xref: /freebsd/sys/compat/freebsd32/freebsd32_misc.c (revision b4a58fbf640409a1e507d9f7b411c83a3f83a2f3)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2002 Doug Rabson
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include "opt_inet.h"
33 #include "opt_inet6.h"
34 #include "opt_ktrace.h"
35 
36 #define __ELF_WORD_SIZE 32
37 
38 #ifdef COMPAT_FREEBSD11
39 #define	_WANT_FREEBSD11_KEVENT
40 #endif
41 
42 #include <sys/param.h>
43 #include <sys/bus.h>
44 #include <sys/capsicum.h>
45 #include <sys/clock.h>
46 #include <sys/exec.h>
47 #include <sys/fcntl.h>
48 #include <sys/filedesc.h>
49 #include <sys/imgact.h>
50 #include <sys/jail.h>
51 #include <sys/kernel.h>
52 #include <sys/limits.h>
53 #include <sys/linker.h>
54 #include <sys/lock.h>
55 #include <sys/malloc.h>
56 #include <sys/file.h>		/* Must come after sys/malloc.h */
57 #include <sys/imgact.h>
58 #include <sys/mbuf.h>
59 #include <sys/mman.h>
60 #include <sys/module.h>
61 #include <sys/mount.h>
62 #include <sys/mutex.h>
63 #include <sys/namei.h>
64 #include <sys/proc.h>
65 #include <sys/procctl.h>
66 #include <sys/ptrace.h>
67 #include <sys/reboot.h>
68 #include <sys/resource.h>
69 #include <sys/resourcevar.h>
70 #include <sys/selinfo.h>
71 #include <sys/eventvar.h>	/* Must come after sys/selinfo.h */
72 #include <sys/pipe.h>		/* Must come after sys/selinfo.h */
73 #include <sys/signal.h>
74 #include <sys/signalvar.h>
75 #include <sys/socket.h>
76 #include <sys/socketvar.h>
77 #include <sys/stat.h>
78 #include <sys/syscall.h>
79 #include <sys/syscallsubr.h>
80 #include <sys/sysctl.h>
81 #include <sys/sysent.h>
82 #include <sys/sysproto.h>
83 #include <sys/systm.h>
84 #include <sys/thr.h>
85 #include <sys/timex.h>
86 #include <sys/unistd.h>
87 #include <sys/ucontext.h>
88 #include <sys/vnode.h>
89 #include <sys/wait.h>
90 #include <sys/ipc.h>
91 #include <sys/msg.h>
92 #include <sys/sem.h>
93 #include <sys/shm.h>
94 #ifdef KTRACE
95 #include <sys/ktrace.h>
96 #endif
97 
98 #ifdef INET
99 #include <netinet/in.h>
100 #endif
101 
102 #include <vm/vm.h>
103 #include <vm/vm_param.h>
104 #include <vm/pmap.h>
105 #include <vm/vm_map.h>
106 #include <vm/vm_object.h>
107 #include <vm/vm_extern.h>
108 
109 #include <machine/cpu.h>
110 #include <machine/elf.h>
111 #ifdef __amd64__
112 #include <machine/md_var.h>
113 #endif
114 
115 #include <security/audit/audit.h>
116 
117 #include <compat/freebsd32/freebsd32_util.h>
118 #include <compat/freebsd32/freebsd32.h>
119 #include <compat/freebsd32/freebsd32_ipc.h>
120 #include <compat/freebsd32/freebsd32_misc.h>
121 #include <compat/freebsd32/freebsd32_signal.h>
122 #include <compat/freebsd32/freebsd32_proto.h>
123 
124 FEATURE(compat_freebsd_32bit, "Compatible with 32-bit FreeBSD");
125 
126 struct ptrace_io_desc32 {
127 	int		piod_op;
128 	uint32_t	piod_offs;
129 	uint32_t	piod_addr;
130 	uint32_t	piod_len;
131 };
132 
133 struct ptrace_sc_ret32 {
134 	uint32_t	sr_retval[2];
135 	int		sr_error;
136 };
137 
138 struct ptrace_vm_entry32 {
139 	int		pve_entry;
140 	int		pve_timestamp;
141 	uint32_t	pve_start;
142 	uint32_t	pve_end;
143 	uint32_t	pve_offset;
144 	u_int		pve_prot;
145 	u_int		pve_pathlen;
146 	int32_t		pve_fileid;
147 	u_int		pve_fsid;
148 	uint32_t	pve_path;
149 };
150 
151 #ifdef __amd64__
152 CTASSERT(sizeof(struct timeval32) == 8);
153 CTASSERT(sizeof(struct timespec32) == 8);
154 CTASSERT(sizeof(struct itimerval32) == 16);
155 CTASSERT(sizeof(struct bintime32) == 12);
156 #endif
157 CTASSERT(sizeof(struct statfs32) == 256);
158 #ifdef __amd64__
159 CTASSERT(sizeof(struct rusage32) == 72);
160 #endif
161 CTASSERT(sizeof(struct sigaltstack32) == 12);
162 #ifdef __amd64__
163 CTASSERT(sizeof(struct kevent32) == 56);
164 #else
165 CTASSERT(sizeof(struct kevent32) == 64);
166 #endif
167 CTASSERT(sizeof(struct iovec32) == 8);
168 CTASSERT(sizeof(struct msghdr32) == 28);
169 #ifdef __amd64__
170 CTASSERT(sizeof(struct stat32) == 208);
171 CTASSERT(sizeof(struct freebsd11_stat32) == 96);
172 #endif
173 CTASSERT(sizeof(struct sigaction32) == 24);
174 
175 static int freebsd32_kevent_copyout(void *arg, struct kevent *kevp, int count);
176 static int freebsd32_kevent_copyin(void *arg, struct kevent *kevp, int count);
177 static int freebsd32_user_clock_nanosleep(struct thread *td, clockid_t clock_id,
178     int flags, const struct timespec32 *ua_rqtp, struct timespec32 *ua_rmtp);
179 
180 void
181 freebsd32_rusage_out(const struct rusage *s, struct rusage32 *s32)
182 {
183 
184 	TV_CP(*s, *s32, ru_utime);
185 	TV_CP(*s, *s32, ru_stime);
186 	CP(*s, *s32, ru_maxrss);
187 	CP(*s, *s32, ru_ixrss);
188 	CP(*s, *s32, ru_idrss);
189 	CP(*s, *s32, ru_isrss);
190 	CP(*s, *s32, ru_minflt);
191 	CP(*s, *s32, ru_majflt);
192 	CP(*s, *s32, ru_nswap);
193 	CP(*s, *s32, ru_inblock);
194 	CP(*s, *s32, ru_oublock);
195 	CP(*s, *s32, ru_msgsnd);
196 	CP(*s, *s32, ru_msgrcv);
197 	CP(*s, *s32, ru_nsignals);
198 	CP(*s, *s32, ru_nvcsw);
199 	CP(*s, *s32, ru_nivcsw);
200 }
201 
202 int
203 freebsd32_wait4(struct thread *td, struct freebsd32_wait4_args *uap)
204 {
205 	int error, status;
206 	struct rusage32 ru32;
207 	struct rusage ru, *rup;
208 
209 	if (uap->rusage != NULL)
210 		rup = &ru;
211 	else
212 		rup = NULL;
213 	error = kern_wait(td, uap->pid, &status, uap->options, rup);
214 	if (error)
215 		return (error);
216 	if (uap->status != NULL)
217 		error = copyout(&status, uap->status, sizeof(status));
218 	if (uap->rusage != NULL && error == 0) {
219 		freebsd32_rusage_out(&ru, &ru32);
220 		error = copyout(&ru32, uap->rusage, sizeof(ru32));
221 	}
222 	return (error);
223 }
224 
225 int
226 freebsd32_wait6(struct thread *td, struct freebsd32_wait6_args *uap)
227 {
228 	struct wrusage32 wru32;
229 	struct __wrusage wru, *wrup;
230 	struct siginfo32 si32;
231 	struct __siginfo si, *sip;
232 	int error, status;
233 
234 	if (uap->wrusage != NULL)
235 		wrup = &wru;
236 	else
237 		wrup = NULL;
238 	if (uap->info != NULL) {
239 		sip = &si;
240 		bzero(sip, sizeof(*sip));
241 	} else
242 		sip = NULL;
243 	error = kern_wait6(td, uap->idtype, PAIR32TO64(id_t, uap->id),
244 	    &status, uap->options, wrup, sip);
245 	if (error != 0)
246 		return (error);
247 	if (uap->status != NULL)
248 		error = copyout(&status, uap->status, sizeof(status));
249 	if (uap->wrusage != NULL && error == 0) {
250 		freebsd32_rusage_out(&wru.wru_self, &wru32.wru_self);
251 		freebsd32_rusage_out(&wru.wru_children, &wru32.wru_children);
252 		error = copyout(&wru32, uap->wrusage, sizeof(wru32));
253 	}
254 	if (uap->info != NULL && error == 0) {
255 		siginfo_to_siginfo32 (&si, &si32);
256 		error = copyout(&si32, uap->info, sizeof(si32));
257 	}
258 	return (error);
259 }
260 
261 #ifdef COMPAT_FREEBSD4
262 static void
263 copy_statfs(struct statfs *in, struct statfs32 *out)
264 {
265 
266 	statfs_scale_blocks(in, INT32_MAX);
267 	bzero(out, sizeof(*out));
268 	CP(*in, *out, f_bsize);
269 	out->f_iosize = MIN(in->f_iosize, INT32_MAX);
270 	CP(*in, *out, f_blocks);
271 	CP(*in, *out, f_bfree);
272 	CP(*in, *out, f_bavail);
273 	out->f_files = MIN(in->f_files, INT32_MAX);
274 	out->f_ffree = MIN(in->f_ffree, INT32_MAX);
275 	CP(*in, *out, f_fsid);
276 	CP(*in, *out, f_owner);
277 	CP(*in, *out, f_type);
278 	CP(*in, *out, f_flags);
279 	out->f_syncwrites = MIN(in->f_syncwrites, INT32_MAX);
280 	out->f_asyncwrites = MIN(in->f_asyncwrites, INT32_MAX);
281 	strlcpy(out->f_fstypename,
282 	      in->f_fstypename, MFSNAMELEN);
283 	strlcpy(out->f_mntonname,
284 	      in->f_mntonname, min(MNAMELEN, FREEBSD4_MNAMELEN));
285 	out->f_syncreads = MIN(in->f_syncreads, INT32_MAX);
286 	out->f_asyncreads = MIN(in->f_asyncreads, INT32_MAX);
287 	strlcpy(out->f_mntfromname,
288 	      in->f_mntfromname, min(MNAMELEN, FREEBSD4_MNAMELEN));
289 }
290 #endif
291 
292 #ifdef COMPAT_FREEBSD4
293 int
294 freebsd4_freebsd32_getfsstat(struct thread *td,
295     struct freebsd4_freebsd32_getfsstat_args *uap)
296 {
297 	struct statfs *buf, *sp;
298 	struct statfs32 stat32;
299 	size_t count, size, copycount;
300 	int error;
301 
302 	count = uap->bufsize / sizeof(struct statfs32);
303 	size = count * sizeof(struct statfs);
304 	error = kern_getfsstat(td, &buf, size, &count, UIO_SYSSPACE, uap->mode);
305 	if (size > 0) {
306 		sp = buf;
307 		copycount = count;
308 		while (copycount > 0 && error == 0) {
309 			copy_statfs(sp, &stat32);
310 			error = copyout(&stat32, uap->buf, sizeof(stat32));
311 			sp++;
312 			uap->buf++;
313 			copycount--;
314 		}
315 		free(buf, M_STATFS);
316 	}
317 	if (error == 0)
318 		td->td_retval[0] = count;
319 	return (error);
320 }
321 #endif
322 
323 #ifdef COMPAT_FREEBSD10
324 int
325 freebsd10_freebsd32_pipe(struct thread *td,
326     struct freebsd10_freebsd32_pipe_args *uap) {
327 	return (freebsd10_pipe(td, (struct freebsd10_pipe_args*)uap));
328 }
329 #endif
330 
331 int
332 freebsd32_sigaltstack(struct thread *td,
333 		      struct freebsd32_sigaltstack_args *uap)
334 {
335 	struct sigaltstack32 s32;
336 	struct sigaltstack ss, oss, *ssp;
337 	int error;
338 
339 	if (uap->ss != NULL) {
340 		error = copyin(uap->ss, &s32, sizeof(s32));
341 		if (error)
342 			return (error);
343 		PTRIN_CP(s32, ss, ss_sp);
344 		CP(s32, ss, ss_size);
345 		CP(s32, ss, ss_flags);
346 		ssp = &ss;
347 	} else
348 		ssp = NULL;
349 	error = kern_sigaltstack(td, ssp, &oss);
350 	if (error == 0 && uap->oss != NULL) {
351 		PTROUT_CP(oss, s32, ss_sp);
352 		CP(oss, s32, ss_size);
353 		CP(oss, s32, ss_flags);
354 		error = copyout(&s32, uap->oss, sizeof(s32));
355 	}
356 	return (error);
357 }
358 
359 /*
360  * Custom version of exec_copyin_args() so that we can translate
361  * the pointers.
362  */
363 int
364 freebsd32_exec_copyin_args(struct image_args *args, const char *fname,
365     enum uio_seg segflg, u_int32_t *argv, u_int32_t *envv)
366 {
367 	char *argp, *envp;
368 	u_int32_t *p32, arg;
369 	int error;
370 
371 	bzero(args, sizeof(*args));
372 	if (argv == NULL)
373 		return (EFAULT);
374 
375 	/*
376 	 * Allocate demand-paged memory for the file name, argument, and
377 	 * environment strings.
378 	 */
379 	error = exec_alloc_args(args);
380 	if (error != 0)
381 		return (error);
382 
383 	/*
384 	 * Copy the file name.
385 	 */
386 	error = exec_args_add_fname(args, fname, segflg);
387 	if (error != 0)
388 		goto err_exit;
389 
390 	/*
391 	 * extract arguments first
392 	 */
393 	p32 = argv;
394 	for (;;) {
395 		error = copyin(p32++, &arg, sizeof(arg));
396 		if (error)
397 			goto err_exit;
398 		if (arg == 0)
399 			break;
400 		argp = PTRIN(arg);
401 		error = exec_args_add_arg(args, argp, UIO_USERSPACE);
402 		if (error != 0)
403 			goto err_exit;
404 	}
405 
406 	/*
407 	 * extract environment strings
408 	 */
409 	if (envv) {
410 		p32 = envv;
411 		for (;;) {
412 			error = copyin(p32++, &arg, sizeof(arg));
413 			if (error)
414 				goto err_exit;
415 			if (arg == 0)
416 				break;
417 			envp = PTRIN(arg);
418 			error = exec_args_add_env(args, envp, UIO_USERSPACE);
419 			if (error != 0)
420 				goto err_exit;
421 		}
422 	}
423 
424 	return (0);
425 
426 err_exit:
427 	exec_free_args(args);
428 	return (error);
429 }
430 
431 int
432 freebsd32_execve(struct thread *td, struct freebsd32_execve_args *uap)
433 {
434 	struct image_args eargs;
435 	struct vmspace *oldvmspace;
436 	int error;
437 
438 	error = pre_execve(td, &oldvmspace);
439 	if (error != 0)
440 		return (error);
441 	error = freebsd32_exec_copyin_args(&eargs, uap->fname, UIO_USERSPACE,
442 	    uap->argv, uap->envv);
443 	if (error == 0)
444 		error = kern_execve(td, &eargs, NULL, oldvmspace);
445 	post_execve(td, error, oldvmspace);
446 	AUDIT_SYSCALL_EXIT(error == EJUSTRETURN ? 0 : error, td);
447 	return (error);
448 }
449 
450 int
451 freebsd32_fexecve(struct thread *td, struct freebsd32_fexecve_args *uap)
452 {
453 	struct image_args eargs;
454 	struct vmspace *oldvmspace;
455 	int error;
456 
457 	error = pre_execve(td, &oldvmspace);
458 	if (error != 0)
459 		return (error);
460 	error = freebsd32_exec_copyin_args(&eargs, NULL, UIO_SYSSPACE,
461 	    uap->argv, uap->envv);
462 	if (error == 0) {
463 		eargs.fd = uap->fd;
464 		error = kern_execve(td, &eargs, NULL, oldvmspace);
465 	}
466 	post_execve(td, error, oldvmspace);
467 	AUDIT_SYSCALL_EXIT(error == EJUSTRETURN ? 0 : error, td);
468 	return (error);
469 }
470 
471 int
472 freebsd32_mknodat(struct thread *td, struct freebsd32_mknodat_args *uap)
473 {
474 
475 	return (kern_mknodat(td, uap->fd, uap->path, UIO_USERSPACE,
476 	    uap->mode, PAIR32TO64(dev_t, uap->dev)));
477 }
478 
479 int
480 freebsd32_mprotect(struct thread *td, struct freebsd32_mprotect_args *uap)
481 {
482 	int prot;
483 
484 	prot = uap->prot;
485 #if defined(__amd64__)
486 	if (i386_read_exec && (prot & PROT_READ) != 0)
487 		prot |= PROT_EXEC;
488 #endif
489 	return (kern_mprotect(td, (uintptr_t)PTRIN(uap->addr), uap->len,
490 	    prot));
491 }
492 
493 int
494 freebsd32_mmap(struct thread *td, struct freebsd32_mmap_args *uap)
495 {
496 	int prot;
497 
498 	prot = uap->prot;
499 #if defined(__amd64__)
500 	if (i386_read_exec && (prot & PROT_READ))
501 		prot |= PROT_EXEC;
502 #endif
503 
504 	return (kern_mmap(td, &(struct mmap_req){
505 		.mr_hint = (uintptr_t)uap->addr,
506 		.mr_len = uap->len,
507 		.mr_prot = prot,
508 		.mr_flags = uap->flags,
509 		.mr_fd = uap->fd,
510 		.mr_pos = PAIR32TO64(off_t, uap->pos),
511 	    }));
512 }
513 
514 #ifdef COMPAT_FREEBSD6
515 int
516 freebsd6_freebsd32_mmap(struct thread *td,
517     struct freebsd6_freebsd32_mmap_args *uap)
518 {
519 	int prot;
520 
521 	prot = uap->prot;
522 #if defined(__amd64__)
523 	if (i386_read_exec && (prot & PROT_READ))
524 		prot |= PROT_EXEC;
525 #endif
526 
527 	return (kern_mmap(td, &(struct mmap_req){
528 		.mr_hint = (uintptr_t)uap->addr,
529 		.mr_len = uap->len,
530 		.mr_prot = prot,
531 		.mr_flags = uap->flags,
532 		.mr_fd = uap->fd,
533 		.mr_pos = PAIR32TO64(off_t, uap->pos),
534 	    }));
535 }
536 #endif
537 
538 int
539 freebsd32_setitimer(struct thread *td, struct freebsd32_setitimer_args *uap)
540 {
541 	struct itimerval itv, oitv, *itvp;
542 	struct itimerval32 i32;
543 	int error;
544 
545 	if (uap->itv != NULL) {
546 		error = copyin(uap->itv, &i32, sizeof(i32));
547 		if (error)
548 			return (error);
549 		TV_CP(i32, itv, it_interval);
550 		TV_CP(i32, itv, it_value);
551 		itvp = &itv;
552 	} else
553 		itvp = NULL;
554 	error = kern_setitimer(td, uap->which, itvp, &oitv);
555 	if (error || uap->oitv == NULL)
556 		return (error);
557 	TV_CP(oitv, i32, it_interval);
558 	TV_CP(oitv, i32, it_value);
559 	return (copyout(&i32, uap->oitv, sizeof(i32)));
560 }
561 
562 int
563 freebsd32_getitimer(struct thread *td, struct freebsd32_getitimer_args *uap)
564 {
565 	struct itimerval itv;
566 	struct itimerval32 i32;
567 	int error;
568 
569 	error = kern_getitimer(td, uap->which, &itv);
570 	if (error || uap->itv == NULL)
571 		return (error);
572 	TV_CP(itv, i32, it_interval);
573 	TV_CP(itv, i32, it_value);
574 	return (copyout(&i32, uap->itv, sizeof(i32)));
575 }
576 
577 int
578 freebsd32_select(struct thread *td, struct freebsd32_select_args *uap)
579 {
580 	struct timeval32 tv32;
581 	struct timeval tv, *tvp;
582 	int error;
583 
584 	if (uap->tv != NULL) {
585 		error = copyin(uap->tv, &tv32, sizeof(tv32));
586 		if (error)
587 			return (error);
588 		CP(tv32, tv, tv_sec);
589 		CP(tv32, tv, tv_usec);
590 		tvp = &tv;
591 	} else
592 		tvp = NULL;
593 	/*
594 	 * XXX Do pointers need PTRIN()?
595 	 */
596 	return (kern_select(td, uap->nd, uap->in, uap->ou, uap->ex, tvp,
597 	    sizeof(int32_t) * 8));
598 }
599 
600 int
601 freebsd32_pselect(struct thread *td, struct freebsd32_pselect_args *uap)
602 {
603 	struct timespec32 ts32;
604 	struct timespec ts;
605 	struct timeval tv, *tvp;
606 	sigset_t set, *uset;
607 	int error;
608 
609 	if (uap->ts != NULL) {
610 		error = copyin(uap->ts, &ts32, sizeof(ts32));
611 		if (error != 0)
612 			return (error);
613 		CP(ts32, ts, tv_sec);
614 		CP(ts32, ts, tv_nsec);
615 		TIMESPEC_TO_TIMEVAL(&tv, &ts);
616 		tvp = &tv;
617 	} else
618 		tvp = NULL;
619 	if (uap->sm != NULL) {
620 		error = copyin(uap->sm, &set, sizeof(set));
621 		if (error != 0)
622 			return (error);
623 		uset = &set;
624 	} else
625 		uset = NULL;
626 	/*
627 	 * XXX Do pointers need PTRIN()?
628 	 */
629 	error = kern_pselect(td, uap->nd, uap->in, uap->ou, uap->ex, tvp,
630 	    uset, sizeof(int32_t) * 8);
631 	return (error);
632 }
633 
634 /*
635  * Copy 'count' items into the destination list pointed to by uap->eventlist.
636  */
637 static int
638 freebsd32_kevent_copyout(void *arg, struct kevent *kevp, int count)
639 {
640 	struct freebsd32_kevent_args *uap;
641 	struct kevent32	ks32[KQ_NEVENTS];
642 	uint64_t e;
643 	int i, j, error;
644 
645 	KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
646 	uap = (struct freebsd32_kevent_args *)arg;
647 
648 	for (i = 0; i < count; i++) {
649 		CP(kevp[i], ks32[i], ident);
650 		CP(kevp[i], ks32[i], filter);
651 		CP(kevp[i], ks32[i], flags);
652 		CP(kevp[i], ks32[i], fflags);
653 #if BYTE_ORDER == LITTLE_ENDIAN
654 		ks32[i].data1 = kevp[i].data;
655 		ks32[i].data2 = kevp[i].data >> 32;
656 #else
657 		ks32[i].data1 = kevp[i].data >> 32;
658 		ks32[i].data2 = kevp[i].data;
659 #endif
660 		PTROUT_CP(kevp[i], ks32[i], udata);
661 		for (j = 0; j < nitems(kevp->ext); j++) {
662 			e = kevp[i].ext[j];
663 #if BYTE_ORDER == LITTLE_ENDIAN
664 			ks32[i].ext64[2 * j] = e;
665 			ks32[i].ext64[2 * j + 1] = e >> 32;
666 #else
667 			ks32[i].ext64[2 * j] = e >> 32;
668 			ks32[i].ext64[2 * j + 1] = e;
669 #endif
670 		}
671 	}
672 	error = copyout(ks32, uap->eventlist, count * sizeof *ks32);
673 	if (error == 0)
674 		uap->eventlist += count;
675 	return (error);
676 }
677 
678 /*
679  * Copy 'count' items from the list pointed to by uap->changelist.
680  */
681 static int
682 freebsd32_kevent_copyin(void *arg, struct kevent *kevp, int count)
683 {
684 	struct freebsd32_kevent_args *uap;
685 	struct kevent32	ks32[KQ_NEVENTS];
686 	uint64_t e;
687 	int i, j, error;
688 
689 	KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
690 	uap = (struct freebsd32_kevent_args *)arg;
691 
692 	error = copyin(uap->changelist, ks32, count * sizeof *ks32);
693 	if (error)
694 		goto done;
695 	uap->changelist += count;
696 
697 	for (i = 0; i < count; i++) {
698 		CP(ks32[i], kevp[i], ident);
699 		CP(ks32[i], kevp[i], filter);
700 		CP(ks32[i], kevp[i], flags);
701 		CP(ks32[i], kevp[i], fflags);
702 		kevp[i].data = PAIR32TO64(uint64_t, ks32[i].data);
703 		PTRIN_CP(ks32[i], kevp[i], udata);
704 		for (j = 0; j < nitems(kevp->ext); j++) {
705 #if BYTE_ORDER == LITTLE_ENDIAN
706 			e = ks32[i].ext64[2 * j + 1];
707 			e <<= 32;
708 			e += ks32[i].ext64[2 * j];
709 #else
710 			e = ks32[i].ext64[2 * j];
711 			e <<= 32;
712 			e += ks32[i].ext64[2 * j + 1];
713 #endif
714 			kevp[i].ext[j] = e;
715 		}
716 	}
717 done:
718 	return (error);
719 }
720 
721 int
722 freebsd32_kevent(struct thread *td, struct freebsd32_kevent_args *uap)
723 {
724 	struct timespec32 ts32;
725 	struct timespec ts, *tsp;
726 	struct kevent_copyops k_ops = {
727 		.arg = uap,
728 		.k_copyout = freebsd32_kevent_copyout,
729 		.k_copyin = freebsd32_kevent_copyin,
730 	};
731 #ifdef KTRACE
732 	struct kevent32 *eventlist = uap->eventlist;
733 #endif
734 	int error;
735 
736 	if (uap->timeout) {
737 		error = copyin(uap->timeout, &ts32, sizeof(ts32));
738 		if (error)
739 			return (error);
740 		CP(ts32, ts, tv_sec);
741 		CP(ts32, ts, tv_nsec);
742 		tsp = &ts;
743 	} else
744 		tsp = NULL;
745 #ifdef KTRACE
746 	if (KTRPOINT(td, KTR_STRUCT_ARRAY))
747 		ktrstructarray("kevent32", UIO_USERSPACE, uap->changelist,
748 		    uap->nchanges, sizeof(struct kevent32));
749 #endif
750 	error = kern_kevent(td, uap->fd, uap->nchanges, uap->nevents,
751 	    &k_ops, tsp);
752 #ifdef KTRACE
753 	if (error == 0 && KTRPOINT(td, KTR_STRUCT_ARRAY))
754 		ktrstructarray("kevent32", UIO_USERSPACE, eventlist,
755 		    td->td_retval[0], sizeof(struct kevent32));
756 #endif
757 	return (error);
758 }
759 
760 #ifdef COMPAT_FREEBSD11
761 static int
762 freebsd32_kevent11_copyout(void *arg, struct kevent *kevp, int count)
763 {
764 	struct freebsd11_freebsd32_kevent_args *uap;
765 	struct kevent32_freebsd11 ks32[KQ_NEVENTS];
766 	int i, error;
767 
768 	KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
769 	uap = (struct freebsd11_freebsd32_kevent_args *)arg;
770 
771 	for (i = 0; i < count; i++) {
772 		CP(kevp[i], ks32[i], ident);
773 		CP(kevp[i], ks32[i], filter);
774 		CP(kevp[i], ks32[i], flags);
775 		CP(kevp[i], ks32[i], fflags);
776 		CP(kevp[i], ks32[i], data);
777 		PTROUT_CP(kevp[i], ks32[i], udata);
778 	}
779 	error = copyout(ks32, uap->eventlist, count * sizeof *ks32);
780 	if (error == 0)
781 		uap->eventlist += count;
782 	return (error);
783 }
784 
785 /*
786  * Copy 'count' items from the list pointed to by uap->changelist.
787  */
788 static int
789 freebsd32_kevent11_copyin(void *arg, struct kevent *kevp, int count)
790 {
791 	struct freebsd11_freebsd32_kevent_args *uap;
792 	struct kevent32_freebsd11 ks32[KQ_NEVENTS];
793 	int i, j, error;
794 
795 	KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
796 	uap = (struct freebsd11_freebsd32_kevent_args *)arg;
797 
798 	error = copyin(uap->changelist, ks32, count * sizeof *ks32);
799 	if (error)
800 		goto done;
801 	uap->changelist += count;
802 
803 	for (i = 0; i < count; i++) {
804 		CP(ks32[i], kevp[i], ident);
805 		CP(ks32[i], kevp[i], filter);
806 		CP(ks32[i], kevp[i], flags);
807 		CP(ks32[i], kevp[i], fflags);
808 		CP(ks32[i], kevp[i], data);
809 		PTRIN_CP(ks32[i], kevp[i], udata);
810 		for (j = 0; j < nitems(kevp->ext); j++)
811 			kevp[i].ext[j] = 0;
812 	}
813 done:
814 	return (error);
815 }
816 
817 int
818 freebsd11_freebsd32_kevent(struct thread *td,
819     struct freebsd11_freebsd32_kevent_args *uap)
820 {
821 	struct timespec32 ts32;
822 	struct timespec ts, *tsp;
823 	struct kevent_copyops k_ops = {
824 		.arg = uap,
825 		.k_copyout = freebsd32_kevent11_copyout,
826 		.k_copyin = freebsd32_kevent11_copyin,
827 	};
828 #ifdef KTRACE
829 	struct kevent32_freebsd11 *eventlist = uap->eventlist;
830 #endif
831 	int error;
832 
833 	if (uap->timeout) {
834 		error = copyin(uap->timeout, &ts32, sizeof(ts32));
835 		if (error)
836 			return (error);
837 		CP(ts32, ts, tv_sec);
838 		CP(ts32, ts, tv_nsec);
839 		tsp = &ts;
840 	} else
841 		tsp = NULL;
842 #ifdef KTRACE
843 	if (KTRPOINT(td, KTR_STRUCT_ARRAY))
844 		ktrstructarray("kevent32_freebsd11", UIO_USERSPACE,
845 		    uap->changelist, uap->nchanges,
846 		    sizeof(struct kevent32_freebsd11));
847 #endif
848 	error = kern_kevent(td, uap->fd, uap->nchanges, uap->nevents,
849 	    &k_ops, tsp);
850 #ifdef KTRACE
851 	if (error == 0 && KTRPOINT(td, KTR_STRUCT_ARRAY))
852 		ktrstructarray("kevent32_freebsd11", UIO_USERSPACE,
853 		    eventlist, td->td_retval[0],
854 		    sizeof(struct kevent32_freebsd11));
855 #endif
856 	return (error);
857 }
858 #endif
859 
860 int
861 freebsd32_gettimeofday(struct thread *td,
862 		       struct freebsd32_gettimeofday_args *uap)
863 {
864 	struct timeval atv;
865 	struct timeval32 atv32;
866 	struct timezone rtz;
867 	int error = 0;
868 
869 	if (uap->tp) {
870 		microtime(&atv);
871 		CP(atv, atv32, tv_sec);
872 		CP(atv, atv32, tv_usec);
873 		error = copyout(&atv32, uap->tp, sizeof (atv32));
874 	}
875 	if (error == 0 && uap->tzp != NULL) {
876 		rtz.tz_minuteswest = 0;
877 		rtz.tz_dsttime = 0;
878 		error = copyout(&rtz, uap->tzp, sizeof (rtz));
879 	}
880 	return (error);
881 }
882 
883 int
884 freebsd32_getrusage(struct thread *td, struct freebsd32_getrusage_args *uap)
885 {
886 	struct rusage32 s32;
887 	struct rusage s;
888 	int error;
889 
890 	error = kern_getrusage(td, uap->who, &s);
891 	if (error == 0) {
892 		freebsd32_rusage_out(&s, &s32);
893 		error = copyout(&s32, uap->rusage, sizeof(s32));
894 	}
895 	return (error);
896 }
897 
898 static void
899 ptrace_lwpinfo_to32(const struct ptrace_lwpinfo *pl,
900     struct ptrace_lwpinfo32 *pl32)
901 {
902 
903 	bzero(pl32, sizeof(*pl32));
904 	pl32->pl_lwpid = pl->pl_lwpid;
905 	pl32->pl_event = pl->pl_event;
906 	pl32->pl_flags = pl->pl_flags;
907 	pl32->pl_sigmask = pl->pl_sigmask;
908 	pl32->pl_siglist = pl->pl_siglist;
909 	siginfo_to_siginfo32(&pl->pl_siginfo, &pl32->pl_siginfo);
910 	strcpy(pl32->pl_tdname, pl->pl_tdname);
911 	pl32->pl_child_pid = pl->pl_child_pid;
912 	pl32->pl_syscall_code = pl->pl_syscall_code;
913 	pl32->pl_syscall_narg = pl->pl_syscall_narg;
914 }
915 
916 static void
917 ptrace_sc_ret_to32(const struct ptrace_sc_ret *psr,
918     struct ptrace_sc_ret32 *psr32)
919 {
920 
921 	bzero(psr32, sizeof(*psr32));
922 	psr32->sr_retval[0] = psr->sr_retval[0];
923 	psr32->sr_retval[1] = psr->sr_retval[1];
924 	psr32->sr_error = psr->sr_error;
925 }
926 
927 int
928 freebsd32_ptrace(struct thread *td, struct freebsd32_ptrace_args *uap)
929 {
930 	union {
931 		struct ptrace_io_desc piod;
932 		struct ptrace_lwpinfo pl;
933 		struct ptrace_vm_entry pve;
934 		struct ptrace_coredump pc;
935 		struct dbreg32 dbreg;
936 		struct fpreg32 fpreg;
937 		struct reg32 reg;
938 		register_t args[nitems(td->td_sa.args)];
939 		struct ptrace_sc_ret psr;
940 		int ptevents;
941 	} r;
942 	union {
943 		struct ptrace_io_desc32 piod;
944 		struct ptrace_lwpinfo32 pl;
945 		struct ptrace_vm_entry32 pve;
946 		struct ptrace_coredump32 pc;
947 		uint32_t args[nitems(td->td_sa.args)];
948 		struct ptrace_sc_ret32 psr;
949 	} r32;
950 	void *addr;
951 	int data, error = 0, i;
952 
953 	AUDIT_ARG_PID(uap->pid);
954 	AUDIT_ARG_CMD(uap->req);
955 	AUDIT_ARG_VALUE(uap->data);
956 	addr = &r;
957 	data = uap->data;
958 	switch (uap->req) {
959 	case PT_GET_EVENT_MASK:
960 	case PT_GET_SC_ARGS:
961 	case PT_GET_SC_RET:
962 		break;
963 	case PT_LWPINFO:
964 		if (uap->data > sizeof(r32.pl))
965 			return (EINVAL);
966 
967 		/*
968 		 * Pass size of native structure in 'data'.  Truncate
969 		 * if necessary to avoid siginfo.
970 		 */
971 		data = sizeof(r.pl);
972 		if (uap->data < offsetof(struct ptrace_lwpinfo32, pl_siginfo) +
973 		    sizeof(struct siginfo32))
974 			data = offsetof(struct ptrace_lwpinfo, pl_siginfo);
975 		break;
976 	case PT_GETREGS:
977 		bzero(&r.reg, sizeof(r.reg));
978 		break;
979 	case PT_GETFPREGS:
980 		bzero(&r.fpreg, sizeof(r.fpreg));
981 		break;
982 	case PT_GETDBREGS:
983 		bzero(&r.dbreg, sizeof(r.dbreg));
984 		break;
985 	case PT_SETREGS:
986 		error = copyin(uap->addr, &r.reg, sizeof(r.reg));
987 		break;
988 	case PT_SETFPREGS:
989 		error = copyin(uap->addr, &r.fpreg, sizeof(r.fpreg));
990 		break;
991 	case PT_SETDBREGS:
992 		error = copyin(uap->addr, &r.dbreg, sizeof(r.dbreg));
993 		break;
994 	case PT_SET_EVENT_MASK:
995 		if (uap->data != sizeof(r.ptevents))
996 			error = EINVAL;
997 		else
998 			error = copyin(uap->addr, &r.ptevents, uap->data);
999 		break;
1000 	case PT_IO:
1001 		error = copyin(uap->addr, &r32.piod, sizeof(r32.piod));
1002 		if (error)
1003 			break;
1004 		CP(r32.piod, r.piod, piod_op);
1005 		PTRIN_CP(r32.piod, r.piod, piod_offs);
1006 		PTRIN_CP(r32.piod, r.piod, piod_addr);
1007 		CP(r32.piod, r.piod, piod_len);
1008 		break;
1009 	case PT_VM_ENTRY:
1010 		error = copyin(uap->addr, &r32.pve, sizeof(r32.pve));
1011 		if (error)
1012 			break;
1013 
1014 		CP(r32.pve, r.pve, pve_entry);
1015 		CP(r32.pve, r.pve, pve_timestamp);
1016 		CP(r32.pve, r.pve, pve_start);
1017 		CP(r32.pve, r.pve, pve_end);
1018 		CP(r32.pve, r.pve, pve_offset);
1019 		CP(r32.pve, r.pve, pve_prot);
1020 		CP(r32.pve, r.pve, pve_pathlen);
1021 		CP(r32.pve, r.pve, pve_fileid);
1022 		CP(r32.pve, r.pve, pve_fsid);
1023 		PTRIN_CP(r32.pve, r.pve, pve_path);
1024 		break;
1025 	case PT_COREDUMP:
1026 		if (uap->data != sizeof(r32.pc))
1027 			error = EINVAL;
1028 		else
1029 			error = copyin(uap->addr, &r32.pc, uap->data);
1030 		CP(r32.pc, r.pc, pc_fd);
1031 		CP(r32.pc, r.pc, pc_flags);
1032 		r.pc.pc_limit = PAIR32TO64(off_t, r32.pc.pc_limit);
1033 		data = sizeof(r.pc);
1034 		break;
1035 	default:
1036 		addr = uap->addr;
1037 		break;
1038 	}
1039 	if (error)
1040 		return (error);
1041 
1042 	error = kern_ptrace(td, uap->req, uap->pid, addr, data);
1043 	if (error)
1044 		return (error);
1045 
1046 	switch (uap->req) {
1047 	case PT_VM_ENTRY:
1048 		CP(r.pve, r32.pve, pve_entry);
1049 		CP(r.pve, r32.pve, pve_timestamp);
1050 		CP(r.pve, r32.pve, pve_start);
1051 		CP(r.pve, r32.pve, pve_end);
1052 		CP(r.pve, r32.pve, pve_offset);
1053 		CP(r.pve, r32.pve, pve_prot);
1054 		CP(r.pve, r32.pve, pve_pathlen);
1055 		CP(r.pve, r32.pve, pve_fileid);
1056 		CP(r.pve, r32.pve, pve_fsid);
1057 		error = copyout(&r32.pve, uap->addr, sizeof(r32.pve));
1058 		break;
1059 	case PT_IO:
1060 		CP(r.piod, r32.piod, piod_len);
1061 		error = copyout(&r32.piod, uap->addr, sizeof(r32.piod));
1062 		break;
1063 	case PT_GETREGS:
1064 		error = copyout(&r.reg, uap->addr, sizeof(r.reg));
1065 		break;
1066 	case PT_GETFPREGS:
1067 		error = copyout(&r.fpreg, uap->addr, sizeof(r.fpreg));
1068 		break;
1069 	case PT_GETDBREGS:
1070 		error = copyout(&r.dbreg, uap->addr, sizeof(r.dbreg));
1071 		break;
1072 	case PT_GET_EVENT_MASK:
1073 		/* NB: The size in uap->data is validated in kern_ptrace(). */
1074 		error = copyout(&r.ptevents, uap->addr, uap->data);
1075 		break;
1076 	case PT_LWPINFO:
1077 		ptrace_lwpinfo_to32(&r.pl, &r32.pl);
1078 		error = copyout(&r32.pl, uap->addr, uap->data);
1079 		break;
1080 	case PT_GET_SC_ARGS:
1081 		for (i = 0; i < nitems(r.args); i++)
1082 			r32.args[i] = (uint32_t)r.args[i];
1083 		error = copyout(r32.args, uap->addr, MIN(uap->data,
1084 		    sizeof(r32.args)));
1085 		break;
1086 	case PT_GET_SC_RET:
1087 		ptrace_sc_ret_to32(&r.psr, &r32.psr);
1088 		error = copyout(&r32.psr, uap->addr, MIN(uap->data,
1089 		    sizeof(r32.psr)));
1090 		break;
1091 	}
1092 
1093 	return (error);
1094 }
1095 
1096 int
1097 freebsd32_copyinuio(struct iovec32 *iovp, u_int iovcnt, struct uio **uiop)
1098 {
1099 	struct iovec32 iov32;
1100 	struct iovec *iov;
1101 	struct uio *uio;
1102 	u_int iovlen;
1103 	int error, i;
1104 
1105 	*uiop = NULL;
1106 	if (iovcnt > UIO_MAXIOV)
1107 		return (EINVAL);
1108 	iovlen = iovcnt * sizeof(struct iovec);
1109 	uio = malloc(iovlen + sizeof *uio, M_IOV, M_WAITOK);
1110 	iov = (struct iovec *)(uio + 1);
1111 	for (i = 0; i < iovcnt; i++) {
1112 		error = copyin(&iovp[i], &iov32, sizeof(struct iovec32));
1113 		if (error) {
1114 			free(uio, M_IOV);
1115 			return (error);
1116 		}
1117 		iov[i].iov_base = PTRIN(iov32.iov_base);
1118 		iov[i].iov_len = iov32.iov_len;
1119 	}
1120 	uio->uio_iov = iov;
1121 	uio->uio_iovcnt = iovcnt;
1122 	uio->uio_segflg = UIO_USERSPACE;
1123 	uio->uio_offset = -1;
1124 	uio->uio_resid = 0;
1125 	for (i = 0; i < iovcnt; i++) {
1126 		if (iov->iov_len > INT_MAX - uio->uio_resid) {
1127 			free(uio, M_IOV);
1128 			return (EINVAL);
1129 		}
1130 		uio->uio_resid += iov->iov_len;
1131 		iov++;
1132 	}
1133 	*uiop = uio;
1134 	return (0);
1135 }
1136 
1137 int
1138 freebsd32_readv(struct thread *td, struct freebsd32_readv_args *uap)
1139 {
1140 	struct uio *auio;
1141 	int error;
1142 
1143 	error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio);
1144 	if (error)
1145 		return (error);
1146 	error = kern_readv(td, uap->fd, auio);
1147 	free(auio, M_IOV);
1148 	return (error);
1149 }
1150 
1151 int
1152 freebsd32_writev(struct thread *td, struct freebsd32_writev_args *uap)
1153 {
1154 	struct uio *auio;
1155 	int error;
1156 
1157 	error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio);
1158 	if (error)
1159 		return (error);
1160 	error = kern_writev(td, uap->fd, auio);
1161 	free(auio, M_IOV);
1162 	return (error);
1163 }
1164 
1165 int
1166 freebsd32_preadv(struct thread *td, struct freebsd32_preadv_args *uap)
1167 {
1168 	struct uio *auio;
1169 	int error;
1170 
1171 	error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio);
1172 	if (error)
1173 		return (error);
1174 	error = kern_preadv(td, uap->fd, auio, PAIR32TO64(off_t,uap->offset));
1175 	free(auio, M_IOV);
1176 	return (error);
1177 }
1178 
1179 int
1180 freebsd32_pwritev(struct thread *td, struct freebsd32_pwritev_args *uap)
1181 {
1182 	struct uio *auio;
1183 	int error;
1184 
1185 	error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio);
1186 	if (error)
1187 		return (error);
1188 	error = kern_pwritev(td, uap->fd, auio, PAIR32TO64(off_t,uap->offset));
1189 	free(auio, M_IOV);
1190 	return (error);
1191 }
1192 
1193 int
1194 freebsd32_copyiniov(struct iovec32 *iovp32, u_int iovcnt, struct iovec **iovp,
1195     int error)
1196 {
1197 	struct iovec32 iov32;
1198 	struct iovec *iov;
1199 	u_int iovlen;
1200 	int i;
1201 
1202 	*iovp = NULL;
1203 	if (iovcnt > UIO_MAXIOV)
1204 		return (error);
1205 	iovlen = iovcnt * sizeof(struct iovec);
1206 	iov = malloc(iovlen, M_IOV, M_WAITOK);
1207 	for (i = 0; i < iovcnt; i++) {
1208 		error = copyin(&iovp32[i], &iov32, sizeof(struct iovec32));
1209 		if (error) {
1210 			free(iov, M_IOV);
1211 			return (error);
1212 		}
1213 		iov[i].iov_base = PTRIN(iov32.iov_base);
1214 		iov[i].iov_len = iov32.iov_len;
1215 	}
1216 	*iovp = iov;
1217 	return (0);
1218 }
1219 
1220 static int
1221 freebsd32_copyinmsghdr(struct msghdr32 *msg32, struct msghdr *msg)
1222 {
1223 	struct msghdr32 m32;
1224 	int error;
1225 
1226 	error = copyin(msg32, &m32, sizeof(m32));
1227 	if (error)
1228 		return (error);
1229 	msg->msg_name = PTRIN(m32.msg_name);
1230 	msg->msg_namelen = m32.msg_namelen;
1231 	msg->msg_iov = PTRIN(m32.msg_iov);
1232 	msg->msg_iovlen = m32.msg_iovlen;
1233 	msg->msg_control = PTRIN(m32.msg_control);
1234 	msg->msg_controllen = m32.msg_controllen;
1235 	msg->msg_flags = m32.msg_flags;
1236 	return (0);
1237 }
1238 
1239 static int
1240 freebsd32_copyoutmsghdr(struct msghdr *msg, struct msghdr32 *msg32)
1241 {
1242 	struct msghdr32 m32;
1243 	int error;
1244 
1245 	m32.msg_name = PTROUT(msg->msg_name);
1246 	m32.msg_namelen = msg->msg_namelen;
1247 	m32.msg_iov = PTROUT(msg->msg_iov);
1248 	m32.msg_iovlen = msg->msg_iovlen;
1249 	m32.msg_control = PTROUT(msg->msg_control);
1250 	m32.msg_controllen = msg->msg_controllen;
1251 	m32.msg_flags = msg->msg_flags;
1252 	error = copyout(&m32, msg32, sizeof(m32));
1253 	return (error);
1254 }
1255 
1256 #ifndef __mips__
1257 #define FREEBSD32_ALIGNBYTES	(sizeof(int) - 1)
1258 #else
1259 #define FREEBSD32_ALIGNBYTES	(sizeof(long) - 1)
1260 #endif
1261 #define FREEBSD32_ALIGN(p)	\
1262 	(((u_long)(p) + FREEBSD32_ALIGNBYTES) & ~FREEBSD32_ALIGNBYTES)
1263 #define	FREEBSD32_CMSG_SPACE(l)	\
1264 	(FREEBSD32_ALIGN(sizeof(struct cmsghdr)) + FREEBSD32_ALIGN(l))
1265 
1266 #define	FREEBSD32_CMSG_DATA(cmsg)	((unsigned char *)(cmsg) + \
1267 				 FREEBSD32_ALIGN(sizeof(struct cmsghdr)))
1268 
1269 static size_t
1270 freebsd32_cmsg_convert(const struct cmsghdr *cm, void *data, socklen_t datalen)
1271 {
1272 	size_t copylen;
1273 	union {
1274 		struct timespec32 ts;
1275 		struct timeval32 tv;
1276 		struct bintime32 bt;
1277 	} tmp32;
1278 
1279 	union {
1280 		struct timespec ts;
1281 		struct timeval tv;
1282 		struct bintime bt;
1283 	} *in;
1284 
1285 	in = data;
1286 	copylen = 0;
1287 	switch (cm->cmsg_level) {
1288 	case SOL_SOCKET:
1289 		switch (cm->cmsg_type) {
1290 		case SCM_TIMESTAMP:
1291 			TV_CP(*in, tmp32, tv);
1292 			copylen = sizeof(tmp32.tv);
1293 			break;
1294 
1295 		case SCM_BINTIME:
1296 			BT_CP(*in, tmp32, bt);
1297 			copylen = sizeof(tmp32.bt);
1298 			break;
1299 
1300 		case SCM_REALTIME:
1301 		case SCM_MONOTONIC:
1302 			TS_CP(*in, tmp32, ts);
1303 			copylen = sizeof(tmp32.ts);
1304 			break;
1305 
1306 		default:
1307 			break;
1308 		}
1309 
1310 	default:
1311 		break;
1312 	}
1313 
1314 	if (copylen == 0)
1315 		return (datalen);
1316 
1317 	KASSERT((datalen >= copylen), ("corrupted cmsghdr"));
1318 
1319 	bcopy(&tmp32, data, copylen);
1320 	return (copylen);
1321 }
1322 
1323 static int
1324 freebsd32_copy_msg_out(struct msghdr *msg, struct mbuf *control)
1325 {
1326 	struct cmsghdr *cm;
1327 	void *data;
1328 	socklen_t clen, datalen, datalen_out, oldclen;
1329 	int error;
1330 	caddr_t ctlbuf;
1331 	int len, maxlen, copylen;
1332 	struct mbuf *m;
1333 	error = 0;
1334 
1335 	len    = msg->msg_controllen;
1336 	maxlen = msg->msg_controllen;
1337 	msg->msg_controllen = 0;
1338 
1339 	ctlbuf = msg->msg_control;
1340 	for (m = control; m != NULL && len > 0; m = m->m_next) {
1341 		cm = mtod(m, struct cmsghdr *);
1342 		clen = m->m_len;
1343 		while (cm != NULL) {
1344 			if (sizeof(struct cmsghdr) > clen ||
1345 			    cm->cmsg_len > clen) {
1346 				error = EINVAL;
1347 				break;
1348 			}
1349 
1350 			data   = CMSG_DATA(cm);
1351 			datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data;
1352 			datalen_out = freebsd32_cmsg_convert(cm, data, datalen);
1353 
1354 			/*
1355 			 * Copy out the message header.  Preserve the native
1356 			 * message size in case we need to inspect the message
1357 			 * contents later.
1358 			 */
1359 			copylen = sizeof(struct cmsghdr);
1360 			if (len < copylen) {
1361 				msg->msg_flags |= MSG_CTRUNC;
1362 				m_dispose_extcontrolm(m);
1363 				goto exit;
1364 			}
1365 			oldclen = cm->cmsg_len;
1366 			cm->cmsg_len = FREEBSD32_ALIGN(sizeof(struct cmsghdr)) +
1367 			    datalen_out;
1368 			error = copyout(cm, ctlbuf, copylen);
1369 			cm->cmsg_len = oldclen;
1370 			if (error != 0)
1371 				goto exit;
1372 
1373 			ctlbuf += FREEBSD32_ALIGN(copylen);
1374 			len    -= FREEBSD32_ALIGN(copylen);
1375 
1376 			copylen = datalen_out;
1377 			if (len < copylen) {
1378 				msg->msg_flags |= MSG_CTRUNC;
1379 				m_dispose_extcontrolm(m);
1380 				break;
1381 			}
1382 
1383 			/* Copy out the message data. */
1384 			error = copyout(data, ctlbuf, copylen);
1385 			if (error)
1386 				goto exit;
1387 
1388 			ctlbuf += FREEBSD32_ALIGN(copylen);
1389 			len    -= FREEBSD32_ALIGN(copylen);
1390 
1391 			if (CMSG_SPACE(datalen) < clen) {
1392 				clen -= CMSG_SPACE(datalen);
1393 				cm = (struct cmsghdr *)
1394 				    ((caddr_t)cm + CMSG_SPACE(datalen));
1395 			} else {
1396 				clen = 0;
1397 				cm = NULL;
1398 			}
1399 
1400 			msg->msg_controllen +=
1401 			    FREEBSD32_CMSG_SPACE(datalen_out);
1402 		}
1403 	}
1404 	if (len == 0 && m != NULL) {
1405 		msg->msg_flags |= MSG_CTRUNC;
1406 		m_dispose_extcontrolm(m);
1407 	}
1408 
1409 exit:
1410 	return (error);
1411 }
1412 
1413 int
1414 freebsd32_recvmsg(struct thread *td, struct freebsd32_recvmsg_args *uap)
1415 {
1416 	struct msghdr msg;
1417 	struct iovec *uiov, *iov;
1418 	struct mbuf *control = NULL;
1419 	struct mbuf **controlp;
1420 	int error;
1421 
1422 	error = freebsd32_copyinmsghdr(uap->msg, &msg);
1423 	if (error)
1424 		return (error);
1425 	error = freebsd32_copyiniov((void *)msg.msg_iov, msg.msg_iovlen, &iov,
1426 	    EMSGSIZE);
1427 	if (error)
1428 		return (error);
1429 	msg.msg_flags = uap->flags;
1430 	uiov = msg.msg_iov;
1431 	msg.msg_iov = iov;
1432 
1433 	controlp = (msg.msg_control != NULL) ?  &control : NULL;
1434 	error = kern_recvit(td, uap->s, &msg, UIO_USERSPACE, controlp);
1435 	if (error == 0) {
1436 		msg.msg_iov = uiov;
1437 
1438 		if (control != NULL)
1439 			error = freebsd32_copy_msg_out(&msg, control);
1440 		else
1441 			msg.msg_controllen = 0;
1442 
1443 		if (error == 0)
1444 			error = freebsd32_copyoutmsghdr(&msg, uap->msg);
1445 	}
1446 	free(iov, M_IOV);
1447 
1448 	if (control != NULL) {
1449 		if (error != 0)
1450 			m_dispose_extcontrolm(control);
1451 		m_freem(control);
1452 	}
1453 
1454 	return (error);
1455 }
1456 
1457 /*
1458  * Copy-in the array of control messages constructed using alignment
1459  * and padding suitable for a 32-bit environment and construct an
1460  * mbuf using alignment and padding suitable for a 64-bit kernel.
1461  * The alignment and padding are defined indirectly by CMSG_DATA(),
1462  * CMSG_SPACE() and CMSG_LEN().
1463  */
1464 static int
1465 freebsd32_copyin_control(struct mbuf **mp, caddr_t buf, u_int buflen)
1466 {
1467 	struct cmsghdr *cm;
1468 	struct mbuf *m;
1469 	void *in, *in1, *md;
1470 	u_int msglen, outlen;
1471 	int error;
1472 
1473 	if (buflen > MCLBYTES)
1474 		return (EINVAL);
1475 
1476 	in = malloc(buflen, M_TEMP, M_WAITOK);
1477 	error = copyin(buf, in, buflen);
1478 	if (error != 0)
1479 		goto out;
1480 
1481 	/*
1482 	 * Make a pass over the input buffer to determine the amount of space
1483 	 * required for 64 bit-aligned copies of the control messages.
1484 	 */
1485 	in1 = in;
1486 	outlen = 0;
1487 	while (buflen > 0) {
1488 		if (buflen < sizeof(*cm)) {
1489 			error = EINVAL;
1490 			break;
1491 		}
1492 		cm = (struct cmsghdr *)in1;
1493 		if (cm->cmsg_len < FREEBSD32_ALIGN(sizeof(*cm))) {
1494 			error = EINVAL;
1495 			break;
1496 		}
1497 		msglen = FREEBSD32_ALIGN(cm->cmsg_len);
1498 		if (msglen > buflen || msglen < cm->cmsg_len) {
1499 			error = EINVAL;
1500 			break;
1501 		}
1502 		buflen -= msglen;
1503 
1504 		in1 = (char *)in1 + msglen;
1505 		outlen += CMSG_ALIGN(sizeof(*cm)) +
1506 		    CMSG_ALIGN(msglen - FREEBSD32_ALIGN(sizeof(*cm)));
1507 	}
1508 	if (error == 0 && outlen > MCLBYTES) {
1509 		/*
1510 		 * XXXMJ This implies that the upper limit on 32-bit aligned
1511 		 * control messages is less than MCLBYTES, and so we are not
1512 		 * perfectly compatible.  However, there is no platform
1513 		 * guarantee that mbuf clusters larger than MCLBYTES can be
1514 		 * allocated.
1515 		 */
1516 		error = EINVAL;
1517 	}
1518 	if (error != 0)
1519 		goto out;
1520 
1521 	m = m_get2(outlen, M_WAITOK, MT_CONTROL, 0);
1522 	m->m_len = outlen;
1523 	md = mtod(m, void *);
1524 
1525 	/*
1526 	 * Make a second pass over input messages, copying them into the output
1527 	 * buffer.
1528 	 */
1529 	in1 = in;
1530 	while (outlen > 0) {
1531 		/* Copy the message header and align the length field. */
1532 		cm = md;
1533 		memcpy(cm, in1, sizeof(*cm));
1534 		msglen = cm->cmsg_len - FREEBSD32_ALIGN(sizeof(*cm));
1535 		cm->cmsg_len = CMSG_ALIGN(sizeof(*cm)) + msglen;
1536 
1537 		/* Copy the message body. */
1538 		in1 = (char *)in1 + FREEBSD32_ALIGN(sizeof(*cm));
1539 		md = (char *)md + CMSG_ALIGN(sizeof(*cm));
1540 		memcpy(md, in1, msglen);
1541 		in1 = (char *)in1 + FREEBSD32_ALIGN(msglen);
1542 		md = (char *)md + CMSG_ALIGN(msglen);
1543 		KASSERT(outlen >= CMSG_ALIGN(sizeof(*cm)) + CMSG_ALIGN(msglen),
1544 		    ("outlen %u underflow, msglen %u", outlen, msglen));
1545 		outlen -= CMSG_ALIGN(sizeof(*cm)) + CMSG_ALIGN(msglen);
1546 	}
1547 
1548 	*mp = m;
1549 out:
1550 	free(in, M_TEMP);
1551 	return (error);
1552 }
1553 
1554 int
1555 freebsd32_sendmsg(struct thread *td, struct freebsd32_sendmsg_args *uap)
1556 {
1557 	struct msghdr msg;
1558 	struct iovec *iov;
1559 	struct mbuf *control = NULL;
1560 	struct sockaddr *to = NULL;
1561 	int error;
1562 
1563 	error = freebsd32_copyinmsghdr(uap->msg, &msg);
1564 	if (error)
1565 		return (error);
1566 	error = freebsd32_copyiniov((void *)msg.msg_iov, msg.msg_iovlen, &iov,
1567 	    EMSGSIZE);
1568 	if (error)
1569 		return (error);
1570 	msg.msg_iov = iov;
1571 	if (msg.msg_name != NULL) {
1572 		error = getsockaddr(&to, msg.msg_name, msg.msg_namelen);
1573 		if (error) {
1574 			to = NULL;
1575 			goto out;
1576 		}
1577 		msg.msg_name = to;
1578 	}
1579 
1580 	if (msg.msg_control) {
1581 		if (msg.msg_controllen < sizeof(struct cmsghdr)) {
1582 			error = EINVAL;
1583 			goto out;
1584 		}
1585 
1586 		error = freebsd32_copyin_control(&control, msg.msg_control,
1587 		    msg.msg_controllen);
1588 		if (error)
1589 			goto out;
1590 
1591 		msg.msg_control = NULL;
1592 		msg.msg_controllen = 0;
1593 	}
1594 
1595 	error = kern_sendit(td, uap->s, &msg, uap->flags, control,
1596 	    UIO_USERSPACE);
1597 
1598 out:
1599 	free(iov, M_IOV);
1600 	if (to)
1601 		free(to, M_SONAME);
1602 	return (error);
1603 }
1604 
1605 int
1606 freebsd32_recvfrom(struct thread *td,
1607 		   struct freebsd32_recvfrom_args *uap)
1608 {
1609 	struct msghdr msg;
1610 	struct iovec aiov;
1611 	int error;
1612 
1613 	if (uap->fromlenaddr) {
1614 		error = copyin(PTRIN(uap->fromlenaddr), &msg.msg_namelen,
1615 		    sizeof(msg.msg_namelen));
1616 		if (error)
1617 			return (error);
1618 	} else {
1619 		msg.msg_namelen = 0;
1620 	}
1621 
1622 	msg.msg_name = PTRIN(uap->from);
1623 	msg.msg_iov = &aiov;
1624 	msg.msg_iovlen = 1;
1625 	aiov.iov_base = PTRIN(uap->buf);
1626 	aiov.iov_len = uap->len;
1627 	msg.msg_control = NULL;
1628 	msg.msg_flags = uap->flags;
1629 	error = kern_recvit(td, uap->s, &msg, UIO_USERSPACE, NULL);
1630 	if (error == 0 && uap->fromlenaddr)
1631 		error = copyout(&msg.msg_namelen, PTRIN(uap->fromlenaddr),
1632 		    sizeof (msg.msg_namelen));
1633 	return (error);
1634 }
1635 
1636 int
1637 freebsd32_settimeofday(struct thread *td,
1638 		       struct freebsd32_settimeofday_args *uap)
1639 {
1640 	struct timeval32 tv32;
1641 	struct timeval tv, *tvp;
1642 	struct timezone tz, *tzp;
1643 	int error;
1644 
1645 	if (uap->tv) {
1646 		error = copyin(uap->tv, &tv32, sizeof(tv32));
1647 		if (error)
1648 			return (error);
1649 		CP(tv32, tv, tv_sec);
1650 		CP(tv32, tv, tv_usec);
1651 		tvp = &tv;
1652 	} else
1653 		tvp = NULL;
1654 	if (uap->tzp) {
1655 		error = copyin(uap->tzp, &tz, sizeof(tz));
1656 		if (error)
1657 			return (error);
1658 		tzp = &tz;
1659 	} else
1660 		tzp = NULL;
1661 	return (kern_settimeofday(td, tvp, tzp));
1662 }
1663 
1664 int
1665 freebsd32_utimes(struct thread *td, struct freebsd32_utimes_args *uap)
1666 {
1667 	struct timeval32 s32[2];
1668 	struct timeval s[2], *sp;
1669 	int error;
1670 
1671 	if (uap->tptr != NULL) {
1672 		error = copyin(uap->tptr, s32, sizeof(s32));
1673 		if (error)
1674 			return (error);
1675 		CP(s32[0], s[0], tv_sec);
1676 		CP(s32[0], s[0], tv_usec);
1677 		CP(s32[1], s[1], tv_sec);
1678 		CP(s32[1], s[1], tv_usec);
1679 		sp = s;
1680 	} else
1681 		sp = NULL;
1682 	return (kern_utimesat(td, AT_FDCWD, uap->path, UIO_USERSPACE,
1683 	    sp, UIO_SYSSPACE));
1684 }
1685 
1686 int
1687 freebsd32_lutimes(struct thread *td, struct freebsd32_lutimes_args *uap)
1688 {
1689 	struct timeval32 s32[2];
1690 	struct timeval s[2], *sp;
1691 	int error;
1692 
1693 	if (uap->tptr != NULL) {
1694 		error = copyin(uap->tptr, s32, sizeof(s32));
1695 		if (error)
1696 			return (error);
1697 		CP(s32[0], s[0], tv_sec);
1698 		CP(s32[0], s[0], tv_usec);
1699 		CP(s32[1], s[1], tv_sec);
1700 		CP(s32[1], s[1], tv_usec);
1701 		sp = s;
1702 	} else
1703 		sp = NULL;
1704 	return (kern_lutimes(td, uap->path, UIO_USERSPACE, sp, UIO_SYSSPACE));
1705 }
1706 
1707 int
1708 freebsd32_futimes(struct thread *td, struct freebsd32_futimes_args *uap)
1709 {
1710 	struct timeval32 s32[2];
1711 	struct timeval s[2], *sp;
1712 	int error;
1713 
1714 	if (uap->tptr != NULL) {
1715 		error = copyin(uap->tptr, s32, sizeof(s32));
1716 		if (error)
1717 			return (error);
1718 		CP(s32[0], s[0], tv_sec);
1719 		CP(s32[0], s[0], tv_usec);
1720 		CP(s32[1], s[1], tv_sec);
1721 		CP(s32[1], s[1], tv_usec);
1722 		sp = s;
1723 	} else
1724 		sp = NULL;
1725 	return (kern_futimes(td, uap->fd, sp, UIO_SYSSPACE));
1726 }
1727 
1728 int
1729 freebsd32_futimesat(struct thread *td, struct freebsd32_futimesat_args *uap)
1730 {
1731 	struct timeval32 s32[2];
1732 	struct timeval s[2], *sp;
1733 	int error;
1734 
1735 	if (uap->times != NULL) {
1736 		error = copyin(uap->times, s32, sizeof(s32));
1737 		if (error)
1738 			return (error);
1739 		CP(s32[0], s[0], tv_sec);
1740 		CP(s32[0], s[0], tv_usec);
1741 		CP(s32[1], s[1], tv_sec);
1742 		CP(s32[1], s[1], tv_usec);
1743 		sp = s;
1744 	} else
1745 		sp = NULL;
1746 	return (kern_utimesat(td, uap->fd, uap->path, UIO_USERSPACE,
1747 		sp, UIO_SYSSPACE));
1748 }
1749 
1750 int
1751 freebsd32_futimens(struct thread *td, struct freebsd32_futimens_args *uap)
1752 {
1753 	struct timespec32 ts32[2];
1754 	struct timespec ts[2], *tsp;
1755 	int error;
1756 
1757 	if (uap->times != NULL) {
1758 		error = copyin(uap->times, ts32, sizeof(ts32));
1759 		if (error)
1760 			return (error);
1761 		CP(ts32[0], ts[0], tv_sec);
1762 		CP(ts32[0], ts[0], tv_nsec);
1763 		CP(ts32[1], ts[1], tv_sec);
1764 		CP(ts32[1], ts[1], tv_nsec);
1765 		tsp = ts;
1766 	} else
1767 		tsp = NULL;
1768 	return (kern_futimens(td, uap->fd, tsp, UIO_SYSSPACE));
1769 }
1770 
1771 int
1772 freebsd32_utimensat(struct thread *td, struct freebsd32_utimensat_args *uap)
1773 {
1774 	struct timespec32 ts32[2];
1775 	struct timespec ts[2], *tsp;
1776 	int error;
1777 
1778 	if (uap->times != NULL) {
1779 		error = copyin(uap->times, ts32, sizeof(ts32));
1780 		if (error)
1781 			return (error);
1782 		CP(ts32[0], ts[0], tv_sec);
1783 		CP(ts32[0], ts[0], tv_nsec);
1784 		CP(ts32[1], ts[1], tv_sec);
1785 		CP(ts32[1], ts[1], tv_nsec);
1786 		tsp = ts;
1787 	} else
1788 		tsp = NULL;
1789 	return (kern_utimensat(td, uap->fd, uap->path, UIO_USERSPACE,
1790 	    tsp, UIO_SYSSPACE, uap->flag));
1791 }
1792 
1793 int
1794 freebsd32_adjtime(struct thread *td, struct freebsd32_adjtime_args *uap)
1795 {
1796 	struct timeval32 tv32;
1797 	struct timeval delta, olddelta, *deltap;
1798 	int error;
1799 
1800 	if (uap->delta) {
1801 		error = copyin(uap->delta, &tv32, sizeof(tv32));
1802 		if (error)
1803 			return (error);
1804 		CP(tv32, delta, tv_sec);
1805 		CP(tv32, delta, tv_usec);
1806 		deltap = &delta;
1807 	} else
1808 		deltap = NULL;
1809 	error = kern_adjtime(td, deltap, &olddelta);
1810 	if (uap->olddelta && error == 0) {
1811 		CP(olddelta, tv32, tv_sec);
1812 		CP(olddelta, tv32, tv_usec);
1813 		error = copyout(&tv32, uap->olddelta, sizeof(tv32));
1814 	}
1815 	return (error);
1816 }
1817 
1818 #ifdef COMPAT_FREEBSD4
1819 int
1820 freebsd4_freebsd32_statfs(struct thread *td, struct freebsd4_freebsd32_statfs_args *uap)
1821 {
1822 	struct statfs32 s32;
1823 	struct statfs *sp;
1824 	int error;
1825 
1826 	sp = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK);
1827 	error = kern_statfs(td, uap->path, UIO_USERSPACE, sp);
1828 	if (error == 0) {
1829 		copy_statfs(sp, &s32);
1830 		error = copyout(&s32, uap->buf, sizeof(s32));
1831 	}
1832 	free(sp, M_STATFS);
1833 	return (error);
1834 }
1835 #endif
1836 
1837 #ifdef COMPAT_FREEBSD4
1838 int
1839 freebsd4_freebsd32_fstatfs(struct thread *td, struct freebsd4_freebsd32_fstatfs_args *uap)
1840 {
1841 	struct statfs32 s32;
1842 	struct statfs *sp;
1843 	int error;
1844 
1845 	sp = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK);
1846 	error = kern_fstatfs(td, uap->fd, sp);
1847 	if (error == 0) {
1848 		copy_statfs(sp, &s32);
1849 		error = copyout(&s32, uap->buf, sizeof(s32));
1850 	}
1851 	free(sp, M_STATFS);
1852 	return (error);
1853 }
1854 #endif
1855 
1856 #ifdef COMPAT_FREEBSD4
1857 int
1858 freebsd4_freebsd32_fhstatfs(struct thread *td, struct freebsd4_freebsd32_fhstatfs_args *uap)
1859 {
1860 	struct statfs32 s32;
1861 	struct statfs *sp;
1862 	fhandle_t fh;
1863 	int error;
1864 
1865 	if ((error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t))) != 0)
1866 		return (error);
1867 	sp = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK);
1868 	error = kern_fhstatfs(td, fh, sp);
1869 	if (error == 0) {
1870 		copy_statfs(sp, &s32);
1871 		error = copyout(&s32, uap->buf, sizeof(s32));
1872 	}
1873 	free(sp, M_STATFS);
1874 	return (error);
1875 }
1876 #endif
1877 
1878 int
1879 freebsd32_pread(struct thread *td, struct freebsd32_pread_args *uap)
1880 {
1881 
1882 	return (kern_pread(td, uap->fd, uap->buf, uap->nbyte,
1883 	    PAIR32TO64(off_t, uap->offset)));
1884 }
1885 
1886 int
1887 freebsd32_pwrite(struct thread *td, struct freebsd32_pwrite_args *uap)
1888 {
1889 
1890 	return (kern_pwrite(td, uap->fd, uap->buf, uap->nbyte,
1891 	    PAIR32TO64(off_t, uap->offset)));
1892 }
1893 
1894 #ifdef COMPAT_43
1895 int
1896 ofreebsd32_lseek(struct thread *td, struct ofreebsd32_lseek_args *uap)
1897 {
1898 
1899 	return (kern_lseek(td, uap->fd, uap->offset, uap->whence));
1900 }
1901 #endif
1902 
1903 int
1904 freebsd32_lseek(struct thread *td, struct freebsd32_lseek_args *uap)
1905 {
1906 	int error;
1907 	off_t pos;
1908 
1909 	error = kern_lseek(td, uap->fd, PAIR32TO64(off_t, uap->offset),
1910 	    uap->whence);
1911 	/* Expand the quad return into two parts for eax and edx */
1912 	pos = td->td_uretoff.tdu_off;
1913 	td->td_retval[RETVAL_LO] = pos & 0xffffffff;	/* %eax */
1914 	td->td_retval[RETVAL_HI] = pos >> 32;		/* %edx */
1915 	return error;
1916 }
1917 
1918 int
1919 freebsd32_truncate(struct thread *td, struct freebsd32_truncate_args *uap)
1920 {
1921 
1922 	return (kern_truncate(td, uap->path, UIO_USERSPACE,
1923 	    PAIR32TO64(off_t, uap->length)));
1924 }
1925 
1926 int
1927 freebsd32_ftruncate(struct thread *td, struct freebsd32_ftruncate_args *uap)
1928 {
1929 
1930 	return (kern_ftruncate(td, uap->fd, PAIR32TO64(off_t, uap->length)));
1931 }
1932 
1933 #ifdef COMPAT_43
1934 int
1935 ofreebsd32_getdirentries(struct thread *td,
1936     struct ofreebsd32_getdirentries_args *uap)
1937 {
1938 	struct ogetdirentries_args ap;
1939 	int error;
1940 	long loff;
1941 	int32_t loff_cut;
1942 
1943 	ap.fd = uap->fd;
1944 	ap.buf = uap->buf;
1945 	ap.count = uap->count;
1946 	ap.basep = NULL;
1947 	error = kern_ogetdirentries(td, &ap, &loff);
1948 	if (error == 0) {
1949 		loff_cut = loff;
1950 		error = copyout(&loff_cut, uap->basep, sizeof(int32_t));
1951 	}
1952 	return (error);
1953 }
1954 #endif
1955 
1956 #if defined(COMPAT_FREEBSD11)
1957 int
1958 freebsd11_freebsd32_getdirentries(struct thread *td,
1959     struct freebsd11_freebsd32_getdirentries_args *uap)
1960 {
1961 	long base;
1962 	int32_t base32;
1963 	int error;
1964 
1965 	error = freebsd11_kern_getdirentries(td, uap->fd, uap->buf, uap->count,
1966 	    &base, NULL);
1967 	if (error)
1968 		return (error);
1969 	if (uap->basep != NULL) {
1970 		base32 = base;
1971 		error = copyout(&base32, uap->basep, sizeof(int32_t));
1972 	}
1973 	return (error);
1974 }
1975 
1976 int
1977 freebsd11_freebsd32_getdents(struct thread *td,
1978     struct freebsd11_freebsd32_getdents_args *uap)
1979 {
1980 	struct freebsd11_freebsd32_getdirentries_args ap;
1981 
1982 	ap.fd = uap->fd;
1983 	ap.buf = uap->buf;
1984 	ap.count = uap->count;
1985 	ap.basep = NULL;
1986 	return (freebsd11_freebsd32_getdirentries(td, &ap));
1987 }
1988 #endif /* COMPAT_FREEBSD11 */
1989 
1990 #ifdef COMPAT_FREEBSD6
1991 /* versions with the 'int pad' argument */
1992 int
1993 freebsd6_freebsd32_pread(struct thread *td, struct freebsd6_freebsd32_pread_args *uap)
1994 {
1995 
1996 	return (kern_pread(td, uap->fd, uap->buf, uap->nbyte,
1997 	    PAIR32TO64(off_t, uap->offset)));
1998 }
1999 
2000 int
2001 freebsd6_freebsd32_pwrite(struct thread *td, struct freebsd6_freebsd32_pwrite_args *uap)
2002 {
2003 
2004 	return (kern_pwrite(td, uap->fd, uap->buf, uap->nbyte,
2005 	    PAIR32TO64(off_t, uap->offset)));
2006 }
2007 
2008 int
2009 freebsd6_freebsd32_lseek(struct thread *td, struct freebsd6_freebsd32_lseek_args *uap)
2010 {
2011 	int error;
2012 	off_t pos;
2013 
2014 	error = kern_lseek(td, uap->fd, PAIR32TO64(off_t, uap->offset),
2015 	    uap->whence);
2016 	/* Expand the quad return into two parts for eax and edx */
2017 	pos = *(off_t *)(td->td_retval);
2018 	td->td_retval[RETVAL_LO] = pos & 0xffffffff;	/* %eax */
2019 	td->td_retval[RETVAL_HI] = pos >> 32;		/* %edx */
2020 	return error;
2021 }
2022 
2023 int
2024 freebsd6_freebsd32_truncate(struct thread *td, struct freebsd6_freebsd32_truncate_args *uap)
2025 {
2026 
2027 	return (kern_truncate(td, uap->path, UIO_USERSPACE,
2028 	    PAIR32TO64(off_t, uap->length)));
2029 }
2030 
2031 int
2032 freebsd6_freebsd32_ftruncate(struct thread *td, struct freebsd6_freebsd32_ftruncate_args *uap)
2033 {
2034 
2035 	return (kern_ftruncate(td, uap->fd, PAIR32TO64(off_t, uap->length)));
2036 }
2037 #endif /* COMPAT_FREEBSD6 */
2038 
2039 struct sf_hdtr32 {
2040 	uint32_t headers;
2041 	int hdr_cnt;
2042 	uint32_t trailers;
2043 	int trl_cnt;
2044 };
2045 
2046 static int
2047 freebsd32_do_sendfile(struct thread *td,
2048     struct freebsd32_sendfile_args *uap, int compat)
2049 {
2050 	struct sf_hdtr32 hdtr32;
2051 	struct sf_hdtr hdtr;
2052 	struct uio *hdr_uio, *trl_uio;
2053 	struct file *fp;
2054 	cap_rights_t rights;
2055 	struct iovec32 *iov32;
2056 	off_t offset, sbytes;
2057 	int error;
2058 
2059 	offset = PAIR32TO64(off_t, uap->offset);
2060 	if (offset < 0)
2061 		return (EINVAL);
2062 
2063 	hdr_uio = trl_uio = NULL;
2064 
2065 	if (uap->hdtr != NULL) {
2066 		error = copyin(uap->hdtr, &hdtr32, sizeof(hdtr32));
2067 		if (error)
2068 			goto out;
2069 		PTRIN_CP(hdtr32, hdtr, headers);
2070 		CP(hdtr32, hdtr, hdr_cnt);
2071 		PTRIN_CP(hdtr32, hdtr, trailers);
2072 		CP(hdtr32, hdtr, trl_cnt);
2073 
2074 		if (hdtr.headers != NULL) {
2075 			iov32 = PTRIN(hdtr32.headers);
2076 			error = freebsd32_copyinuio(iov32,
2077 			    hdtr32.hdr_cnt, &hdr_uio);
2078 			if (error)
2079 				goto out;
2080 #ifdef COMPAT_FREEBSD4
2081 			/*
2082 			 * In FreeBSD < 5.0 the nbytes to send also included
2083 			 * the header.  If compat is specified subtract the
2084 			 * header size from nbytes.
2085 			 */
2086 			if (compat) {
2087 				if (uap->nbytes > hdr_uio->uio_resid)
2088 					uap->nbytes -= hdr_uio->uio_resid;
2089 				else
2090 					uap->nbytes = 0;
2091 			}
2092 #endif
2093 		}
2094 		if (hdtr.trailers != NULL) {
2095 			iov32 = PTRIN(hdtr32.trailers);
2096 			error = freebsd32_copyinuio(iov32,
2097 			    hdtr32.trl_cnt, &trl_uio);
2098 			if (error)
2099 				goto out;
2100 		}
2101 	}
2102 
2103 	AUDIT_ARG_FD(uap->fd);
2104 
2105 	if ((error = fget_read(td, uap->fd,
2106 	    cap_rights_init_one(&rights, CAP_PREAD), &fp)) != 0)
2107 		goto out;
2108 
2109 	error = fo_sendfile(fp, uap->s, hdr_uio, trl_uio, offset,
2110 	    uap->nbytes, &sbytes, uap->flags, td);
2111 	fdrop(fp, td);
2112 
2113 	if (uap->sbytes != NULL)
2114 		copyout(&sbytes, uap->sbytes, sizeof(off_t));
2115 
2116 out:
2117 	if (hdr_uio)
2118 		free(hdr_uio, M_IOV);
2119 	if (trl_uio)
2120 		free(trl_uio, M_IOV);
2121 	return (error);
2122 }
2123 
2124 #ifdef COMPAT_FREEBSD4
2125 int
2126 freebsd4_freebsd32_sendfile(struct thread *td,
2127     struct freebsd4_freebsd32_sendfile_args *uap)
2128 {
2129 	return (freebsd32_do_sendfile(td,
2130 	    (struct freebsd32_sendfile_args *)uap, 1));
2131 }
2132 #endif
2133 
2134 int
2135 freebsd32_sendfile(struct thread *td, struct freebsd32_sendfile_args *uap)
2136 {
2137 
2138 	return (freebsd32_do_sendfile(td, uap, 0));
2139 }
2140 
2141 static void
2142 copy_stat(struct stat *in, struct stat32 *out)
2143 {
2144 
2145 	CP(*in, *out, st_dev);
2146 	CP(*in, *out, st_ino);
2147 	CP(*in, *out, st_mode);
2148 	CP(*in, *out, st_nlink);
2149 	CP(*in, *out, st_uid);
2150 	CP(*in, *out, st_gid);
2151 	CP(*in, *out, st_rdev);
2152 	TS_CP(*in, *out, st_atim);
2153 	TS_CP(*in, *out, st_mtim);
2154 	TS_CP(*in, *out, st_ctim);
2155 	CP(*in, *out, st_size);
2156 	CP(*in, *out, st_blocks);
2157 	CP(*in, *out, st_blksize);
2158 	CP(*in, *out, st_flags);
2159 	CP(*in, *out, st_gen);
2160 	TS_CP(*in, *out, st_birthtim);
2161 	out->st_padding0 = 0;
2162 	out->st_padding1 = 0;
2163 #ifdef __STAT32_TIME_T_EXT
2164 	out->st_atim_ext = 0;
2165 	out->st_mtim_ext = 0;
2166 	out->st_ctim_ext = 0;
2167 	out->st_btim_ext = 0;
2168 #endif
2169 	bzero(out->st_spare, sizeof(out->st_spare));
2170 }
2171 
2172 #ifdef COMPAT_43
2173 static void
2174 copy_ostat(struct stat *in, struct ostat32 *out)
2175 {
2176 
2177 	bzero(out, sizeof(*out));
2178 	CP(*in, *out, st_dev);
2179 	CP(*in, *out, st_ino);
2180 	CP(*in, *out, st_mode);
2181 	CP(*in, *out, st_nlink);
2182 	CP(*in, *out, st_uid);
2183 	CP(*in, *out, st_gid);
2184 	CP(*in, *out, st_rdev);
2185 	out->st_size = MIN(in->st_size, INT32_MAX);
2186 	TS_CP(*in, *out, st_atim);
2187 	TS_CP(*in, *out, st_mtim);
2188 	TS_CP(*in, *out, st_ctim);
2189 	CP(*in, *out, st_blksize);
2190 	CP(*in, *out, st_blocks);
2191 	CP(*in, *out, st_flags);
2192 	CP(*in, *out, st_gen);
2193 }
2194 #endif
2195 
2196 #ifdef COMPAT_43
2197 int
2198 ofreebsd32_stat(struct thread *td, struct ofreebsd32_stat_args *uap)
2199 {
2200 	struct stat sb;
2201 	struct ostat32 sb32;
2202 	int error;
2203 
2204 	error = kern_statat(td, 0, AT_FDCWD, uap->path, UIO_USERSPACE,
2205 	    &sb, NULL);
2206 	if (error)
2207 		return (error);
2208 	copy_ostat(&sb, &sb32);
2209 	error = copyout(&sb32, uap->ub, sizeof (sb32));
2210 	return (error);
2211 }
2212 #endif
2213 
2214 int
2215 freebsd32_fstat(struct thread *td, struct freebsd32_fstat_args *uap)
2216 {
2217 	struct stat ub;
2218 	struct stat32 ub32;
2219 	int error;
2220 
2221 	error = kern_fstat(td, uap->fd, &ub);
2222 	if (error)
2223 		return (error);
2224 	copy_stat(&ub, &ub32);
2225 	error = copyout(&ub32, uap->ub, sizeof(ub32));
2226 	return (error);
2227 }
2228 
2229 #ifdef COMPAT_43
2230 int
2231 ofreebsd32_fstat(struct thread *td, struct ofreebsd32_fstat_args *uap)
2232 {
2233 	struct stat ub;
2234 	struct ostat32 ub32;
2235 	int error;
2236 
2237 	error = kern_fstat(td, uap->fd, &ub);
2238 	if (error)
2239 		return (error);
2240 	copy_ostat(&ub, &ub32);
2241 	error = copyout(&ub32, uap->ub, sizeof(ub32));
2242 	return (error);
2243 }
2244 #endif
2245 
2246 int
2247 freebsd32_fstatat(struct thread *td, struct freebsd32_fstatat_args *uap)
2248 {
2249 	struct stat ub;
2250 	struct stat32 ub32;
2251 	int error;
2252 
2253 	error = kern_statat(td, uap->flag, uap->fd, uap->path, UIO_USERSPACE,
2254 	    &ub, NULL);
2255 	if (error)
2256 		return (error);
2257 	copy_stat(&ub, &ub32);
2258 	error = copyout(&ub32, uap->buf, sizeof(ub32));
2259 	return (error);
2260 }
2261 
2262 #ifdef COMPAT_43
2263 int
2264 ofreebsd32_lstat(struct thread *td, struct ofreebsd32_lstat_args *uap)
2265 {
2266 	struct stat sb;
2267 	struct ostat32 sb32;
2268 	int error;
2269 
2270 	error = kern_statat(td, AT_SYMLINK_NOFOLLOW, AT_FDCWD, uap->path,
2271 	    UIO_USERSPACE, &sb, NULL);
2272 	if (error)
2273 		return (error);
2274 	copy_ostat(&sb, &sb32);
2275 	error = copyout(&sb32, uap->ub, sizeof (sb32));
2276 	return (error);
2277 }
2278 #endif
2279 
2280 int
2281 freebsd32_fhstat(struct thread *td, struct freebsd32_fhstat_args *uap)
2282 {
2283 	struct stat sb;
2284 	struct stat32 sb32;
2285 	struct fhandle fh;
2286 	int error;
2287 
2288 	error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t));
2289         if (error != 0)
2290                 return (error);
2291 	error = kern_fhstat(td, fh, &sb);
2292 	if (error != 0)
2293 		return (error);
2294 	copy_stat(&sb, &sb32);
2295 	error = copyout(&sb32, uap->sb, sizeof (sb32));
2296 	return (error);
2297 }
2298 
2299 #if defined(COMPAT_FREEBSD11)
2300 extern int ino64_trunc_error;
2301 
2302 static int
2303 freebsd11_cvtstat32(struct stat *in, struct freebsd11_stat32 *out)
2304 {
2305 
2306 	CP(*in, *out, st_ino);
2307 	if (in->st_ino != out->st_ino) {
2308 		switch (ino64_trunc_error) {
2309 		default:
2310 		case 0:
2311 			break;
2312 		case 1:
2313 			return (EOVERFLOW);
2314 		case 2:
2315 			out->st_ino = UINT32_MAX;
2316 			break;
2317 		}
2318 	}
2319 	CP(*in, *out, st_nlink);
2320 	if (in->st_nlink != out->st_nlink) {
2321 		switch (ino64_trunc_error) {
2322 		default:
2323 		case 0:
2324 			break;
2325 		case 1:
2326 			return (EOVERFLOW);
2327 		case 2:
2328 			out->st_nlink = UINT16_MAX;
2329 			break;
2330 		}
2331 	}
2332 	out->st_dev = in->st_dev;
2333 	if (out->st_dev != in->st_dev) {
2334 		switch (ino64_trunc_error) {
2335 		default:
2336 			break;
2337 		case 1:
2338 			return (EOVERFLOW);
2339 		}
2340 	}
2341 	CP(*in, *out, st_mode);
2342 	CP(*in, *out, st_uid);
2343 	CP(*in, *out, st_gid);
2344 	out->st_rdev = in->st_rdev;
2345 	if (out->st_rdev != in->st_rdev) {
2346 		switch (ino64_trunc_error) {
2347 		default:
2348 			break;
2349 		case 1:
2350 			return (EOVERFLOW);
2351 		}
2352 	}
2353 	TS_CP(*in, *out, st_atim);
2354 	TS_CP(*in, *out, st_mtim);
2355 	TS_CP(*in, *out, st_ctim);
2356 	CP(*in, *out, st_size);
2357 	CP(*in, *out, st_blocks);
2358 	CP(*in, *out, st_blksize);
2359 	CP(*in, *out, st_flags);
2360 	CP(*in, *out, st_gen);
2361 	TS_CP(*in, *out, st_birthtim);
2362 	out->st_lspare = 0;
2363 	bzero((char *)&out->st_birthtim + sizeof(out->st_birthtim),
2364 	    sizeof(*out) - offsetof(struct freebsd11_stat32,
2365 	    st_birthtim) - sizeof(out->st_birthtim));
2366 	return (0);
2367 }
2368 
2369 int
2370 freebsd11_freebsd32_stat(struct thread *td,
2371     struct freebsd11_freebsd32_stat_args *uap)
2372 {
2373 	struct stat sb;
2374 	struct freebsd11_stat32 sb32;
2375 	int error;
2376 
2377 	error = kern_statat(td, 0, AT_FDCWD, uap->path, UIO_USERSPACE,
2378 	    &sb, NULL);
2379 	if (error != 0)
2380 		return (error);
2381 	error = freebsd11_cvtstat32(&sb, &sb32);
2382 	if (error == 0)
2383 		error = copyout(&sb32, uap->ub, sizeof (sb32));
2384 	return (error);
2385 }
2386 
2387 int
2388 freebsd11_freebsd32_fstat(struct thread *td,
2389     struct freebsd11_freebsd32_fstat_args *uap)
2390 {
2391 	struct stat sb;
2392 	struct freebsd11_stat32 sb32;
2393 	int error;
2394 
2395 	error = kern_fstat(td, uap->fd, &sb);
2396 	if (error != 0)
2397 		return (error);
2398 	error = freebsd11_cvtstat32(&sb, &sb32);
2399 	if (error == 0)
2400 		error = copyout(&sb32, uap->ub, sizeof (sb32));
2401 	return (error);
2402 }
2403 
2404 int
2405 freebsd11_freebsd32_fstatat(struct thread *td,
2406     struct freebsd11_freebsd32_fstatat_args *uap)
2407 {
2408 	struct stat sb;
2409 	struct freebsd11_stat32 sb32;
2410 	int error;
2411 
2412 	error = kern_statat(td, uap->flag, uap->fd, uap->path, UIO_USERSPACE,
2413 	    &sb, NULL);
2414 	if (error != 0)
2415 		return (error);
2416 	error = freebsd11_cvtstat32(&sb, &sb32);
2417 	if (error == 0)
2418 		error = copyout(&sb32, uap->buf, sizeof (sb32));
2419 	return (error);
2420 }
2421 
2422 int
2423 freebsd11_freebsd32_lstat(struct thread *td,
2424     struct freebsd11_freebsd32_lstat_args *uap)
2425 {
2426 	struct stat sb;
2427 	struct freebsd11_stat32 sb32;
2428 	int error;
2429 
2430 	error = kern_statat(td, AT_SYMLINK_NOFOLLOW, AT_FDCWD, uap->path,
2431 	    UIO_USERSPACE, &sb, NULL);
2432 	if (error != 0)
2433 		return (error);
2434 	error = freebsd11_cvtstat32(&sb, &sb32);
2435 	if (error == 0)
2436 		error = copyout(&sb32, uap->ub, sizeof (sb32));
2437 	return (error);
2438 }
2439 
2440 int
2441 freebsd11_freebsd32_fhstat(struct thread *td,
2442     struct freebsd11_freebsd32_fhstat_args *uap)
2443 {
2444 	struct stat sb;
2445 	struct freebsd11_stat32 sb32;
2446 	struct fhandle fh;
2447 	int error;
2448 
2449 	error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t));
2450         if (error != 0)
2451                 return (error);
2452 	error = kern_fhstat(td, fh, &sb);
2453 	if (error != 0)
2454 		return (error);
2455 	error = freebsd11_cvtstat32(&sb, &sb32);
2456 	if (error == 0)
2457 		error = copyout(&sb32, uap->sb, sizeof (sb32));
2458 	return (error);
2459 }
2460 #endif
2461 
2462 int
2463 freebsd32___sysctl(struct thread *td, struct freebsd32___sysctl_args *uap)
2464 {
2465 	int error, name[CTL_MAXNAME];
2466 	size_t j, oldlen;
2467 	uint32_t tmp;
2468 
2469 	if (uap->namelen > CTL_MAXNAME || uap->namelen < 2)
2470 		return (EINVAL);
2471  	error = copyin(uap->name, name, uap->namelen * sizeof(int));
2472  	if (error)
2473 		return (error);
2474 	if (uap->oldlenp) {
2475 		error = fueword32(uap->oldlenp, &tmp);
2476 		oldlen = tmp;
2477 	} else {
2478 		oldlen = 0;
2479 	}
2480 	if (error != 0)
2481 		return (EFAULT);
2482 	error = userland_sysctl(td, name, uap->namelen,
2483 		uap->old, &oldlen, 1,
2484 		uap->new, uap->newlen, &j, SCTL_MASK32);
2485 	if (error)
2486 		return (error);
2487 	if (uap->oldlenp)
2488 		suword32(uap->oldlenp, j);
2489 	return (0);
2490 }
2491 
2492 int
2493 freebsd32___sysctlbyname(struct thread *td,
2494     struct freebsd32___sysctlbyname_args *uap)
2495 {
2496 	size_t oldlen, rv;
2497 	int error;
2498 	uint32_t tmp;
2499 
2500 	if (uap->oldlenp != NULL) {
2501 		error = fueword32(uap->oldlenp, &tmp);
2502 		oldlen = tmp;
2503 	} else {
2504 		error = oldlen = 0;
2505 	}
2506 	if (error != 0)
2507 		return (EFAULT);
2508 	error = kern___sysctlbyname(td, uap->name, uap->namelen, uap->old,
2509 	    &oldlen, uap->new, uap->newlen, &rv, SCTL_MASK32, 1);
2510 	if (error != 0)
2511 		return (error);
2512 	if (uap->oldlenp != NULL)
2513 		error = suword32(uap->oldlenp, rv);
2514 
2515 	return (error);
2516 }
2517 
2518 int
2519 freebsd32_jail(struct thread *td, struct freebsd32_jail_args *uap)
2520 {
2521 	uint32_t version;
2522 	int error;
2523 	struct jail j;
2524 
2525 	error = copyin(uap->jail, &version, sizeof(uint32_t));
2526 	if (error)
2527 		return (error);
2528 
2529 	switch (version) {
2530 	case 0:
2531 	{
2532 		/* FreeBSD single IPv4 jails. */
2533 		struct jail32_v0 j32_v0;
2534 
2535 		bzero(&j, sizeof(struct jail));
2536 		error = copyin(uap->jail, &j32_v0, sizeof(struct jail32_v0));
2537 		if (error)
2538 			return (error);
2539 		CP(j32_v0, j, version);
2540 		PTRIN_CP(j32_v0, j, path);
2541 		PTRIN_CP(j32_v0, j, hostname);
2542 		j.ip4s = htonl(j32_v0.ip_number);	/* jail_v0 is host order */
2543 		break;
2544 	}
2545 
2546 	case 1:
2547 		/*
2548 		 * Version 1 was used by multi-IPv4 jail implementations
2549 		 * that never made it into the official kernel.
2550 		 */
2551 		return (EINVAL);
2552 
2553 	case 2:	/* JAIL_API_VERSION */
2554 	{
2555 		/* FreeBSD multi-IPv4/IPv6,noIP jails. */
2556 		struct jail32 j32;
2557 
2558 		error = copyin(uap->jail, &j32, sizeof(struct jail32));
2559 		if (error)
2560 			return (error);
2561 		CP(j32, j, version);
2562 		PTRIN_CP(j32, j, path);
2563 		PTRIN_CP(j32, j, hostname);
2564 		PTRIN_CP(j32, j, jailname);
2565 		CP(j32, j, ip4s);
2566 		CP(j32, j, ip6s);
2567 		PTRIN_CP(j32, j, ip4);
2568 		PTRIN_CP(j32, j, ip6);
2569 		break;
2570 	}
2571 
2572 	default:
2573 		/* Sci-Fi jails are not supported, sorry. */
2574 		return (EINVAL);
2575 	}
2576 	return (kern_jail(td, &j));
2577 }
2578 
2579 int
2580 freebsd32_jail_set(struct thread *td, struct freebsd32_jail_set_args *uap)
2581 {
2582 	struct uio *auio;
2583 	int error;
2584 
2585 	/* Check that we have an even number of iovecs. */
2586 	if (uap->iovcnt & 1)
2587 		return (EINVAL);
2588 
2589 	error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio);
2590 	if (error)
2591 		return (error);
2592 	error = kern_jail_set(td, auio, uap->flags);
2593 	free(auio, M_IOV);
2594 	return (error);
2595 }
2596 
2597 int
2598 freebsd32_jail_get(struct thread *td, struct freebsd32_jail_get_args *uap)
2599 {
2600 	struct iovec32 iov32;
2601 	struct uio *auio;
2602 	int error, i;
2603 
2604 	/* Check that we have an even number of iovecs. */
2605 	if (uap->iovcnt & 1)
2606 		return (EINVAL);
2607 
2608 	error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio);
2609 	if (error)
2610 		return (error);
2611 	error = kern_jail_get(td, auio, uap->flags);
2612 	if (error == 0)
2613 		for (i = 0; i < uap->iovcnt; i++) {
2614 			PTROUT_CP(auio->uio_iov[i], iov32, iov_base);
2615 			CP(auio->uio_iov[i], iov32, iov_len);
2616 			error = copyout(&iov32, uap->iovp + i, sizeof(iov32));
2617 			if (error != 0)
2618 				break;
2619 		}
2620 	free(auio, M_IOV);
2621 	return (error);
2622 }
2623 
2624 int
2625 freebsd32_sigaction(struct thread *td, struct freebsd32_sigaction_args *uap)
2626 {
2627 	struct sigaction32 s32;
2628 	struct sigaction sa, osa, *sap;
2629 	int error;
2630 
2631 	if (uap->act) {
2632 		error = copyin(uap->act, &s32, sizeof(s32));
2633 		if (error)
2634 			return (error);
2635 		sa.sa_handler = PTRIN(s32.sa_u);
2636 		CP(s32, sa, sa_flags);
2637 		CP(s32, sa, sa_mask);
2638 		sap = &sa;
2639 	} else
2640 		sap = NULL;
2641 	error = kern_sigaction(td, uap->sig, sap, &osa, 0);
2642 	if (error == 0 && uap->oact != NULL) {
2643 		s32.sa_u = PTROUT(osa.sa_handler);
2644 		CP(osa, s32, sa_flags);
2645 		CP(osa, s32, sa_mask);
2646 		error = copyout(&s32, uap->oact, sizeof(s32));
2647 	}
2648 	return (error);
2649 }
2650 
2651 #ifdef COMPAT_FREEBSD4
2652 int
2653 freebsd4_freebsd32_sigaction(struct thread *td,
2654 			     struct freebsd4_freebsd32_sigaction_args *uap)
2655 {
2656 	struct sigaction32 s32;
2657 	struct sigaction sa, osa, *sap;
2658 	int error;
2659 
2660 	if (uap->act) {
2661 		error = copyin(uap->act, &s32, sizeof(s32));
2662 		if (error)
2663 			return (error);
2664 		sa.sa_handler = PTRIN(s32.sa_u);
2665 		CP(s32, sa, sa_flags);
2666 		CP(s32, sa, sa_mask);
2667 		sap = &sa;
2668 	} else
2669 		sap = NULL;
2670 	error = kern_sigaction(td, uap->sig, sap, &osa, KSA_FREEBSD4);
2671 	if (error == 0 && uap->oact != NULL) {
2672 		s32.sa_u = PTROUT(osa.sa_handler);
2673 		CP(osa, s32, sa_flags);
2674 		CP(osa, s32, sa_mask);
2675 		error = copyout(&s32, uap->oact, sizeof(s32));
2676 	}
2677 	return (error);
2678 }
2679 #endif
2680 
2681 #ifdef COMPAT_43
2682 struct osigaction32 {
2683 	u_int32_t	sa_u;
2684 	osigset_t	sa_mask;
2685 	int		sa_flags;
2686 };
2687 
2688 #define	ONSIG	32
2689 
2690 int
2691 ofreebsd32_sigaction(struct thread *td,
2692 			     struct ofreebsd32_sigaction_args *uap)
2693 {
2694 	struct osigaction32 s32;
2695 	struct sigaction sa, osa, *sap;
2696 	int error;
2697 
2698 	if (uap->signum <= 0 || uap->signum >= ONSIG)
2699 		return (EINVAL);
2700 
2701 	if (uap->nsa) {
2702 		error = copyin(uap->nsa, &s32, sizeof(s32));
2703 		if (error)
2704 			return (error);
2705 		sa.sa_handler = PTRIN(s32.sa_u);
2706 		CP(s32, sa, sa_flags);
2707 		OSIG2SIG(s32.sa_mask, sa.sa_mask);
2708 		sap = &sa;
2709 	} else
2710 		sap = NULL;
2711 	error = kern_sigaction(td, uap->signum, sap, &osa, KSA_OSIGSET);
2712 	if (error == 0 && uap->osa != NULL) {
2713 		s32.sa_u = PTROUT(osa.sa_handler);
2714 		CP(osa, s32, sa_flags);
2715 		SIG2OSIG(osa.sa_mask, s32.sa_mask);
2716 		error = copyout(&s32, uap->osa, sizeof(s32));
2717 	}
2718 	return (error);
2719 }
2720 
2721 int
2722 ofreebsd32_sigprocmask(struct thread *td,
2723 			       struct ofreebsd32_sigprocmask_args *uap)
2724 {
2725 	sigset_t set, oset;
2726 	int error;
2727 
2728 	OSIG2SIG(uap->mask, set);
2729 	error = kern_sigprocmask(td, uap->how, &set, &oset, SIGPROCMASK_OLD);
2730 	SIG2OSIG(oset, td->td_retval[0]);
2731 	return (error);
2732 }
2733 
2734 int
2735 ofreebsd32_sigpending(struct thread *td,
2736 			      struct ofreebsd32_sigpending_args *uap)
2737 {
2738 	struct proc *p = td->td_proc;
2739 	sigset_t siglist;
2740 
2741 	PROC_LOCK(p);
2742 	siglist = p->p_siglist;
2743 	SIGSETOR(siglist, td->td_siglist);
2744 	PROC_UNLOCK(p);
2745 	SIG2OSIG(siglist, td->td_retval[0]);
2746 	return (0);
2747 }
2748 
2749 struct sigvec32 {
2750 	u_int32_t	sv_handler;
2751 	int		sv_mask;
2752 	int		sv_flags;
2753 };
2754 
2755 int
2756 ofreebsd32_sigvec(struct thread *td,
2757 			  struct ofreebsd32_sigvec_args *uap)
2758 {
2759 	struct sigvec32 vec;
2760 	struct sigaction sa, osa, *sap;
2761 	int error;
2762 
2763 	if (uap->signum <= 0 || uap->signum >= ONSIG)
2764 		return (EINVAL);
2765 
2766 	if (uap->nsv) {
2767 		error = copyin(uap->nsv, &vec, sizeof(vec));
2768 		if (error)
2769 			return (error);
2770 		sa.sa_handler = PTRIN(vec.sv_handler);
2771 		OSIG2SIG(vec.sv_mask, sa.sa_mask);
2772 		sa.sa_flags = vec.sv_flags;
2773 		sa.sa_flags ^= SA_RESTART;
2774 		sap = &sa;
2775 	} else
2776 		sap = NULL;
2777 	error = kern_sigaction(td, uap->signum, sap, &osa, KSA_OSIGSET);
2778 	if (error == 0 && uap->osv != NULL) {
2779 		vec.sv_handler = PTROUT(osa.sa_handler);
2780 		SIG2OSIG(osa.sa_mask, vec.sv_mask);
2781 		vec.sv_flags = osa.sa_flags;
2782 		vec.sv_flags &= ~SA_NOCLDWAIT;
2783 		vec.sv_flags ^= SA_RESTART;
2784 		error = copyout(&vec, uap->osv, sizeof(vec));
2785 	}
2786 	return (error);
2787 }
2788 
2789 int
2790 ofreebsd32_sigblock(struct thread *td,
2791 			    struct ofreebsd32_sigblock_args *uap)
2792 {
2793 	sigset_t set, oset;
2794 
2795 	OSIG2SIG(uap->mask, set);
2796 	kern_sigprocmask(td, SIG_BLOCK, &set, &oset, 0);
2797 	SIG2OSIG(oset, td->td_retval[0]);
2798 	return (0);
2799 }
2800 
2801 int
2802 ofreebsd32_sigsetmask(struct thread *td,
2803 			      struct ofreebsd32_sigsetmask_args *uap)
2804 {
2805 	sigset_t set, oset;
2806 
2807 	OSIG2SIG(uap->mask, set);
2808 	kern_sigprocmask(td, SIG_SETMASK, &set, &oset, 0);
2809 	SIG2OSIG(oset, td->td_retval[0]);
2810 	return (0);
2811 }
2812 
2813 int
2814 ofreebsd32_sigsuspend(struct thread *td,
2815 			      struct ofreebsd32_sigsuspend_args *uap)
2816 {
2817 	sigset_t mask;
2818 
2819 	OSIG2SIG(uap->mask, mask);
2820 	return (kern_sigsuspend(td, mask));
2821 }
2822 
2823 struct sigstack32 {
2824 	u_int32_t	ss_sp;
2825 	int		ss_onstack;
2826 };
2827 
2828 int
2829 ofreebsd32_sigstack(struct thread *td,
2830 			    struct ofreebsd32_sigstack_args *uap)
2831 {
2832 	struct sigstack32 s32;
2833 	struct sigstack nss, oss;
2834 	int error = 0, unss;
2835 
2836 	if (uap->nss != NULL) {
2837 		error = copyin(uap->nss, &s32, sizeof(s32));
2838 		if (error)
2839 			return (error);
2840 		nss.ss_sp = PTRIN(s32.ss_sp);
2841 		CP(s32, nss, ss_onstack);
2842 		unss = 1;
2843 	} else {
2844 		unss = 0;
2845 	}
2846 	oss.ss_sp = td->td_sigstk.ss_sp;
2847 	oss.ss_onstack = sigonstack(cpu_getstack(td));
2848 	if (unss) {
2849 		td->td_sigstk.ss_sp = nss.ss_sp;
2850 		td->td_sigstk.ss_size = 0;
2851 		td->td_sigstk.ss_flags |= (nss.ss_onstack & SS_ONSTACK);
2852 		td->td_pflags |= TDP_ALTSTACK;
2853 	}
2854 	if (uap->oss != NULL) {
2855 		s32.ss_sp = PTROUT(oss.ss_sp);
2856 		CP(oss, s32, ss_onstack);
2857 		error = copyout(&s32, uap->oss, sizeof(s32));
2858 	}
2859 	return (error);
2860 }
2861 #endif
2862 
2863 int
2864 freebsd32_nanosleep(struct thread *td, struct freebsd32_nanosleep_args *uap)
2865 {
2866 
2867 	return (freebsd32_user_clock_nanosleep(td, CLOCK_REALTIME,
2868 	    TIMER_RELTIME, uap->rqtp, uap->rmtp));
2869 }
2870 
2871 int
2872 freebsd32_clock_nanosleep(struct thread *td,
2873     struct freebsd32_clock_nanosleep_args *uap)
2874 {
2875 	int error;
2876 
2877 	error = freebsd32_user_clock_nanosleep(td, uap->clock_id, uap->flags,
2878 	    uap->rqtp, uap->rmtp);
2879 	return (kern_posix_error(td, error));
2880 }
2881 
2882 static int
2883 freebsd32_user_clock_nanosleep(struct thread *td, clockid_t clock_id,
2884     int flags, const struct timespec32 *ua_rqtp, struct timespec32 *ua_rmtp)
2885 {
2886 	struct timespec32 rmt32, rqt32;
2887 	struct timespec rmt, rqt;
2888 	int error, error2;
2889 
2890 	error = copyin(ua_rqtp, &rqt32, sizeof(rqt32));
2891 	if (error)
2892 		return (error);
2893 
2894 	CP(rqt32, rqt, tv_sec);
2895 	CP(rqt32, rqt, tv_nsec);
2896 
2897 	error = kern_clock_nanosleep(td, clock_id, flags, &rqt, &rmt);
2898 	if (error == EINTR && ua_rmtp != NULL && (flags & TIMER_ABSTIME) == 0) {
2899 		CP(rmt, rmt32, tv_sec);
2900 		CP(rmt, rmt32, tv_nsec);
2901 
2902 		error2 = copyout(&rmt32, ua_rmtp, sizeof(rmt32));
2903 		if (error2 != 0)
2904 			error = error2;
2905 	}
2906 	return (error);
2907 }
2908 
2909 int
2910 freebsd32_clock_gettime(struct thread *td,
2911 			struct freebsd32_clock_gettime_args *uap)
2912 {
2913 	struct timespec	ats;
2914 	struct timespec32 ats32;
2915 	int error;
2916 
2917 	error = kern_clock_gettime(td, uap->clock_id, &ats);
2918 	if (error == 0) {
2919 		CP(ats, ats32, tv_sec);
2920 		CP(ats, ats32, tv_nsec);
2921 		error = copyout(&ats32, uap->tp, sizeof(ats32));
2922 	}
2923 	return (error);
2924 }
2925 
2926 int
2927 freebsd32_clock_settime(struct thread *td,
2928 			struct freebsd32_clock_settime_args *uap)
2929 {
2930 	struct timespec	ats;
2931 	struct timespec32 ats32;
2932 	int error;
2933 
2934 	error = copyin(uap->tp, &ats32, sizeof(ats32));
2935 	if (error)
2936 		return (error);
2937 	CP(ats32, ats, tv_sec);
2938 	CP(ats32, ats, tv_nsec);
2939 
2940 	return (kern_clock_settime(td, uap->clock_id, &ats));
2941 }
2942 
2943 int
2944 freebsd32_clock_getres(struct thread *td,
2945 		       struct freebsd32_clock_getres_args *uap)
2946 {
2947 	struct timespec	ts;
2948 	struct timespec32 ts32;
2949 	int error;
2950 
2951 	if (uap->tp == NULL)
2952 		return (0);
2953 	error = kern_clock_getres(td, uap->clock_id, &ts);
2954 	if (error == 0) {
2955 		CP(ts, ts32, tv_sec);
2956 		CP(ts, ts32, tv_nsec);
2957 		error = copyout(&ts32, uap->tp, sizeof(ts32));
2958 	}
2959 	return (error);
2960 }
2961 
2962 int freebsd32_ktimer_create(struct thread *td,
2963     struct freebsd32_ktimer_create_args *uap)
2964 {
2965 	struct sigevent32 ev32;
2966 	struct sigevent ev, *evp;
2967 	int error, id;
2968 
2969 	if (uap->evp == NULL) {
2970 		evp = NULL;
2971 	} else {
2972 		evp = &ev;
2973 		error = copyin(uap->evp, &ev32, sizeof(ev32));
2974 		if (error != 0)
2975 			return (error);
2976 		error = convert_sigevent32(&ev32, &ev);
2977 		if (error != 0)
2978 			return (error);
2979 	}
2980 	error = kern_ktimer_create(td, uap->clock_id, evp, &id, -1);
2981 	if (error == 0) {
2982 		error = copyout(&id, uap->timerid, sizeof(int));
2983 		if (error != 0)
2984 			kern_ktimer_delete(td, id);
2985 	}
2986 	return (error);
2987 }
2988 
2989 int
2990 freebsd32_ktimer_settime(struct thread *td,
2991     struct freebsd32_ktimer_settime_args *uap)
2992 {
2993 	struct itimerspec32 val32, oval32;
2994 	struct itimerspec val, oval, *ovalp;
2995 	int error;
2996 
2997 	error = copyin(uap->value, &val32, sizeof(val32));
2998 	if (error != 0)
2999 		return (error);
3000 	ITS_CP(val32, val);
3001 	ovalp = uap->ovalue != NULL ? &oval : NULL;
3002 	error = kern_ktimer_settime(td, uap->timerid, uap->flags, &val, ovalp);
3003 	if (error == 0 && uap->ovalue != NULL) {
3004 		ITS_CP(oval, oval32);
3005 		error = copyout(&oval32, uap->ovalue, sizeof(oval32));
3006 	}
3007 	return (error);
3008 }
3009 
3010 int
3011 freebsd32_ktimer_gettime(struct thread *td,
3012     struct freebsd32_ktimer_gettime_args *uap)
3013 {
3014 	struct itimerspec32 val32;
3015 	struct itimerspec val;
3016 	int error;
3017 
3018 	error = kern_ktimer_gettime(td, uap->timerid, &val);
3019 	if (error == 0) {
3020 		ITS_CP(val, val32);
3021 		error = copyout(&val32, uap->value, sizeof(val32));
3022 	}
3023 	return (error);
3024 }
3025 
3026 int
3027 freebsd32_clock_getcpuclockid2(struct thread *td,
3028     struct freebsd32_clock_getcpuclockid2_args *uap)
3029 {
3030 	clockid_t clk_id;
3031 	int error;
3032 
3033 	error = kern_clock_getcpuclockid2(td, PAIR32TO64(id_t, uap->id),
3034 	    uap->which, &clk_id);
3035 	if (error == 0)
3036 		error = copyout(&clk_id, uap->clock_id, sizeof(clockid_t));
3037 	return (error);
3038 }
3039 
3040 int
3041 freebsd32_thr_new(struct thread *td,
3042 		  struct freebsd32_thr_new_args *uap)
3043 {
3044 	struct thr_param32 param32;
3045 	struct thr_param param;
3046 	int error;
3047 
3048 	if (uap->param_size < 0 ||
3049 	    uap->param_size > sizeof(struct thr_param32))
3050 		return (EINVAL);
3051 	bzero(&param, sizeof(struct thr_param));
3052 	bzero(&param32, sizeof(struct thr_param32));
3053 	error = copyin(uap->param, &param32, uap->param_size);
3054 	if (error != 0)
3055 		return (error);
3056 	param.start_func = PTRIN(param32.start_func);
3057 	param.arg = PTRIN(param32.arg);
3058 	param.stack_base = PTRIN(param32.stack_base);
3059 	param.stack_size = param32.stack_size;
3060 	param.tls_base = PTRIN(param32.tls_base);
3061 	param.tls_size = param32.tls_size;
3062 	param.child_tid = PTRIN(param32.child_tid);
3063 	param.parent_tid = PTRIN(param32.parent_tid);
3064 	param.flags = param32.flags;
3065 	param.rtp = PTRIN(param32.rtp);
3066 	param.spare[0] = PTRIN(param32.spare[0]);
3067 	param.spare[1] = PTRIN(param32.spare[1]);
3068 	param.spare[2] = PTRIN(param32.spare[2]);
3069 
3070 	return (kern_thr_new(td, &param));
3071 }
3072 
3073 int
3074 freebsd32_thr_suspend(struct thread *td, struct freebsd32_thr_suspend_args *uap)
3075 {
3076 	struct timespec32 ts32;
3077 	struct timespec ts, *tsp;
3078 	int error;
3079 
3080 	error = 0;
3081 	tsp = NULL;
3082 	if (uap->timeout != NULL) {
3083 		error = copyin((const void *)uap->timeout, (void *)&ts32,
3084 		    sizeof(struct timespec32));
3085 		if (error != 0)
3086 			return (error);
3087 		ts.tv_sec = ts32.tv_sec;
3088 		ts.tv_nsec = ts32.tv_nsec;
3089 		tsp = &ts;
3090 	}
3091 	return (kern_thr_suspend(td, tsp));
3092 }
3093 
3094 void
3095 siginfo_to_siginfo32(const siginfo_t *src, struct siginfo32 *dst)
3096 {
3097 	bzero(dst, sizeof(*dst));
3098 	dst->si_signo = src->si_signo;
3099 	dst->si_errno = src->si_errno;
3100 	dst->si_code = src->si_code;
3101 	dst->si_pid = src->si_pid;
3102 	dst->si_uid = src->si_uid;
3103 	dst->si_status = src->si_status;
3104 	dst->si_addr = (uintptr_t)src->si_addr;
3105 	dst->si_value.sival_int = src->si_value.sival_int;
3106 	dst->si_timerid = src->si_timerid;
3107 	dst->si_overrun = src->si_overrun;
3108 }
3109 
3110 #ifndef _FREEBSD32_SYSPROTO_H_
3111 struct freebsd32_sigqueue_args {
3112         pid_t pid;
3113         int signum;
3114         /* union sigval32 */ int value;
3115 };
3116 #endif
3117 int
3118 freebsd32_sigqueue(struct thread *td, struct freebsd32_sigqueue_args *uap)
3119 {
3120 	union sigval sv;
3121 
3122 	/*
3123 	 * On 32-bit ABIs, sival_int and sival_ptr are the same.
3124 	 * On 64-bit little-endian ABIs, the low bits are the same.
3125 	 * In 64-bit big-endian ABIs, sival_int overlaps with
3126 	 * sival_ptr's HIGH bits.  We choose to support sival_int
3127 	 * rather than sival_ptr in this case as it seems to be
3128 	 * more common.
3129 	 */
3130 	bzero(&sv, sizeof(sv));
3131 	sv.sival_int = uap->value;
3132 
3133 	return (kern_sigqueue(td, uap->pid, uap->signum, &sv));
3134 }
3135 
3136 int
3137 freebsd32_sigtimedwait(struct thread *td, struct freebsd32_sigtimedwait_args *uap)
3138 {
3139 	struct timespec32 ts32;
3140 	struct timespec ts;
3141 	struct timespec *timeout;
3142 	sigset_t set;
3143 	ksiginfo_t ksi;
3144 	struct siginfo32 si32;
3145 	int error;
3146 
3147 	if (uap->timeout) {
3148 		error = copyin(uap->timeout, &ts32, sizeof(ts32));
3149 		if (error)
3150 			return (error);
3151 		ts.tv_sec = ts32.tv_sec;
3152 		ts.tv_nsec = ts32.tv_nsec;
3153 		timeout = &ts;
3154 	} else
3155 		timeout = NULL;
3156 
3157 	error = copyin(uap->set, &set, sizeof(set));
3158 	if (error)
3159 		return (error);
3160 
3161 	error = kern_sigtimedwait(td, set, &ksi, timeout);
3162 	if (error)
3163 		return (error);
3164 
3165 	if (uap->info) {
3166 		siginfo_to_siginfo32(&ksi.ksi_info, &si32);
3167 		error = copyout(&si32, uap->info, sizeof(struct siginfo32));
3168 	}
3169 
3170 	if (error == 0)
3171 		td->td_retval[0] = ksi.ksi_signo;
3172 	return (error);
3173 }
3174 
3175 /*
3176  * MPSAFE
3177  */
3178 int
3179 freebsd32_sigwaitinfo(struct thread *td, struct freebsd32_sigwaitinfo_args *uap)
3180 {
3181 	ksiginfo_t ksi;
3182 	struct siginfo32 si32;
3183 	sigset_t set;
3184 	int error;
3185 
3186 	error = copyin(uap->set, &set, sizeof(set));
3187 	if (error)
3188 		return (error);
3189 
3190 	error = kern_sigtimedwait(td, set, &ksi, NULL);
3191 	if (error)
3192 		return (error);
3193 
3194 	if (uap->info) {
3195 		siginfo_to_siginfo32(&ksi.ksi_info, &si32);
3196 		error = copyout(&si32, uap->info, sizeof(struct siginfo32));
3197 	}
3198 	if (error == 0)
3199 		td->td_retval[0] = ksi.ksi_signo;
3200 	return (error);
3201 }
3202 
3203 int
3204 freebsd32_cpuset_setid(struct thread *td,
3205     struct freebsd32_cpuset_setid_args *uap)
3206 {
3207 
3208 	return (kern_cpuset_setid(td, uap->which,
3209 	    PAIR32TO64(id_t, uap->id), uap->setid));
3210 }
3211 
3212 int
3213 freebsd32_cpuset_getid(struct thread *td,
3214     struct freebsd32_cpuset_getid_args *uap)
3215 {
3216 
3217 	return (kern_cpuset_getid(td, uap->level, uap->which,
3218 	    PAIR32TO64(id_t, uap->id), uap->setid));
3219 }
3220 
3221 int
3222 freebsd32_cpuset_getaffinity(struct thread *td,
3223     struct freebsd32_cpuset_getaffinity_args *uap)
3224 {
3225 
3226 	return (kern_cpuset_getaffinity(td, uap->level, uap->which,
3227 	    PAIR32TO64(id_t,uap->id), uap->cpusetsize, uap->mask));
3228 }
3229 
3230 int
3231 freebsd32_cpuset_setaffinity(struct thread *td,
3232     struct freebsd32_cpuset_setaffinity_args *uap)
3233 {
3234 
3235 	return (kern_cpuset_setaffinity(td, uap->level, uap->which,
3236 	    PAIR32TO64(id_t,uap->id), uap->cpusetsize, uap->mask));
3237 }
3238 
3239 int
3240 freebsd32_cpuset_getdomain(struct thread *td,
3241     struct freebsd32_cpuset_getdomain_args *uap)
3242 {
3243 
3244 	return (kern_cpuset_getdomain(td, uap->level, uap->which,
3245 	    PAIR32TO64(id_t,uap->id), uap->domainsetsize, uap->mask, uap->policy));
3246 }
3247 
3248 int
3249 freebsd32_cpuset_setdomain(struct thread *td,
3250     struct freebsd32_cpuset_setdomain_args *uap)
3251 {
3252 
3253 	return (kern_cpuset_setdomain(td, uap->level, uap->which,
3254 	    PAIR32TO64(id_t,uap->id), uap->domainsetsize, uap->mask, uap->policy));
3255 }
3256 
3257 int
3258 freebsd32_nmount(struct thread *td,
3259     struct freebsd32_nmount_args /* {
3260     	struct iovec *iovp;
3261     	unsigned int iovcnt;
3262     	int flags;
3263     } */ *uap)
3264 {
3265 	struct uio *auio;
3266 	uint64_t flags;
3267 	int error;
3268 
3269 	/*
3270 	 * Mount flags are now 64-bits. On 32-bit archtectures only
3271 	 * 32-bits are passed in, but from here on everything handles
3272 	 * 64-bit flags correctly.
3273 	 */
3274 	flags = uap->flags;
3275 
3276 	AUDIT_ARG_FFLAGS(flags);
3277 
3278 	/*
3279 	 * Filter out MNT_ROOTFS.  We do not want clients of nmount() in
3280 	 * userspace to set this flag, but we must filter it out if we want
3281 	 * MNT_UPDATE on the root file system to work.
3282 	 * MNT_ROOTFS should only be set by the kernel when mounting its
3283 	 * root file system.
3284 	 */
3285 	flags &= ~MNT_ROOTFS;
3286 
3287 	/*
3288 	 * check that we have an even number of iovec's
3289 	 * and that we have at least two options.
3290 	 */
3291 	if ((uap->iovcnt & 1) || (uap->iovcnt < 4))
3292 		return (EINVAL);
3293 
3294 	error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio);
3295 	if (error)
3296 		return (error);
3297 	error = vfs_donmount(td, flags, auio);
3298 
3299 	free(auio, M_IOV);
3300 	return error;
3301 }
3302 
3303 #if 0
3304 int
3305 freebsd32_xxx(struct thread *td, struct freebsd32_xxx_args *uap)
3306 {
3307 	struct yyy32 *p32, s32;
3308 	struct yyy *p = NULL, s;
3309 	struct xxx_arg ap;
3310 	int error;
3311 
3312 	if (uap->zzz) {
3313 		error = copyin(uap->zzz, &s32, sizeof(s32));
3314 		if (error)
3315 			return (error);
3316 		/* translate in */
3317 		p = &s;
3318 	}
3319 	error = kern_xxx(td, p);
3320 	if (error)
3321 		return (error);
3322 	if (uap->zzz) {
3323 		/* translate out */
3324 		error = copyout(&s32, p32, sizeof(s32));
3325 	}
3326 	return (error);
3327 }
3328 #endif
3329 
3330 int
3331 syscall32_module_handler(struct module *mod, int what, void *arg)
3332 {
3333 
3334 	return (kern_syscall_module_handler(freebsd32_sysent, mod, what, arg));
3335 }
3336 
3337 int
3338 syscall32_helper_register(struct syscall_helper_data *sd, int flags)
3339 {
3340 
3341 	return (kern_syscall_helper_register(freebsd32_sysent, sd, flags));
3342 }
3343 
3344 int
3345 syscall32_helper_unregister(struct syscall_helper_data *sd)
3346 {
3347 
3348 	return (kern_syscall_helper_unregister(freebsd32_sysent, sd));
3349 }
3350 
3351 int
3352 freebsd32_copyout_strings(struct image_params *imgp, uintptr_t *stack_base)
3353 {
3354 	int argc, envc, i;
3355 	u_int32_t *vectp;
3356 	char *stringp;
3357 	uintptr_t destp, ustringp;
3358 	struct freebsd32_ps_strings *arginfo;
3359 	char canary[sizeof(long) * 8];
3360 	int32_t pagesizes32[MAXPAGESIZES];
3361 	size_t execpath_len;
3362 	int error, szsigcode;
3363 
3364 	/*
3365 	 * Calculate string base and vector table pointers.
3366 	 * Also deal with signal trampoline code for this exec type.
3367 	 */
3368 	if (imgp->execpath != NULL && imgp->auxargs != NULL)
3369 		execpath_len = strlen(imgp->execpath) + 1;
3370 	else
3371 		execpath_len = 0;
3372 	arginfo = (struct freebsd32_ps_strings *)curproc->p_sysent->
3373 	    sv_psstrings;
3374 	imgp->ps_strings = arginfo;
3375 	if (imgp->proc->p_sysent->sv_sigcode_base == 0)
3376 		szsigcode = *(imgp->proc->p_sysent->sv_szsigcode);
3377 	else
3378 		szsigcode = 0;
3379 	destp =	(uintptr_t)arginfo;
3380 
3381 	/*
3382 	 * install sigcode
3383 	 */
3384 	if (szsigcode != 0) {
3385 		destp -= szsigcode;
3386 		destp = rounddown2(destp, sizeof(uint32_t));
3387 		error = copyout(imgp->proc->p_sysent->sv_sigcode, (void *)destp,
3388 		    szsigcode);
3389 		if (error != 0)
3390 			return (error);
3391 	}
3392 
3393 	/*
3394 	 * Copy the image path for the rtld.
3395 	 */
3396 	if (execpath_len != 0) {
3397 		destp -= execpath_len;
3398 		imgp->execpathp = (void *)destp;
3399 		error = copyout(imgp->execpath, imgp->execpathp, execpath_len);
3400 		if (error != 0)
3401 			return (error);
3402 	}
3403 
3404 	/*
3405 	 * Prepare the canary for SSP.
3406 	 */
3407 	arc4rand(canary, sizeof(canary), 0);
3408 	destp -= sizeof(canary);
3409 	imgp->canary = (void *)destp;
3410 	error = copyout(canary, imgp->canary, sizeof(canary));
3411 	if (error != 0)
3412 		return (error);
3413 	imgp->canarylen = sizeof(canary);
3414 
3415 	/*
3416 	 * Prepare the pagesizes array.
3417 	 */
3418 	for (i = 0; i < MAXPAGESIZES; i++)
3419 		pagesizes32[i] = (uint32_t)pagesizes[i];
3420 	destp -= sizeof(pagesizes32);
3421 	destp = rounddown2(destp, sizeof(uint32_t));
3422 	imgp->pagesizes = (void *)destp;
3423 	error = copyout(pagesizes32, imgp->pagesizes, sizeof(pagesizes32));
3424 	if (error != 0)
3425 		return (error);
3426 	imgp->pagesizeslen = sizeof(pagesizes32);
3427 
3428 	/*
3429 	 * Allocate room for the argument and environment strings.
3430 	 */
3431 	destp -= ARG_MAX - imgp->args->stringspace;
3432 	destp = rounddown2(destp, sizeof(uint32_t));
3433 	ustringp = destp;
3434 
3435 	exec_stackgap(imgp, &destp);
3436 
3437 	if (imgp->auxargs) {
3438 		/*
3439 		 * Allocate room on the stack for the ELF auxargs
3440 		 * array.  It has up to AT_COUNT entries.
3441 		 */
3442 		destp -= AT_COUNT * sizeof(Elf32_Auxinfo);
3443 		destp = rounddown2(destp, sizeof(uint32_t));
3444 	}
3445 
3446 	vectp = (uint32_t *)destp;
3447 
3448 	/*
3449 	 * Allocate room for the argv[] and env vectors including the
3450 	 * terminating NULL pointers.
3451 	 */
3452 	vectp -= imgp->args->argc + 1 + imgp->args->envc + 1;
3453 
3454 	/*
3455 	 * vectp also becomes our initial stack base
3456 	 */
3457 	*stack_base = (uintptr_t)vectp;
3458 
3459 	stringp = imgp->args->begin_argv;
3460 	argc = imgp->args->argc;
3461 	envc = imgp->args->envc;
3462 	/*
3463 	 * Copy out strings - arguments and environment.
3464 	 */
3465 	error = copyout(stringp, (void *)ustringp,
3466 	    ARG_MAX - imgp->args->stringspace);
3467 	if (error != 0)
3468 		return (error);
3469 
3470 	/*
3471 	 * Fill in "ps_strings" struct for ps, w, etc.
3472 	 */
3473 	imgp->argv = vectp;
3474 	if (suword32(&arginfo->ps_argvstr, (u_int32_t)(intptr_t)vectp) != 0 ||
3475 	    suword32(&arginfo->ps_nargvstr, argc) != 0)
3476 		return (EFAULT);
3477 
3478 	/*
3479 	 * Fill in argument portion of vector table.
3480 	 */
3481 	for (; argc > 0; --argc) {
3482 		if (suword32(vectp++, ustringp) != 0)
3483 			return (EFAULT);
3484 		while (*stringp++ != 0)
3485 			ustringp++;
3486 		ustringp++;
3487 	}
3488 
3489 	/* a null vector table pointer separates the argp's from the envp's */
3490 	if (suword32(vectp++, 0) != 0)
3491 		return (EFAULT);
3492 
3493 	imgp->envv = vectp;
3494 	if (suword32(&arginfo->ps_envstr, (u_int32_t)(intptr_t)vectp) != 0 ||
3495 	    suword32(&arginfo->ps_nenvstr, envc) != 0)
3496 		return (EFAULT);
3497 
3498 	/*
3499 	 * Fill in environment portion of vector table.
3500 	 */
3501 	for (; envc > 0; --envc) {
3502 		if (suword32(vectp++, ustringp) != 0)
3503 			return (EFAULT);
3504 		while (*stringp++ != 0)
3505 			ustringp++;
3506 		ustringp++;
3507 	}
3508 
3509 	/* end of vector table is a null pointer */
3510 	if (suword32(vectp, 0) != 0)
3511 		return (EFAULT);
3512 
3513 	if (imgp->auxargs) {
3514 		vectp++;
3515 		error = imgp->sysent->sv_copyout_auxargs(imgp,
3516 		    (uintptr_t)vectp);
3517 		if (error != 0)
3518 			return (error);
3519 	}
3520 
3521 	return (0);
3522 }
3523 
3524 int
3525 freebsd32_kldstat(struct thread *td, struct freebsd32_kldstat_args *uap)
3526 {
3527 	struct kld_file_stat *stat;
3528 	struct kld32_file_stat *stat32;
3529 	int error, version;
3530 
3531 	if ((error = copyin(&uap->stat->version, &version, sizeof(version)))
3532 	    != 0)
3533 		return (error);
3534 	if (version != sizeof(struct kld32_file_stat_1) &&
3535 	    version != sizeof(struct kld32_file_stat))
3536 		return (EINVAL);
3537 
3538 	stat = malloc(sizeof(*stat), M_TEMP, M_WAITOK | M_ZERO);
3539 	stat32 = malloc(sizeof(*stat32), M_TEMP, M_WAITOK | M_ZERO);
3540 	error = kern_kldstat(td, uap->fileid, stat);
3541 	if (error == 0) {
3542 		bcopy(&stat->name[0], &stat32->name[0], sizeof(stat->name));
3543 		CP(*stat, *stat32, refs);
3544 		CP(*stat, *stat32, id);
3545 		PTROUT_CP(*stat, *stat32, address);
3546 		CP(*stat, *stat32, size);
3547 		bcopy(&stat->pathname[0], &stat32->pathname[0],
3548 		    sizeof(stat->pathname));
3549 		stat32->version  = version;
3550 		error = copyout(stat32, uap->stat, version);
3551 	}
3552 	free(stat, M_TEMP);
3553 	free(stat32, M_TEMP);
3554 	return (error);
3555 }
3556 
3557 int
3558 freebsd32_posix_fallocate(struct thread *td,
3559     struct freebsd32_posix_fallocate_args *uap)
3560 {
3561 	int error;
3562 
3563 	error = kern_posix_fallocate(td, uap->fd,
3564 	    PAIR32TO64(off_t, uap->offset), PAIR32TO64(off_t, uap->len));
3565 	return (kern_posix_error(td, error));
3566 }
3567 
3568 int
3569 freebsd32_posix_fadvise(struct thread *td,
3570     struct freebsd32_posix_fadvise_args *uap)
3571 {
3572 	int error;
3573 
3574 	error = kern_posix_fadvise(td, uap->fd, PAIR32TO64(off_t, uap->offset),
3575 	    PAIR32TO64(off_t, uap->len), uap->advice);
3576 	return (kern_posix_error(td, error));
3577 }
3578 
3579 int
3580 convert_sigevent32(struct sigevent32 *sig32, struct sigevent *sig)
3581 {
3582 
3583 	CP(*sig32, *sig, sigev_notify);
3584 	switch (sig->sigev_notify) {
3585 	case SIGEV_NONE:
3586 		break;
3587 	case SIGEV_THREAD_ID:
3588 		CP(*sig32, *sig, sigev_notify_thread_id);
3589 		/* FALLTHROUGH */
3590 	case SIGEV_SIGNAL:
3591 		CP(*sig32, *sig, sigev_signo);
3592 		PTRIN_CP(*sig32, *sig, sigev_value.sival_ptr);
3593 		break;
3594 	case SIGEV_KEVENT:
3595 		CP(*sig32, *sig, sigev_notify_kqueue);
3596 		CP(*sig32, *sig, sigev_notify_kevent_flags);
3597 		PTRIN_CP(*sig32, *sig, sigev_value.sival_ptr);
3598 		break;
3599 	default:
3600 		return (EINVAL);
3601 	}
3602 	return (0);
3603 }
3604 
3605 int
3606 freebsd32_procctl(struct thread *td, struct freebsd32_procctl_args *uap)
3607 {
3608 	void *data;
3609 	union {
3610 		struct procctl_reaper_status rs;
3611 		struct procctl_reaper_pids rp;
3612 		struct procctl_reaper_kill rk;
3613 	} x;
3614 	union {
3615 		struct procctl_reaper_pids32 rp;
3616 	} x32;
3617 	int error, error1, flags, signum;
3618 
3619 	if (uap->com >= PROC_PROCCTL_MD_MIN)
3620 		return (cpu_procctl(td, uap->idtype, PAIR32TO64(id_t, uap->id),
3621 		    uap->com, PTRIN(uap->data)));
3622 
3623 	switch (uap->com) {
3624 	case PROC_ASLR_CTL:
3625 	case PROC_PROTMAX_CTL:
3626 	case PROC_SPROTECT:
3627 	case PROC_STACKGAP_CTL:
3628 	case PROC_TRACE_CTL:
3629 	case PROC_TRAPCAP_CTL:
3630 	case PROC_NO_NEW_PRIVS_CTL:
3631 	case PROC_WXMAP_CTL:
3632 		error = copyin(PTRIN(uap->data), &flags, sizeof(flags));
3633 		if (error != 0)
3634 			return (error);
3635 		data = &flags;
3636 		break;
3637 	case PROC_REAP_ACQUIRE:
3638 	case PROC_REAP_RELEASE:
3639 		if (uap->data != NULL)
3640 			return (EINVAL);
3641 		data = NULL;
3642 		break;
3643 	case PROC_REAP_STATUS:
3644 		data = &x.rs;
3645 		break;
3646 	case PROC_REAP_GETPIDS:
3647 		error = copyin(uap->data, &x32.rp, sizeof(x32.rp));
3648 		if (error != 0)
3649 			return (error);
3650 		CP(x32.rp, x.rp, rp_count);
3651 		PTRIN_CP(x32.rp, x.rp, rp_pids);
3652 		data = &x.rp;
3653 		break;
3654 	case PROC_REAP_KILL:
3655 		error = copyin(uap->data, &x.rk, sizeof(x.rk));
3656 		if (error != 0)
3657 			return (error);
3658 		data = &x.rk;
3659 		break;
3660 	case PROC_ASLR_STATUS:
3661 	case PROC_PROTMAX_STATUS:
3662 	case PROC_STACKGAP_STATUS:
3663 	case PROC_TRACE_STATUS:
3664 	case PROC_TRAPCAP_STATUS:
3665 	case PROC_NO_NEW_PRIVS_STATUS:
3666 	case PROC_WXMAP_STATUS:
3667 		data = &flags;
3668 		break;
3669 	case PROC_PDEATHSIG_CTL:
3670 		error = copyin(uap->data, &signum, sizeof(signum));
3671 		if (error != 0)
3672 			return (error);
3673 		data = &signum;
3674 		break;
3675 	case PROC_PDEATHSIG_STATUS:
3676 		data = &signum;
3677 		break;
3678 	default:
3679 		return (EINVAL);
3680 	}
3681 	error = kern_procctl(td, uap->idtype, PAIR32TO64(id_t, uap->id),
3682 	    uap->com, data);
3683 	switch (uap->com) {
3684 	case PROC_REAP_STATUS:
3685 		if (error == 0)
3686 			error = copyout(&x.rs, uap->data, sizeof(x.rs));
3687 		break;
3688 	case PROC_REAP_KILL:
3689 		error1 = copyout(&x.rk, uap->data, sizeof(x.rk));
3690 		if (error == 0)
3691 			error = error1;
3692 		break;
3693 	case PROC_ASLR_STATUS:
3694 	case PROC_PROTMAX_STATUS:
3695 	case PROC_STACKGAP_STATUS:
3696 	case PROC_TRACE_STATUS:
3697 	case PROC_TRAPCAP_STATUS:
3698 	case PROC_NO_NEW_PRIVS_STATUS:
3699 	case PROC_WXMAP_STATUS:
3700 		if (error == 0)
3701 			error = copyout(&flags, uap->data, sizeof(flags));
3702 		break;
3703 	case PROC_PDEATHSIG_STATUS:
3704 		if (error == 0)
3705 			error = copyout(&signum, uap->data, sizeof(signum));
3706 		break;
3707 	}
3708 	return (error);
3709 }
3710 
3711 int
3712 freebsd32_fcntl(struct thread *td, struct freebsd32_fcntl_args *uap)
3713 {
3714 	long tmp;
3715 
3716 	switch (uap->cmd) {
3717 	/*
3718 	 * Do unsigned conversion for arg when operation
3719 	 * interprets it as flags or pointer.
3720 	 */
3721 	case F_SETLK_REMOTE:
3722 	case F_SETLKW:
3723 	case F_SETLK:
3724 	case F_GETLK:
3725 	case F_SETFD:
3726 	case F_SETFL:
3727 	case F_OGETLK:
3728 	case F_OSETLK:
3729 	case F_OSETLKW:
3730 		tmp = (unsigned int)(uap->arg);
3731 		break;
3732 	default:
3733 		tmp = uap->arg;
3734 		break;
3735 	}
3736 	return (kern_fcntl_freebsd(td, uap->fd, uap->cmd, tmp));
3737 }
3738 
3739 int
3740 freebsd32_ppoll(struct thread *td, struct freebsd32_ppoll_args *uap)
3741 {
3742 	struct timespec32 ts32;
3743 	struct timespec ts, *tsp;
3744 	sigset_t set, *ssp;
3745 	int error;
3746 
3747 	if (uap->ts != NULL) {
3748 		error = copyin(uap->ts, &ts32, sizeof(ts32));
3749 		if (error != 0)
3750 			return (error);
3751 		CP(ts32, ts, tv_sec);
3752 		CP(ts32, ts, tv_nsec);
3753 		tsp = &ts;
3754 	} else
3755 		tsp = NULL;
3756 	if (uap->set != NULL) {
3757 		error = copyin(uap->set, &set, sizeof(set));
3758 		if (error != 0)
3759 			return (error);
3760 		ssp = &set;
3761 	} else
3762 		ssp = NULL;
3763 
3764 	return (kern_poll(td, uap->fds, uap->nfds, tsp, ssp));
3765 }
3766 
3767 int
3768 freebsd32_sched_rr_get_interval(struct thread *td,
3769     struct freebsd32_sched_rr_get_interval_args *uap)
3770 {
3771 	struct timespec ts;
3772 	struct timespec32 ts32;
3773 	int error;
3774 
3775 	error = kern_sched_rr_get_interval(td, uap->pid, &ts);
3776 	if (error == 0) {
3777 		CP(ts, ts32, tv_sec);
3778 		CP(ts, ts32, tv_nsec);
3779 		error = copyout(&ts32, uap->interval, sizeof(ts32));
3780 	}
3781 	return (error);
3782 }
3783 
3784 static void
3785 timex_to_32(struct timex32 *dst, struct timex *src)
3786 {
3787 	CP(*src, *dst, modes);
3788 	CP(*src, *dst, offset);
3789 	CP(*src, *dst, freq);
3790 	CP(*src, *dst, maxerror);
3791 	CP(*src, *dst, esterror);
3792 	CP(*src, *dst, status);
3793 	CP(*src, *dst, constant);
3794 	CP(*src, *dst, precision);
3795 	CP(*src, *dst, tolerance);
3796 	CP(*src, *dst, ppsfreq);
3797 	CP(*src, *dst, jitter);
3798 	CP(*src, *dst, shift);
3799 	CP(*src, *dst, stabil);
3800 	CP(*src, *dst, jitcnt);
3801 	CP(*src, *dst, calcnt);
3802 	CP(*src, *dst, errcnt);
3803 	CP(*src, *dst, stbcnt);
3804 }
3805 
3806 static void
3807 timex_from_32(struct timex *dst, struct timex32 *src)
3808 {
3809 	CP(*src, *dst, modes);
3810 	CP(*src, *dst, offset);
3811 	CP(*src, *dst, freq);
3812 	CP(*src, *dst, maxerror);
3813 	CP(*src, *dst, esterror);
3814 	CP(*src, *dst, status);
3815 	CP(*src, *dst, constant);
3816 	CP(*src, *dst, precision);
3817 	CP(*src, *dst, tolerance);
3818 	CP(*src, *dst, ppsfreq);
3819 	CP(*src, *dst, jitter);
3820 	CP(*src, *dst, shift);
3821 	CP(*src, *dst, stabil);
3822 	CP(*src, *dst, jitcnt);
3823 	CP(*src, *dst, calcnt);
3824 	CP(*src, *dst, errcnt);
3825 	CP(*src, *dst, stbcnt);
3826 }
3827 
3828 int
3829 freebsd32_ntp_adjtime(struct thread *td, struct freebsd32_ntp_adjtime_args *uap)
3830 {
3831 	struct timex tx;
3832 	struct timex32 tx32;
3833 	int error, retval;
3834 
3835 	error = copyin(uap->tp, &tx32, sizeof(tx32));
3836 	if (error == 0) {
3837 		timex_from_32(&tx, &tx32);
3838 		error = kern_ntp_adjtime(td, &tx, &retval);
3839 		if (error == 0) {
3840 			timex_to_32(&tx32, &tx);
3841 			error = copyout(&tx32, uap->tp, sizeof(tx32));
3842 			if (error == 0)
3843 				td->td_retval[0] = retval;
3844 		}
3845 	}
3846 	return (error);
3847 }
3848 
3849 int
3850 freebsd32_fspacectl(struct thread *td, struct freebsd32_fspacectl_args *uap)
3851 {
3852 	struct spacectl_range rqsr, rmsr;
3853 	struct spacectl_range32 rqsr32, rmsr32;
3854 	int error, cerror;
3855 
3856 	error = copyin(uap->rqsr, &rqsr32, sizeof(rqsr32));
3857 	if (error != 0)
3858 		return (error);
3859 	rqsr.r_offset = PAIR32TO64(off_t, rqsr32.r_offset);
3860 	rqsr.r_len = PAIR32TO64(off_t, rqsr32.r_len);
3861 
3862 	error = kern_fspacectl(td, uap->fd, uap->cmd, &rqsr, uap->flags,
3863 	    &rmsr);
3864 	if (uap->rmsr != NULL) {
3865 #if BYTE_ORDER == LITTLE_ENDIAN
3866 		rmsr32.r_offset1 = rmsr.r_offset;
3867 		rmsr32.r_offset2 = rmsr.r_offset >> 32;
3868 		rmsr32.r_len1 = rmsr.r_len;
3869 		rmsr32.r_len2 = rmsr.r_len >> 32;
3870 #else
3871 		rmsr32.r_offset1 = rmsr.r_offset >> 32;
3872 		rmsr32.r_offset2 = rmsr.r_offset;
3873 		rmsr32.r_len1 = rmsr.r_len >> 32;
3874 		rmsr32.r_len2 = rmsr.r_len;
3875 #endif
3876 		cerror = copyout(&rmsr32, uap->rmsr, sizeof(rmsr32));
3877 		if (error == 0)
3878 			error = cerror;
3879 	}
3880 	return (error);
3881 }
3882