1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2002 Doug Rabson 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include "opt_ffclock.h" 33 #include "opt_inet.h" 34 #include "opt_inet6.h" 35 #include "opt_ktrace.h" 36 37 #define __ELF_WORD_SIZE 32 38 39 #ifdef COMPAT_FREEBSD11 40 #define _WANT_FREEBSD11_KEVENT 41 #endif 42 43 #include <sys/param.h> 44 #include <sys/bus.h> 45 #include <sys/capsicum.h> 46 #include <sys/clock.h> 47 #include <sys/exec.h> 48 #include <sys/fcntl.h> 49 #include <sys/filedesc.h> 50 #include <sys/imgact.h> 51 #include <sys/jail.h> 52 #include <sys/kernel.h> 53 #include <sys/limits.h> 54 #include <sys/linker.h> 55 #include <sys/lock.h> 56 #include <sys/malloc.h> 57 #include <sys/file.h> /* Must come after sys/malloc.h */ 58 #include <sys/imgact.h> 59 #include <sys/mbuf.h> 60 #include <sys/mman.h> 61 #include <sys/module.h> 62 #include <sys/mount.h> 63 #include <sys/mutex.h> 64 #include <sys/namei.h> 65 #include <sys/priv.h> 66 #include <sys/proc.h> 67 #include <sys/procctl.h> 68 #include <sys/ptrace.h> 69 #include <sys/reboot.h> 70 #include <sys/resource.h> 71 #include <sys/resourcevar.h> 72 #include <sys/selinfo.h> 73 #include <sys/eventvar.h> /* Must come after sys/selinfo.h */ 74 #include <sys/pipe.h> /* Must come after sys/selinfo.h */ 75 #include <sys/signal.h> 76 #include <sys/signalvar.h> 77 #include <sys/socket.h> 78 #include <sys/socketvar.h> 79 #include <sys/stat.h> 80 #include <sys/syscall.h> 81 #include <sys/syscallsubr.h> 82 #include <sys/sysctl.h> 83 #include <sys/sysent.h> 84 #include <sys/sysproto.h> 85 #include <sys/systm.h> 86 #include <sys/thr.h> 87 #include <sys/timex.h> 88 #include <sys/unistd.h> 89 #include <sys/ucontext.h> 90 #include <sys/vnode.h> 91 #include <sys/wait.h> 92 #include <sys/ipc.h> 93 #include <sys/msg.h> 94 #include <sys/sem.h> 95 #include <sys/shm.h> 96 #include <sys/timeffc.h> 97 #ifdef KTRACE 98 #include <sys/ktrace.h> 99 #endif 100 101 #ifdef INET 102 #include <netinet/in.h> 103 #endif 104 105 #include <vm/vm.h> 106 #include <vm/vm_param.h> 107 #include <vm/pmap.h> 108 #include <vm/vm_map.h> 109 #include <vm/vm_object.h> 110 #include <vm/vm_extern.h> 111 112 #include <machine/cpu.h> 113 #include <machine/elf.h> 114 #ifdef __amd64__ 115 #include <machine/md_var.h> 116 #endif 117 118 #include <security/audit/audit.h> 119 120 #include <compat/freebsd32/freebsd32_util.h> 121 #include <compat/freebsd32/freebsd32.h> 122 #include <compat/freebsd32/freebsd32_ipc.h> 123 #include <compat/freebsd32/freebsd32_misc.h> 124 #include <compat/freebsd32/freebsd32_signal.h> 125 #include <compat/freebsd32/freebsd32_proto.h> 126 127 FEATURE(compat_freebsd_32bit, "Compatible with 32-bit FreeBSD"); 128 129 struct ptrace_io_desc32 { 130 int piod_op; 131 uint32_t piod_offs; 132 uint32_t piod_addr; 133 uint32_t piod_len; 134 }; 135 136 struct ptrace_sc_ret32 { 137 uint32_t sr_retval[2]; 138 int sr_error; 139 }; 140 141 struct ptrace_vm_entry32 { 142 int pve_entry; 143 int pve_timestamp; 144 uint32_t pve_start; 145 uint32_t pve_end; 146 uint32_t pve_offset; 147 u_int pve_prot; 148 u_int pve_pathlen; 149 int32_t pve_fileid; 150 u_int pve_fsid; 151 uint32_t pve_path; 152 }; 153 154 #ifdef __amd64__ 155 CTASSERT(sizeof(struct timeval32) == 8); 156 CTASSERT(sizeof(struct timespec32) == 8); 157 CTASSERT(sizeof(struct itimerval32) == 16); 158 CTASSERT(sizeof(struct bintime32) == 12); 159 #else 160 CTASSERT(sizeof(struct timeval32) == 16); 161 CTASSERT(sizeof(struct timespec32) == 16); 162 CTASSERT(sizeof(struct itimerval32) == 32); 163 CTASSERT(sizeof(struct bintime32) == 16); 164 #endif 165 CTASSERT(sizeof(struct ostatfs32) == 256); 166 #ifdef __amd64__ 167 CTASSERT(sizeof(struct rusage32) == 72); 168 #else 169 CTASSERT(sizeof(struct rusage32) == 88); 170 #endif 171 CTASSERT(sizeof(struct sigaltstack32) == 12); 172 #ifdef __amd64__ 173 CTASSERT(sizeof(struct kevent32) == 56); 174 #else 175 CTASSERT(sizeof(struct kevent32) == 64); 176 #endif 177 CTASSERT(sizeof(struct iovec32) == 8); 178 CTASSERT(sizeof(struct msghdr32) == 28); 179 #ifdef __amd64__ 180 CTASSERT(sizeof(struct stat32) == 208); 181 CTASSERT(sizeof(struct freebsd11_stat32) == 96); 182 #else 183 CTASSERT(sizeof(struct stat32) == 224); 184 CTASSERT(sizeof(struct freebsd11_stat32) == 120); 185 #endif 186 CTASSERT(sizeof(struct sigaction32) == 24); 187 188 static int freebsd32_kevent_copyout(void *arg, struct kevent *kevp, int count); 189 static int freebsd32_kevent_copyin(void *arg, struct kevent *kevp, int count); 190 static int freebsd32_user_clock_nanosleep(struct thread *td, clockid_t clock_id, 191 int flags, const struct timespec32 *ua_rqtp, struct timespec32 *ua_rmtp); 192 193 void 194 freebsd32_rusage_out(const struct rusage *s, struct rusage32 *s32) 195 { 196 197 TV_CP(*s, *s32, ru_utime); 198 TV_CP(*s, *s32, ru_stime); 199 CP(*s, *s32, ru_maxrss); 200 CP(*s, *s32, ru_ixrss); 201 CP(*s, *s32, ru_idrss); 202 CP(*s, *s32, ru_isrss); 203 CP(*s, *s32, ru_minflt); 204 CP(*s, *s32, ru_majflt); 205 CP(*s, *s32, ru_nswap); 206 CP(*s, *s32, ru_inblock); 207 CP(*s, *s32, ru_oublock); 208 CP(*s, *s32, ru_msgsnd); 209 CP(*s, *s32, ru_msgrcv); 210 CP(*s, *s32, ru_nsignals); 211 CP(*s, *s32, ru_nvcsw); 212 CP(*s, *s32, ru_nivcsw); 213 } 214 215 int 216 freebsd32_wait4(struct thread *td, struct freebsd32_wait4_args *uap) 217 { 218 int error, status; 219 struct rusage32 ru32; 220 struct rusage ru, *rup; 221 222 if (uap->rusage != NULL) 223 rup = &ru; 224 else 225 rup = NULL; 226 error = kern_wait(td, uap->pid, &status, uap->options, rup); 227 if (error) 228 return (error); 229 if (uap->status != NULL) 230 error = copyout(&status, uap->status, sizeof(status)); 231 if (uap->rusage != NULL && error == 0) { 232 freebsd32_rusage_out(&ru, &ru32); 233 error = copyout(&ru32, uap->rusage, sizeof(ru32)); 234 } 235 return (error); 236 } 237 238 int 239 freebsd32_wait6(struct thread *td, struct freebsd32_wait6_args *uap) 240 { 241 struct __wrusage32 wru32; 242 struct __wrusage wru, *wrup; 243 struct siginfo32 si32; 244 struct __siginfo si, *sip; 245 int error, status; 246 247 if (uap->wrusage != NULL) 248 wrup = &wru; 249 else 250 wrup = NULL; 251 if (uap->info != NULL) { 252 sip = &si; 253 bzero(sip, sizeof(*sip)); 254 } else 255 sip = NULL; 256 error = kern_wait6(td, uap->idtype, PAIR32TO64(id_t, uap->id), 257 &status, uap->options, wrup, sip); 258 if (error != 0) 259 return (error); 260 if (uap->status != NULL) 261 error = copyout(&status, uap->status, sizeof(status)); 262 if (uap->wrusage != NULL && error == 0) { 263 freebsd32_rusage_out(&wru.wru_self, &wru32.wru_self); 264 freebsd32_rusage_out(&wru.wru_children, &wru32.wru_children); 265 error = copyout(&wru32, uap->wrusage, sizeof(wru32)); 266 } 267 if (uap->info != NULL && error == 0) { 268 siginfo_to_siginfo32 (&si, &si32); 269 error = copyout(&si32, uap->info, sizeof(si32)); 270 } 271 return (error); 272 } 273 274 #ifdef COMPAT_FREEBSD4 275 static void 276 copy_statfs(struct statfs *in, struct ostatfs32 *out) 277 { 278 279 statfs_scale_blocks(in, INT32_MAX); 280 bzero(out, sizeof(*out)); 281 CP(*in, *out, f_bsize); 282 out->f_iosize = MIN(in->f_iosize, INT32_MAX); 283 CP(*in, *out, f_blocks); 284 CP(*in, *out, f_bfree); 285 CP(*in, *out, f_bavail); 286 out->f_files = MIN(in->f_files, INT32_MAX); 287 out->f_ffree = MIN(in->f_ffree, INT32_MAX); 288 CP(*in, *out, f_fsid); 289 CP(*in, *out, f_owner); 290 CP(*in, *out, f_type); 291 CP(*in, *out, f_flags); 292 out->f_syncwrites = MIN(in->f_syncwrites, INT32_MAX); 293 out->f_asyncwrites = MIN(in->f_asyncwrites, INT32_MAX); 294 strlcpy(out->f_fstypename, 295 in->f_fstypename, MFSNAMELEN); 296 strlcpy(out->f_mntonname, 297 in->f_mntonname, min(MNAMELEN, FREEBSD4_OMNAMELEN)); 298 out->f_syncreads = MIN(in->f_syncreads, INT32_MAX); 299 out->f_asyncreads = MIN(in->f_asyncreads, INT32_MAX); 300 strlcpy(out->f_mntfromname, 301 in->f_mntfromname, min(MNAMELEN, FREEBSD4_OMNAMELEN)); 302 } 303 #endif 304 305 int 306 freebsd32_getfsstat(struct thread *td, struct freebsd32_getfsstat_args *uap) 307 { 308 size_t count; 309 int error; 310 311 if (uap->bufsize < 0 || uap->bufsize > SIZE_MAX) 312 return (EINVAL); 313 error = kern_getfsstat(td, &uap->buf, uap->bufsize, &count, 314 UIO_USERSPACE, uap->mode); 315 if (error == 0) 316 td->td_retval[0] = count; 317 return (error); 318 } 319 320 #ifdef COMPAT_FREEBSD4 321 int 322 freebsd4_freebsd32_getfsstat(struct thread *td, 323 struct freebsd4_freebsd32_getfsstat_args *uap) 324 { 325 struct statfs *buf, *sp; 326 struct ostatfs32 stat32; 327 size_t count, size, copycount; 328 int error; 329 330 count = uap->bufsize / sizeof(struct ostatfs32); 331 size = count * sizeof(struct statfs); 332 error = kern_getfsstat(td, &buf, size, &count, UIO_SYSSPACE, uap->mode); 333 if (size > 0) { 334 sp = buf; 335 copycount = count; 336 while (copycount > 0 && error == 0) { 337 copy_statfs(sp, &stat32); 338 error = copyout(&stat32, uap->buf, sizeof(stat32)); 339 sp++; 340 uap->buf++; 341 copycount--; 342 } 343 free(buf, M_STATFS); 344 } 345 if (error == 0) 346 td->td_retval[0] = count; 347 return (error); 348 } 349 #endif 350 351 #ifdef COMPAT_FREEBSD11 352 int 353 freebsd11_freebsd32_getfsstat(struct thread *td, 354 struct freebsd11_freebsd32_getfsstat_args *uap) 355 { 356 return(kern_freebsd11_getfsstat(td, uap->buf, uap->bufsize, 357 uap->mode)); 358 } 359 #endif 360 361 int 362 freebsd32_sigaltstack(struct thread *td, 363 struct freebsd32_sigaltstack_args *uap) 364 { 365 struct sigaltstack32 s32; 366 struct sigaltstack ss, oss, *ssp; 367 int error; 368 369 if (uap->ss != NULL) { 370 error = copyin(uap->ss, &s32, sizeof(s32)); 371 if (error) 372 return (error); 373 PTRIN_CP(s32, ss, ss_sp); 374 CP(s32, ss, ss_size); 375 CP(s32, ss, ss_flags); 376 ssp = &ss; 377 } else 378 ssp = NULL; 379 error = kern_sigaltstack(td, ssp, &oss); 380 if (error == 0 && uap->oss != NULL) { 381 PTROUT_CP(oss, s32, ss_sp); 382 CP(oss, s32, ss_size); 383 CP(oss, s32, ss_flags); 384 error = copyout(&s32, uap->oss, sizeof(s32)); 385 } 386 return (error); 387 } 388 389 /* 390 * Custom version of exec_copyin_args() so that we can translate 391 * the pointers. 392 */ 393 int 394 freebsd32_exec_copyin_args(struct image_args *args, const char *fname, 395 enum uio_seg segflg, uint32_t *argv, uint32_t *envv) 396 { 397 char *argp, *envp; 398 uint32_t *p32, arg; 399 int error; 400 401 bzero(args, sizeof(*args)); 402 if (argv == NULL) 403 return (EFAULT); 404 405 /* 406 * Allocate demand-paged memory for the file name, argument, and 407 * environment strings. 408 */ 409 error = exec_alloc_args(args); 410 if (error != 0) 411 return (error); 412 413 /* 414 * Copy the file name. 415 */ 416 error = exec_args_add_fname(args, fname, segflg); 417 if (error != 0) 418 goto err_exit; 419 420 /* 421 * extract arguments first 422 */ 423 p32 = argv; 424 for (;;) { 425 error = copyin(p32++, &arg, sizeof(arg)); 426 if (error) 427 goto err_exit; 428 if (arg == 0) 429 break; 430 argp = PTRIN(arg); 431 error = exec_args_add_arg(args, argp, UIO_USERSPACE); 432 if (error != 0) 433 goto err_exit; 434 } 435 436 /* 437 * extract environment strings 438 */ 439 if (envv) { 440 p32 = envv; 441 for (;;) { 442 error = copyin(p32++, &arg, sizeof(arg)); 443 if (error) 444 goto err_exit; 445 if (arg == 0) 446 break; 447 envp = PTRIN(arg); 448 error = exec_args_add_env(args, envp, UIO_USERSPACE); 449 if (error != 0) 450 goto err_exit; 451 } 452 } 453 454 return (0); 455 456 err_exit: 457 exec_free_args(args); 458 return (error); 459 } 460 461 int 462 freebsd32_execve(struct thread *td, struct freebsd32_execve_args *uap) 463 { 464 struct image_args eargs; 465 struct vmspace *oldvmspace; 466 int error; 467 468 error = pre_execve(td, &oldvmspace); 469 if (error != 0) 470 return (error); 471 error = freebsd32_exec_copyin_args(&eargs, uap->fname, UIO_USERSPACE, 472 uap->argv, uap->envv); 473 if (error == 0) 474 error = kern_execve(td, &eargs, NULL, oldvmspace); 475 post_execve(td, error, oldvmspace); 476 AUDIT_SYSCALL_EXIT(error == EJUSTRETURN ? 0 : error, td); 477 return (error); 478 } 479 480 int 481 freebsd32_fexecve(struct thread *td, struct freebsd32_fexecve_args *uap) 482 { 483 struct image_args eargs; 484 struct vmspace *oldvmspace; 485 int error; 486 487 error = pre_execve(td, &oldvmspace); 488 if (error != 0) 489 return (error); 490 error = freebsd32_exec_copyin_args(&eargs, NULL, UIO_SYSSPACE, 491 uap->argv, uap->envv); 492 if (error == 0) { 493 eargs.fd = uap->fd; 494 error = kern_execve(td, &eargs, NULL, oldvmspace); 495 } 496 post_execve(td, error, oldvmspace); 497 AUDIT_SYSCALL_EXIT(error == EJUSTRETURN ? 0 : error, td); 498 return (error); 499 } 500 501 int 502 freebsd32_mknodat(struct thread *td, struct freebsd32_mknodat_args *uap) 503 { 504 505 return (kern_mknodat(td, uap->fd, uap->path, UIO_USERSPACE, 506 uap->mode, PAIR32TO64(dev_t, uap->dev))); 507 } 508 509 int 510 freebsd32_mprotect(struct thread *td, struct freebsd32_mprotect_args *uap) 511 { 512 int prot; 513 514 prot = uap->prot; 515 #if defined(__amd64__) 516 if (i386_read_exec && (prot & PROT_READ) != 0) 517 prot |= PROT_EXEC; 518 #endif 519 return (kern_mprotect(td, (uintptr_t)PTRIN(uap->addr), uap->len, 520 prot)); 521 } 522 523 int 524 freebsd32_mmap(struct thread *td, struct freebsd32_mmap_args *uap) 525 { 526 int prot; 527 528 prot = uap->prot; 529 #if defined(__amd64__) 530 if (i386_read_exec && (prot & PROT_READ)) 531 prot |= PROT_EXEC; 532 #endif 533 534 return (kern_mmap(td, &(struct mmap_req){ 535 .mr_hint = (uintptr_t)uap->addr, 536 .mr_len = uap->len, 537 .mr_prot = prot, 538 .mr_flags = uap->flags, 539 .mr_fd = uap->fd, 540 .mr_pos = PAIR32TO64(off_t, uap->pos), 541 })); 542 } 543 544 #ifdef COMPAT_FREEBSD6 545 int 546 freebsd6_freebsd32_mmap(struct thread *td, 547 struct freebsd6_freebsd32_mmap_args *uap) 548 { 549 int prot; 550 551 prot = uap->prot; 552 #if defined(__amd64__) 553 if (i386_read_exec && (prot & PROT_READ)) 554 prot |= PROT_EXEC; 555 #endif 556 557 return (kern_mmap(td, &(struct mmap_req){ 558 .mr_hint = (uintptr_t)uap->addr, 559 .mr_len = uap->len, 560 .mr_prot = prot, 561 .mr_flags = uap->flags, 562 .mr_fd = uap->fd, 563 .mr_pos = PAIR32TO64(off_t, uap->pos), 564 })); 565 } 566 #endif 567 568 #ifdef COMPAT_43 569 int 570 ofreebsd32_mmap(struct thread *td, struct ofreebsd32_mmap_args *uap) 571 { 572 return (kern_ommap(td, (uintptr_t)uap->addr, uap->len, uap->prot, 573 uap->flags, uap->fd, uap->pos)); 574 } 575 #endif 576 577 int 578 freebsd32_setitimer(struct thread *td, struct freebsd32_setitimer_args *uap) 579 { 580 struct itimerval itv, oitv, *itvp; 581 struct itimerval32 i32; 582 int error; 583 584 if (uap->itv != NULL) { 585 error = copyin(uap->itv, &i32, sizeof(i32)); 586 if (error) 587 return (error); 588 TV_CP(i32, itv, it_interval); 589 TV_CP(i32, itv, it_value); 590 itvp = &itv; 591 } else 592 itvp = NULL; 593 error = kern_setitimer(td, uap->which, itvp, &oitv); 594 if (error || uap->oitv == NULL) 595 return (error); 596 TV_CP(oitv, i32, it_interval); 597 TV_CP(oitv, i32, it_value); 598 return (copyout(&i32, uap->oitv, sizeof(i32))); 599 } 600 601 int 602 freebsd32_getitimer(struct thread *td, struct freebsd32_getitimer_args *uap) 603 { 604 struct itimerval itv; 605 struct itimerval32 i32; 606 int error; 607 608 error = kern_getitimer(td, uap->which, &itv); 609 if (error || uap->itv == NULL) 610 return (error); 611 TV_CP(itv, i32, it_interval); 612 TV_CP(itv, i32, it_value); 613 return (copyout(&i32, uap->itv, sizeof(i32))); 614 } 615 616 int 617 freebsd32_select(struct thread *td, struct freebsd32_select_args *uap) 618 { 619 struct timeval32 tv32; 620 struct timeval tv, *tvp; 621 int error; 622 623 if (uap->tv != NULL) { 624 error = copyin(uap->tv, &tv32, sizeof(tv32)); 625 if (error) 626 return (error); 627 CP(tv32, tv, tv_sec); 628 CP(tv32, tv, tv_usec); 629 tvp = &tv; 630 } else 631 tvp = NULL; 632 /* 633 * XXX Do pointers need PTRIN()? 634 */ 635 return (kern_select(td, uap->nd, uap->in, uap->ou, uap->ex, tvp, 636 sizeof(int32_t) * 8)); 637 } 638 639 int 640 freebsd32_pselect(struct thread *td, struct freebsd32_pselect_args *uap) 641 { 642 struct timespec32 ts32; 643 struct timespec ts; 644 struct timeval tv, *tvp; 645 sigset_t set, *uset; 646 int error; 647 648 if (uap->ts != NULL) { 649 error = copyin(uap->ts, &ts32, sizeof(ts32)); 650 if (error != 0) 651 return (error); 652 CP(ts32, ts, tv_sec); 653 CP(ts32, ts, tv_nsec); 654 TIMESPEC_TO_TIMEVAL(&tv, &ts); 655 tvp = &tv; 656 } else 657 tvp = NULL; 658 if (uap->sm != NULL) { 659 error = copyin(uap->sm, &set, sizeof(set)); 660 if (error != 0) 661 return (error); 662 uset = &set; 663 } else 664 uset = NULL; 665 /* 666 * XXX Do pointers need PTRIN()? 667 */ 668 error = kern_pselect(td, uap->nd, uap->in, uap->ou, uap->ex, tvp, 669 uset, sizeof(int32_t) * 8); 670 return (error); 671 } 672 673 /* 674 * Copy 'count' items into the destination list pointed to by uap->eventlist. 675 */ 676 static int 677 freebsd32_kevent_copyout(void *arg, struct kevent *kevp, int count) 678 { 679 struct freebsd32_kevent_args *uap; 680 struct kevent32 ks32[KQ_NEVENTS]; 681 uint64_t e; 682 int i, j, error; 683 684 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count)); 685 uap = (struct freebsd32_kevent_args *)arg; 686 687 for (i = 0; i < count; i++) { 688 CP(kevp[i], ks32[i], ident); 689 CP(kevp[i], ks32[i], filter); 690 CP(kevp[i], ks32[i], flags); 691 CP(kevp[i], ks32[i], fflags); 692 #if BYTE_ORDER == LITTLE_ENDIAN 693 ks32[i].data1 = kevp[i].data; 694 ks32[i].data2 = kevp[i].data >> 32; 695 #else 696 ks32[i].data1 = kevp[i].data >> 32; 697 ks32[i].data2 = kevp[i].data; 698 #endif 699 PTROUT_CP(kevp[i], ks32[i], udata); 700 for (j = 0; j < nitems(kevp->ext); j++) { 701 e = kevp[i].ext[j]; 702 #if BYTE_ORDER == LITTLE_ENDIAN 703 ks32[i].ext64[2 * j] = e; 704 ks32[i].ext64[2 * j + 1] = e >> 32; 705 #else 706 ks32[i].ext64[2 * j] = e >> 32; 707 ks32[i].ext64[2 * j + 1] = e; 708 #endif 709 } 710 } 711 error = copyout(ks32, uap->eventlist, count * sizeof *ks32); 712 if (error == 0) 713 uap->eventlist += count; 714 return (error); 715 } 716 717 /* 718 * Copy 'count' items from the list pointed to by uap->changelist. 719 */ 720 static int 721 freebsd32_kevent_copyin(void *arg, struct kevent *kevp, int count) 722 { 723 struct freebsd32_kevent_args *uap; 724 struct kevent32 ks32[KQ_NEVENTS]; 725 uint64_t e; 726 int i, j, error; 727 728 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count)); 729 uap = (struct freebsd32_kevent_args *)arg; 730 731 error = copyin(uap->changelist, ks32, count * sizeof *ks32); 732 if (error) 733 goto done; 734 uap->changelist += count; 735 736 for (i = 0; i < count; i++) { 737 CP(ks32[i], kevp[i], ident); 738 CP(ks32[i], kevp[i], filter); 739 CP(ks32[i], kevp[i], flags); 740 CP(ks32[i], kevp[i], fflags); 741 kevp[i].data = PAIR32TO64(uint64_t, ks32[i].data); 742 PTRIN_CP(ks32[i], kevp[i], udata); 743 for (j = 0; j < nitems(kevp->ext); j++) { 744 #if BYTE_ORDER == LITTLE_ENDIAN 745 e = ks32[i].ext64[2 * j + 1]; 746 e <<= 32; 747 e += ks32[i].ext64[2 * j]; 748 #else 749 e = ks32[i].ext64[2 * j]; 750 e <<= 32; 751 e += ks32[i].ext64[2 * j + 1]; 752 #endif 753 kevp[i].ext[j] = e; 754 } 755 } 756 done: 757 return (error); 758 } 759 760 int 761 freebsd32_kevent(struct thread *td, struct freebsd32_kevent_args *uap) 762 { 763 struct timespec32 ts32; 764 struct timespec ts, *tsp; 765 struct kevent_copyops k_ops = { 766 .arg = uap, 767 .k_copyout = freebsd32_kevent_copyout, 768 .k_copyin = freebsd32_kevent_copyin, 769 }; 770 #ifdef KTRACE 771 struct kevent32 *eventlist = uap->eventlist; 772 #endif 773 int error; 774 775 if (uap->timeout) { 776 error = copyin(uap->timeout, &ts32, sizeof(ts32)); 777 if (error) 778 return (error); 779 CP(ts32, ts, tv_sec); 780 CP(ts32, ts, tv_nsec); 781 tsp = &ts; 782 } else 783 tsp = NULL; 784 #ifdef KTRACE 785 if (KTRPOINT(td, KTR_STRUCT_ARRAY)) 786 ktrstructarray("kevent32", UIO_USERSPACE, uap->changelist, 787 uap->nchanges, sizeof(struct kevent32)); 788 #endif 789 error = kern_kevent(td, uap->fd, uap->nchanges, uap->nevents, 790 &k_ops, tsp); 791 #ifdef KTRACE 792 if (error == 0 && KTRPOINT(td, KTR_STRUCT_ARRAY)) 793 ktrstructarray("kevent32", UIO_USERSPACE, eventlist, 794 td->td_retval[0], sizeof(struct kevent32)); 795 #endif 796 return (error); 797 } 798 799 #ifdef COMPAT_FREEBSD11 800 static int 801 freebsd32_kevent11_copyout(void *arg, struct kevent *kevp, int count) 802 { 803 struct freebsd11_freebsd32_kevent_args *uap; 804 struct freebsd11_kevent32 ks32[KQ_NEVENTS]; 805 int i, error; 806 807 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count)); 808 uap = (struct freebsd11_freebsd32_kevent_args *)arg; 809 810 for (i = 0; i < count; i++) { 811 CP(kevp[i], ks32[i], ident); 812 CP(kevp[i], ks32[i], filter); 813 CP(kevp[i], ks32[i], flags); 814 CP(kevp[i], ks32[i], fflags); 815 CP(kevp[i], ks32[i], data); 816 PTROUT_CP(kevp[i], ks32[i], udata); 817 } 818 error = copyout(ks32, uap->eventlist, count * sizeof *ks32); 819 if (error == 0) 820 uap->eventlist += count; 821 return (error); 822 } 823 824 /* 825 * Copy 'count' items from the list pointed to by uap->changelist. 826 */ 827 static int 828 freebsd32_kevent11_copyin(void *arg, struct kevent *kevp, int count) 829 { 830 struct freebsd11_freebsd32_kevent_args *uap; 831 struct freebsd11_kevent32 ks32[KQ_NEVENTS]; 832 int i, j, error; 833 834 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count)); 835 uap = (struct freebsd11_freebsd32_kevent_args *)arg; 836 837 error = copyin(uap->changelist, ks32, count * sizeof *ks32); 838 if (error) 839 goto done; 840 uap->changelist += count; 841 842 for (i = 0; i < count; i++) { 843 CP(ks32[i], kevp[i], ident); 844 CP(ks32[i], kevp[i], filter); 845 CP(ks32[i], kevp[i], flags); 846 CP(ks32[i], kevp[i], fflags); 847 CP(ks32[i], kevp[i], data); 848 PTRIN_CP(ks32[i], kevp[i], udata); 849 for (j = 0; j < nitems(kevp->ext); j++) 850 kevp[i].ext[j] = 0; 851 } 852 done: 853 return (error); 854 } 855 856 int 857 freebsd11_freebsd32_kevent(struct thread *td, 858 struct freebsd11_freebsd32_kevent_args *uap) 859 { 860 struct timespec32 ts32; 861 struct timespec ts, *tsp; 862 struct kevent_copyops k_ops = { 863 .arg = uap, 864 .k_copyout = freebsd32_kevent11_copyout, 865 .k_copyin = freebsd32_kevent11_copyin, 866 }; 867 #ifdef KTRACE 868 struct freebsd11_kevent32 *eventlist = uap->eventlist; 869 #endif 870 int error; 871 872 if (uap->timeout) { 873 error = copyin(uap->timeout, &ts32, sizeof(ts32)); 874 if (error) 875 return (error); 876 CP(ts32, ts, tv_sec); 877 CP(ts32, ts, tv_nsec); 878 tsp = &ts; 879 } else 880 tsp = NULL; 881 #ifdef KTRACE 882 if (KTRPOINT(td, KTR_STRUCT_ARRAY)) 883 ktrstructarray("freebsd11_kevent32", UIO_USERSPACE, 884 uap->changelist, uap->nchanges, 885 sizeof(struct freebsd11_kevent32)); 886 #endif 887 error = kern_kevent(td, uap->fd, uap->nchanges, uap->nevents, 888 &k_ops, tsp); 889 #ifdef KTRACE 890 if (error == 0 && KTRPOINT(td, KTR_STRUCT_ARRAY)) 891 ktrstructarray("freebsd11_kevent32", UIO_USERSPACE, 892 eventlist, td->td_retval[0], 893 sizeof(struct freebsd11_kevent32)); 894 #endif 895 return (error); 896 } 897 #endif 898 899 int 900 freebsd32_gettimeofday(struct thread *td, 901 struct freebsd32_gettimeofday_args *uap) 902 { 903 struct timeval atv; 904 struct timeval32 atv32; 905 struct timezone rtz; 906 int error = 0; 907 908 if (uap->tp) { 909 microtime(&atv); 910 CP(atv, atv32, tv_sec); 911 CP(atv, atv32, tv_usec); 912 error = copyout(&atv32, uap->tp, sizeof (atv32)); 913 } 914 if (error == 0 && uap->tzp != NULL) { 915 rtz.tz_minuteswest = 0; 916 rtz.tz_dsttime = 0; 917 error = copyout(&rtz, uap->tzp, sizeof (rtz)); 918 } 919 return (error); 920 } 921 922 int 923 freebsd32_getrusage(struct thread *td, struct freebsd32_getrusage_args *uap) 924 { 925 struct rusage32 s32; 926 struct rusage s; 927 int error; 928 929 error = kern_getrusage(td, uap->who, &s); 930 if (error == 0) { 931 freebsd32_rusage_out(&s, &s32); 932 error = copyout(&s32, uap->rusage, sizeof(s32)); 933 } 934 return (error); 935 } 936 937 static void 938 ptrace_lwpinfo_to32(const struct ptrace_lwpinfo *pl, 939 struct ptrace_lwpinfo32 *pl32) 940 { 941 942 bzero(pl32, sizeof(*pl32)); 943 pl32->pl_lwpid = pl->pl_lwpid; 944 pl32->pl_event = pl->pl_event; 945 pl32->pl_flags = pl->pl_flags; 946 pl32->pl_sigmask = pl->pl_sigmask; 947 pl32->pl_siglist = pl->pl_siglist; 948 siginfo_to_siginfo32(&pl->pl_siginfo, &pl32->pl_siginfo); 949 strcpy(pl32->pl_tdname, pl->pl_tdname); 950 pl32->pl_child_pid = pl->pl_child_pid; 951 pl32->pl_syscall_code = pl->pl_syscall_code; 952 pl32->pl_syscall_narg = pl->pl_syscall_narg; 953 } 954 955 static void 956 ptrace_sc_ret_to32(const struct ptrace_sc_ret *psr, 957 struct ptrace_sc_ret32 *psr32) 958 { 959 960 bzero(psr32, sizeof(*psr32)); 961 psr32->sr_retval[0] = psr->sr_retval[0]; 962 psr32->sr_retval[1] = psr->sr_retval[1]; 963 psr32->sr_error = psr->sr_error; 964 } 965 966 int 967 freebsd32_ptrace(struct thread *td, struct freebsd32_ptrace_args *uap) 968 { 969 union { 970 struct ptrace_io_desc piod; 971 struct ptrace_lwpinfo pl; 972 struct ptrace_vm_entry pve; 973 struct ptrace_coredump pc; 974 struct dbreg32 dbreg; 975 struct fpreg32 fpreg; 976 struct reg32 reg; 977 struct iovec vec; 978 register_t args[nitems(td->td_sa.args)]; 979 struct ptrace_sc_ret psr; 980 int ptevents; 981 } r; 982 union { 983 struct ptrace_io_desc32 piod; 984 struct ptrace_lwpinfo32 pl; 985 struct ptrace_vm_entry32 pve; 986 struct ptrace_coredump32 pc; 987 uint32_t args[nitems(td->td_sa.args)]; 988 struct ptrace_sc_ret32 psr; 989 struct iovec32 vec; 990 } r32; 991 void *addr; 992 int data, error, i; 993 994 if (!allow_ptrace) 995 return (ENOSYS); 996 error = 0; 997 998 AUDIT_ARG_PID(uap->pid); 999 AUDIT_ARG_CMD(uap->req); 1000 AUDIT_ARG_VALUE(uap->data); 1001 addr = &r; 1002 data = uap->data; 1003 switch (uap->req) { 1004 case PT_GET_EVENT_MASK: 1005 case PT_GET_SC_ARGS: 1006 case PT_GET_SC_RET: 1007 break; 1008 case PT_LWPINFO: 1009 if (uap->data > sizeof(r32.pl)) 1010 return (EINVAL); 1011 1012 /* 1013 * Pass size of native structure in 'data'. Truncate 1014 * if necessary to avoid siginfo. 1015 */ 1016 data = sizeof(r.pl); 1017 if (uap->data < offsetof(struct ptrace_lwpinfo32, pl_siginfo) + 1018 sizeof(struct siginfo32)) 1019 data = offsetof(struct ptrace_lwpinfo, pl_siginfo); 1020 break; 1021 case PT_GETREGS: 1022 bzero(&r.reg, sizeof(r.reg)); 1023 break; 1024 case PT_GETFPREGS: 1025 bzero(&r.fpreg, sizeof(r.fpreg)); 1026 break; 1027 case PT_GETDBREGS: 1028 bzero(&r.dbreg, sizeof(r.dbreg)); 1029 break; 1030 case PT_SETREGS: 1031 error = copyin(uap->addr, &r.reg, sizeof(r.reg)); 1032 break; 1033 case PT_SETFPREGS: 1034 error = copyin(uap->addr, &r.fpreg, sizeof(r.fpreg)); 1035 break; 1036 case PT_SETDBREGS: 1037 error = copyin(uap->addr, &r.dbreg, sizeof(r.dbreg)); 1038 break; 1039 case PT_GETREGSET: 1040 case PT_SETREGSET: 1041 error = copyin(uap->addr, &r32.vec, sizeof(r32.vec)); 1042 if (error != 0) 1043 break; 1044 1045 r.vec.iov_len = r32.vec.iov_len; 1046 r.vec.iov_base = PTRIN(r32.vec.iov_base); 1047 break; 1048 case PT_SET_EVENT_MASK: 1049 if (uap->data != sizeof(r.ptevents)) 1050 error = EINVAL; 1051 else 1052 error = copyin(uap->addr, &r.ptevents, uap->data); 1053 break; 1054 case PT_IO: 1055 error = copyin(uap->addr, &r32.piod, sizeof(r32.piod)); 1056 if (error) 1057 break; 1058 CP(r32.piod, r.piod, piod_op); 1059 PTRIN_CP(r32.piod, r.piod, piod_offs); 1060 PTRIN_CP(r32.piod, r.piod, piod_addr); 1061 CP(r32.piod, r.piod, piod_len); 1062 break; 1063 case PT_VM_ENTRY: 1064 error = copyin(uap->addr, &r32.pve, sizeof(r32.pve)); 1065 if (error) 1066 break; 1067 1068 CP(r32.pve, r.pve, pve_entry); 1069 CP(r32.pve, r.pve, pve_timestamp); 1070 CP(r32.pve, r.pve, pve_start); 1071 CP(r32.pve, r.pve, pve_end); 1072 CP(r32.pve, r.pve, pve_offset); 1073 CP(r32.pve, r.pve, pve_prot); 1074 CP(r32.pve, r.pve, pve_pathlen); 1075 CP(r32.pve, r.pve, pve_fileid); 1076 CP(r32.pve, r.pve, pve_fsid); 1077 PTRIN_CP(r32.pve, r.pve, pve_path); 1078 break; 1079 case PT_COREDUMP: 1080 if (uap->data != sizeof(r32.pc)) 1081 error = EINVAL; 1082 else 1083 error = copyin(uap->addr, &r32.pc, uap->data); 1084 CP(r32.pc, r.pc, pc_fd); 1085 CP(r32.pc, r.pc, pc_flags); 1086 r.pc.pc_limit = PAIR32TO64(off_t, r32.pc.pc_limit); 1087 data = sizeof(r.pc); 1088 break; 1089 default: 1090 addr = uap->addr; 1091 break; 1092 } 1093 if (error) 1094 return (error); 1095 1096 error = kern_ptrace(td, uap->req, uap->pid, addr, data); 1097 if (error) 1098 return (error); 1099 1100 switch (uap->req) { 1101 case PT_VM_ENTRY: 1102 CP(r.pve, r32.pve, pve_entry); 1103 CP(r.pve, r32.pve, pve_timestamp); 1104 CP(r.pve, r32.pve, pve_start); 1105 CP(r.pve, r32.pve, pve_end); 1106 CP(r.pve, r32.pve, pve_offset); 1107 CP(r.pve, r32.pve, pve_prot); 1108 CP(r.pve, r32.pve, pve_pathlen); 1109 CP(r.pve, r32.pve, pve_fileid); 1110 CP(r.pve, r32.pve, pve_fsid); 1111 error = copyout(&r32.pve, uap->addr, sizeof(r32.pve)); 1112 break; 1113 case PT_IO: 1114 CP(r.piod, r32.piod, piod_len); 1115 error = copyout(&r32.piod, uap->addr, sizeof(r32.piod)); 1116 break; 1117 case PT_GETREGS: 1118 error = copyout(&r.reg, uap->addr, sizeof(r.reg)); 1119 break; 1120 case PT_GETFPREGS: 1121 error = copyout(&r.fpreg, uap->addr, sizeof(r.fpreg)); 1122 break; 1123 case PT_GETDBREGS: 1124 error = copyout(&r.dbreg, uap->addr, sizeof(r.dbreg)); 1125 break; 1126 case PT_GETREGSET: 1127 r32.vec.iov_len = r.vec.iov_len; 1128 error = copyout(&r32.vec, uap->addr, sizeof(r32.vec)); 1129 break; 1130 case PT_GET_EVENT_MASK: 1131 /* NB: The size in uap->data is validated in kern_ptrace(). */ 1132 error = copyout(&r.ptevents, uap->addr, uap->data); 1133 break; 1134 case PT_LWPINFO: 1135 ptrace_lwpinfo_to32(&r.pl, &r32.pl); 1136 error = copyout(&r32.pl, uap->addr, uap->data); 1137 break; 1138 case PT_GET_SC_ARGS: 1139 for (i = 0; i < nitems(r.args); i++) 1140 r32.args[i] = (uint32_t)r.args[i]; 1141 error = copyout(r32.args, uap->addr, MIN(uap->data, 1142 sizeof(r32.args))); 1143 break; 1144 case PT_GET_SC_RET: 1145 ptrace_sc_ret_to32(&r.psr, &r32.psr); 1146 error = copyout(&r32.psr, uap->addr, MIN(uap->data, 1147 sizeof(r32.psr))); 1148 break; 1149 } 1150 1151 return (error); 1152 } 1153 1154 int 1155 freebsd32_copyinuio(struct iovec32 *iovp, u_int iovcnt, struct uio **uiop) 1156 { 1157 struct iovec32 iov32; 1158 struct iovec *iov; 1159 struct uio *uio; 1160 u_int iovlen; 1161 int error, i; 1162 1163 *uiop = NULL; 1164 if (iovcnt > UIO_MAXIOV) 1165 return (EINVAL); 1166 iovlen = iovcnt * sizeof(struct iovec); 1167 uio = malloc(iovlen + sizeof *uio, M_IOV, M_WAITOK); 1168 iov = (struct iovec *)(uio + 1); 1169 for (i = 0; i < iovcnt; i++) { 1170 error = copyin(&iovp[i], &iov32, sizeof(struct iovec32)); 1171 if (error) { 1172 free(uio, M_IOV); 1173 return (error); 1174 } 1175 iov[i].iov_base = PTRIN(iov32.iov_base); 1176 iov[i].iov_len = iov32.iov_len; 1177 } 1178 uio->uio_iov = iov; 1179 uio->uio_iovcnt = iovcnt; 1180 uio->uio_segflg = UIO_USERSPACE; 1181 uio->uio_offset = -1; 1182 uio->uio_resid = 0; 1183 for (i = 0; i < iovcnt; i++) { 1184 if (iov->iov_len > INT_MAX - uio->uio_resid) { 1185 free(uio, M_IOV); 1186 return (EINVAL); 1187 } 1188 uio->uio_resid += iov->iov_len; 1189 iov++; 1190 } 1191 *uiop = uio; 1192 return (0); 1193 } 1194 1195 int 1196 freebsd32_readv(struct thread *td, struct freebsd32_readv_args *uap) 1197 { 1198 struct uio *auio; 1199 int error; 1200 1201 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 1202 if (error) 1203 return (error); 1204 error = kern_readv(td, uap->fd, auio); 1205 free(auio, M_IOV); 1206 return (error); 1207 } 1208 1209 int 1210 freebsd32_writev(struct thread *td, struct freebsd32_writev_args *uap) 1211 { 1212 struct uio *auio; 1213 int error; 1214 1215 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 1216 if (error) 1217 return (error); 1218 error = kern_writev(td, uap->fd, auio); 1219 free(auio, M_IOV); 1220 return (error); 1221 } 1222 1223 int 1224 freebsd32_preadv(struct thread *td, struct freebsd32_preadv_args *uap) 1225 { 1226 struct uio *auio; 1227 int error; 1228 1229 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 1230 if (error) 1231 return (error); 1232 error = kern_preadv(td, uap->fd, auio, PAIR32TO64(off_t,uap->offset)); 1233 free(auio, M_IOV); 1234 return (error); 1235 } 1236 1237 int 1238 freebsd32_pwritev(struct thread *td, struct freebsd32_pwritev_args *uap) 1239 { 1240 struct uio *auio; 1241 int error; 1242 1243 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 1244 if (error) 1245 return (error); 1246 error = kern_pwritev(td, uap->fd, auio, PAIR32TO64(off_t,uap->offset)); 1247 free(auio, M_IOV); 1248 return (error); 1249 } 1250 1251 int 1252 freebsd32_copyiniov(struct iovec32 *iovp32, u_int iovcnt, struct iovec **iovp, 1253 int error) 1254 { 1255 struct iovec32 iov32; 1256 struct iovec *iov; 1257 u_int iovlen; 1258 int i; 1259 1260 *iovp = NULL; 1261 if (iovcnt > UIO_MAXIOV) 1262 return (error); 1263 iovlen = iovcnt * sizeof(struct iovec); 1264 iov = malloc(iovlen, M_IOV, M_WAITOK); 1265 for (i = 0; i < iovcnt; i++) { 1266 error = copyin(&iovp32[i], &iov32, sizeof(struct iovec32)); 1267 if (error) { 1268 free(iov, M_IOV); 1269 return (error); 1270 } 1271 iov[i].iov_base = PTRIN(iov32.iov_base); 1272 iov[i].iov_len = iov32.iov_len; 1273 } 1274 *iovp = iov; 1275 return (0); 1276 } 1277 1278 static int 1279 freebsd32_copyinmsghdr(const struct msghdr32 *msg32, struct msghdr *msg) 1280 { 1281 struct msghdr32 m32; 1282 int error; 1283 1284 error = copyin(msg32, &m32, sizeof(m32)); 1285 if (error) 1286 return (error); 1287 msg->msg_name = PTRIN(m32.msg_name); 1288 msg->msg_namelen = m32.msg_namelen; 1289 msg->msg_iov = PTRIN(m32.msg_iov); 1290 msg->msg_iovlen = m32.msg_iovlen; 1291 msg->msg_control = PTRIN(m32.msg_control); 1292 msg->msg_controllen = m32.msg_controllen; 1293 msg->msg_flags = m32.msg_flags; 1294 return (0); 1295 } 1296 1297 static int 1298 freebsd32_copyoutmsghdr(struct msghdr *msg, struct msghdr32 *msg32) 1299 { 1300 struct msghdr32 m32; 1301 int error; 1302 1303 m32.msg_name = PTROUT(msg->msg_name); 1304 m32.msg_namelen = msg->msg_namelen; 1305 m32.msg_iov = PTROUT(msg->msg_iov); 1306 m32.msg_iovlen = msg->msg_iovlen; 1307 m32.msg_control = PTROUT(msg->msg_control); 1308 m32.msg_controllen = msg->msg_controllen; 1309 m32.msg_flags = msg->msg_flags; 1310 error = copyout(&m32, msg32, sizeof(m32)); 1311 return (error); 1312 } 1313 1314 #ifndef __mips__ 1315 #define FREEBSD32_ALIGNBYTES (sizeof(int) - 1) 1316 #else 1317 #define FREEBSD32_ALIGNBYTES (sizeof(long) - 1) 1318 #endif 1319 #define FREEBSD32_ALIGN(p) \ 1320 (((u_long)(p) + FREEBSD32_ALIGNBYTES) & ~FREEBSD32_ALIGNBYTES) 1321 #define FREEBSD32_CMSG_SPACE(l) \ 1322 (FREEBSD32_ALIGN(sizeof(struct cmsghdr)) + FREEBSD32_ALIGN(l)) 1323 1324 #define FREEBSD32_CMSG_DATA(cmsg) ((unsigned char *)(cmsg) + \ 1325 FREEBSD32_ALIGN(sizeof(struct cmsghdr))) 1326 1327 static size_t 1328 freebsd32_cmsg_convert(const struct cmsghdr *cm, void *data, socklen_t datalen) 1329 { 1330 size_t copylen; 1331 union { 1332 struct timespec32 ts; 1333 struct timeval32 tv; 1334 struct bintime32 bt; 1335 } tmp32; 1336 1337 union { 1338 struct timespec ts; 1339 struct timeval tv; 1340 struct bintime bt; 1341 } *in; 1342 1343 in = data; 1344 copylen = 0; 1345 switch (cm->cmsg_level) { 1346 case SOL_SOCKET: 1347 switch (cm->cmsg_type) { 1348 case SCM_TIMESTAMP: 1349 TV_CP(*in, tmp32, tv); 1350 copylen = sizeof(tmp32.tv); 1351 break; 1352 1353 case SCM_BINTIME: 1354 BT_CP(*in, tmp32, bt); 1355 copylen = sizeof(tmp32.bt); 1356 break; 1357 1358 case SCM_REALTIME: 1359 case SCM_MONOTONIC: 1360 TS_CP(*in, tmp32, ts); 1361 copylen = sizeof(tmp32.ts); 1362 break; 1363 1364 default: 1365 break; 1366 } 1367 1368 default: 1369 break; 1370 } 1371 1372 if (copylen == 0) 1373 return (datalen); 1374 1375 KASSERT((datalen >= copylen), ("corrupted cmsghdr")); 1376 1377 bcopy(&tmp32, data, copylen); 1378 return (copylen); 1379 } 1380 1381 static int 1382 freebsd32_copy_msg_out(struct msghdr *msg, struct mbuf *control) 1383 { 1384 struct cmsghdr *cm; 1385 void *data; 1386 socklen_t clen, datalen, datalen_out, oldclen; 1387 int error; 1388 caddr_t ctlbuf; 1389 int len, copylen; 1390 struct mbuf *m; 1391 error = 0; 1392 1393 len = msg->msg_controllen; 1394 msg->msg_controllen = 0; 1395 1396 ctlbuf = msg->msg_control; 1397 for (m = control; m != NULL && len > 0; m = m->m_next) { 1398 cm = mtod(m, struct cmsghdr *); 1399 clen = m->m_len; 1400 while (cm != NULL) { 1401 if (sizeof(struct cmsghdr) > clen || 1402 cm->cmsg_len > clen) { 1403 error = EINVAL; 1404 break; 1405 } 1406 1407 data = CMSG_DATA(cm); 1408 datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data; 1409 datalen_out = freebsd32_cmsg_convert(cm, data, datalen); 1410 1411 /* 1412 * Copy out the message header. Preserve the native 1413 * message size in case we need to inspect the message 1414 * contents later. 1415 */ 1416 copylen = sizeof(struct cmsghdr); 1417 if (len < copylen) { 1418 msg->msg_flags |= MSG_CTRUNC; 1419 m_dispose_extcontrolm(m); 1420 goto exit; 1421 } 1422 oldclen = cm->cmsg_len; 1423 cm->cmsg_len = FREEBSD32_ALIGN(sizeof(struct cmsghdr)) + 1424 datalen_out; 1425 error = copyout(cm, ctlbuf, copylen); 1426 cm->cmsg_len = oldclen; 1427 if (error != 0) 1428 goto exit; 1429 1430 ctlbuf += FREEBSD32_ALIGN(copylen); 1431 len -= FREEBSD32_ALIGN(copylen); 1432 1433 copylen = datalen_out; 1434 if (len < copylen) { 1435 msg->msg_flags |= MSG_CTRUNC; 1436 m_dispose_extcontrolm(m); 1437 break; 1438 } 1439 1440 /* Copy out the message data. */ 1441 error = copyout(data, ctlbuf, copylen); 1442 if (error) 1443 goto exit; 1444 1445 ctlbuf += FREEBSD32_ALIGN(copylen); 1446 len -= FREEBSD32_ALIGN(copylen); 1447 1448 if (CMSG_SPACE(datalen) < clen) { 1449 clen -= CMSG_SPACE(datalen); 1450 cm = (struct cmsghdr *) 1451 ((caddr_t)cm + CMSG_SPACE(datalen)); 1452 } else { 1453 clen = 0; 1454 cm = NULL; 1455 } 1456 1457 msg->msg_controllen += 1458 FREEBSD32_CMSG_SPACE(datalen_out); 1459 } 1460 } 1461 if (len == 0 && m != NULL) { 1462 msg->msg_flags |= MSG_CTRUNC; 1463 m_dispose_extcontrolm(m); 1464 } 1465 1466 exit: 1467 return (error); 1468 } 1469 1470 int 1471 freebsd32_recvmsg(struct thread *td, struct freebsd32_recvmsg_args *uap) 1472 { 1473 struct msghdr msg; 1474 struct iovec *uiov, *iov; 1475 struct mbuf *control = NULL; 1476 struct mbuf **controlp; 1477 int error; 1478 1479 error = freebsd32_copyinmsghdr(uap->msg, &msg); 1480 if (error) 1481 return (error); 1482 error = freebsd32_copyiniov((void *)msg.msg_iov, msg.msg_iovlen, &iov, 1483 EMSGSIZE); 1484 if (error) 1485 return (error); 1486 msg.msg_flags = uap->flags; 1487 uiov = msg.msg_iov; 1488 msg.msg_iov = iov; 1489 1490 controlp = (msg.msg_control != NULL) ? &control : NULL; 1491 error = kern_recvit(td, uap->s, &msg, UIO_USERSPACE, controlp); 1492 if (error == 0) { 1493 msg.msg_iov = uiov; 1494 1495 if (control != NULL) 1496 error = freebsd32_copy_msg_out(&msg, control); 1497 else 1498 msg.msg_controllen = 0; 1499 1500 if (error == 0) 1501 error = freebsd32_copyoutmsghdr(&msg, uap->msg); 1502 } 1503 free(iov, M_IOV); 1504 1505 if (control != NULL) { 1506 if (error != 0) 1507 m_dispose_extcontrolm(control); 1508 m_freem(control); 1509 } 1510 1511 return (error); 1512 } 1513 1514 #ifdef COMPAT_43 1515 int 1516 ofreebsd32_recvmsg(struct thread *td, struct ofreebsd32_recvmsg_args *uap) 1517 { 1518 return (ENOSYS); 1519 } 1520 #endif 1521 1522 /* 1523 * Copy-in the array of control messages constructed using alignment 1524 * and padding suitable for a 32-bit environment and construct an 1525 * mbuf using alignment and padding suitable for a 64-bit kernel. 1526 * The alignment and padding are defined indirectly by CMSG_DATA(), 1527 * CMSG_SPACE() and CMSG_LEN(). 1528 */ 1529 static int 1530 freebsd32_copyin_control(struct mbuf **mp, caddr_t buf, u_int buflen) 1531 { 1532 struct cmsghdr *cm; 1533 struct mbuf *m; 1534 void *in, *in1, *md; 1535 u_int msglen, outlen; 1536 int error; 1537 1538 /* Enforce the size limit of the native implementation. */ 1539 if (buflen > MCLBYTES) 1540 return (EINVAL); 1541 1542 in = malloc(buflen, M_TEMP, M_WAITOK); 1543 error = copyin(buf, in, buflen); 1544 if (error != 0) 1545 goto out; 1546 1547 /* 1548 * Make a pass over the input buffer to determine the amount of space 1549 * required for 64 bit-aligned copies of the control messages. 1550 */ 1551 in1 = in; 1552 outlen = 0; 1553 while (buflen > 0) { 1554 if (buflen < sizeof(*cm)) { 1555 error = EINVAL; 1556 break; 1557 } 1558 cm = (struct cmsghdr *)in1; 1559 if (cm->cmsg_len < FREEBSD32_ALIGN(sizeof(*cm))) { 1560 error = EINVAL; 1561 break; 1562 } 1563 msglen = FREEBSD32_ALIGN(cm->cmsg_len); 1564 if (msglen > buflen || msglen < cm->cmsg_len) { 1565 error = EINVAL; 1566 break; 1567 } 1568 buflen -= msglen; 1569 1570 in1 = (char *)in1 + msglen; 1571 outlen += CMSG_ALIGN(sizeof(*cm)) + 1572 CMSG_ALIGN(msglen - FREEBSD32_ALIGN(sizeof(*cm))); 1573 } 1574 if (error != 0) 1575 goto out; 1576 1577 /* 1578 * Allocate up to MJUMPAGESIZE space for the re-aligned and 1579 * re-padded control messages. This allows a full MCLBYTES of 1580 * 32-bit sized and aligned messages to fit and avoids an ABI 1581 * mismatch with the native implementation. 1582 */ 1583 m = m_get2(outlen, M_WAITOK, MT_CONTROL, 0); 1584 if (m == NULL) { 1585 error = EINVAL; 1586 goto out; 1587 } 1588 m->m_len = outlen; 1589 md = mtod(m, void *); 1590 1591 /* 1592 * Make a second pass over input messages, copying them into the output 1593 * buffer. 1594 */ 1595 in1 = in; 1596 while (outlen > 0) { 1597 /* Copy the message header and align the length field. */ 1598 cm = md; 1599 memcpy(cm, in1, sizeof(*cm)); 1600 msglen = cm->cmsg_len - FREEBSD32_ALIGN(sizeof(*cm)); 1601 cm->cmsg_len = CMSG_ALIGN(sizeof(*cm)) + msglen; 1602 1603 /* Copy the message body. */ 1604 in1 = (char *)in1 + FREEBSD32_ALIGN(sizeof(*cm)); 1605 md = (char *)md + CMSG_ALIGN(sizeof(*cm)); 1606 memcpy(md, in1, msglen); 1607 in1 = (char *)in1 + FREEBSD32_ALIGN(msglen); 1608 md = (char *)md + CMSG_ALIGN(msglen); 1609 KASSERT(outlen >= CMSG_ALIGN(sizeof(*cm)) + CMSG_ALIGN(msglen), 1610 ("outlen %u underflow, msglen %u", outlen, msglen)); 1611 outlen -= CMSG_ALIGN(sizeof(*cm)) + CMSG_ALIGN(msglen); 1612 } 1613 1614 *mp = m; 1615 out: 1616 free(in, M_TEMP); 1617 return (error); 1618 } 1619 1620 int 1621 freebsd32_sendmsg(struct thread *td, struct freebsd32_sendmsg_args *uap) 1622 { 1623 struct msghdr msg; 1624 struct iovec *iov; 1625 struct mbuf *control = NULL; 1626 struct sockaddr *to = NULL; 1627 int error; 1628 1629 error = freebsd32_copyinmsghdr(uap->msg, &msg); 1630 if (error) 1631 return (error); 1632 error = freebsd32_copyiniov((void *)msg.msg_iov, msg.msg_iovlen, &iov, 1633 EMSGSIZE); 1634 if (error) 1635 return (error); 1636 msg.msg_iov = iov; 1637 if (msg.msg_name != NULL) { 1638 error = getsockaddr(&to, msg.msg_name, msg.msg_namelen); 1639 if (error) { 1640 to = NULL; 1641 goto out; 1642 } 1643 msg.msg_name = to; 1644 } 1645 1646 if (msg.msg_control) { 1647 if (msg.msg_controllen < sizeof(struct cmsghdr)) { 1648 error = EINVAL; 1649 goto out; 1650 } 1651 1652 error = freebsd32_copyin_control(&control, msg.msg_control, 1653 msg.msg_controllen); 1654 if (error) 1655 goto out; 1656 1657 msg.msg_control = NULL; 1658 msg.msg_controllen = 0; 1659 } 1660 1661 error = kern_sendit(td, uap->s, &msg, uap->flags, control, 1662 UIO_USERSPACE); 1663 1664 out: 1665 free(iov, M_IOV); 1666 if (to) 1667 free(to, M_SONAME); 1668 return (error); 1669 } 1670 1671 #ifdef COMPAT_43 1672 int 1673 ofreebsd32_sendmsg(struct thread *td, struct ofreebsd32_sendmsg_args *uap) 1674 { 1675 return (ENOSYS); 1676 } 1677 #endif 1678 1679 1680 int 1681 freebsd32_settimeofday(struct thread *td, 1682 struct freebsd32_settimeofday_args *uap) 1683 { 1684 struct timeval32 tv32; 1685 struct timeval tv, *tvp; 1686 struct timezone tz, *tzp; 1687 int error; 1688 1689 if (uap->tv) { 1690 error = copyin(uap->tv, &tv32, sizeof(tv32)); 1691 if (error) 1692 return (error); 1693 CP(tv32, tv, tv_sec); 1694 CP(tv32, tv, tv_usec); 1695 tvp = &tv; 1696 } else 1697 tvp = NULL; 1698 if (uap->tzp) { 1699 error = copyin(uap->tzp, &tz, sizeof(tz)); 1700 if (error) 1701 return (error); 1702 tzp = &tz; 1703 } else 1704 tzp = NULL; 1705 return (kern_settimeofday(td, tvp, tzp)); 1706 } 1707 1708 int 1709 freebsd32_utimes(struct thread *td, struct freebsd32_utimes_args *uap) 1710 { 1711 struct timeval32 s32[2]; 1712 struct timeval s[2], *sp; 1713 int error; 1714 1715 if (uap->tptr != NULL) { 1716 error = copyin(uap->tptr, s32, sizeof(s32)); 1717 if (error) 1718 return (error); 1719 CP(s32[0], s[0], tv_sec); 1720 CP(s32[0], s[0], tv_usec); 1721 CP(s32[1], s[1], tv_sec); 1722 CP(s32[1], s[1], tv_usec); 1723 sp = s; 1724 } else 1725 sp = NULL; 1726 return (kern_utimesat(td, AT_FDCWD, uap->path, UIO_USERSPACE, 1727 sp, UIO_SYSSPACE)); 1728 } 1729 1730 int 1731 freebsd32_lutimes(struct thread *td, struct freebsd32_lutimes_args *uap) 1732 { 1733 struct timeval32 s32[2]; 1734 struct timeval s[2], *sp; 1735 int error; 1736 1737 if (uap->tptr != NULL) { 1738 error = copyin(uap->tptr, s32, sizeof(s32)); 1739 if (error) 1740 return (error); 1741 CP(s32[0], s[0], tv_sec); 1742 CP(s32[0], s[0], tv_usec); 1743 CP(s32[1], s[1], tv_sec); 1744 CP(s32[1], s[1], tv_usec); 1745 sp = s; 1746 } else 1747 sp = NULL; 1748 return (kern_lutimes(td, uap->path, UIO_USERSPACE, sp, UIO_SYSSPACE)); 1749 } 1750 1751 int 1752 freebsd32_futimes(struct thread *td, struct freebsd32_futimes_args *uap) 1753 { 1754 struct timeval32 s32[2]; 1755 struct timeval s[2], *sp; 1756 int error; 1757 1758 if (uap->tptr != NULL) { 1759 error = copyin(uap->tptr, s32, sizeof(s32)); 1760 if (error) 1761 return (error); 1762 CP(s32[0], s[0], tv_sec); 1763 CP(s32[0], s[0], tv_usec); 1764 CP(s32[1], s[1], tv_sec); 1765 CP(s32[1], s[1], tv_usec); 1766 sp = s; 1767 } else 1768 sp = NULL; 1769 return (kern_futimes(td, uap->fd, sp, UIO_SYSSPACE)); 1770 } 1771 1772 int 1773 freebsd32_futimesat(struct thread *td, struct freebsd32_futimesat_args *uap) 1774 { 1775 struct timeval32 s32[2]; 1776 struct timeval s[2], *sp; 1777 int error; 1778 1779 if (uap->times != NULL) { 1780 error = copyin(uap->times, s32, sizeof(s32)); 1781 if (error) 1782 return (error); 1783 CP(s32[0], s[0], tv_sec); 1784 CP(s32[0], s[0], tv_usec); 1785 CP(s32[1], s[1], tv_sec); 1786 CP(s32[1], s[1], tv_usec); 1787 sp = s; 1788 } else 1789 sp = NULL; 1790 return (kern_utimesat(td, uap->fd, uap->path, UIO_USERSPACE, 1791 sp, UIO_SYSSPACE)); 1792 } 1793 1794 int 1795 freebsd32_futimens(struct thread *td, struct freebsd32_futimens_args *uap) 1796 { 1797 struct timespec32 ts32[2]; 1798 struct timespec ts[2], *tsp; 1799 int error; 1800 1801 if (uap->times != NULL) { 1802 error = copyin(uap->times, ts32, sizeof(ts32)); 1803 if (error) 1804 return (error); 1805 CP(ts32[0], ts[0], tv_sec); 1806 CP(ts32[0], ts[0], tv_nsec); 1807 CP(ts32[1], ts[1], tv_sec); 1808 CP(ts32[1], ts[1], tv_nsec); 1809 tsp = ts; 1810 } else 1811 tsp = NULL; 1812 return (kern_futimens(td, uap->fd, tsp, UIO_SYSSPACE)); 1813 } 1814 1815 int 1816 freebsd32_utimensat(struct thread *td, struct freebsd32_utimensat_args *uap) 1817 { 1818 struct timespec32 ts32[2]; 1819 struct timespec ts[2], *tsp; 1820 int error; 1821 1822 if (uap->times != NULL) { 1823 error = copyin(uap->times, ts32, sizeof(ts32)); 1824 if (error) 1825 return (error); 1826 CP(ts32[0], ts[0], tv_sec); 1827 CP(ts32[0], ts[0], tv_nsec); 1828 CP(ts32[1], ts[1], tv_sec); 1829 CP(ts32[1], ts[1], tv_nsec); 1830 tsp = ts; 1831 } else 1832 tsp = NULL; 1833 return (kern_utimensat(td, uap->fd, uap->path, UIO_USERSPACE, 1834 tsp, UIO_SYSSPACE, uap->flag)); 1835 } 1836 1837 int 1838 freebsd32_adjtime(struct thread *td, struct freebsd32_adjtime_args *uap) 1839 { 1840 struct timeval32 tv32; 1841 struct timeval delta, olddelta, *deltap; 1842 int error; 1843 1844 if (uap->delta) { 1845 error = copyin(uap->delta, &tv32, sizeof(tv32)); 1846 if (error) 1847 return (error); 1848 CP(tv32, delta, tv_sec); 1849 CP(tv32, delta, tv_usec); 1850 deltap = δ 1851 } else 1852 deltap = NULL; 1853 error = kern_adjtime(td, deltap, &olddelta); 1854 if (uap->olddelta && error == 0) { 1855 CP(olddelta, tv32, tv_sec); 1856 CP(olddelta, tv32, tv_usec); 1857 error = copyout(&tv32, uap->olddelta, sizeof(tv32)); 1858 } 1859 return (error); 1860 } 1861 1862 #ifdef COMPAT_FREEBSD4 1863 int 1864 freebsd4_freebsd32_statfs(struct thread *td, struct freebsd4_freebsd32_statfs_args *uap) 1865 { 1866 struct ostatfs32 s32; 1867 struct statfs *sp; 1868 int error; 1869 1870 sp = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK); 1871 error = kern_statfs(td, uap->path, UIO_USERSPACE, sp); 1872 if (error == 0) { 1873 copy_statfs(sp, &s32); 1874 error = copyout(&s32, uap->buf, sizeof(s32)); 1875 } 1876 free(sp, M_STATFS); 1877 return (error); 1878 } 1879 #endif 1880 1881 #ifdef COMPAT_FREEBSD4 1882 int 1883 freebsd4_freebsd32_fstatfs(struct thread *td, struct freebsd4_freebsd32_fstatfs_args *uap) 1884 { 1885 struct ostatfs32 s32; 1886 struct statfs *sp; 1887 int error; 1888 1889 sp = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK); 1890 error = kern_fstatfs(td, uap->fd, sp); 1891 if (error == 0) { 1892 copy_statfs(sp, &s32); 1893 error = copyout(&s32, uap->buf, sizeof(s32)); 1894 } 1895 free(sp, M_STATFS); 1896 return (error); 1897 } 1898 #endif 1899 1900 #ifdef COMPAT_FREEBSD4 1901 int 1902 freebsd4_freebsd32_fhstatfs(struct thread *td, struct freebsd4_freebsd32_fhstatfs_args *uap) 1903 { 1904 struct ostatfs32 s32; 1905 struct statfs *sp; 1906 fhandle_t fh; 1907 int error; 1908 1909 if ((error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t))) != 0) 1910 return (error); 1911 sp = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK); 1912 error = kern_fhstatfs(td, fh, sp); 1913 if (error == 0) { 1914 copy_statfs(sp, &s32); 1915 error = copyout(&s32, uap->buf, sizeof(s32)); 1916 } 1917 free(sp, M_STATFS); 1918 return (error); 1919 } 1920 #endif 1921 1922 int 1923 freebsd32_pread(struct thread *td, struct freebsd32_pread_args *uap) 1924 { 1925 1926 return (kern_pread(td, uap->fd, uap->buf, uap->nbyte, 1927 PAIR32TO64(off_t, uap->offset))); 1928 } 1929 1930 int 1931 freebsd32_pwrite(struct thread *td, struct freebsd32_pwrite_args *uap) 1932 { 1933 1934 return (kern_pwrite(td, uap->fd, uap->buf, uap->nbyte, 1935 PAIR32TO64(off_t, uap->offset))); 1936 } 1937 1938 #ifdef COMPAT_43 1939 int 1940 ofreebsd32_lseek(struct thread *td, struct ofreebsd32_lseek_args *uap) 1941 { 1942 1943 return (kern_lseek(td, uap->fd, uap->offset, uap->whence)); 1944 } 1945 #endif 1946 1947 int 1948 freebsd32_lseek(struct thread *td, struct freebsd32_lseek_args *uap) 1949 { 1950 int error; 1951 off_t pos; 1952 1953 error = kern_lseek(td, uap->fd, PAIR32TO64(off_t, uap->offset), 1954 uap->whence); 1955 /* Expand the quad return into two parts for eax and edx */ 1956 pos = td->td_uretoff.tdu_off; 1957 td->td_retval[RETVAL_LO] = pos & 0xffffffff; /* %eax */ 1958 td->td_retval[RETVAL_HI] = pos >> 32; /* %edx */ 1959 return error; 1960 } 1961 1962 int 1963 freebsd32_truncate(struct thread *td, struct freebsd32_truncate_args *uap) 1964 { 1965 1966 return (kern_truncate(td, uap->path, UIO_USERSPACE, 1967 PAIR32TO64(off_t, uap->length))); 1968 } 1969 1970 #ifdef COMPAT_43 1971 int 1972 ofreebsd32_truncate(struct thread *td, struct ofreebsd32_truncate_args *uap) 1973 { 1974 return (kern_truncate(td, uap->path, UIO_USERSPACE, uap->length)); 1975 } 1976 #endif 1977 1978 int 1979 freebsd32_ftruncate(struct thread *td, struct freebsd32_ftruncate_args *uap) 1980 { 1981 1982 return (kern_ftruncate(td, uap->fd, PAIR32TO64(off_t, uap->length))); 1983 } 1984 1985 #ifdef COMPAT_43 1986 int 1987 ofreebsd32_ftruncate(struct thread *td, struct ofreebsd32_ftruncate_args *uap) 1988 { 1989 return (kern_ftruncate(td, uap->fd, uap->length)); 1990 } 1991 1992 int 1993 ofreebsd32_getdirentries(struct thread *td, 1994 struct ofreebsd32_getdirentries_args *uap) 1995 { 1996 struct ogetdirentries_args ap; 1997 int error; 1998 long loff; 1999 int32_t loff_cut; 2000 2001 ap.fd = uap->fd; 2002 ap.buf = uap->buf; 2003 ap.count = uap->count; 2004 ap.basep = NULL; 2005 error = kern_ogetdirentries(td, &ap, &loff); 2006 if (error == 0) { 2007 loff_cut = loff; 2008 error = copyout(&loff_cut, uap->basep, sizeof(int32_t)); 2009 } 2010 return (error); 2011 } 2012 #endif 2013 2014 #if defined(COMPAT_FREEBSD11) 2015 int 2016 freebsd11_freebsd32_getdirentries(struct thread *td, 2017 struct freebsd11_freebsd32_getdirentries_args *uap) 2018 { 2019 long base; 2020 int32_t base32; 2021 int error; 2022 2023 error = freebsd11_kern_getdirentries(td, uap->fd, uap->buf, uap->count, 2024 &base, NULL); 2025 if (error) 2026 return (error); 2027 if (uap->basep != NULL) { 2028 base32 = base; 2029 error = copyout(&base32, uap->basep, sizeof(int32_t)); 2030 } 2031 return (error); 2032 } 2033 #endif /* COMPAT_FREEBSD11 */ 2034 2035 #ifdef COMPAT_FREEBSD6 2036 /* versions with the 'int pad' argument */ 2037 int 2038 freebsd6_freebsd32_pread(struct thread *td, struct freebsd6_freebsd32_pread_args *uap) 2039 { 2040 2041 return (kern_pread(td, uap->fd, uap->buf, uap->nbyte, 2042 PAIR32TO64(off_t, uap->offset))); 2043 } 2044 2045 int 2046 freebsd6_freebsd32_pwrite(struct thread *td, struct freebsd6_freebsd32_pwrite_args *uap) 2047 { 2048 2049 return (kern_pwrite(td, uap->fd, uap->buf, uap->nbyte, 2050 PAIR32TO64(off_t, uap->offset))); 2051 } 2052 2053 int 2054 freebsd6_freebsd32_lseek(struct thread *td, struct freebsd6_freebsd32_lseek_args *uap) 2055 { 2056 int error; 2057 off_t pos; 2058 2059 error = kern_lseek(td, uap->fd, PAIR32TO64(off_t, uap->offset), 2060 uap->whence); 2061 /* Expand the quad return into two parts for eax and edx */ 2062 pos = *(off_t *)(td->td_retval); 2063 td->td_retval[RETVAL_LO] = pos & 0xffffffff; /* %eax */ 2064 td->td_retval[RETVAL_HI] = pos >> 32; /* %edx */ 2065 return error; 2066 } 2067 2068 int 2069 freebsd6_freebsd32_truncate(struct thread *td, struct freebsd6_freebsd32_truncate_args *uap) 2070 { 2071 2072 return (kern_truncate(td, uap->path, UIO_USERSPACE, 2073 PAIR32TO64(off_t, uap->length))); 2074 } 2075 2076 int 2077 freebsd6_freebsd32_ftruncate(struct thread *td, struct freebsd6_freebsd32_ftruncate_args *uap) 2078 { 2079 2080 return (kern_ftruncate(td, uap->fd, PAIR32TO64(off_t, uap->length))); 2081 } 2082 #endif /* COMPAT_FREEBSD6 */ 2083 2084 struct sf_hdtr32 { 2085 uint32_t headers; 2086 int hdr_cnt; 2087 uint32_t trailers; 2088 int trl_cnt; 2089 }; 2090 2091 static int 2092 freebsd32_do_sendfile(struct thread *td, 2093 struct freebsd32_sendfile_args *uap, int compat) 2094 { 2095 struct sf_hdtr32 hdtr32; 2096 struct sf_hdtr hdtr; 2097 struct uio *hdr_uio, *trl_uio; 2098 struct file *fp; 2099 cap_rights_t rights; 2100 struct iovec32 *iov32; 2101 off_t offset, sbytes; 2102 int error; 2103 2104 offset = PAIR32TO64(off_t, uap->offset); 2105 if (offset < 0) 2106 return (EINVAL); 2107 2108 hdr_uio = trl_uio = NULL; 2109 2110 if (uap->hdtr != NULL) { 2111 error = copyin(uap->hdtr, &hdtr32, sizeof(hdtr32)); 2112 if (error) 2113 goto out; 2114 PTRIN_CP(hdtr32, hdtr, headers); 2115 CP(hdtr32, hdtr, hdr_cnt); 2116 PTRIN_CP(hdtr32, hdtr, trailers); 2117 CP(hdtr32, hdtr, trl_cnt); 2118 2119 if (hdtr.headers != NULL) { 2120 iov32 = PTRIN(hdtr32.headers); 2121 error = freebsd32_copyinuio(iov32, 2122 hdtr32.hdr_cnt, &hdr_uio); 2123 if (error) 2124 goto out; 2125 #ifdef COMPAT_FREEBSD4 2126 /* 2127 * In FreeBSD < 5.0 the nbytes to send also included 2128 * the header. If compat is specified subtract the 2129 * header size from nbytes. 2130 */ 2131 if (compat) { 2132 if (uap->nbytes > hdr_uio->uio_resid) 2133 uap->nbytes -= hdr_uio->uio_resid; 2134 else 2135 uap->nbytes = 0; 2136 } 2137 #endif 2138 } 2139 if (hdtr.trailers != NULL) { 2140 iov32 = PTRIN(hdtr32.trailers); 2141 error = freebsd32_copyinuio(iov32, 2142 hdtr32.trl_cnt, &trl_uio); 2143 if (error) 2144 goto out; 2145 } 2146 } 2147 2148 AUDIT_ARG_FD(uap->fd); 2149 2150 if ((error = fget_read(td, uap->fd, 2151 cap_rights_init_one(&rights, CAP_PREAD), &fp)) != 0) 2152 goto out; 2153 2154 error = fo_sendfile(fp, uap->s, hdr_uio, trl_uio, offset, 2155 uap->nbytes, &sbytes, uap->flags, td); 2156 fdrop(fp, td); 2157 2158 if (uap->sbytes != NULL) 2159 copyout(&sbytes, uap->sbytes, sizeof(off_t)); 2160 2161 out: 2162 if (hdr_uio) 2163 free(hdr_uio, M_IOV); 2164 if (trl_uio) 2165 free(trl_uio, M_IOV); 2166 return (error); 2167 } 2168 2169 #ifdef COMPAT_FREEBSD4 2170 int 2171 freebsd4_freebsd32_sendfile(struct thread *td, 2172 struct freebsd4_freebsd32_sendfile_args *uap) 2173 { 2174 return (freebsd32_do_sendfile(td, 2175 (struct freebsd32_sendfile_args *)uap, 1)); 2176 } 2177 #endif 2178 2179 int 2180 freebsd32_sendfile(struct thread *td, struct freebsd32_sendfile_args *uap) 2181 { 2182 2183 return (freebsd32_do_sendfile(td, uap, 0)); 2184 } 2185 2186 static void 2187 copy_stat(struct stat *in, struct stat32 *out) 2188 { 2189 2190 #ifndef __amd64__ 2191 /* 2192 * 32-bit architectures other than i386 have 64-bit time_t. This 2193 * results in struct timespec32 with 12 bytes for tv_sec and tv_nsec, 2194 * and 4 bytes of padding. Zero the padding holes in struct stat32. 2195 */ 2196 bzero(&out->st_atim, sizeof(out->st_atim)); 2197 bzero(&out->st_mtim, sizeof(out->st_mtim)); 2198 bzero(&out->st_ctim, sizeof(out->st_ctim)); 2199 bzero(&out->st_birthtim, sizeof(out->st_birthtim)); 2200 #endif 2201 CP(*in, *out, st_dev); 2202 CP(*in, *out, st_ino); 2203 CP(*in, *out, st_mode); 2204 CP(*in, *out, st_nlink); 2205 CP(*in, *out, st_uid); 2206 CP(*in, *out, st_gid); 2207 CP(*in, *out, st_rdev); 2208 TS_CP(*in, *out, st_atim); 2209 TS_CP(*in, *out, st_mtim); 2210 TS_CP(*in, *out, st_ctim); 2211 CP(*in, *out, st_size); 2212 CP(*in, *out, st_blocks); 2213 CP(*in, *out, st_blksize); 2214 CP(*in, *out, st_flags); 2215 CP(*in, *out, st_gen); 2216 TS_CP(*in, *out, st_birthtim); 2217 out->st_padding0 = 0; 2218 out->st_padding1 = 0; 2219 #ifdef __STAT32_TIME_T_EXT 2220 out->st_atim_ext = 0; 2221 out->st_mtim_ext = 0; 2222 out->st_ctim_ext = 0; 2223 out->st_btim_ext = 0; 2224 #endif 2225 bzero(out->st_spare, sizeof(out->st_spare)); 2226 } 2227 2228 #ifdef COMPAT_43 2229 static void 2230 copy_ostat(struct stat *in, struct ostat32 *out) 2231 { 2232 2233 bzero(out, sizeof(*out)); 2234 CP(*in, *out, st_dev); 2235 CP(*in, *out, st_ino); 2236 CP(*in, *out, st_mode); 2237 CP(*in, *out, st_nlink); 2238 CP(*in, *out, st_uid); 2239 CP(*in, *out, st_gid); 2240 CP(*in, *out, st_rdev); 2241 out->st_size = MIN(in->st_size, INT32_MAX); 2242 TS_CP(*in, *out, st_atim); 2243 TS_CP(*in, *out, st_mtim); 2244 TS_CP(*in, *out, st_ctim); 2245 CP(*in, *out, st_blksize); 2246 CP(*in, *out, st_blocks); 2247 CP(*in, *out, st_flags); 2248 CP(*in, *out, st_gen); 2249 } 2250 #endif 2251 2252 #ifdef COMPAT_43 2253 int 2254 ofreebsd32_stat(struct thread *td, struct ofreebsd32_stat_args *uap) 2255 { 2256 struct stat sb; 2257 struct ostat32 sb32; 2258 int error; 2259 2260 error = kern_statat(td, 0, AT_FDCWD, uap->path, UIO_USERSPACE, 2261 &sb, NULL); 2262 if (error) 2263 return (error); 2264 copy_ostat(&sb, &sb32); 2265 error = copyout(&sb32, uap->ub, sizeof (sb32)); 2266 return (error); 2267 } 2268 #endif 2269 2270 int 2271 freebsd32_fstat(struct thread *td, struct freebsd32_fstat_args *uap) 2272 { 2273 struct stat ub; 2274 struct stat32 ub32; 2275 int error; 2276 2277 error = kern_fstat(td, uap->fd, &ub); 2278 if (error) 2279 return (error); 2280 copy_stat(&ub, &ub32); 2281 error = copyout(&ub32, uap->sb, sizeof(ub32)); 2282 return (error); 2283 } 2284 2285 #ifdef COMPAT_43 2286 int 2287 ofreebsd32_fstat(struct thread *td, struct ofreebsd32_fstat_args *uap) 2288 { 2289 struct stat ub; 2290 struct ostat32 ub32; 2291 int error; 2292 2293 error = kern_fstat(td, uap->fd, &ub); 2294 if (error) 2295 return (error); 2296 copy_ostat(&ub, &ub32); 2297 error = copyout(&ub32, uap->sb, sizeof(ub32)); 2298 return (error); 2299 } 2300 #endif 2301 2302 int 2303 freebsd32_fstatat(struct thread *td, struct freebsd32_fstatat_args *uap) 2304 { 2305 struct stat ub; 2306 struct stat32 ub32; 2307 int error; 2308 2309 error = kern_statat(td, uap->flag, uap->fd, uap->path, UIO_USERSPACE, 2310 &ub, NULL); 2311 if (error) 2312 return (error); 2313 copy_stat(&ub, &ub32); 2314 error = copyout(&ub32, uap->buf, sizeof(ub32)); 2315 return (error); 2316 } 2317 2318 #ifdef COMPAT_43 2319 int 2320 ofreebsd32_lstat(struct thread *td, struct ofreebsd32_lstat_args *uap) 2321 { 2322 struct stat sb; 2323 struct ostat32 sb32; 2324 int error; 2325 2326 error = kern_statat(td, AT_SYMLINK_NOFOLLOW, AT_FDCWD, uap->path, 2327 UIO_USERSPACE, &sb, NULL); 2328 if (error) 2329 return (error); 2330 copy_ostat(&sb, &sb32); 2331 error = copyout(&sb32, uap->ub, sizeof (sb32)); 2332 return (error); 2333 } 2334 #endif 2335 2336 int 2337 freebsd32_fhstat(struct thread *td, struct freebsd32_fhstat_args *uap) 2338 { 2339 struct stat sb; 2340 struct stat32 sb32; 2341 struct fhandle fh; 2342 int error; 2343 2344 error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t)); 2345 if (error != 0) 2346 return (error); 2347 error = kern_fhstat(td, fh, &sb); 2348 if (error != 0) 2349 return (error); 2350 copy_stat(&sb, &sb32); 2351 error = copyout(&sb32, uap->sb, sizeof (sb32)); 2352 return (error); 2353 } 2354 2355 #if defined(COMPAT_FREEBSD11) 2356 extern int ino64_trunc_error; 2357 2358 static int 2359 freebsd11_cvtstat32(struct stat *in, struct freebsd11_stat32 *out) 2360 { 2361 2362 #ifndef __amd64__ 2363 /* 2364 * 32-bit architectures other than i386 have 64-bit time_t. This 2365 * results in struct timespec32 with 12 bytes for tv_sec and tv_nsec, 2366 * and 4 bytes of padding. Zero the padding holes in freebsd11_stat32. 2367 */ 2368 bzero(&out->st_atim, sizeof(out->st_atim)); 2369 bzero(&out->st_mtim, sizeof(out->st_mtim)); 2370 bzero(&out->st_ctim, sizeof(out->st_ctim)); 2371 bzero(&out->st_birthtim, sizeof(out->st_birthtim)); 2372 #endif 2373 2374 CP(*in, *out, st_ino); 2375 if (in->st_ino != out->st_ino) { 2376 switch (ino64_trunc_error) { 2377 default: 2378 case 0: 2379 break; 2380 case 1: 2381 return (EOVERFLOW); 2382 case 2: 2383 out->st_ino = UINT32_MAX; 2384 break; 2385 } 2386 } 2387 CP(*in, *out, st_nlink); 2388 if (in->st_nlink != out->st_nlink) { 2389 switch (ino64_trunc_error) { 2390 default: 2391 case 0: 2392 break; 2393 case 1: 2394 return (EOVERFLOW); 2395 case 2: 2396 out->st_nlink = UINT16_MAX; 2397 break; 2398 } 2399 } 2400 out->st_dev = in->st_dev; 2401 if (out->st_dev != in->st_dev) { 2402 switch (ino64_trunc_error) { 2403 default: 2404 break; 2405 case 1: 2406 return (EOVERFLOW); 2407 } 2408 } 2409 CP(*in, *out, st_mode); 2410 CP(*in, *out, st_uid); 2411 CP(*in, *out, st_gid); 2412 out->st_rdev = in->st_rdev; 2413 if (out->st_rdev != in->st_rdev) { 2414 switch (ino64_trunc_error) { 2415 default: 2416 break; 2417 case 1: 2418 return (EOVERFLOW); 2419 } 2420 } 2421 TS_CP(*in, *out, st_atim); 2422 TS_CP(*in, *out, st_mtim); 2423 TS_CP(*in, *out, st_ctim); 2424 CP(*in, *out, st_size); 2425 CP(*in, *out, st_blocks); 2426 CP(*in, *out, st_blksize); 2427 CP(*in, *out, st_flags); 2428 CP(*in, *out, st_gen); 2429 TS_CP(*in, *out, st_birthtim); 2430 out->st_lspare = 0; 2431 bzero((char *)&out->st_birthtim + sizeof(out->st_birthtim), 2432 sizeof(*out) - offsetof(struct freebsd11_stat32, 2433 st_birthtim) - sizeof(out->st_birthtim)); 2434 return (0); 2435 } 2436 2437 int 2438 freebsd11_freebsd32_stat(struct thread *td, 2439 struct freebsd11_freebsd32_stat_args *uap) 2440 { 2441 struct stat sb; 2442 struct freebsd11_stat32 sb32; 2443 int error; 2444 2445 error = kern_statat(td, 0, AT_FDCWD, uap->path, UIO_USERSPACE, 2446 &sb, NULL); 2447 if (error != 0) 2448 return (error); 2449 error = freebsd11_cvtstat32(&sb, &sb32); 2450 if (error == 0) 2451 error = copyout(&sb32, uap->ub, sizeof (sb32)); 2452 return (error); 2453 } 2454 2455 int 2456 freebsd11_freebsd32_fstat(struct thread *td, 2457 struct freebsd11_freebsd32_fstat_args *uap) 2458 { 2459 struct stat sb; 2460 struct freebsd11_stat32 sb32; 2461 int error; 2462 2463 error = kern_fstat(td, uap->fd, &sb); 2464 if (error != 0) 2465 return (error); 2466 error = freebsd11_cvtstat32(&sb, &sb32); 2467 if (error == 0) 2468 error = copyout(&sb32, uap->sb, sizeof (sb32)); 2469 return (error); 2470 } 2471 2472 int 2473 freebsd11_freebsd32_fstatat(struct thread *td, 2474 struct freebsd11_freebsd32_fstatat_args *uap) 2475 { 2476 struct stat sb; 2477 struct freebsd11_stat32 sb32; 2478 int error; 2479 2480 error = kern_statat(td, uap->flag, uap->fd, uap->path, UIO_USERSPACE, 2481 &sb, NULL); 2482 if (error != 0) 2483 return (error); 2484 error = freebsd11_cvtstat32(&sb, &sb32); 2485 if (error == 0) 2486 error = copyout(&sb32, uap->buf, sizeof (sb32)); 2487 return (error); 2488 } 2489 2490 int 2491 freebsd11_freebsd32_lstat(struct thread *td, 2492 struct freebsd11_freebsd32_lstat_args *uap) 2493 { 2494 struct stat sb; 2495 struct freebsd11_stat32 sb32; 2496 int error; 2497 2498 error = kern_statat(td, AT_SYMLINK_NOFOLLOW, AT_FDCWD, uap->path, 2499 UIO_USERSPACE, &sb, NULL); 2500 if (error != 0) 2501 return (error); 2502 error = freebsd11_cvtstat32(&sb, &sb32); 2503 if (error == 0) 2504 error = copyout(&sb32, uap->ub, sizeof (sb32)); 2505 return (error); 2506 } 2507 2508 int 2509 freebsd11_freebsd32_fhstat(struct thread *td, 2510 struct freebsd11_freebsd32_fhstat_args *uap) 2511 { 2512 struct stat sb; 2513 struct freebsd11_stat32 sb32; 2514 struct fhandle fh; 2515 int error; 2516 2517 error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t)); 2518 if (error != 0) 2519 return (error); 2520 error = kern_fhstat(td, fh, &sb); 2521 if (error != 0) 2522 return (error); 2523 error = freebsd11_cvtstat32(&sb, &sb32); 2524 if (error == 0) 2525 error = copyout(&sb32, uap->sb, sizeof (sb32)); 2526 return (error); 2527 } 2528 2529 static int 2530 freebsd11_cvtnstat32(struct stat *sb, struct nstat32 *nsb32) 2531 { 2532 struct nstat nsb; 2533 int error; 2534 2535 error = freebsd11_cvtnstat(sb, &nsb); 2536 if (error != 0) 2537 return (error); 2538 2539 bzero(nsb32, sizeof(*nsb32)); 2540 CP(nsb, *nsb32, st_dev); 2541 CP(nsb, *nsb32, st_ino); 2542 CP(nsb, *nsb32, st_mode); 2543 CP(nsb, *nsb32, st_nlink); 2544 CP(nsb, *nsb32, st_uid); 2545 CP(nsb, *nsb32, st_gid); 2546 CP(nsb, *nsb32, st_rdev); 2547 CP(nsb, *nsb32, st_atim.tv_sec); 2548 CP(nsb, *nsb32, st_atim.tv_nsec); 2549 CP(nsb, *nsb32, st_mtim.tv_sec); 2550 CP(nsb, *nsb32, st_mtim.tv_nsec); 2551 CP(nsb, *nsb32, st_ctim.tv_sec); 2552 CP(nsb, *nsb32, st_ctim.tv_nsec); 2553 CP(nsb, *nsb32, st_size); 2554 CP(nsb, *nsb32, st_blocks); 2555 CP(nsb, *nsb32, st_blksize); 2556 CP(nsb, *nsb32, st_flags); 2557 CP(nsb, *nsb32, st_gen); 2558 CP(nsb, *nsb32, st_birthtim.tv_sec); 2559 CP(nsb, *nsb32, st_birthtim.tv_nsec); 2560 return (0); 2561 } 2562 2563 int 2564 freebsd11_freebsd32_nstat(struct thread *td, 2565 struct freebsd11_freebsd32_nstat_args *uap) 2566 { 2567 struct stat sb; 2568 struct nstat32 nsb; 2569 int error; 2570 2571 error = kern_statat(td, 0, AT_FDCWD, uap->path, UIO_USERSPACE, 2572 &sb, NULL); 2573 if (error != 0) 2574 return (error); 2575 error = freebsd11_cvtnstat32(&sb, &nsb); 2576 if (error != 0) 2577 error = copyout(&nsb, uap->ub, sizeof (nsb)); 2578 return (error); 2579 } 2580 2581 int 2582 freebsd11_freebsd32_nlstat(struct thread *td, 2583 struct freebsd11_freebsd32_nlstat_args *uap) 2584 { 2585 struct stat sb; 2586 struct nstat32 nsb; 2587 int error; 2588 2589 error = kern_statat(td, AT_SYMLINK_NOFOLLOW, AT_FDCWD, uap->path, 2590 UIO_USERSPACE, &sb, NULL); 2591 if (error != 0) 2592 return (error); 2593 error = freebsd11_cvtnstat32(&sb, &nsb); 2594 if (error == 0) 2595 error = copyout(&nsb, uap->ub, sizeof (nsb)); 2596 return (error); 2597 } 2598 2599 int 2600 freebsd11_freebsd32_nfstat(struct thread *td, 2601 struct freebsd11_freebsd32_nfstat_args *uap) 2602 { 2603 struct nstat32 nub; 2604 struct stat ub; 2605 int error; 2606 2607 error = kern_fstat(td, uap->fd, &ub); 2608 if (error != 0) 2609 return (error); 2610 error = freebsd11_cvtnstat32(&ub, &nub); 2611 if (error == 0) 2612 error = copyout(&nub, uap->sb, sizeof(nub)); 2613 return (error); 2614 } 2615 #endif 2616 2617 int 2618 freebsd32___sysctl(struct thread *td, struct freebsd32___sysctl_args *uap) 2619 { 2620 int error, name[CTL_MAXNAME]; 2621 size_t j, oldlen; 2622 uint32_t tmp; 2623 2624 if (uap->namelen > CTL_MAXNAME || uap->namelen < 2) 2625 return (EINVAL); 2626 error = copyin(uap->name, name, uap->namelen * sizeof(int)); 2627 if (error) 2628 return (error); 2629 if (uap->oldlenp) { 2630 error = fueword32(uap->oldlenp, &tmp); 2631 oldlen = tmp; 2632 } else { 2633 oldlen = 0; 2634 } 2635 if (error != 0) 2636 return (EFAULT); 2637 error = userland_sysctl(td, name, uap->namelen, 2638 uap->old, &oldlen, 1, 2639 uap->new, uap->newlen, &j, SCTL_MASK32); 2640 if (error) 2641 return (error); 2642 if (uap->oldlenp) 2643 suword32(uap->oldlenp, j); 2644 return (0); 2645 } 2646 2647 int 2648 freebsd32___sysctlbyname(struct thread *td, 2649 struct freebsd32___sysctlbyname_args *uap) 2650 { 2651 size_t oldlen, rv; 2652 int error; 2653 uint32_t tmp; 2654 2655 if (uap->oldlenp != NULL) { 2656 error = fueword32(uap->oldlenp, &tmp); 2657 oldlen = tmp; 2658 } else { 2659 error = oldlen = 0; 2660 } 2661 if (error != 0) 2662 return (EFAULT); 2663 error = kern___sysctlbyname(td, uap->name, uap->namelen, uap->old, 2664 &oldlen, uap->new, uap->newlen, &rv, SCTL_MASK32, 1); 2665 if (error != 0) 2666 return (error); 2667 if (uap->oldlenp != NULL) 2668 error = suword32(uap->oldlenp, rv); 2669 2670 return (error); 2671 } 2672 2673 int 2674 freebsd32_jail(struct thread *td, struct freebsd32_jail_args *uap) 2675 { 2676 uint32_t version; 2677 int error; 2678 struct jail j; 2679 2680 error = copyin(uap->jail, &version, sizeof(uint32_t)); 2681 if (error) 2682 return (error); 2683 2684 switch (version) { 2685 case 0: 2686 { 2687 /* FreeBSD single IPv4 jails. */ 2688 struct jail32_v0 j32_v0; 2689 2690 bzero(&j, sizeof(struct jail)); 2691 error = copyin(uap->jail, &j32_v0, sizeof(struct jail32_v0)); 2692 if (error) 2693 return (error); 2694 CP(j32_v0, j, version); 2695 PTRIN_CP(j32_v0, j, path); 2696 PTRIN_CP(j32_v0, j, hostname); 2697 j.ip4s = htonl(j32_v0.ip_number); /* jail_v0 is host order */ 2698 break; 2699 } 2700 2701 case 1: 2702 /* 2703 * Version 1 was used by multi-IPv4 jail implementations 2704 * that never made it into the official kernel. 2705 */ 2706 return (EINVAL); 2707 2708 case 2: /* JAIL_API_VERSION */ 2709 { 2710 /* FreeBSD multi-IPv4/IPv6,noIP jails. */ 2711 struct jail32 j32; 2712 2713 error = copyin(uap->jail, &j32, sizeof(struct jail32)); 2714 if (error) 2715 return (error); 2716 CP(j32, j, version); 2717 PTRIN_CP(j32, j, path); 2718 PTRIN_CP(j32, j, hostname); 2719 PTRIN_CP(j32, j, jailname); 2720 CP(j32, j, ip4s); 2721 CP(j32, j, ip6s); 2722 PTRIN_CP(j32, j, ip4); 2723 PTRIN_CP(j32, j, ip6); 2724 break; 2725 } 2726 2727 default: 2728 /* Sci-Fi jails are not supported, sorry. */ 2729 return (EINVAL); 2730 } 2731 return (kern_jail(td, &j)); 2732 } 2733 2734 int 2735 freebsd32_jail_set(struct thread *td, struct freebsd32_jail_set_args *uap) 2736 { 2737 struct uio *auio; 2738 int error; 2739 2740 /* Check that we have an even number of iovecs. */ 2741 if (uap->iovcnt & 1) 2742 return (EINVAL); 2743 2744 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 2745 if (error) 2746 return (error); 2747 error = kern_jail_set(td, auio, uap->flags); 2748 free(auio, M_IOV); 2749 return (error); 2750 } 2751 2752 int 2753 freebsd32_jail_get(struct thread *td, struct freebsd32_jail_get_args *uap) 2754 { 2755 struct iovec32 iov32; 2756 struct uio *auio; 2757 int error, i; 2758 2759 /* Check that we have an even number of iovecs. */ 2760 if (uap->iovcnt & 1) 2761 return (EINVAL); 2762 2763 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 2764 if (error) 2765 return (error); 2766 error = kern_jail_get(td, auio, uap->flags); 2767 if (error == 0) 2768 for (i = 0; i < uap->iovcnt; i++) { 2769 PTROUT_CP(auio->uio_iov[i], iov32, iov_base); 2770 CP(auio->uio_iov[i], iov32, iov_len); 2771 error = copyout(&iov32, uap->iovp + i, sizeof(iov32)); 2772 if (error != 0) 2773 break; 2774 } 2775 free(auio, M_IOV); 2776 return (error); 2777 } 2778 2779 int 2780 freebsd32_sigaction(struct thread *td, struct freebsd32_sigaction_args *uap) 2781 { 2782 struct sigaction32 s32; 2783 struct sigaction sa, osa, *sap; 2784 int error; 2785 2786 if (uap->act) { 2787 error = copyin(uap->act, &s32, sizeof(s32)); 2788 if (error) 2789 return (error); 2790 sa.sa_handler = PTRIN(s32.sa_u); 2791 CP(s32, sa, sa_flags); 2792 CP(s32, sa, sa_mask); 2793 sap = &sa; 2794 } else 2795 sap = NULL; 2796 error = kern_sigaction(td, uap->sig, sap, &osa, 0); 2797 if (error == 0 && uap->oact != NULL) { 2798 s32.sa_u = PTROUT(osa.sa_handler); 2799 CP(osa, s32, sa_flags); 2800 CP(osa, s32, sa_mask); 2801 error = copyout(&s32, uap->oact, sizeof(s32)); 2802 } 2803 return (error); 2804 } 2805 2806 #ifdef COMPAT_FREEBSD4 2807 int 2808 freebsd4_freebsd32_sigaction(struct thread *td, 2809 struct freebsd4_freebsd32_sigaction_args *uap) 2810 { 2811 struct sigaction32 s32; 2812 struct sigaction sa, osa, *sap; 2813 int error; 2814 2815 if (uap->act) { 2816 error = copyin(uap->act, &s32, sizeof(s32)); 2817 if (error) 2818 return (error); 2819 sa.sa_handler = PTRIN(s32.sa_u); 2820 CP(s32, sa, sa_flags); 2821 CP(s32, sa, sa_mask); 2822 sap = &sa; 2823 } else 2824 sap = NULL; 2825 error = kern_sigaction(td, uap->sig, sap, &osa, KSA_FREEBSD4); 2826 if (error == 0 && uap->oact != NULL) { 2827 s32.sa_u = PTROUT(osa.sa_handler); 2828 CP(osa, s32, sa_flags); 2829 CP(osa, s32, sa_mask); 2830 error = copyout(&s32, uap->oact, sizeof(s32)); 2831 } 2832 return (error); 2833 } 2834 #endif 2835 2836 #ifdef COMPAT_43 2837 struct osigaction32 { 2838 uint32_t sa_u; 2839 osigset_t sa_mask; 2840 int sa_flags; 2841 }; 2842 2843 #define ONSIG 32 2844 2845 int 2846 ofreebsd32_sigaction(struct thread *td, 2847 struct ofreebsd32_sigaction_args *uap) 2848 { 2849 struct osigaction32 s32; 2850 struct sigaction sa, osa, *sap; 2851 int error; 2852 2853 if (uap->signum <= 0 || uap->signum >= ONSIG) 2854 return (EINVAL); 2855 2856 if (uap->nsa) { 2857 error = copyin(uap->nsa, &s32, sizeof(s32)); 2858 if (error) 2859 return (error); 2860 sa.sa_handler = PTRIN(s32.sa_u); 2861 CP(s32, sa, sa_flags); 2862 OSIG2SIG(s32.sa_mask, sa.sa_mask); 2863 sap = &sa; 2864 } else 2865 sap = NULL; 2866 error = kern_sigaction(td, uap->signum, sap, &osa, KSA_OSIGSET); 2867 if (error == 0 && uap->osa != NULL) { 2868 s32.sa_u = PTROUT(osa.sa_handler); 2869 CP(osa, s32, sa_flags); 2870 SIG2OSIG(osa.sa_mask, s32.sa_mask); 2871 error = copyout(&s32, uap->osa, sizeof(s32)); 2872 } 2873 return (error); 2874 } 2875 2876 struct sigvec32 { 2877 uint32_t sv_handler; 2878 int sv_mask; 2879 int sv_flags; 2880 }; 2881 2882 int 2883 ofreebsd32_sigvec(struct thread *td, 2884 struct ofreebsd32_sigvec_args *uap) 2885 { 2886 struct sigvec32 vec; 2887 struct sigaction sa, osa, *sap; 2888 int error; 2889 2890 if (uap->signum <= 0 || uap->signum >= ONSIG) 2891 return (EINVAL); 2892 2893 if (uap->nsv) { 2894 error = copyin(uap->nsv, &vec, sizeof(vec)); 2895 if (error) 2896 return (error); 2897 sa.sa_handler = PTRIN(vec.sv_handler); 2898 OSIG2SIG(vec.sv_mask, sa.sa_mask); 2899 sa.sa_flags = vec.sv_flags; 2900 sa.sa_flags ^= SA_RESTART; 2901 sap = &sa; 2902 } else 2903 sap = NULL; 2904 error = kern_sigaction(td, uap->signum, sap, &osa, KSA_OSIGSET); 2905 if (error == 0 && uap->osv != NULL) { 2906 vec.sv_handler = PTROUT(osa.sa_handler); 2907 SIG2OSIG(osa.sa_mask, vec.sv_mask); 2908 vec.sv_flags = osa.sa_flags; 2909 vec.sv_flags &= ~SA_NOCLDWAIT; 2910 vec.sv_flags ^= SA_RESTART; 2911 error = copyout(&vec, uap->osv, sizeof(vec)); 2912 } 2913 return (error); 2914 } 2915 2916 struct sigstack32 { 2917 uint32_t ss_sp; 2918 int ss_onstack; 2919 }; 2920 2921 int 2922 ofreebsd32_sigstack(struct thread *td, 2923 struct ofreebsd32_sigstack_args *uap) 2924 { 2925 struct sigstack32 s32; 2926 struct sigstack nss, oss; 2927 int error = 0, unss; 2928 2929 if (uap->nss != NULL) { 2930 error = copyin(uap->nss, &s32, sizeof(s32)); 2931 if (error) 2932 return (error); 2933 nss.ss_sp = PTRIN(s32.ss_sp); 2934 CP(s32, nss, ss_onstack); 2935 unss = 1; 2936 } else { 2937 unss = 0; 2938 } 2939 oss.ss_sp = td->td_sigstk.ss_sp; 2940 oss.ss_onstack = sigonstack(cpu_getstack(td)); 2941 if (unss) { 2942 td->td_sigstk.ss_sp = nss.ss_sp; 2943 td->td_sigstk.ss_size = 0; 2944 td->td_sigstk.ss_flags |= (nss.ss_onstack & SS_ONSTACK); 2945 td->td_pflags |= TDP_ALTSTACK; 2946 } 2947 if (uap->oss != NULL) { 2948 s32.ss_sp = PTROUT(oss.ss_sp); 2949 CP(oss, s32, ss_onstack); 2950 error = copyout(&s32, uap->oss, sizeof(s32)); 2951 } 2952 return (error); 2953 } 2954 #endif 2955 2956 int 2957 freebsd32_nanosleep(struct thread *td, struct freebsd32_nanosleep_args *uap) 2958 { 2959 2960 return (freebsd32_user_clock_nanosleep(td, CLOCK_REALTIME, 2961 TIMER_RELTIME, uap->rqtp, uap->rmtp)); 2962 } 2963 2964 int 2965 freebsd32_clock_nanosleep(struct thread *td, 2966 struct freebsd32_clock_nanosleep_args *uap) 2967 { 2968 int error; 2969 2970 error = freebsd32_user_clock_nanosleep(td, uap->clock_id, uap->flags, 2971 uap->rqtp, uap->rmtp); 2972 return (kern_posix_error(td, error)); 2973 } 2974 2975 static int 2976 freebsd32_user_clock_nanosleep(struct thread *td, clockid_t clock_id, 2977 int flags, const struct timespec32 *ua_rqtp, struct timespec32 *ua_rmtp) 2978 { 2979 struct timespec32 rmt32, rqt32; 2980 struct timespec rmt, rqt; 2981 int error, error2; 2982 2983 error = copyin(ua_rqtp, &rqt32, sizeof(rqt32)); 2984 if (error) 2985 return (error); 2986 2987 CP(rqt32, rqt, tv_sec); 2988 CP(rqt32, rqt, tv_nsec); 2989 2990 error = kern_clock_nanosleep(td, clock_id, flags, &rqt, &rmt); 2991 if (error == EINTR && ua_rmtp != NULL && (flags & TIMER_ABSTIME) == 0) { 2992 CP(rmt, rmt32, tv_sec); 2993 CP(rmt, rmt32, tv_nsec); 2994 2995 error2 = copyout(&rmt32, ua_rmtp, sizeof(rmt32)); 2996 if (error2 != 0) 2997 error = error2; 2998 } 2999 return (error); 3000 } 3001 3002 int 3003 freebsd32_clock_gettime(struct thread *td, 3004 struct freebsd32_clock_gettime_args *uap) 3005 { 3006 struct timespec ats; 3007 struct timespec32 ats32; 3008 int error; 3009 3010 error = kern_clock_gettime(td, uap->clock_id, &ats); 3011 if (error == 0) { 3012 CP(ats, ats32, tv_sec); 3013 CP(ats, ats32, tv_nsec); 3014 error = copyout(&ats32, uap->tp, sizeof(ats32)); 3015 } 3016 return (error); 3017 } 3018 3019 int 3020 freebsd32_clock_settime(struct thread *td, 3021 struct freebsd32_clock_settime_args *uap) 3022 { 3023 struct timespec ats; 3024 struct timespec32 ats32; 3025 int error; 3026 3027 error = copyin(uap->tp, &ats32, sizeof(ats32)); 3028 if (error) 3029 return (error); 3030 CP(ats32, ats, tv_sec); 3031 CP(ats32, ats, tv_nsec); 3032 3033 return (kern_clock_settime(td, uap->clock_id, &ats)); 3034 } 3035 3036 int 3037 freebsd32_clock_getres(struct thread *td, 3038 struct freebsd32_clock_getres_args *uap) 3039 { 3040 struct timespec ts; 3041 struct timespec32 ts32; 3042 int error; 3043 3044 if (uap->tp == NULL) 3045 return (0); 3046 error = kern_clock_getres(td, uap->clock_id, &ts); 3047 if (error == 0) { 3048 CP(ts, ts32, tv_sec); 3049 CP(ts, ts32, tv_nsec); 3050 error = copyout(&ts32, uap->tp, sizeof(ts32)); 3051 } 3052 return (error); 3053 } 3054 3055 int freebsd32_ktimer_create(struct thread *td, 3056 struct freebsd32_ktimer_create_args *uap) 3057 { 3058 struct sigevent32 ev32; 3059 struct sigevent ev, *evp; 3060 int error, id; 3061 3062 if (uap->evp == NULL) { 3063 evp = NULL; 3064 } else { 3065 evp = &ev; 3066 error = copyin(uap->evp, &ev32, sizeof(ev32)); 3067 if (error != 0) 3068 return (error); 3069 error = convert_sigevent32(&ev32, &ev); 3070 if (error != 0) 3071 return (error); 3072 } 3073 error = kern_ktimer_create(td, uap->clock_id, evp, &id, -1); 3074 if (error == 0) { 3075 error = copyout(&id, uap->timerid, sizeof(int)); 3076 if (error != 0) 3077 kern_ktimer_delete(td, id); 3078 } 3079 return (error); 3080 } 3081 3082 int 3083 freebsd32_ktimer_settime(struct thread *td, 3084 struct freebsd32_ktimer_settime_args *uap) 3085 { 3086 struct itimerspec32 val32, oval32; 3087 struct itimerspec val, oval, *ovalp; 3088 int error; 3089 3090 error = copyin(uap->value, &val32, sizeof(val32)); 3091 if (error != 0) 3092 return (error); 3093 ITS_CP(val32, val); 3094 ovalp = uap->ovalue != NULL ? &oval : NULL; 3095 error = kern_ktimer_settime(td, uap->timerid, uap->flags, &val, ovalp); 3096 if (error == 0 && uap->ovalue != NULL) { 3097 ITS_CP(oval, oval32); 3098 error = copyout(&oval32, uap->ovalue, sizeof(oval32)); 3099 } 3100 return (error); 3101 } 3102 3103 int 3104 freebsd32_ktimer_gettime(struct thread *td, 3105 struct freebsd32_ktimer_gettime_args *uap) 3106 { 3107 struct itimerspec32 val32; 3108 struct itimerspec val; 3109 int error; 3110 3111 error = kern_ktimer_gettime(td, uap->timerid, &val); 3112 if (error == 0) { 3113 ITS_CP(val, val32); 3114 error = copyout(&val32, uap->value, sizeof(val32)); 3115 } 3116 return (error); 3117 } 3118 3119 int 3120 freebsd32_clock_getcpuclockid2(struct thread *td, 3121 struct freebsd32_clock_getcpuclockid2_args *uap) 3122 { 3123 clockid_t clk_id; 3124 int error; 3125 3126 error = kern_clock_getcpuclockid2(td, PAIR32TO64(id_t, uap->id), 3127 uap->which, &clk_id); 3128 if (error == 0) 3129 error = copyout(&clk_id, uap->clock_id, sizeof(clockid_t)); 3130 return (error); 3131 } 3132 3133 int 3134 freebsd32_thr_new(struct thread *td, 3135 struct freebsd32_thr_new_args *uap) 3136 { 3137 struct thr_param32 param32; 3138 struct thr_param param; 3139 int error; 3140 3141 if (uap->param_size < 0 || 3142 uap->param_size > sizeof(struct thr_param32)) 3143 return (EINVAL); 3144 bzero(¶m, sizeof(struct thr_param)); 3145 bzero(¶m32, sizeof(struct thr_param32)); 3146 error = copyin(uap->param, ¶m32, uap->param_size); 3147 if (error != 0) 3148 return (error); 3149 param.start_func = PTRIN(param32.start_func); 3150 param.arg = PTRIN(param32.arg); 3151 param.stack_base = PTRIN(param32.stack_base); 3152 param.stack_size = param32.stack_size; 3153 param.tls_base = PTRIN(param32.tls_base); 3154 param.tls_size = param32.tls_size; 3155 param.child_tid = PTRIN(param32.child_tid); 3156 param.parent_tid = PTRIN(param32.parent_tid); 3157 param.flags = param32.flags; 3158 param.rtp = PTRIN(param32.rtp); 3159 param.spare[0] = PTRIN(param32.spare[0]); 3160 param.spare[1] = PTRIN(param32.spare[1]); 3161 param.spare[2] = PTRIN(param32.spare[2]); 3162 3163 return (kern_thr_new(td, ¶m)); 3164 } 3165 3166 int 3167 freebsd32_thr_suspend(struct thread *td, struct freebsd32_thr_suspend_args *uap) 3168 { 3169 struct timespec32 ts32; 3170 struct timespec ts, *tsp; 3171 int error; 3172 3173 error = 0; 3174 tsp = NULL; 3175 if (uap->timeout != NULL) { 3176 error = copyin((const void *)uap->timeout, (void *)&ts32, 3177 sizeof(struct timespec32)); 3178 if (error != 0) 3179 return (error); 3180 ts.tv_sec = ts32.tv_sec; 3181 ts.tv_nsec = ts32.tv_nsec; 3182 tsp = &ts; 3183 } 3184 return (kern_thr_suspend(td, tsp)); 3185 } 3186 3187 void 3188 siginfo_to_siginfo32(const siginfo_t *src, struct siginfo32 *dst) 3189 { 3190 bzero(dst, sizeof(*dst)); 3191 dst->si_signo = src->si_signo; 3192 dst->si_errno = src->si_errno; 3193 dst->si_code = src->si_code; 3194 dst->si_pid = src->si_pid; 3195 dst->si_uid = src->si_uid; 3196 dst->si_status = src->si_status; 3197 dst->si_addr = (uintptr_t)src->si_addr; 3198 dst->si_value.sival_int = src->si_value.sival_int; 3199 dst->si_timerid = src->si_timerid; 3200 dst->si_overrun = src->si_overrun; 3201 } 3202 3203 #ifndef _FREEBSD32_SYSPROTO_H_ 3204 struct freebsd32_sigqueue_args { 3205 pid_t pid; 3206 int signum; 3207 /* union sigval32 */ int value; 3208 }; 3209 #endif 3210 int 3211 freebsd32_sigqueue(struct thread *td, struct freebsd32_sigqueue_args *uap) 3212 { 3213 union sigval sv; 3214 3215 /* 3216 * On 32-bit ABIs, sival_int and sival_ptr are the same. 3217 * On 64-bit little-endian ABIs, the low bits are the same. 3218 * In 64-bit big-endian ABIs, sival_int overlaps with 3219 * sival_ptr's HIGH bits. We choose to support sival_int 3220 * rather than sival_ptr in this case as it seems to be 3221 * more common. 3222 */ 3223 bzero(&sv, sizeof(sv)); 3224 sv.sival_int = (uint32_t)(uint64_t)uap->value; 3225 3226 return (kern_sigqueue(td, uap->pid, uap->signum, &sv)); 3227 } 3228 3229 int 3230 freebsd32_sigtimedwait(struct thread *td, struct freebsd32_sigtimedwait_args *uap) 3231 { 3232 struct timespec32 ts32; 3233 struct timespec ts; 3234 struct timespec *timeout; 3235 sigset_t set; 3236 ksiginfo_t ksi; 3237 struct siginfo32 si32; 3238 int error; 3239 3240 if (uap->timeout) { 3241 error = copyin(uap->timeout, &ts32, sizeof(ts32)); 3242 if (error) 3243 return (error); 3244 ts.tv_sec = ts32.tv_sec; 3245 ts.tv_nsec = ts32.tv_nsec; 3246 timeout = &ts; 3247 } else 3248 timeout = NULL; 3249 3250 error = copyin(uap->set, &set, sizeof(set)); 3251 if (error) 3252 return (error); 3253 3254 error = kern_sigtimedwait(td, set, &ksi, timeout); 3255 if (error) 3256 return (error); 3257 3258 if (uap->info) { 3259 siginfo_to_siginfo32(&ksi.ksi_info, &si32); 3260 error = copyout(&si32, uap->info, sizeof(struct siginfo32)); 3261 } 3262 3263 if (error == 0) 3264 td->td_retval[0] = ksi.ksi_signo; 3265 return (error); 3266 } 3267 3268 /* 3269 * MPSAFE 3270 */ 3271 int 3272 freebsd32_sigwaitinfo(struct thread *td, struct freebsd32_sigwaitinfo_args *uap) 3273 { 3274 ksiginfo_t ksi; 3275 struct siginfo32 si32; 3276 sigset_t set; 3277 int error; 3278 3279 error = copyin(uap->set, &set, sizeof(set)); 3280 if (error) 3281 return (error); 3282 3283 error = kern_sigtimedwait(td, set, &ksi, NULL); 3284 if (error) 3285 return (error); 3286 3287 if (uap->info) { 3288 siginfo_to_siginfo32(&ksi.ksi_info, &si32); 3289 error = copyout(&si32, uap->info, sizeof(struct siginfo32)); 3290 } 3291 if (error == 0) 3292 td->td_retval[0] = ksi.ksi_signo; 3293 return (error); 3294 } 3295 3296 int 3297 freebsd32_cpuset_setid(struct thread *td, 3298 struct freebsd32_cpuset_setid_args *uap) 3299 { 3300 3301 return (kern_cpuset_setid(td, uap->which, 3302 PAIR32TO64(id_t, uap->id), uap->setid)); 3303 } 3304 3305 int 3306 freebsd32_cpuset_getid(struct thread *td, 3307 struct freebsd32_cpuset_getid_args *uap) 3308 { 3309 3310 return (kern_cpuset_getid(td, uap->level, uap->which, 3311 PAIR32TO64(id_t, uap->id), uap->setid)); 3312 } 3313 3314 static int 3315 copyin32_set(const void *u, void *k, size_t size) 3316 { 3317 #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 3318 int rv; 3319 struct bitset *kb = k; 3320 int *p; 3321 3322 rv = copyin(u, k, size); 3323 if (rv != 0) 3324 return (rv); 3325 3326 p = (int *)kb->__bits; 3327 /* Loop through swapping words. 3328 * `size' is in bytes, we need bits. */ 3329 for (int i = 0; i < __bitset_words(size * 8); i++) { 3330 int tmp = p[0]; 3331 p[0] = p[1]; 3332 p[1] = tmp; 3333 p += 2; 3334 } 3335 return (0); 3336 #else 3337 return (copyin(u, k, size)); 3338 #endif 3339 } 3340 3341 static int 3342 copyout32_set(const void *k, void *u, size_t size) 3343 { 3344 #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 3345 const struct bitset *kb = k; 3346 struct bitset *ub = u; 3347 const int *kp = (const int *)kb->__bits; 3348 int *up = (int *)ub->__bits; 3349 int rv; 3350 3351 for (int i = 0; i < __bitset_words(CPU_SETSIZE); i++) { 3352 /* `size' is in bytes, we need bits. */ 3353 for (int i = 0; i < __bitset_words(size * 8); i++) { 3354 rv = suword32(up, kp[1]); 3355 if (rv == 0) 3356 rv = suword32(up + 1, kp[0]); 3357 if (rv != 0) 3358 return (EFAULT); 3359 } 3360 } 3361 return (0); 3362 #else 3363 return (copyout(k, u, size)); 3364 #endif 3365 } 3366 3367 static const struct cpuset_copy_cb cpuset_copy32_cb = { 3368 .cpuset_copyin = copyin32_set, 3369 .cpuset_copyout = copyout32_set 3370 }; 3371 3372 int 3373 freebsd32_cpuset_getaffinity(struct thread *td, 3374 struct freebsd32_cpuset_getaffinity_args *uap) 3375 { 3376 3377 return (user_cpuset_getaffinity(td, uap->level, uap->which, 3378 PAIR32TO64(id_t,uap->id), uap->cpusetsize, uap->mask, 3379 &cpuset_copy32_cb)); 3380 } 3381 3382 int 3383 freebsd32_cpuset_setaffinity(struct thread *td, 3384 struct freebsd32_cpuset_setaffinity_args *uap) 3385 { 3386 3387 return (user_cpuset_setaffinity(td, uap->level, uap->which, 3388 PAIR32TO64(id_t,uap->id), uap->cpusetsize, uap->mask, 3389 &cpuset_copy32_cb)); 3390 } 3391 3392 int 3393 freebsd32_cpuset_getdomain(struct thread *td, 3394 struct freebsd32_cpuset_getdomain_args *uap) 3395 { 3396 3397 return (kern_cpuset_getdomain(td, uap->level, uap->which, 3398 PAIR32TO64(id_t,uap->id), uap->domainsetsize, uap->mask, uap->policy, 3399 &cpuset_copy32_cb)); 3400 } 3401 3402 int 3403 freebsd32_cpuset_setdomain(struct thread *td, 3404 struct freebsd32_cpuset_setdomain_args *uap) 3405 { 3406 3407 return (kern_cpuset_setdomain(td, uap->level, uap->which, 3408 PAIR32TO64(id_t,uap->id), uap->domainsetsize, uap->mask, uap->policy, 3409 &cpuset_copy32_cb)); 3410 } 3411 3412 int 3413 freebsd32_nmount(struct thread *td, 3414 struct freebsd32_nmount_args /* { 3415 struct iovec *iovp; 3416 unsigned int iovcnt; 3417 int flags; 3418 } */ *uap) 3419 { 3420 struct uio *auio; 3421 uint64_t flags; 3422 int error; 3423 3424 /* 3425 * Mount flags are now 64-bits. On 32-bit archtectures only 3426 * 32-bits are passed in, but from here on everything handles 3427 * 64-bit flags correctly. 3428 */ 3429 flags = uap->flags; 3430 3431 AUDIT_ARG_FFLAGS(flags); 3432 3433 /* 3434 * Filter out MNT_ROOTFS. We do not want clients of nmount() in 3435 * userspace to set this flag, but we must filter it out if we want 3436 * MNT_UPDATE on the root file system to work. 3437 * MNT_ROOTFS should only be set by the kernel when mounting its 3438 * root file system. 3439 */ 3440 flags &= ~MNT_ROOTFS; 3441 3442 /* 3443 * check that we have an even number of iovec's 3444 * and that we have at least two options. 3445 */ 3446 if ((uap->iovcnt & 1) || (uap->iovcnt < 4)) 3447 return (EINVAL); 3448 3449 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 3450 if (error) 3451 return (error); 3452 error = vfs_donmount(td, flags, auio); 3453 3454 free(auio, M_IOV); 3455 return error; 3456 } 3457 3458 #if 0 3459 int 3460 freebsd32_xxx(struct thread *td, struct freebsd32_xxx_args *uap) 3461 { 3462 struct yyy32 *p32, s32; 3463 struct yyy *p = NULL, s; 3464 struct xxx_arg ap; 3465 int error; 3466 3467 if (uap->zzz) { 3468 error = copyin(uap->zzz, &s32, sizeof(s32)); 3469 if (error) 3470 return (error); 3471 /* translate in */ 3472 p = &s; 3473 } 3474 error = kern_xxx(td, p); 3475 if (error) 3476 return (error); 3477 if (uap->zzz) { 3478 /* translate out */ 3479 error = copyout(&s32, p32, sizeof(s32)); 3480 } 3481 return (error); 3482 } 3483 #endif 3484 3485 int 3486 syscall32_module_handler(struct module *mod, int what, void *arg) 3487 { 3488 3489 return (kern_syscall_module_handler(freebsd32_sysent, mod, what, arg)); 3490 } 3491 3492 int 3493 syscall32_helper_register(struct syscall_helper_data *sd, int flags) 3494 { 3495 3496 return (kern_syscall_helper_register(freebsd32_sysent, sd, flags)); 3497 } 3498 3499 int 3500 syscall32_helper_unregister(struct syscall_helper_data *sd) 3501 { 3502 3503 return (kern_syscall_helper_unregister(freebsd32_sysent, sd)); 3504 } 3505 3506 int 3507 freebsd32_copyout_strings(struct image_params *imgp, uintptr_t *stack_base) 3508 { 3509 struct sysentvec *sysent; 3510 int argc, envc, i; 3511 uint32_t *vectp; 3512 char *stringp; 3513 uintptr_t destp, ustringp; 3514 struct freebsd32_ps_strings *arginfo; 3515 char canary[sizeof(long) * 8]; 3516 int32_t pagesizes32[MAXPAGESIZES]; 3517 size_t execpath_len; 3518 int error, szsigcode; 3519 3520 sysent = imgp->sysent; 3521 3522 arginfo = (struct freebsd32_ps_strings *)PROC_PS_STRINGS(imgp->proc); 3523 imgp->ps_strings = arginfo; 3524 destp = (uintptr_t)arginfo; 3525 3526 /* 3527 * Install sigcode. 3528 */ 3529 if (!PROC_HAS_SHP(imgp->proc)) { 3530 szsigcode = *sysent->sv_szsigcode; 3531 destp -= szsigcode; 3532 destp = rounddown2(destp, sizeof(uint32_t)); 3533 error = copyout(sysent->sv_sigcode, (void *)destp, 3534 szsigcode); 3535 if (error != 0) 3536 return (error); 3537 } 3538 3539 /* 3540 * Copy the image path for the rtld. 3541 */ 3542 if (imgp->execpath != NULL && imgp->auxargs != NULL) { 3543 execpath_len = strlen(imgp->execpath) + 1; 3544 destp -= execpath_len; 3545 imgp->execpathp = (void *)destp; 3546 error = copyout(imgp->execpath, imgp->execpathp, execpath_len); 3547 if (error != 0) 3548 return (error); 3549 } 3550 3551 /* 3552 * Prepare the canary for SSP. 3553 */ 3554 arc4rand(canary, sizeof(canary), 0); 3555 destp -= sizeof(canary); 3556 imgp->canary = (void *)destp; 3557 error = copyout(canary, imgp->canary, sizeof(canary)); 3558 if (error != 0) 3559 return (error); 3560 imgp->canarylen = sizeof(canary); 3561 3562 /* 3563 * Prepare the pagesizes array. 3564 */ 3565 for (i = 0; i < MAXPAGESIZES; i++) 3566 pagesizes32[i] = (uint32_t)pagesizes[i]; 3567 destp -= sizeof(pagesizes32); 3568 destp = rounddown2(destp, sizeof(uint32_t)); 3569 imgp->pagesizes = (void *)destp; 3570 error = copyout(pagesizes32, imgp->pagesizes, sizeof(pagesizes32)); 3571 if (error != 0) 3572 return (error); 3573 imgp->pagesizeslen = sizeof(pagesizes32); 3574 3575 /* 3576 * Allocate room for the argument and environment strings. 3577 */ 3578 destp -= ARG_MAX - imgp->args->stringspace; 3579 destp = rounddown2(destp, sizeof(uint32_t)); 3580 ustringp = destp; 3581 3582 if (imgp->auxargs) { 3583 /* 3584 * Allocate room on the stack for the ELF auxargs 3585 * array. It has up to AT_COUNT entries. 3586 */ 3587 destp -= AT_COUNT * sizeof(Elf32_Auxinfo); 3588 destp = rounddown2(destp, sizeof(uint32_t)); 3589 } 3590 3591 vectp = (uint32_t *)destp; 3592 3593 /* 3594 * Allocate room for the argv[] and env vectors including the 3595 * terminating NULL pointers. 3596 */ 3597 vectp -= imgp->args->argc + 1 + imgp->args->envc + 1; 3598 3599 /* 3600 * vectp also becomes our initial stack base 3601 */ 3602 *stack_base = (uintptr_t)vectp; 3603 3604 stringp = imgp->args->begin_argv; 3605 argc = imgp->args->argc; 3606 envc = imgp->args->envc; 3607 /* 3608 * Copy out strings - arguments and environment. 3609 */ 3610 error = copyout(stringp, (void *)ustringp, 3611 ARG_MAX - imgp->args->stringspace); 3612 if (error != 0) 3613 return (error); 3614 3615 /* 3616 * Fill in "ps_strings" struct for ps, w, etc. 3617 */ 3618 imgp->argv = vectp; 3619 if (suword32(&arginfo->ps_argvstr, (uint32_t)(intptr_t)vectp) != 0 || 3620 suword32(&arginfo->ps_nargvstr, argc) != 0) 3621 return (EFAULT); 3622 3623 /* 3624 * Fill in argument portion of vector table. 3625 */ 3626 for (; argc > 0; --argc) { 3627 if (suword32(vectp++, ustringp) != 0) 3628 return (EFAULT); 3629 while (*stringp++ != 0) 3630 ustringp++; 3631 ustringp++; 3632 } 3633 3634 /* a null vector table pointer separates the argp's from the envp's */ 3635 if (suword32(vectp++, 0) != 0) 3636 return (EFAULT); 3637 3638 imgp->envv = vectp; 3639 if (suword32(&arginfo->ps_envstr, (uint32_t)(intptr_t)vectp) != 0 || 3640 suword32(&arginfo->ps_nenvstr, envc) != 0) 3641 return (EFAULT); 3642 3643 /* 3644 * Fill in environment portion of vector table. 3645 */ 3646 for (; envc > 0; --envc) { 3647 if (suword32(vectp++, ustringp) != 0) 3648 return (EFAULT); 3649 while (*stringp++ != 0) 3650 ustringp++; 3651 ustringp++; 3652 } 3653 3654 /* end of vector table is a null pointer */ 3655 if (suword32(vectp, 0) != 0) 3656 return (EFAULT); 3657 3658 if (imgp->auxargs) { 3659 vectp++; 3660 error = imgp->sysent->sv_copyout_auxargs(imgp, 3661 (uintptr_t)vectp); 3662 if (error != 0) 3663 return (error); 3664 } 3665 3666 return (0); 3667 } 3668 3669 int 3670 freebsd32_kldstat(struct thread *td, struct freebsd32_kldstat_args *uap) 3671 { 3672 struct kld_file_stat *stat; 3673 struct kld_file_stat32 *stat32; 3674 int error, version; 3675 3676 if ((error = copyin(&uap->stat->version, &version, sizeof(version))) 3677 != 0) 3678 return (error); 3679 if (version != sizeof(struct kld_file_stat_1_32) && 3680 version != sizeof(struct kld_file_stat32)) 3681 return (EINVAL); 3682 3683 stat = malloc(sizeof(*stat), M_TEMP, M_WAITOK | M_ZERO); 3684 stat32 = malloc(sizeof(*stat32), M_TEMP, M_WAITOK | M_ZERO); 3685 error = kern_kldstat(td, uap->fileid, stat); 3686 if (error == 0) { 3687 bcopy(&stat->name[0], &stat32->name[0], sizeof(stat->name)); 3688 CP(*stat, *stat32, refs); 3689 CP(*stat, *stat32, id); 3690 PTROUT_CP(*stat, *stat32, address); 3691 CP(*stat, *stat32, size); 3692 bcopy(&stat->pathname[0], &stat32->pathname[0], 3693 sizeof(stat->pathname)); 3694 stat32->version = version; 3695 error = copyout(stat32, uap->stat, version); 3696 } 3697 free(stat, M_TEMP); 3698 free(stat32, M_TEMP); 3699 return (error); 3700 } 3701 3702 int 3703 freebsd32_posix_fallocate(struct thread *td, 3704 struct freebsd32_posix_fallocate_args *uap) 3705 { 3706 int error; 3707 3708 error = kern_posix_fallocate(td, uap->fd, 3709 PAIR32TO64(off_t, uap->offset), PAIR32TO64(off_t, uap->len)); 3710 return (kern_posix_error(td, error)); 3711 } 3712 3713 int 3714 freebsd32_posix_fadvise(struct thread *td, 3715 struct freebsd32_posix_fadvise_args *uap) 3716 { 3717 int error; 3718 3719 error = kern_posix_fadvise(td, uap->fd, PAIR32TO64(off_t, uap->offset), 3720 PAIR32TO64(off_t, uap->len), uap->advice); 3721 return (kern_posix_error(td, error)); 3722 } 3723 3724 int 3725 convert_sigevent32(struct sigevent32 *sig32, struct sigevent *sig) 3726 { 3727 3728 CP(*sig32, *sig, sigev_notify); 3729 switch (sig->sigev_notify) { 3730 case SIGEV_NONE: 3731 break; 3732 case SIGEV_THREAD_ID: 3733 CP(*sig32, *sig, sigev_notify_thread_id); 3734 /* FALLTHROUGH */ 3735 case SIGEV_SIGNAL: 3736 CP(*sig32, *sig, sigev_signo); 3737 PTRIN_CP(*sig32, *sig, sigev_value.sival_ptr); 3738 break; 3739 case SIGEV_KEVENT: 3740 CP(*sig32, *sig, sigev_notify_kqueue); 3741 CP(*sig32, *sig, sigev_notify_kevent_flags); 3742 PTRIN_CP(*sig32, *sig, sigev_value.sival_ptr); 3743 break; 3744 default: 3745 return (EINVAL); 3746 } 3747 return (0); 3748 } 3749 3750 int 3751 freebsd32_procctl(struct thread *td, struct freebsd32_procctl_args *uap) 3752 { 3753 void *data; 3754 union { 3755 struct procctl_reaper_status rs; 3756 struct procctl_reaper_pids rp; 3757 struct procctl_reaper_kill rk; 3758 } x; 3759 union { 3760 struct procctl_reaper_pids32 rp; 3761 } x32; 3762 int error, error1, flags, signum; 3763 3764 if (uap->com >= PROC_PROCCTL_MD_MIN) 3765 return (cpu_procctl(td, uap->idtype, PAIR32TO64(id_t, uap->id), 3766 uap->com, PTRIN(uap->data))); 3767 3768 switch (uap->com) { 3769 case PROC_ASLR_CTL: 3770 case PROC_PROTMAX_CTL: 3771 case PROC_SPROTECT: 3772 case PROC_STACKGAP_CTL: 3773 case PROC_TRACE_CTL: 3774 case PROC_TRAPCAP_CTL: 3775 case PROC_NO_NEW_PRIVS_CTL: 3776 case PROC_WXMAP_CTL: 3777 error = copyin(PTRIN(uap->data), &flags, sizeof(flags)); 3778 if (error != 0) 3779 return (error); 3780 data = &flags; 3781 break; 3782 case PROC_REAP_ACQUIRE: 3783 case PROC_REAP_RELEASE: 3784 if (uap->data != NULL) 3785 return (EINVAL); 3786 data = NULL; 3787 break; 3788 case PROC_REAP_STATUS: 3789 data = &x.rs; 3790 break; 3791 case PROC_REAP_GETPIDS: 3792 error = copyin(uap->data, &x32.rp, sizeof(x32.rp)); 3793 if (error != 0) 3794 return (error); 3795 CP(x32.rp, x.rp, rp_count); 3796 PTRIN_CP(x32.rp, x.rp, rp_pids); 3797 data = &x.rp; 3798 break; 3799 case PROC_REAP_KILL: 3800 error = copyin(uap->data, &x.rk, sizeof(x.rk)); 3801 if (error != 0) 3802 return (error); 3803 data = &x.rk; 3804 break; 3805 case PROC_ASLR_STATUS: 3806 case PROC_PROTMAX_STATUS: 3807 case PROC_STACKGAP_STATUS: 3808 case PROC_TRACE_STATUS: 3809 case PROC_TRAPCAP_STATUS: 3810 case PROC_NO_NEW_PRIVS_STATUS: 3811 case PROC_WXMAP_STATUS: 3812 data = &flags; 3813 break; 3814 case PROC_PDEATHSIG_CTL: 3815 error = copyin(uap->data, &signum, sizeof(signum)); 3816 if (error != 0) 3817 return (error); 3818 data = &signum; 3819 break; 3820 case PROC_PDEATHSIG_STATUS: 3821 data = &signum; 3822 break; 3823 default: 3824 return (EINVAL); 3825 } 3826 error = kern_procctl(td, uap->idtype, PAIR32TO64(id_t, uap->id), 3827 uap->com, data); 3828 switch (uap->com) { 3829 case PROC_REAP_STATUS: 3830 if (error == 0) 3831 error = copyout(&x.rs, uap->data, sizeof(x.rs)); 3832 break; 3833 case PROC_REAP_KILL: 3834 error1 = copyout(&x.rk, uap->data, sizeof(x.rk)); 3835 if (error == 0) 3836 error = error1; 3837 break; 3838 case PROC_ASLR_STATUS: 3839 case PROC_PROTMAX_STATUS: 3840 case PROC_STACKGAP_STATUS: 3841 case PROC_TRACE_STATUS: 3842 case PROC_TRAPCAP_STATUS: 3843 case PROC_NO_NEW_PRIVS_STATUS: 3844 case PROC_WXMAP_STATUS: 3845 if (error == 0) 3846 error = copyout(&flags, uap->data, sizeof(flags)); 3847 break; 3848 case PROC_PDEATHSIG_STATUS: 3849 if (error == 0) 3850 error = copyout(&signum, uap->data, sizeof(signum)); 3851 break; 3852 } 3853 return (error); 3854 } 3855 3856 int 3857 freebsd32_fcntl(struct thread *td, struct freebsd32_fcntl_args *uap) 3858 { 3859 long tmp; 3860 3861 switch (uap->cmd) { 3862 /* 3863 * Do unsigned conversion for arg when operation 3864 * interprets it as flags or pointer. 3865 */ 3866 case F_SETLK_REMOTE: 3867 case F_SETLKW: 3868 case F_SETLK: 3869 case F_GETLK: 3870 case F_SETFD: 3871 case F_SETFL: 3872 case F_OGETLK: 3873 case F_OSETLK: 3874 case F_OSETLKW: 3875 case F_KINFO: 3876 tmp = (unsigned int)(uap->arg); 3877 break; 3878 default: 3879 tmp = uap->arg; 3880 break; 3881 } 3882 return (kern_fcntl_freebsd(td, uap->fd, uap->cmd, tmp)); 3883 } 3884 3885 int 3886 freebsd32_ppoll(struct thread *td, struct freebsd32_ppoll_args *uap) 3887 { 3888 struct timespec32 ts32; 3889 struct timespec ts, *tsp; 3890 sigset_t set, *ssp; 3891 int error; 3892 3893 if (uap->ts != NULL) { 3894 error = copyin(uap->ts, &ts32, sizeof(ts32)); 3895 if (error != 0) 3896 return (error); 3897 CP(ts32, ts, tv_sec); 3898 CP(ts32, ts, tv_nsec); 3899 tsp = &ts; 3900 } else 3901 tsp = NULL; 3902 if (uap->set != NULL) { 3903 error = copyin(uap->set, &set, sizeof(set)); 3904 if (error != 0) 3905 return (error); 3906 ssp = &set; 3907 } else 3908 ssp = NULL; 3909 3910 return (kern_poll(td, uap->fds, uap->nfds, tsp, ssp)); 3911 } 3912 3913 int 3914 freebsd32_sched_rr_get_interval(struct thread *td, 3915 struct freebsd32_sched_rr_get_interval_args *uap) 3916 { 3917 struct timespec ts; 3918 struct timespec32 ts32; 3919 int error; 3920 3921 error = kern_sched_rr_get_interval(td, uap->pid, &ts); 3922 if (error == 0) { 3923 CP(ts, ts32, tv_sec); 3924 CP(ts, ts32, tv_nsec); 3925 error = copyout(&ts32, uap->interval, sizeof(ts32)); 3926 } 3927 return (error); 3928 } 3929 3930 static void 3931 timex_to_32(struct timex32 *dst, struct timex *src) 3932 { 3933 CP(*src, *dst, modes); 3934 CP(*src, *dst, offset); 3935 CP(*src, *dst, freq); 3936 CP(*src, *dst, maxerror); 3937 CP(*src, *dst, esterror); 3938 CP(*src, *dst, status); 3939 CP(*src, *dst, constant); 3940 CP(*src, *dst, precision); 3941 CP(*src, *dst, tolerance); 3942 CP(*src, *dst, ppsfreq); 3943 CP(*src, *dst, jitter); 3944 CP(*src, *dst, shift); 3945 CP(*src, *dst, stabil); 3946 CP(*src, *dst, jitcnt); 3947 CP(*src, *dst, calcnt); 3948 CP(*src, *dst, errcnt); 3949 CP(*src, *dst, stbcnt); 3950 } 3951 3952 static void 3953 timex_from_32(struct timex *dst, struct timex32 *src) 3954 { 3955 CP(*src, *dst, modes); 3956 CP(*src, *dst, offset); 3957 CP(*src, *dst, freq); 3958 CP(*src, *dst, maxerror); 3959 CP(*src, *dst, esterror); 3960 CP(*src, *dst, status); 3961 CP(*src, *dst, constant); 3962 CP(*src, *dst, precision); 3963 CP(*src, *dst, tolerance); 3964 CP(*src, *dst, ppsfreq); 3965 CP(*src, *dst, jitter); 3966 CP(*src, *dst, shift); 3967 CP(*src, *dst, stabil); 3968 CP(*src, *dst, jitcnt); 3969 CP(*src, *dst, calcnt); 3970 CP(*src, *dst, errcnt); 3971 CP(*src, *dst, stbcnt); 3972 } 3973 3974 int 3975 freebsd32_ntp_adjtime(struct thread *td, struct freebsd32_ntp_adjtime_args *uap) 3976 { 3977 struct timex tx; 3978 struct timex32 tx32; 3979 int error, retval; 3980 3981 error = copyin(uap->tp, &tx32, sizeof(tx32)); 3982 if (error == 0) { 3983 timex_from_32(&tx, &tx32); 3984 error = kern_ntp_adjtime(td, &tx, &retval); 3985 if (error == 0) { 3986 timex_to_32(&tx32, &tx); 3987 error = copyout(&tx32, uap->tp, sizeof(tx32)); 3988 if (error == 0) 3989 td->td_retval[0] = retval; 3990 } 3991 } 3992 return (error); 3993 } 3994 3995 #ifdef FFCLOCK 3996 extern struct mtx ffclock_mtx; 3997 extern struct ffclock_estimate ffclock_estimate; 3998 extern int8_t ffclock_updated; 3999 4000 int 4001 freebsd32_ffclock_setestimate(struct thread *td, 4002 struct freebsd32_ffclock_setestimate_args *uap) 4003 { 4004 struct ffclock_estimate cest; 4005 struct ffclock_estimate32 cest32; 4006 int error; 4007 4008 /* Reuse of PRIV_CLOCK_SETTIME. */ 4009 if ((error = priv_check(td, PRIV_CLOCK_SETTIME)) != 0) 4010 return (error); 4011 4012 if ((error = copyin(uap->cest, &cest32, 4013 sizeof(struct ffclock_estimate32))) != 0) 4014 return (error); 4015 4016 CP(cest.update_time, cest32.update_time, sec); 4017 memcpy(&cest.update_time.frac, &cest32.update_time.frac, sizeof(uint64_t)); 4018 CP(cest, cest32, update_ffcount); 4019 CP(cest, cest32, leapsec_next); 4020 CP(cest, cest32, period); 4021 CP(cest, cest32, errb_abs); 4022 CP(cest, cest32, errb_rate); 4023 CP(cest, cest32, status); 4024 CP(cest, cest32, leapsec_total); 4025 CP(cest, cest32, leapsec); 4026 4027 mtx_lock(&ffclock_mtx); 4028 memcpy(&ffclock_estimate, &cest, sizeof(struct ffclock_estimate)); 4029 ffclock_updated++; 4030 mtx_unlock(&ffclock_mtx); 4031 return (error); 4032 } 4033 4034 int 4035 freebsd32_ffclock_getestimate(struct thread *td, 4036 struct freebsd32_ffclock_getestimate_args *uap) 4037 { 4038 struct ffclock_estimate cest; 4039 struct ffclock_estimate32 cest32; 4040 int error; 4041 4042 mtx_lock(&ffclock_mtx); 4043 memcpy(&cest, &ffclock_estimate, sizeof(struct ffclock_estimate)); 4044 mtx_unlock(&ffclock_mtx); 4045 4046 CP(cest32.update_time, cest.update_time, sec); 4047 memcpy(&cest32.update_time.frac, &cest.update_time.frac, sizeof(uint64_t)); 4048 CP(cest32, cest, update_ffcount); 4049 CP(cest32, cest, leapsec_next); 4050 CP(cest32, cest, period); 4051 CP(cest32, cest, errb_abs); 4052 CP(cest32, cest, errb_rate); 4053 CP(cest32, cest, status); 4054 CP(cest32, cest, leapsec_total); 4055 CP(cest32, cest, leapsec); 4056 4057 error = copyout(&cest32, uap->cest, sizeof(struct ffclock_estimate32)); 4058 return (error); 4059 } 4060 #else /* !FFCLOCK */ 4061 int 4062 freebsd32_ffclock_setestimate(struct thread *td, 4063 struct freebsd32_ffclock_setestimate_args *uap) 4064 { 4065 return (ENOSYS); 4066 } 4067 4068 int 4069 freebsd32_ffclock_getestimate(struct thread *td, 4070 struct freebsd32_ffclock_getestimate_args *uap) 4071 { 4072 return (ENOSYS); 4073 } 4074 #endif /* FFCLOCK */ 4075 4076 #ifdef COMPAT_43 4077 int 4078 ofreebsd32_sethostid(struct thread *td, struct ofreebsd32_sethostid_args *uap) 4079 { 4080 int name[] = { CTL_KERN, KERN_HOSTID }; 4081 long hostid; 4082 4083 hostid = uap->hostid; 4084 return (kernel_sysctl(td, name, nitems(name), NULL, NULL, &hostid, 4085 sizeof(hostid), NULL, 0)); 4086 } 4087 #endif 4088