id), uap->cpusetsize, uap->mask, 3527 &cpuset_copy32_cb)); 3528 } 3529 3530 int 3531 freebsd32_cpuset_setaffinity(struct thread *td, 3532 struct freebsd32_cpuset_setaffinity_args *uap) 3533 { 3534 3535 return (user_cpuset_setaffinity(td, uap->level, uap->which, 3536 PAIR32TO64(id_t,uap->id), uap->cpusetsize, uap->mask, 3537 &cpuset_copy32_cb)); 3538 } 3539 3540 int 3541 freebsd32_cpuset_getdomain(struct thread *td, 3542 struct freebsd32_cpuset_getdomain_args *uap) 3543 { 3544 3545 return (kern_cpuset_getdomain(td, uap->level, uap->which, 3546 PAIR32TO64(id_t,uap->id), uap->domainsetsize, uap->mask, uap->policy, 3547 &cpuset_copy32_cb)); 3548 } 3549 3550 int 3551 freebsd32_cpuset_setdomain(struct thread *td, 3552 struct freebsd32_cpuset_setdomain_args *uap) 3553 { 3554 3555 return (kern_cpuset_setdomain(td, uap->level, uap->which, 3556 PAIR32TO64(id_t,uap->id), uap->domainsetsize, uap->mask, uap->policy, 3557 &cpuset_copy32_cb)); 3558 } 3559 3560 int 3561 freebsd32_nmount(struct thread *td, 3562 struct freebsd32_nmount_args /* { 3563 struct iovec *iovp; 3564 unsigned int iovcnt; 3565 int flags; 3566 } */ *uap) 3567 { 3568 struct uio *auio; 3569 uint64_t flags; 3570 int error; 3571 3572 /* 3573 * Mount flags are now 64-bits. On 32-bit archtectures only 3574 * 32-bits are passed in, but from here on everything handles 3575 * 64-bit flags correctly. 3576 */ 3577 flags = uap->flags; 3578 3579 AUDIT_ARG_FFLAGS(flags); 3580 3581 /* 3582 * Filter out MNT_ROOTFS. We do not want clients of nmount() in 3583 * userspace to set this flag, but we must filter it out if we want 3584 * MNT_UPDATE on the root file system to work. 3585 * MNT_ROOTFS should only be set by the kernel when mounting its 3586 * root file system. 3587 */ 3588 flags &= ~MNT_ROOTFS; 3589 3590 /* 3591 * check that we have an even number of iovec's 3592 * and that we have at least two options. 3593 */ 3594 if ((uap->iovcnt & 1) || (uap->iovcnt < 4)) 3595 return (EINVAL); 3596 3597 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 3598 if (error) 3599 return (error); 3600 error = vfs_donmount(td, flags, auio); 3601 3602 freeuio(auio); 3603 return error; 3604 } 3605 3606 #if 0 3607 int 3608 freebsd32_xxx(struct thread *td, struct freebsd32_xxx_args *uap) 3609 { 3610 struct yyy32 *p32, s32; 3611 struct yyy *p = NULL, s; 3612 struct xxx_arg ap; 3613 int error; 3614 3615 if (uap->zzz) { 3616 error = copyin(uap->zzz, &s32, sizeof(s32)); 3617 if (error) 3618 return (error); 3619 /* translate in */ 3620 p = &s; 3621 } 3622 error = kern_xxx(td, p); 3623 if (error) 3624 return (error); 3625 if (uap->zzz) { 3626 /* translate out */ 3627 error = copyout(&s32, p32, sizeof(s32)); 3628 } 3629 return (error); 3630 } 3631 #endif 3632 3633 int 3634 syscall32_module_handler(struct module *mod, int what, void *arg) 3635 { 3636 3637 return (kern_syscall_module_handler(freebsd32_sysent, mod, what, arg)); 3638 } 3639 3640 int 3641 syscall32_helper_register(struct syscall_helper_data *sd, int flags) 3642 { 3643 3644 return (kern_syscall_helper_register(freebsd32_sysent, sd, flags)); 3645 } 3646 3647 int 3648 syscall32_helper_unregister(struct syscall_helper_data *sd) 3649 { 3650 3651 return (kern_syscall_helper_unregister(freebsd32_sysent, sd)); 3652 } 3653 3654 int 3655 freebsd32_copyout_strings(struct image_params *imgp, uintptr_t *stack_base) 3656 { 3657 struct sysentvec *sysent; 3658 int argc, envc, i; 3659 uint32_t *vectp; 3660 char *stringp; 3661 uintptr_t destp, ustringp; 3662 struct freebsd32_ps_strings *arginfo; 3663 char canary[sizeof(long) * 8]; 3664 int32_t pagesizes32[MAXPAGESIZES]; 3665 size_t execpath_len; 3666 int error, szsigcode; 3667 3668 sysent = imgp->sysent; 3669 3670 arginfo = (struct freebsd32_ps_strings *)PROC_PS_STRINGS(imgp->proc); 3671 imgp->ps_strings = arginfo; 3672 destp = (uintptr_t)arginfo; 3673 3674 /* 3675 * Install sigcode. 3676 */ 3677 if (!PROC_HAS_SHP(imgp->proc)) { 3678 szsigcode = *sysent->sv_szsigcode; 3679 destp -= szsigcode; 3680 destp = rounddown2(destp, sizeof(uint32_t)); 3681 error = copyout(sysent->sv_sigcode, (void *)destp, 3682 szsigcode); 3683 if (error != 0) 3684 return (error); 3685 } 3686 3687 /* 3688 * Copy the image path for the rtld. 3689 */ 3690 if (imgp->execpath != NULL && imgp->auxargs != NULL) { 3691 execpath_len = strlen(imgp->execpath) + 1; 3692 destp -= execpath_len; 3693 imgp->execpathp = (void *)destp; 3694 error = copyout(imgp->execpath, imgp->execpathp, execpath_len); 3695 if (error != 0) 3696 return (error); 3697 } 3698 3699 /* 3700 * Prepare the canary for SSP. 3701 */ 3702 arc4rand(canary, sizeof(canary), 0); 3703 destp -= sizeof(canary); 3704 imgp->canary = (void *)destp; 3705 error = copyout(canary, imgp->canary, sizeof(canary)); 3706 if (error != 0) 3707 return (error); 3708 imgp->canarylen = sizeof(canary); 3709 3710 /* 3711 * Prepare the pagesizes array. 3712 */ 3713 for (i = 0; i < MAXPAGESIZES; i++) 3714 pagesizes32[i] = (uint32_t)pagesizes[i]; 3715 destp -= sizeof(pagesizes32); 3716 destp = rounddown2(destp, sizeof(uint32_t)); 3717 imgp->pagesizes = (void *)destp; 3718 error = copyout(pagesizes32, imgp->pagesizes, sizeof(pagesizes32)); 3719 if (error != 0) 3720 return (error); 3721 imgp->pagesizeslen = sizeof(pagesizes32); 3722 3723 /* 3724 * Allocate room for the argument and environment strings. 3725 */ 3726 destp -= ARG_MAX - imgp->args->stringspace; 3727 destp = rounddown2(destp, sizeof(uint32_t)); 3728 ustringp = destp; 3729 3730 if (imgp->auxargs) { 3731 /* 3732 * Allocate room on the stack for the ELF auxargs 3733 * array. It has up to AT_COUNT entries. 3734 */ 3735 destp -= AT_COUNT * sizeof(Elf32_Auxinfo); 3736 destp = rounddown2(destp, sizeof(uint32_t)); 3737 } 3738 3739 vectp = (uint32_t *)destp; 3740 3741 /* 3742 * Allocate room for the argv[] and env vectors including the 3743 * terminating NULL pointers. 3744 */ 3745 vectp -= imgp->args->argc + 1 + imgp->args->envc + 1; 3746 3747 /* 3748 * vectp also becomes our initial stack base 3749 */ 3750 *stack_base = (uintptr_t)vectp; 3751 3752 stringp = imgp->args->begin_argv; 3753 argc = imgp->args->argc; 3754 envc = imgp->args->envc; 3755 /* 3756 * Copy out strings - arguments and environment. 3757 */ 3758 error = copyout(stringp, (void *)ustringp, 3759 ARG_MAX - imgp->args->stringspace); 3760 if (error != 0) 3761 return (error); 3762 3763 /* 3764 * Fill in "ps_strings" struct for ps, w, etc. 3765 */ 3766 imgp->argv = vectp; 3767 if (suword32(&arginfo->ps_argvstr, (uint32_t)(intptr_t)vectp) != 0 || 3768 suword32(&arginfo->ps_nargvstr, argc) != 0) 3769 return (EFAULT); 3770 3771 /* 3772 * Fill in argument portion of vector table. 3773 */ 3774 for (; argc > 0; --argc) { 3775 if (suword32(vectp++, ustringp) != 0) 3776 return (EFAULT); 3777 while (*stringp++ != 0) 3778 ustringp++; 3779 ustringp++; 3780 } 3781 3782 /* a null vector table pointer separates the argp's from the envp's */ 3783 if (suword32(vectp++, 0) != 0) 3784 return (EFAULT); 3785 3786 imgp->envv = vectp; 3787 if (suword32(&arginfo->ps_envstr, (uint32_t)(intptr_t)vectp) != 0 || 3788 suword32(&arginfo->ps_nenvstr, envc) != 0) 3789 return (EFAULT); 3790 3791 /* 3792 * Fill in environment portion of vector table. 3793 */ 3794 for (; envc > 0; --envc) { 3795 if (suword32(vectp++, ustringp) != 0) 3796 return (EFAULT); 3797 while (*stringp++ != 0) 3798 ustringp++; 3799 ustringp++; 3800 } 3801 3802 /* end of vector table is a null pointer */ 3803 if (suword32(vectp, 0) != 0) 3804 return (EFAULT); 3805 3806 if (imgp->auxargs) { 3807 vectp++; 3808 error = imgp->sysent->sv_copyout_auxargs(imgp, 3809 (uintptr_t)vectp); 3810 if (error != 0) 3811 return (error); 3812 } 3813 3814 return (0); 3815 } 3816 3817 int 3818 freebsd32_kldstat(struct thread *td, struct freebsd32_kldstat_args *uap) 3819 { 3820 struct kld_file_stat *stat; 3821 struct kld_file_stat32 *stat32; 3822 int error, version; 3823 3824 if ((error = copyin(&uap->stat->version, &version, sizeof(version))) 3825 != 0) 3826 return (error); 3827 if (version != sizeof(struct kld_file_stat_1_32) && 3828 version != sizeof(struct kld_file_stat32)) 3829 return (EINVAL); 3830 3831 stat = malloc(sizeof(*stat), M_TEMP, M_WAITOK | M_ZERO); 3832 stat32 = malloc(sizeof(*stat32), M_TEMP, M_WAITOK | M_ZERO); 3833 error = kern_kldstat(td, uap->fileid, stat); 3834 if (error == 0) { 3835 bcopy(&stat->name[0], &stat32->name[0], sizeof(stat->name)); 3836 CP(*stat, *stat32, refs); 3837 CP(*stat, *stat32, id); 3838 PTROUT_CP(*stat, *stat32, address); 3839 CP(*stat, *stat32, size); 3840 bcopy(&stat->pathname[0], &stat32->pathname[0], 3841 sizeof(stat->pathname)); 3842 stat32->version = version; 3843 error = copyout(stat32, uap->stat, version); 3844 } 3845 free(stat, M_TEMP); 3846 free(stat32, M_TEMP); 3847 return (error); 3848 } 3849 3850 int 3851 freebsd32_posix_fallocate(struct thread *td, 3852 struct freebsd32_posix_fallocate_args *uap) 3853 { 3854 int error; 3855 3856 error = kern_posix_fallocate(td, uap->fd, 3857 PAIR32TO64(off_t, uap->offset), PAIR32TO64(off_t, uap->len)); 3858 return (kern_posix_error(td, error)); 3859 } 3860 3861 int 3862 freebsd32_posix_fadvise(struct thread *td, 3863 struct freebsd32_posix_fadvise_args *uap) 3864 { 3865 int error; 3866 3867 error = kern_posix_fadvise(td, uap->fd, PAIR32TO64(off_t, uap->offset), 3868 PAIR32TO64(off_t, uap->len), uap->advice); 3869 return (kern_posix_error(td, error)); 3870 } 3871 3872 int 3873 convert_sigevent32(struct sigevent32 *sig32, struct sigevent *sig) 3874 { 3875 3876 CP(*sig32, *sig, sigev_notify); 3877 switch (sig->sigev_notify) { 3878 case SIGEV_NONE: 3879 break; 3880 case SIGEV_THREAD_ID: 3881 CP(*sig32, *sig, sigev_notify_thread_id); 3882 /* FALLTHROUGH */ 3883 case SIGEV_SIGNAL: 3884 CP(*sig32, *sig, sigev_signo); 3885 PTRIN_CP(*sig32, *sig, sigev_value.sival_ptr); 3886 break; 3887 case SIGEV_KEVENT: 3888 CP(*sig32, *sig, sigev_notify_kqueue); 3889 CP(*sig32, *sig, sigev_notify_kevent_flags); 3890 PTRIN_CP(*sig32, *sig, sigev_value.sival_ptr); 3891 break; 3892 default: 3893 return (EINVAL); 3894 } 3895 return (0); 3896 } 3897 3898 int 3899 freebsd32_procctl(struct thread *td, struct freebsd32_procctl_args *uap) 3900 { 3901 void *data; 3902 union { 3903 struct procctl_reaper_status rs; 3904 struct procctl_reaper_pids rp; 3905 struct procctl_reaper_kill rk; 3906 } x; 3907 union { 3908 struct procctl_reaper_pids32 rp; 3909 } x32; 3910 int error, error1, flags, signum; 3911 3912 if (uap->com >= PROC_PROCCTL_MD_MIN) 3913 return (cpu_procctl(td, uap->idtype, PAIR32TO64(id_t, uap->id), 3914 uap->com, PTRIN(uap->data))); 3915 3916 switch (uap->com) { 3917 case PROC_ASLR_CTL: 3918 case PROC_PROTMAX_CTL: 3919 case PROC_SPROTECT: 3920 case PROC_STACKGAP_CTL: 3921 case PROC_TRACE_CTL: 3922 case PROC_TRAPCAP_CTL: 3923 case PROC_NO_NEW_PRIVS_CTL: 3924 case PROC_WXMAP_CTL: 3925 case PROC_LOGSIGEXIT_CTL: 3926 error = copyin(PTRIN(uap->data), &flags, sizeof(flags)); 3927 if (error != 0) 3928 return (error); 3929 data = &flags; 3930 break; 3931 case PROC_REAP_ACQUIRE: 3932 case PROC_REAP_RELEASE: 3933 if (uap->data != NULL) 3934 return (EINVAL); 3935 data = NULL; 3936 break; 3937 case PROC_REAP_STATUS: 3938 data = &x.rs; 3939 break; 3940 case PROC_REAP_GETPIDS: 3941 error = copyin(uap->data, &x32.rp, sizeof(x32.rp)); 3942 if (error != 0) 3943 return (error); 3944 CP(x32.rp, x.rp, rp_count); 3945 PTRIN_CP(x32.rp, x.rp, rp_pids); 3946 data = &x.rp; 3947 break; 3948 case PROC_REAP_KILL: 3949 error = copyin(uap->data, &x.rk, sizeof(x.rk)); 3950 if (error != 0) 3951 return (error); 3952 data = &x.rk; 3953 break; 3954 case PROC_ASLR_STATUS: 3955 case PROC_PROTMAX_STATUS: 3956 case PROC_STACKGAP_STATUS: 3957 case PROC_TRACE_STATUS: 3958 case PROC_TRAPCAP_STATUS: 3959 case PROC_NO_NEW_PRIVS_STATUS: 3960 case PROC_WXMAP_STATUS: 3961 case PROC_LOGSIGEXIT_STATUS: 3962 data = &flags; 3963 break; 3964 case PROC_PDEATHSIG_CTL: 3965 error = copyin(uap->data, &signum, sizeof(signum)); 3966 if (error != 0) 3967 return (error); 3968 data = &signum; 3969 break; 3970 case PROC_PDEATHSIG_STATUS: 3971 data = &signum; 3972 break; 3973 default: 3974 return (EINVAL); 3975 } 3976 error = kern_procctl(td, uap->idtype, PAIR32TO64(id_t, uap->id), 3977 uap->com, data); 3978 switch (uap->com) { 3979 case PROC_REAP_STATUS: 3980 if (error == 0) 3981 error = copyout(&x.rs, uap->data, sizeof(x.rs)); 3982 break; 3983 case PROC_REAP_KILL: 3984 error1 = copyout(&x.rk, uap->data, sizeof(x.rk)); 3985 if (error == 0) 3986 error = error1; 3987 break; 3988 case PROC_ASLR_STATUS: 3989 case PROC_PROTMAX_STATUS: 3990 case PROC_STACKGAP_STATUS: 3991 case PROC_TRACE_STATUS: 3992 case PROC_TRAPCAP_STATUS: 3993 case PROC_NO_NEW_PRIVS_STATUS: 3994 case PROC_WXMAP_STATUS: 3995 case PROC_LOGSIGEXIT_STATUS: 3996 if (error == 0) 3997 error = copyout(&flags, uap->data, sizeof(flags)); 3998 break; 3999 case PROC_PDEATHSIG_STATUS: 4000 if (error == 0) 4001 error = copyout(&signum, uap->data, sizeof(signum)); 4002 break; 4003 } 4004 return (error); 4005 } 4006 4007 int 4008 freebsd32_fcntl(struct thread *td, struct freebsd32_fcntl_args *uap) 4009 { 4010 intptr_t tmp; 4011 4012 switch (uap->cmd) { 4013 /* 4014 * Do unsigned conversion for arg when operation 4015 * interprets it as flags or pointer. 4016 */ 4017 case F_SETLK_REMOTE: 4018 case F_SETLKW: 4019 case F_SETLK: 4020 case F_GETLK: 4021 case F_SETFD: 4022 case F_SETFL: 4023 case F_OGETLK: 4024 case F_OSETLK: 4025 case F_OSETLKW: 4026 case F_KINFO: 4027 tmp = (unsigned int)(uap->arg); 4028 break; 4029 default: 4030 tmp = uap->arg; 4031 break; 4032 } 4033 return (kern_fcntl_freebsd(td, uap->fd, uap->cmd, tmp)); 4034 } 4035 4036 int 4037 freebsd32_ppoll(struct thread *td, struct freebsd32_ppoll_args *uap) 4038 { 4039 struct timespec32 ts32; 4040 struct timespec ts, *tsp; 4041 sigset_t set, *ssp; 4042 int error; 4043 4044 if (uap->ts != NULL) { 4045 error = copyin(uap->ts, &ts32, sizeof(ts32)); 4046 if (error != 0) 4047 return (error); 4048 CP(ts32, ts, tv_sec); 4049 CP(ts32, ts, tv_nsec); 4050 tsp = &ts; 4051 } else 4052 tsp = NULL; 4053 if (uap->set != NULL) { 4054 error = copyin(uap->set, &set, sizeof(set)); 4055 if (error != 0) 4056 return (error); 4057 ssp = &set; 4058 } else 4059 ssp = NULL; 4060 4061 return (kern_poll(td, uap->fds, uap->nfds, tsp, ssp)); 4062 } 4063 4064 int 4065 freebsd32_sched_rr_get_interval(struct thread *td, 4066 struct freebsd32_sched_rr_get_interval_args *uap) 4067 { 4068 struct timespec ts; 4069 struct timespec32 ts32; 4070 int error; 4071 4072 error = kern_sched_rr_get_interval(td, uap->pid, &ts); 4073 if (error == 0) { 4074 CP(ts, ts32, tv_sec); 4075 CP(ts, ts32, tv_nsec); 4076 error = copyout(&ts32, uap->interval, sizeof(ts32)); 4077 } 4078 return (error); 4079 } 4080 4081 static void 4082 timex_to_32(struct timex32 *dst, struct timex *src) 4083 { 4084 CP(*src, *dst, modes); 4085 CP(*src, *dst, offset); 4086 CP(*src, *dst, freq); 4087 CP(*src, *dst, maxerror); 4088 CP(*src, *dst, esterror); 4089 CP(*src, *dst, status); 4090 CP(*src, *dst, constant); 4091 CP(*src, *dst, precision); 4092 CP(*src, *dst, tolerance); 4093 CP(*src, *dst, ppsfreq); 4094 CP(*src, *dst, jitter); 4095 CP(*src, *dst, shift); 4096 CP(*src, *dst, stabil); 4097 CP(*src, *dst, jitcnt); 4098 CP(*src, *dst, calcnt); 4099 CP(*src, *dst, errcnt); 4100 CP(*src, *dst, stbcnt); 4101 } 4102 4103 static void 4104 timex_from_32(struct timex *dst, struct timex32 *src) 4105 { 4106 CP(*src, *dst, modes); 4107 CP(*src, *dst, offset); 4108 CP(*src, *dst, freq); 4109 CP(*src, *dst, maxerror); 4110 CP(*src, *dst, esterror); 4111 CP(*src, *dst, status); 4112 CP(*src, *dst, constant); 4113 CP(*src, *dst, precision); 4114 CP(*src, *dst, tolerance); 4115 CP(*src, *dst, ppsfreq); 4116 CP(*src, *dst, jitter); 4117 CP(*src, *dst, shift); 4118 CP(*src, *dst, stabil); 4119 CP(*src, *dst, jitcnt); 4120 CP(*src, *dst, calcnt); 4121 CP(*src, *dst, errcnt); 4122 CP(*src, *dst, stbcnt); 4123 } 4124 4125 int 4126 freebsd32_ntp_adjtime(struct thread *td, struct freebsd32_ntp_adjtime_args *uap) 4127 { 4128 struct timex tx; 4129 struct timex32 tx32; 4130 int error, retval; 4131 4132 error = copyin(uap->tp, &tx32, sizeof(tx32)); 4133 if (error == 0) { 4134 timex_from_32(&tx, &tx32); 4135 error = kern_ntp_adjtime(td, &tx, &retval); 4136 if (error == 0) { 4137 timex_to_32(&tx32, &tx); 4138 error = copyout(&tx32, uap->tp, sizeof(tx32)); 4139 if (error == 0) 4140 td->td_retval[0] = retval; 4141 } 4142 } 4143 return (error); 4144 } 4145 4146 #ifdef FFCLOCK 4147 extern struct mtx ffclock_mtx; 4148 extern struct ffclock_estimate ffclock_estimate; 4149 extern int8_t ffclock_updated; 4150 4151 int 4152 freebsd32_ffclock_setestimate(struct thread *td, 4153 struct freebsd32_ffclock_setestimate_args *uap) 4154 { 4155 struct ffclock_estimate cest; 4156 struct ffclock_estimate32 cest32; 4157 int error; 4158 4159 /* Reuse of PRIV_CLOCK_SETTIME. */ 4160 if ((error = priv_check(td, PRIV_CLOCK_SETTIME)) != 0) 4161 return (error); 4162 4163 if ((error = copyin(uap->cest, &cest32, 4164 sizeof(struct ffclock_estimate32))) != 0) 4165 return (error); 4166 4167 CP(cest.update_time, cest32.update_time, sec); 4168 memcpy(&cest.update_time.frac, &cest32.update_time.frac, sizeof(uint64_t)); 4169 CP(cest, cest32, update_ffcount); 4170 CP(cest, cest32, leapsec_next); 4171 CP(cest, cest32, period); 4172 CP(cest, cest32, errb_abs); 4173 CP(cest, cest32, errb_rate); 4174 CP(cest, cest32, status); 4175 CP(cest, cest32, leapsec_total); 4176 CP(cest, cest32, leapsec); 4177 4178 mtx_lock(&ffclock_mtx); 4179 memcpy(&ffclock_estimate, &cest, sizeof(struct ffclock_estimate)); 4180 ffclock_updated++; 4181 mtx_unlock(&ffclock_mtx); 4182 return (error); 4183 } 4184 4185 int 4186 freebsd32_ffclock_getestimate(struct thread *td, 4187 struct freebsd32_ffclock_getestimate_args *uap) 4188 { 4189 struct ffclock_estimate cest; 4190 struct ffclock_estimate32 cest32; 4191 int error; 4192 4193 mtx_lock(&ffclock_mtx); 4194 memcpy(&cest, &ffclock_estimate, sizeof(struct ffclock_estimate)); 4195 mtx_unlock(&ffclock_mtx); 4196 4197 CP(cest32.update_time, cest.update_time, sec); 4198 memcpy(&cest32.update_time.frac, &cest.update_time.frac, sizeof(uint64_t)); 4199 CP(cest32, cest, update_ffcount); 4200 CP(cest32, cest, leapsec_next); 4201 CP(cest32, cest, period); 4202 CP(cest32, cest, errb_abs); 4203 CP(cest32, cest, errb_rate); 4204 CP(cest32, cest, status); 4205 CP(cest32, cest, leapsec_total); 4206 CP(cest32, cest, leapsec); 4207 4208 error = copyout(&cest32, uap->cest, sizeof(struct ffclock_estimate32)); 4209 return (error); 4210 } 4211 #else /* !FFCLOCK */ 4212 int 4213 freebsd32_ffclock_setestimate(struct thread *td, 4214 struct freebsd32_ffclock_setestimate_args *uap) 4215 { 4216 return (ENOSYS); 4217 } 4218 4219 int 4220 freebsd32_ffclock_getestimate(struct thread *td, 4221 struct freebsd32_ffclock_getestimate_args *uap) 4222 { 4223 return (ENOSYS); 4224 } 4225 #endif /* FFCLOCK */ 4226 4227 #ifdef COMPAT_43 4228 int 4229 ofreebsd32_sethostid(struct thread *td, struct ofreebsd32_sethostid_args *uap) 4230 { 4231 int name[] = { CTL_KERN, KERN_HOSTID }; 4232 long hostid; 4233 4234 hostid = uap->hostid; 4235 return (kernel_sysctl(td, name, nitems(name), NULL, NULL, &hostid, 4236 sizeof(hostid), NULL, 0)); 4237 } 4238 #endif 4239 4240 int 4241 freebsd32_setcred(struct thread *td, struct freebsd32_setcred_args *uap) 4242 { 4243 /* Last argument is 'is_32bit'. */ 4244 return (user_setcred(td, uap->flags, uap->wcred, uap->size, true)); 4245 } 4246