xref: /freebsd/sys/compat/freebsd32/freebsd32_misc.c (revision ae7e8a02e6e93455e026036132c4d053b2c12ad9)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2002 Doug Rabson
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include "opt_inet.h"
33 #include "opt_inet6.h"
34 #include "opt_ktrace.h"
35 
36 #define __ELF_WORD_SIZE 32
37 
38 #ifdef COMPAT_FREEBSD11
39 #define	_WANT_FREEBSD11_KEVENT
40 #endif
41 
42 #include <sys/param.h>
43 #include <sys/bus.h>
44 #include <sys/capsicum.h>
45 #include <sys/clock.h>
46 #include <sys/exec.h>
47 #include <sys/fcntl.h>
48 #include <sys/filedesc.h>
49 #include <sys/imgact.h>
50 #include <sys/jail.h>
51 #include <sys/kernel.h>
52 #include <sys/limits.h>
53 #include <sys/linker.h>
54 #include <sys/lock.h>
55 #include <sys/malloc.h>
56 #include <sys/file.h>		/* Must come after sys/malloc.h */
57 #include <sys/imgact.h>
58 #include <sys/mbuf.h>
59 #include <sys/mman.h>
60 #include <sys/module.h>
61 #include <sys/mount.h>
62 #include <sys/mutex.h>
63 #include <sys/namei.h>
64 #include <sys/proc.h>
65 #include <sys/procctl.h>
66 #include <sys/ptrace.h>
67 #include <sys/reboot.h>
68 #include <sys/resource.h>
69 #include <sys/resourcevar.h>
70 #include <sys/selinfo.h>
71 #include <sys/eventvar.h>	/* Must come after sys/selinfo.h */
72 #include <sys/pipe.h>		/* Must come after sys/selinfo.h */
73 #include <sys/signal.h>
74 #include <sys/signalvar.h>
75 #include <sys/socket.h>
76 #include <sys/socketvar.h>
77 #include <sys/stat.h>
78 #include <sys/syscall.h>
79 #include <sys/syscallsubr.h>
80 #include <sys/sysctl.h>
81 #include <sys/sysent.h>
82 #include <sys/sysproto.h>
83 #include <sys/systm.h>
84 #include <sys/thr.h>
85 #include <sys/timex.h>
86 #include <sys/unistd.h>
87 #include <sys/ucontext.h>
88 #include <sys/vnode.h>
89 #include <sys/wait.h>
90 #include <sys/ipc.h>
91 #include <sys/msg.h>
92 #include <sys/sem.h>
93 #include <sys/shm.h>
94 #ifdef KTRACE
95 #include <sys/ktrace.h>
96 #endif
97 
98 #ifdef INET
99 #include <netinet/in.h>
100 #endif
101 
102 #include <vm/vm.h>
103 #include <vm/vm_param.h>
104 #include <vm/pmap.h>
105 #include <vm/vm_map.h>
106 #include <vm/vm_object.h>
107 #include <vm/vm_extern.h>
108 
109 #include <machine/cpu.h>
110 #include <machine/elf.h>
111 #ifdef __amd64__
112 #include <machine/md_var.h>
113 #endif
114 
115 #include <security/audit/audit.h>
116 
117 #include <compat/freebsd32/freebsd32_util.h>
118 #include <compat/freebsd32/freebsd32.h>
119 #include <compat/freebsd32/freebsd32_ipc.h>
120 #include <compat/freebsd32/freebsd32_misc.h>
121 #include <compat/freebsd32/freebsd32_signal.h>
122 #include <compat/freebsd32/freebsd32_proto.h>
123 
124 FEATURE(compat_freebsd_32bit, "Compatible with 32-bit FreeBSD");
125 
126 struct ptrace_io_desc32 {
127 	int		piod_op;
128 	uint32_t	piod_offs;
129 	uint32_t	piod_addr;
130 	uint32_t	piod_len;
131 };
132 
133 struct ptrace_sc_ret32 {
134 	uint32_t	sr_retval[2];
135 	int		sr_error;
136 };
137 
138 struct ptrace_vm_entry32 {
139 	int		pve_entry;
140 	int		pve_timestamp;
141 	uint32_t	pve_start;
142 	uint32_t	pve_end;
143 	uint32_t	pve_offset;
144 	u_int		pve_prot;
145 	u_int		pve_pathlen;
146 	int32_t		pve_fileid;
147 	u_int		pve_fsid;
148 	uint32_t	pve_path;
149 };
150 
151 #ifdef __amd64__
152 CTASSERT(sizeof(struct timeval32) == 8);
153 CTASSERT(sizeof(struct timespec32) == 8);
154 CTASSERT(sizeof(struct itimerval32) == 16);
155 CTASSERT(sizeof(struct bintime32) == 12);
156 #endif
157 CTASSERT(sizeof(struct statfs32) == 256);
158 #ifdef __amd64__
159 CTASSERT(sizeof(struct rusage32) == 72);
160 #endif
161 CTASSERT(sizeof(struct sigaltstack32) == 12);
162 #ifdef __amd64__
163 CTASSERT(sizeof(struct kevent32) == 56);
164 #else
165 CTASSERT(sizeof(struct kevent32) == 64);
166 #endif
167 CTASSERT(sizeof(struct iovec32) == 8);
168 CTASSERT(sizeof(struct msghdr32) == 28);
169 #ifdef __amd64__
170 CTASSERT(sizeof(struct stat32) == 208);
171 CTASSERT(sizeof(struct freebsd11_stat32) == 96);
172 #endif
173 CTASSERT(sizeof(struct sigaction32) == 24);
174 
175 static int freebsd32_kevent_copyout(void *arg, struct kevent *kevp, int count);
176 static int freebsd32_kevent_copyin(void *arg, struct kevent *kevp, int count);
177 static int freebsd32_user_clock_nanosleep(struct thread *td, clockid_t clock_id,
178     int flags, const struct timespec32 *ua_rqtp, struct timespec32 *ua_rmtp);
179 
180 void
181 freebsd32_rusage_out(const struct rusage *s, struct rusage32 *s32)
182 {
183 
184 	TV_CP(*s, *s32, ru_utime);
185 	TV_CP(*s, *s32, ru_stime);
186 	CP(*s, *s32, ru_maxrss);
187 	CP(*s, *s32, ru_ixrss);
188 	CP(*s, *s32, ru_idrss);
189 	CP(*s, *s32, ru_isrss);
190 	CP(*s, *s32, ru_minflt);
191 	CP(*s, *s32, ru_majflt);
192 	CP(*s, *s32, ru_nswap);
193 	CP(*s, *s32, ru_inblock);
194 	CP(*s, *s32, ru_oublock);
195 	CP(*s, *s32, ru_msgsnd);
196 	CP(*s, *s32, ru_msgrcv);
197 	CP(*s, *s32, ru_nsignals);
198 	CP(*s, *s32, ru_nvcsw);
199 	CP(*s, *s32, ru_nivcsw);
200 }
201 
202 int
203 freebsd32_wait4(struct thread *td, struct freebsd32_wait4_args *uap)
204 {
205 	int error, status;
206 	struct rusage32 ru32;
207 	struct rusage ru, *rup;
208 
209 	if (uap->rusage != NULL)
210 		rup = &ru;
211 	else
212 		rup = NULL;
213 	error = kern_wait(td, uap->pid, &status, uap->options, rup);
214 	if (error)
215 		return (error);
216 	if (uap->status != NULL)
217 		error = copyout(&status, uap->status, sizeof(status));
218 	if (uap->rusage != NULL && error == 0) {
219 		freebsd32_rusage_out(&ru, &ru32);
220 		error = copyout(&ru32, uap->rusage, sizeof(ru32));
221 	}
222 	return (error);
223 }
224 
225 int
226 freebsd32_wait6(struct thread *td, struct freebsd32_wait6_args *uap)
227 {
228 	struct wrusage32 wru32;
229 	struct __wrusage wru, *wrup;
230 	struct siginfo32 si32;
231 	struct __siginfo si, *sip;
232 	int error, status;
233 
234 	if (uap->wrusage != NULL)
235 		wrup = &wru;
236 	else
237 		wrup = NULL;
238 	if (uap->info != NULL) {
239 		sip = &si;
240 		bzero(sip, sizeof(*sip));
241 	} else
242 		sip = NULL;
243 	error = kern_wait6(td, uap->idtype, PAIR32TO64(id_t, uap->id),
244 	    &status, uap->options, wrup, sip);
245 	if (error != 0)
246 		return (error);
247 	if (uap->status != NULL)
248 		error = copyout(&status, uap->status, sizeof(status));
249 	if (uap->wrusage != NULL && error == 0) {
250 		freebsd32_rusage_out(&wru.wru_self, &wru32.wru_self);
251 		freebsd32_rusage_out(&wru.wru_children, &wru32.wru_children);
252 		error = copyout(&wru32, uap->wrusage, sizeof(wru32));
253 	}
254 	if (uap->info != NULL && error == 0) {
255 		siginfo_to_siginfo32 (&si, &si32);
256 		error = copyout(&si32, uap->info, sizeof(si32));
257 	}
258 	return (error);
259 }
260 
261 #ifdef COMPAT_FREEBSD4
262 static void
263 copy_statfs(struct statfs *in, struct statfs32 *out)
264 {
265 
266 	statfs_scale_blocks(in, INT32_MAX);
267 	bzero(out, sizeof(*out));
268 	CP(*in, *out, f_bsize);
269 	out->f_iosize = MIN(in->f_iosize, INT32_MAX);
270 	CP(*in, *out, f_blocks);
271 	CP(*in, *out, f_bfree);
272 	CP(*in, *out, f_bavail);
273 	out->f_files = MIN(in->f_files, INT32_MAX);
274 	out->f_ffree = MIN(in->f_ffree, INT32_MAX);
275 	CP(*in, *out, f_fsid);
276 	CP(*in, *out, f_owner);
277 	CP(*in, *out, f_type);
278 	CP(*in, *out, f_flags);
279 	out->f_syncwrites = MIN(in->f_syncwrites, INT32_MAX);
280 	out->f_asyncwrites = MIN(in->f_asyncwrites, INT32_MAX);
281 	strlcpy(out->f_fstypename,
282 	      in->f_fstypename, MFSNAMELEN);
283 	strlcpy(out->f_mntonname,
284 	      in->f_mntonname, min(MNAMELEN, FREEBSD4_MNAMELEN));
285 	out->f_syncreads = MIN(in->f_syncreads, INT32_MAX);
286 	out->f_asyncreads = MIN(in->f_asyncreads, INT32_MAX);
287 	strlcpy(out->f_mntfromname,
288 	      in->f_mntfromname, min(MNAMELEN, FREEBSD4_MNAMELEN));
289 }
290 #endif
291 
292 #ifdef COMPAT_FREEBSD4
293 int
294 freebsd4_freebsd32_getfsstat(struct thread *td,
295     struct freebsd4_freebsd32_getfsstat_args *uap)
296 {
297 	struct statfs *buf, *sp;
298 	struct statfs32 stat32;
299 	size_t count, size, copycount;
300 	int error;
301 
302 	count = uap->bufsize / sizeof(struct statfs32);
303 	size = count * sizeof(struct statfs);
304 	error = kern_getfsstat(td, &buf, size, &count, UIO_SYSSPACE, uap->mode);
305 	if (size > 0) {
306 		sp = buf;
307 		copycount = count;
308 		while (copycount > 0 && error == 0) {
309 			copy_statfs(sp, &stat32);
310 			error = copyout(&stat32, uap->buf, sizeof(stat32));
311 			sp++;
312 			uap->buf++;
313 			copycount--;
314 		}
315 		free(buf, M_STATFS);
316 	}
317 	if (error == 0)
318 		td->td_retval[0] = count;
319 	return (error);
320 }
321 #endif
322 
323 #ifdef COMPAT_FREEBSD10
324 int
325 freebsd10_freebsd32_pipe(struct thread *td,
326     struct freebsd10_freebsd32_pipe_args *uap) {
327 	return (freebsd10_pipe(td, (struct freebsd10_pipe_args*)uap));
328 }
329 #endif
330 
331 int
332 freebsd32_sigaltstack(struct thread *td,
333 		      struct freebsd32_sigaltstack_args *uap)
334 {
335 	struct sigaltstack32 s32;
336 	struct sigaltstack ss, oss, *ssp;
337 	int error;
338 
339 	if (uap->ss != NULL) {
340 		error = copyin(uap->ss, &s32, sizeof(s32));
341 		if (error)
342 			return (error);
343 		PTRIN_CP(s32, ss, ss_sp);
344 		CP(s32, ss, ss_size);
345 		CP(s32, ss, ss_flags);
346 		ssp = &ss;
347 	} else
348 		ssp = NULL;
349 	error = kern_sigaltstack(td, ssp, &oss);
350 	if (error == 0 && uap->oss != NULL) {
351 		PTROUT_CP(oss, s32, ss_sp);
352 		CP(oss, s32, ss_size);
353 		CP(oss, s32, ss_flags);
354 		error = copyout(&s32, uap->oss, sizeof(s32));
355 	}
356 	return (error);
357 }
358 
359 /*
360  * Custom version of exec_copyin_args() so that we can translate
361  * the pointers.
362  */
363 int
364 freebsd32_exec_copyin_args(struct image_args *args, const char *fname,
365     enum uio_seg segflg, u_int32_t *argv, u_int32_t *envv)
366 {
367 	char *argp, *envp;
368 	u_int32_t *p32, arg;
369 	int error;
370 
371 	bzero(args, sizeof(*args));
372 	if (argv == NULL)
373 		return (EFAULT);
374 
375 	/*
376 	 * Allocate demand-paged memory for the file name, argument, and
377 	 * environment strings.
378 	 */
379 	error = exec_alloc_args(args);
380 	if (error != 0)
381 		return (error);
382 
383 	/*
384 	 * Copy the file name.
385 	 */
386 	error = exec_args_add_fname(args, fname, segflg);
387 	if (error != 0)
388 		goto err_exit;
389 
390 	/*
391 	 * extract arguments first
392 	 */
393 	p32 = argv;
394 	for (;;) {
395 		error = copyin(p32++, &arg, sizeof(arg));
396 		if (error)
397 			goto err_exit;
398 		if (arg == 0)
399 			break;
400 		argp = PTRIN(arg);
401 		error = exec_args_add_arg(args, argp, UIO_USERSPACE);
402 		if (error != 0)
403 			goto err_exit;
404 	}
405 
406 	/*
407 	 * extract environment strings
408 	 */
409 	if (envv) {
410 		p32 = envv;
411 		for (;;) {
412 			error = copyin(p32++, &arg, sizeof(arg));
413 			if (error)
414 				goto err_exit;
415 			if (arg == 0)
416 				break;
417 			envp = PTRIN(arg);
418 			error = exec_args_add_env(args, envp, UIO_USERSPACE);
419 			if (error != 0)
420 				goto err_exit;
421 		}
422 	}
423 
424 	return (0);
425 
426 err_exit:
427 	exec_free_args(args);
428 	return (error);
429 }
430 
431 int
432 freebsd32_execve(struct thread *td, struct freebsd32_execve_args *uap)
433 {
434 	struct image_args eargs;
435 	struct vmspace *oldvmspace;
436 	int error;
437 
438 	error = pre_execve(td, &oldvmspace);
439 	if (error != 0)
440 		return (error);
441 	error = freebsd32_exec_copyin_args(&eargs, uap->fname, UIO_USERSPACE,
442 	    uap->argv, uap->envv);
443 	if (error == 0)
444 		error = kern_execve(td, &eargs, NULL, oldvmspace);
445 	post_execve(td, error, oldvmspace);
446 	AUDIT_SYSCALL_EXIT(error == EJUSTRETURN ? 0 : error, td);
447 	return (error);
448 }
449 
450 int
451 freebsd32_fexecve(struct thread *td, struct freebsd32_fexecve_args *uap)
452 {
453 	struct image_args eargs;
454 	struct vmspace *oldvmspace;
455 	int error;
456 
457 	error = pre_execve(td, &oldvmspace);
458 	if (error != 0)
459 		return (error);
460 	error = freebsd32_exec_copyin_args(&eargs, NULL, UIO_SYSSPACE,
461 	    uap->argv, uap->envv);
462 	if (error == 0) {
463 		eargs.fd = uap->fd;
464 		error = kern_execve(td, &eargs, NULL, oldvmspace);
465 	}
466 	post_execve(td, error, oldvmspace);
467 	AUDIT_SYSCALL_EXIT(error == EJUSTRETURN ? 0 : error, td);
468 	return (error);
469 }
470 
471 int
472 freebsd32_mknodat(struct thread *td, struct freebsd32_mknodat_args *uap)
473 {
474 
475 	return (kern_mknodat(td, uap->fd, uap->path, UIO_USERSPACE,
476 	    uap->mode, PAIR32TO64(dev_t, uap->dev)));
477 }
478 
479 int
480 freebsd32_mprotect(struct thread *td, struct freebsd32_mprotect_args *uap)
481 {
482 	int prot;
483 
484 	prot = uap->prot;
485 #if defined(__amd64__)
486 	if (i386_read_exec && (prot & PROT_READ) != 0)
487 		prot |= PROT_EXEC;
488 #endif
489 	return (kern_mprotect(td, (uintptr_t)PTRIN(uap->addr), uap->len,
490 	    prot));
491 }
492 
493 int
494 freebsd32_mmap(struct thread *td, struct freebsd32_mmap_args *uap)
495 {
496 	int prot;
497 
498 	prot = uap->prot;
499 #if defined(__amd64__)
500 	if (i386_read_exec && (prot & PROT_READ))
501 		prot |= PROT_EXEC;
502 #endif
503 
504 	return (kern_mmap(td, &(struct mmap_req){
505 		.mr_hint = (uintptr_t)uap->addr,
506 		.mr_len = uap->len,
507 		.mr_prot = prot,
508 		.mr_flags = uap->flags,
509 		.mr_fd = uap->fd,
510 		.mr_pos = PAIR32TO64(off_t, uap->pos),
511 	    }));
512 }
513 
514 #ifdef COMPAT_FREEBSD6
515 int
516 freebsd6_freebsd32_mmap(struct thread *td,
517     struct freebsd6_freebsd32_mmap_args *uap)
518 {
519 	int prot;
520 
521 	prot = uap->prot;
522 #if defined(__amd64__)
523 	if (i386_read_exec && (prot & PROT_READ))
524 		prot |= PROT_EXEC;
525 #endif
526 
527 	return (kern_mmap(td, &(struct mmap_req){
528 		.mr_hint = (uintptr_t)uap->addr,
529 		.mr_len = uap->len,
530 		.mr_prot = prot,
531 		.mr_flags = uap->flags,
532 		.mr_fd = uap->fd,
533 		.mr_pos = PAIR32TO64(off_t, uap->pos),
534 	    }));
535 }
536 #endif
537 
538 int
539 freebsd32_setitimer(struct thread *td, struct freebsd32_setitimer_args *uap)
540 {
541 	struct itimerval itv, oitv, *itvp;
542 	struct itimerval32 i32;
543 	int error;
544 
545 	if (uap->itv != NULL) {
546 		error = copyin(uap->itv, &i32, sizeof(i32));
547 		if (error)
548 			return (error);
549 		TV_CP(i32, itv, it_interval);
550 		TV_CP(i32, itv, it_value);
551 		itvp = &itv;
552 	} else
553 		itvp = NULL;
554 	error = kern_setitimer(td, uap->which, itvp, &oitv);
555 	if (error || uap->oitv == NULL)
556 		return (error);
557 	TV_CP(oitv, i32, it_interval);
558 	TV_CP(oitv, i32, it_value);
559 	return (copyout(&i32, uap->oitv, sizeof(i32)));
560 }
561 
562 int
563 freebsd32_getitimer(struct thread *td, struct freebsd32_getitimer_args *uap)
564 {
565 	struct itimerval itv;
566 	struct itimerval32 i32;
567 	int error;
568 
569 	error = kern_getitimer(td, uap->which, &itv);
570 	if (error || uap->itv == NULL)
571 		return (error);
572 	TV_CP(itv, i32, it_interval);
573 	TV_CP(itv, i32, it_value);
574 	return (copyout(&i32, uap->itv, sizeof(i32)));
575 }
576 
577 int
578 freebsd32_select(struct thread *td, struct freebsd32_select_args *uap)
579 {
580 	struct timeval32 tv32;
581 	struct timeval tv, *tvp;
582 	int error;
583 
584 	if (uap->tv != NULL) {
585 		error = copyin(uap->tv, &tv32, sizeof(tv32));
586 		if (error)
587 			return (error);
588 		CP(tv32, tv, tv_sec);
589 		CP(tv32, tv, tv_usec);
590 		tvp = &tv;
591 	} else
592 		tvp = NULL;
593 	/*
594 	 * XXX Do pointers need PTRIN()?
595 	 */
596 	return (kern_select(td, uap->nd, uap->in, uap->ou, uap->ex, tvp,
597 	    sizeof(int32_t) * 8));
598 }
599 
600 int
601 freebsd32_pselect(struct thread *td, struct freebsd32_pselect_args *uap)
602 {
603 	struct timespec32 ts32;
604 	struct timespec ts;
605 	struct timeval tv, *tvp;
606 	sigset_t set, *uset;
607 	int error;
608 
609 	if (uap->ts != NULL) {
610 		error = copyin(uap->ts, &ts32, sizeof(ts32));
611 		if (error != 0)
612 			return (error);
613 		CP(ts32, ts, tv_sec);
614 		CP(ts32, ts, tv_nsec);
615 		TIMESPEC_TO_TIMEVAL(&tv, &ts);
616 		tvp = &tv;
617 	} else
618 		tvp = NULL;
619 	if (uap->sm != NULL) {
620 		error = copyin(uap->sm, &set, sizeof(set));
621 		if (error != 0)
622 			return (error);
623 		uset = &set;
624 	} else
625 		uset = NULL;
626 	/*
627 	 * XXX Do pointers need PTRIN()?
628 	 */
629 	error = kern_pselect(td, uap->nd, uap->in, uap->ou, uap->ex, tvp,
630 	    uset, sizeof(int32_t) * 8);
631 	return (error);
632 }
633 
634 /*
635  * Copy 'count' items into the destination list pointed to by uap->eventlist.
636  */
637 static int
638 freebsd32_kevent_copyout(void *arg, struct kevent *kevp, int count)
639 {
640 	struct freebsd32_kevent_args *uap;
641 	struct kevent32	ks32[KQ_NEVENTS];
642 	uint64_t e;
643 	int i, j, error;
644 
645 	KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
646 	uap = (struct freebsd32_kevent_args *)arg;
647 
648 	for (i = 0; i < count; i++) {
649 		CP(kevp[i], ks32[i], ident);
650 		CP(kevp[i], ks32[i], filter);
651 		CP(kevp[i], ks32[i], flags);
652 		CP(kevp[i], ks32[i], fflags);
653 #if BYTE_ORDER == LITTLE_ENDIAN
654 		ks32[i].data1 = kevp[i].data;
655 		ks32[i].data2 = kevp[i].data >> 32;
656 #else
657 		ks32[i].data1 = kevp[i].data >> 32;
658 		ks32[i].data2 = kevp[i].data;
659 #endif
660 		PTROUT_CP(kevp[i], ks32[i], udata);
661 		for (j = 0; j < nitems(kevp->ext); j++) {
662 			e = kevp[i].ext[j];
663 #if BYTE_ORDER == LITTLE_ENDIAN
664 			ks32[i].ext64[2 * j] = e;
665 			ks32[i].ext64[2 * j + 1] = e >> 32;
666 #else
667 			ks32[i].ext64[2 * j] = e >> 32;
668 			ks32[i].ext64[2 * j + 1] = e;
669 #endif
670 		}
671 	}
672 	error = copyout(ks32, uap->eventlist, count * sizeof *ks32);
673 	if (error == 0)
674 		uap->eventlist += count;
675 	return (error);
676 }
677 
678 /*
679  * Copy 'count' items from the list pointed to by uap->changelist.
680  */
681 static int
682 freebsd32_kevent_copyin(void *arg, struct kevent *kevp, int count)
683 {
684 	struct freebsd32_kevent_args *uap;
685 	struct kevent32	ks32[KQ_NEVENTS];
686 	uint64_t e;
687 	int i, j, error;
688 
689 	KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
690 	uap = (struct freebsd32_kevent_args *)arg;
691 
692 	error = copyin(uap->changelist, ks32, count * sizeof *ks32);
693 	if (error)
694 		goto done;
695 	uap->changelist += count;
696 
697 	for (i = 0; i < count; i++) {
698 		CP(ks32[i], kevp[i], ident);
699 		CP(ks32[i], kevp[i], filter);
700 		CP(ks32[i], kevp[i], flags);
701 		CP(ks32[i], kevp[i], fflags);
702 		kevp[i].data = PAIR32TO64(uint64_t, ks32[i].data);
703 		PTRIN_CP(ks32[i], kevp[i], udata);
704 		for (j = 0; j < nitems(kevp->ext); j++) {
705 #if BYTE_ORDER == LITTLE_ENDIAN
706 			e = ks32[i].ext64[2 * j + 1];
707 			e <<= 32;
708 			e += ks32[i].ext64[2 * j];
709 #else
710 			e = ks32[i].ext64[2 * j];
711 			e <<= 32;
712 			e += ks32[i].ext64[2 * j + 1];
713 #endif
714 			kevp[i].ext[j] = e;
715 		}
716 	}
717 done:
718 	return (error);
719 }
720 
721 int
722 freebsd32_kevent(struct thread *td, struct freebsd32_kevent_args *uap)
723 {
724 	struct timespec32 ts32;
725 	struct timespec ts, *tsp;
726 	struct kevent_copyops k_ops = {
727 		.arg = uap,
728 		.k_copyout = freebsd32_kevent_copyout,
729 		.k_copyin = freebsd32_kevent_copyin,
730 	};
731 #ifdef KTRACE
732 	struct kevent32 *eventlist = uap->eventlist;
733 #endif
734 	int error;
735 
736 	if (uap->timeout) {
737 		error = copyin(uap->timeout, &ts32, sizeof(ts32));
738 		if (error)
739 			return (error);
740 		CP(ts32, ts, tv_sec);
741 		CP(ts32, ts, tv_nsec);
742 		tsp = &ts;
743 	} else
744 		tsp = NULL;
745 #ifdef KTRACE
746 	if (KTRPOINT(td, KTR_STRUCT_ARRAY))
747 		ktrstructarray("kevent32", UIO_USERSPACE, uap->changelist,
748 		    uap->nchanges, sizeof(struct kevent32));
749 #endif
750 	error = kern_kevent(td, uap->fd, uap->nchanges, uap->nevents,
751 	    &k_ops, tsp);
752 #ifdef KTRACE
753 	if (error == 0 && KTRPOINT(td, KTR_STRUCT_ARRAY))
754 		ktrstructarray("kevent32", UIO_USERSPACE, eventlist,
755 		    td->td_retval[0], sizeof(struct kevent32));
756 #endif
757 	return (error);
758 }
759 
760 #ifdef COMPAT_FREEBSD11
761 static int
762 freebsd32_kevent11_copyout(void *arg, struct kevent *kevp, int count)
763 {
764 	struct freebsd11_freebsd32_kevent_args *uap;
765 	struct kevent32_freebsd11 ks32[KQ_NEVENTS];
766 	int i, error;
767 
768 	KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
769 	uap = (struct freebsd11_freebsd32_kevent_args *)arg;
770 
771 	for (i = 0; i < count; i++) {
772 		CP(kevp[i], ks32[i], ident);
773 		CP(kevp[i], ks32[i], filter);
774 		CP(kevp[i], ks32[i], flags);
775 		CP(kevp[i], ks32[i], fflags);
776 		CP(kevp[i], ks32[i], data);
777 		PTROUT_CP(kevp[i], ks32[i], udata);
778 	}
779 	error = copyout(ks32, uap->eventlist, count * sizeof *ks32);
780 	if (error == 0)
781 		uap->eventlist += count;
782 	return (error);
783 }
784 
785 /*
786  * Copy 'count' items from the list pointed to by uap->changelist.
787  */
788 static int
789 freebsd32_kevent11_copyin(void *arg, struct kevent *kevp, int count)
790 {
791 	struct freebsd11_freebsd32_kevent_args *uap;
792 	struct kevent32_freebsd11 ks32[KQ_NEVENTS];
793 	int i, j, error;
794 
795 	KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
796 	uap = (struct freebsd11_freebsd32_kevent_args *)arg;
797 
798 	error = copyin(uap->changelist, ks32, count * sizeof *ks32);
799 	if (error)
800 		goto done;
801 	uap->changelist += count;
802 
803 	for (i = 0; i < count; i++) {
804 		CP(ks32[i], kevp[i], ident);
805 		CP(ks32[i], kevp[i], filter);
806 		CP(ks32[i], kevp[i], flags);
807 		CP(ks32[i], kevp[i], fflags);
808 		CP(ks32[i], kevp[i], data);
809 		PTRIN_CP(ks32[i], kevp[i], udata);
810 		for (j = 0; j < nitems(kevp->ext); j++)
811 			kevp[i].ext[j] = 0;
812 	}
813 done:
814 	return (error);
815 }
816 
817 int
818 freebsd11_freebsd32_kevent(struct thread *td,
819     struct freebsd11_freebsd32_kevent_args *uap)
820 {
821 	struct timespec32 ts32;
822 	struct timespec ts, *tsp;
823 	struct kevent_copyops k_ops = {
824 		.arg = uap,
825 		.k_copyout = freebsd32_kevent11_copyout,
826 		.k_copyin = freebsd32_kevent11_copyin,
827 	};
828 #ifdef KTRACE
829 	struct kevent32_freebsd11 *eventlist = uap->eventlist;
830 #endif
831 	int error;
832 
833 	if (uap->timeout) {
834 		error = copyin(uap->timeout, &ts32, sizeof(ts32));
835 		if (error)
836 			return (error);
837 		CP(ts32, ts, tv_sec);
838 		CP(ts32, ts, tv_nsec);
839 		tsp = &ts;
840 	} else
841 		tsp = NULL;
842 #ifdef KTRACE
843 	if (KTRPOINT(td, KTR_STRUCT_ARRAY))
844 		ktrstructarray("kevent32_freebsd11", UIO_USERSPACE,
845 		    uap->changelist, uap->nchanges,
846 		    sizeof(struct kevent32_freebsd11));
847 #endif
848 	error = kern_kevent(td, uap->fd, uap->nchanges, uap->nevents,
849 	    &k_ops, tsp);
850 #ifdef KTRACE
851 	if (error == 0 && KTRPOINT(td, KTR_STRUCT_ARRAY))
852 		ktrstructarray("kevent32_freebsd11", UIO_USERSPACE,
853 		    eventlist, td->td_retval[0],
854 		    sizeof(struct kevent32_freebsd11));
855 #endif
856 	return (error);
857 }
858 #endif
859 
860 int
861 freebsd32_gettimeofday(struct thread *td,
862 		       struct freebsd32_gettimeofday_args *uap)
863 {
864 	struct timeval atv;
865 	struct timeval32 atv32;
866 	struct timezone rtz;
867 	int error = 0;
868 
869 	if (uap->tp) {
870 		microtime(&atv);
871 		CP(atv, atv32, tv_sec);
872 		CP(atv, atv32, tv_usec);
873 		error = copyout(&atv32, uap->tp, sizeof (atv32));
874 	}
875 	if (error == 0 && uap->tzp != NULL) {
876 		rtz.tz_minuteswest = 0;
877 		rtz.tz_dsttime = 0;
878 		error = copyout(&rtz, uap->tzp, sizeof (rtz));
879 	}
880 	return (error);
881 }
882 
883 int
884 freebsd32_getrusage(struct thread *td, struct freebsd32_getrusage_args *uap)
885 {
886 	struct rusage32 s32;
887 	struct rusage s;
888 	int error;
889 
890 	error = kern_getrusage(td, uap->who, &s);
891 	if (error == 0) {
892 		freebsd32_rusage_out(&s, &s32);
893 		error = copyout(&s32, uap->rusage, sizeof(s32));
894 	}
895 	return (error);
896 }
897 
898 static void
899 ptrace_lwpinfo_to32(const struct ptrace_lwpinfo *pl,
900     struct ptrace_lwpinfo32 *pl32)
901 {
902 
903 	bzero(pl32, sizeof(*pl32));
904 	pl32->pl_lwpid = pl->pl_lwpid;
905 	pl32->pl_event = pl->pl_event;
906 	pl32->pl_flags = pl->pl_flags;
907 	pl32->pl_sigmask = pl->pl_sigmask;
908 	pl32->pl_siglist = pl->pl_siglist;
909 	siginfo_to_siginfo32(&pl->pl_siginfo, &pl32->pl_siginfo);
910 	strcpy(pl32->pl_tdname, pl->pl_tdname);
911 	pl32->pl_child_pid = pl->pl_child_pid;
912 	pl32->pl_syscall_code = pl->pl_syscall_code;
913 	pl32->pl_syscall_narg = pl->pl_syscall_narg;
914 }
915 
916 static void
917 ptrace_sc_ret_to32(const struct ptrace_sc_ret *psr,
918     struct ptrace_sc_ret32 *psr32)
919 {
920 
921 	bzero(psr32, sizeof(*psr32));
922 	psr32->sr_retval[0] = psr->sr_retval[0];
923 	psr32->sr_retval[1] = psr->sr_retval[1];
924 	psr32->sr_error = psr->sr_error;
925 }
926 
927 int
928 freebsd32_ptrace(struct thread *td, struct freebsd32_ptrace_args *uap)
929 {
930 	union {
931 		struct ptrace_io_desc piod;
932 		struct ptrace_lwpinfo pl;
933 		struct ptrace_vm_entry pve;
934 		struct ptrace_coredump pc;
935 		struct dbreg32 dbreg;
936 		struct fpreg32 fpreg;
937 		struct reg32 reg;
938 		register_t args[nitems(td->td_sa.args)];
939 		struct ptrace_sc_ret psr;
940 		int ptevents;
941 	} r;
942 	union {
943 		struct ptrace_io_desc32 piod;
944 		struct ptrace_lwpinfo32 pl;
945 		struct ptrace_vm_entry32 pve;
946 		struct ptrace_coredump32 pc;
947 		uint32_t args[nitems(td->td_sa.args)];
948 		struct ptrace_sc_ret32 psr;
949 	} r32;
950 	void *addr;
951 	int data, error = 0, i;
952 
953 	AUDIT_ARG_PID(uap->pid);
954 	AUDIT_ARG_CMD(uap->req);
955 	AUDIT_ARG_VALUE(uap->data);
956 	addr = &r;
957 	data = uap->data;
958 	switch (uap->req) {
959 	case PT_GET_EVENT_MASK:
960 	case PT_GET_SC_ARGS:
961 	case PT_GET_SC_RET:
962 		break;
963 	case PT_LWPINFO:
964 		if (uap->data > sizeof(r32.pl))
965 			return (EINVAL);
966 
967 		/*
968 		 * Pass size of native structure in 'data'.  Truncate
969 		 * if necessary to avoid siginfo.
970 		 */
971 		data = sizeof(r.pl);
972 		if (uap->data < offsetof(struct ptrace_lwpinfo32, pl_siginfo) +
973 		    sizeof(struct siginfo32))
974 			data = offsetof(struct ptrace_lwpinfo, pl_siginfo);
975 		break;
976 	case PT_GETREGS:
977 		bzero(&r.reg, sizeof(r.reg));
978 		break;
979 	case PT_GETFPREGS:
980 		bzero(&r.fpreg, sizeof(r.fpreg));
981 		break;
982 	case PT_GETDBREGS:
983 		bzero(&r.dbreg, sizeof(r.dbreg));
984 		break;
985 	case PT_SETREGS:
986 		error = copyin(uap->addr, &r.reg, sizeof(r.reg));
987 		break;
988 	case PT_SETFPREGS:
989 		error = copyin(uap->addr, &r.fpreg, sizeof(r.fpreg));
990 		break;
991 	case PT_SETDBREGS:
992 		error = copyin(uap->addr, &r.dbreg, sizeof(r.dbreg));
993 		break;
994 	case PT_SET_EVENT_MASK:
995 		if (uap->data != sizeof(r.ptevents))
996 			error = EINVAL;
997 		else
998 			error = copyin(uap->addr, &r.ptevents, uap->data);
999 		break;
1000 	case PT_IO:
1001 		error = copyin(uap->addr, &r32.piod, sizeof(r32.piod));
1002 		if (error)
1003 			break;
1004 		CP(r32.piod, r.piod, piod_op);
1005 		PTRIN_CP(r32.piod, r.piod, piod_offs);
1006 		PTRIN_CP(r32.piod, r.piod, piod_addr);
1007 		CP(r32.piod, r.piod, piod_len);
1008 		break;
1009 	case PT_VM_ENTRY:
1010 		error = copyin(uap->addr, &r32.pve, sizeof(r32.pve));
1011 		if (error)
1012 			break;
1013 
1014 		CP(r32.pve, r.pve, pve_entry);
1015 		CP(r32.pve, r.pve, pve_timestamp);
1016 		CP(r32.pve, r.pve, pve_start);
1017 		CP(r32.pve, r.pve, pve_end);
1018 		CP(r32.pve, r.pve, pve_offset);
1019 		CP(r32.pve, r.pve, pve_prot);
1020 		CP(r32.pve, r.pve, pve_pathlen);
1021 		CP(r32.pve, r.pve, pve_fileid);
1022 		CP(r32.pve, r.pve, pve_fsid);
1023 		PTRIN_CP(r32.pve, r.pve, pve_path);
1024 		break;
1025 	case PT_COREDUMP:
1026 		if (uap->data != sizeof(r32.pc))
1027 			error = EINVAL;
1028 		else
1029 			error = copyin(uap->addr, &r32.pc, uap->data);
1030 		CP(r32.pc, r.pc, pc_fd);
1031 		CP(r32.pc, r.pc, pc_flags);
1032 		r.pc.pc_limit = PAIR32TO64(off_t, r32.pc.pc_limit);
1033 		data = sizeof(r.pc);
1034 		break;
1035 	default:
1036 		addr = uap->addr;
1037 		break;
1038 	}
1039 	if (error)
1040 		return (error);
1041 
1042 	error = kern_ptrace(td, uap->req, uap->pid, addr, data);
1043 	if (error)
1044 		return (error);
1045 
1046 	switch (uap->req) {
1047 	case PT_VM_ENTRY:
1048 		CP(r.pve, r32.pve, pve_entry);
1049 		CP(r.pve, r32.pve, pve_timestamp);
1050 		CP(r.pve, r32.pve, pve_start);
1051 		CP(r.pve, r32.pve, pve_end);
1052 		CP(r.pve, r32.pve, pve_offset);
1053 		CP(r.pve, r32.pve, pve_prot);
1054 		CP(r.pve, r32.pve, pve_pathlen);
1055 		CP(r.pve, r32.pve, pve_fileid);
1056 		CP(r.pve, r32.pve, pve_fsid);
1057 		error = copyout(&r32.pve, uap->addr, sizeof(r32.pve));
1058 		break;
1059 	case PT_IO:
1060 		CP(r.piod, r32.piod, piod_len);
1061 		error = copyout(&r32.piod, uap->addr, sizeof(r32.piod));
1062 		break;
1063 	case PT_GETREGS:
1064 		error = copyout(&r.reg, uap->addr, sizeof(r.reg));
1065 		break;
1066 	case PT_GETFPREGS:
1067 		error = copyout(&r.fpreg, uap->addr, sizeof(r.fpreg));
1068 		break;
1069 	case PT_GETDBREGS:
1070 		error = copyout(&r.dbreg, uap->addr, sizeof(r.dbreg));
1071 		break;
1072 	case PT_GET_EVENT_MASK:
1073 		/* NB: The size in uap->data is validated in kern_ptrace(). */
1074 		error = copyout(&r.ptevents, uap->addr, uap->data);
1075 		break;
1076 	case PT_LWPINFO:
1077 		ptrace_lwpinfo_to32(&r.pl, &r32.pl);
1078 		error = copyout(&r32.pl, uap->addr, uap->data);
1079 		break;
1080 	case PT_GET_SC_ARGS:
1081 		for (i = 0; i < nitems(r.args); i++)
1082 			r32.args[i] = (uint32_t)r.args[i];
1083 		error = copyout(r32.args, uap->addr, MIN(uap->data,
1084 		    sizeof(r32.args)));
1085 		break;
1086 	case PT_GET_SC_RET:
1087 		ptrace_sc_ret_to32(&r.psr, &r32.psr);
1088 		error = copyout(&r32.psr, uap->addr, MIN(uap->data,
1089 		    sizeof(r32.psr)));
1090 		break;
1091 	}
1092 
1093 	return (error);
1094 }
1095 
1096 int
1097 freebsd32_copyinuio(struct iovec32 *iovp, u_int iovcnt, struct uio **uiop)
1098 {
1099 	struct iovec32 iov32;
1100 	struct iovec *iov;
1101 	struct uio *uio;
1102 	u_int iovlen;
1103 	int error, i;
1104 
1105 	*uiop = NULL;
1106 	if (iovcnt > UIO_MAXIOV)
1107 		return (EINVAL);
1108 	iovlen = iovcnt * sizeof(struct iovec);
1109 	uio = malloc(iovlen + sizeof *uio, M_IOV, M_WAITOK);
1110 	iov = (struct iovec *)(uio + 1);
1111 	for (i = 0; i < iovcnt; i++) {
1112 		error = copyin(&iovp[i], &iov32, sizeof(struct iovec32));
1113 		if (error) {
1114 			free(uio, M_IOV);
1115 			return (error);
1116 		}
1117 		iov[i].iov_base = PTRIN(iov32.iov_base);
1118 		iov[i].iov_len = iov32.iov_len;
1119 	}
1120 	uio->uio_iov = iov;
1121 	uio->uio_iovcnt = iovcnt;
1122 	uio->uio_segflg = UIO_USERSPACE;
1123 	uio->uio_offset = -1;
1124 	uio->uio_resid = 0;
1125 	for (i = 0; i < iovcnt; i++) {
1126 		if (iov->iov_len > INT_MAX - uio->uio_resid) {
1127 			free(uio, M_IOV);
1128 			return (EINVAL);
1129 		}
1130 		uio->uio_resid += iov->iov_len;
1131 		iov++;
1132 	}
1133 	*uiop = uio;
1134 	return (0);
1135 }
1136 
1137 int
1138 freebsd32_readv(struct thread *td, struct freebsd32_readv_args *uap)
1139 {
1140 	struct uio *auio;
1141 	int error;
1142 
1143 	error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio);
1144 	if (error)
1145 		return (error);
1146 	error = kern_readv(td, uap->fd, auio);
1147 	free(auio, M_IOV);
1148 	return (error);
1149 }
1150 
1151 int
1152 freebsd32_writev(struct thread *td, struct freebsd32_writev_args *uap)
1153 {
1154 	struct uio *auio;
1155 	int error;
1156 
1157 	error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio);
1158 	if (error)
1159 		return (error);
1160 	error = kern_writev(td, uap->fd, auio);
1161 	free(auio, M_IOV);
1162 	return (error);
1163 }
1164 
1165 int
1166 freebsd32_preadv(struct thread *td, struct freebsd32_preadv_args *uap)
1167 {
1168 	struct uio *auio;
1169 	int error;
1170 
1171 	error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio);
1172 	if (error)
1173 		return (error);
1174 	error = kern_preadv(td, uap->fd, auio, PAIR32TO64(off_t,uap->offset));
1175 	free(auio, M_IOV);
1176 	return (error);
1177 }
1178 
1179 int
1180 freebsd32_pwritev(struct thread *td, struct freebsd32_pwritev_args *uap)
1181 {
1182 	struct uio *auio;
1183 	int error;
1184 
1185 	error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio);
1186 	if (error)
1187 		return (error);
1188 	error = kern_pwritev(td, uap->fd, auio, PAIR32TO64(off_t,uap->offset));
1189 	free(auio, M_IOV);
1190 	return (error);
1191 }
1192 
1193 int
1194 freebsd32_copyiniov(struct iovec32 *iovp32, u_int iovcnt, struct iovec **iovp,
1195     int error)
1196 {
1197 	struct iovec32 iov32;
1198 	struct iovec *iov;
1199 	u_int iovlen;
1200 	int i;
1201 
1202 	*iovp = NULL;
1203 	if (iovcnt > UIO_MAXIOV)
1204 		return (error);
1205 	iovlen = iovcnt * sizeof(struct iovec);
1206 	iov = malloc(iovlen, M_IOV, M_WAITOK);
1207 	for (i = 0; i < iovcnt; i++) {
1208 		error = copyin(&iovp32[i], &iov32, sizeof(struct iovec32));
1209 		if (error) {
1210 			free(iov, M_IOV);
1211 			return (error);
1212 		}
1213 		iov[i].iov_base = PTRIN(iov32.iov_base);
1214 		iov[i].iov_len = iov32.iov_len;
1215 	}
1216 	*iovp = iov;
1217 	return (0);
1218 }
1219 
1220 static int
1221 freebsd32_copyinmsghdr(struct msghdr32 *msg32, struct msghdr *msg)
1222 {
1223 	struct msghdr32 m32;
1224 	int error;
1225 
1226 	error = copyin(msg32, &m32, sizeof(m32));
1227 	if (error)
1228 		return (error);
1229 	msg->msg_name = PTRIN(m32.msg_name);
1230 	msg->msg_namelen = m32.msg_namelen;
1231 	msg->msg_iov = PTRIN(m32.msg_iov);
1232 	msg->msg_iovlen = m32.msg_iovlen;
1233 	msg->msg_control = PTRIN(m32.msg_control);
1234 	msg->msg_controllen = m32.msg_controllen;
1235 	msg->msg_flags = m32.msg_flags;
1236 	return (0);
1237 }
1238 
1239 static int
1240 freebsd32_copyoutmsghdr(struct msghdr *msg, struct msghdr32 *msg32)
1241 {
1242 	struct msghdr32 m32;
1243 	int error;
1244 
1245 	m32.msg_name = PTROUT(msg->msg_name);
1246 	m32.msg_namelen = msg->msg_namelen;
1247 	m32.msg_iov = PTROUT(msg->msg_iov);
1248 	m32.msg_iovlen = msg->msg_iovlen;
1249 	m32.msg_control = PTROUT(msg->msg_control);
1250 	m32.msg_controllen = msg->msg_controllen;
1251 	m32.msg_flags = msg->msg_flags;
1252 	error = copyout(&m32, msg32, sizeof(m32));
1253 	return (error);
1254 }
1255 
1256 #ifndef __mips__
1257 #define FREEBSD32_ALIGNBYTES	(sizeof(int) - 1)
1258 #else
1259 #define FREEBSD32_ALIGNBYTES	(sizeof(long) - 1)
1260 #endif
1261 #define FREEBSD32_ALIGN(p)	\
1262 	(((u_long)(p) + FREEBSD32_ALIGNBYTES) & ~FREEBSD32_ALIGNBYTES)
1263 #define	FREEBSD32_CMSG_SPACE(l)	\
1264 	(FREEBSD32_ALIGN(sizeof(struct cmsghdr)) + FREEBSD32_ALIGN(l))
1265 
1266 #define	FREEBSD32_CMSG_DATA(cmsg)	((unsigned char *)(cmsg) + \
1267 				 FREEBSD32_ALIGN(sizeof(struct cmsghdr)))
1268 
1269 static size_t
1270 freebsd32_cmsg_convert(const struct cmsghdr *cm, void *data, socklen_t datalen)
1271 {
1272 	size_t copylen;
1273 	union {
1274 		struct timespec32 ts;
1275 		struct timeval32 tv;
1276 		struct bintime32 bt;
1277 	} tmp32;
1278 
1279 	union {
1280 		struct timespec ts;
1281 		struct timeval tv;
1282 		struct bintime bt;
1283 	} *in;
1284 
1285 	in = data;
1286 	copylen = 0;
1287 	switch (cm->cmsg_level) {
1288 	case SOL_SOCKET:
1289 		switch (cm->cmsg_type) {
1290 		case SCM_TIMESTAMP:
1291 			TV_CP(*in, tmp32, tv);
1292 			copylen = sizeof(tmp32.tv);
1293 			break;
1294 
1295 		case SCM_BINTIME:
1296 			BT_CP(*in, tmp32, bt);
1297 			copylen = sizeof(tmp32.bt);
1298 			break;
1299 
1300 		case SCM_REALTIME:
1301 		case SCM_MONOTONIC:
1302 			TS_CP(*in, tmp32, ts);
1303 			copylen = sizeof(tmp32.ts);
1304 			break;
1305 
1306 		default:
1307 			break;
1308 		}
1309 
1310 	default:
1311 		break;
1312 	}
1313 
1314 	if (copylen == 0)
1315 		return (datalen);
1316 
1317 	KASSERT((datalen >= copylen), ("corrupted cmsghdr"));
1318 
1319 	bcopy(&tmp32, data, copylen);
1320 	return (copylen);
1321 }
1322 
1323 static int
1324 freebsd32_copy_msg_out(struct msghdr *msg, struct mbuf *control)
1325 {
1326 	struct cmsghdr *cm;
1327 	void *data;
1328 	socklen_t clen, datalen, datalen_out, oldclen;
1329 	int error;
1330 	caddr_t ctlbuf;
1331 	int len, maxlen, copylen;
1332 	struct mbuf *m;
1333 	error = 0;
1334 
1335 	len    = msg->msg_controllen;
1336 	maxlen = msg->msg_controllen;
1337 	msg->msg_controllen = 0;
1338 
1339 	ctlbuf = msg->msg_control;
1340 	for (m = control; m != NULL && len > 0; m = m->m_next) {
1341 		cm = mtod(m, struct cmsghdr *);
1342 		clen = m->m_len;
1343 		while (cm != NULL) {
1344 			if (sizeof(struct cmsghdr) > clen ||
1345 			    cm->cmsg_len > clen) {
1346 				error = EINVAL;
1347 				break;
1348 			}
1349 
1350 			data   = CMSG_DATA(cm);
1351 			datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data;
1352 			datalen_out = freebsd32_cmsg_convert(cm, data, datalen);
1353 
1354 			/*
1355 			 * Copy out the message header.  Preserve the native
1356 			 * message size in case we need to inspect the message
1357 			 * contents later.
1358 			 */
1359 			copylen = sizeof(struct cmsghdr);
1360 			if (len < copylen) {
1361 				msg->msg_flags |= MSG_CTRUNC;
1362 				m_dispose_extcontrolm(m);
1363 				goto exit;
1364 			}
1365 			oldclen = cm->cmsg_len;
1366 			cm->cmsg_len = FREEBSD32_ALIGN(sizeof(struct cmsghdr)) +
1367 			    datalen_out;
1368 			error = copyout(cm, ctlbuf, copylen);
1369 			cm->cmsg_len = oldclen;
1370 			if (error != 0)
1371 				goto exit;
1372 
1373 			ctlbuf += FREEBSD32_ALIGN(copylen);
1374 			len    -= FREEBSD32_ALIGN(copylen);
1375 
1376 			copylen = datalen_out;
1377 			if (len < copylen) {
1378 				msg->msg_flags |= MSG_CTRUNC;
1379 				m_dispose_extcontrolm(m);
1380 				break;
1381 			}
1382 
1383 			/* Copy out the message data. */
1384 			error = copyout(data, ctlbuf, copylen);
1385 			if (error)
1386 				goto exit;
1387 
1388 			ctlbuf += FREEBSD32_ALIGN(copylen);
1389 			len    -= FREEBSD32_ALIGN(copylen);
1390 
1391 			if (CMSG_SPACE(datalen) < clen) {
1392 				clen -= CMSG_SPACE(datalen);
1393 				cm = (struct cmsghdr *)
1394 				    ((caddr_t)cm + CMSG_SPACE(datalen));
1395 			} else {
1396 				clen = 0;
1397 				cm = NULL;
1398 			}
1399 
1400 			msg->msg_controllen +=
1401 			    FREEBSD32_CMSG_SPACE(datalen_out);
1402 		}
1403 	}
1404 	if (len == 0 && m != NULL) {
1405 		msg->msg_flags |= MSG_CTRUNC;
1406 		m_dispose_extcontrolm(m);
1407 	}
1408 
1409 exit:
1410 	return (error);
1411 }
1412 
1413 int
1414 freebsd32_recvmsg(td, uap)
1415 	struct thread *td;
1416 	struct freebsd32_recvmsg_args /* {
1417 		int	s;
1418 		struct	msghdr32 *msg;
1419 		int	flags;
1420 	} */ *uap;
1421 {
1422 	struct msghdr msg;
1423 	struct msghdr32 m32;
1424 	struct iovec *uiov, *iov;
1425 	struct mbuf *control = NULL;
1426 	struct mbuf **controlp;
1427 
1428 	int error;
1429 	error = copyin(uap->msg, &m32, sizeof(m32));
1430 	if (error)
1431 		return (error);
1432 	error = freebsd32_copyinmsghdr(uap->msg, &msg);
1433 	if (error)
1434 		return (error);
1435 	error = freebsd32_copyiniov(PTRIN(m32.msg_iov), m32.msg_iovlen, &iov,
1436 	    EMSGSIZE);
1437 	if (error)
1438 		return (error);
1439 	msg.msg_flags = uap->flags;
1440 	uiov = msg.msg_iov;
1441 	msg.msg_iov = iov;
1442 
1443 	controlp = (msg.msg_control != NULL) ?  &control : NULL;
1444 	error = kern_recvit(td, uap->s, &msg, UIO_USERSPACE, controlp);
1445 	if (error == 0) {
1446 		msg.msg_iov = uiov;
1447 
1448 		if (control != NULL)
1449 			error = freebsd32_copy_msg_out(&msg, control);
1450 		else
1451 			msg.msg_controllen = 0;
1452 
1453 		if (error == 0)
1454 			error = freebsd32_copyoutmsghdr(&msg, uap->msg);
1455 	}
1456 	free(iov, M_IOV);
1457 
1458 	if (control != NULL) {
1459 		if (error != 0)
1460 			m_dispose_extcontrolm(control);
1461 		m_freem(control);
1462 	}
1463 
1464 	return (error);
1465 }
1466 
1467 /*
1468  * Copy-in the array of control messages constructed using alignment
1469  * and padding suitable for a 32-bit environment and construct an
1470  * mbuf using alignment and padding suitable for a 64-bit kernel.
1471  * The alignment and padding are defined indirectly by CMSG_DATA(),
1472  * CMSG_SPACE() and CMSG_LEN().
1473  */
1474 static int
1475 freebsd32_copyin_control(struct mbuf **mp, caddr_t buf, u_int buflen)
1476 {
1477 	struct cmsghdr *cm;
1478 	struct mbuf *m;
1479 	void *in, *in1, *md;
1480 	u_int msglen, outlen;
1481 	int error;
1482 
1483 	if (buflen > MCLBYTES)
1484 		return (EINVAL);
1485 
1486 	in = malloc(buflen, M_TEMP, M_WAITOK);
1487 	error = copyin(buf, in, buflen);
1488 	if (error != 0)
1489 		goto out;
1490 
1491 	/*
1492 	 * Make a pass over the input buffer to determine the amount of space
1493 	 * required for 64 bit-aligned copies of the control messages.
1494 	 */
1495 	in1 = in;
1496 	outlen = 0;
1497 	while (buflen > 0) {
1498 		if (buflen < sizeof(*cm)) {
1499 			error = EINVAL;
1500 			break;
1501 		}
1502 		cm = (struct cmsghdr *)in1;
1503 		if (cm->cmsg_len < FREEBSD32_ALIGN(sizeof(*cm))) {
1504 			error = EINVAL;
1505 			break;
1506 		}
1507 		msglen = FREEBSD32_ALIGN(cm->cmsg_len);
1508 		if (msglen > buflen || msglen < cm->cmsg_len) {
1509 			error = EINVAL;
1510 			break;
1511 		}
1512 		buflen -= msglen;
1513 
1514 		in1 = (char *)in1 + msglen;
1515 		outlen += CMSG_ALIGN(sizeof(*cm)) +
1516 		    CMSG_ALIGN(msglen - FREEBSD32_ALIGN(sizeof(*cm)));
1517 	}
1518 	if (error == 0 && outlen > MCLBYTES) {
1519 		/*
1520 		 * XXXMJ This implies that the upper limit on 32-bit aligned
1521 		 * control messages is less than MCLBYTES, and so we are not
1522 		 * perfectly compatible.  However, there is no platform
1523 		 * guarantee that mbuf clusters larger than MCLBYTES can be
1524 		 * allocated.
1525 		 */
1526 		error = EINVAL;
1527 	}
1528 	if (error != 0)
1529 		goto out;
1530 
1531 	m = m_get2(outlen, M_WAITOK, MT_CONTROL, 0);
1532 	m->m_len = outlen;
1533 	md = mtod(m, void *);
1534 
1535 	/*
1536 	 * Make a second pass over input messages, copying them into the output
1537 	 * buffer.
1538 	 */
1539 	in1 = in;
1540 	while (outlen > 0) {
1541 		/* Copy the message header and align the length field. */
1542 		cm = md;
1543 		memcpy(cm, in1, sizeof(*cm));
1544 		msglen = cm->cmsg_len - FREEBSD32_ALIGN(sizeof(*cm));
1545 		cm->cmsg_len = CMSG_ALIGN(sizeof(*cm)) + msglen;
1546 
1547 		/* Copy the message body. */
1548 		in1 = (char *)in1 + FREEBSD32_ALIGN(sizeof(*cm));
1549 		md = (char *)md + CMSG_ALIGN(sizeof(*cm));
1550 		memcpy(md, in1, msglen);
1551 		in1 = (char *)in1 + FREEBSD32_ALIGN(msglen);
1552 		md = (char *)md + CMSG_ALIGN(msglen);
1553 		KASSERT(outlen >= CMSG_ALIGN(sizeof(*cm)) + CMSG_ALIGN(msglen),
1554 		    ("outlen %u underflow, msglen %u", outlen, msglen));
1555 		outlen -= CMSG_ALIGN(sizeof(*cm)) + CMSG_ALIGN(msglen);
1556 	}
1557 
1558 	*mp = m;
1559 out:
1560 	free(in, M_TEMP);
1561 	return (error);
1562 }
1563 
1564 int
1565 freebsd32_sendmsg(struct thread *td,
1566 		  struct freebsd32_sendmsg_args *uap)
1567 {
1568 	struct msghdr msg;
1569 	struct msghdr32 m32;
1570 	struct iovec *iov;
1571 	struct mbuf *control = NULL;
1572 	struct sockaddr *to = NULL;
1573 	int error;
1574 
1575 	error = copyin(uap->msg, &m32, sizeof(m32));
1576 	if (error)
1577 		return (error);
1578 	error = freebsd32_copyinmsghdr(uap->msg, &msg);
1579 	if (error)
1580 		return (error);
1581 	error = freebsd32_copyiniov(PTRIN(m32.msg_iov), m32.msg_iovlen, &iov,
1582 	    EMSGSIZE);
1583 	if (error)
1584 		return (error);
1585 	msg.msg_iov = iov;
1586 	if (msg.msg_name != NULL) {
1587 		error = getsockaddr(&to, msg.msg_name, msg.msg_namelen);
1588 		if (error) {
1589 			to = NULL;
1590 			goto out;
1591 		}
1592 		msg.msg_name = to;
1593 	}
1594 
1595 	if (msg.msg_control) {
1596 		if (msg.msg_controllen < sizeof(struct cmsghdr)) {
1597 			error = EINVAL;
1598 			goto out;
1599 		}
1600 
1601 		error = freebsd32_copyin_control(&control, msg.msg_control,
1602 		    msg.msg_controllen);
1603 		if (error)
1604 			goto out;
1605 
1606 		msg.msg_control = NULL;
1607 		msg.msg_controllen = 0;
1608 	}
1609 
1610 	error = kern_sendit(td, uap->s, &msg, uap->flags, control,
1611 	    UIO_USERSPACE);
1612 
1613 out:
1614 	free(iov, M_IOV);
1615 	if (to)
1616 		free(to, M_SONAME);
1617 	return (error);
1618 }
1619 
1620 int
1621 freebsd32_recvfrom(struct thread *td,
1622 		   struct freebsd32_recvfrom_args *uap)
1623 {
1624 	struct msghdr msg;
1625 	struct iovec aiov;
1626 	int error;
1627 
1628 	if (uap->fromlenaddr) {
1629 		error = copyin(PTRIN(uap->fromlenaddr), &msg.msg_namelen,
1630 		    sizeof(msg.msg_namelen));
1631 		if (error)
1632 			return (error);
1633 	} else {
1634 		msg.msg_namelen = 0;
1635 	}
1636 
1637 	msg.msg_name = PTRIN(uap->from);
1638 	msg.msg_iov = &aiov;
1639 	msg.msg_iovlen = 1;
1640 	aiov.iov_base = PTRIN(uap->buf);
1641 	aiov.iov_len = uap->len;
1642 	msg.msg_control = NULL;
1643 	msg.msg_flags = uap->flags;
1644 	error = kern_recvit(td, uap->s, &msg, UIO_USERSPACE, NULL);
1645 	if (error == 0 && uap->fromlenaddr)
1646 		error = copyout(&msg.msg_namelen, PTRIN(uap->fromlenaddr),
1647 		    sizeof (msg.msg_namelen));
1648 	return (error);
1649 }
1650 
1651 int
1652 freebsd32_settimeofday(struct thread *td,
1653 		       struct freebsd32_settimeofday_args *uap)
1654 {
1655 	struct timeval32 tv32;
1656 	struct timeval tv, *tvp;
1657 	struct timezone tz, *tzp;
1658 	int error;
1659 
1660 	if (uap->tv) {
1661 		error = copyin(uap->tv, &tv32, sizeof(tv32));
1662 		if (error)
1663 			return (error);
1664 		CP(tv32, tv, tv_sec);
1665 		CP(tv32, tv, tv_usec);
1666 		tvp = &tv;
1667 	} else
1668 		tvp = NULL;
1669 	if (uap->tzp) {
1670 		error = copyin(uap->tzp, &tz, sizeof(tz));
1671 		if (error)
1672 			return (error);
1673 		tzp = &tz;
1674 	} else
1675 		tzp = NULL;
1676 	return (kern_settimeofday(td, tvp, tzp));
1677 }
1678 
1679 int
1680 freebsd32_utimes(struct thread *td, struct freebsd32_utimes_args *uap)
1681 {
1682 	struct timeval32 s32[2];
1683 	struct timeval s[2], *sp;
1684 	int error;
1685 
1686 	if (uap->tptr != NULL) {
1687 		error = copyin(uap->tptr, s32, sizeof(s32));
1688 		if (error)
1689 			return (error);
1690 		CP(s32[0], s[0], tv_sec);
1691 		CP(s32[0], s[0], tv_usec);
1692 		CP(s32[1], s[1], tv_sec);
1693 		CP(s32[1], s[1], tv_usec);
1694 		sp = s;
1695 	} else
1696 		sp = NULL;
1697 	return (kern_utimesat(td, AT_FDCWD, uap->path, UIO_USERSPACE,
1698 	    sp, UIO_SYSSPACE));
1699 }
1700 
1701 int
1702 freebsd32_lutimes(struct thread *td, struct freebsd32_lutimes_args *uap)
1703 {
1704 	struct timeval32 s32[2];
1705 	struct timeval s[2], *sp;
1706 	int error;
1707 
1708 	if (uap->tptr != NULL) {
1709 		error = copyin(uap->tptr, s32, sizeof(s32));
1710 		if (error)
1711 			return (error);
1712 		CP(s32[0], s[0], tv_sec);
1713 		CP(s32[0], s[0], tv_usec);
1714 		CP(s32[1], s[1], tv_sec);
1715 		CP(s32[1], s[1], tv_usec);
1716 		sp = s;
1717 	} else
1718 		sp = NULL;
1719 	return (kern_lutimes(td, uap->path, UIO_USERSPACE, sp, UIO_SYSSPACE));
1720 }
1721 
1722 int
1723 freebsd32_futimes(struct thread *td, struct freebsd32_futimes_args *uap)
1724 {
1725 	struct timeval32 s32[2];
1726 	struct timeval s[2], *sp;
1727 	int error;
1728 
1729 	if (uap->tptr != NULL) {
1730 		error = copyin(uap->tptr, s32, sizeof(s32));
1731 		if (error)
1732 			return (error);
1733 		CP(s32[0], s[0], tv_sec);
1734 		CP(s32[0], s[0], tv_usec);
1735 		CP(s32[1], s[1], tv_sec);
1736 		CP(s32[1], s[1], tv_usec);
1737 		sp = s;
1738 	} else
1739 		sp = NULL;
1740 	return (kern_futimes(td, uap->fd, sp, UIO_SYSSPACE));
1741 }
1742 
1743 int
1744 freebsd32_futimesat(struct thread *td, struct freebsd32_futimesat_args *uap)
1745 {
1746 	struct timeval32 s32[2];
1747 	struct timeval s[2], *sp;
1748 	int error;
1749 
1750 	if (uap->times != NULL) {
1751 		error = copyin(uap->times, s32, sizeof(s32));
1752 		if (error)
1753 			return (error);
1754 		CP(s32[0], s[0], tv_sec);
1755 		CP(s32[0], s[0], tv_usec);
1756 		CP(s32[1], s[1], tv_sec);
1757 		CP(s32[1], s[1], tv_usec);
1758 		sp = s;
1759 	} else
1760 		sp = NULL;
1761 	return (kern_utimesat(td, uap->fd, uap->path, UIO_USERSPACE,
1762 		sp, UIO_SYSSPACE));
1763 }
1764 
1765 int
1766 freebsd32_futimens(struct thread *td, struct freebsd32_futimens_args *uap)
1767 {
1768 	struct timespec32 ts32[2];
1769 	struct timespec ts[2], *tsp;
1770 	int error;
1771 
1772 	if (uap->times != NULL) {
1773 		error = copyin(uap->times, ts32, sizeof(ts32));
1774 		if (error)
1775 			return (error);
1776 		CP(ts32[0], ts[0], tv_sec);
1777 		CP(ts32[0], ts[0], tv_nsec);
1778 		CP(ts32[1], ts[1], tv_sec);
1779 		CP(ts32[1], ts[1], tv_nsec);
1780 		tsp = ts;
1781 	} else
1782 		tsp = NULL;
1783 	return (kern_futimens(td, uap->fd, tsp, UIO_SYSSPACE));
1784 }
1785 
1786 int
1787 freebsd32_utimensat(struct thread *td, struct freebsd32_utimensat_args *uap)
1788 {
1789 	struct timespec32 ts32[2];
1790 	struct timespec ts[2], *tsp;
1791 	int error;
1792 
1793 	if (uap->times != NULL) {
1794 		error = copyin(uap->times, ts32, sizeof(ts32));
1795 		if (error)
1796 			return (error);
1797 		CP(ts32[0], ts[0], tv_sec);
1798 		CP(ts32[0], ts[0], tv_nsec);
1799 		CP(ts32[1], ts[1], tv_sec);
1800 		CP(ts32[1], ts[1], tv_nsec);
1801 		tsp = ts;
1802 	} else
1803 		tsp = NULL;
1804 	return (kern_utimensat(td, uap->fd, uap->path, UIO_USERSPACE,
1805 	    tsp, UIO_SYSSPACE, uap->flag));
1806 }
1807 
1808 int
1809 freebsd32_adjtime(struct thread *td, struct freebsd32_adjtime_args *uap)
1810 {
1811 	struct timeval32 tv32;
1812 	struct timeval delta, olddelta, *deltap;
1813 	int error;
1814 
1815 	if (uap->delta) {
1816 		error = copyin(uap->delta, &tv32, sizeof(tv32));
1817 		if (error)
1818 			return (error);
1819 		CP(tv32, delta, tv_sec);
1820 		CP(tv32, delta, tv_usec);
1821 		deltap = &delta;
1822 	} else
1823 		deltap = NULL;
1824 	error = kern_adjtime(td, deltap, &olddelta);
1825 	if (uap->olddelta && error == 0) {
1826 		CP(olddelta, tv32, tv_sec);
1827 		CP(olddelta, tv32, tv_usec);
1828 		error = copyout(&tv32, uap->olddelta, sizeof(tv32));
1829 	}
1830 	return (error);
1831 }
1832 
1833 #ifdef COMPAT_FREEBSD4
1834 int
1835 freebsd4_freebsd32_statfs(struct thread *td, struct freebsd4_freebsd32_statfs_args *uap)
1836 {
1837 	struct statfs32 s32;
1838 	struct statfs *sp;
1839 	int error;
1840 
1841 	sp = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK);
1842 	error = kern_statfs(td, uap->path, UIO_USERSPACE, sp);
1843 	if (error == 0) {
1844 		copy_statfs(sp, &s32);
1845 		error = copyout(&s32, uap->buf, sizeof(s32));
1846 	}
1847 	free(sp, M_STATFS);
1848 	return (error);
1849 }
1850 #endif
1851 
1852 #ifdef COMPAT_FREEBSD4
1853 int
1854 freebsd4_freebsd32_fstatfs(struct thread *td, struct freebsd4_freebsd32_fstatfs_args *uap)
1855 {
1856 	struct statfs32 s32;
1857 	struct statfs *sp;
1858 	int error;
1859 
1860 	sp = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK);
1861 	error = kern_fstatfs(td, uap->fd, sp);
1862 	if (error == 0) {
1863 		copy_statfs(sp, &s32);
1864 		error = copyout(&s32, uap->buf, sizeof(s32));
1865 	}
1866 	free(sp, M_STATFS);
1867 	return (error);
1868 }
1869 #endif
1870 
1871 #ifdef COMPAT_FREEBSD4
1872 int
1873 freebsd4_freebsd32_fhstatfs(struct thread *td, struct freebsd4_freebsd32_fhstatfs_args *uap)
1874 {
1875 	struct statfs32 s32;
1876 	struct statfs *sp;
1877 	fhandle_t fh;
1878 	int error;
1879 
1880 	if ((error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t))) != 0)
1881 		return (error);
1882 	sp = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK);
1883 	error = kern_fhstatfs(td, fh, sp);
1884 	if (error == 0) {
1885 		copy_statfs(sp, &s32);
1886 		error = copyout(&s32, uap->buf, sizeof(s32));
1887 	}
1888 	free(sp, M_STATFS);
1889 	return (error);
1890 }
1891 #endif
1892 
1893 int
1894 freebsd32_pread(struct thread *td, struct freebsd32_pread_args *uap)
1895 {
1896 
1897 	return (kern_pread(td, uap->fd, uap->buf, uap->nbyte,
1898 	    PAIR32TO64(off_t, uap->offset)));
1899 }
1900 
1901 int
1902 freebsd32_pwrite(struct thread *td, struct freebsd32_pwrite_args *uap)
1903 {
1904 
1905 	return (kern_pwrite(td, uap->fd, uap->buf, uap->nbyte,
1906 	    PAIR32TO64(off_t, uap->offset)));
1907 }
1908 
1909 #ifdef COMPAT_43
1910 int
1911 ofreebsd32_lseek(struct thread *td, struct ofreebsd32_lseek_args *uap)
1912 {
1913 
1914 	return (kern_lseek(td, uap->fd, uap->offset, uap->whence));
1915 }
1916 #endif
1917 
1918 int
1919 freebsd32_lseek(struct thread *td, struct freebsd32_lseek_args *uap)
1920 {
1921 	int error;
1922 	off_t pos;
1923 
1924 	error = kern_lseek(td, uap->fd, PAIR32TO64(off_t, uap->offset),
1925 	    uap->whence);
1926 	/* Expand the quad return into two parts for eax and edx */
1927 	pos = td->td_uretoff.tdu_off;
1928 	td->td_retval[RETVAL_LO] = pos & 0xffffffff;	/* %eax */
1929 	td->td_retval[RETVAL_HI] = pos >> 32;		/* %edx */
1930 	return error;
1931 }
1932 
1933 int
1934 freebsd32_truncate(struct thread *td, struct freebsd32_truncate_args *uap)
1935 {
1936 
1937 	return (kern_truncate(td, uap->path, UIO_USERSPACE,
1938 	    PAIR32TO64(off_t, uap->length)));
1939 }
1940 
1941 int
1942 freebsd32_ftruncate(struct thread *td, struct freebsd32_ftruncate_args *uap)
1943 {
1944 
1945 	return (kern_ftruncate(td, uap->fd, PAIR32TO64(off_t, uap->length)));
1946 }
1947 
1948 #ifdef COMPAT_43
1949 int
1950 ofreebsd32_getdirentries(struct thread *td,
1951     struct ofreebsd32_getdirentries_args *uap)
1952 {
1953 	struct ogetdirentries_args ap;
1954 	int error;
1955 	long loff;
1956 	int32_t loff_cut;
1957 
1958 	ap.fd = uap->fd;
1959 	ap.buf = uap->buf;
1960 	ap.count = uap->count;
1961 	ap.basep = NULL;
1962 	error = kern_ogetdirentries(td, &ap, &loff);
1963 	if (error == 0) {
1964 		loff_cut = loff;
1965 		error = copyout(&loff_cut, uap->basep, sizeof(int32_t));
1966 	}
1967 	return (error);
1968 }
1969 #endif
1970 
1971 #if defined(COMPAT_FREEBSD11)
1972 int
1973 freebsd11_freebsd32_getdirentries(struct thread *td,
1974     struct freebsd11_freebsd32_getdirentries_args *uap)
1975 {
1976 	long base;
1977 	int32_t base32;
1978 	int error;
1979 
1980 	error = freebsd11_kern_getdirentries(td, uap->fd, uap->buf, uap->count,
1981 	    &base, NULL);
1982 	if (error)
1983 		return (error);
1984 	if (uap->basep != NULL) {
1985 		base32 = base;
1986 		error = copyout(&base32, uap->basep, sizeof(int32_t));
1987 	}
1988 	return (error);
1989 }
1990 
1991 int
1992 freebsd11_freebsd32_getdents(struct thread *td,
1993     struct freebsd11_freebsd32_getdents_args *uap)
1994 {
1995 	struct freebsd11_freebsd32_getdirentries_args ap;
1996 
1997 	ap.fd = uap->fd;
1998 	ap.buf = uap->buf;
1999 	ap.count = uap->count;
2000 	ap.basep = NULL;
2001 	return (freebsd11_freebsd32_getdirentries(td, &ap));
2002 }
2003 #endif /* COMPAT_FREEBSD11 */
2004 
2005 #ifdef COMPAT_FREEBSD6
2006 /* versions with the 'int pad' argument */
2007 int
2008 freebsd6_freebsd32_pread(struct thread *td, struct freebsd6_freebsd32_pread_args *uap)
2009 {
2010 
2011 	return (kern_pread(td, uap->fd, uap->buf, uap->nbyte,
2012 	    PAIR32TO64(off_t, uap->offset)));
2013 }
2014 
2015 int
2016 freebsd6_freebsd32_pwrite(struct thread *td, struct freebsd6_freebsd32_pwrite_args *uap)
2017 {
2018 
2019 	return (kern_pwrite(td, uap->fd, uap->buf, uap->nbyte,
2020 	    PAIR32TO64(off_t, uap->offset)));
2021 }
2022 
2023 int
2024 freebsd6_freebsd32_lseek(struct thread *td, struct freebsd6_freebsd32_lseek_args *uap)
2025 {
2026 	int error;
2027 	off_t pos;
2028 
2029 	error = kern_lseek(td, uap->fd, PAIR32TO64(off_t, uap->offset),
2030 	    uap->whence);
2031 	/* Expand the quad return into two parts for eax and edx */
2032 	pos = *(off_t *)(td->td_retval);
2033 	td->td_retval[RETVAL_LO] = pos & 0xffffffff;	/* %eax */
2034 	td->td_retval[RETVAL_HI] = pos >> 32;		/* %edx */
2035 	return error;
2036 }
2037 
2038 int
2039 freebsd6_freebsd32_truncate(struct thread *td, struct freebsd6_freebsd32_truncate_args *uap)
2040 {
2041 
2042 	return (kern_truncate(td, uap->path, UIO_USERSPACE,
2043 	    PAIR32TO64(off_t, uap->length)));
2044 }
2045 
2046 int
2047 freebsd6_freebsd32_ftruncate(struct thread *td, struct freebsd6_freebsd32_ftruncate_args *uap)
2048 {
2049 
2050 	return (kern_ftruncate(td, uap->fd, PAIR32TO64(off_t, uap->length)));
2051 }
2052 #endif /* COMPAT_FREEBSD6 */
2053 
2054 struct sf_hdtr32 {
2055 	uint32_t headers;
2056 	int hdr_cnt;
2057 	uint32_t trailers;
2058 	int trl_cnt;
2059 };
2060 
2061 static int
2062 freebsd32_do_sendfile(struct thread *td,
2063     struct freebsd32_sendfile_args *uap, int compat)
2064 {
2065 	struct sf_hdtr32 hdtr32;
2066 	struct sf_hdtr hdtr;
2067 	struct uio *hdr_uio, *trl_uio;
2068 	struct file *fp;
2069 	cap_rights_t rights;
2070 	struct iovec32 *iov32;
2071 	off_t offset, sbytes;
2072 	int error;
2073 
2074 	offset = PAIR32TO64(off_t, uap->offset);
2075 	if (offset < 0)
2076 		return (EINVAL);
2077 
2078 	hdr_uio = trl_uio = NULL;
2079 
2080 	if (uap->hdtr != NULL) {
2081 		error = copyin(uap->hdtr, &hdtr32, sizeof(hdtr32));
2082 		if (error)
2083 			goto out;
2084 		PTRIN_CP(hdtr32, hdtr, headers);
2085 		CP(hdtr32, hdtr, hdr_cnt);
2086 		PTRIN_CP(hdtr32, hdtr, trailers);
2087 		CP(hdtr32, hdtr, trl_cnt);
2088 
2089 		if (hdtr.headers != NULL) {
2090 			iov32 = PTRIN(hdtr32.headers);
2091 			error = freebsd32_copyinuio(iov32,
2092 			    hdtr32.hdr_cnt, &hdr_uio);
2093 			if (error)
2094 				goto out;
2095 #ifdef COMPAT_FREEBSD4
2096 			/*
2097 			 * In FreeBSD < 5.0 the nbytes to send also included
2098 			 * the header.  If compat is specified subtract the
2099 			 * header size from nbytes.
2100 			 */
2101 			if (compat) {
2102 				if (uap->nbytes > hdr_uio->uio_resid)
2103 					uap->nbytes -= hdr_uio->uio_resid;
2104 				else
2105 					uap->nbytes = 0;
2106 			}
2107 #endif
2108 		}
2109 		if (hdtr.trailers != NULL) {
2110 			iov32 = PTRIN(hdtr32.trailers);
2111 			error = freebsd32_copyinuio(iov32,
2112 			    hdtr32.trl_cnt, &trl_uio);
2113 			if (error)
2114 				goto out;
2115 		}
2116 	}
2117 
2118 	AUDIT_ARG_FD(uap->fd);
2119 
2120 	if ((error = fget_read(td, uap->fd,
2121 	    cap_rights_init_one(&rights, CAP_PREAD), &fp)) != 0)
2122 		goto out;
2123 
2124 	error = fo_sendfile(fp, uap->s, hdr_uio, trl_uio, offset,
2125 	    uap->nbytes, &sbytes, uap->flags, td);
2126 	fdrop(fp, td);
2127 
2128 	if (uap->sbytes != NULL)
2129 		copyout(&sbytes, uap->sbytes, sizeof(off_t));
2130 
2131 out:
2132 	if (hdr_uio)
2133 		free(hdr_uio, M_IOV);
2134 	if (trl_uio)
2135 		free(trl_uio, M_IOV);
2136 	return (error);
2137 }
2138 
2139 #ifdef COMPAT_FREEBSD4
2140 int
2141 freebsd4_freebsd32_sendfile(struct thread *td,
2142     struct freebsd4_freebsd32_sendfile_args *uap)
2143 {
2144 	return (freebsd32_do_sendfile(td,
2145 	    (struct freebsd32_sendfile_args *)uap, 1));
2146 }
2147 #endif
2148 
2149 int
2150 freebsd32_sendfile(struct thread *td, struct freebsd32_sendfile_args *uap)
2151 {
2152 
2153 	return (freebsd32_do_sendfile(td, uap, 0));
2154 }
2155 
2156 static void
2157 copy_stat(struct stat *in, struct stat32 *out)
2158 {
2159 
2160 	CP(*in, *out, st_dev);
2161 	CP(*in, *out, st_ino);
2162 	CP(*in, *out, st_mode);
2163 	CP(*in, *out, st_nlink);
2164 	CP(*in, *out, st_uid);
2165 	CP(*in, *out, st_gid);
2166 	CP(*in, *out, st_rdev);
2167 	TS_CP(*in, *out, st_atim);
2168 	TS_CP(*in, *out, st_mtim);
2169 	TS_CP(*in, *out, st_ctim);
2170 	CP(*in, *out, st_size);
2171 	CP(*in, *out, st_blocks);
2172 	CP(*in, *out, st_blksize);
2173 	CP(*in, *out, st_flags);
2174 	CP(*in, *out, st_gen);
2175 	TS_CP(*in, *out, st_birthtim);
2176 	out->st_padding0 = 0;
2177 	out->st_padding1 = 0;
2178 #ifdef __STAT32_TIME_T_EXT
2179 	out->st_atim_ext = 0;
2180 	out->st_mtim_ext = 0;
2181 	out->st_ctim_ext = 0;
2182 	out->st_btim_ext = 0;
2183 #endif
2184 	bzero(out->st_spare, sizeof(out->st_spare));
2185 }
2186 
2187 #ifdef COMPAT_43
2188 static void
2189 copy_ostat(struct stat *in, struct ostat32 *out)
2190 {
2191 
2192 	bzero(out, sizeof(*out));
2193 	CP(*in, *out, st_dev);
2194 	CP(*in, *out, st_ino);
2195 	CP(*in, *out, st_mode);
2196 	CP(*in, *out, st_nlink);
2197 	CP(*in, *out, st_uid);
2198 	CP(*in, *out, st_gid);
2199 	CP(*in, *out, st_rdev);
2200 	out->st_size = MIN(in->st_size, INT32_MAX);
2201 	TS_CP(*in, *out, st_atim);
2202 	TS_CP(*in, *out, st_mtim);
2203 	TS_CP(*in, *out, st_ctim);
2204 	CP(*in, *out, st_blksize);
2205 	CP(*in, *out, st_blocks);
2206 	CP(*in, *out, st_flags);
2207 	CP(*in, *out, st_gen);
2208 }
2209 #endif
2210 
2211 #ifdef COMPAT_43
2212 int
2213 ofreebsd32_stat(struct thread *td, struct ofreebsd32_stat_args *uap)
2214 {
2215 	struct stat sb;
2216 	struct ostat32 sb32;
2217 	int error;
2218 
2219 	error = kern_statat(td, 0, AT_FDCWD, uap->path, UIO_USERSPACE,
2220 	    &sb, NULL);
2221 	if (error)
2222 		return (error);
2223 	copy_ostat(&sb, &sb32);
2224 	error = copyout(&sb32, uap->ub, sizeof (sb32));
2225 	return (error);
2226 }
2227 #endif
2228 
2229 int
2230 freebsd32_fstat(struct thread *td, struct freebsd32_fstat_args *uap)
2231 {
2232 	struct stat ub;
2233 	struct stat32 ub32;
2234 	int error;
2235 
2236 	error = kern_fstat(td, uap->fd, &ub);
2237 	if (error)
2238 		return (error);
2239 	copy_stat(&ub, &ub32);
2240 	error = copyout(&ub32, uap->ub, sizeof(ub32));
2241 	return (error);
2242 }
2243 
2244 #ifdef COMPAT_43
2245 int
2246 ofreebsd32_fstat(struct thread *td, struct ofreebsd32_fstat_args *uap)
2247 {
2248 	struct stat ub;
2249 	struct ostat32 ub32;
2250 	int error;
2251 
2252 	error = kern_fstat(td, uap->fd, &ub);
2253 	if (error)
2254 		return (error);
2255 	copy_ostat(&ub, &ub32);
2256 	error = copyout(&ub32, uap->ub, sizeof(ub32));
2257 	return (error);
2258 }
2259 #endif
2260 
2261 int
2262 freebsd32_fstatat(struct thread *td, struct freebsd32_fstatat_args *uap)
2263 {
2264 	struct stat ub;
2265 	struct stat32 ub32;
2266 	int error;
2267 
2268 	error = kern_statat(td, uap->flag, uap->fd, uap->path, UIO_USERSPACE,
2269 	    &ub, NULL);
2270 	if (error)
2271 		return (error);
2272 	copy_stat(&ub, &ub32);
2273 	error = copyout(&ub32, uap->buf, sizeof(ub32));
2274 	return (error);
2275 }
2276 
2277 #ifdef COMPAT_43
2278 int
2279 ofreebsd32_lstat(struct thread *td, struct ofreebsd32_lstat_args *uap)
2280 {
2281 	struct stat sb;
2282 	struct ostat32 sb32;
2283 	int error;
2284 
2285 	error = kern_statat(td, AT_SYMLINK_NOFOLLOW, AT_FDCWD, uap->path,
2286 	    UIO_USERSPACE, &sb, NULL);
2287 	if (error)
2288 		return (error);
2289 	copy_ostat(&sb, &sb32);
2290 	error = copyout(&sb32, uap->ub, sizeof (sb32));
2291 	return (error);
2292 }
2293 #endif
2294 
2295 int
2296 freebsd32_fhstat(struct thread *td, struct freebsd32_fhstat_args *uap)
2297 {
2298 	struct stat sb;
2299 	struct stat32 sb32;
2300 	struct fhandle fh;
2301 	int error;
2302 
2303 	error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t));
2304         if (error != 0)
2305                 return (error);
2306 	error = kern_fhstat(td, fh, &sb);
2307 	if (error != 0)
2308 		return (error);
2309 	copy_stat(&sb, &sb32);
2310 	error = copyout(&sb32, uap->sb, sizeof (sb32));
2311 	return (error);
2312 }
2313 
2314 #if defined(COMPAT_FREEBSD11)
2315 extern int ino64_trunc_error;
2316 
2317 static int
2318 freebsd11_cvtstat32(struct stat *in, struct freebsd11_stat32 *out)
2319 {
2320 
2321 	CP(*in, *out, st_ino);
2322 	if (in->st_ino != out->st_ino) {
2323 		switch (ino64_trunc_error) {
2324 		default:
2325 		case 0:
2326 			break;
2327 		case 1:
2328 			return (EOVERFLOW);
2329 		case 2:
2330 			out->st_ino = UINT32_MAX;
2331 			break;
2332 		}
2333 	}
2334 	CP(*in, *out, st_nlink);
2335 	if (in->st_nlink != out->st_nlink) {
2336 		switch (ino64_trunc_error) {
2337 		default:
2338 		case 0:
2339 			break;
2340 		case 1:
2341 			return (EOVERFLOW);
2342 		case 2:
2343 			out->st_nlink = UINT16_MAX;
2344 			break;
2345 		}
2346 	}
2347 	out->st_dev = in->st_dev;
2348 	if (out->st_dev != in->st_dev) {
2349 		switch (ino64_trunc_error) {
2350 		default:
2351 			break;
2352 		case 1:
2353 			return (EOVERFLOW);
2354 		}
2355 	}
2356 	CP(*in, *out, st_mode);
2357 	CP(*in, *out, st_uid);
2358 	CP(*in, *out, st_gid);
2359 	out->st_rdev = in->st_rdev;
2360 	if (out->st_rdev != in->st_rdev) {
2361 		switch (ino64_trunc_error) {
2362 		default:
2363 			break;
2364 		case 1:
2365 			return (EOVERFLOW);
2366 		}
2367 	}
2368 	TS_CP(*in, *out, st_atim);
2369 	TS_CP(*in, *out, st_mtim);
2370 	TS_CP(*in, *out, st_ctim);
2371 	CP(*in, *out, st_size);
2372 	CP(*in, *out, st_blocks);
2373 	CP(*in, *out, st_blksize);
2374 	CP(*in, *out, st_flags);
2375 	CP(*in, *out, st_gen);
2376 	TS_CP(*in, *out, st_birthtim);
2377 	out->st_lspare = 0;
2378 	bzero((char *)&out->st_birthtim + sizeof(out->st_birthtim),
2379 	    sizeof(*out) - offsetof(struct freebsd11_stat32,
2380 	    st_birthtim) - sizeof(out->st_birthtim));
2381 	return (0);
2382 }
2383 
2384 int
2385 freebsd11_freebsd32_stat(struct thread *td,
2386     struct freebsd11_freebsd32_stat_args *uap)
2387 {
2388 	struct stat sb;
2389 	struct freebsd11_stat32 sb32;
2390 	int error;
2391 
2392 	error = kern_statat(td, 0, AT_FDCWD, uap->path, UIO_USERSPACE,
2393 	    &sb, NULL);
2394 	if (error != 0)
2395 		return (error);
2396 	error = freebsd11_cvtstat32(&sb, &sb32);
2397 	if (error == 0)
2398 		error = copyout(&sb32, uap->ub, sizeof (sb32));
2399 	return (error);
2400 }
2401 
2402 int
2403 freebsd11_freebsd32_fstat(struct thread *td,
2404     struct freebsd11_freebsd32_fstat_args *uap)
2405 {
2406 	struct stat sb;
2407 	struct freebsd11_stat32 sb32;
2408 	int error;
2409 
2410 	error = kern_fstat(td, uap->fd, &sb);
2411 	if (error != 0)
2412 		return (error);
2413 	error = freebsd11_cvtstat32(&sb, &sb32);
2414 	if (error == 0)
2415 		error = copyout(&sb32, uap->ub, sizeof (sb32));
2416 	return (error);
2417 }
2418 
2419 int
2420 freebsd11_freebsd32_fstatat(struct thread *td,
2421     struct freebsd11_freebsd32_fstatat_args *uap)
2422 {
2423 	struct stat sb;
2424 	struct freebsd11_stat32 sb32;
2425 	int error;
2426 
2427 	error = kern_statat(td, uap->flag, uap->fd, uap->path, UIO_USERSPACE,
2428 	    &sb, NULL);
2429 	if (error != 0)
2430 		return (error);
2431 	error = freebsd11_cvtstat32(&sb, &sb32);
2432 	if (error == 0)
2433 		error = copyout(&sb32, uap->buf, sizeof (sb32));
2434 	return (error);
2435 }
2436 
2437 int
2438 freebsd11_freebsd32_lstat(struct thread *td,
2439     struct freebsd11_freebsd32_lstat_args *uap)
2440 {
2441 	struct stat sb;
2442 	struct freebsd11_stat32 sb32;
2443 	int error;
2444 
2445 	error = kern_statat(td, AT_SYMLINK_NOFOLLOW, AT_FDCWD, uap->path,
2446 	    UIO_USERSPACE, &sb, NULL);
2447 	if (error != 0)
2448 		return (error);
2449 	error = freebsd11_cvtstat32(&sb, &sb32);
2450 	if (error == 0)
2451 		error = copyout(&sb32, uap->ub, sizeof (sb32));
2452 	return (error);
2453 }
2454 
2455 int
2456 freebsd11_freebsd32_fhstat(struct thread *td,
2457     struct freebsd11_freebsd32_fhstat_args *uap)
2458 {
2459 	struct stat sb;
2460 	struct freebsd11_stat32 sb32;
2461 	struct fhandle fh;
2462 	int error;
2463 
2464 	error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t));
2465         if (error != 0)
2466                 return (error);
2467 	error = kern_fhstat(td, fh, &sb);
2468 	if (error != 0)
2469 		return (error);
2470 	error = freebsd11_cvtstat32(&sb, &sb32);
2471 	if (error == 0)
2472 		error = copyout(&sb32, uap->sb, sizeof (sb32));
2473 	return (error);
2474 }
2475 #endif
2476 
2477 int
2478 freebsd32___sysctl(struct thread *td, struct freebsd32___sysctl_args *uap)
2479 {
2480 	int error, name[CTL_MAXNAME];
2481 	size_t j, oldlen;
2482 	uint32_t tmp;
2483 
2484 	if (uap->namelen > CTL_MAXNAME || uap->namelen < 2)
2485 		return (EINVAL);
2486  	error = copyin(uap->name, name, uap->namelen * sizeof(int));
2487  	if (error)
2488 		return (error);
2489 	if (uap->oldlenp) {
2490 		error = fueword32(uap->oldlenp, &tmp);
2491 		oldlen = tmp;
2492 	} else {
2493 		oldlen = 0;
2494 	}
2495 	if (error != 0)
2496 		return (EFAULT);
2497 	error = userland_sysctl(td, name, uap->namelen,
2498 		uap->old, &oldlen, 1,
2499 		uap->new, uap->newlen, &j, SCTL_MASK32);
2500 	if (error)
2501 		return (error);
2502 	if (uap->oldlenp)
2503 		suword32(uap->oldlenp, j);
2504 	return (0);
2505 }
2506 
2507 int
2508 freebsd32___sysctlbyname(struct thread *td,
2509     struct freebsd32___sysctlbyname_args *uap)
2510 {
2511 	size_t oldlen, rv;
2512 	int error;
2513 	uint32_t tmp;
2514 
2515 	if (uap->oldlenp != NULL) {
2516 		error = fueword32(uap->oldlenp, &tmp);
2517 		oldlen = tmp;
2518 	} else {
2519 		error = oldlen = 0;
2520 	}
2521 	if (error != 0)
2522 		return (EFAULT);
2523 	error = kern___sysctlbyname(td, uap->name, uap->namelen, uap->old,
2524 	    &oldlen, uap->new, uap->newlen, &rv, SCTL_MASK32, 1);
2525 	if (error != 0)
2526 		return (error);
2527 	if (uap->oldlenp != NULL)
2528 		error = suword32(uap->oldlenp, rv);
2529 
2530 	return (error);
2531 }
2532 
2533 int
2534 freebsd32_jail(struct thread *td, struct freebsd32_jail_args *uap)
2535 {
2536 	uint32_t version;
2537 	int error;
2538 	struct jail j;
2539 
2540 	error = copyin(uap->jail, &version, sizeof(uint32_t));
2541 	if (error)
2542 		return (error);
2543 
2544 	switch (version) {
2545 	case 0:
2546 	{
2547 		/* FreeBSD single IPv4 jails. */
2548 		struct jail32_v0 j32_v0;
2549 
2550 		bzero(&j, sizeof(struct jail));
2551 		error = copyin(uap->jail, &j32_v0, sizeof(struct jail32_v0));
2552 		if (error)
2553 			return (error);
2554 		CP(j32_v0, j, version);
2555 		PTRIN_CP(j32_v0, j, path);
2556 		PTRIN_CP(j32_v0, j, hostname);
2557 		j.ip4s = htonl(j32_v0.ip_number);	/* jail_v0 is host order */
2558 		break;
2559 	}
2560 
2561 	case 1:
2562 		/*
2563 		 * Version 1 was used by multi-IPv4 jail implementations
2564 		 * that never made it into the official kernel.
2565 		 */
2566 		return (EINVAL);
2567 
2568 	case 2:	/* JAIL_API_VERSION */
2569 	{
2570 		/* FreeBSD multi-IPv4/IPv6,noIP jails. */
2571 		struct jail32 j32;
2572 
2573 		error = copyin(uap->jail, &j32, sizeof(struct jail32));
2574 		if (error)
2575 			return (error);
2576 		CP(j32, j, version);
2577 		PTRIN_CP(j32, j, path);
2578 		PTRIN_CP(j32, j, hostname);
2579 		PTRIN_CP(j32, j, jailname);
2580 		CP(j32, j, ip4s);
2581 		CP(j32, j, ip6s);
2582 		PTRIN_CP(j32, j, ip4);
2583 		PTRIN_CP(j32, j, ip6);
2584 		break;
2585 	}
2586 
2587 	default:
2588 		/* Sci-Fi jails are not supported, sorry. */
2589 		return (EINVAL);
2590 	}
2591 	return (kern_jail(td, &j));
2592 }
2593 
2594 int
2595 freebsd32_jail_set(struct thread *td, struct freebsd32_jail_set_args *uap)
2596 {
2597 	struct uio *auio;
2598 	int error;
2599 
2600 	/* Check that we have an even number of iovecs. */
2601 	if (uap->iovcnt & 1)
2602 		return (EINVAL);
2603 
2604 	error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio);
2605 	if (error)
2606 		return (error);
2607 	error = kern_jail_set(td, auio, uap->flags);
2608 	free(auio, M_IOV);
2609 	return (error);
2610 }
2611 
2612 int
2613 freebsd32_jail_get(struct thread *td, struct freebsd32_jail_get_args *uap)
2614 {
2615 	struct iovec32 iov32;
2616 	struct uio *auio;
2617 	int error, i;
2618 
2619 	/* Check that we have an even number of iovecs. */
2620 	if (uap->iovcnt & 1)
2621 		return (EINVAL);
2622 
2623 	error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio);
2624 	if (error)
2625 		return (error);
2626 	error = kern_jail_get(td, auio, uap->flags);
2627 	if (error == 0)
2628 		for (i = 0; i < uap->iovcnt; i++) {
2629 			PTROUT_CP(auio->uio_iov[i], iov32, iov_base);
2630 			CP(auio->uio_iov[i], iov32, iov_len);
2631 			error = copyout(&iov32, uap->iovp + i, sizeof(iov32));
2632 			if (error != 0)
2633 				break;
2634 		}
2635 	free(auio, M_IOV);
2636 	return (error);
2637 }
2638 
2639 int
2640 freebsd32_sigaction(struct thread *td, struct freebsd32_sigaction_args *uap)
2641 {
2642 	struct sigaction32 s32;
2643 	struct sigaction sa, osa, *sap;
2644 	int error;
2645 
2646 	if (uap->act) {
2647 		error = copyin(uap->act, &s32, sizeof(s32));
2648 		if (error)
2649 			return (error);
2650 		sa.sa_handler = PTRIN(s32.sa_u);
2651 		CP(s32, sa, sa_flags);
2652 		CP(s32, sa, sa_mask);
2653 		sap = &sa;
2654 	} else
2655 		sap = NULL;
2656 	error = kern_sigaction(td, uap->sig, sap, &osa, 0);
2657 	if (error == 0 && uap->oact != NULL) {
2658 		s32.sa_u = PTROUT(osa.sa_handler);
2659 		CP(osa, s32, sa_flags);
2660 		CP(osa, s32, sa_mask);
2661 		error = copyout(&s32, uap->oact, sizeof(s32));
2662 	}
2663 	return (error);
2664 }
2665 
2666 #ifdef COMPAT_FREEBSD4
2667 int
2668 freebsd4_freebsd32_sigaction(struct thread *td,
2669 			     struct freebsd4_freebsd32_sigaction_args *uap)
2670 {
2671 	struct sigaction32 s32;
2672 	struct sigaction sa, osa, *sap;
2673 	int error;
2674 
2675 	if (uap->act) {
2676 		error = copyin(uap->act, &s32, sizeof(s32));
2677 		if (error)
2678 			return (error);
2679 		sa.sa_handler = PTRIN(s32.sa_u);
2680 		CP(s32, sa, sa_flags);
2681 		CP(s32, sa, sa_mask);
2682 		sap = &sa;
2683 	} else
2684 		sap = NULL;
2685 	error = kern_sigaction(td, uap->sig, sap, &osa, KSA_FREEBSD4);
2686 	if (error == 0 && uap->oact != NULL) {
2687 		s32.sa_u = PTROUT(osa.sa_handler);
2688 		CP(osa, s32, sa_flags);
2689 		CP(osa, s32, sa_mask);
2690 		error = copyout(&s32, uap->oact, sizeof(s32));
2691 	}
2692 	return (error);
2693 }
2694 #endif
2695 
2696 #ifdef COMPAT_43
2697 struct osigaction32 {
2698 	u_int32_t	sa_u;
2699 	osigset_t	sa_mask;
2700 	int		sa_flags;
2701 };
2702 
2703 #define	ONSIG	32
2704 
2705 int
2706 ofreebsd32_sigaction(struct thread *td,
2707 			     struct ofreebsd32_sigaction_args *uap)
2708 {
2709 	struct osigaction32 s32;
2710 	struct sigaction sa, osa, *sap;
2711 	int error;
2712 
2713 	if (uap->signum <= 0 || uap->signum >= ONSIG)
2714 		return (EINVAL);
2715 
2716 	if (uap->nsa) {
2717 		error = copyin(uap->nsa, &s32, sizeof(s32));
2718 		if (error)
2719 			return (error);
2720 		sa.sa_handler = PTRIN(s32.sa_u);
2721 		CP(s32, sa, sa_flags);
2722 		OSIG2SIG(s32.sa_mask, sa.sa_mask);
2723 		sap = &sa;
2724 	} else
2725 		sap = NULL;
2726 	error = kern_sigaction(td, uap->signum, sap, &osa, KSA_OSIGSET);
2727 	if (error == 0 && uap->osa != NULL) {
2728 		s32.sa_u = PTROUT(osa.sa_handler);
2729 		CP(osa, s32, sa_flags);
2730 		SIG2OSIG(osa.sa_mask, s32.sa_mask);
2731 		error = copyout(&s32, uap->osa, sizeof(s32));
2732 	}
2733 	return (error);
2734 }
2735 
2736 int
2737 ofreebsd32_sigprocmask(struct thread *td,
2738 			       struct ofreebsd32_sigprocmask_args *uap)
2739 {
2740 	sigset_t set, oset;
2741 	int error;
2742 
2743 	OSIG2SIG(uap->mask, set);
2744 	error = kern_sigprocmask(td, uap->how, &set, &oset, SIGPROCMASK_OLD);
2745 	SIG2OSIG(oset, td->td_retval[0]);
2746 	return (error);
2747 }
2748 
2749 int
2750 ofreebsd32_sigpending(struct thread *td,
2751 			      struct ofreebsd32_sigpending_args *uap)
2752 {
2753 	struct proc *p = td->td_proc;
2754 	sigset_t siglist;
2755 
2756 	PROC_LOCK(p);
2757 	siglist = p->p_siglist;
2758 	SIGSETOR(siglist, td->td_siglist);
2759 	PROC_UNLOCK(p);
2760 	SIG2OSIG(siglist, td->td_retval[0]);
2761 	return (0);
2762 }
2763 
2764 struct sigvec32 {
2765 	u_int32_t	sv_handler;
2766 	int		sv_mask;
2767 	int		sv_flags;
2768 };
2769 
2770 int
2771 ofreebsd32_sigvec(struct thread *td,
2772 			  struct ofreebsd32_sigvec_args *uap)
2773 {
2774 	struct sigvec32 vec;
2775 	struct sigaction sa, osa, *sap;
2776 	int error;
2777 
2778 	if (uap->signum <= 0 || uap->signum >= ONSIG)
2779 		return (EINVAL);
2780 
2781 	if (uap->nsv) {
2782 		error = copyin(uap->nsv, &vec, sizeof(vec));
2783 		if (error)
2784 			return (error);
2785 		sa.sa_handler = PTRIN(vec.sv_handler);
2786 		OSIG2SIG(vec.sv_mask, sa.sa_mask);
2787 		sa.sa_flags = vec.sv_flags;
2788 		sa.sa_flags ^= SA_RESTART;
2789 		sap = &sa;
2790 	} else
2791 		sap = NULL;
2792 	error = kern_sigaction(td, uap->signum, sap, &osa, KSA_OSIGSET);
2793 	if (error == 0 && uap->osv != NULL) {
2794 		vec.sv_handler = PTROUT(osa.sa_handler);
2795 		SIG2OSIG(osa.sa_mask, vec.sv_mask);
2796 		vec.sv_flags = osa.sa_flags;
2797 		vec.sv_flags &= ~SA_NOCLDWAIT;
2798 		vec.sv_flags ^= SA_RESTART;
2799 		error = copyout(&vec, uap->osv, sizeof(vec));
2800 	}
2801 	return (error);
2802 }
2803 
2804 int
2805 ofreebsd32_sigblock(struct thread *td,
2806 			    struct ofreebsd32_sigblock_args *uap)
2807 {
2808 	sigset_t set, oset;
2809 
2810 	OSIG2SIG(uap->mask, set);
2811 	kern_sigprocmask(td, SIG_BLOCK, &set, &oset, 0);
2812 	SIG2OSIG(oset, td->td_retval[0]);
2813 	return (0);
2814 }
2815 
2816 int
2817 ofreebsd32_sigsetmask(struct thread *td,
2818 			      struct ofreebsd32_sigsetmask_args *uap)
2819 {
2820 	sigset_t set, oset;
2821 
2822 	OSIG2SIG(uap->mask, set);
2823 	kern_sigprocmask(td, SIG_SETMASK, &set, &oset, 0);
2824 	SIG2OSIG(oset, td->td_retval[0]);
2825 	return (0);
2826 }
2827 
2828 int
2829 ofreebsd32_sigsuspend(struct thread *td,
2830 			      struct ofreebsd32_sigsuspend_args *uap)
2831 {
2832 	sigset_t mask;
2833 
2834 	OSIG2SIG(uap->mask, mask);
2835 	return (kern_sigsuspend(td, mask));
2836 }
2837 
2838 struct sigstack32 {
2839 	u_int32_t	ss_sp;
2840 	int		ss_onstack;
2841 };
2842 
2843 int
2844 ofreebsd32_sigstack(struct thread *td,
2845 			    struct ofreebsd32_sigstack_args *uap)
2846 {
2847 	struct sigstack32 s32;
2848 	struct sigstack nss, oss;
2849 	int error = 0, unss;
2850 
2851 	if (uap->nss != NULL) {
2852 		error = copyin(uap->nss, &s32, sizeof(s32));
2853 		if (error)
2854 			return (error);
2855 		nss.ss_sp = PTRIN(s32.ss_sp);
2856 		CP(s32, nss, ss_onstack);
2857 		unss = 1;
2858 	} else {
2859 		unss = 0;
2860 	}
2861 	oss.ss_sp = td->td_sigstk.ss_sp;
2862 	oss.ss_onstack = sigonstack(cpu_getstack(td));
2863 	if (unss) {
2864 		td->td_sigstk.ss_sp = nss.ss_sp;
2865 		td->td_sigstk.ss_size = 0;
2866 		td->td_sigstk.ss_flags |= (nss.ss_onstack & SS_ONSTACK);
2867 		td->td_pflags |= TDP_ALTSTACK;
2868 	}
2869 	if (uap->oss != NULL) {
2870 		s32.ss_sp = PTROUT(oss.ss_sp);
2871 		CP(oss, s32, ss_onstack);
2872 		error = copyout(&s32, uap->oss, sizeof(s32));
2873 	}
2874 	return (error);
2875 }
2876 #endif
2877 
2878 int
2879 freebsd32_nanosleep(struct thread *td, struct freebsd32_nanosleep_args *uap)
2880 {
2881 
2882 	return (freebsd32_user_clock_nanosleep(td, CLOCK_REALTIME,
2883 	    TIMER_RELTIME, uap->rqtp, uap->rmtp));
2884 }
2885 
2886 int
2887 freebsd32_clock_nanosleep(struct thread *td,
2888     struct freebsd32_clock_nanosleep_args *uap)
2889 {
2890 	int error;
2891 
2892 	error = freebsd32_user_clock_nanosleep(td, uap->clock_id, uap->flags,
2893 	    uap->rqtp, uap->rmtp);
2894 	return (kern_posix_error(td, error));
2895 }
2896 
2897 static int
2898 freebsd32_user_clock_nanosleep(struct thread *td, clockid_t clock_id,
2899     int flags, const struct timespec32 *ua_rqtp, struct timespec32 *ua_rmtp)
2900 {
2901 	struct timespec32 rmt32, rqt32;
2902 	struct timespec rmt, rqt;
2903 	int error, error2;
2904 
2905 	error = copyin(ua_rqtp, &rqt32, sizeof(rqt32));
2906 	if (error)
2907 		return (error);
2908 
2909 	CP(rqt32, rqt, tv_sec);
2910 	CP(rqt32, rqt, tv_nsec);
2911 
2912 	error = kern_clock_nanosleep(td, clock_id, flags, &rqt, &rmt);
2913 	if (error == EINTR && ua_rmtp != NULL && (flags & TIMER_ABSTIME) == 0) {
2914 		CP(rmt, rmt32, tv_sec);
2915 		CP(rmt, rmt32, tv_nsec);
2916 
2917 		error2 = copyout(&rmt32, ua_rmtp, sizeof(rmt32));
2918 		if (error2 != 0)
2919 			error = error2;
2920 	}
2921 	return (error);
2922 }
2923 
2924 int
2925 freebsd32_clock_gettime(struct thread *td,
2926 			struct freebsd32_clock_gettime_args *uap)
2927 {
2928 	struct timespec	ats;
2929 	struct timespec32 ats32;
2930 	int error;
2931 
2932 	error = kern_clock_gettime(td, uap->clock_id, &ats);
2933 	if (error == 0) {
2934 		CP(ats, ats32, tv_sec);
2935 		CP(ats, ats32, tv_nsec);
2936 		error = copyout(&ats32, uap->tp, sizeof(ats32));
2937 	}
2938 	return (error);
2939 }
2940 
2941 int
2942 freebsd32_clock_settime(struct thread *td,
2943 			struct freebsd32_clock_settime_args *uap)
2944 {
2945 	struct timespec	ats;
2946 	struct timespec32 ats32;
2947 	int error;
2948 
2949 	error = copyin(uap->tp, &ats32, sizeof(ats32));
2950 	if (error)
2951 		return (error);
2952 	CP(ats32, ats, tv_sec);
2953 	CP(ats32, ats, tv_nsec);
2954 
2955 	return (kern_clock_settime(td, uap->clock_id, &ats));
2956 }
2957 
2958 int
2959 freebsd32_clock_getres(struct thread *td,
2960 		       struct freebsd32_clock_getres_args *uap)
2961 {
2962 	struct timespec	ts;
2963 	struct timespec32 ts32;
2964 	int error;
2965 
2966 	if (uap->tp == NULL)
2967 		return (0);
2968 	error = kern_clock_getres(td, uap->clock_id, &ts);
2969 	if (error == 0) {
2970 		CP(ts, ts32, tv_sec);
2971 		CP(ts, ts32, tv_nsec);
2972 		error = copyout(&ts32, uap->tp, sizeof(ts32));
2973 	}
2974 	return (error);
2975 }
2976 
2977 int freebsd32_ktimer_create(struct thread *td,
2978     struct freebsd32_ktimer_create_args *uap)
2979 {
2980 	struct sigevent32 ev32;
2981 	struct sigevent ev, *evp;
2982 	int error, id;
2983 
2984 	if (uap->evp == NULL) {
2985 		evp = NULL;
2986 	} else {
2987 		evp = &ev;
2988 		error = copyin(uap->evp, &ev32, sizeof(ev32));
2989 		if (error != 0)
2990 			return (error);
2991 		error = convert_sigevent32(&ev32, &ev);
2992 		if (error != 0)
2993 			return (error);
2994 	}
2995 	error = kern_ktimer_create(td, uap->clock_id, evp, &id, -1);
2996 	if (error == 0) {
2997 		error = copyout(&id, uap->timerid, sizeof(int));
2998 		if (error != 0)
2999 			kern_ktimer_delete(td, id);
3000 	}
3001 	return (error);
3002 }
3003 
3004 int
3005 freebsd32_ktimer_settime(struct thread *td,
3006     struct freebsd32_ktimer_settime_args *uap)
3007 {
3008 	struct itimerspec32 val32, oval32;
3009 	struct itimerspec val, oval, *ovalp;
3010 	int error;
3011 
3012 	error = copyin(uap->value, &val32, sizeof(val32));
3013 	if (error != 0)
3014 		return (error);
3015 	ITS_CP(val32, val);
3016 	ovalp = uap->ovalue != NULL ? &oval : NULL;
3017 	error = kern_ktimer_settime(td, uap->timerid, uap->flags, &val, ovalp);
3018 	if (error == 0 && uap->ovalue != NULL) {
3019 		ITS_CP(oval, oval32);
3020 		error = copyout(&oval32, uap->ovalue, sizeof(oval32));
3021 	}
3022 	return (error);
3023 }
3024 
3025 int
3026 freebsd32_ktimer_gettime(struct thread *td,
3027     struct freebsd32_ktimer_gettime_args *uap)
3028 {
3029 	struct itimerspec32 val32;
3030 	struct itimerspec val;
3031 	int error;
3032 
3033 	error = kern_ktimer_gettime(td, uap->timerid, &val);
3034 	if (error == 0) {
3035 		ITS_CP(val, val32);
3036 		error = copyout(&val32, uap->value, sizeof(val32));
3037 	}
3038 	return (error);
3039 }
3040 
3041 int
3042 freebsd32_clock_getcpuclockid2(struct thread *td,
3043     struct freebsd32_clock_getcpuclockid2_args *uap)
3044 {
3045 	clockid_t clk_id;
3046 	int error;
3047 
3048 	error = kern_clock_getcpuclockid2(td, PAIR32TO64(id_t, uap->id),
3049 	    uap->which, &clk_id);
3050 	if (error == 0)
3051 		error = copyout(&clk_id, uap->clock_id, sizeof(clockid_t));
3052 	return (error);
3053 }
3054 
3055 int
3056 freebsd32_thr_new(struct thread *td,
3057 		  struct freebsd32_thr_new_args *uap)
3058 {
3059 	struct thr_param32 param32;
3060 	struct thr_param param;
3061 	int error;
3062 
3063 	if (uap->param_size < 0 ||
3064 	    uap->param_size > sizeof(struct thr_param32))
3065 		return (EINVAL);
3066 	bzero(&param, sizeof(struct thr_param));
3067 	bzero(&param32, sizeof(struct thr_param32));
3068 	error = copyin(uap->param, &param32, uap->param_size);
3069 	if (error != 0)
3070 		return (error);
3071 	param.start_func = PTRIN(param32.start_func);
3072 	param.arg = PTRIN(param32.arg);
3073 	param.stack_base = PTRIN(param32.stack_base);
3074 	param.stack_size = param32.stack_size;
3075 	param.tls_base = PTRIN(param32.tls_base);
3076 	param.tls_size = param32.tls_size;
3077 	param.child_tid = PTRIN(param32.child_tid);
3078 	param.parent_tid = PTRIN(param32.parent_tid);
3079 	param.flags = param32.flags;
3080 	param.rtp = PTRIN(param32.rtp);
3081 	param.spare[0] = PTRIN(param32.spare[0]);
3082 	param.spare[1] = PTRIN(param32.spare[1]);
3083 	param.spare[2] = PTRIN(param32.spare[2]);
3084 
3085 	return (kern_thr_new(td, &param));
3086 }
3087 
3088 int
3089 freebsd32_thr_suspend(struct thread *td, struct freebsd32_thr_suspend_args *uap)
3090 {
3091 	struct timespec32 ts32;
3092 	struct timespec ts, *tsp;
3093 	int error;
3094 
3095 	error = 0;
3096 	tsp = NULL;
3097 	if (uap->timeout != NULL) {
3098 		error = copyin((const void *)uap->timeout, (void *)&ts32,
3099 		    sizeof(struct timespec32));
3100 		if (error != 0)
3101 			return (error);
3102 		ts.tv_sec = ts32.tv_sec;
3103 		ts.tv_nsec = ts32.tv_nsec;
3104 		tsp = &ts;
3105 	}
3106 	return (kern_thr_suspend(td, tsp));
3107 }
3108 
3109 void
3110 siginfo_to_siginfo32(const siginfo_t *src, struct siginfo32 *dst)
3111 {
3112 	bzero(dst, sizeof(*dst));
3113 	dst->si_signo = src->si_signo;
3114 	dst->si_errno = src->si_errno;
3115 	dst->si_code = src->si_code;
3116 	dst->si_pid = src->si_pid;
3117 	dst->si_uid = src->si_uid;
3118 	dst->si_status = src->si_status;
3119 	dst->si_addr = (uintptr_t)src->si_addr;
3120 	dst->si_value.sival_int = src->si_value.sival_int;
3121 	dst->si_timerid = src->si_timerid;
3122 	dst->si_overrun = src->si_overrun;
3123 }
3124 
3125 #ifndef _FREEBSD32_SYSPROTO_H_
3126 struct freebsd32_sigqueue_args {
3127         pid_t pid;
3128         int signum;
3129         /* union sigval32 */ int value;
3130 };
3131 #endif
3132 int
3133 freebsd32_sigqueue(struct thread *td, struct freebsd32_sigqueue_args *uap)
3134 {
3135 	union sigval sv;
3136 
3137 	/*
3138 	 * On 32-bit ABIs, sival_int and sival_ptr are the same.
3139 	 * On 64-bit little-endian ABIs, the low bits are the same.
3140 	 * In 64-bit big-endian ABIs, sival_int overlaps with
3141 	 * sival_ptr's HIGH bits.  We choose to support sival_int
3142 	 * rather than sival_ptr in this case as it seems to be
3143 	 * more common.
3144 	 */
3145 	bzero(&sv, sizeof(sv));
3146 	sv.sival_int = uap->value;
3147 
3148 	return (kern_sigqueue(td, uap->pid, uap->signum, &sv));
3149 }
3150 
3151 int
3152 freebsd32_sigtimedwait(struct thread *td, struct freebsd32_sigtimedwait_args *uap)
3153 {
3154 	struct timespec32 ts32;
3155 	struct timespec ts;
3156 	struct timespec *timeout;
3157 	sigset_t set;
3158 	ksiginfo_t ksi;
3159 	struct siginfo32 si32;
3160 	int error;
3161 
3162 	if (uap->timeout) {
3163 		error = copyin(uap->timeout, &ts32, sizeof(ts32));
3164 		if (error)
3165 			return (error);
3166 		ts.tv_sec = ts32.tv_sec;
3167 		ts.tv_nsec = ts32.tv_nsec;
3168 		timeout = &ts;
3169 	} else
3170 		timeout = NULL;
3171 
3172 	error = copyin(uap->set, &set, sizeof(set));
3173 	if (error)
3174 		return (error);
3175 
3176 	error = kern_sigtimedwait(td, set, &ksi, timeout);
3177 	if (error)
3178 		return (error);
3179 
3180 	if (uap->info) {
3181 		siginfo_to_siginfo32(&ksi.ksi_info, &si32);
3182 		error = copyout(&si32, uap->info, sizeof(struct siginfo32));
3183 	}
3184 
3185 	if (error == 0)
3186 		td->td_retval[0] = ksi.ksi_signo;
3187 	return (error);
3188 }
3189 
3190 /*
3191  * MPSAFE
3192  */
3193 int
3194 freebsd32_sigwaitinfo(struct thread *td, struct freebsd32_sigwaitinfo_args *uap)
3195 {
3196 	ksiginfo_t ksi;
3197 	struct siginfo32 si32;
3198 	sigset_t set;
3199 	int error;
3200 
3201 	error = copyin(uap->set, &set, sizeof(set));
3202 	if (error)
3203 		return (error);
3204 
3205 	error = kern_sigtimedwait(td, set, &ksi, NULL);
3206 	if (error)
3207 		return (error);
3208 
3209 	if (uap->info) {
3210 		siginfo_to_siginfo32(&ksi.ksi_info, &si32);
3211 		error = copyout(&si32, uap->info, sizeof(struct siginfo32));
3212 	}
3213 	if (error == 0)
3214 		td->td_retval[0] = ksi.ksi_signo;
3215 	return (error);
3216 }
3217 
3218 int
3219 freebsd32_cpuset_setid(struct thread *td,
3220     struct freebsd32_cpuset_setid_args *uap)
3221 {
3222 
3223 	return (kern_cpuset_setid(td, uap->which,
3224 	    PAIR32TO64(id_t, uap->id), uap->setid));
3225 }
3226 
3227 int
3228 freebsd32_cpuset_getid(struct thread *td,
3229     struct freebsd32_cpuset_getid_args *uap)
3230 {
3231 
3232 	return (kern_cpuset_getid(td, uap->level, uap->which,
3233 	    PAIR32TO64(id_t, uap->id), uap->setid));
3234 }
3235 
3236 int
3237 freebsd32_cpuset_getaffinity(struct thread *td,
3238     struct freebsd32_cpuset_getaffinity_args *uap)
3239 {
3240 
3241 	return (kern_cpuset_getaffinity(td, uap->level, uap->which,
3242 	    PAIR32TO64(id_t,uap->id), uap->cpusetsize, uap->mask));
3243 }
3244 
3245 int
3246 freebsd32_cpuset_setaffinity(struct thread *td,
3247     struct freebsd32_cpuset_setaffinity_args *uap)
3248 {
3249 
3250 	return (kern_cpuset_setaffinity(td, uap->level, uap->which,
3251 	    PAIR32TO64(id_t,uap->id), uap->cpusetsize, uap->mask));
3252 }
3253 
3254 int
3255 freebsd32_cpuset_getdomain(struct thread *td,
3256     struct freebsd32_cpuset_getdomain_args *uap)
3257 {
3258 
3259 	return (kern_cpuset_getdomain(td, uap->level, uap->which,
3260 	    PAIR32TO64(id_t,uap->id), uap->domainsetsize, uap->mask, uap->policy));
3261 }
3262 
3263 int
3264 freebsd32_cpuset_setdomain(struct thread *td,
3265     struct freebsd32_cpuset_setdomain_args *uap)
3266 {
3267 
3268 	return (kern_cpuset_setdomain(td, uap->level, uap->which,
3269 	    PAIR32TO64(id_t,uap->id), uap->domainsetsize, uap->mask, uap->policy));
3270 }
3271 
3272 int
3273 freebsd32_nmount(struct thread *td,
3274     struct freebsd32_nmount_args /* {
3275     	struct iovec *iovp;
3276     	unsigned int iovcnt;
3277     	int flags;
3278     } */ *uap)
3279 {
3280 	struct uio *auio;
3281 	uint64_t flags;
3282 	int error;
3283 
3284 	/*
3285 	 * Mount flags are now 64-bits. On 32-bit archtectures only
3286 	 * 32-bits are passed in, but from here on everything handles
3287 	 * 64-bit flags correctly.
3288 	 */
3289 	flags = uap->flags;
3290 
3291 	AUDIT_ARG_FFLAGS(flags);
3292 
3293 	/*
3294 	 * Filter out MNT_ROOTFS.  We do not want clients of nmount() in
3295 	 * userspace to set this flag, but we must filter it out if we want
3296 	 * MNT_UPDATE on the root file system to work.
3297 	 * MNT_ROOTFS should only be set by the kernel when mounting its
3298 	 * root file system.
3299 	 */
3300 	flags &= ~MNT_ROOTFS;
3301 
3302 	/*
3303 	 * check that we have an even number of iovec's
3304 	 * and that we have at least two options.
3305 	 */
3306 	if ((uap->iovcnt & 1) || (uap->iovcnt < 4))
3307 		return (EINVAL);
3308 
3309 	error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio);
3310 	if (error)
3311 		return (error);
3312 	error = vfs_donmount(td, flags, auio);
3313 
3314 	free(auio, M_IOV);
3315 	return error;
3316 }
3317 
3318 #if 0
3319 int
3320 freebsd32_xxx(struct thread *td, struct freebsd32_xxx_args *uap)
3321 {
3322 	struct yyy32 *p32, s32;
3323 	struct yyy *p = NULL, s;
3324 	struct xxx_arg ap;
3325 	int error;
3326 
3327 	if (uap->zzz) {
3328 		error = copyin(uap->zzz, &s32, sizeof(s32));
3329 		if (error)
3330 			return (error);
3331 		/* translate in */
3332 		p = &s;
3333 	}
3334 	error = kern_xxx(td, p);
3335 	if (error)
3336 		return (error);
3337 	if (uap->zzz) {
3338 		/* translate out */
3339 		error = copyout(&s32, p32, sizeof(s32));
3340 	}
3341 	return (error);
3342 }
3343 #endif
3344 
3345 int
3346 syscall32_module_handler(struct module *mod, int what, void *arg)
3347 {
3348 
3349 	return (kern_syscall_module_handler(freebsd32_sysent, mod, what, arg));
3350 }
3351 
3352 int
3353 syscall32_helper_register(struct syscall_helper_data *sd, int flags)
3354 {
3355 
3356 	return (kern_syscall_helper_register(freebsd32_sysent, sd, flags));
3357 }
3358 
3359 int
3360 syscall32_helper_unregister(struct syscall_helper_data *sd)
3361 {
3362 
3363 	return (kern_syscall_helper_unregister(freebsd32_sysent, sd));
3364 }
3365 
3366 int
3367 freebsd32_copyout_strings(struct image_params *imgp, uintptr_t *stack_base)
3368 {
3369 	int argc, envc, i;
3370 	u_int32_t *vectp;
3371 	char *stringp;
3372 	uintptr_t destp, ustringp;
3373 	struct freebsd32_ps_strings *arginfo;
3374 	char canary[sizeof(long) * 8];
3375 	int32_t pagesizes32[MAXPAGESIZES];
3376 	size_t execpath_len;
3377 	int error, szsigcode;
3378 
3379 	/*
3380 	 * Calculate string base and vector table pointers.
3381 	 * Also deal with signal trampoline code for this exec type.
3382 	 */
3383 	if (imgp->execpath != NULL && imgp->auxargs != NULL)
3384 		execpath_len = strlen(imgp->execpath) + 1;
3385 	else
3386 		execpath_len = 0;
3387 	arginfo = (struct freebsd32_ps_strings *)curproc->p_sysent->
3388 	    sv_psstrings;
3389 	imgp->ps_strings = arginfo;
3390 	if (imgp->proc->p_sysent->sv_sigcode_base == 0)
3391 		szsigcode = *(imgp->proc->p_sysent->sv_szsigcode);
3392 	else
3393 		szsigcode = 0;
3394 	destp =	(uintptr_t)arginfo;
3395 
3396 	/*
3397 	 * install sigcode
3398 	 */
3399 	if (szsigcode != 0) {
3400 		destp -= szsigcode;
3401 		destp = rounddown2(destp, sizeof(uint32_t));
3402 		error = copyout(imgp->proc->p_sysent->sv_sigcode, (void *)destp,
3403 		    szsigcode);
3404 		if (error != 0)
3405 			return (error);
3406 	}
3407 
3408 	/*
3409 	 * Copy the image path for the rtld.
3410 	 */
3411 	if (execpath_len != 0) {
3412 		destp -= execpath_len;
3413 		imgp->execpathp = (void *)destp;
3414 		error = copyout(imgp->execpath, imgp->execpathp, execpath_len);
3415 		if (error != 0)
3416 			return (error);
3417 	}
3418 
3419 	/*
3420 	 * Prepare the canary for SSP.
3421 	 */
3422 	arc4rand(canary, sizeof(canary), 0);
3423 	destp -= sizeof(canary);
3424 	imgp->canary = (void *)destp;
3425 	error = copyout(canary, imgp->canary, sizeof(canary));
3426 	if (error != 0)
3427 		return (error);
3428 	imgp->canarylen = sizeof(canary);
3429 
3430 	/*
3431 	 * Prepare the pagesizes array.
3432 	 */
3433 	for (i = 0; i < MAXPAGESIZES; i++)
3434 		pagesizes32[i] = (uint32_t)pagesizes[i];
3435 	destp -= sizeof(pagesizes32);
3436 	destp = rounddown2(destp, sizeof(uint32_t));
3437 	imgp->pagesizes = (void *)destp;
3438 	error = copyout(pagesizes32, imgp->pagesizes, sizeof(pagesizes32));
3439 	if (error != 0)
3440 		return (error);
3441 	imgp->pagesizeslen = sizeof(pagesizes32);
3442 
3443 	/*
3444 	 * Allocate room for the argument and environment strings.
3445 	 */
3446 	destp -= ARG_MAX - imgp->args->stringspace;
3447 	destp = rounddown2(destp, sizeof(uint32_t));
3448 	ustringp = destp;
3449 
3450 	exec_stackgap(imgp, &destp);
3451 
3452 	if (imgp->auxargs) {
3453 		/*
3454 		 * Allocate room on the stack for the ELF auxargs
3455 		 * array.  It has up to AT_COUNT entries.
3456 		 */
3457 		destp -= AT_COUNT * sizeof(Elf32_Auxinfo);
3458 		destp = rounddown2(destp, sizeof(uint32_t));
3459 	}
3460 
3461 	vectp = (uint32_t *)destp;
3462 
3463 	/*
3464 	 * Allocate room for the argv[] and env vectors including the
3465 	 * terminating NULL pointers.
3466 	 */
3467 	vectp -= imgp->args->argc + 1 + imgp->args->envc + 1;
3468 
3469 	/*
3470 	 * vectp also becomes our initial stack base
3471 	 */
3472 	*stack_base = (uintptr_t)vectp;
3473 
3474 	stringp = imgp->args->begin_argv;
3475 	argc = imgp->args->argc;
3476 	envc = imgp->args->envc;
3477 	/*
3478 	 * Copy out strings - arguments and environment.
3479 	 */
3480 	error = copyout(stringp, (void *)ustringp,
3481 	    ARG_MAX - imgp->args->stringspace);
3482 	if (error != 0)
3483 		return (error);
3484 
3485 	/*
3486 	 * Fill in "ps_strings" struct for ps, w, etc.
3487 	 */
3488 	imgp->argv = vectp;
3489 	if (suword32(&arginfo->ps_argvstr, (u_int32_t)(intptr_t)vectp) != 0 ||
3490 	    suword32(&arginfo->ps_nargvstr, argc) != 0)
3491 		return (EFAULT);
3492 
3493 	/*
3494 	 * Fill in argument portion of vector table.
3495 	 */
3496 	for (; argc > 0; --argc) {
3497 		if (suword32(vectp++, ustringp) != 0)
3498 			return (EFAULT);
3499 		while (*stringp++ != 0)
3500 			ustringp++;
3501 		ustringp++;
3502 	}
3503 
3504 	/* a null vector table pointer separates the argp's from the envp's */
3505 	if (suword32(vectp++, 0) != 0)
3506 		return (EFAULT);
3507 
3508 	imgp->envv = vectp;
3509 	if (suword32(&arginfo->ps_envstr, (u_int32_t)(intptr_t)vectp) != 0 ||
3510 	    suword32(&arginfo->ps_nenvstr, envc) != 0)
3511 		return (EFAULT);
3512 
3513 	/*
3514 	 * Fill in environment portion of vector table.
3515 	 */
3516 	for (; envc > 0; --envc) {
3517 		if (suword32(vectp++, ustringp) != 0)
3518 			return (EFAULT);
3519 		while (*stringp++ != 0)
3520 			ustringp++;
3521 		ustringp++;
3522 	}
3523 
3524 	/* end of vector table is a null pointer */
3525 	if (suword32(vectp, 0) != 0)
3526 		return (EFAULT);
3527 
3528 	if (imgp->auxargs) {
3529 		vectp++;
3530 		error = imgp->sysent->sv_copyout_auxargs(imgp,
3531 		    (uintptr_t)vectp);
3532 		if (error != 0)
3533 			return (error);
3534 	}
3535 
3536 	return (0);
3537 }
3538 
3539 int
3540 freebsd32_kldstat(struct thread *td, struct freebsd32_kldstat_args *uap)
3541 {
3542 	struct kld_file_stat *stat;
3543 	struct kld32_file_stat *stat32;
3544 	int error, version;
3545 
3546 	if ((error = copyin(&uap->stat->version, &version, sizeof(version)))
3547 	    != 0)
3548 		return (error);
3549 	if (version != sizeof(struct kld32_file_stat_1) &&
3550 	    version != sizeof(struct kld32_file_stat))
3551 		return (EINVAL);
3552 
3553 	stat = malloc(sizeof(*stat), M_TEMP, M_WAITOK | M_ZERO);
3554 	stat32 = malloc(sizeof(*stat32), M_TEMP, M_WAITOK | M_ZERO);
3555 	error = kern_kldstat(td, uap->fileid, stat);
3556 	if (error == 0) {
3557 		bcopy(&stat->name[0], &stat32->name[0], sizeof(stat->name));
3558 		CP(*stat, *stat32, refs);
3559 		CP(*stat, *stat32, id);
3560 		PTROUT_CP(*stat, *stat32, address);
3561 		CP(*stat, *stat32, size);
3562 		bcopy(&stat->pathname[0], &stat32->pathname[0],
3563 		    sizeof(stat->pathname));
3564 		stat32->version  = version;
3565 		error = copyout(stat32, uap->stat, version);
3566 	}
3567 	free(stat, M_TEMP);
3568 	free(stat32, M_TEMP);
3569 	return (error);
3570 }
3571 
3572 int
3573 freebsd32_posix_fallocate(struct thread *td,
3574     struct freebsd32_posix_fallocate_args *uap)
3575 {
3576 	int error;
3577 
3578 	error = kern_posix_fallocate(td, uap->fd,
3579 	    PAIR32TO64(off_t, uap->offset), PAIR32TO64(off_t, uap->len));
3580 	return (kern_posix_error(td, error));
3581 }
3582 
3583 int
3584 freebsd32_posix_fadvise(struct thread *td,
3585     struct freebsd32_posix_fadvise_args *uap)
3586 {
3587 	int error;
3588 
3589 	error = kern_posix_fadvise(td, uap->fd, PAIR32TO64(off_t, uap->offset),
3590 	    PAIR32TO64(off_t, uap->len), uap->advice);
3591 	return (kern_posix_error(td, error));
3592 }
3593 
3594 int
3595 convert_sigevent32(struct sigevent32 *sig32, struct sigevent *sig)
3596 {
3597 
3598 	CP(*sig32, *sig, sigev_notify);
3599 	switch (sig->sigev_notify) {
3600 	case SIGEV_NONE:
3601 		break;
3602 	case SIGEV_THREAD_ID:
3603 		CP(*sig32, *sig, sigev_notify_thread_id);
3604 		/* FALLTHROUGH */
3605 	case SIGEV_SIGNAL:
3606 		CP(*sig32, *sig, sigev_signo);
3607 		PTRIN_CP(*sig32, *sig, sigev_value.sival_ptr);
3608 		break;
3609 	case SIGEV_KEVENT:
3610 		CP(*sig32, *sig, sigev_notify_kqueue);
3611 		CP(*sig32, *sig, sigev_notify_kevent_flags);
3612 		PTRIN_CP(*sig32, *sig, sigev_value.sival_ptr);
3613 		break;
3614 	default:
3615 		return (EINVAL);
3616 	}
3617 	return (0);
3618 }
3619 
3620 int
3621 freebsd32_procctl(struct thread *td, struct freebsd32_procctl_args *uap)
3622 {
3623 	void *data;
3624 	union {
3625 		struct procctl_reaper_status rs;
3626 		struct procctl_reaper_pids rp;
3627 		struct procctl_reaper_kill rk;
3628 	} x;
3629 	union {
3630 		struct procctl_reaper_pids32 rp;
3631 	} x32;
3632 	int error, error1, flags, signum;
3633 
3634 	if (uap->com >= PROC_PROCCTL_MD_MIN)
3635 		return (cpu_procctl(td, uap->idtype, PAIR32TO64(id_t, uap->id),
3636 		    uap->com, PTRIN(uap->data)));
3637 
3638 	switch (uap->com) {
3639 	case PROC_ASLR_CTL:
3640 	case PROC_PROTMAX_CTL:
3641 	case PROC_SPROTECT:
3642 	case PROC_STACKGAP_CTL:
3643 	case PROC_TRACE_CTL:
3644 	case PROC_TRAPCAP_CTL:
3645 	case PROC_NO_NEW_PRIVS_CTL:
3646 		error = copyin(PTRIN(uap->data), &flags, sizeof(flags));
3647 		if (error != 0)
3648 			return (error);
3649 		data = &flags;
3650 		break;
3651 	case PROC_REAP_ACQUIRE:
3652 	case PROC_REAP_RELEASE:
3653 		if (uap->data != NULL)
3654 			return (EINVAL);
3655 		data = NULL;
3656 		break;
3657 	case PROC_REAP_STATUS:
3658 		data = &x.rs;
3659 		break;
3660 	case PROC_REAP_GETPIDS:
3661 		error = copyin(uap->data, &x32.rp, sizeof(x32.rp));
3662 		if (error != 0)
3663 			return (error);
3664 		CP(x32.rp, x.rp, rp_count);
3665 		PTRIN_CP(x32.rp, x.rp, rp_pids);
3666 		data = &x.rp;
3667 		break;
3668 	case PROC_REAP_KILL:
3669 		error = copyin(uap->data, &x.rk, sizeof(x.rk));
3670 		if (error != 0)
3671 			return (error);
3672 		data = &x.rk;
3673 		break;
3674 	case PROC_ASLR_STATUS:
3675 	case PROC_PROTMAX_STATUS:
3676 	case PROC_STACKGAP_STATUS:
3677 	case PROC_TRACE_STATUS:
3678 	case PROC_TRAPCAP_STATUS:
3679 	case PROC_NO_NEW_PRIVS_STATUS:
3680 		data = &flags;
3681 		break;
3682 	case PROC_PDEATHSIG_CTL:
3683 		error = copyin(uap->data, &signum, sizeof(signum));
3684 		if (error != 0)
3685 			return (error);
3686 		data = &signum;
3687 		break;
3688 	case PROC_PDEATHSIG_STATUS:
3689 		data = &signum;
3690 		break;
3691 	default:
3692 		return (EINVAL);
3693 	}
3694 	error = kern_procctl(td, uap->idtype, PAIR32TO64(id_t, uap->id),
3695 	    uap->com, data);
3696 	switch (uap->com) {
3697 	case PROC_REAP_STATUS:
3698 		if (error == 0)
3699 			error = copyout(&x.rs, uap->data, sizeof(x.rs));
3700 		break;
3701 	case PROC_REAP_KILL:
3702 		error1 = copyout(&x.rk, uap->data, sizeof(x.rk));
3703 		if (error == 0)
3704 			error = error1;
3705 		break;
3706 	case PROC_ASLR_STATUS:
3707 	case PROC_PROTMAX_STATUS:
3708 	case PROC_STACKGAP_STATUS:
3709 	case PROC_TRACE_STATUS:
3710 	case PROC_TRAPCAP_STATUS:
3711 	case PROC_NO_NEW_PRIVS_STATUS:
3712 		if (error == 0)
3713 			error = copyout(&flags, uap->data, sizeof(flags));
3714 		break;
3715 	case PROC_PDEATHSIG_STATUS:
3716 		if (error == 0)
3717 			error = copyout(&signum, uap->data, sizeof(signum));
3718 		break;
3719 	}
3720 	return (error);
3721 }
3722 
3723 int
3724 freebsd32_fcntl(struct thread *td, struct freebsd32_fcntl_args *uap)
3725 {
3726 	long tmp;
3727 
3728 	switch (uap->cmd) {
3729 	/*
3730 	 * Do unsigned conversion for arg when operation
3731 	 * interprets it as flags or pointer.
3732 	 */
3733 	case F_SETLK_REMOTE:
3734 	case F_SETLKW:
3735 	case F_SETLK:
3736 	case F_GETLK:
3737 	case F_SETFD:
3738 	case F_SETFL:
3739 	case F_OGETLK:
3740 	case F_OSETLK:
3741 	case F_OSETLKW:
3742 		tmp = (unsigned int)(uap->arg);
3743 		break;
3744 	default:
3745 		tmp = uap->arg;
3746 		break;
3747 	}
3748 	return (kern_fcntl_freebsd(td, uap->fd, uap->cmd, tmp));
3749 }
3750 
3751 int
3752 freebsd32_ppoll(struct thread *td, struct freebsd32_ppoll_args *uap)
3753 {
3754 	struct timespec32 ts32;
3755 	struct timespec ts, *tsp;
3756 	sigset_t set, *ssp;
3757 	int error;
3758 
3759 	if (uap->ts != NULL) {
3760 		error = copyin(uap->ts, &ts32, sizeof(ts32));
3761 		if (error != 0)
3762 			return (error);
3763 		CP(ts32, ts, tv_sec);
3764 		CP(ts32, ts, tv_nsec);
3765 		tsp = &ts;
3766 	} else
3767 		tsp = NULL;
3768 	if (uap->set != NULL) {
3769 		error = copyin(uap->set, &set, sizeof(set));
3770 		if (error != 0)
3771 			return (error);
3772 		ssp = &set;
3773 	} else
3774 		ssp = NULL;
3775 
3776 	return (kern_poll(td, uap->fds, uap->nfds, tsp, ssp));
3777 }
3778 
3779 int
3780 freebsd32_sched_rr_get_interval(struct thread *td,
3781     struct freebsd32_sched_rr_get_interval_args *uap)
3782 {
3783 	struct timespec ts;
3784 	struct timespec32 ts32;
3785 	int error;
3786 
3787 	error = kern_sched_rr_get_interval(td, uap->pid, &ts);
3788 	if (error == 0) {
3789 		CP(ts, ts32, tv_sec);
3790 		CP(ts, ts32, tv_nsec);
3791 		error = copyout(&ts32, uap->interval, sizeof(ts32));
3792 	}
3793 	return (error);
3794 }
3795 
3796 static void
3797 timex_to_32(struct timex32 *dst, struct timex *src)
3798 {
3799 	CP(*src, *dst, modes);
3800 	CP(*src, *dst, offset);
3801 	CP(*src, *dst, freq);
3802 	CP(*src, *dst, maxerror);
3803 	CP(*src, *dst, esterror);
3804 	CP(*src, *dst, status);
3805 	CP(*src, *dst, constant);
3806 	CP(*src, *dst, precision);
3807 	CP(*src, *dst, tolerance);
3808 	CP(*src, *dst, ppsfreq);
3809 	CP(*src, *dst, jitter);
3810 	CP(*src, *dst, shift);
3811 	CP(*src, *dst, stabil);
3812 	CP(*src, *dst, jitcnt);
3813 	CP(*src, *dst, calcnt);
3814 	CP(*src, *dst, errcnt);
3815 	CP(*src, *dst, stbcnt);
3816 }
3817 
3818 static void
3819 timex_from_32(struct timex *dst, struct timex32 *src)
3820 {
3821 	CP(*src, *dst, modes);
3822 	CP(*src, *dst, offset);
3823 	CP(*src, *dst, freq);
3824 	CP(*src, *dst, maxerror);
3825 	CP(*src, *dst, esterror);
3826 	CP(*src, *dst, status);
3827 	CP(*src, *dst, constant);
3828 	CP(*src, *dst, precision);
3829 	CP(*src, *dst, tolerance);
3830 	CP(*src, *dst, ppsfreq);
3831 	CP(*src, *dst, jitter);
3832 	CP(*src, *dst, shift);
3833 	CP(*src, *dst, stabil);
3834 	CP(*src, *dst, jitcnt);
3835 	CP(*src, *dst, calcnt);
3836 	CP(*src, *dst, errcnt);
3837 	CP(*src, *dst, stbcnt);
3838 }
3839 
3840 int
3841 freebsd32_ntp_adjtime(struct thread *td, struct freebsd32_ntp_adjtime_args *uap)
3842 {
3843 	struct timex tx;
3844 	struct timex32 tx32;
3845 	int error, retval;
3846 
3847 	error = copyin(uap->tp, &tx32, sizeof(tx32));
3848 	if (error == 0) {
3849 		timex_from_32(&tx, &tx32);
3850 		error = kern_ntp_adjtime(td, &tx, &retval);
3851 		if (error == 0) {
3852 			timex_to_32(&tx32, &tx);
3853 			error = copyout(&tx32, uap->tp, sizeof(tx32));
3854 			if (error == 0)
3855 				td->td_retval[0] = retval;
3856 		}
3857 	}
3858 	return (error);
3859 }
3860 
3861 int
3862 freebsd32_fspacectl(struct thread *td, struct freebsd32_fspacectl_args *uap)
3863 {
3864 	struct spacectl_range rqsr, rmsr;
3865 	struct spacectl_range32 rqsr32, rmsr32;
3866 	int error, cerror;
3867 
3868 	error = copyin(uap->rqsr, &rqsr32, sizeof(rqsr32));
3869 	if (error != 0)
3870 		return (error);
3871 	rqsr.r_offset = PAIR32TO64(off_t, rqsr32.r_offset);
3872 	rqsr.r_len = PAIR32TO64(off_t, rqsr32.r_len);
3873 
3874 	error = kern_fspacectl(td, uap->fd, uap->cmd, &rqsr, uap->flags,
3875 	    &rmsr);
3876 	if (uap->rmsr != NULL) {
3877 #if BYTE_ORDER == LITTLE_ENDIAN
3878 		rmsr32.r_offset1 = rmsr.r_offset;
3879 		rmsr32.r_offset2 = rmsr.r_offset >> 32;
3880 		rmsr32.r_len1 = rmsr.r_len;
3881 		rmsr32.r_len2 = rmsr.r_len >> 32;
3882 #else
3883 		rmsr32.r_offset1 = rmsr.r_offset >> 32;
3884 		rmsr32.r_offset2 = rmsr.r_offset;
3885 		rmsr32.r_len1 = rmsr.r_len >> 32;
3886 		rmsr32.r_len2 = rmsr.r_len;
3887 #endif
3888 		cerror = copyout(&rmsr32, uap->rmsr, sizeof(rmsr32));
3889 		if (error == 0)
3890 			error = cerror;
3891 	}
3892 	return (error);
3893 }
3894