1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2002 Doug Rabson 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 #include "opt_ffclock.h" 31 #include "opt_inet.h" 32 #include "opt_inet6.h" 33 #include "opt_ktrace.h" 34 35 #define __ELF_WORD_SIZE 32 36 37 #ifdef COMPAT_FREEBSD11 38 #define _WANT_FREEBSD11_KEVENT 39 #endif 40 41 #include <sys/param.h> 42 #include <sys/bus.h> 43 #include <sys/capsicum.h> 44 #include <sys/clock.h> 45 #include <sys/exec.h> 46 #include <sys/fcntl.h> 47 #include <sys/filedesc.h> 48 #include <sys/imgact.h> 49 #include <sys/jail.h> 50 #include <sys/kernel.h> 51 #include <sys/limits.h> 52 #include <sys/linker.h> 53 #include <sys/lock.h> 54 #include <sys/malloc.h> 55 #include <sys/file.h> /* Must come after sys/malloc.h */ 56 #include <sys/imgact.h> 57 #include <sys/mbuf.h> 58 #include <sys/mman.h> 59 #include <sys/module.h> 60 #include <sys/mount.h> 61 #include <sys/mutex.h> 62 #include <sys/namei.h> 63 #include <sys/priv.h> 64 #include <sys/proc.h> 65 #include <sys/procctl.h> 66 #include <sys/ptrace.h> 67 #include <sys/reboot.h> 68 #include <sys/resource.h> 69 #include <sys/resourcevar.h> 70 #include <sys/selinfo.h> 71 #include <sys/eventvar.h> /* Must come after sys/selinfo.h */ 72 #include <sys/pipe.h> /* Must come after sys/selinfo.h */ 73 #include <sys/signal.h> 74 #include <sys/signalvar.h> 75 #include <sys/socket.h> 76 #include <sys/socketvar.h> 77 #include <sys/stat.h> 78 #include <sys/syscall.h> 79 #include <sys/syscallsubr.h> 80 #include <sys/sysctl.h> 81 #include <sys/sysent.h> 82 #include <sys/sysproto.h> 83 #include <sys/systm.h> 84 #include <sys/thr.h> 85 #include <sys/timerfd.h> 86 #include <sys/timex.h> 87 #include <sys/unistd.h> 88 #include <sys/ucontext.h> 89 #include <sys/vnode.h> 90 #include <sys/wait.h> 91 #include <sys/ipc.h> 92 #include <sys/msg.h> 93 #include <sys/sem.h> 94 #include <sys/shm.h> 95 #include <sys/timeffc.h> 96 #ifdef KTRACE 97 #include <sys/ktrace.h> 98 #endif 99 100 #ifdef INET 101 #include <netinet/in.h> 102 #endif 103 104 #include <vm/vm.h> 105 #include <vm/vm_param.h> 106 #include <vm/pmap.h> 107 #include <vm/vm_map.h> 108 #include <vm/vm_object.h> 109 #include <vm/vm_extern.h> 110 111 #include <machine/cpu.h> 112 #include <machine/elf.h> 113 #ifdef __amd64__ 114 #include <machine/md_var.h> 115 #endif 116 117 #include <security/audit/audit.h> 118 119 #include <compat/freebsd32/freebsd32_util.h> 120 #include <compat/freebsd32/freebsd32.h> 121 #include <compat/freebsd32/freebsd32_ipc.h> 122 #include <compat/freebsd32/freebsd32_misc.h> 123 #include <compat/freebsd32/freebsd32_signal.h> 124 #include <compat/freebsd32/freebsd32_proto.h> 125 126 int compat_freebsd_32bit = 1; 127 128 static void 129 register_compat32_feature(void *arg) 130 { 131 if (!compat_freebsd_32bit) 132 return; 133 134 FEATURE_ADD("compat_freebsd32", "Compatible with 32-bit FreeBSD"); 135 FEATURE_ADD("compat_freebsd_32bit", 136 "Compatible with 32-bit FreeBSD (legacy feature name)"); 137 } 138 SYSINIT(freebsd32, SI_SUB_EXEC, SI_ORDER_ANY, register_compat32_feature, 139 NULL); 140 141 struct ptrace_io_desc32 { 142 int piod_op; 143 uint32_t piod_offs; 144 uint32_t piod_addr; 145 uint32_t piod_len; 146 }; 147 148 struct ptrace_vm_entry32 { 149 int pve_entry; 150 int pve_timestamp; 151 uint32_t pve_start; 152 uint32_t pve_end; 153 uint32_t pve_offset; 154 u_int pve_prot; 155 u_int pve_pathlen; 156 int32_t pve_fileid; 157 u_int pve_fsid; 158 uint32_t pve_path; 159 }; 160 161 #ifdef __amd64__ 162 CTASSERT(sizeof(struct timeval32) == 8); 163 CTASSERT(sizeof(struct timespec32) == 8); 164 CTASSERT(sizeof(struct itimerval32) == 16); 165 CTASSERT(sizeof(struct bintime32) == 12); 166 #else 167 CTASSERT(sizeof(struct timeval32) == 16); 168 CTASSERT(sizeof(struct timespec32) == 16); 169 CTASSERT(sizeof(struct itimerval32) == 32); 170 CTASSERT(sizeof(struct bintime32) == 16); 171 #endif 172 CTASSERT(sizeof(struct ostatfs32) == 256); 173 #ifdef __amd64__ 174 CTASSERT(sizeof(struct rusage32) == 72); 175 #else 176 CTASSERT(sizeof(struct rusage32) == 88); 177 #endif 178 CTASSERT(sizeof(struct sigaltstack32) == 12); 179 #ifdef __amd64__ 180 CTASSERT(sizeof(struct kevent32) == 56); 181 #else 182 CTASSERT(sizeof(struct kevent32) == 64); 183 #endif 184 CTASSERT(sizeof(struct iovec32) == 8); 185 CTASSERT(sizeof(struct msghdr32) == 28); 186 #ifdef __amd64__ 187 CTASSERT(sizeof(struct stat32) == 208); 188 CTASSERT(sizeof(struct freebsd11_stat32) == 96); 189 #else 190 CTASSERT(sizeof(struct stat32) == 224); 191 CTASSERT(sizeof(struct freebsd11_stat32) == 120); 192 #endif 193 CTASSERT(sizeof(struct sigaction32) == 24); 194 195 static int freebsd32_kevent_copyout(void *arg, struct kevent *kevp, int count); 196 static int freebsd32_kevent_copyin(void *arg, struct kevent *kevp, int count); 197 static int freebsd32_user_clock_nanosleep(struct thread *td, clockid_t clock_id, 198 int flags, const struct timespec32 *ua_rqtp, struct timespec32 *ua_rmtp); 199 200 void 201 freebsd32_rusage_out(const struct rusage *s, struct rusage32 *s32) 202 { 203 204 TV_CP(*s, *s32, ru_utime); 205 TV_CP(*s, *s32, ru_stime); 206 CP(*s, *s32, ru_maxrss); 207 CP(*s, *s32, ru_ixrss); 208 CP(*s, *s32, ru_idrss); 209 CP(*s, *s32, ru_isrss); 210 CP(*s, *s32, ru_minflt); 211 CP(*s, *s32, ru_majflt); 212 CP(*s, *s32, ru_nswap); 213 CP(*s, *s32, ru_inblock); 214 CP(*s, *s32, ru_oublock); 215 CP(*s, *s32, ru_msgsnd); 216 CP(*s, *s32, ru_msgrcv); 217 CP(*s, *s32, ru_nsignals); 218 CP(*s, *s32, ru_nvcsw); 219 CP(*s, *s32, ru_nivcsw); 220 } 221 222 int 223 freebsd32_wait4(struct thread *td, struct freebsd32_wait4_args *uap) 224 { 225 int error, status; 226 struct rusage32 ru32; 227 struct rusage ru, *rup; 228 229 if (uap->rusage != NULL) 230 rup = &ru; 231 else 232 rup = NULL; 233 error = kern_wait(td, uap->pid, &status, uap->options, rup); 234 if (error) 235 return (error); 236 if (uap->status != NULL) 237 error = copyout(&status, uap->status, sizeof(status)); 238 if (uap->rusage != NULL && error == 0) { 239 freebsd32_rusage_out(&ru, &ru32); 240 error = copyout(&ru32, uap->rusage, sizeof(ru32)); 241 } 242 return (error); 243 } 244 245 int 246 freebsd32_wait6(struct thread *td, struct freebsd32_wait6_args *uap) 247 { 248 struct __wrusage32 wru32; 249 struct __wrusage wru, *wrup; 250 struct siginfo32 si32; 251 struct __siginfo si, *sip; 252 int error, status; 253 254 if (uap->wrusage != NULL) 255 wrup = &wru; 256 else 257 wrup = NULL; 258 if (uap->info != NULL) { 259 sip = &si; 260 bzero(sip, sizeof(*sip)); 261 } else 262 sip = NULL; 263 error = kern_wait6(td, uap->idtype, PAIR32TO64(id_t, uap->id), 264 &status, uap->options, wrup, sip); 265 if (error != 0) 266 return (error); 267 if (uap->status != NULL) 268 error = copyout(&status, uap->status, sizeof(status)); 269 if (uap->wrusage != NULL && error == 0) { 270 freebsd32_rusage_out(&wru.wru_self, &wru32.wru_self); 271 freebsd32_rusage_out(&wru.wru_children, &wru32.wru_children); 272 error = copyout(&wru32, uap->wrusage, sizeof(wru32)); 273 } 274 if (uap->info != NULL && error == 0) { 275 siginfo_to_siginfo32 (&si, &si32); 276 error = copyout(&si32, uap->info, sizeof(si32)); 277 } 278 return (error); 279 } 280 281 #ifdef COMPAT_FREEBSD4 282 static void 283 copy_statfs(struct statfs *in, struct ostatfs32 *out) 284 { 285 286 statfs_scale_blocks(in, INT32_MAX); 287 bzero(out, sizeof(*out)); 288 CP(*in, *out, f_bsize); 289 out->f_iosize = MIN(in->f_iosize, INT32_MAX); 290 CP(*in, *out, f_blocks); 291 CP(*in, *out, f_bfree); 292 CP(*in, *out, f_bavail); 293 out->f_files = MIN(in->f_files, INT32_MAX); 294 out->f_ffree = MIN(in->f_ffree, INT32_MAX); 295 CP(*in, *out, f_fsid); 296 CP(*in, *out, f_owner); 297 CP(*in, *out, f_type); 298 CP(*in, *out, f_flags); 299 out->f_syncwrites = MIN(in->f_syncwrites, INT32_MAX); 300 out->f_asyncwrites = MIN(in->f_asyncwrites, INT32_MAX); 301 strlcpy(out->f_fstypename, 302 in->f_fstypename, MFSNAMELEN); 303 strlcpy(out->f_mntonname, 304 in->f_mntonname, min(MNAMELEN, FREEBSD4_OMNAMELEN)); 305 out->f_syncreads = MIN(in->f_syncreads, INT32_MAX); 306 out->f_asyncreads = MIN(in->f_asyncreads, INT32_MAX); 307 strlcpy(out->f_mntfromname, 308 in->f_mntfromname, min(MNAMELEN, FREEBSD4_OMNAMELEN)); 309 } 310 #endif 311 312 int 313 freebsd32_getfsstat(struct thread *td, struct freebsd32_getfsstat_args *uap) 314 { 315 size_t count; 316 int error; 317 318 if (uap->bufsize < 0 || uap->bufsize > SIZE_MAX) 319 return (EINVAL); 320 error = kern_getfsstat(td, &uap->buf, uap->bufsize, &count, 321 UIO_USERSPACE, uap->mode); 322 if (error == 0) 323 td->td_retval[0] = count; 324 return (error); 325 } 326 327 #ifdef COMPAT_FREEBSD4 328 int 329 freebsd4_freebsd32_getfsstat(struct thread *td, 330 struct freebsd4_freebsd32_getfsstat_args *uap) 331 { 332 struct statfs *buf, *sp; 333 struct ostatfs32 stat32; 334 size_t count, size, copycount; 335 int error; 336 337 count = uap->bufsize / sizeof(struct ostatfs32); 338 size = count * sizeof(struct statfs); 339 error = kern_getfsstat(td, &buf, size, &count, UIO_SYSSPACE, uap->mode); 340 if (size > 0) { 341 sp = buf; 342 copycount = count; 343 while (copycount > 0 && error == 0) { 344 copy_statfs(sp, &stat32); 345 error = copyout(&stat32, uap->buf, sizeof(stat32)); 346 sp++; 347 uap->buf++; 348 copycount--; 349 } 350 free(buf, M_STATFS); 351 } 352 if (error == 0) 353 td->td_retval[0] = count; 354 return (error); 355 } 356 #endif 357 358 #ifdef COMPAT_FREEBSD11 359 int 360 freebsd11_freebsd32_getfsstat(struct thread *td, 361 struct freebsd11_freebsd32_getfsstat_args *uap) 362 { 363 return(kern_freebsd11_getfsstat(td, uap->buf, uap->bufsize, 364 uap->mode)); 365 } 366 #endif 367 368 int 369 freebsd32_sigaltstack(struct thread *td, 370 struct freebsd32_sigaltstack_args *uap) 371 { 372 struct sigaltstack32 s32; 373 struct sigaltstack ss, oss, *ssp; 374 int error; 375 376 if (uap->ss != NULL) { 377 error = copyin(uap->ss, &s32, sizeof(s32)); 378 if (error) 379 return (error); 380 PTRIN_CP(s32, ss, ss_sp); 381 CP(s32, ss, ss_size); 382 CP(s32, ss, ss_flags); 383 ssp = &ss; 384 } else 385 ssp = NULL; 386 error = kern_sigaltstack(td, ssp, &oss); 387 if (error == 0 && uap->oss != NULL) { 388 PTROUT_CP(oss, s32, ss_sp); 389 CP(oss, s32, ss_size); 390 CP(oss, s32, ss_flags); 391 error = copyout(&s32, uap->oss, sizeof(s32)); 392 } 393 return (error); 394 } 395 396 /* 397 * Custom version of exec_copyin_args() so that we can translate 398 * the pointers. 399 */ 400 int 401 freebsd32_exec_copyin_args(struct image_args *args, const char *fname, 402 enum uio_seg segflg, uint32_t *argv, uint32_t *envv) 403 { 404 char *argp, *envp; 405 uint32_t *p32, arg; 406 int error; 407 408 bzero(args, sizeof(*args)); 409 if (argv == NULL) 410 return (EFAULT); 411 412 /* 413 * Allocate demand-paged memory for the file name, argument, and 414 * environment strings. 415 */ 416 error = exec_alloc_args(args); 417 if (error != 0) 418 return (error); 419 420 /* 421 * Copy the file name. 422 */ 423 error = exec_args_add_fname(args, fname, segflg); 424 if (error != 0) 425 goto err_exit; 426 427 /* 428 * extract arguments first 429 */ 430 p32 = argv; 431 for (;;) { 432 error = copyin(p32++, &arg, sizeof(arg)); 433 if (error) 434 goto err_exit; 435 if (arg == 0) 436 break; 437 argp = PTRIN(arg); 438 error = exec_args_add_arg(args, argp, UIO_USERSPACE); 439 if (error != 0) 440 goto err_exit; 441 } 442 443 /* 444 * extract environment strings 445 */ 446 if (envv) { 447 p32 = envv; 448 for (;;) { 449 error = copyin(p32++, &arg, sizeof(arg)); 450 if (error) 451 goto err_exit; 452 if (arg == 0) 453 break; 454 envp = PTRIN(arg); 455 error = exec_args_add_env(args, envp, UIO_USERSPACE); 456 if (error != 0) 457 goto err_exit; 458 } 459 } 460 461 return (0); 462 463 err_exit: 464 exec_free_args(args); 465 return (error); 466 } 467 468 int 469 freebsd32_execve(struct thread *td, struct freebsd32_execve_args *uap) 470 { 471 struct image_args eargs; 472 struct vmspace *oldvmspace; 473 int error; 474 475 error = pre_execve(td, &oldvmspace); 476 if (error != 0) 477 return (error); 478 error = freebsd32_exec_copyin_args(&eargs, uap->fname, UIO_USERSPACE, 479 uap->argv, uap->envv); 480 if (error == 0) 481 error = kern_execve(td, &eargs, NULL, oldvmspace); 482 post_execve(td, error, oldvmspace); 483 AUDIT_SYSCALL_EXIT(error == EJUSTRETURN ? 0 : error, td); 484 return (error); 485 } 486 487 int 488 freebsd32_fexecve(struct thread *td, struct freebsd32_fexecve_args *uap) 489 { 490 struct image_args eargs; 491 struct vmspace *oldvmspace; 492 int error; 493 494 error = pre_execve(td, &oldvmspace); 495 if (error != 0) 496 return (error); 497 error = freebsd32_exec_copyin_args(&eargs, NULL, UIO_SYSSPACE, 498 uap->argv, uap->envv); 499 if (error == 0) { 500 eargs.fd = uap->fd; 501 error = kern_execve(td, &eargs, NULL, oldvmspace); 502 } 503 post_execve(td, error, oldvmspace); 504 AUDIT_SYSCALL_EXIT(error == EJUSTRETURN ? 0 : error, td); 505 return (error); 506 } 507 508 int 509 freebsd32_mknodat(struct thread *td, struct freebsd32_mknodat_args *uap) 510 { 511 512 return (kern_mknodat(td, uap->fd, uap->path, UIO_USERSPACE, 513 uap->mode, PAIR32TO64(dev_t, uap->dev))); 514 } 515 516 int 517 freebsd32_mprotect(struct thread *td, struct freebsd32_mprotect_args *uap) 518 { 519 int prot; 520 521 prot = uap->prot; 522 #if defined(__amd64__) 523 if (i386_read_exec && (prot & PROT_READ) != 0) 524 prot |= PROT_EXEC; 525 #endif 526 return (kern_mprotect(td, (uintptr_t)PTRIN(uap->addr), uap->len, 527 prot, 0)); 528 } 529 530 int 531 freebsd32_mmap(struct thread *td, struct freebsd32_mmap_args *uap) 532 { 533 int prot; 534 535 prot = uap->prot; 536 #if defined(__amd64__) 537 if (i386_read_exec && (prot & PROT_READ)) 538 prot |= PROT_EXEC; 539 #endif 540 541 return (kern_mmap(td, &(struct mmap_req){ 542 .mr_hint = (uintptr_t)uap->addr, 543 .mr_len = uap->len, 544 .mr_prot = prot, 545 .mr_flags = uap->flags, 546 .mr_fd = uap->fd, 547 .mr_pos = PAIR32TO64(off_t, uap->pos), 548 })); 549 } 550 551 #ifdef COMPAT_FREEBSD6 552 int 553 freebsd6_freebsd32_mmap(struct thread *td, 554 struct freebsd6_freebsd32_mmap_args *uap) 555 { 556 int prot; 557 558 prot = uap->prot; 559 #if defined(__amd64__) 560 if (i386_read_exec && (prot & PROT_READ)) 561 prot |= PROT_EXEC; 562 #endif 563 564 return (kern_mmap(td, &(struct mmap_req){ 565 .mr_hint = (uintptr_t)uap->addr, 566 .mr_len = uap->len, 567 .mr_prot = prot, 568 .mr_flags = uap->flags, 569 .mr_fd = uap->fd, 570 .mr_pos = PAIR32TO64(off_t, uap->pos), 571 })); 572 } 573 #endif 574 575 #ifdef COMPAT_43 576 int 577 ofreebsd32_mmap(struct thread *td, struct ofreebsd32_mmap_args *uap) 578 { 579 return (kern_ommap(td, (uintptr_t)uap->addr, uap->len, uap->prot, 580 uap->flags, uap->fd, uap->pos)); 581 } 582 #endif 583 584 int 585 freebsd32_setitimer(struct thread *td, struct freebsd32_setitimer_args *uap) 586 { 587 struct itimerval itv, oitv, *itvp; 588 struct itimerval32 i32; 589 int error; 590 591 if (uap->itv != NULL) { 592 error = copyin(uap->itv, &i32, sizeof(i32)); 593 if (error) 594 return (error); 595 TV_CP(i32, itv, it_interval); 596 TV_CP(i32, itv, it_value); 597 itvp = &itv; 598 } else 599 itvp = NULL; 600 error = kern_setitimer(td, uap->which, itvp, &oitv); 601 if (error || uap->oitv == NULL) 602 return (error); 603 TV_CP(oitv, i32, it_interval); 604 TV_CP(oitv, i32, it_value); 605 return (copyout(&i32, uap->oitv, sizeof(i32))); 606 } 607 608 int 609 freebsd32_getitimer(struct thread *td, struct freebsd32_getitimer_args *uap) 610 { 611 struct itimerval itv; 612 struct itimerval32 i32; 613 int error; 614 615 error = kern_getitimer(td, uap->which, &itv); 616 if (error || uap->itv == NULL) 617 return (error); 618 TV_CP(itv, i32, it_interval); 619 TV_CP(itv, i32, it_value); 620 return (copyout(&i32, uap->itv, sizeof(i32))); 621 } 622 623 int 624 freebsd32_select(struct thread *td, struct freebsd32_select_args *uap) 625 { 626 struct timeval32 tv32; 627 struct timeval tv, *tvp; 628 int error; 629 630 if (uap->tv != NULL) { 631 error = copyin(uap->tv, &tv32, sizeof(tv32)); 632 if (error) 633 return (error); 634 CP(tv32, tv, tv_sec); 635 CP(tv32, tv, tv_usec); 636 tvp = &tv; 637 } else 638 tvp = NULL; 639 /* 640 * XXX Do pointers need PTRIN()? 641 */ 642 return (kern_select(td, uap->nd, uap->in, uap->ou, uap->ex, tvp, 643 sizeof(int32_t) * 8)); 644 } 645 646 int 647 freebsd32_pselect(struct thread *td, struct freebsd32_pselect_args *uap) 648 { 649 struct timespec32 ts32; 650 struct timespec ts; 651 struct timeval tv, *tvp; 652 sigset_t set, *uset; 653 int error; 654 655 if (uap->ts != NULL) { 656 error = copyin(uap->ts, &ts32, sizeof(ts32)); 657 if (error != 0) 658 return (error); 659 CP(ts32, ts, tv_sec); 660 CP(ts32, ts, tv_nsec); 661 TIMESPEC_TO_TIMEVAL(&tv, &ts); 662 tvp = &tv; 663 } else 664 tvp = NULL; 665 if (uap->sm != NULL) { 666 error = copyin(uap->sm, &set, sizeof(set)); 667 if (error != 0) 668 return (error); 669 uset = &set; 670 } else 671 uset = NULL; 672 /* 673 * XXX Do pointers need PTRIN()? 674 */ 675 error = kern_pselect(td, uap->nd, uap->in, uap->ou, uap->ex, tvp, 676 uset, sizeof(int32_t) * 8); 677 return (error); 678 } 679 680 /* 681 * Copy 'count' items into the destination list pointed to by uap->eventlist. 682 */ 683 static int 684 freebsd32_kevent_copyout(void *arg, struct kevent *kevp, int count) 685 { 686 struct freebsd32_kevent_args *uap; 687 struct kevent32 ks32[KQ_NEVENTS]; 688 uint64_t e; 689 int i, j, error; 690 691 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count)); 692 uap = (struct freebsd32_kevent_args *)arg; 693 694 for (i = 0; i < count; i++) { 695 CP(kevp[i], ks32[i], ident); 696 CP(kevp[i], ks32[i], filter); 697 CP(kevp[i], ks32[i], flags); 698 CP(kevp[i], ks32[i], fflags); 699 #if BYTE_ORDER == LITTLE_ENDIAN 700 ks32[i].data1 = kevp[i].data; 701 ks32[i].data2 = kevp[i].data >> 32; 702 #else 703 ks32[i].data1 = kevp[i].data >> 32; 704 ks32[i].data2 = kevp[i].data; 705 #endif 706 PTROUT_CP(kevp[i], ks32[i], udata); 707 for (j = 0; j < nitems(kevp->ext); j++) { 708 e = kevp[i].ext[j]; 709 #if BYTE_ORDER == LITTLE_ENDIAN 710 ks32[i].ext64[2 * j] = e; 711 ks32[i].ext64[2 * j + 1] = e >> 32; 712 #else 713 ks32[i].ext64[2 * j] = e >> 32; 714 ks32[i].ext64[2 * j + 1] = e; 715 #endif 716 } 717 } 718 error = copyout(ks32, uap->eventlist, count * sizeof *ks32); 719 if (error == 0) 720 uap->eventlist += count; 721 return (error); 722 } 723 724 /* 725 * Copy 'count' items from the list pointed to by uap->changelist. 726 */ 727 static int 728 freebsd32_kevent_copyin(void *arg, struct kevent *kevp, int count) 729 { 730 struct freebsd32_kevent_args *uap; 731 struct kevent32 ks32[KQ_NEVENTS]; 732 uint64_t e; 733 int i, j, error; 734 735 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count)); 736 uap = (struct freebsd32_kevent_args *)arg; 737 738 error = copyin(uap->changelist, ks32, count * sizeof *ks32); 739 if (error) 740 goto done; 741 uap->changelist += count; 742 743 for (i = 0; i < count; i++) { 744 CP(ks32[i], kevp[i], ident); 745 CP(ks32[i], kevp[i], filter); 746 CP(ks32[i], kevp[i], flags); 747 CP(ks32[i], kevp[i], fflags); 748 kevp[i].data = PAIR32TO64(uint64_t, ks32[i].data); 749 PTRIN_CP(ks32[i], kevp[i], udata); 750 for (j = 0; j < nitems(kevp->ext); j++) { 751 #if BYTE_ORDER == LITTLE_ENDIAN 752 e = ks32[i].ext64[2 * j + 1]; 753 e <<= 32; 754 e += ks32[i].ext64[2 * j]; 755 #else 756 e = ks32[i].ext64[2 * j]; 757 e <<= 32; 758 e += ks32[i].ext64[2 * j + 1]; 759 #endif 760 kevp[i].ext[j] = e; 761 } 762 } 763 done: 764 return (error); 765 } 766 767 int 768 freebsd32_kevent(struct thread *td, struct freebsd32_kevent_args *uap) 769 { 770 struct timespec32 ts32; 771 struct timespec ts, *tsp; 772 struct kevent_copyops k_ops = { 773 .arg = uap, 774 .k_copyout = freebsd32_kevent_copyout, 775 .k_copyin = freebsd32_kevent_copyin, 776 }; 777 #ifdef KTRACE 778 struct kevent32 *eventlist = uap->eventlist; 779 #endif 780 int error; 781 782 if (uap->timeout) { 783 error = copyin(uap->timeout, &ts32, sizeof(ts32)); 784 if (error) 785 return (error); 786 CP(ts32, ts, tv_sec); 787 CP(ts32, ts, tv_nsec); 788 tsp = &ts; 789 } else 790 tsp = NULL; 791 #ifdef KTRACE 792 if (KTRPOINT(td, KTR_STRUCT_ARRAY)) 793 ktrstructarray("kevent32", UIO_USERSPACE, uap->changelist, 794 uap->nchanges, sizeof(struct kevent32)); 795 #endif 796 error = kern_kevent(td, uap->fd, uap->nchanges, uap->nevents, 797 &k_ops, tsp); 798 #ifdef KTRACE 799 if (error == 0 && KTRPOINT(td, KTR_STRUCT_ARRAY)) 800 ktrstructarray("kevent32", UIO_USERSPACE, eventlist, 801 td->td_retval[0], sizeof(struct kevent32)); 802 #endif 803 return (error); 804 } 805 806 #ifdef COMPAT_FREEBSD11 807 static int 808 freebsd32_kevent11_copyout(void *arg, struct kevent *kevp, int count) 809 { 810 struct freebsd11_freebsd32_kevent_args *uap; 811 struct freebsd11_kevent32 ks32[KQ_NEVENTS]; 812 int i, error; 813 814 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count)); 815 uap = (struct freebsd11_freebsd32_kevent_args *)arg; 816 817 for (i = 0; i < count; i++) { 818 CP(kevp[i], ks32[i], ident); 819 CP(kevp[i], ks32[i], filter); 820 CP(kevp[i], ks32[i], flags); 821 CP(kevp[i], ks32[i], fflags); 822 CP(kevp[i], ks32[i], data); 823 PTROUT_CP(kevp[i], ks32[i], udata); 824 } 825 error = copyout(ks32, uap->eventlist, count * sizeof *ks32); 826 if (error == 0) 827 uap->eventlist += count; 828 return (error); 829 } 830 831 /* 832 * Copy 'count' items from the list pointed to by uap->changelist. 833 */ 834 static int 835 freebsd32_kevent11_copyin(void *arg, struct kevent *kevp, int count) 836 { 837 struct freebsd11_freebsd32_kevent_args *uap; 838 struct freebsd11_kevent32 ks32[KQ_NEVENTS]; 839 int i, j, error; 840 841 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count)); 842 uap = (struct freebsd11_freebsd32_kevent_args *)arg; 843 844 error = copyin(uap->changelist, ks32, count * sizeof *ks32); 845 if (error) 846 goto done; 847 uap->changelist += count; 848 849 for (i = 0; i < count; i++) { 850 CP(ks32[i], kevp[i], ident); 851 CP(ks32[i], kevp[i], filter); 852 CP(ks32[i], kevp[i], flags); 853 CP(ks32[i], kevp[i], fflags); 854 CP(ks32[i], kevp[i], data); 855 PTRIN_CP(ks32[i], kevp[i], udata); 856 for (j = 0; j < nitems(kevp->ext); j++) 857 kevp[i].ext[j] = 0; 858 } 859 done: 860 return (error); 861 } 862 863 int 864 freebsd11_freebsd32_kevent(struct thread *td, 865 struct freebsd11_freebsd32_kevent_args *uap) 866 { 867 struct timespec32 ts32; 868 struct timespec ts, *tsp; 869 struct kevent_copyops k_ops = { 870 .arg = uap, 871 .k_copyout = freebsd32_kevent11_copyout, 872 .k_copyin = freebsd32_kevent11_copyin, 873 }; 874 #ifdef KTRACE 875 struct freebsd11_kevent32 *eventlist = uap->eventlist; 876 #endif 877 int error; 878 879 if (uap->timeout) { 880 error = copyin(uap->timeout, &ts32, sizeof(ts32)); 881 if (error) 882 return (error); 883 CP(ts32, ts, tv_sec); 884 CP(ts32, ts, tv_nsec); 885 tsp = &ts; 886 } else 887 tsp = NULL; 888 #ifdef KTRACE 889 if (KTRPOINT(td, KTR_STRUCT_ARRAY)) 890 ktrstructarray("freebsd11_kevent32", UIO_USERSPACE, 891 uap->changelist, uap->nchanges, 892 sizeof(struct freebsd11_kevent32)); 893 #endif 894 error = kern_kevent(td, uap->fd, uap->nchanges, uap->nevents, 895 &k_ops, tsp); 896 #ifdef KTRACE 897 if (error == 0 && KTRPOINT(td, KTR_STRUCT_ARRAY)) 898 ktrstructarray("freebsd11_kevent32", UIO_USERSPACE, 899 eventlist, td->td_retval[0], 900 sizeof(struct freebsd11_kevent32)); 901 #endif 902 return (error); 903 } 904 #endif 905 906 int 907 freebsd32_gettimeofday(struct thread *td, 908 struct freebsd32_gettimeofday_args *uap) 909 { 910 struct timeval atv; 911 struct timeval32 atv32; 912 struct timezone rtz; 913 int error = 0; 914 915 if (uap->tp) { 916 microtime(&atv); 917 CP(atv, atv32, tv_sec); 918 CP(atv, atv32, tv_usec); 919 error = copyout(&atv32, uap->tp, sizeof (atv32)); 920 } 921 if (error == 0 && uap->tzp != NULL) { 922 rtz.tz_minuteswest = 0; 923 rtz.tz_dsttime = 0; 924 error = copyout(&rtz, uap->tzp, sizeof (rtz)); 925 } 926 return (error); 927 } 928 929 int 930 freebsd32_getrusage(struct thread *td, struct freebsd32_getrusage_args *uap) 931 { 932 struct rusage32 s32; 933 struct rusage s; 934 int error; 935 936 error = kern_getrusage(td, uap->who, &s); 937 if (error == 0) { 938 freebsd32_rusage_out(&s, &s32); 939 error = copyout(&s32, uap->rusage, sizeof(s32)); 940 } 941 return (error); 942 } 943 944 static void 945 ptrace_lwpinfo_to32(const struct ptrace_lwpinfo *pl, 946 struct ptrace_lwpinfo32 *pl32) 947 { 948 949 bzero(pl32, sizeof(*pl32)); 950 pl32->pl_lwpid = pl->pl_lwpid; 951 pl32->pl_event = pl->pl_event; 952 pl32->pl_flags = pl->pl_flags; 953 pl32->pl_sigmask = pl->pl_sigmask; 954 pl32->pl_siglist = pl->pl_siglist; 955 siginfo_to_siginfo32(&pl->pl_siginfo, &pl32->pl_siginfo); 956 strcpy(pl32->pl_tdname, pl->pl_tdname); 957 pl32->pl_child_pid = pl->pl_child_pid; 958 pl32->pl_syscall_code = pl->pl_syscall_code; 959 pl32->pl_syscall_narg = pl->pl_syscall_narg; 960 } 961 962 static void 963 ptrace_sc_ret_to32(const struct ptrace_sc_ret *psr, 964 struct ptrace_sc_ret32 *psr32) 965 { 966 967 bzero(psr32, sizeof(*psr32)); 968 psr32->sr_retval[0] = psr->sr_retval[0]; 969 psr32->sr_retval[1] = psr->sr_retval[1]; 970 psr32->sr_error = psr->sr_error; 971 } 972 973 int 974 freebsd32_ptrace(struct thread *td, struct freebsd32_ptrace_args *uap) 975 { 976 union { 977 struct ptrace_io_desc piod; 978 struct ptrace_lwpinfo pl; 979 struct ptrace_vm_entry pve; 980 struct ptrace_coredump pc; 981 struct ptrace_sc_remote sr; 982 struct dbreg32 dbreg; 983 struct fpreg32 fpreg; 984 struct reg32 reg; 985 struct iovec vec; 986 register_t args[nitems(td->td_sa.args)]; 987 struct ptrace_sc_ret psr; 988 int ptevents; 989 } r; 990 union { 991 struct ptrace_io_desc32 piod; 992 struct ptrace_lwpinfo32 pl; 993 struct ptrace_vm_entry32 pve; 994 struct ptrace_coredump32 pc; 995 struct ptrace_sc_remote32 sr; 996 uint32_t args[nitems(td->td_sa.args)]; 997 struct ptrace_sc_ret32 psr; 998 struct iovec32 vec; 999 } r32; 1000 syscallarg_t pscr_args[nitems(td->td_sa.args)]; 1001 u_int pscr_args32[nitems(td->td_sa.args)]; 1002 void *addr; 1003 int data, error, i; 1004 1005 if (!allow_ptrace) 1006 return (ENOSYS); 1007 error = 0; 1008 1009 AUDIT_ARG_PID(uap->pid); 1010 AUDIT_ARG_CMD(uap->req); 1011 AUDIT_ARG_VALUE(uap->data); 1012 addr = &r; 1013 data = uap->data; 1014 switch (uap->req) { 1015 case PT_GET_EVENT_MASK: 1016 case PT_GET_SC_ARGS: 1017 case PT_GET_SC_RET: 1018 break; 1019 case PT_LWPINFO: 1020 if (uap->data > sizeof(r32.pl)) 1021 return (EINVAL); 1022 1023 /* 1024 * Pass size of native structure in 'data'. Truncate 1025 * if necessary to avoid siginfo. 1026 */ 1027 data = sizeof(r.pl); 1028 if (uap->data < offsetof(struct ptrace_lwpinfo32, pl_siginfo) + 1029 sizeof(struct siginfo32)) 1030 data = offsetof(struct ptrace_lwpinfo, pl_siginfo); 1031 break; 1032 case PT_GETREGS: 1033 bzero(&r.reg, sizeof(r.reg)); 1034 break; 1035 case PT_GETFPREGS: 1036 bzero(&r.fpreg, sizeof(r.fpreg)); 1037 break; 1038 case PT_GETDBREGS: 1039 bzero(&r.dbreg, sizeof(r.dbreg)); 1040 break; 1041 case PT_SETREGS: 1042 error = copyin(uap->addr, &r.reg, sizeof(r.reg)); 1043 break; 1044 case PT_SETFPREGS: 1045 error = copyin(uap->addr, &r.fpreg, sizeof(r.fpreg)); 1046 break; 1047 case PT_SETDBREGS: 1048 error = copyin(uap->addr, &r.dbreg, sizeof(r.dbreg)); 1049 break; 1050 case PT_GETREGSET: 1051 case PT_SETREGSET: 1052 error = copyin(uap->addr, &r32.vec, sizeof(r32.vec)); 1053 if (error != 0) 1054 break; 1055 1056 r.vec.iov_len = r32.vec.iov_len; 1057 r.vec.iov_base = PTRIN(r32.vec.iov_base); 1058 break; 1059 case PT_SET_EVENT_MASK: 1060 if (uap->data != sizeof(r.ptevents)) 1061 error = EINVAL; 1062 else 1063 error = copyin(uap->addr, &r.ptevents, uap->data); 1064 break; 1065 case PT_IO: 1066 error = copyin(uap->addr, &r32.piod, sizeof(r32.piod)); 1067 if (error) 1068 break; 1069 CP(r32.piod, r.piod, piod_op); 1070 PTRIN_CP(r32.piod, r.piod, piod_offs); 1071 PTRIN_CP(r32.piod, r.piod, piod_addr); 1072 CP(r32.piod, r.piod, piod_len); 1073 break; 1074 case PT_VM_ENTRY: 1075 error = copyin(uap->addr, &r32.pve, sizeof(r32.pve)); 1076 if (error) 1077 break; 1078 1079 CP(r32.pve, r.pve, pve_entry); 1080 CP(r32.pve, r.pve, pve_timestamp); 1081 CP(r32.pve, r.pve, pve_start); 1082 CP(r32.pve, r.pve, pve_end); 1083 CP(r32.pve, r.pve, pve_offset); 1084 CP(r32.pve, r.pve, pve_prot); 1085 CP(r32.pve, r.pve, pve_pathlen); 1086 CP(r32.pve, r.pve, pve_fileid); 1087 CP(r32.pve, r.pve, pve_fsid); 1088 PTRIN_CP(r32.pve, r.pve, pve_path); 1089 break; 1090 case PT_COREDUMP: 1091 if (uap->data != sizeof(r32.pc)) 1092 error = EINVAL; 1093 else 1094 error = copyin(uap->addr, &r32.pc, uap->data); 1095 CP(r32.pc, r.pc, pc_fd); 1096 CP(r32.pc, r.pc, pc_flags); 1097 r.pc.pc_limit = PAIR32TO64(off_t, r32.pc.pc_limit); 1098 data = sizeof(r.pc); 1099 break; 1100 case PT_SC_REMOTE: 1101 if (uap->data != sizeof(r32.sr)) { 1102 error = EINVAL; 1103 break; 1104 } 1105 error = copyin(uap->addr, &r32.sr, uap->data); 1106 if (error != 0) 1107 break; 1108 CP(r32.sr, r.sr, pscr_syscall); 1109 CP(r32.sr, r.sr, pscr_nargs); 1110 if (r.sr.pscr_nargs > nitems(td->td_sa.args)) { 1111 error = EINVAL; 1112 break; 1113 } 1114 error = copyin(PTRIN(r32.sr.pscr_args), pscr_args32, 1115 sizeof(u_int) * r32.sr.pscr_nargs); 1116 if (error != 0) 1117 break; 1118 for (i = 0; i < r32.sr.pscr_nargs; i++) 1119 pscr_args[i] = pscr_args32[i]; 1120 r.sr.pscr_args = pscr_args; 1121 break; 1122 default: 1123 addr = uap->addr; 1124 break; 1125 } 1126 if (error) 1127 return (error); 1128 1129 error = kern_ptrace(td, uap->req, uap->pid, addr, data); 1130 if (error) 1131 return (error); 1132 1133 switch (uap->req) { 1134 case PT_VM_ENTRY: 1135 CP(r.pve, r32.pve, pve_entry); 1136 CP(r.pve, r32.pve, pve_timestamp); 1137 CP(r.pve, r32.pve, pve_start); 1138 CP(r.pve, r32.pve, pve_end); 1139 CP(r.pve, r32.pve, pve_offset); 1140 CP(r.pve, r32.pve, pve_prot); 1141 CP(r.pve, r32.pve, pve_pathlen); 1142 CP(r.pve, r32.pve, pve_fileid); 1143 CP(r.pve, r32.pve, pve_fsid); 1144 error = copyout(&r32.pve, uap->addr, sizeof(r32.pve)); 1145 break; 1146 case PT_IO: 1147 CP(r.piod, r32.piod, piod_len); 1148 error = copyout(&r32.piod, uap->addr, sizeof(r32.piod)); 1149 break; 1150 case PT_GETREGS: 1151 error = copyout(&r.reg, uap->addr, sizeof(r.reg)); 1152 break; 1153 case PT_GETFPREGS: 1154 error = copyout(&r.fpreg, uap->addr, sizeof(r.fpreg)); 1155 break; 1156 case PT_GETDBREGS: 1157 error = copyout(&r.dbreg, uap->addr, sizeof(r.dbreg)); 1158 break; 1159 case PT_GETREGSET: 1160 r32.vec.iov_len = r.vec.iov_len; 1161 error = copyout(&r32.vec, uap->addr, sizeof(r32.vec)); 1162 break; 1163 case PT_GET_EVENT_MASK: 1164 /* NB: The size in uap->data is validated in kern_ptrace(). */ 1165 error = copyout(&r.ptevents, uap->addr, uap->data); 1166 break; 1167 case PT_LWPINFO: 1168 ptrace_lwpinfo_to32(&r.pl, &r32.pl); 1169 error = copyout(&r32.pl, uap->addr, uap->data); 1170 break; 1171 case PT_GET_SC_ARGS: 1172 for (i = 0; i < nitems(r.args); i++) 1173 r32.args[i] = (uint32_t)r.args[i]; 1174 error = copyout(r32.args, uap->addr, MIN(uap->data, 1175 sizeof(r32.args))); 1176 break; 1177 case PT_GET_SC_RET: 1178 ptrace_sc_ret_to32(&r.psr, &r32.psr); 1179 error = copyout(&r32.psr, uap->addr, MIN(uap->data, 1180 sizeof(r32.psr))); 1181 break; 1182 case PT_SC_REMOTE: 1183 ptrace_sc_ret_to32(&r.sr.pscr_ret, &r32.sr.pscr_ret); 1184 error = copyout(&r32.sr.pscr_ret, uap->addr + 1185 offsetof(struct ptrace_sc_remote32, pscr_ret), 1186 sizeof(r32.psr)); 1187 break; 1188 } 1189 1190 return (error); 1191 } 1192 1193 int 1194 freebsd32_copyinuio(struct iovec32 *iovp, u_int iovcnt, struct uio **uiop) 1195 { 1196 struct iovec32 iov32; 1197 struct iovec *iov; 1198 struct uio *uio; 1199 int error, i; 1200 1201 *uiop = NULL; 1202 if (iovcnt > UIO_MAXIOV) 1203 return (EINVAL); 1204 uio = allocuio(iovcnt); 1205 iov = uio->uio_iov; 1206 for (i = 0; i < iovcnt; i++) { 1207 error = copyin(&iovp[i], &iov32, sizeof(struct iovec32)); 1208 if (error) { 1209 freeuio(uio); 1210 return (error); 1211 } 1212 iov[i].iov_base = PTRIN(iov32.iov_base); 1213 iov[i].iov_len = iov32.iov_len; 1214 } 1215 uio->uio_iovcnt = iovcnt; 1216 uio->uio_segflg = UIO_USERSPACE; 1217 uio->uio_offset = -1; 1218 uio->uio_resid = 0; 1219 for (i = 0; i < iovcnt; i++) { 1220 if (iov->iov_len > INT_MAX - uio->uio_resid) { 1221 freeuio(uio); 1222 return (EINVAL); 1223 } 1224 uio->uio_resid += iov->iov_len; 1225 iov++; 1226 } 1227 *uiop = uio; 1228 return (0); 1229 } 1230 1231 int 1232 freebsd32_readv(struct thread *td, struct freebsd32_readv_args *uap) 1233 { 1234 struct uio *auio; 1235 int error; 1236 1237 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 1238 if (error) 1239 return (error); 1240 error = kern_readv(td, uap->fd, auio); 1241 freeuio(auio); 1242 return (error); 1243 } 1244 1245 int 1246 freebsd32_writev(struct thread *td, struct freebsd32_writev_args *uap) 1247 { 1248 struct uio *auio; 1249 int error; 1250 1251 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 1252 if (error) 1253 return (error); 1254 error = kern_writev(td, uap->fd, auio); 1255 freeuio(auio); 1256 return (error); 1257 } 1258 1259 int 1260 freebsd32_preadv(struct thread *td, struct freebsd32_preadv_args *uap) 1261 { 1262 struct uio *auio; 1263 int error; 1264 1265 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 1266 if (error) 1267 return (error); 1268 error = kern_preadv(td, uap->fd, auio, PAIR32TO64(off_t,uap->offset)); 1269 freeuio(auio); 1270 return (error); 1271 } 1272 1273 int 1274 freebsd32_pwritev(struct thread *td, struct freebsd32_pwritev_args *uap) 1275 { 1276 struct uio *auio; 1277 int error; 1278 1279 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 1280 if (error) 1281 return (error); 1282 error = kern_pwritev(td, uap->fd, auio, PAIR32TO64(off_t,uap->offset)); 1283 freeuio(auio); 1284 return (error); 1285 } 1286 1287 int 1288 freebsd32_copyiniov(struct iovec32 *iovp32, u_int iovcnt, struct iovec **iovp, 1289 int error) 1290 { 1291 struct iovec32 iov32; 1292 struct iovec *iov; 1293 u_int iovlen; 1294 int i; 1295 1296 *iovp = NULL; 1297 if (iovcnt > UIO_MAXIOV) 1298 return (error); 1299 iovlen = iovcnt * sizeof(struct iovec); 1300 iov = malloc(iovlen, M_IOV, M_WAITOK); 1301 for (i = 0; i < iovcnt; i++) { 1302 error = copyin(&iovp32[i], &iov32, sizeof(struct iovec32)); 1303 if (error) { 1304 free(iov, M_IOV); 1305 return (error); 1306 } 1307 iov[i].iov_base = PTRIN(iov32.iov_base); 1308 iov[i].iov_len = iov32.iov_len; 1309 } 1310 *iovp = iov; 1311 return (0); 1312 } 1313 1314 static int 1315 freebsd32_copyinmsghdr(const struct msghdr32 *msg32, struct msghdr *msg) 1316 { 1317 struct msghdr32 m32; 1318 int error; 1319 1320 error = copyin(msg32, &m32, sizeof(m32)); 1321 if (error) 1322 return (error); 1323 msg->msg_name = PTRIN(m32.msg_name); 1324 msg->msg_namelen = m32.msg_namelen; 1325 msg->msg_iov = PTRIN(m32.msg_iov); 1326 msg->msg_iovlen = m32.msg_iovlen; 1327 msg->msg_control = PTRIN(m32.msg_control); 1328 msg->msg_controllen = m32.msg_controllen; 1329 msg->msg_flags = m32.msg_flags; 1330 return (0); 1331 } 1332 1333 static int 1334 freebsd32_copyoutmsghdr(struct msghdr *msg, struct msghdr32 *msg32) 1335 { 1336 struct msghdr32 m32; 1337 int error; 1338 1339 m32.msg_name = PTROUT(msg->msg_name); 1340 m32.msg_namelen = msg->msg_namelen; 1341 m32.msg_iov = PTROUT(msg->msg_iov); 1342 m32.msg_iovlen = msg->msg_iovlen; 1343 m32.msg_control = PTROUT(msg->msg_control); 1344 m32.msg_controllen = msg->msg_controllen; 1345 m32.msg_flags = msg->msg_flags; 1346 error = copyout(&m32, msg32, sizeof(m32)); 1347 return (error); 1348 } 1349 1350 #define FREEBSD32_ALIGNBYTES (sizeof(int) - 1) 1351 #define FREEBSD32_ALIGN(p) \ 1352 (((u_long)(p) + FREEBSD32_ALIGNBYTES) & ~FREEBSD32_ALIGNBYTES) 1353 #define FREEBSD32_CMSG_SPACE(l) \ 1354 (FREEBSD32_ALIGN(sizeof(struct cmsghdr)) + FREEBSD32_ALIGN(l)) 1355 1356 #define FREEBSD32_CMSG_DATA(cmsg) ((unsigned char *)(cmsg) + \ 1357 FREEBSD32_ALIGN(sizeof(struct cmsghdr))) 1358 1359 static size_t 1360 freebsd32_cmsg_convert(const struct cmsghdr *cm, void *data, socklen_t datalen) 1361 { 1362 size_t copylen; 1363 union { 1364 struct timespec32 ts; 1365 struct timeval32 tv; 1366 struct bintime32 bt; 1367 } tmp32; 1368 1369 union { 1370 struct timespec ts; 1371 struct timeval tv; 1372 struct bintime bt; 1373 } *in; 1374 1375 in = data; 1376 copylen = 0; 1377 switch (cm->cmsg_level) { 1378 case SOL_SOCKET: 1379 switch (cm->cmsg_type) { 1380 case SCM_TIMESTAMP: 1381 TV_CP(*in, tmp32, tv); 1382 copylen = sizeof(tmp32.tv); 1383 break; 1384 1385 case SCM_BINTIME: 1386 BT_CP(*in, tmp32, bt); 1387 copylen = sizeof(tmp32.bt); 1388 break; 1389 1390 case SCM_REALTIME: 1391 case SCM_MONOTONIC: 1392 TS_CP(*in, tmp32, ts); 1393 copylen = sizeof(tmp32.ts); 1394 break; 1395 1396 default: 1397 break; 1398 } 1399 1400 default: 1401 break; 1402 } 1403 1404 if (copylen == 0) 1405 return (datalen); 1406 1407 KASSERT((datalen >= copylen), ("corrupted cmsghdr")); 1408 1409 bcopy(&tmp32, data, copylen); 1410 return (copylen); 1411 } 1412 1413 static int 1414 freebsd32_copy_msg_out(struct msghdr *msg, struct mbuf *control) 1415 { 1416 struct cmsghdr *cm; 1417 void *data; 1418 socklen_t clen, datalen, datalen_out, oldclen; 1419 int error; 1420 caddr_t ctlbuf; 1421 int len, copylen; 1422 struct mbuf *m; 1423 error = 0; 1424 1425 len = msg->msg_controllen; 1426 msg->msg_controllen = 0; 1427 1428 ctlbuf = msg->msg_control; 1429 for (m = control; m != NULL && len > 0; m = m->m_next) { 1430 cm = mtod(m, struct cmsghdr *); 1431 clen = m->m_len; 1432 while (cm != NULL) { 1433 if (sizeof(struct cmsghdr) > clen || 1434 cm->cmsg_len > clen) { 1435 error = EINVAL; 1436 break; 1437 } 1438 1439 data = CMSG_DATA(cm); 1440 datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data; 1441 datalen_out = freebsd32_cmsg_convert(cm, data, datalen); 1442 1443 /* 1444 * Copy out the message header. Preserve the native 1445 * message size in case we need to inspect the message 1446 * contents later. 1447 */ 1448 copylen = sizeof(struct cmsghdr); 1449 if (len < copylen) { 1450 msg->msg_flags |= MSG_CTRUNC; 1451 m_dispose_extcontrolm(m); 1452 goto exit; 1453 } 1454 oldclen = cm->cmsg_len; 1455 cm->cmsg_len = FREEBSD32_ALIGN(sizeof(struct cmsghdr)) + 1456 datalen_out; 1457 error = copyout(cm, ctlbuf, copylen); 1458 cm->cmsg_len = oldclen; 1459 if (error != 0) 1460 goto exit; 1461 1462 ctlbuf += FREEBSD32_ALIGN(copylen); 1463 len -= FREEBSD32_ALIGN(copylen); 1464 1465 copylen = datalen_out; 1466 if (len < copylen) { 1467 msg->msg_flags |= MSG_CTRUNC; 1468 m_dispose_extcontrolm(m); 1469 break; 1470 } 1471 1472 /* Copy out the message data. */ 1473 error = copyout(data, ctlbuf, copylen); 1474 if (error) 1475 goto exit; 1476 1477 ctlbuf += FREEBSD32_ALIGN(copylen); 1478 len -= FREEBSD32_ALIGN(copylen); 1479 1480 if (CMSG_SPACE(datalen) < clen) { 1481 clen -= CMSG_SPACE(datalen); 1482 cm = (struct cmsghdr *) 1483 ((caddr_t)cm + CMSG_SPACE(datalen)); 1484 } else { 1485 clen = 0; 1486 cm = NULL; 1487 } 1488 1489 msg->msg_controllen += 1490 FREEBSD32_CMSG_SPACE(datalen_out); 1491 } 1492 } 1493 if (len == 0 && m != NULL) { 1494 msg->msg_flags |= MSG_CTRUNC; 1495 m_dispose_extcontrolm(m); 1496 } 1497 1498 exit: 1499 return (error); 1500 } 1501 1502 int 1503 freebsd32_recvmsg(struct thread *td, struct freebsd32_recvmsg_args *uap) 1504 { 1505 struct msghdr msg; 1506 struct iovec *uiov, *iov; 1507 struct mbuf *control = NULL; 1508 struct mbuf **controlp; 1509 int error; 1510 1511 error = freebsd32_copyinmsghdr(uap->msg, &msg); 1512 if (error) 1513 return (error); 1514 error = freebsd32_copyiniov((void *)msg.msg_iov, msg.msg_iovlen, &iov, 1515 EMSGSIZE); 1516 if (error) 1517 return (error); 1518 msg.msg_flags = uap->flags; 1519 uiov = msg.msg_iov; 1520 msg.msg_iov = iov; 1521 1522 controlp = (msg.msg_control != NULL) ? &control : NULL; 1523 error = kern_recvit(td, uap->s, &msg, UIO_USERSPACE, controlp); 1524 if (error == 0) { 1525 msg.msg_iov = uiov; 1526 1527 if (control != NULL) 1528 error = freebsd32_copy_msg_out(&msg, control); 1529 else 1530 msg.msg_controllen = 0; 1531 1532 if (error == 0) 1533 error = freebsd32_copyoutmsghdr(&msg, uap->msg); 1534 } 1535 free(iov, M_IOV); 1536 1537 if (control != NULL) { 1538 if (error != 0) 1539 m_dispose_extcontrolm(control); 1540 m_freem(control); 1541 } 1542 1543 return (error); 1544 } 1545 1546 #ifdef COMPAT_43 1547 int 1548 ofreebsd32_recvmsg(struct thread *td, struct ofreebsd32_recvmsg_args *uap) 1549 { 1550 return (ENOSYS); 1551 } 1552 #endif 1553 1554 /* 1555 * Copy-in the array of control messages constructed using alignment 1556 * and padding suitable for a 32-bit environment and construct an 1557 * mbuf using alignment and padding suitable for a 64-bit kernel. 1558 * The alignment and padding are defined indirectly by CMSG_DATA(), 1559 * CMSG_SPACE() and CMSG_LEN(). 1560 */ 1561 static int 1562 freebsd32_copyin_control(struct mbuf **mp, caddr_t buf, u_int buflen) 1563 { 1564 struct cmsghdr *cm; 1565 struct mbuf *m; 1566 void *in, *in1, *md; 1567 u_int msglen, outlen; 1568 int error; 1569 1570 /* Enforce the size limit of the native implementation. */ 1571 if (buflen > MCLBYTES) 1572 return (EINVAL); 1573 1574 in = malloc(buflen, M_TEMP, M_WAITOK); 1575 error = copyin(buf, in, buflen); 1576 if (error != 0) 1577 goto out; 1578 1579 /* 1580 * Make a pass over the input buffer to determine the amount of space 1581 * required for 64 bit-aligned copies of the control messages. 1582 */ 1583 in1 = in; 1584 outlen = 0; 1585 while (buflen > 0) { 1586 if (buflen < sizeof(*cm)) { 1587 error = EINVAL; 1588 break; 1589 } 1590 cm = (struct cmsghdr *)in1; 1591 if (cm->cmsg_len < FREEBSD32_ALIGN(sizeof(*cm)) || 1592 cm->cmsg_len > buflen) { 1593 error = EINVAL; 1594 break; 1595 } 1596 msglen = FREEBSD32_ALIGN(cm->cmsg_len); 1597 if (msglen < cm->cmsg_len) { 1598 error = EINVAL; 1599 break; 1600 } 1601 /* The native ABI permits the final padding to be omitted. */ 1602 if (msglen > buflen) 1603 msglen = buflen; 1604 buflen -= msglen; 1605 1606 in1 = (char *)in1 + msglen; 1607 outlen += CMSG_ALIGN(sizeof(*cm)) + 1608 CMSG_ALIGN(msglen - FREEBSD32_ALIGN(sizeof(*cm))); 1609 } 1610 if (error != 0) 1611 goto out; 1612 1613 /* 1614 * Allocate up to MJUMPAGESIZE space for the re-aligned and 1615 * re-padded control messages. This allows a full MCLBYTES of 1616 * 32-bit sized and aligned messages to fit and avoids an ABI 1617 * mismatch with the native implementation. 1618 */ 1619 m = m_get2(outlen, M_WAITOK, MT_CONTROL, 0); 1620 if (m == NULL) { 1621 error = EINVAL; 1622 goto out; 1623 } 1624 m->m_len = outlen; 1625 md = mtod(m, void *); 1626 1627 /* 1628 * Make a second pass over input messages, copying them into the output 1629 * buffer. 1630 */ 1631 in1 = in; 1632 while (outlen > 0) { 1633 /* Copy the message header and align the length field. */ 1634 cm = md; 1635 memcpy(cm, in1, sizeof(*cm)); 1636 msglen = cm->cmsg_len - FREEBSD32_ALIGN(sizeof(*cm)); 1637 cm->cmsg_len = CMSG_ALIGN(sizeof(*cm)) + msglen; 1638 1639 /* Copy the message body. */ 1640 in1 = (char *)in1 + FREEBSD32_ALIGN(sizeof(*cm)); 1641 md = (char *)md + CMSG_ALIGN(sizeof(*cm)); 1642 memcpy(md, in1, msglen); 1643 in1 = (char *)in1 + FREEBSD32_ALIGN(msglen); 1644 md = (char *)md + CMSG_ALIGN(msglen); 1645 KASSERT(outlen >= CMSG_ALIGN(sizeof(*cm)) + CMSG_ALIGN(msglen), 1646 ("outlen %u underflow, msglen %u", outlen, msglen)); 1647 outlen -= CMSG_ALIGN(sizeof(*cm)) + CMSG_ALIGN(msglen); 1648 } 1649 1650 *mp = m; 1651 out: 1652 free(in, M_TEMP); 1653 return (error); 1654 } 1655 1656 int 1657 freebsd32_sendmsg(struct thread *td, struct freebsd32_sendmsg_args *uap) 1658 { 1659 struct msghdr msg; 1660 struct iovec *iov; 1661 struct mbuf *control = NULL; 1662 struct sockaddr *to = NULL; 1663 int error; 1664 1665 error = freebsd32_copyinmsghdr(uap->msg, &msg); 1666 if (error) 1667 return (error); 1668 error = freebsd32_copyiniov((void *)msg.msg_iov, msg.msg_iovlen, &iov, 1669 EMSGSIZE); 1670 if (error) 1671 return (error); 1672 msg.msg_iov = iov; 1673 if (msg.msg_name != NULL) { 1674 error = getsockaddr(&to, msg.msg_name, msg.msg_namelen); 1675 if (error) { 1676 to = NULL; 1677 goto out; 1678 } 1679 msg.msg_name = to; 1680 } 1681 1682 if (msg.msg_control) { 1683 if (msg.msg_controllen < sizeof(struct cmsghdr)) { 1684 error = EINVAL; 1685 goto out; 1686 } 1687 1688 error = freebsd32_copyin_control(&control, msg.msg_control, 1689 msg.msg_controllen); 1690 if (error) 1691 goto out; 1692 1693 msg.msg_control = NULL; 1694 msg.msg_controllen = 0; 1695 } 1696 1697 error = kern_sendit(td, uap->s, &msg, uap->flags, control, 1698 UIO_USERSPACE); 1699 1700 out: 1701 free(iov, M_IOV); 1702 if (to) 1703 free(to, M_SONAME); 1704 return (error); 1705 } 1706 1707 #ifdef COMPAT_43 1708 int 1709 ofreebsd32_sendmsg(struct thread *td, struct ofreebsd32_sendmsg_args *uap) 1710 { 1711 return (ENOSYS); 1712 } 1713 #endif 1714 1715 1716 int 1717 freebsd32_settimeofday(struct thread *td, 1718 struct freebsd32_settimeofday_args *uap) 1719 { 1720 struct timeval32 tv32; 1721 struct timeval tv, *tvp; 1722 struct timezone tz, *tzp; 1723 int error; 1724 1725 if (uap->tv) { 1726 error = copyin(uap->tv, &tv32, sizeof(tv32)); 1727 if (error) 1728 return (error); 1729 CP(tv32, tv, tv_sec); 1730 CP(tv32, tv, tv_usec); 1731 tvp = &tv; 1732 } else 1733 tvp = NULL; 1734 if (uap->tzp) { 1735 error = copyin(uap->tzp, &tz, sizeof(tz)); 1736 if (error) 1737 return (error); 1738 tzp = &tz; 1739 } else 1740 tzp = NULL; 1741 return (kern_settimeofday(td, tvp, tzp)); 1742 } 1743 1744 int 1745 freebsd32_utimes(struct thread *td, struct freebsd32_utimes_args *uap) 1746 { 1747 struct timeval32 s32[2]; 1748 struct timeval s[2], *sp; 1749 int error; 1750 1751 if (uap->tptr != NULL) { 1752 error = copyin(uap->tptr, s32, sizeof(s32)); 1753 if (error) 1754 return (error); 1755 CP(s32[0], s[0], tv_sec); 1756 CP(s32[0], s[0], tv_usec); 1757 CP(s32[1], s[1], tv_sec); 1758 CP(s32[1], s[1], tv_usec); 1759 sp = s; 1760 } else 1761 sp = NULL; 1762 return (kern_utimesat(td, AT_FDCWD, uap->path, UIO_USERSPACE, 1763 sp, UIO_SYSSPACE)); 1764 } 1765 1766 int 1767 freebsd32_lutimes(struct thread *td, struct freebsd32_lutimes_args *uap) 1768 { 1769 struct timeval32 s32[2]; 1770 struct timeval s[2], *sp; 1771 int error; 1772 1773 if (uap->tptr != NULL) { 1774 error = copyin(uap->tptr, s32, sizeof(s32)); 1775 if (error) 1776 return (error); 1777 CP(s32[0], s[0], tv_sec); 1778 CP(s32[0], s[0], tv_usec); 1779 CP(s32[1], s[1], tv_sec); 1780 CP(s32[1], s[1], tv_usec); 1781 sp = s; 1782 } else 1783 sp = NULL; 1784 return (kern_lutimes(td, uap->path, UIO_USERSPACE, sp, UIO_SYSSPACE)); 1785 } 1786 1787 int 1788 freebsd32_futimes(struct thread *td, struct freebsd32_futimes_args *uap) 1789 { 1790 struct timeval32 s32[2]; 1791 struct timeval s[2], *sp; 1792 int error; 1793 1794 if (uap->tptr != NULL) { 1795 error = copyin(uap->tptr, s32, sizeof(s32)); 1796 if (error) 1797 return (error); 1798 CP(s32[0], s[0], tv_sec); 1799 CP(s32[0], s[0], tv_usec); 1800 CP(s32[1], s[1], tv_sec); 1801 CP(s32[1], s[1], tv_usec); 1802 sp = s; 1803 } else 1804 sp = NULL; 1805 return (kern_futimes(td, uap->fd, sp, UIO_SYSSPACE)); 1806 } 1807 1808 int 1809 freebsd32_futimesat(struct thread *td, struct freebsd32_futimesat_args *uap) 1810 { 1811 struct timeval32 s32[2]; 1812 struct timeval s[2], *sp; 1813 int error; 1814 1815 if (uap->times != NULL) { 1816 error = copyin(uap->times, s32, sizeof(s32)); 1817 if (error) 1818 return (error); 1819 CP(s32[0], s[0], tv_sec); 1820 CP(s32[0], s[0], tv_usec); 1821 CP(s32[1], s[1], tv_sec); 1822 CP(s32[1], s[1], tv_usec); 1823 sp = s; 1824 } else 1825 sp = NULL; 1826 return (kern_utimesat(td, uap->fd, uap->path, UIO_USERSPACE, 1827 sp, UIO_SYSSPACE)); 1828 } 1829 1830 int 1831 freebsd32_futimens(struct thread *td, struct freebsd32_futimens_args *uap) 1832 { 1833 struct timespec32 ts32[2]; 1834 struct timespec ts[2], *tsp; 1835 int error; 1836 1837 if (uap->times != NULL) { 1838 error = copyin(uap->times, ts32, sizeof(ts32)); 1839 if (error) 1840 return (error); 1841 CP(ts32[0], ts[0], tv_sec); 1842 CP(ts32[0], ts[0], tv_nsec); 1843 CP(ts32[1], ts[1], tv_sec); 1844 CP(ts32[1], ts[1], tv_nsec); 1845 tsp = ts; 1846 } else 1847 tsp = NULL; 1848 return (kern_futimens(td, uap->fd, tsp, UIO_SYSSPACE)); 1849 } 1850 1851 int 1852 freebsd32_utimensat(struct thread *td, struct freebsd32_utimensat_args *uap) 1853 { 1854 struct timespec32 ts32[2]; 1855 struct timespec ts[2], *tsp; 1856 int error; 1857 1858 if (uap->times != NULL) { 1859 error = copyin(uap->times, ts32, sizeof(ts32)); 1860 if (error) 1861 return (error); 1862 CP(ts32[0], ts[0], tv_sec); 1863 CP(ts32[0], ts[0], tv_nsec); 1864 CP(ts32[1], ts[1], tv_sec); 1865 CP(ts32[1], ts[1], tv_nsec); 1866 tsp = ts; 1867 } else 1868 tsp = NULL; 1869 return (kern_utimensat(td, uap->fd, uap->path, UIO_USERSPACE, 1870 tsp, UIO_SYSSPACE, uap->flag)); 1871 } 1872 1873 int 1874 freebsd32_adjtime(struct thread *td, struct freebsd32_adjtime_args *uap) 1875 { 1876 struct timeval32 tv32; 1877 struct timeval delta, olddelta, *deltap; 1878 int error; 1879 1880 if (uap->delta) { 1881 error = copyin(uap->delta, &tv32, sizeof(tv32)); 1882 if (error) 1883 return (error); 1884 CP(tv32, delta, tv_sec); 1885 CP(tv32, delta, tv_usec); 1886 deltap = δ 1887 } else 1888 deltap = NULL; 1889 error = kern_adjtime(td, deltap, &olddelta); 1890 if (uap->olddelta && error == 0) { 1891 CP(olddelta, tv32, tv_sec); 1892 CP(olddelta, tv32, tv_usec); 1893 error = copyout(&tv32, uap->olddelta, sizeof(tv32)); 1894 } 1895 return (error); 1896 } 1897 1898 #ifdef COMPAT_FREEBSD4 1899 int 1900 freebsd4_freebsd32_statfs(struct thread *td, struct freebsd4_freebsd32_statfs_args *uap) 1901 { 1902 struct ostatfs32 s32; 1903 struct statfs *sp; 1904 int error; 1905 1906 sp = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK); 1907 error = kern_statfs(td, uap->path, UIO_USERSPACE, sp); 1908 if (error == 0) { 1909 copy_statfs(sp, &s32); 1910 error = copyout(&s32, uap->buf, sizeof(s32)); 1911 } 1912 free(sp, M_STATFS); 1913 return (error); 1914 } 1915 #endif 1916 1917 #ifdef COMPAT_FREEBSD4 1918 int 1919 freebsd4_freebsd32_fstatfs(struct thread *td, struct freebsd4_freebsd32_fstatfs_args *uap) 1920 { 1921 struct ostatfs32 s32; 1922 struct statfs *sp; 1923 int error; 1924 1925 sp = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK); 1926 error = kern_fstatfs(td, uap->fd, sp); 1927 if (error == 0) { 1928 copy_statfs(sp, &s32); 1929 error = copyout(&s32, uap->buf, sizeof(s32)); 1930 } 1931 free(sp, M_STATFS); 1932 return (error); 1933 } 1934 #endif 1935 1936 #ifdef COMPAT_FREEBSD4 1937 int 1938 freebsd4_freebsd32_fhstatfs(struct thread *td, struct freebsd4_freebsd32_fhstatfs_args *uap) 1939 { 1940 struct ostatfs32 s32; 1941 struct statfs *sp; 1942 fhandle_t fh; 1943 int error; 1944 1945 if ((error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t))) != 0) 1946 return (error); 1947 sp = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK); 1948 error = kern_fhstatfs(td, fh, sp); 1949 if (error == 0) { 1950 copy_statfs(sp, &s32); 1951 error = copyout(&s32, uap->buf, sizeof(s32)); 1952 } 1953 free(sp, M_STATFS); 1954 return (error); 1955 } 1956 #endif 1957 1958 int 1959 freebsd32_pread(struct thread *td, struct freebsd32_pread_args *uap) 1960 { 1961 1962 return (kern_pread(td, uap->fd, uap->buf, uap->nbyte, 1963 PAIR32TO64(off_t, uap->offset))); 1964 } 1965 1966 int 1967 freebsd32_pwrite(struct thread *td, struct freebsd32_pwrite_args *uap) 1968 { 1969 1970 return (kern_pwrite(td, uap->fd, uap->buf, uap->nbyte, 1971 PAIR32TO64(off_t, uap->offset))); 1972 } 1973 1974 #ifdef COMPAT_43 1975 int 1976 ofreebsd32_lseek(struct thread *td, struct ofreebsd32_lseek_args *uap) 1977 { 1978 1979 return (kern_lseek(td, uap->fd, uap->offset, uap->whence)); 1980 } 1981 #endif 1982 1983 int 1984 freebsd32_lseek(struct thread *td, struct freebsd32_lseek_args *uap) 1985 { 1986 int error; 1987 off_t pos; 1988 1989 error = kern_lseek(td, uap->fd, PAIR32TO64(off_t, uap->offset), 1990 uap->whence); 1991 /* Expand the quad return into two parts for eax and edx */ 1992 pos = td->td_uretoff.tdu_off; 1993 td->td_retval[RETVAL_LO] = pos & 0xffffffff; /* %eax */ 1994 td->td_retval[RETVAL_HI] = pos >> 32; /* %edx */ 1995 return error; 1996 } 1997 1998 int 1999 freebsd32_truncate(struct thread *td, struct freebsd32_truncate_args *uap) 2000 { 2001 2002 return (kern_truncate(td, uap->path, UIO_USERSPACE, 2003 PAIR32TO64(off_t, uap->length))); 2004 } 2005 2006 #ifdef COMPAT_43 2007 int 2008 ofreebsd32_truncate(struct thread *td, struct ofreebsd32_truncate_args *uap) 2009 { 2010 return (kern_truncate(td, uap->path, UIO_USERSPACE, uap->length)); 2011 } 2012 #endif 2013 2014 int 2015 freebsd32_ftruncate(struct thread *td, struct freebsd32_ftruncate_args *uap) 2016 { 2017 2018 return (kern_ftruncate(td, uap->fd, PAIR32TO64(off_t, uap->length))); 2019 } 2020 2021 #ifdef COMPAT_43 2022 int 2023 ofreebsd32_ftruncate(struct thread *td, struct ofreebsd32_ftruncate_args *uap) 2024 { 2025 return (kern_ftruncate(td, uap->fd, uap->length)); 2026 } 2027 2028 int 2029 ofreebsd32_getdirentries(struct thread *td, 2030 struct ofreebsd32_getdirentries_args *uap) 2031 { 2032 struct ogetdirentries_args ap; 2033 int error; 2034 long loff; 2035 int32_t loff_cut; 2036 2037 ap.fd = uap->fd; 2038 ap.buf = uap->buf; 2039 ap.count = uap->count; 2040 ap.basep = NULL; 2041 error = kern_ogetdirentries(td, &ap, &loff); 2042 if (error == 0) { 2043 loff_cut = loff; 2044 error = copyout(&loff_cut, uap->basep, sizeof(int32_t)); 2045 } 2046 return (error); 2047 } 2048 #endif 2049 2050 #if defined(COMPAT_FREEBSD11) 2051 int 2052 freebsd11_freebsd32_getdirentries(struct thread *td, 2053 struct freebsd11_freebsd32_getdirentries_args *uap) 2054 { 2055 long base; 2056 int32_t base32; 2057 int error; 2058 2059 error = freebsd11_kern_getdirentries(td, uap->fd, uap->buf, uap->count, 2060 &base, NULL); 2061 if (error) 2062 return (error); 2063 if (uap->basep != NULL) { 2064 base32 = base; 2065 error = copyout(&base32, uap->basep, sizeof(int32_t)); 2066 } 2067 return (error); 2068 } 2069 #endif /* COMPAT_FREEBSD11 */ 2070 2071 #ifdef COMPAT_FREEBSD6 2072 /* versions with the 'int pad' argument */ 2073 int 2074 freebsd6_freebsd32_pread(struct thread *td, struct freebsd6_freebsd32_pread_args *uap) 2075 { 2076 2077 return (kern_pread(td, uap->fd, uap->buf, uap->nbyte, 2078 PAIR32TO64(off_t, uap->offset))); 2079 } 2080 2081 int 2082 freebsd6_freebsd32_pwrite(struct thread *td, struct freebsd6_freebsd32_pwrite_args *uap) 2083 { 2084 2085 return (kern_pwrite(td, uap->fd, uap->buf, uap->nbyte, 2086 PAIR32TO64(off_t, uap->offset))); 2087 } 2088 2089 int 2090 freebsd6_freebsd32_lseek(struct thread *td, struct freebsd6_freebsd32_lseek_args *uap) 2091 { 2092 int error; 2093 off_t pos; 2094 2095 error = kern_lseek(td, uap->fd, PAIR32TO64(off_t, uap->offset), 2096 uap->whence); 2097 /* Expand the quad return into two parts for eax and edx */ 2098 pos = *(off_t *)(td->td_retval); 2099 td->td_retval[RETVAL_LO] = pos & 0xffffffff; /* %eax */ 2100 td->td_retval[RETVAL_HI] = pos >> 32; /* %edx */ 2101 return error; 2102 } 2103 2104 int 2105 freebsd6_freebsd32_truncate(struct thread *td, struct freebsd6_freebsd32_truncate_args *uap) 2106 { 2107 2108 return (kern_truncate(td, uap->path, UIO_USERSPACE, 2109 PAIR32TO64(off_t, uap->length))); 2110 } 2111 2112 int 2113 freebsd6_freebsd32_ftruncate(struct thread *td, struct freebsd6_freebsd32_ftruncate_args *uap) 2114 { 2115 2116 return (kern_ftruncate(td, uap->fd, PAIR32TO64(off_t, uap->length))); 2117 } 2118 #endif /* COMPAT_FREEBSD6 */ 2119 2120 struct sf_hdtr32 { 2121 uint32_t headers; 2122 int hdr_cnt; 2123 uint32_t trailers; 2124 int trl_cnt; 2125 }; 2126 2127 static int 2128 freebsd32_do_sendfile(struct thread *td, 2129 struct freebsd32_sendfile_args *uap, int compat) 2130 { 2131 struct sf_hdtr32 hdtr32; 2132 struct sf_hdtr hdtr; 2133 struct uio *hdr_uio, *trl_uio; 2134 struct file *fp; 2135 cap_rights_t rights; 2136 struct iovec32 *iov32; 2137 off_t offset, sbytes; 2138 int error; 2139 2140 offset = PAIR32TO64(off_t, uap->offset); 2141 if (offset < 0) 2142 return (EINVAL); 2143 2144 hdr_uio = trl_uio = NULL; 2145 2146 if (uap->hdtr != NULL) { 2147 error = copyin(uap->hdtr, &hdtr32, sizeof(hdtr32)); 2148 if (error) 2149 goto out; 2150 PTRIN_CP(hdtr32, hdtr, headers); 2151 CP(hdtr32, hdtr, hdr_cnt); 2152 PTRIN_CP(hdtr32, hdtr, trailers); 2153 CP(hdtr32, hdtr, trl_cnt); 2154 2155 if (hdtr.headers != NULL) { 2156 iov32 = PTRIN(hdtr32.headers); 2157 error = freebsd32_copyinuio(iov32, 2158 hdtr32.hdr_cnt, &hdr_uio); 2159 if (error) 2160 goto out; 2161 #ifdef COMPAT_FREEBSD4 2162 /* 2163 * In FreeBSD < 5.0 the nbytes to send also included 2164 * the header. If compat is specified subtract the 2165 * header size from nbytes. 2166 */ 2167 if (compat) { 2168 if (uap->nbytes > hdr_uio->uio_resid) 2169 uap->nbytes -= hdr_uio->uio_resid; 2170 else 2171 uap->nbytes = 0; 2172 } 2173 #endif 2174 } 2175 if (hdtr.trailers != NULL) { 2176 iov32 = PTRIN(hdtr32.trailers); 2177 error = freebsd32_copyinuio(iov32, 2178 hdtr32.trl_cnt, &trl_uio); 2179 if (error) 2180 goto out; 2181 } 2182 } 2183 2184 AUDIT_ARG_FD(uap->fd); 2185 2186 if ((error = fget_read(td, uap->fd, 2187 cap_rights_init_one(&rights, CAP_PREAD), &fp)) != 0) 2188 goto out; 2189 2190 error = fo_sendfile(fp, uap->s, hdr_uio, trl_uio, offset, 2191 uap->nbytes, &sbytes, uap->flags, td); 2192 fdrop(fp, td); 2193 2194 if (uap->sbytes != NULL) 2195 (void)copyout(&sbytes, uap->sbytes, sizeof(off_t)); 2196 2197 out: 2198 if (hdr_uio) 2199 freeuio(hdr_uio); 2200 if (trl_uio) 2201 freeuio(trl_uio); 2202 return (error); 2203 } 2204 2205 #ifdef COMPAT_FREEBSD4 2206 int 2207 freebsd4_freebsd32_sendfile(struct thread *td, 2208 struct freebsd4_freebsd32_sendfile_args *uap) 2209 { 2210 return (freebsd32_do_sendfile(td, 2211 (struct freebsd32_sendfile_args *)uap, 1)); 2212 } 2213 #endif 2214 2215 int 2216 freebsd32_sendfile(struct thread *td, struct freebsd32_sendfile_args *uap) 2217 { 2218 2219 return (freebsd32_do_sendfile(td, uap, 0)); 2220 } 2221 2222 static void 2223 copy_stat(struct stat *in, struct stat32 *out) 2224 { 2225 2226 #ifndef __amd64__ 2227 /* 2228 * 32-bit architectures other than i386 have 64-bit time_t. This 2229 * results in struct timespec32 with 12 bytes for tv_sec and tv_nsec, 2230 * and 4 bytes of padding. Zero the padding holes in struct stat32. 2231 */ 2232 bzero(&out->st_atim, sizeof(out->st_atim)); 2233 bzero(&out->st_mtim, sizeof(out->st_mtim)); 2234 bzero(&out->st_ctim, sizeof(out->st_ctim)); 2235 bzero(&out->st_birthtim, sizeof(out->st_birthtim)); 2236 #endif 2237 CP(*in, *out, st_dev); 2238 CP(*in, *out, st_ino); 2239 CP(*in, *out, st_mode); 2240 CP(*in, *out, st_nlink); 2241 CP(*in, *out, st_uid); 2242 CP(*in, *out, st_gid); 2243 CP(*in, *out, st_rdev); 2244 TS_CP(*in, *out, st_atim); 2245 TS_CP(*in, *out, st_mtim); 2246 TS_CP(*in, *out, st_ctim); 2247 CP(*in, *out, st_size); 2248 CP(*in, *out, st_blocks); 2249 CP(*in, *out, st_blksize); 2250 CP(*in, *out, st_flags); 2251 CP(*in, *out, st_gen); 2252 TS_CP(*in, *out, st_birthtim); 2253 out->st_padding0 = 0; 2254 out->st_padding1 = 0; 2255 #ifdef __STAT32_TIME_T_EXT 2256 out->st_atim_ext = 0; 2257 out->st_mtim_ext = 0; 2258 out->st_ctim_ext = 0; 2259 out->st_btim_ext = 0; 2260 #endif 2261 bzero(out->st_spare, sizeof(out->st_spare)); 2262 } 2263 2264 #ifdef COMPAT_43 2265 static void 2266 copy_ostat(struct stat *in, struct ostat32 *out) 2267 { 2268 2269 bzero(out, sizeof(*out)); 2270 CP(*in, *out, st_dev); 2271 CP(*in, *out, st_ino); 2272 CP(*in, *out, st_mode); 2273 CP(*in, *out, st_nlink); 2274 CP(*in, *out, st_uid); 2275 CP(*in, *out, st_gid); 2276 CP(*in, *out, st_rdev); 2277 out->st_size = MIN(in->st_size, INT32_MAX); 2278 TS_CP(*in, *out, st_atim); 2279 TS_CP(*in, *out, st_mtim); 2280 TS_CP(*in, *out, st_ctim); 2281 CP(*in, *out, st_blksize); 2282 CP(*in, *out, st_blocks); 2283 CP(*in, *out, st_flags); 2284 CP(*in, *out, st_gen); 2285 } 2286 #endif 2287 2288 #ifdef COMPAT_43 2289 int 2290 ofreebsd32_stat(struct thread *td, struct ofreebsd32_stat_args *uap) 2291 { 2292 struct stat sb; 2293 struct ostat32 sb32; 2294 int error; 2295 2296 error = kern_statat(td, 0, AT_FDCWD, uap->path, UIO_USERSPACE, &sb); 2297 if (error) 2298 return (error); 2299 copy_ostat(&sb, &sb32); 2300 error = copyout(&sb32, uap->ub, sizeof (sb32)); 2301 return (error); 2302 } 2303 #endif 2304 2305 int 2306 freebsd32_fstat(struct thread *td, struct freebsd32_fstat_args *uap) 2307 { 2308 struct stat ub; 2309 struct stat32 ub32; 2310 int error; 2311 2312 error = kern_fstat(td, uap->fd, &ub); 2313 if (error) 2314 return (error); 2315 copy_stat(&ub, &ub32); 2316 error = copyout(&ub32, uap->sb, sizeof(ub32)); 2317 return (error); 2318 } 2319 2320 #ifdef COMPAT_43 2321 int 2322 ofreebsd32_fstat(struct thread *td, struct ofreebsd32_fstat_args *uap) 2323 { 2324 struct stat ub; 2325 struct ostat32 ub32; 2326 int error; 2327 2328 error = kern_fstat(td, uap->fd, &ub); 2329 if (error) 2330 return (error); 2331 copy_ostat(&ub, &ub32); 2332 error = copyout(&ub32, uap->sb, sizeof(ub32)); 2333 return (error); 2334 } 2335 #endif 2336 2337 int 2338 freebsd32_fstatat(struct thread *td, struct freebsd32_fstatat_args *uap) 2339 { 2340 struct stat ub; 2341 struct stat32 ub32; 2342 int error; 2343 2344 error = kern_statat(td, uap->flag, uap->fd, uap->path, UIO_USERSPACE, 2345 &ub); 2346 if (error) 2347 return (error); 2348 copy_stat(&ub, &ub32); 2349 error = copyout(&ub32, uap->buf, sizeof(ub32)); 2350 return (error); 2351 } 2352 2353 #ifdef COMPAT_43 2354 int 2355 ofreebsd32_lstat(struct thread *td, struct ofreebsd32_lstat_args *uap) 2356 { 2357 struct stat sb; 2358 struct ostat32 sb32; 2359 int error; 2360 2361 error = kern_statat(td, AT_SYMLINK_NOFOLLOW, AT_FDCWD, uap->path, 2362 UIO_USERSPACE, &sb); 2363 if (error) 2364 return (error); 2365 copy_ostat(&sb, &sb32); 2366 error = copyout(&sb32, uap->ub, sizeof (sb32)); 2367 return (error); 2368 } 2369 #endif 2370 2371 int 2372 freebsd32_fhstat(struct thread *td, struct freebsd32_fhstat_args *uap) 2373 { 2374 struct stat sb; 2375 struct stat32 sb32; 2376 struct fhandle fh; 2377 int error; 2378 2379 error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t)); 2380 if (error != 0) 2381 return (error); 2382 error = kern_fhstat(td, fh, &sb); 2383 if (error != 0) 2384 return (error); 2385 copy_stat(&sb, &sb32); 2386 error = copyout(&sb32, uap->sb, sizeof (sb32)); 2387 return (error); 2388 } 2389 2390 #if defined(COMPAT_FREEBSD11) 2391 extern int ino64_trunc_error; 2392 2393 static int 2394 freebsd11_cvtstat32(struct stat *in, struct freebsd11_stat32 *out) 2395 { 2396 2397 #ifndef __amd64__ 2398 /* 2399 * 32-bit architectures other than i386 have 64-bit time_t. This 2400 * results in struct timespec32 with 12 bytes for tv_sec and tv_nsec, 2401 * and 4 bytes of padding. Zero the padding holes in freebsd11_stat32. 2402 */ 2403 bzero(&out->st_atim, sizeof(out->st_atim)); 2404 bzero(&out->st_mtim, sizeof(out->st_mtim)); 2405 bzero(&out->st_ctim, sizeof(out->st_ctim)); 2406 bzero(&out->st_birthtim, sizeof(out->st_birthtim)); 2407 #endif 2408 2409 CP(*in, *out, st_ino); 2410 if (in->st_ino != out->st_ino) { 2411 switch (ino64_trunc_error) { 2412 default: 2413 case 0: 2414 break; 2415 case 1: 2416 return (EOVERFLOW); 2417 case 2: 2418 out->st_ino = UINT32_MAX; 2419 break; 2420 } 2421 } 2422 CP(*in, *out, st_nlink); 2423 if (in->st_nlink != out->st_nlink) { 2424 switch (ino64_trunc_error) { 2425 default: 2426 case 0: 2427 break; 2428 case 1: 2429 return (EOVERFLOW); 2430 case 2: 2431 out->st_nlink = UINT16_MAX; 2432 break; 2433 } 2434 } 2435 out->st_dev = in->st_dev; 2436 if (out->st_dev != in->st_dev) { 2437 switch (ino64_trunc_error) { 2438 default: 2439 break; 2440 case 1: 2441 return (EOVERFLOW); 2442 } 2443 } 2444 CP(*in, *out, st_mode); 2445 CP(*in, *out, st_uid); 2446 CP(*in, *out, st_gid); 2447 out->st_rdev = in->st_rdev; 2448 if (out->st_rdev != in->st_rdev) { 2449 switch (ino64_trunc_error) { 2450 default: 2451 break; 2452 case 1: 2453 return (EOVERFLOW); 2454 } 2455 } 2456 TS_CP(*in, *out, st_atim); 2457 TS_CP(*in, *out, st_mtim); 2458 TS_CP(*in, *out, st_ctim); 2459 CP(*in, *out, st_size); 2460 CP(*in, *out, st_blocks); 2461 CP(*in, *out, st_blksize); 2462 CP(*in, *out, st_flags); 2463 CP(*in, *out, st_gen); 2464 TS_CP(*in, *out, st_birthtim); 2465 out->st_lspare = 0; 2466 bzero((char *)&out->st_birthtim + sizeof(out->st_birthtim), 2467 sizeof(*out) - offsetof(struct freebsd11_stat32, 2468 st_birthtim) - sizeof(out->st_birthtim)); 2469 return (0); 2470 } 2471 2472 int 2473 freebsd11_freebsd32_stat(struct thread *td, 2474 struct freebsd11_freebsd32_stat_args *uap) 2475 { 2476 struct stat sb; 2477 struct freebsd11_stat32 sb32; 2478 int error; 2479 2480 error = kern_statat(td, 0, AT_FDCWD, uap->path, UIO_USERSPACE, &sb); 2481 if (error != 0) 2482 return (error); 2483 error = freebsd11_cvtstat32(&sb, &sb32); 2484 if (error == 0) 2485 error = copyout(&sb32, uap->ub, sizeof (sb32)); 2486 return (error); 2487 } 2488 2489 int 2490 freebsd11_freebsd32_fstat(struct thread *td, 2491 struct freebsd11_freebsd32_fstat_args *uap) 2492 { 2493 struct stat sb; 2494 struct freebsd11_stat32 sb32; 2495 int error; 2496 2497 error = kern_fstat(td, uap->fd, &sb); 2498 if (error != 0) 2499 return (error); 2500 error = freebsd11_cvtstat32(&sb, &sb32); 2501 if (error == 0) 2502 error = copyout(&sb32, uap->sb, sizeof (sb32)); 2503 return (error); 2504 } 2505 2506 int 2507 freebsd11_freebsd32_fstatat(struct thread *td, 2508 struct freebsd11_freebsd32_fstatat_args *uap) 2509 { 2510 struct stat sb; 2511 struct freebsd11_stat32 sb32; 2512 int error; 2513 2514 error = kern_statat(td, uap->flag, uap->fd, uap->path, UIO_USERSPACE, 2515 &sb); 2516 if (error != 0) 2517 return (error); 2518 error = freebsd11_cvtstat32(&sb, &sb32); 2519 if (error == 0) 2520 error = copyout(&sb32, uap->buf, sizeof (sb32)); 2521 return (error); 2522 } 2523 2524 int 2525 freebsd11_freebsd32_lstat(struct thread *td, 2526 struct freebsd11_freebsd32_lstat_args *uap) 2527 { 2528 struct stat sb; 2529 struct freebsd11_stat32 sb32; 2530 int error; 2531 2532 error = kern_statat(td, AT_SYMLINK_NOFOLLOW, AT_FDCWD, uap->path, 2533 UIO_USERSPACE, &sb); 2534 if (error != 0) 2535 return (error); 2536 error = freebsd11_cvtstat32(&sb, &sb32); 2537 if (error == 0) 2538 error = copyout(&sb32, uap->ub, sizeof (sb32)); 2539 return (error); 2540 } 2541 2542 int 2543 freebsd11_freebsd32_fhstat(struct thread *td, 2544 struct freebsd11_freebsd32_fhstat_args *uap) 2545 { 2546 struct stat sb; 2547 struct freebsd11_stat32 sb32; 2548 struct fhandle fh; 2549 int error; 2550 2551 error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t)); 2552 if (error != 0) 2553 return (error); 2554 error = kern_fhstat(td, fh, &sb); 2555 if (error != 0) 2556 return (error); 2557 error = freebsd11_cvtstat32(&sb, &sb32); 2558 if (error == 0) 2559 error = copyout(&sb32, uap->sb, sizeof (sb32)); 2560 return (error); 2561 } 2562 2563 static int 2564 freebsd11_cvtnstat32(struct stat *sb, struct nstat32 *nsb32) 2565 { 2566 struct nstat nsb; 2567 int error; 2568 2569 error = freebsd11_cvtnstat(sb, &nsb); 2570 if (error != 0) 2571 return (error); 2572 2573 bzero(nsb32, sizeof(*nsb32)); 2574 CP(nsb, *nsb32, st_dev); 2575 CP(nsb, *nsb32, st_ino); 2576 CP(nsb, *nsb32, st_mode); 2577 CP(nsb, *nsb32, st_nlink); 2578 CP(nsb, *nsb32, st_uid); 2579 CP(nsb, *nsb32, st_gid); 2580 CP(nsb, *nsb32, st_rdev); 2581 CP(nsb, *nsb32, st_atim.tv_sec); 2582 CP(nsb, *nsb32, st_atim.tv_nsec); 2583 CP(nsb, *nsb32, st_mtim.tv_sec); 2584 CP(nsb, *nsb32, st_mtim.tv_nsec); 2585 CP(nsb, *nsb32, st_ctim.tv_sec); 2586 CP(nsb, *nsb32, st_ctim.tv_nsec); 2587 CP(nsb, *nsb32, st_size); 2588 CP(nsb, *nsb32, st_blocks); 2589 CP(nsb, *nsb32, st_blksize); 2590 CP(nsb, *nsb32, st_flags); 2591 CP(nsb, *nsb32, st_gen); 2592 CP(nsb, *nsb32, st_birthtim.tv_sec); 2593 CP(nsb, *nsb32, st_birthtim.tv_nsec); 2594 return (0); 2595 } 2596 2597 int 2598 freebsd11_freebsd32_nstat(struct thread *td, 2599 struct freebsd11_freebsd32_nstat_args *uap) 2600 { 2601 struct stat sb; 2602 struct nstat32 nsb; 2603 int error; 2604 2605 error = kern_statat(td, 0, AT_FDCWD, uap->path, UIO_USERSPACE, &sb); 2606 if (error != 0) 2607 return (error); 2608 error = freebsd11_cvtnstat32(&sb, &nsb); 2609 if (error != 0) 2610 error = copyout(&nsb, uap->ub, sizeof (nsb)); 2611 return (error); 2612 } 2613 2614 int 2615 freebsd11_freebsd32_nlstat(struct thread *td, 2616 struct freebsd11_freebsd32_nlstat_args *uap) 2617 { 2618 struct stat sb; 2619 struct nstat32 nsb; 2620 int error; 2621 2622 error = kern_statat(td, AT_SYMLINK_NOFOLLOW, AT_FDCWD, uap->path, 2623 UIO_USERSPACE, &sb); 2624 if (error != 0) 2625 return (error); 2626 error = freebsd11_cvtnstat32(&sb, &nsb); 2627 if (error == 0) 2628 error = copyout(&nsb, uap->ub, sizeof (nsb)); 2629 return (error); 2630 } 2631 2632 int 2633 freebsd11_freebsd32_nfstat(struct thread *td, 2634 struct freebsd11_freebsd32_nfstat_args *uap) 2635 { 2636 struct nstat32 nub; 2637 struct stat ub; 2638 int error; 2639 2640 error = kern_fstat(td, uap->fd, &ub); 2641 if (error != 0) 2642 return (error); 2643 error = freebsd11_cvtnstat32(&ub, &nub); 2644 if (error == 0) 2645 error = copyout(&nub, uap->sb, sizeof(nub)); 2646 return (error); 2647 } 2648 #endif 2649 2650 int 2651 freebsd32___sysctl(struct thread *td, struct freebsd32___sysctl_args *uap) 2652 { 2653 int error, name[CTL_MAXNAME]; 2654 size_t j, oldlen; 2655 uint32_t tmp; 2656 2657 if (uap->namelen > CTL_MAXNAME || uap->namelen < 2) 2658 return (EINVAL); 2659 error = copyin(uap->name, name, uap->namelen * sizeof(int)); 2660 if (error) 2661 return (error); 2662 if (uap->oldlenp) { 2663 error = fueword32(uap->oldlenp, &tmp); 2664 oldlen = tmp; 2665 } else { 2666 oldlen = 0; 2667 } 2668 if (error != 0) 2669 return (EFAULT); 2670 error = userland_sysctl(td, name, uap->namelen, 2671 uap->old, &oldlen, 1, 2672 uap->new, uap->newlen, &j, SCTL_MASK32); 2673 if (error) 2674 return (error); 2675 if (uap->oldlenp != NULL && suword32(uap->oldlenp, j) != 0) 2676 error = EFAULT; 2677 return (error); 2678 } 2679 2680 int 2681 freebsd32___sysctlbyname(struct thread *td, 2682 struct freebsd32___sysctlbyname_args *uap) 2683 { 2684 size_t oldlen, rv; 2685 int error; 2686 uint32_t tmp; 2687 2688 if (uap->oldlenp != NULL) { 2689 error = fueword32(uap->oldlenp, &tmp); 2690 oldlen = tmp; 2691 } else { 2692 error = oldlen = 0; 2693 } 2694 if (error != 0) 2695 return (EFAULT); 2696 error = kern___sysctlbyname(td, uap->name, uap->namelen, uap->old, 2697 &oldlen, uap->new, uap->newlen, &rv, SCTL_MASK32, 1); 2698 if (error != 0) 2699 return (error); 2700 if (uap->oldlenp != NULL && suword32(uap->oldlenp, rv) != 0) 2701 error = EFAULT; 2702 return (error); 2703 } 2704 2705 int 2706 freebsd32_jail(struct thread *td, struct freebsd32_jail_args *uap) 2707 { 2708 uint32_t version; 2709 int error; 2710 struct jail j; 2711 2712 error = copyin(uap->jail, &version, sizeof(uint32_t)); 2713 if (error) 2714 return (error); 2715 2716 switch (version) { 2717 case 0: 2718 { 2719 /* FreeBSD single IPv4 jails. */ 2720 struct jail32_v0 j32_v0; 2721 2722 bzero(&j, sizeof(struct jail)); 2723 error = copyin(uap->jail, &j32_v0, sizeof(struct jail32_v0)); 2724 if (error) 2725 return (error); 2726 CP(j32_v0, j, version); 2727 PTRIN_CP(j32_v0, j, path); 2728 PTRIN_CP(j32_v0, j, hostname); 2729 j.ip4s = htonl(j32_v0.ip_number); /* jail_v0 is host order */ 2730 break; 2731 } 2732 2733 case 1: 2734 /* 2735 * Version 1 was used by multi-IPv4 jail implementations 2736 * that never made it into the official kernel. 2737 */ 2738 return (EINVAL); 2739 2740 case 2: /* JAIL_API_VERSION */ 2741 { 2742 /* FreeBSD multi-IPv4/IPv6,noIP jails. */ 2743 struct jail32 j32; 2744 2745 error = copyin(uap->jail, &j32, sizeof(struct jail32)); 2746 if (error) 2747 return (error); 2748 CP(j32, j, version); 2749 PTRIN_CP(j32, j, path); 2750 PTRIN_CP(j32, j, hostname); 2751 PTRIN_CP(j32, j, jailname); 2752 CP(j32, j, ip4s); 2753 CP(j32, j, ip6s); 2754 PTRIN_CP(j32, j, ip4); 2755 PTRIN_CP(j32, j, ip6); 2756 break; 2757 } 2758 2759 default: 2760 /* Sci-Fi jails are not supported, sorry. */ 2761 return (EINVAL); 2762 } 2763 return (kern_jail(td, &j)); 2764 } 2765 2766 int 2767 freebsd32_jail_set(struct thread *td, struct freebsd32_jail_set_args *uap) 2768 { 2769 struct uio *auio; 2770 int error; 2771 2772 /* Check that we have an even number of iovecs. */ 2773 if (uap->iovcnt & 1) 2774 return (EINVAL); 2775 2776 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 2777 if (error) 2778 return (error); 2779 error = kern_jail_set(td, auio, uap->flags); 2780 freeuio(auio); 2781 return (error); 2782 } 2783 2784 int 2785 freebsd32_jail_get(struct thread *td, struct freebsd32_jail_get_args *uap) 2786 { 2787 struct iovec32 iov32; 2788 struct uio *auio; 2789 int error, i; 2790 2791 /* Check that we have an even number of iovecs. */ 2792 if (uap->iovcnt & 1) 2793 return (EINVAL); 2794 2795 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 2796 if (error) 2797 return (error); 2798 error = kern_jail_get(td, auio, uap->flags); 2799 if (error == 0) 2800 for (i = 0; i < uap->iovcnt; i++) { 2801 PTROUT_CP(auio->uio_iov[i], iov32, iov_base); 2802 CP(auio->uio_iov[i], iov32, iov_len); 2803 error = copyout(&iov32, uap->iovp + i, sizeof(iov32)); 2804 if (error != 0) 2805 break; 2806 } 2807 freeuio(auio); 2808 return (error); 2809 } 2810 2811 int 2812 freebsd32_sigaction(struct thread *td, struct freebsd32_sigaction_args *uap) 2813 { 2814 struct sigaction32 s32; 2815 struct sigaction sa, osa, *sap; 2816 int error; 2817 2818 if (uap->act) { 2819 error = copyin(uap->act, &s32, sizeof(s32)); 2820 if (error) 2821 return (error); 2822 sa.sa_handler = PTRIN(s32.sa_u); 2823 CP(s32, sa, sa_flags); 2824 CP(s32, sa, sa_mask); 2825 sap = &sa; 2826 } else 2827 sap = NULL; 2828 error = kern_sigaction(td, uap->sig, sap, &osa, 0); 2829 if (error == 0 && uap->oact != NULL) { 2830 s32.sa_u = PTROUT(osa.sa_handler); 2831 CP(osa, s32, sa_flags); 2832 CP(osa, s32, sa_mask); 2833 error = copyout(&s32, uap->oact, sizeof(s32)); 2834 } 2835 return (error); 2836 } 2837 2838 #ifdef COMPAT_FREEBSD4 2839 int 2840 freebsd4_freebsd32_sigaction(struct thread *td, 2841 struct freebsd4_freebsd32_sigaction_args *uap) 2842 { 2843 struct sigaction32 s32; 2844 struct sigaction sa, osa, *sap; 2845 int error; 2846 2847 if (uap->act) { 2848 error = copyin(uap->act, &s32, sizeof(s32)); 2849 if (error) 2850 return (error); 2851 sa.sa_handler = PTRIN(s32.sa_u); 2852 CP(s32, sa, sa_flags); 2853 CP(s32, sa, sa_mask); 2854 sap = &sa; 2855 } else 2856 sap = NULL; 2857 error = kern_sigaction(td, uap->sig, sap, &osa, KSA_FREEBSD4); 2858 if (error == 0 && uap->oact != NULL) { 2859 s32.sa_u = PTROUT(osa.sa_handler); 2860 CP(osa, s32, sa_flags); 2861 CP(osa, s32, sa_mask); 2862 error = copyout(&s32, uap->oact, sizeof(s32)); 2863 } 2864 return (error); 2865 } 2866 #endif 2867 2868 #ifdef COMPAT_43 2869 struct osigaction32 { 2870 uint32_t sa_u; 2871 osigset_t sa_mask; 2872 int sa_flags; 2873 }; 2874 2875 #define ONSIG 32 2876 2877 int 2878 ofreebsd32_sigaction(struct thread *td, 2879 struct ofreebsd32_sigaction_args *uap) 2880 { 2881 struct osigaction32 s32; 2882 struct sigaction sa, osa, *sap; 2883 int error; 2884 2885 if (uap->signum <= 0 || uap->signum >= ONSIG) 2886 return (EINVAL); 2887 2888 if (uap->nsa) { 2889 error = copyin(uap->nsa, &s32, sizeof(s32)); 2890 if (error) 2891 return (error); 2892 sa.sa_handler = PTRIN(s32.sa_u); 2893 CP(s32, sa, sa_flags); 2894 OSIG2SIG(s32.sa_mask, sa.sa_mask); 2895 sap = &sa; 2896 } else 2897 sap = NULL; 2898 error = kern_sigaction(td, uap->signum, sap, &osa, KSA_OSIGSET); 2899 if (error == 0 && uap->osa != NULL) { 2900 s32.sa_u = PTROUT(osa.sa_handler); 2901 CP(osa, s32, sa_flags); 2902 SIG2OSIG(osa.sa_mask, s32.sa_mask); 2903 error = copyout(&s32, uap->osa, sizeof(s32)); 2904 } 2905 return (error); 2906 } 2907 2908 struct sigvec32 { 2909 uint32_t sv_handler; 2910 int sv_mask; 2911 int sv_flags; 2912 }; 2913 2914 int 2915 ofreebsd32_sigvec(struct thread *td, 2916 struct ofreebsd32_sigvec_args *uap) 2917 { 2918 struct sigvec32 vec; 2919 struct sigaction sa, osa, *sap; 2920 int error; 2921 2922 if (uap->signum <= 0 || uap->signum >= ONSIG) 2923 return (EINVAL); 2924 2925 if (uap->nsv) { 2926 error = copyin(uap->nsv, &vec, sizeof(vec)); 2927 if (error) 2928 return (error); 2929 sa.sa_handler = PTRIN(vec.sv_handler); 2930 OSIG2SIG(vec.sv_mask, sa.sa_mask); 2931 sa.sa_flags = vec.sv_flags; 2932 sa.sa_flags ^= SA_RESTART; 2933 sap = &sa; 2934 } else 2935 sap = NULL; 2936 error = kern_sigaction(td, uap->signum, sap, &osa, KSA_OSIGSET); 2937 if (error == 0 && uap->osv != NULL) { 2938 vec.sv_handler = PTROUT(osa.sa_handler); 2939 SIG2OSIG(osa.sa_mask, vec.sv_mask); 2940 vec.sv_flags = osa.sa_flags; 2941 vec.sv_flags &= ~SA_NOCLDWAIT; 2942 vec.sv_flags ^= SA_RESTART; 2943 error = copyout(&vec, uap->osv, sizeof(vec)); 2944 } 2945 return (error); 2946 } 2947 2948 struct sigstack32 { 2949 uint32_t ss_sp; 2950 int ss_onstack; 2951 }; 2952 2953 int 2954 ofreebsd32_sigstack(struct thread *td, 2955 struct ofreebsd32_sigstack_args *uap) 2956 { 2957 struct sigstack32 s32; 2958 struct sigstack nss, oss; 2959 int error = 0, unss; 2960 2961 if (uap->nss != NULL) { 2962 error = copyin(uap->nss, &s32, sizeof(s32)); 2963 if (error) 2964 return (error); 2965 nss.ss_sp = PTRIN(s32.ss_sp); 2966 CP(s32, nss, ss_onstack); 2967 unss = 1; 2968 } else { 2969 unss = 0; 2970 } 2971 oss.ss_sp = td->td_sigstk.ss_sp; 2972 oss.ss_onstack = sigonstack(cpu_getstack(td)); 2973 if (unss) { 2974 td->td_sigstk.ss_sp = nss.ss_sp; 2975 td->td_sigstk.ss_size = 0; 2976 td->td_sigstk.ss_flags |= (nss.ss_onstack & SS_ONSTACK); 2977 td->td_pflags |= TDP_ALTSTACK; 2978 } 2979 if (uap->oss != NULL) { 2980 s32.ss_sp = PTROUT(oss.ss_sp); 2981 CP(oss, s32, ss_onstack); 2982 error = copyout(&s32, uap->oss, sizeof(s32)); 2983 } 2984 return (error); 2985 } 2986 #endif 2987 2988 int 2989 freebsd32_nanosleep(struct thread *td, struct freebsd32_nanosleep_args *uap) 2990 { 2991 2992 return (freebsd32_user_clock_nanosleep(td, CLOCK_REALTIME, 2993 TIMER_RELTIME, uap->rqtp, uap->rmtp)); 2994 } 2995 2996 int 2997 freebsd32_clock_nanosleep(struct thread *td, 2998 struct freebsd32_clock_nanosleep_args *uap) 2999 { 3000 int error; 3001 3002 error = freebsd32_user_clock_nanosleep(td, uap->clock_id, uap->flags, 3003 uap->rqtp, uap->rmtp); 3004 return (kern_posix_error(td, error)); 3005 } 3006 3007 static int 3008 freebsd32_user_clock_nanosleep(struct thread *td, clockid_t clock_id, 3009 int flags, const struct timespec32 *ua_rqtp, struct timespec32 *ua_rmtp) 3010 { 3011 struct timespec32 rmt32, rqt32; 3012 struct timespec rmt, rqt; 3013 int error, error2; 3014 3015 error = copyin(ua_rqtp, &rqt32, sizeof(rqt32)); 3016 if (error) 3017 return (error); 3018 3019 CP(rqt32, rqt, tv_sec); 3020 CP(rqt32, rqt, tv_nsec); 3021 3022 error = kern_clock_nanosleep(td, clock_id, flags, &rqt, &rmt); 3023 if (error == EINTR && ua_rmtp != NULL && (flags & TIMER_ABSTIME) == 0) { 3024 CP(rmt, rmt32, tv_sec); 3025 CP(rmt, rmt32, tv_nsec); 3026 3027 error2 = copyout(&rmt32, ua_rmtp, sizeof(rmt32)); 3028 if (error2 != 0) 3029 error = error2; 3030 } 3031 return (error); 3032 } 3033 3034 int 3035 freebsd32_clock_gettime(struct thread *td, 3036 struct freebsd32_clock_gettime_args *uap) 3037 { 3038 struct timespec ats; 3039 struct timespec32 ats32; 3040 int error; 3041 3042 error = kern_clock_gettime(td, uap->clock_id, &ats); 3043 if (error == 0) { 3044 CP(ats, ats32, tv_sec); 3045 CP(ats, ats32, tv_nsec); 3046 error = copyout(&ats32, uap->tp, sizeof(ats32)); 3047 } 3048 return (error); 3049 } 3050 3051 int 3052 freebsd32_clock_settime(struct thread *td, 3053 struct freebsd32_clock_settime_args *uap) 3054 { 3055 struct timespec ats; 3056 struct timespec32 ats32; 3057 int error; 3058 3059 error = copyin(uap->tp, &ats32, sizeof(ats32)); 3060 if (error) 3061 return (error); 3062 CP(ats32, ats, tv_sec); 3063 CP(ats32, ats, tv_nsec); 3064 3065 return (kern_clock_settime(td, uap->clock_id, &ats)); 3066 } 3067 3068 int 3069 freebsd32_clock_getres(struct thread *td, 3070 struct freebsd32_clock_getres_args *uap) 3071 { 3072 struct timespec ts; 3073 struct timespec32 ts32; 3074 int error; 3075 3076 if (uap->tp == NULL) 3077 return (0); 3078 error = kern_clock_getres(td, uap->clock_id, &ts); 3079 if (error == 0) { 3080 CP(ts, ts32, tv_sec); 3081 CP(ts, ts32, tv_nsec); 3082 error = copyout(&ts32, uap->tp, sizeof(ts32)); 3083 } 3084 return (error); 3085 } 3086 3087 int freebsd32_ktimer_create(struct thread *td, 3088 struct freebsd32_ktimer_create_args *uap) 3089 { 3090 struct sigevent32 ev32; 3091 struct sigevent ev, *evp; 3092 int error, id; 3093 3094 if (uap->evp == NULL) { 3095 evp = NULL; 3096 } else { 3097 evp = &ev; 3098 error = copyin(uap->evp, &ev32, sizeof(ev32)); 3099 if (error != 0) 3100 return (error); 3101 error = convert_sigevent32(&ev32, &ev); 3102 if (error != 0) 3103 return (error); 3104 } 3105 error = kern_ktimer_create(td, uap->clock_id, evp, &id, -1); 3106 if (error == 0) { 3107 error = copyout(&id, uap->timerid, sizeof(int)); 3108 if (error != 0) 3109 kern_ktimer_delete(td, id); 3110 } 3111 return (error); 3112 } 3113 3114 int 3115 freebsd32_ktimer_settime(struct thread *td, 3116 struct freebsd32_ktimer_settime_args *uap) 3117 { 3118 struct itimerspec32 val32, oval32; 3119 struct itimerspec val, oval, *ovalp; 3120 int error; 3121 3122 error = copyin(uap->value, &val32, sizeof(val32)); 3123 if (error != 0) 3124 return (error); 3125 ITS_CP(val32, val); 3126 ovalp = uap->ovalue != NULL ? &oval : NULL; 3127 error = kern_ktimer_settime(td, uap->timerid, uap->flags, &val, ovalp); 3128 if (error == 0 && uap->ovalue != NULL) { 3129 ITS_CP(oval, oval32); 3130 error = copyout(&oval32, uap->ovalue, sizeof(oval32)); 3131 } 3132 return (error); 3133 } 3134 3135 int 3136 freebsd32_ktimer_gettime(struct thread *td, 3137 struct freebsd32_ktimer_gettime_args *uap) 3138 { 3139 struct itimerspec32 val32; 3140 struct itimerspec val; 3141 int error; 3142 3143 error = kern_ktimer_gettime(td, uap->timerid, &val); 3144 if (error == 0) { 3145 ITS_CP(val, val32); 3146 error = copyout(&val32, uap->value, sizeof(val32)); 3147 } 3148 return (error); 3149 } 3150 3151 int 3152 freebsd32_timerfd_gettime(struct thread *td, 3153 struct freebsd32_timerfd_gettime_args *uap) 3154 { 3155 struct itimerspec curr_value; 3156 struct itimerspec32 curr_value32; 3157 int error; 3158 3159 error = kern_timerfd_gettime(td, uap->fd, &curr_value); 3160 if (error == 0) { 3161 CP(curr_value, curr_value32, it_value.tv_sec); 3162 CP(curr_value, curr_value32, it_value.tv_nsec); 3163 CP(curr_value, curr_value32, it_interval.tv_sec); 3164 CP(curr_value, curr_value32, it_interval.tv_nsec); 3165 error = copyout(&curr_value32, uap->curr_value, 3166 sizeof(curr_value32)); 3167 } 3168 3169 return (error); 3170 } 3171 3172 int 3173 freebsd32_timerfd_settime(struct thread *td, 3174 struct freebsd32_timerfd_settime_args *uap) 3175 { 3176 struct itimerspec new_value, old_value; 3177 struct itimerspec32 new_value32, old_value32; 3178 int error; 3179 3180 error = copyin(uap->new_value, &new_value32, sizeof(new_value32)); 3181 if (error != 0) 3182 return (error); 3183 CP(new_value32, new_value, it_value.tv_sec); 3184 CP(new_value32, new_value, it_value.tv_nsec); 3185 CP(new_value32, new_value, it_interval.tv_sec); 3186 CP(new_value32, new_value, it_interval.tv_nsec); 3187 if (uap->old_value == NULL) { 3188 error = kern_timerfd_settime(td, uap->fd, uap->flags, 3189 &new_value, NULL); 3190 } else { 3191 error = kern_timerfd_settime(td, uap->fd, uap->flags, 3192 &new_value, &old_value); 3193 if (error == 0) { 3194 CP(old_value, old_value32, it_value.tv_sec); 3195 CP(old_value, old_value32, it_value.tv_nsec); 3196 CP(old_value, old_value32, it_interval.tv_sec); 3197 CP(old_value, old_value32, it_interval.tv_nsec); 3198 error = copyout(&old_value32, uap->old_value, 3199 sizeof(old_value32)); 3200 } 3201 } 3202 return (error); 3203 } 3204 3205 int 3206 freebsd32_clock_getcpuclockid2(struct thread *td, 3207 struct freebsd32_clock_getcpuclockid2_args *uap) 3208 { 3209 clockid_t clk_id; 3210 int error; 3211 3212 error = kern_clock_getcpuclockid2(td, PAIR32TO64(id_t, uap->id), 3213 uap->which, &clk_id); 3214 if (error == 0) 3215 error = copyout(&clk_id, uap->clock_id, sizeof(clockid_t)); 3216 return (error); 3217 } 3218 3219 int 3220 freebsd32_thr_new(struct thread *td, 3221 struct freebsd32_thr_new_args *uap) 3222 { 3223 struct thr_param32 param32; 3224 struct thr_param param; 3225 int error; 3226 3227 if (uap->param_size < 0 || 3228 uap->param_size > sizeof(struct thr_param32)) 3229 return (EINVAL); 3230 bzero(¶m, sizeof(struct thr_param)); 3231 bzero(¶m32, sizeof(struct thr_param32)); 3232 error = copyin(uap->param, ¶m32, uap->param_size); 3233 if (error != 0) 3234 return (error); 3235 param.start_func = PTRIN(param32.start_func); 3236 param.arg = PTRIN(param32.arg); 3237 param.stack_base = PTRIN(param32.stack_base); 3238 param.stack_size = param32.stack_size; 3239 param.tls_base = PTRIN(param32.tls_base); 3240 param.tls_size = param32.tls_size; 3241 param.child_tid = PTRIN(param32.child_tid); 3242 param.parent_tid = PTRIN(param32.parent_tid); 3243 param.flags = param32.flags; 3244 param.rtp = PTRIN(param32.rtp); 3245 param.spare[0] = PTRIN(param32.spare[0]); 3246 param.spare[1] = PTRIN(param32.spare[1]); 3247 param.spare[2] = PTRIN(param32.spare[2]); 3248 3249 return (kern_thr_new(td, ¶m)); 3250 } 3251 3252 int 3253 freebsd32_thr_suspend(struct thread *td, struct freebsd32_thr_suspend_args *uap) 3254 { 3255 struct timespec32 ts32; 3256 struct timespec ts, *tsp; 3257 int error; 3258 3259 error = 0; 3260 tsp = NULL; 3261 if (uap->timeout != NULL) { 3262 error = copyin((const void *)uap->timeout, (void *)&ts32, 3263 sizeof(struct timespec32)); 3264 if (error != 0) 3265 return (error); 3266 ts.tv_sec = ts32.tv_sec; 3267 ts.tv_nsec = ts32.tv_nsec; 3268 tsp = &ts; 3269 } 3270 return (kern_thr_suspend(td, tsp)); 3271 } 3272 3273 void 3274 siginfo_to_siginfo32(const siginfo_t *src, struct siginfo32 *dst) 3275 { 3276 bzero(dst, sizeof(*dst)); 3277 dst->si_signo = src->si_signo; 3278 dst->si_errno = src->si_errno; 3279 dst->si_code = src->si_code; 3280 dst->si_pid = src->si_pid; 3281 dst->si_uid = src->si_uid; 3282 dst->si_status = src->si_status; 3283 dst->si_addr = (uintptr_t)src->si_addr; 3284 dst->si_value.sival_int = src->si_value.sival_int; 3285 dst->si_timerid = src->si_timerid; 3286 dst->si_overrun = src->si_overrun; 3287 } 3288 3289 #ifndef _FREEBSD32_SYSPROTO_H_ 3290 struct freebsd32_sigqueue_args { 3291 pid_t pid; 3292 int signum; 3293 /* union sigval32 */ int value; 3294 }; 3295 #endif 3296 int 3297 freebsd32_sigqueue(struct thread *td, struct freebsd32_sigqueue_args *uap) 3298 { 3299 union sigval sv; 3300 3301 /* 3302 * On 32-bit ABIs, sival_int and sival_ptr are the same. 3303 * On 64-bit little-endian ABIs, the low bits are the same. 3304 * In 64-bit big-endian ABIs, sival_int overlaps with 3305 * sival_ptr's HIGH bits. We choose to support sival_int 3306 * rather than sival_ptr in this case as it seems to be 3307 * more common. 3308 */ 3309 bzero(&sv, sizeof(sv)); 3310 sv.sival_int = (uint32_t)(uint64_t)uap->value; 3311 3312 return (kern_sigqueue(td, uap->pid, uap->signum, &sv)); 3313 } 3314 3315 int 3316 freebsd32_sigtimedwait(struct thread *td, struct freebsd32_sigtimedwait_args *uap) 3317 { 3318 struct timespec32 ts32; 3319 struct timespec ts; 3320 struct timespec *timeout; 3321 sigset_t set; 3322 ksiginfo_t ksi; 3323 struct siginfo32 si32; 3324 int error; 3325 3326 if (uap->timeout) { 3327 error = copyin(uap->timeout, &ts32, sizeof(ts32)); 3328 if (error) 3329 return (error); 3330 ts.tv_sec = ts32.tv_sec; 3331 ts.tv_nsec = ts32.tv_nsec; 3332 timeout = &ts; 3333 } else 3334 timeout = NULL; 3335 3336 error = copyin(uap->set, &set, sizeof(set)); 3337 if (error) 3338 return (error); 3339 3340 error = kern_sigtimedwait(td, set, &ksi, timeout); 3341 if (error) 3342 return (error); 3343 3344 if (uap->info) { 3345 siginfo_to_siginfo32(&ksi.ksi_info, &si32); 3346 error = copyout(&si32, uap->info, sizeof(struct siginfo32)); 3347 } 3348 3349 if (error == 0) 3350 td->td_retval[0] = ksi.ksi_signo; 3351 return (error); 3352 } 3353 3354 /* 3355 * MPSAFE 3356 */ 3357 int 3358 freebsd32_sigwaitinfo(struct thread *td, struct freebsd32_sigwaitinfo_args *uap) 3359 { 3360 ksiginfo_t ksi; 3361 struct siginfo32 si32; 3362 sigset_t set; 3363 int error; 3364 3365 error = copyin(uap->set, &set, sizeof(set)); 3366 if (error) 3367 return (error); 3368 3369 error = kern_sigtimedwait(td, set, &ksi, NULL); 3370 if (error) 3371 return (error); 3372 3373 if (uap->info) { 3374 siginfo_to_siginfo32(&ksi.ksi_info, &si32); 3375 error = copyout(&si32, uap->info, sizeof(struct siginfo32)); 3376 } 3377 if (error == 0) 3378 td->td_retval[0] = ksi.ksi_signo; 3379 return (error); 3380 } 3381 3382 int 3383 freebsd32_cpuset_setid(struct thread *td, 3384 struct freebsd32_cpuset_setid_args *uap) 3385 { 3386 3387 return (kern_cpuset_setid(td, uap->which, 3388 PAIR32TO64(id_t, uap->id), uap->setid)); 3389 } 3390 3391 int 3392 freebsd32_cpuset_getid(struct thread *td, 3393 struct freebsd32_cpuset_getid_args *uap) 3394 { 3395 3396 return (kern_cpuset_getid(td, uap->level, uap->which, 3397 PAIR32TO64(id_t, uap->id), uap->setid)); 3398 } 3399 3400 static int 3401 copyin32_set(const void *u, void *k, size_t size) 3402 { 3403 #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 3404 int rv; 3405 struct bitset *kb = k; 3406 int *p; 3407 3408 rv = copyin(u, k, size); 3409 if (rv != 0) 3410 return (rv); 3411 3412 p = (int *)kb->__bits; 3413 /* Loop through swapping words. 3414 * `size' is in bytes, we need bits. */ 3415 for (int i = 0; i < __bitset_words(size * 8); i++) { 3416 int tmp = p[0]; 3417 p[0] = p[1]; 3418 p[1] = tmp; 3419 p += 2; 3420 } 3421 return (0); 3422 #else 3423 return (copyin(u, k, size)); 3424 #endif 3425 } 3426 3427 static int 3428 copyout32_set(const void *k, void *u, size_t size) 3429 { 3430 #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 3431 const struct bitset *kb = k; 3432 struct bitset *ub = u; 3433 const int *kp = (const int *)kb->__bits; 3434 int *up = (int *)ub->__bits; 3435 int rv; 3436 3437 for (int i = 0; i < __bitset_words(CPU_SETSIZE); i++) { 3438 /* `size' is in bytes, we need bits. */ 3439 for (int i = 0; i < __bitset_words(size * 8); i++) { 3440 rv = suword32(up, kp[1]); 3441 if (rv == 0) 3442 rv = suword32(up + 1, kp[0]); 3443 if (rv != 0) 3444 return (EFAULT); 3445 } 3446 } 3447 return (0); 3448 #else 3449 return (copyout(k, u, size)); 3450 #endif 3451 } 3452 3453 static const struct cpuset_copy_cb cpuset_copy32_cb = { 3454 .cpuset_copyin = copyin32_set, 3455 .cpuset_copyout = copyout32_set 3456 }; 3457 3458 int 3459 freebsd32_cpuset_getaffinity(struct thread *td, 3460 struct freebsd32_cpuset_getaffinity_args *uap) 3461 { 3462 3463 return (user_cpuset_getaffinity(td, uap->level, uap->which, 3464 PAIR32TO64(id_t,uap->id), uap->cpusetsize, uap->mask, 3465 &cpuset_copy32_cb)); 3466 } 3467 3468 int 3469 freebsd32_cpuset_setaffinity(struct thread *td, 3470 struct freebsd32_cpuset_setaffinity_args *uap) 3471 { 3472 3473 return (user_cpuset_setaffinity(td, uap->level, uap->which, 3474 PAIR32TO64(id_t,uap->id), uap->cpusetsize, uap->mask, 3475 &cpuset_copy32_cb)); 3476 } 3477 3478 int 3479 freebsd32_cpuset_getdomain(struct thread *td, 3480 struct freebsd32_cpuset_getdomain_args *uap) 3481 { 3482 3483 return (kern_cpuset_getdomain(td, uap->level, uap->which, 3484 PAIR32TO64(id_t,uap->id), uap->domainsetsize, uap->mask, uap->policy, 3485 &cpuset_copy32_cb)); 3486 } 3487 3488 int 3489 freebsd32_cpuset_setdomain(struct thread *td, 3490 struct freebsd32_cpuset_setdomain_args *uap) 3491 { 3492 3493 return (kern_cpuset_setdomain(td, uap->level, uap->which, 3494 PAIR32TO64(id_t,uap->id), uap->domainsetsize, uap->mask, uap->policy, 3495 &cpuset_copy32_cb)); 3496 } 3497 3498 int 3499 freebsd32_nmount(struct thread *td, 3500 struct freebsd32_nmount_args /* { 3501 struct iovec *iovp; 3502 unsigned int iovcnt; 3503 int flags; 3504 } */ *uap) 3505 { 3506 struct uio *auio; 3507 uint64_t flags; 3508 int error; 3509 3510 /* 3511 * Mount flags are now 64-bits. On 32-bit archtectures only 3512 * 32-bits are passed in, but from here on everything handles 3513 * 64-bit flags correctly. 3514 */ 3515 flags = uap->flags; 3516 3517 AUDIT_ARG_FFLAGS(flags); 3518 3519 /* 3520 * Filter out MNT_ROOTFS. We do not want clients of nmount() in 3521 * userspace to set this flag, but we must filter it out if we want 3522 * MNT_UPDATE on the root file system to work. 3523 * MNT_ROOTFS should only be set by the kernel when mounting its 3524 * root file system. 3525 */ 3526 flags &= ~MNT_ROOTFS; 3527 3528 /* 3529 * check that we have an even number of iovec's 3530 * and that we have at least two options. 3531 */ 3532 if ((uap->iovcnt & 1) || (uap->iovcnt < 4)) 3533 return (EINVAL); 3534 3535 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 3536 if (error) 3537 return (error); 3538 error = vfs_donmount(td, flags, auio); 3539 3540 freeuio(auio); 3541 return error; 3542 } 3543 3544 #if 0 3545 int 3546 freebsd32_xxx(struct thread *td, struct freebsd32_xxx_args *uap) 3547 { 3548 struct yyy32 *p32, s32; 3549 struct yyy *p = NULL, s; 3550 struct xxx_arg ap; 3551 int error; 3552 3553 if (uap->zzz) { 3554 error = copyin(uap->zzz, &s32, sizeof(s32)); 3555 if (error) 3556 return (error); 3557 /* translate in */ 3558 p = &s; 3559 } 3560 error = kern_xxx(td, p); 3561 if (error) 3562 return (error); 3563 if (uap->zzz) { 3564 /* translate out */ 3565 error = copyout(&s32, p32, sizeof(s32)); 3566 } 3567 return (error); 3568 } 3569 #endif 3570 3571 int 3572 syscall32_module_handler(struct module *mod, int what, void *arg) 3573 { 3574 3575 return (kern_syscall_module_handler(freebsd32_sysent, mod, what, arg)); 3576 } 3577 3578 int 3579 syscall32_helper_register(struct syscall_helper_data *sd, int flags) 3580 { 3581 3582 return (kern_syscall_helper_register(freebsd32_sysent, sd, flags)); 3583 } 3584 3585 int 3586 syscall32_helper_unregister(struct syscall_helper_data *sd) 3587 { 3588 3589 return (kern_syscall_helper_unregister(freebsd32_sysent, sd)); 3590 } 3591 3592 int 3593 freebsd32_copyout_strings(struct image_params *imgp, uintptr_t *stack_base) 3594 { 3595 struct sysentvec *sysent; 3596 int argc, envc, i; 3597 uint32_t *vectp; 3598 char *stringp; 3599 uintptr_t destp, ustringp; 3600 struct freebsd32_ps_strings *arginfo; 3601 char canary[sizeof(long) * 8]; 3602 int32_t pagesizes32[MAXPAGESIZES]; 3603 size_t execpath_len; 3604 int error, szsigcode; 3605 3606 sysent = imgp->sysent; 3607 3608 arginfo = (struct freebsd32_ps_strings *)PROC_PS_STRINGS(imgp->proc); 3609 imgp->ps_strings = arginfo; 3610 destp = (uintptr_t)arginfo; 3611 3612 /* 3613 * Install sigcode. 3614 */ 3615 if (!PROC_HAS_SHP(imgp->proc)) { 3616 szsigcode = *sysent->sv_szsigcode; 3617 destp -= szsigcode; 3618 destp = rounddown2(destp, sizeof(uint32_t)); 3619 error = copyout(sysent->sv_sigcode, (void *)destp, 3620 szsigcode); 3621 if (error != 0) 3622 return (error); 3623 } 3624 3625 /* 3626 * Copy the image path for the rtld. 3627 */ 3628 if (imgp->execpath != NULL && imgp->auxargs != NULL) { 3629 execpath_len = strlen(imgp->execpath) + 1; 3630 destp -= execpath_len; 3631 imgp->execpathp = (void *)destp; 3632 error = copyout(imgp->execpath, imgp->execpathp, execpath_len); 3633 if (error != 0) 3634 return (error); 3635 } 3636 3637 /* 3638 * Prepare the canary for SSP. 3639 */ 3640 arc4rand(canary, sizeof(canary), 0); 3641 destp -= sizeof(canary); 3642 imgp->canary = (void *)destp; 3643 error = copyout(canary, imgp->canary, sizeof(canary)); 3644 if (error != 0) 3645 return (error); 3646 imgp->canarylen = sizeof(canary); 3647 3648 /* 3649 * Prepare the pagesizes array. 3650 */ 3651 for (i = 0; i < MAXPAGESIZES; i++) 3652 pagesizes32[i] = (uint32_t)pagesizes[i]; 3653 destp -= sizeof(pagesizes32); 3654 destp = rounddown2(destp, sizeof(uint32_t)); 3655 imgp->pagesizes = (void *)destp; 3656 error = copyout(pagesizes32, imgp->pagesizes, sizeof(pagesizes32)); 3657 if (error != 0) 3658 return (error); 3659 imgp->pagesizeslen = sizeof(pagesizes32); 3660 3661 /* 3662 * Allocate room for the argument and environment strings. 3663 */ 3664 destp -= ARG_MAX - imgp->args->stringspace; 3665 destp = rounddown2(destp, sizeof(uint32_t)); 3666 ustringp = destp; 3667 3668 if (imgp->auxargs) { 3669 /* 3670 * Allocate room on the stack for the ELF auxargs 3671 * array. It has up to AT_COUNT entries. 3672 */ 3673 destp -= AT_COUNT * sizeof(Elf32_Auxinfo); 3674 destp = rounddown2(destp, sizeof(uint32_t)); 3675 } 3676 3677 vectp = (uint32_t *)destp; 3678 3679 /* 3680 * Allocate room for the argv[] and env vectors including the 3681 * terminating NULL pointers. 3682 */ 3683 vectp -= imgp->args->argc + 1 + imgp->args->envc + 1; 3684 3685 /* 3686 * vectp also becomes our initial stack base 3687 */ 3688 *stack_base = (uintptr_t)vectp; 3689 3690 stringp = imgp->args->begin_argv; 3691 argc = imgp->args->argc; 3692 envc = imgp->args->envc; 3693 /* 3694 * Copy out strings - arguments and environment. 3695 */ 3696 error = copyout(stringp, (void *)ustringp, 3697 ARG_MAX - imgp->args->stringspace); 3698 if (error != 0) 3699 return (error); 3700 3701 /* 3702 * Fill in "ps_strings" struct for ps, w, etc. 3703 */ 3704 imgp->argv = vectp; 3705 if (suword32(&arginfo->ps_argvstr, (uint32_t)(intptr_t)vectp) != 0 || 3706 suword32(&arginfo->ps_nargvstr, argc) != 0) 3707 return (EFAULT); 3708 3709 /* 3710 * Fill in argument portion of vector table. 3711 */ 3712 for (; argc > 0; --argc) { 3713 if (suword32(vectp++, ustringp) != 0) 3714 return (EFAULT); 3715 while (*stringp++ != 0) 3716 ustringp++; 3717 ustringp++; 3718 } 3719 3720 /* a null vector table pointer separates the argp's from the envp's */ 3721 if (suword32(vectp++, 0) != 0) 3722 return (EFAULT); 3723 3724 imgp->envv = vectp; 3725 if (suword32(&arginfo->ps_envstr, (uint32_t)(intptr_t)vectp) != 0 || 3726 suword32(&arginfo->ps_nenvstr, envc) != 0) 3727 return (EFAULT); 3728 3729 /* 3730 * Fill in environment portion of vector table. 3731 */ 3732 for (; envc > 0; --envc) { 3733 if (suword32(vectp++, ustringp) != 0) 3734 return (EFAULT); 3735 while (*stringp++ != 0) 3736 ustringp++; 3737 ustringp++; 3738 } 3739 3740 /* end of vector table is a null pointer */ 3741 if (suword32(vectp, 0) != 0) 3742 return (EFAULT); 3743 3744 if (imgp->auxargs) { 3745 vectp++; 3746 error = imgp->sysent->sv_copyout_auxargs(imgp, 3747 (uintptr_t)vectp); 3748 if (error != 0) 3749 return (error); 3750 } 3751 3752 return (0); 3753 } 3754 3755 int 3756 freebsd32_kldstat(struct thread *td, struct freebsd32_kldstat_args *uap) 3757 { 3758 struct kld_file_stat *stat; 3759 struct kld_file_stat32 *stat32; 3760 int error, version; 3761 3762 if ((error = copyin(&uap->stat->version, &version, sizeof(version))) 3763 != 0) 3764 return (error); 3765 if (version != sizeof(struct kld_file_stat_1_32) && 3766 version != sizeof(struct kld_file_stat32)) 3767 return (EINVAL); 3768 3769 stat = malloc(sizeof(*stat), M_TEMP, M_WAITOK | M_ZERO); 3770 stat32 = malloc(sizeof(*stat32), M_TEMP, M_WAITOK | M_ZERO); 3771 error = kern_kldstat(td, uap->fileid, stat); 3772 if (error == 0) { 3773 bcopy(&stat->name[0], &stat32->name[0], sizeof(stat->name)); 3774 CP(*stat, *stat32, refs); 3775 CP(*stat, *stat32, id); 3776 PTROUT_CP(*stat, *stat32, address); 3777 CP(*stat, *stat32, size); 3778 bcopy(&stat->pathname[0], &stat32->pathname[0], 3779 sizeof(stat->pathname)); 3780 stat32->version = version; 3781 error = copyout(stat32, uap->stat, version); 3782 } 3783 free(stat, M_TEMP); 3784 free(stat32, M_TEMP); 3785 return (error); 3786 } 3787 3788 int 3789 freebsd32_posix_fallocate(struct thread *td, 3790 struct freebsd32_posix_fallocate_args *uap) 3791 { 3792 int error; 3793 3794 error = kern_posix_fallocate(td, uap->fd, 3795 PAIR32TO64(off_t, uap->offset), PAIR32TO64(off_t, uap->len)); 3796 return (kern_posix_error(td, error)); 3797 } 3798 3799 int 3800 freebsd32_posix_fadvise(struct thread *td, 3801 struct freebsd32_posix_fadvise_args *uap) 3802 { 3803 int error; 3804 3805 error = kern_posix_fadvise(td, uap->fd, PAIR32TO64(off_t, uap->offset), 3806 PAIR32TO64(off_t, uap->len), uap->advice); 3807 return (kern_posix_error(td, error)); 3808 } 3809 3810 int 3811 convert_sigevent32(struct sigevent32 *sig32, struct sigevent *sig) 3812 { 3813 3814 CP(*sig32, *sig, sigev_notify); 3815 switch (sig->sigev_notify) { 3816 case SIGEV_NONE: 3817 break; 3818 case SIGEV_THREAD_ID: 3819 CP(*sig32, *sig, sigev_notify_thread_id); 3820 /* FALLTHROUGH */ 3821 case SIGEV_SIGNAL: 3822 CP(*sig32, *sig, sigev_signo); 3823 PTRIN_CP(*sig32, *sig, sigev_value.sival_ptr); 3824 break; 3825 case SIGEV_KEVENT: 3826 CP(*sig32, *sig, sigev_notify_kqueue); 3827 CP(*sig32, *sig, sigev_notify_kevent_flags); 3828 PTRIN_CP(*sig32, *sig, sigev_value.sival_ptr); 3829 break; 3830 default: 3831 return (EINVAL); 3832 } 3833 return (0); 3834 } 3835 3836 int 3837 freebsd32_procctl(struct thread *td, struct freebsd32_procctl_args *uap) 3838 { 3839 void *data; 3840 union { 3841 struct procctl_reaper_status rs; 3842 struct procctl_reaper_pids rp; 3843 struct procctl_reaper_kill rk; 3844 } x; 3845 union { 3846 struct procctl_reaper_pids32 rp; 3847 } x32; 3848 int error, error1, flags, signum; 3849 3850 if (uap->com >= PROC_PROCCTL_MD_MIN) 3851 return (cpu_procctl(td, uap->idtype, PAIR32TO64(id_t, uap->id), 3852 uap->com, PTRIN(uap->data))); 3853 3854 switch (uap->com) { 3855 case PROC_ASLR_CTL: 3856 case PROC_PROTMAX_CTL: 3857 case PROC_SPROTECT: 3858 case PROC_STACKGAP_CTL: 3859 case PROC_TRACE_CTL: 3860 case PROC_TRAPCAP_CTL: 3861 case PROC_NO_NEW_PRIVS_CTL: 3862 case PROC_WXMAP_CTL: 3863 error = copyin(PTRIN(uap->data), &flags, sizeof(flags)); 3864 if (error != 0) 3865 return (error); 3866 data = &flags; 3867 break; 3868 case PROC_REAP_ACQUIRE: 3869 case PROC_REAP_RELEASE: 3870 if (uap->data != NULL) 3871 return (EINVAL); 3872 data = NULL; 3873 break; 3874 case PROC_REAP_STATUS: 3875 data = &x.rs; 3876 break; 3877 case PROC_REAP_GETPIDS: 3878 error = copyin(uap->data, &x32.rp, sizeof(x32.rp)); 3879 if (error != 0) 3880 return (error); 3881 CP(x32.rp, x.rp, rp_count); 3882 PTRIN_CP(x32.rp, x.rp, rp_pids); 3883 data = &x.rp; 3884 break; 3885 case PROC_REAP_KILL: 3886 error = copyin(uap->data, &x.rk, sizeof(x.rk)); 3887 if (error != 0) 3888 return (error); 3889 data = &x.rk; 3890 break; 3891 case PROC_ASLR_STATUS: 3892 case PROC_PROTMAX_STATUS: 3893 case PROC_STACKGAP_STATUS: 3894 case PROC_TRACE_STATUS: 3895 case PROC_TRAPCAP_STATUS: 3896 case PROC_NO_NEW_PRIVS_STATUS: 3897 case PROC_WXMAP_STATUS: 3898 data = &flags; 3899 break; 3900 case PROC_PDEATHSIG_CTL: 3901 error = copyin(uap->data, &signum, sizeof(signum)); 3902 if (error != 0) 3903 return (error); 3904 data = &signum; 3905 break; 3906 case PROC_PDEATHSIG_STATUS: 3907 data = &signum; 3908 break; 3909 default: 3910 return (EINVAL); 3911 } 3912 error = kern_procctl(td, uap->idtype, PAIR32TO64(id_t, uap->id), 3913 uap->com, data); 3914 switch (uap->com) { 3915 case PROC_REAP_STATUS: 3916 if (error == 0) 3917 error = copyout(&x.rs, uap->data, sizeof(x.rs)); 3918 break; 3919 case PROC_REAP_KILL: 3920 error1 = copyout(&x.rk, uap->data, sizeof(x.rk)); 3921 if (error == 0) 3922 error = error1; 3923 break; 3924 case PROC_ASLR_STATUS: 3925 case PROC_PROTMAX_STATUS: 3926 case PROC_STACKGAP_STATUS: 3927 case PROC_TRACE_STATUS: 3928 case PROC_TRAPCAP_STATUS: 3929 case PROC_NO_NEW_PRIVS_STATUS: 3930 case PROC_WXMAP_STATUS: 3931 if (error == 0) 3932 error = copyout(&flags, uap->data, sizeof(flags)); 3933 break; 3934 case PROC_PDEATHSIG_STATUS: 3935 if (error == 0) 3936 error = copyout(&signum, uap->data, sizeof(signum)); 3937 break; 3938 } 3939 return (error); 3940 } 3941 3942 int 3943 freebsd32_fcntl(struct thread *td, struct freebsd32_fcntl_args *uap) 3944 { 3945 long tmp; 3946 3947 switch (uap->cmd) { 3948 /* 3949 * Do unsigned conversion for arg when operation 3950 * interprets it as flags or pointer. 3951 */ 3952 case F_SETLK_REMOTE: 3953 case F_SETLKW: 3954 case F_SETLK: 3955 case F_GETLK: 3956 case F_SETFD: 3957 case F_SETFL: 3958 case F_OGETLK: 3959 case F_OSETLK: 3960 case F_OSETLKW: 3961 case F_KINFO: 3962 tmp = (unsigned int)(uap->arg); 3963 break; 3964 default: 3965 tmp = uap->arg; 3966 break; 3967 } 3968 return (kern_fcntl_freebsd(td, uap->fd, uap->cmd, tmp)); 3969 } 3970 3971 int 3972 freebsd32_ppoll(struct thread *td, struct freebsd32_ppoll_args *uap) 3973 { 3974 struct timespec32 ts32; 3975 struct timespec ts, *tsp; 3976 sigset_t set, *ssp; 3977 int error; 3978 3979 if (uap->ts != NULL) { 3980 error = copyin(uap->ts, &ts32, sizeof(ts32)); 3981 if (error != 0) 3982 return (error); 3983 CP(ts32, ts, tv_sec); 3984 CP(ts32, ts, tv_nsec); 3985 tsp = &ts; 3986 } else 3987 tsp = NULL; 3988 if (uap->set != NULL) { 3989 error = copyin(uap->set, &set, sizeof(set)); 3990 if (error != 0) 3991 return (error); 3992 ssp = &set; 3993 } else 3994 ssp = NULL; 3995 3996 return (kern_poll(td, uap->fds, uap->nfds, tsp, ssp)); 3997 } 3998 3999 int 4000 freebsd32_sched_rr_get_interval(struct thread *td, 4001 struct freebsd32_sched_rr_get_interval_args *uap) 4002 { 4003 struct timespec ts; 4004 struct timespec32 ts32; 4005 int error; 4006 4007 error = kern_sched_rr_get_interval(td, uap->pid, &ts); 4008 if (error == 0) { 4009 CP(ts, ts32, tv_sec); 4010 CP(ts, ts32, tv_nsec); 4011 error = copyout(&ts32, uap->interval, sizeof(ts32)); 4012 } 4013 return (error); 4014 } 4015 4016 static void 4017 timex_to_32(struct timex32 *dst, struct timex *src) 4018 { 4019 CP(*src, *dst, modes); 4020 CP(*src, *dst, offset); 4021 CP(*src, *dst, freq); 4022 CP(*src, *dst, maxerror); 4023 CP(*src, *dst, esterror); 4024 CP(*src, *dst, status); 4025 CP(*src, *dst, constant); 4026 CP(*src, *dst, precision); 4027 CP(*src, *dst, tolerance); 4028 CP(*src, *dst, ppsfreq); 4029 CP(*src, *dst, jitter); 4030 CP(*src, *dst, shift); 4031 CP(*src, *dst, stabil); 4032 CP(*src, *dst, jitcnt); 4033 CP(*src, *dst, calcnt); 4034 CP(*src, *dst, errcnt); 4035 CP(*src, *dst, stbcnt); 4036 } 4037 4038 static void 4039 timex_from_32(struct timex *dst, struct timex32 *src) 4040 { 4041 CP(*src, *dst, modes); 4042 CP(*src, *dst, offset); 4043 CP(*src, *dst, freq); 4044 CP(*src, *dst, maxerror); 4045 CP(*src, *dst, esterror); 4046 CP(*src, *dst, status); 4047 CP(*src, *dst, constant); 4048 CP(*src, *dst, precision); 4049 CP(*src, *dst, tolerance); 4050 CP(*src, *dst, ppsfreq); 4051 CP(*src, *dst, jitter); 4052 CP(*src, *dst, shift); 4053 CP(*src, *dst, stabil); 4054 CP(*src, *dst, jitcnt); 4055 CP(*src, *dst, calcnt); 4056 CP(*src, *dst, errcnt); 4057 CP(*src, *dst, stbcnt); 4058 } 4059 4060 int 4061 freebsd32_ntp_adjtime(struct thread *td, struct freebsd32_ntp_adjtime_args *uap) 4062 { 4063 struct timex tx; 4064 struct timex32 tx32; 4065 int error, retval; 4066 4067 error = copyin(uap->tp, &tx32, sizeof(tx32)); 4068 if (error == 0) { 4069 timex_from_32(&tx, &tx32); 4070 error = kern_ntp_adjtime(td, &tx, &retval); 4071 if (error == 0) { 4072 timex_to_32(&tx32, &tx); 4073 error = copyout(&tx32, uap->tp, sizeof(tx32)); 4074 if (error == 0) 4075 td->td_retval[0] = retval; 4076 } 4077 } 4078 return (error); 4079 } 4080 4081 #ifdef FFCLOCK 4082 extern struct mtx ffclock_mtx; 4083 extern struct ffclock_estimate ffclock_estimate; 4084 extern int8_t ffclock_updated; 4085 4086 int 4087 freebsd32_ffclock_setestimate(struct thread *td, 4088 struct freebsd32_ffclock_setestimate_args *uap) 4089 { 4090 struct ffclock_estimate cest; 4091 struct ffclock_estimate32 cest32; 4092 int error; 4093 4094 /* Reuse of PRIV_CLOCK_SETTIME. */ 4095 if ((error = priv_check(td, PRIV_CLOCK_SETTIME)) != 0) 4096 return (error); 4097 4098 if ((error = copyin(uap->cest, &cest32, 4099 sizeof(struct ffclock_estimate32))) != 0) 4100 return (error); 4101 4102 CP(cest.update_time, cest32.update_time, sec); 4103 memcpy(&cest.update_time.frac, &cest32.update_time.frac, sizeof(uint64_t)); 4104 CP(cest, cest32, update_ffcount); 4105 CP(cest, cest32, leapsec_next); 4106 CP(cest, cest32, period); 4107 CP(cest, cest32, errb_abs); 4108 CP(cest, cest32, errb_rate); 4109 CP(cest, cest32, status); 4110 CP(cest, cest32, leapsec_total); 4111 CP(cest, cest32, leapsec); 4112 4113 mtx_lock(&ffclock_mtx); 4114 memcpy(&ffclock_estimate, &cest, sizeof(struct ffclock_estimate)); 4115 ffclock_updated++; 4116 mtx_unlock(&ffclock_mtx); 4117 return (error); 4118 } 4119 4120 int 4121 freebsd32_ffclock_getestimate(struct thread *td, 4122 struct freebsd32_ffclock_getestimate_args *uap) 4123 { 4124 struct ffclock_estimate cest; 4125 struct ffclock_estimate32 cest32; 4126 int error; 4127 4128 mtx_lock(&ffclock_mtx); 4129 memcpy(&cest, &ffclock_estimate, sizeof(struct ffclock_estimate)); 4130 mtx_unlock(&ffclock_mtx); 4131 4132 CP(cest32.update_time, cest.update_time, sec); 4133 memcpy(&cest32.update_time.frac, &cest.update_time.frac, sizeof(uint64_t)); 4134 CP(cest32, cest, update_ffcount); 4135 CP(cest32, cest, leapsec_next); 4136 CP(cest32, cest, period); 4137 CP(cest32, cest, errb_abs); 4138 CP(cest32, cest, errb_rate); 4139 CP(cest32, cest, status); 4140 CP(cest32, cest, leapsec_total); 4141 CP(cest32, cest, leapsec); 4142 4143 error = copyout(&cest32, uap->cest, sizeof(struct ffclock_estimate32)); 4144 return (error); 4145 } 4146 #else /* !FFCLOCK */ 4147 int 4148 freebsd32_ffclock_setestimate(struct thread *td, 4149 struct freebsd32_ffclock_setestimate_args *uap) 4150 { 4151 return (ENOSYS); 4152 } 4153 4154 int 4155 freebsd32_ffclock_getestimate(struct thread *td, 4156 struct freebsd32_ffclock_getestimate_args *uap) 4157 { 4158 return (ENOSYS); 4159 } 4160 #endif /* FFCLOCK */ 4161 4162 #ifdef COMPAT_43 4163 int 4164 ofreebsd32_sethostid(struct thread *td, struct ofreebsd32_sethostid_args *uap) 4165 { 4166 int name[] = { CTL_KERN, KERN_HOSTID }; 4167 long hostid; 4168 4169 hostid = uap->hostid; 4170 return (kernel_sysctl(td, name, nitems(name), NULL, NULL, &hostid, 4171 sizeof(hostid), NULL, 0)); 4172 } 4173 #endif 4174