1 /*- 2 * Copyright (c) 2002 Doug Rabson 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include "opt_compat.h" 31 #include "opt_inet.h" 32 #include "opt_inet6.h" 33 34 #define __ELF_WORD_SIZE 32 35 36 #include <sys/param.h> 37 #include <sys/bus.h> 38 #include <sys/capsicum.h> 39 #include <sys/clock.h> 40 #include <sys/exec.h> 41 #include <sys/fcntl.h> 42 #include <sys/filedesc.h> 43 #include <sys/imgact.h> 44 #include <sys/jail.h> 45 #include <sys/kernel.h> 46 #include <sys/limits.h> 47 #include <sys/linker.h> 48 #include <sys/lock.h> 49 #include <sys/malloc.h> 50 #include <sys/file.h> /* Must come after sys/malloc.h */ 51 #include <sys/imgact.h> 52 #include <sys/mbuf.h> 53 #include <sys/mman.h> 54 #include <sys/module.h> 55 #include <sys/mount.h> 56 #include <sys/mutex.h> 57 #include <sys/namei.h> 58 #include <sys/proc.h> 59 #include <sys/procctl.h> 60 #include <sys/reboot.h> 61 #include <sys/resource.h> 62 #include <sys/resourcevar.h> 63 #include <sys/selinfo.h> 64 #include <sys/eventvar.h> /* Must come after sys/selinfo.h */ 65 #include <sys/pipe.h> /* Must come after sys/selinfo.h */ 66 #include <sys/signal.h> 67 #include <sys/signalvar.h> 68 #include <sys/socket.h> 69 #include <sys/socketvar.h> 70 #include <sys/stat.h> 71 #include <sys/syscall.h> 72 #include <sys/syscallsubr.h> 73 #include <sys/sysctl.h> 74 #include <sys/sysent.h> 75 #include <sys/sysproto.h> 76 #include <sys/systm.h> 77 #include <sys/thr.h> 78 #include <sys/unistd.h> 79 #include <sys/ucontext.h> 80 #include <sys/vnode.h> 81 #include <sys/wait.h> 82 #include <sys/ipc.h> 83 #include <sys/msg.h> 84 #include <sys/sem.h> 85 #include <sys/shm.h> 86 87 #ifdef INET 88 #include <netinet/in.h> 89 #endif 90 91 #include <vm/vm.h> 92 #include <vm/vm_param.h> 93 #include <vm/pmap.h> 94 #include <vm/vm_map.h> 95 #include <vm/vm_object.h> 96 #include <vm/vm_extern.h> 97 98 #include <machine/cpu.h> 99 #include <machine/elf.h> 100 101 #include <security/audit/audit.h> 102 103 #include <compat/freebsd32/freebsd32_util.h> 104 #include <compat/freebsd32/freebsd32.h> 105 #include <compat/freebsd32/freebsd32_ipc.h> 106 #include <compat/freebsd32/freebsd32_misc.h> 107 #include <compat/freebsd32/freebsd32_signal.h> 108 #include <compat/freebsd32/freebsd32_proto.h> 109 110 FEATURE(compat_freebsd_32bit, "Compatible with 32-bit FreeBSD"); 111 112 #ifndef __mips__ 113 CTASSERT(sizeof(struct timeval32) == 8); 114 CTASSERT(sizeof(struct timespec32) == 8); 115 CTASSERT(sizeof(struct itimerval32) == 16); 116 #endif 117 CTASSERT(sizeof(struct statfs32) == 256); 118 #ifndef __mips__ 119 CTASSERT(sizeof(struct rusage32) == 72); 120 #endif 121 CTASSERT(sizeof(struct sigaltstack32) == 12); 122 CTASSERT(sizeof(struct kevent32) == 20); 123 CTASSERT(sizeof(struct iovec32) == 8); 124 CTASSERT(sizeof(struct msghdr32) == 28); 125 #ifndef __mips__ 126 CTASSERT(sizeof(struct stat32) == 96); 127 #endif 128 CTASSERT(sizeof(struct sigaction32) == 24); 129 130 static int freebsd32_kevent_copyout(void *arg, struct kevent *kevp, int count); 131 static int freebsd32_kevent_copyin(void *arg, struct kevent *kevp, int count); 132 133 void 134 freebsd32_rusage_out(const struct rusage *s, struct rusage32 *s32) 135 { 136 137 TV_CP(*s, *s32, ru_utime); 138 TV_CP(*s, *s32, ru_stime); 139 CP(*s, *s32, ru_maxrss); 140 CP(*s, *s32, ru_ixrss); 141 CP(*s, *s32, ru_idrss); 142 CP(*s, *s32, ru_isrss); 143 CP(*s, *s32, ru_minflt); 144 CP(*s, *s32, ru_majflt); 145 CP(*s, *s32, ru_nswap); 146 CP(*s, *s32, ru_inblock); 147 CP(*s, *s32, ru_oublock); 148 CP(*s, *s32, ru_msgsnd); 149 CP(*s, *s32, ru_msgrcv); 150 CP(*s, *s32, ru_nsignals); 151 CP(*s, *s32, ru_nvcsw); 152 CP(*s, *s32, ru_nivcsw); 153 } 154 155 int 156 freebsd32_wait4(struct thread *td, struct freebsd32_wait4_args *uap) 157 { 158 int error, status; 159 struct rusage32 ru32; 160 struct rusage ru, *rup; 161 162 if (uap->rusage != NULL) 163 rup = &ru; 164 else 165 rup = NULL; 166 error = kern_wait(td, uap->pid, &status, uap->options, rup); 167 if (error) 168 return (error); 169 if (uap->status != NULL) 170 error = copyout(&status, uap->status, sizeof(status)); 171 if (uap->rusage != NULL && error == 0) { 172 freebsd32_rusage_out(&ru, &ru32); 173 error = copyout(&ru32, uap->rusage, sizeof(ru32)); 174 } 175 return (error); 176 } 177 178 int 179 freebsd32_wait6(struct thread *td, struct freebsd32_wait6_args *uap) 180 { 181 struct wrusage32 wru32; 182 struct __wrusage wru, *wrup; 183 struct siginfo32 si32; 184 struct __siginfo si, *sip; 185 int error, status; 186 187 if (uap->wrusage != NULL) 188 wrup = &wru; 189 else 190 wrup = NULL; 191 if (uap->info != NULL) { 192 sip = &si; 193 bzero(sip, sizeof(*sip)); 194 } else 195 sip = NULL; 196 error = kern_wait6(td, uap->idtype, PAIR32TO64(id_t, uap->id), 197 &status, uap->options, wrup, sip); 198 if (error != 0) 199 return (error); 200 if (uap->status != NULL) 201 error = copyout(&status, uap->status, sizeof(status)); 202 if (uap->wrusage != NULL && error == 0) { 203 freebsd32_rusage_out(&wru.wru_self, &wru32.wru_self); 204 freebsd32_rusage_out(&wru.wru_children, &wru32.wru_children); 205 error = copyout(&wru32, uap->wrusage, sizeof(wru32)); 206 } 207 if (uap->info != NULL && error == 0) { 208 siginfo_to_siginfo32 (&si, &si32); 209 error = copyout(&si32, uap->info, sizeof(si32)); 210 } 211 return (error); 212 } 213 214 #ifdef COMPAT_FREEBSD4 215 static void 216 copy_statfs(struct statfs *in, struct statfs32 *out) 217 { 218 219 statfs_scale_blocks(in, INT32_MAX); 220 bzero(out, sizeof(*out)); 221 CP(*in, *out, f_bsize); 222 out->f_iosize = MIN(in->f_iosize, INT32_MAX); 223 CP(*in, *out, f_blocks); 224 CP(*in, *out, f_bfree); 225 CP(*in, *out, f_bavail); 226 out->f_files = MIN(in->f_files, INT32_MAX); 227 out->f_ffree = MIN(in->f_ffree, INT32_MAX); 228 CP(*in, *out, f_fsid); 229 CP(*in, *out, f_owner); 230 CP(*in, *out, f_type); 231 CP(*in, *out, f_flags); 232 out->f_syncwrites = MIN(in->f_syncwrites, INT32_MAX); 233 out->f_asyncwrites = MIN(in->f_asyncwrites, INT32_MAX); 234 strlcpy(out->f_fstypename, 235 in->f_fstypename, MFSNAMELEN); 236 strlcpy(out->f_mntonname, 237 in->f_mntonname, min(MNAMELEN, FREEBSD4_MNAMELEN)); 238 out->f_syncreads = MIN(in->f_syncreads, INT32_MAX); 239 out->f_asyncreads = MIN(in->f_asyncreads, INT32_MAX); 240 strlcpy(out->f_mntfromname, 241 in->f_mntfromname, min(MNAMELEN, FREEBSD4_MNAMELEN)); 242 } 243 #endif 244 245 #ifdef COMPAT_FREEBSD4 246 int 247 freebsd4_freebsd32_getfsstat(struct thread *td, struct freebsd4_freebsd32_getfsstat_args *uap) 248 { 249 struct statfs *buf, *sp; 250 struct statfs32 stat32; 251 size_t count, size, copycount; 252 int error; 253 254 count = uap->bufsize / sizeof(struct statfs32); 255 size = count * sizeof(struct statfs); 256 error = kern_getfsstat(td, &buf, size, &count, UIO_SYSSPACE, uap->flags); 257 if (size > 0) { 258 sp = buf; 259 copycount = count; 260 while (copycount > 0 && error == 0) { 261 copy_statfs(sp, &stat32); 262 error = copyout(&stat32, uap->buf, sizeof(stat32)); 263 sp++; 264 uap->buf++; 265 copycount--; 266 } 267 free(buf, M_TEMP); 268 } 269 if (error == 0) 270 td->td_retval[0] = count; 271 return (error); 272 } 273 #endif 274 275 int 276 freebsd32_sigaltstack(struct thread *td, 277 struct freebsd32_sigaltstack_args *uap) 278 { 279 struct sigaltstack32 s32; 280 struct sigaltstack ss, oss, *ssp; 281 int error; 282 283 if (uap->ss != NULL) { 284 error = copyin(uap->ss, &s32, sizeof(s32)); 285 if (error) 286 return (error); 287 PTRIN_CP(s32, ss, ss_sp); 288 CP(s32, ss, ss_size); 289 CP(s32, ss, ss_flags); 290 ssp = &ss; 291 } else 292 ssp = NULL; 293 error = kern_sigaltstack(td, ssp, &oss); 294 if (error == 0 && uap->oss != NULL) { 295 PTROUT_CP(oss, s32, ss_sp); 296 CP(oss, s32, ss_size); 297 CP(oss, s32, ss_flags); 298 error = copyout(&s32, uap->oss, sizeof(s32)); 299 } 300 return (error); 301 } 302 303 /* 304 * Custom version of exec_copyin_args() so that we can translate 305 * the pointers. 306 */ 307 int 308 freebsd32_exec_copyin_args(struct image_args *args, char *fname, 309 enum uio_seg segflg, u_int32_t *argv, u_int32_t *envv) 310 { 311 char *argp, *envp; 312 u_int32_t *p32, arg; 313 size_t length; 314 int error; 315 316 bzero(args, sizeof(*args)); 317 if (argv == NULL) 318 return (EFAULT); 319 320 /* 321 * Allocate demand-paged memory for the file name, argument, and 322 * environment strings. 323 */ 324 error = exec_alloc_args(args); 325 if (error != 0) 326 return (error); 327 328 /* 329 * Copy the file name. 330 */ 331 if (fname != NULL) { 332 args->fname = args->buf; 333 error = (segflg == UIO_SYSSPACE) ? 334 copystr(fname, args->fname, PATH_MAX, &length) : 335 copyinstr(fname, args->fname, PATH_MAX, &length); 336 if (error != 0) 337 goto err_exit; 338 } else 339 length = 0; 340 341 args->begin_argv = args->buf + length; 342 args->endp = args->begin_argv; 343 args->stringspace = ARG_MAX; 344 345 /* 346 * extract arguments first 347 */ 348 p32 = argv; 349 for (;;) { 350 error = copyin(p32++, &arg, sizeof(arg)); 351 if (error) 352 goto err_exit; 353 if (arg == 0) 354 break; 355 argp = PTRIN(arg); 356 error = copyinstr(argp, args->endp, args->stringspace, &length); 357 if (error) { 358 if (error == ENAMETOOLONG) 359 error = E2BIG; 360 goto err_exit; 361 } 362 args->stringspace -= length; 363 args->endp += length; 364 args->argc++; 365 } 366 367 args->begin_envv = args->endp; 368 369 /* 370 * extract environment strings 371 */ 372 if (envv) { 373 p32 = envv; 374 for (;;) { 375 error = copyin(p32++, &arg, sizeof(arg)); 376 if (error) 377 goto err_exit; 378 if (arg == 0) 379 break; 380 envp = PTRIN(arg); 381 error = copyinstr(envp, args->endp, args->stringspace, 382 &length); 383 if (error) { 384 if (error == ENAMETOOLONG) 385 error = E2BIG; 386 goto err_exit; 387 } 388 args->stringspace -= length; 389 args->endp += length; 390 args->envc++; 391 } 392 } 393 394 return (0); 395 396 err_exit: 397 exec_free_args(args); 398 return (error); 399 } 400 401 int 402 freebsd32_execve(struct thread *td, struct freebsd32_execve_args *uap) 403 { 404 struct image_args eargs; 405 struct vmspace *oldvmspace; 406 int error; 407 408 error = pre_execve(td, &oldvmspace); 409 if (error != 0) 410 return (error); 411 error = freebsd32_exec_copyin_args(&eargs, uap->fname, UIO_USERSPACE, 412 uap->argv, uap->envv); 413 if (error == 0) 414 error = kern_execve(td, &eargs, NULL); 415 post_execve(td, error, oldvmspace); 416 return (error); 417 } 418 419 int 420 freebsd32_fexecve(struct thread *td, struct freebsd32_fexecve_args *uap) 421 { 422 struct image_args eargs; 423 struct vmspace *oldvmspace; 424 int error; 425 426 error = pre_execve(td, &oldvmspace); 427 if (error != 0) 428 return (error); 429 error = freebsd32_exec_copyin_args(&eargs, NULL, UIO_SYSSPACE, 430 uap->argv, uap->envv); 431 if (error == 0) { 432 eargs.fd = uap->fd; 433 error = kern_execve(td, &eargs, NULL); 434 } 435 post_execve(td, error, oldvmspace); 436 return (error); 437 } 438 439 int 440 freebsd32_mprotect(struct thread *td, struct freebsd32_mprotect_args *uap) 441 { 442 struct mprotect_args ap; 443 444 ap.addr = PTRIN(uap->addr); 445 ap.len = uap->len; 446 ap.prot = uap->prot; 447 #if defined(__amd64__) 448 if (i386_read_exec && (ap.prot & PROT_READ) != 0) 449 ap.prot |= PROT_EXEC; 450 #endif 451 return (sys_mprotect(td, &ap)); 452 } 453 454 int 455 freebsd32_mmap(struct thread *td, struct freebsd32_mmap_args *uap) 456 { 457 struct mmap_args ap; 458 vm_offset_t addr = (vm_offset_t) uap->addr; 459 vm_size_t len = uap->len; 460 int prot = uap->prot; 461 int flags = uap->flags; 462 int fd = uap->fd; 463 off_t pos = PAIR32TO64(off_t,uap->pos); 464 465 #if defined(__amd64__) 466 if (i386_read_exec && (prot & PROT_READ)) 467 prot |= PROT_EXEC; 468 #endif 469 470 ap.addr = (void *) addr; 471 ap.len = len; 472 ap.prot = prot; 473 ap.flags = flags; 474 ap.fd = fd; 475 ap.pos = pos; 476 477 return (sys_mmap(td, &ap)); 478 } 479 480 #ifdef COMPAT_FREEBSD6 481 int 482 freebsd6_freebsd32_mmap(struct thread *td, struct freebsd6_freebsd32_mmap_args *uap) 483 { 484 struct freebsd32_mmap_args ap; 485 486 ap.addr = uap->addr; 487 ap.len = uap->len; 488 ap.prot = uap->prot; 489 ap.flags = uap->flags; 490 ap.fd = uap->fd; 491 ap.pos1 = uap->pos1; 492 ap.pos2 = uap->pos2; 493 494 return (freebsd32_mmap(td, &ap)); 495 } 496 #endif 497 498 int 499 freebsd32_setitimer(struct thread *td, struct freebsd32_setitimer_args *uap) 500 { 501 struct itimerval itv, oitv, *itvp; 502 struct itimerval32 i32; 503 int error; 504 505 if (uap->itv != NULL) { 506 error = copyin(uap->itv, &i32, sizeof(i32)); 507 if (error) 508 return (error); 509 TV_CP(i32, itv, it_interval); 510 TV_CP(i32, itv, it_value); 511 itvp = &itv; 512 } else 513 itvp = NULL; 514 error = kern_setitimer(td, uap->which, itvp, &oitv); 515 if (error || uap->oitv == NULL) 516 return (error); 517 TV_CP(oitv, i32, it_interval); 518 TV_CP(oitv, i32, it_value); 519 return (copyout(&i32, uap->oitv, sizeof(i32))); 520 } 521 522 int 523 freebsd32_getitimer(struct thread *td, struct freebsd32_getitimer_args *uap) 524 { 525 struct itimerval itv; 526 struct itimerval32 i32; 527 int error; 528 529 error = kern_getitimer(td, uap->which, &itv); 530 if (error || uap->itv == NULL) 531 return (error); 532 TV_CP(itv, i32, it_interval); 533 TV_CP(itv, i32, it_value); 534 return (copyout(&i32, uap->itv, sizeof(i32))); 535 } 536 537 int 538 freebsd32_select(struct thread *td, struct freebsd32_select_args *uap) 539 { 540 struct timeval32 tv32; 541 struct timeval tv, *tvp; 542 int error; 543 544 if (uap->tv != NULL) { 545 error = copyin(uap->tv, &tv32, sizeof(tv32)); 546 if (error) 547 return (error); 548 CP(tv32, tv, tv_sec); 549 CP(tv32, tv, tv_usec); 550 tvp = &tv; 551 } else 552 tvp = NULL; 553 /* 554 * XXX Do pointers need PTRIN()? 555 */ 556 return (kern_select(td, uap->nd, uap->in, uap->ou, uap->ex, tvp, 557 sizeof(int32_t) * 8)); 558 } 559 560 int 561 freebsd32_pselect(struct thread *td, struct freebsd32_pselect_args *uap) 562 { 563 struct timespec32 ts32; 564 struct timespec ts; 565 struct timeval tv, *tvp; 566 sigset_t set, *uset; 567 int error; 568 569 if (uap->ts != NULL) { 570 error = copyin(uap->ts, &ts32, sizeof(ts32)); 571 if (error != 0) 572 return (error); 573 CP(ts32, ts, tv_sec); 574 CP(ts32, ts, tv_nsec); 575 TIMESPEC_TO_TIMEVAL(&tv, &ts); 576 tvp = &tv; 577 } else 578 tvp = NULL; 579 if (uap->sm != NULL) { 580 error = copyin(uap->sm, &set, sizeof(set)); 581 if (error != 0) 582 return (error); 583 uset = &set; 584 } else 585 uset = NULL; 586 /* 587 * XXX Do pointers need PTRIN()? 588 */ 589 error = kern_pselect(td, uap->nd, uap->in, uap->ou, uap->ex, tvp, 590 uset, sizeof(int32_t) * 8); 591 return (error); 592 } 593 594 /* 595 * Copy 'count' items into the destination list pointed to by uap->eventlist. 596 */ 597 static int 598 freebsd32_kevent_copyout(void *arg, struct kevent *kevp, int count) 599 { 600 struct freebsd32_kevent_args *uap; 601 struct kevent32 ks32[KQ_NEVENTS]; 602 int i, error = 0; 603 604 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count)); 605 uap = (struct freebsd32_kevent_args *)arg; 606 607 for (i = 0; i < count; i++) { 608 CP(kevp[i], ks32[i], ident); 609 CP(kevp[i], ks32[i], filter); 610 CP(kevp[i], ks32[i], flags); 611 CP(kevp[i], ks32[i], fflags); 612 CP(kevp[i], ks32[i], data); 613 PTROUT_CP(kevp[i], ks32[i], udata); 614 } 615 error = copyout(ks32, uap->eventlist, count * sizeof *ks32); 616 if (error == 0) 617 uap->eventlist += count; 618 return (error); 619 } 620 621 /* 622 * Copy 'count' items from the list pointed to by uap->changelist. 623 */ 624 static int 625 freebsd32_kevent_copyin(void *arg, struct kevent *kevp, int count) 626 { 627 struct freebsd32_kevent_args *uap; 628 struct kevent32 ks32[KQ_NEVENTS]; 629 int i, error = 0; 630 631 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count)); 632 uap = (struct freebsd32_kevent_args *)arg; 633 634 error = copyin(uap->changelist, ks32, count * sizeof *ks32); 635 if (error) 636 goto done; 637 uap->changelist += count; 638 639 for (i = 0; i < count; i++) { 640 CP(ks32[i], kevp[i], ident); 641 CP(ks32[i], kevp[i], filter); 642 CP(ks32[i], kevp[i], flags); 643 CP(ks32[i], kevp[i], fflags); 644 CP(ks32[i], kevp[i], data); 645 PTRIN_CP(ks32[i], kevp[i], udata); 646 } 647 done: 648 return (error); 649 } 650 651 int 652 freebsd32_kevent(struct thread *td, struct freebsd32_kevent_args *uap) 653 { 654 struct timespec32 ts32; 655 struct timespec ts, *tsp; 656 struct kevent_copyops k_ops = { uap, 657 freebsd32_kevent_copyout, 658 freebsd32_kevent_copyin}; 659 int error; 660 661 662 if (uap->timeout) { 663 error = copyin(uap->timeout, &ts32, sizeof(ts32)); 664 if (error) 665 return (error); 666 CP(ts32, ts, tv_sec); 667 CP(ts32, ts, tv_nsec); 668 tsp = &ts; 669 } else 670 tsp = NULL; 671 error = kern_kevent(td, uap->fd, uap->nchanges, uap->nevents, 672 &k_ops, tsp); 673 return (error); 674 } 675 676 int 677 freebsd32_gettimeofday(struct thread *td, 678 struct freebsd32_gettimeofday_args *uap) 679 { 680 struct timeval atv; 681 struct timeval32 atv32; 682 struct timezone rtz; 683 int error = 0; 684 685 if (uap->tp) { 686 microtime(&atv); 687 CP(atv, atv32, tv_sec); 688 CP(atv, atv32, tv_usec); 689 error = copyout(&atv32, uap->tp, sizeof (atv32)); 690 } 691 if (error == 0 && uap->tzp != NULL) { 692 rtz.tz_minuteswest = tz_minuteswest; 693 rtz.tz_dsttime = tz_dsttime; 694 error = copyout(&rtz, uap->tzp, sizeof (rtz)); 695 } 696 return (error); 697 } 698 699 int 700 freebsd32_getrusage(struct thread *td, struct freebsd32_getrusage_args *uap) 701 { 702 struct rusage32 s32; 703 struct rusage s; 704 int error; 705 706 error = kern_getrusage(td, uap->who, &s); 707 if (error) 708 return (error); 709 if (uap->rusage != NULL) { 710 freebsd32_rusage_out(&s, &s32); 711 error = copyout(&s32, uap->rusage, sizeof(s32)); 712 } 713 return (error); 714 } 715 716 static int 717 freebsd32_copyinuio(struct iovec32 *iovp, u_int iovcnt, struct uio **uiop) 718 { 719 struct iovec32 iov32; 720 struct iovec *iov; 721 struct uio *uio; 722 u_int iovlen; 723 int error, i; 724 725 *uiop = NULL; 726 if (iovcnt > UIO_MAXIOV) 727 return (EINVAL); 728 iovlen = iovcnt * sizeof(struct iovec); 729 uio = malloc(iovlen + sizeof *uio, M_IOV, M_WAITOK); 730 iov = (struct iovec *)(uio + 1); 731 for (i = 0; i < iovcnt; i++) { 732 error = copyin(&iovp[i], &iov32, sizeof(struct iovec32)); 733 if (error) { 734 free(uio, M_IOV); 735 return (error); 736 } 737 iov[i].iov_base = PTRIN(iov32.iov_base); 738 iov[i].iov_len = iov32.iov_len; 739 } 740 uio->uio_iov = iov; 741 uio->uio_iovcnt = iovcnt; 742 uio->uio_segflg = UIO_USERSPACE; 743 uio->uio_offset = -1; 744 uio->uio_resid = 0; 745 for (i = 0; i < iovcnt; i++) { 746 if (iov->iov_len > INT_MAX - uio->uio_resid) { 747 free(uio, M_IOV); 748 return (EINVAL); 749 } 750 uio->uio_resid += iov->iov_len; 751 iov++; 752 } 753 *uiop = uio; 754 return (0); 755 } 756 757 int 758 freebsd32_readv(struct thread *td, struct freebsd32_readv_args *uap) 759 { 760 struct uio *auio; 761 int error; 762 763 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 764 if (error) 765 return (error); 766 error = kern_readv(td, uap->fd, auio); 767 free(auio, M_IOV); 768 return (error); 769 } 770 771 int 772 freebsd32_writev(struct thread *td, struct freebsd32_writev_args *uap) 773 { 774 struct uio *auio; 775 int error; 776 777 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 778 if (error) 779 return (error); 780 error = kern_writev(td, uap->fd, auio); 781 free(auio, M_IOV); 782 return (error); 783 } 784 785 int 786 freebsd32_preadv(struct thread *td, struct freebsd32_preadv_args *uap) 787 { 788 struct uio *auio; 789 int error; 790 791 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 792 if (error) 793 return (error); 794 error = kern_preadv(td, uap->fd, auio, PAIR32TO64(off_t,uap->offset)); 795 free(auio, M_IOV); 796 return (error); 797 } 798 799 int 800 freebsd32_pwritev(struct thread *td, struct freebsd32_pwritev_args *uap) 801 { 802 struct uio *auio; 803 int error; 804 805 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 806 if (error) 807 return (error); 808 error = kern_pwritev(td, uap->fd, auio, PAIR32TO64(off_t,uap->offset)); 809 free(auio, M_IOV); 810 return (error); 811 } 812 813 int 814 freebsd32_copyiniov(struct iovec32 *iovp32, u_int iovcnt, struct iovec **iovp, 815 int error) 816 { 817 struct iovec32 iov32; 818 struct iovec *iov; 819 u_int iovlen; 820 int i; 821 822 *iovp = NULL; 823 if (iovcnt > UIO_MAXIOV) 824 return (error); 825 iovlen = iovcnt * sizeof(struct iovec); 826 iov = malloc(iovlen, M_IOV, M_WAITOK); 827 for (i = 0; i < iovcnt; i++) { 828 error = copyin(&iovp32[i], &iov32, sizeof(struct iovec32)); 829 if (error) { 830 free(iov, M_IOV); 831 return (error); 832 } 833 iov[i].iov_base = PTRIN(iov32.iov_base); 834 iov[i].iov_len = iov32.iov_len; 835 } 836 *iovp = iov; 837 return (0); 838 } 839 840 static int 841 freebsd32_copyinmsghdr(struct msghdr32 *msg32, struct msghdr *msg) 842 { 843 struct msghdr32 m32; 844 int error; 845 846 error = copyin(msg32, &m32, sizeof(m32)); 847 if (error) 848 return (error); 849 msg->msg_name = PTRIN(m32.msg_name); 850 msg->msg_namelen = m32.msg_namelen; 851 msg->msg_iov = PTRIN(m32.msg_iov); 852 msg->msg_iovlen = m32.msg_iovlen; 853 msg->msg_control = PTRIN(m32.msg_control); 854 msg->msg_controllen = m32.msg_controllen; 855 msg->msg_flags = m32.msg_flags; 856 return (0); 857 } 858 859 static int 860 freebsd32_copyoutmsghdr(struct msghdr *msg, struct msghdr32 *msg32) 861 { 862 struct msghdr32 m32; 863 int error; 864 865 m32.msg_name = PTROUT(msg->msg_name); 866 m32.msg_namelen = msg->msg_namelen; 867 m32.msg_iov = PTROUT(msg->msg_iov); 868 m32.msg_iovlen = msg->msg_iovlen; 869 m32.msg_control = PTROUT(msg->msg_control); 870 m32.msg_controllen = msg->msg_controllen; 871 m32.msg_flags = msg->msg_flags; 872 error = copyout(&m32, msg32, sizeof(m32)); 873 return (error); 874 } 875 876 #ifndef __mips__ 877 #define FREEBSD32_ALIGNBYTES (sizeof(int) - 1) 878 #else 879 #define FREEBSD32_ALIGNBYTES (sizeof(long) - 1) 880 #endif 881 #define FREEBSD32_ALIGN(p) \ 882 (((u_long)(p) + FREEBSD32_ALIGNBYTES) & ~FREEBSD32_ALIGNBYTES) 883 #define FREEBSD32_CMSG_SPACE(l) \ 884 (FREEBSD32_ALIGN(sizeof(struct cmsghdr)) + FREEBSD32_ALIGN(l)) 885 886 #define FREEBSD32_CMSG_DATA(cmsg) ((unsigned char *)(cmsg) + \ 887 FREEBSD32_ALIGN(sizeof(struct cmsghdr))) 888 static int 889 freebsd32_copy_msg_out(struct msghdr *msg, struct mbuf *control) 890 { 891 struct cmsghdr *cm; 892 void *data; 893 socklen_t clen, datalen; 894 int error; 895 caddr_t ctlbuf; 896 int len, maxlen, copylen; 897 struct mbuf *m; 898 error = 0; 899 900 len = msg->msg_controllen; 901 maxlen = msg->msg_controllen; 902 msg->msg_controllen = 0; 903 904 m = control; 905 ctlbuf = msg->msg_control; 906 907 while (m && len > 0) { 908 cm = mtod(m, struct cmsghdr *); 909 clen = m->m_len; 910 911 while (cm != NULL) { 912 913 if (sizeof(struct cmsghdr) > clen || 914 cm->cmsg_len > clen) { 915 error = EINVAL; 916 break; 917 } 918 919 data = CMSG_DATA(cm); 920 datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data; 921 922 /* Adjust message length */ 923 cm->cmsg_len = FREEBSD32_ALIGN(sizeof(struct cmsghdr)) + 924 datalen; 925 926 927 /* Copy cmsghdr */ 928 copylen = sizeof(struct cmsghdr); 929 if (len < copylen) { 930 msg->msg_flags |= MSG_CTRUNC; 931 copylen = len; 932 } 933 934 error = copyout(cm,ctlbuf,copylen); 935 if (error) 936 goto exit; 937 938 ctlbuf += FREEBSD32_ALIGN(copylen); 939 len -= FREEBSD32_ALIGN(copylen); 940 941 if (len <= 0) 942 break; 943 944 /* Copy data */ 945 copylen = datalen; 946 if (len < copylen) { 947 msg->msg_flags |= MSG_CTRUNC; 948 copylen = len; 949 } 950 951 error = copyout(data,ctlbuf,copylen); 952 if (error) 953 goto exit; 954 955 ctlbuf += FREEBSD32_ALIGN(copylen); 956 len -= FREEBSD32_ALIGN(copylen); 957 958 if (CMSG_SPACE(datalen) < clen) { 959 clen -= CMSG_SPACE(datalen); 960 cm = (struct cmsghdr *) 961 ((caddr_t)cm + CMSG_SPACE(datalen)); 962 } else { 963 clen = 0; 964 cm = NULL; 965 } 966 } 967 m = m->m_next; 968 } 969 970 msg->msg_controllen = (len <= 0) ? maxlen : ctlbuf - (caddr_t)msg->msg_control; 971 972 exit: 973 return (error); 974 975 } 976 977 int 978 freebsd32_recvmsg(td, uap) 979 struct thread *td; 980 struct freebsd32_recvmsg_args /* { 981 int s; 982 struct msghdr32 *msg; 983 int flags; 984 } */ *uap; 985 { 986 struct msghdr msg; 987 struct msghdr32 m32; 988 struct iovec *uiov, *iov; 989 struct mbuf *control = NULL; 990 struct mbuf **controlp; 991 992 int error; 993 error = copyin(uap->msg, &m32, sizeof(m32)); 994 if (error) 995 return (error); 996 error = freebsd32_copyinmsghdr(uap->msg, &msg); 997 if (error) 998 return (error); 999 error = freebsd32_copyiniov(PTRIN(m32.msg_iov), m32.msg_iovlen, &iov, 1000 EMSGSIZE); 1001 if (error) 1002 return (error); 1003 msg.msg_flags = uap->flags; 1004 uiov = msg.msg_iov; 1005 msg.msg_iov = iov; 1006 1007 controlp = (msg.msg_control != NULL) ? &control : NULL; 1008 error = kern_recvit(td, uap->s, &msg, UIO_USERSPACE, controlp); 1009 if (error == 0) { 1010 msg.msg_iov = uiov; 1011 1012 if (control != NULL) 1013 error = freebsd32_copy_msg_out(&msg, control); 1014 else 1015 msg.msg_controllen = 0; 1016 1017 if (error == 0) 1018 error = freebsd32_copyoutmsghdr(&msg, uap->msg); 1019 } 1020 free(iov, M_IOV); 1021 1022 if (control != NULL) 1023 m_freem(control); 1024 1025 return (error); 1026 } 1027 1028 /* 1029 * Copy-in the array of control messages constructed using alignment 1030 * and padding suitable for a 32-bit environment and construct an 1031 * mbuf using alignment and padding suitable for a 64-bit kernel. 1032 * The alignment and padding are defined indirectly by CMSG_DATA(), 1033 * CMSG_SPACE() and CMSG_LEN(). 1034 */ 1035 static int 1036 freebsd32_copyin_control(struct mbuf **mp, caddr_t buf, u_int buflen) 1037 { 1038 struct mbuf *m; 1039 void *md; 1040 u_int idx, len, msglen; 1041 int error; 1042 1043 buflen = FREEBSD32_ALIGN(buflen); 1044 1045 if (buflen > MCLBYTES) 1046 return (EINVAL); 1047 1048 /* 1049 * Iterate over the buffer and get the length of each message 1050 * in there. This has 32-bit alignment and padding. Use it to 1051 * determine the length of these messages when using 64-bit 1052 * alignment and padding. 1053 */ 1054 idx = 0; 1055 len = 0; 1056 while (idx < buflen) { 1057 error = copyin(buf + idx, &msglen, sizeof(msglen)); 1058 if (error) 1059 return (error); 1060 if (msglen < sizeof(struct cmsghdr)) 1061 return (EINVAL); 1062 msglen = FREEBSD32_ALIGN(msglen); 1063 if (idx + msglen > buflen) 1064 return (EINVAL); 1065 idx += msglen; 1066 msglen += CMSG_ALIGN(sizeof(struct cmsghdr)) - 1067 FREEBSD32_ALIGN(sizeof(struct cmsghdr)); 1068 len += CMSG_ALIGN(msglen); 1069 } 1070 1071 if (len > MCLBYTES) 1072 return (EINVAL); 1073 1074 m = m_get(M_WAITOK, MT_CONTROL); 1075 if (len > MLEN) 1076 MCLGET(m, M_WAITOK); 1077 m->m_len = len; 1078 1079 md = mtod(m, void *); 1080 while (buflen > 0) { 1081 error = copyin(buf, md, sizeof(struct cmsghdr)); 1082 if (error) 1083 break; 1084 msglen = *(u_int *)md; 1085 msglen = FREEBSD32_ALIGN(msglen); 1086 1087 /* Modify the message length to account for alignment. */ 1088 *(u_int *)md = msglen + CMSG_ALIGN(sizeof(struct cmsghdr)) - 1089 FREEBSD32_ALIGN(sizeof(struct cmsghdr)); 1090 1091 md = (char *)md + CMSG_ALIGN(sizeof(struct cmsghdr)); 1092 buf += FREEBSD32_ALIGN(sizeof(struct cmsghdr)); 1093 buflen -= FREEBSD32_ALIGN(sizeof(struct cmsghdr)); 1094 1095 msglen -= FREEBSD32_ALIGN(sizeof(struct cmsghdr)); 1096 if (msglen > 0) { 1097 error = copyin(buf, md, msglen); 1098 if (error) 1099 break; 1100 md = (char *)md + CMSG_ALIGN(msglen); 1101 buf += msglen; 1102 buflen -= msglen; 1103 } 1104 } 1105 1106 if (error) 1107 m_free(m); 1108 else 1109 *mp = m; 1110 return (error); 1111 } 1112 1113 int 1114 freebsd32_sendmsg(struct thread *td, 1115 struct freebsd32_sendmsg_args *uap) 1116 { 1117 struct msghdr msg; 1118 struct msghdr32 m32; 1119 struct iovec *iov; 1120 struct mbuf *control = NULL; 1121 struct sockaddr *to = NULL; 1122 int error; 1123 1124 error = copyin(uap->msg, &m32, sizeof(m32)); 1125 if (error) 1126 return (error); 1127 error = freebsd32_copyinmsghdr(uap->msg, &msg); 1128 if (error) 1129 return (error); 1130 error = freebsd32_copyiniov(PTRIN(m32.msg_iov), m32.msg_iovlen, &iov, 1131 EMSGSIZE); 1132 if (error) 1133 return (error); 1134 msg.msg_iov = iov; 1135 if (msg.msg_name != NULL) { 1136 error = getsockaddr(&to, msg.msg_name, msg.msg_namelen); 1137 if (error) { 1138 to = NULL; 1139 goto out; 1140 } 1141 msg.msg_name = to; 1142 } 1143 1144 if (msg.msg_control) { 1145 if (msg.msg_controllen < sizeof(struct cmsghdr)) { 1146 error = EINVAL; 1147 goto out; 1148 } 1149 1150 error = freebsd32_copyin_control(&control, msg.msg_control, 1151 msg.msg_controllen); 1152 if (error) 1153 goto out; 1154 1155 msg.msg_control = NULL; 1156 msg.msg_controllen = 0; 1157 } 1158 1159 error = kern_sendit(td, uap->s, &msg, uap->flags, control, 1160 UIO_USERSPACE); 1161 1162 out: 1163 free(iov, M_IOV); 1164 if (to) 1165 free(to, M_SONAME); 1166 return (error); 1167 } 1168 1169 int 1170 freebsd32_recvfrom(struct thread *td, 1171 struct freebsd32_recvfrom_args *uap) 1172 { 1173 struct msghdr msg; 1174 struct iovec aiov; 1175 int error; 1176 1177 if (uap->fromlenaddr) { 1178 error = copyin(PTRIN(uap->fromlenaddr), &msg.msg_namelen, 1179 sizeof(msg.msg_namelen)); 1180 if (error) 1181 return (error); 1182 } else { 1183 msg.msg_namelen = 0; 1184 } 1185 1186 msg.msg_name = PTRIN(uap->from); 1187 msg.msg_iov = &aiov; 1188 msg.msg_iovlen = 1; 1189 aiov.iov_base = PTRIN(uap->buf); 1190 aiov.iov_len = uap->len; 1191 msg.msg_control = NULL; 1192 msg.msg_flags = uap->flags; 1193 error = kern_recvit(td, uap->s, &msg, UIO_USERSPACE, NULL); 1194 if (error == 0 && uap->fromlenaddr) 1195 error = copyout(&msg.msg_namelen, PTRIN(uap->fromlenaddr), 1196 sizeof (msg.msg_namelen)); 1197 return (error); 1198 } 1199 1200 int 1201 freebsd32_settimeofday(struct thread *td, 1202 struct freebsd32_settimeofday_args *uap) 1203 { 1204 struct timeval32 tv32; 1205 struct timeval tv, *tvp; 1206 struct timezone tz, *tzp; 1207 int error; 1208 1209 if (uap->tv) { 1210 error = copyin(uap->tv, &tv32, sizeof(tv32)); 1211 if (error) 1212 return (error); 1213 CP(tv32, tv, tv_sec); 1214 CP(tv32, tv, tv_usec); 1215 tvp = &tv; 1216 } else 1217 tvp = NULL; 1218 if (uap->tzp) { 1219 error = copyin(uap->tzp, &tz, sizeof(tz)); 1220 if (error) 1221 return (error); 1222 tzp = &tz; 1223 } else 1224 tzp = NULL; 1225 return (kern_settimeofday(td, tvp, tzp)); 1226 } 1227 1228 int 1229 freebsd32_utimes(struct thread *td, struct freebsd32_utimes_args *uap) 1230 { 1231 struct timeval32 s32[2]; 1232 struct timeval s[2], *sp; 1233 int error; 1234 1235 if (uap->tptr != NULL) { 1236 error = copyin(uap->tptr, s32, sizeof(s32)); 1237 if (error) 1238 return (error); 1239 CP(s32[0], s[0], tv_sec); 1240 CP(s32[0], s[0], tv_usec); 1241 CP(s32[1], s[1], tv_sec); 1242 CP(s32[1], s[1], tv_usec); 1243 sp = s; 1244 } else 1245 sp = NULL; 1246 return (kern_utimesat(td, AT_FDCWD, uap->path, UIO_USERSPACE, 1247 sp, UIO_SYSSPACE)); 1248 } 1249 1250 int 1251 freebsd32_lutimes(struct thread *td, struct freebsd32_lutimes_args *uap) 1252 { 1253 struct timeval32 s32[2]; 1254 struct timeval s[2], *sp; 1255 int error; 1256 1257 if (uap->tptr != NULL) { 1258 error = copyin(uap->tptr, s32, sizeof(s32)); 1259 if (error) 1260 return (error); 1261 CP(s32[0], s[0], tv_sec); 1262 CP(s32[0], s[0], tv_usec); 1263 CP(s32[1], s[1], tv_sec); 1264 CP(s32[1], s[1], tv_usec); 1265 sp = s; 1266 } else 1267 sp = NULL; 1268 return (kern_lutimes(td, uap->path, UIO_USERSPACE, sp, UIO_SYSSPACE)); 1269 } 1270 1271 int 1272 freebsd32_futimes(struct thread *td, struct freebsd32_futimes_args *uap) 1273 { 1274 struct timeval32 s32[2]; 1275 struct timeval s[2], *sp; 1276 int error; 1277 1278 if (uap->tptr != NULL) { 1279 error = copyin(uap->tptr, s32, sizeof(s32)); 1280 if (error) 1281 return (error); 1282 CP(s32[0], s[0], tv_sec); 1283 CP(s32[0], s[0], tv_usec); 1284 CP(s32[1], s[1], tv_sec); 1285 CP(s32[1], s[1], tv_usec); 1286 sp = s; 1287 } else 1288 sp = NULL; 1289 return (kern_futimes(td, uap->fd, sp, UIO_SYSSPACE)); 1290 } 1291 1292 int 1293 freebsd32_futimesat(struct thread *td, struct freebsd32_futimesat_args *uap) 1294 { 1295 struct timeval32 s32[2]; 1296 struct timeval s[2], *sp; 1297 int error; 1298 1299 if (uap->times != NULL) { 1300 error = copyin(uap->times, s32, sizeof(s32)); 1301 if (error) 1302 return (error); 1303 CP(s32[0], s[0], tv_sec); 1304 CP(s32[0], s[0], tv_usec); 1305 CP(s32[1], s[1], tv_sec); 1306 CP(s32[1], s[1], tv_usec); 1307 sp = s; 1308 } else 1309 sp = NULL; 1310 return (kern_utimesat(td, uap->fd, uap->path, UIO_USERSPACE, 1311 sp, UIO_SYSSPACE)); 1312 } 1313 1314 int 1315 freebsd32_futimens(struct thread *td, struct freebsd32_futimens_args *uap) 1316 { 1317 struct timespec32 ts32[2]; 1318 struct timespec ts[2], *tsp; 1319 int error; 1320 1321 if (uap->times != NULL) { 1322 error = copyin(uap->times, ts32, sizeof(ts32)); 1323 if (error) 1324 return (error); 1325 CP(ts32[0], ts[0], tv_sec); 1326 CP(ts32[0], ts[0], tv_nsec); 1327 CP(ts32[1], ts[1], tv_sec); 1328 CP(ts32[1], ts[1], tv_nsec); 1329 tsp = ts; 1330 } else 1331 tsp = NULL; 1332 return (kern_futimens(td, uap->fd, tsp, UIO_SYSSPACE)); 1333 } 1334 1335 int 1336 freebsd32_utimensat(struct thread *td, struct freebsd32_utimensat_args *uap) 1337 { 1338 struct timespec32 ts32[2]; 1339 struct timespec ts[2], *tsp; 1340 int error; 1341 1342 if (uap->times != NULL) { 1343 error = copyin(uap->times, ts32, sizeof(ts32)); 1344 if (error) 1345 return (error); 1346 CP(ts32[0], ts[0], tv_sec); 1347 CP(ts32[0], ts[0], tv_nsec); 1348 CP(ts32[1], ts[1], tv_sec); 1349 CP(ts32[1], ts[1], tv_nsec); 1350 tsp = ts; 1351 } else 1352 tsp = NULL; 1353 return (kern_utimensat(td, uap->fd, uap->path, UIO_USERSPACE, 1354 tsp, UIO_SYSSPACE, uap->flag)); 1355 } 1356 1357 int 1358 freebsd32_adjtime(struct thread *td, struct freebsd32_adjtime_args *uap) 1359 { 1360 struct timeval32 tv32; 1361 struct timeval delta, olddelta, *deltap; 1362 int error; 1363 1364 if (uap->delta) { 1365 error = copyin(uap->delta, &tv32, sizeof(tv32)); 1366 if (error) 1367 return (error); 1368 CP(tv32, delta, tv_sec); 1369 CP(tv32, delta, tv_usec); 1370 deltap = δ 1371 } else 1372 deltap = NULL; 1373 error = kern_adjtime(td, deltap, &olddelta); 1374 if (uap->olddelta && error == 0) { 1375 CP(olddelta, tv32, tv_sec); 1376 CP(olddelta, tv32, tv_usec); 1377 error = copyout(&tv32, uap->olddelta, sizeof(tv32)); 1378 } 1379 return (error); 1380 } 1381 1382 #ifdef COMPAT_FREEBSD4 1383 int 1384 freebsd4_freebsd32_statfs(struct thread *td, struct freebsd4_freebsd32_statfs_args *uap) 1385 { 1386 struct statfs32 s32; 1387 struct statfs s; 1388 int error; 1389 1390 error = kern_statfs(td, uap->path, UIO_USERSPACE, &s); 1391 if (error) 1392 return (error); 1393 copy_statfs(&s, &s32); 1394 return (copyout(&s32, uap->buf, sizeof(s32))); 1395 } 1396 #endif 1397 1398 #ifdef COMPAT_FREEBSD4 1399 int 1400 freebsd4_freebsd32_fstatfs(struct thread *td, struct freebsd4_freebsd32_fstatfs_args *uap) 1401 { 1402 struct statfs32 s32; 1403 struct statfs s; 1404 int error; 1405 1406 error = kern_fstatfs(td, uap->fd, &s); 1407 if (error) 1408 return (error); 1409 copy_statfs(&s, &s32); 1410 return (copyout(&s32, uap->buf, sizeof(s32))); 1411 } 1412 #endif 1413 1414 #ifdef COMPAT_FREEBSD4 1415 int 1416 freebsd4_freebsd32_fhstatfs(struct thread *td, struct freebsd4_freebsd32_fhstatfs_args *uap) 1417 { 1418 struct statfs32 s32; 1419 struct statfs s; 1420 fhandle_t fh; 1421 int error; 1422 1423 if ((error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t))) != 0) 1424 return (error); 1425 error = kern_fhstatfs(td, fh, &s); 1426 if (error) 1427 return (error); 1428 copy_statfs(&s, &s32); 1429 return (copyout(&s32, uap->buf, sizeof(s32))); 1430 } 1431 #endif 1432 1433 int 1434 freebsd32_pread(struct thread *td, struct freebsd32_pread_args *uap) 1435 { 1436 struct pread_args ap; 1437 1438 ap.fd = uap->fd; 1439 ap.buf = uap->buf; 1440 ap.nbyte = uap->nbyte; 1441 ap.offset = PAIR32TO64(off_t,uap->offset); 1442 return (sys_pread(td, &ap)); 1443 } 1444 1445 int 1446 freebsd32_pwrite(struct thread *td, struct freebsd32_pwrite_args *uap) 1447 { 1448 struct pwrite_args ap; 1449 1450 ap.fd = uap->fd; 1451 ap.buf = uap->buf; 1452 ap.nbyte = uap->nbyte; 1453 ap.offset = PAIR32TO64(off_t,uap->offset); 1454 return (sys_pwrite(td, &ap)); 1455 } 1456 1457 #ifdef COMPAT_43 1458 int 1459 ofreebsd32_lseek(struct thread *td, struct ofreebsd32_lseek_args *uap) 1460 { 1461 struct lseek_args nuap; 1462 1463 nuap.fd = uap->fd; 1464 nuap.offset = uap->offset; 1465 nuap.whence = uap->whence; 1466 return (sys_lseek(td, &nuap)); 1467 } 1468 #endif 1469 1470 int 1471 freebsd32_lseek(struct thread *td, struct freebsd32_lseek_args *uap) 1472 { 1473 int error; 1474 struct lseek_args ap; 1475 off_t pos; 1476 1477 ap.fd = uap->fd; 1478 ap.offset = PAIR32TO64(off_t,uap->offset); 1479 ap.whence = uap->whence; 1480 error = sys_lseek(td, &ap); 1481 /* Expand the quad return into two parts for eax and edx */ 1482 pos = td->td_uretoff.tdu_off; 1483 td->td_retval[RETVAL_LO] = pos & 0xffffffff; /* %eax */ 1484 td->td_retval[RETVAL_HI] = pos >> 32; /* %edx */ 1485 return error; 1486 } 1487 1488 int 1489 freebsd32_truncate(struct thread *td, struct freebsd32_truncate_args *uap) 1490 { 1491 struct truncate_args ap; 1492 1493 ap.path = uap->path; 1494 ap.length = PAIR32TO64(off_t,uap->length); 1495 return (sys_truncate(td, &ap)); 1496 } 1497 1498 int 1499 freebsd32_ftruncate(struct thread *td, struct freebsd32_ftruncate_args *uap) 1500 { 1501 struct ftruncate_args ap; 1502 1503 ap.fd = uap->fd; 1504 ap.length = PAIR32TO64(off_t,uap->length); 1505 return (sys_ftruncate(td, &ap)); 1506 } 1507 1508 #ifdef COMPAT_43 1509 int 1510 ofreebsd32_getdirentries(struct thread *td, 1511 struct ofreebsd32_getdirentries_args *uap) 1512 { 1513 struct ogetdirentries_args ap; 1514 int error; 1515 long loff; 1516 int32_t loff_cut; 1517 1518 ap.fd = uap->fd; 1519 ap.buf = uap->buf; 1520 ap.count = uap->count; 1521 ap.basep = NULL; 1522 error = kern_ogetdirentries(td, &ap, &loff); 1523 if (error == 0) { 1524 loff_cut = loff; 1525 error = copyout(&loff_cut, uap->basep, sizeof(int32_t)); 1526 } 1527 return (error); 1528 } 1529 #endif 1530 1531 int 1532 freebsd32_getdirentries(struct thread *td, 1533 struct freebsd32_getdirentries_args *uap) 1534 { 1535 long base; 1536 int32_t base32; 1537 int error; 1538 1539 error = kern_getdirentries(td, uap->fd, uap->buf, uap->count, &base, 1540 NULL, UIO_USERSPACE); 1541 if (error) 1542 return (error); 1543 if (uap->basep != NULL) { 1544 base32 = base; 1545 error = copyout(&base32, uap->basep, sizeof(int32_t)); 1546 } 1547 return (error); 1548 } 1549 1550 #ifdef COMPAT_FREEBSD6 1551 /* versions with the 'int pad' argument */ 1552 int 1553 freebsd6_freebsd32_pread(struct thread *td, struct freebsd6_freebsd32_pread_args *uap) 1554 { 1555 struct pread_args ap; 1556 1557 ap.fd = uap->fd; 1558 ap.buf = uap->buf; 1559 ap.nbyte = uap->nbyte; 1560 ap.offset = PAIR32TO64(off_t,uap->offset); 1561 return (sys_pread(td, &ap)); 1562 } 1563 1564 int 1565 freebsd6_freebsd32_pwrite(struct thread *td, struct freebsd6_freebsd32_pwrite_args *uap) 1566 { 1567 struct pwrite_args ap; 1568 1569 ap.fd = uap->fd; 1570 ap.buf = uap->buf; 1571 ap.nbyte = uap->nbyte; 1572 ap.offset = PAIR32TO64(off_t,uap->offset); 1573 return (sys_pwrite(td, &ap)); 1574 } 1575 1576 int 1577 freebsd6_freebsd32_lseek(struct thread *td, struct freebsd6_freebsd32_lseek_args *uap) 1578 { 1579 int error; 1580 struct lseek_args ap; 1581 off_t pos; 1582 1583 ap.fd = uap->fd; 1584 ap.offset = PAIR32TO64(off_t,uap->offset); 1585 ap.whence = uap->whence; 1586 error = sys_lseek(td, &ap); 1587 /* Expand the quad return into two parts for eax and edx */ 1588 pos = *(off_t *)(td->td_retval); 1589 td->td_retval[RETVAL_LO] = pos & 0xffffffff; /* %eax */ 1590 td->td_retval[RETVAL_HI] = pos >> 32; /* %edx */ 1591 return error; 1592 } 1593 1594 int 1595 freebsd6_freebsd32_truncate(struct thread *td, struct freebsd6_freebsd32_truncate_args *uap) 1596 { 1597 struct truncate_args ap; 1598 1599 ap.path = uap->path; 1600 ap.length = PAIR32TO64(off_t,uap->length); 1601 return (sys_truncate(td, &ap)); 1602 } 1603 1604 int 1605 freebsd6_freebsd32_ftruncate(struct thread *td, struct freebsd6_freebsd32_ftruncate_args *uap) 1606 { 1607 struct ftruncate_args ap; 1608 1609 ap.fd = uap->fd; 1610 ap.length = PAIR32TO64(off_t,uap->length); 1611 return (sys_ftruncate(td, &ap)); 1612 } 1613 #endif /* COMPAT_FREEBSD6 */ 1614 1615 struct sf_hdtr32 { 1616 uint32_t headers; 1617 int hdr_cnt; 1618 uint32_t trailers; 1619 int trl_cnt; 1620 }; 1621 1622 static int 1623 freebsd32_do_sendfile(struct thread *td, 1624 struct freebsd32_sendfile_args *uap, int compat) 1625 { 1626 struct sf_hdtr32 hdtr32; 1627 struct sf_hdtr hdtr; 1628 struct uio *hdr_uio, *trl_uio; 1629 struct file *fp; 1630 cap_rights_t rights; 1631 struct iovec32 *iov32; 1632 off_t offset, sbytes; 1633 int error; 1634 1635 offset = PAIR32TO64(off_t, uap->offset); 1636 if (offset < 0) 1637 return (EINVAL); 1638 1639 hdr_uio = trl_uio = NULL; 1640 1641 if (uap->hdtr != NULL) { 1642 error = copyin(uap->hdtr, &hdtr32, sizeof(hdtr32)); 1643 if (error) 1644 goto out; 1645 PTRIN_CP(hdtr32, hdtr, headers); 1646 CP(hdtr32, hdtr, hdr_cnt); 1647 PTRIN_CP(hdtr32, hdtr, trailers); 1648 CP(hdtr32, hdtr, trl_cnt); 1649 1650 if (hdtr.headers != NULL) { 1651 iov32 = PTRIN(hdtr32.headers); 1652 error = freebsd32_copyinuio(iov32, 1653 hdtr32.hdr_cnt, &hdr_uio); 1654 if (error) 1655 goto out; 1656 #ifdef COMPAT_FREEBSD4 1657 /* 1658 * In FreeBSD < 5.0 the nbytes to send also included 1659 * the header. If compat is specified subtract the 1660 * header size from nbytes. 1661 */ 1662 if (compat) { 1663 if (uap->nbytes > hdr_uio->uio_resid) 1664 uap->nbytes -= hdr_uio->uio_resid; 1665 else 1666 uap->nbytes = 0; 1667 } 1668 #endif 1669 } 1670 if (hdtr.trailers != NULL) { 1671 iov32 = PTRIN(hdtr32.trailers); 1672 error = freebsd32_copyinuio(iov32, 1673 hdtr32.trl_cnt, &trl_uio); 1674 if (error) 1675 goto out; 1676 } 1677 } 1678 1679 AUDIT_ARG_FD(uap->fd); 1680 1681 if ((error = fget_read(td, uap->fd, 1682 cap_rights_init(&rights, CAP_PREAD), &fp)) != 0) 1683 goto out; 1684 1685 error = fo_sendfile(fp, uap->s, hdr_uio, trl_uio, offset, 1686 uap->nbytes, &sbytes, uap->flags, td); 1687 fdrop(fp, td); 1688 1689 if (uap->sbytes != NULL) 1690 copyout(&sbytes, uap->sbytes, sizeof(off_t)); 1691 1692 out: 1693 if (hdr_uio) 1694 free(hdr_uio, M_IOV); 1695 if (trl_uio) 1696 free(trl_uio, M_IOV); 1697 return (error); 1698 } 1699 1700 #ifdef COMPAT_FREEBSD4 1701 int 1702 freebsd4_freebsd32_sendfile(struct thread *td, 1703 struct freebsd4_freebsd32_sendfile_args *uap) 1704 { 1705 return (freebsd32_do_sendfile(td, 1706 (struct freebsd32_sendfile_args *)uap, 1)); 1707 } 1708 #endif 1709 1710 int 1711 freebsd32_sendfile(struct thread *td, struct freebsd32_sendfile_args *uap) 1712 { 1713 1714 return (freebsd32_do_sendfile(td, uap, 0)); 1715 } 1716 1717 static void 1718 copy_stat(struct stat *in, struct stat32 *out) 1719 { 1720 1721 CP(*in, *out, st_dev); 1722 CP(*in, *out, st_ino); 1723 CP(*in, *out, st_mode); 1724 CP(*in, *out, st_nlink); 1725 CP(*in, *out, st_uid); 1726 CP(*in, *out, st_gid); 1727 CP(*in, *out, st_rdev); 1728 TS_CP(*in, *out, st_atim); 1729 TS_CP(*in, *out, st_mtim); 1730 TS_CP(*in, *out, st_ctim); 1731 CP(*in, *out, st_size); 1732 CP(*in, *out, st_blocks); 1733 CP(*in, *out, st_blksize); 1734 CP(*in, *out, st_flags); 1735 CP(*in, *out, st_gen); 1736 TS_CP(*in, *out, st_birthtim); 1737 } 1738 1739 #ifdef COMPAT_43 1740 static void 1741 copy_ostat(struct stat *in, struct ostat32 *out) 1742 { 1743 1744 CP(*in, *out, st_dev); 1745 CP(*in, *out, st_ino); 1746 CP(*in, *out, st_mode); 1747 CP(*in, *out, st_nlink); 1748 CP(*in, *out, st_uid); 1749 CP(*in, *out, st_gid); 1750 CP(*in, *out, st_rdev); 1751 CP(*in, *out, st_size); 1752 TS_CP(*in, *out, st_atim); 1753 TS_CP(*in, *out, st_mtim); 1754 TS_CP(*in, *out, st_ctim); 1755 CP(*in, *out, st_blksize); 1756 CP(*in, *out, st_blocks); 1757 CP(*in, *out, st_flags); 1758 CP(*in, *out, st_gen); 1759 } 1760 #endif 1761 1762 int 1763 freebsd32_stat(struct thread *td, struct freebsd32_stat_args *uap) 1764 { 1765 struct stat sb; 1766 struct stat32 sb32; 1767 int error; 1768 1769 error = kern_statat(td, 0, AT_FDCWD, uap->path, UIO_USERSPACE, 1770 &sb, NULL); 1771 if (error) 1772 return (error); 1773 copy_stat(&sb, &sb32); 1774 error = copyout(&sb32, uap->ub, sizeof (sb32)); 1775 return (error); 1776 } 1777 1778 #ifdef COMPAT_43 1779 int 1780 ofreebsd32_stat(struct thread *td, struct ofreebsd32_stat_args *uap) 1781 { 1782 struct stat sb; 1783 struct ostat32 sb32; 1784 int error; 1785 1786 error = kern_statat(td, 0, AT_FDCWD, uap->path, UIO_USERSPACE, 1787 &sb, NULL); 1788 if (error) 1789 return (error); 1790 copy_ostat(&sb, &sb32); 1791 error = copyout(&sb32, uap->ub, sizeof (sb32)); 1792 return (error); 1793 } 1794 #endif 1795 1796 int 1797 freebsd32_fstat(struct thread *td, struct freebsd32_fstat_args *uap) 1798 { 1799 struct stat ub; 1800 struct stat32 ub32; 1801 int error; 1802 1803 error = kern_fstat(td, uap->fd, &ub); 1804 if (error) 1805 return (error); 1806 copy_stat(&ub, &ub32); 1807 error = copyout(&ub32, uap->ub, sizeof(ub32)); 1808 return (error); 1809 } 1810 1811 #ifdef COMPAT_43 1812 int 1813 ofreebsd32_fstat(struct thread *td, struct ofreebsd32_fstat_args *uap) 1814 { 1815 struct stat ub; 1816 struct ostat32 ub32; 1817 int error; 1818 1819 error = kern_fstat(td, uap->fd, &ub); 1820 if (error) 1821 return (error); 1822 copy_ostat(&ub, &ub32); 1823 error = copyout(&ub32, uap->ub, sizeof(ub32)); 1824 return (error); 1825 } 1826 #endif 1827 1828 int 1829 freebsd32_fstatat(struct thread *td, struct freebsd32_fstatat_args *uap) 1830 { 1831 struct stat ub; 1832 struct stat32 ub32; 1833 int error; 1834 1835 error = kern_statat(td, uap->flag, uap->fd, uap->path, UIO_USERSPACE, 1836 &ub, NULL); 1837 if (error) 1838 return (error); 1839 copy_stat(&ub, &ub32); 1840 error = copyout(&ub32, uap->buf, sizeof(ub32)); 1841 return (error); 1842 } 1843 1844 int 1845 freebsd32_lstat(struct thread *td, struct freebsd32_lstat_args *uap) 1846 { 1847 struct stat sb; 1848 struct stat32 sb32; 1849 int error; 1850 1851 error = kern_statat(td, AT_SYMLINK_NOFOLLOW, AT_FDCWD, uap->path, 1852 UIO_USERSPACE, &sb, NULL); 1853 if (error) 1854 return (error); 1855 copy_stat(&sb, &sb32); 1856 error = copyout(&sb32, uap->ub, sizeof (sb32)); 1857 return (error); 1858 } 1859 1860 #ifdef COMPAT_43 1861 int 1862 ofreebsd32_lstat(struct thread *td, struct ofreebsd32_lstat_args *uap) 1863 { 1864 struct stat sb; 1865 struct ostat32 sb32; 1866 int error; 1867 1868 error = kern_statat(td, AT_SYMLINK_NOFOLLOW, AT_FDCWD, uap->path, 1869 UIO_USERSPACE, &sb, NULL); 1870 if (error) 1871 return (error); 1872 copy_ostat(&sb, &sb32); 1873 error = copyout(&sb32, uap->ub, sizeof (sb32)); 1874 return (error); 1875 } 1876 #endif 1877 1878 int 1879 freebsd32_sysctl(struct thread *td, struct freebsd32_sysctl_args *uap) 1880 { 1881 int error, name[CTL_MAXNAME]; 1882 size_t j, oldlen; 1883 uint32_t tmp; 1884 1885 if (uap->namelen > CTL_MAXNAME || uap->namelen < 2) 1886 return (EINVAL); 1887 error = copyin(uap->name, name, uap->namelen * sizeof(int)); 1888 if (error) 1889 return (error); 1890 if (uap->oldlenp) { 1891 error = fueword32(uap->oldlenp, &tmp); 1892 oldlen = tmp; 1893 } else { 1894 oldlen = 0; 1895 } 1896 if (error != 0) 1897 return (EFAULT); 1898 error = userland_sysctl(td, name, uap->namelen, 1899 uap->old, &oldlen, 1, 1900 uap->new, uap->newlen, &j, SCTL_MASK32); 1901 if (error && error != ENOMEM) 1902 return (error); 1903 if (uap->oldlenp) 1904 suword32(uap->oldlenp, j); 1905 return (0); 1906 } 1907 1908 int 1909 freebsd32_jail(struct thread *td, struct freebsd32_jail_args *uap) 1910 { 1911 uint32_t version; 1912 int error; 1913 struct jail j; 1914 1915 error = copyin(uap->jail, &version, sizeof(uint32_t)); 1916 if (error) 1917 return (error); 1918 1919 switch (version) { 1920 case 0: 1921 { 1922 /* FreeBSD single IPv4 jails. */ 1923 struct jail32_v0 j32_v0; 1924 1925 bzero(&j, sizeof(struct jail)); 1926 error = copyin(uap->jail, &j32_v0, sizeof(struct jail32_v0)); 1927 if (error) 1928 return (error); 1929 CP(j32_v0, j, version); 1930 PTRIN_CP(j32_v0, j, path); 1931 PTRIN_CP(j32_v0, j, hostname); 1932 j.ip4s = htonl(j32_v0.ip_number); /* jail_v0 is host order */ 1933 break; 1934 } 1935 1936 case 1: 1937 /* 1938 * Version 1 was used by multi-IPv4 jail implementations 1939 * that never made it into the official kernel. 1940 */ 1941 return (EINVAL); 1942 1943 case 2: /* JAIL_API_VERSION */ 1944 { 1945 /* FreeBSD multi-IPv4/IPv6,noIP jails. */ 1946 struct jail32 j32; 1947 1948 error = copyin(uap->jail, &j32, sizeof(struct jail32)); 1949 if (error) 1950 return (error); 1951 CP(j32, j, version); 1952 PTRIN_CP(j32, j, path); 1953 PTRIN_CP(j32, j, hostname); 1954 PTRIN_CP(j32, j, jailname); 1955 CP(j32, j, ip4s); 1956 CP(j32, j, ip6s); 1957 PTRIN_CP(j32, j, ip4); 1958 PTRIN_CP(j32, j, ip6); 1959 break; 1960 } 1961 1962 default: 1963 /* Sci-Fi jails are not supported, sorry. */ 1964 return (EINVAL); 1965 } 1966 return (kern_jail(td, &j)); 1967 } 1968 1969 int 1970 freebsd32_jail_set(struct thread *td, struct freebsd32_jail_set_args *uap) 1971 { 1972 struct uio *auio; 1973 int error; 1974 1975 /* Check that we have an even number of iovecs. */ 1976 if (uap->iovcnt & 1) 1977 return (EINVAL); 1978 1979 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 1980 if (error) 1981 return (error); 1982 error = kern_jail_set(td, auio, uap->flags); 1983 free(auio, M_IOV); 1984 return (error); 1985 } 1986 1987 int 1988 freebsd32_jail_get(struct thread *td, struct freebsd32_jail_get_args *uap) 1989 { 1990 struct iovec32 iov32; 1991 struct uio *auio; 1992 int error, i; 1993 1994 /* Check that we have an even number of iovecs. */ 1995 if (uap->iovcnt & 1) 1996 return (EINVAL); 1997 1998 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 1999 if (error) 2000 return (error); 2001 error = kern_jail_get(td, auio, uap->flags); 2002 if (error == 0) 2003 for (i = 0; i < uap->iovcnt; i++) { 2004 PTROUT_CP(auio->uio_iov[i], iov32, iov_base); 2005 CP(auio->uio_iov[i], iov32, iov_len); 2006 error = copyout(&iov32, uap->iovp + i, sizeof(iov32)); 2007 if (error != 0) 2008 break; 2009 } 2010 free(auio, M_IOV); 2011 return (error); 2012 } 2013 2014 int 2015 freebsd32_sigaction(struct thread *td, struct freebsd32_sigaction_args *uap) 2016 { 2017 struct sigaction32 s32; 2018 struct sigaction sa, osa, *sap; 2019 int error; 2020 2021 if (uap->act) { 2022 error = copyin(uap->act, &s32, sizeof(s32)); 2023 if (error) 2024 return (error); 2025 sa.sa_handler = PTRIN(s32.sa_u); 2026 CP(s32, sa, sa_flags); 2027 CP(s32, sa, sa_mask); 2028 sap = &sa; 2029 } else 2030 sap = NULL; 2031 error = kern_sigaction(td, uap->sig, sap, &osa, 0); 2032 if (error == 0 && uap->oact != NULL) { 2033 s32.sa_u = PTROUT(osa.sa_handler); 2034 CP(osa, s32, sa_flags); 2035 CP(osa, s32, sa_mask); 2036 error = copyout(&s32, uap->oact, sizeof(s32)); 2037 } 2038 return (error); 2039 } 2040 2041 #ifdef COMPAT_FREEBSD4 2042 int 2043 freebsd4_freebsd32_sigaction(struct thread *td, 2044 struct freebsd4_freebsd32_sigaction_args *uap) 2045 { 2046 struct sigaction32 s32; 2047 struct sigaction sa, osa, *sap; 2048 int error; 2049 2050 if (uap->act) { 2051 error = copyin(uap->act, &s32, sizeof(s32)); 2052 if (error) 2053 return (error); 2054 sa.sa_handler = PTRIN(s32.sa_u); 2055 CP(s32, sa, sa_flags); 2056 CP(s32, sa, sa_mask); 2057 sap = &sa; 2058 } else 2059 sap = NULL; 2060 error = kern_sigaction(td, uap->sig, sap, &osa, KSA_FREEBSD4); 2061 if (error == 0 && uap->oact != NULL) { 2062 s32.sa_u = PTROUT(osa.sa_handler); 2063 CP(osa, s32, sa_flags); 2064 CP(osa, s32, sa_mask); 2065 error = copyout(&s32, uap->oact, sizeof(s32)); 2066 } 2067 return (error); 2068 } 2069 #endif 2070 2071 #ifdef COMPAT_43 2072 struct osigaction32 { 2073 u_int32_t sa_u; 2074 osigset_t sa_mask; 2075 int sa_flags; 2076 }; 2077 2078 #define ONSIG 32 2079 2080 int 2081 ofreebsd32_sigaction(struct thread *td, 2082 struct ofreebsd32_sigaction_args *uap) 2083 { 2084 struct osigaction32 s32; 2085 struct sigaction sa, osa, *sap; 2086 int error; 2087 2088 if (uap->signum <= 0 || uap->signum >= ONSIG) 2089 return (EINVAL); 2090 2091 if (uap->nsa) { 2092 error = copyin(uap->nsa, &s32, sizeof(s32)); 2093 if (error) 2094 return (error); 2095 sa.sa_handler = PTRIN(s32.sa_u); 2096 CP(s32, sa, sa_flags); 2097 OSIG2SIG(s32.sa_mask, sa.sa_mask); 2098 sap = &sa; 2099 } else 2100 sap = NULL; 2101 error = kern_sigaction(td, uap->signum, sap, &osa, KSA_OSIGSET); 2102 if (error == 0 && uap->osa != NULL) { 2103 s32.sa_u = PTROUT(osa.sa_handler); 2104 CP(osa, s32, sa_flags); 2105 SIG2OSIG(osa.sa_mask, s32.sa_mask); 2106 error = copyout(&s32, uap->osa, sizeof(s32)); 2107 } 2108 return (error); 2109 } 2110 2111 int 2112 ofreebsd32_sigprocmask(struct thread *td, 2113 struct ofreebsd32_sigprocmask_args *uap) 2114 { 2115 sigset_t set, oset; 2116 int error; 2117 2118 OSIG2SIG(uap->mask, set); 2119 error = kern_sigprocmask(td, uap->how, &set, &oset, SIGPROCMASK_OLD); 2120 SIG2OSIG(oset, td->td_retval[0]); 2121 return (error); 2122 } 2123 2124 int 2125 ofreebsd32_sigpending(struct thread *td, 2126 struct ofreebsd32_sigpending_args *uap) 2127 { 2128 struct proc *p = td->td_proc; 2129 sigset_t siglist; 2130 2131 PROC_LOCK(p); 2132 siglist = p->p_siglist; 2133 SIGSETOR(siglist, td->td_siglist); 2134 PROC_UNLOCK(p); 2135 SIG2OSIG(siglist, td->td_retval[0]); 2136 return (0); 2137 } 2138 2139 struct sigvec32 { 2140 u_int32_t sv_handler; 2141 int sv_mask; 2142 int sv_flags; 2143 }; 2144 2145 int 2146 ofreebsd32_sigvec(struct thread *td, 2147 struct ofreebsd32_sigvec_args *uap) 2148 { 2149 struct sigvec32 vec; 2150 struct sigaction sa, osa, *sap; 2151 int error; 2152 2153 if (uap->signum <= 0 || uap->signum >= ONSIG) 2154 return (EINVAL); 2155 2156 if (uap->nsv) { 2157 error = copyin(uap->nsv, &vec, sizeof(vec)); 2158 if (error) 2159 return (error); 2160 sa.sa_handler = PTRIN(vec.sv_handler); 2161 OSIG2SIG(vec.sv_mask, sa.sa_mask); 2162 sa.sa_flags = vec.sv_flags; 2163 sa.sa_flags ^= SA_RESTART; 2164 sap = &sa; 2165 } else 2166 sap = NULL; 2167 error = kern_sigaction(td, uap->signum, sap, &osa, KSA_OSIGSET); 2168 if (error == 0 && uap->osv != NULL) { 2169 vec.sv_handler = PTROUT(osa.sa_handler); 2170 SIG2OSIG(osa.sa_mask, vec.sv_mask); 2171 vec.sv_flags = osa.sa_flags; 2172 vec.sv_flags &= ~SA_NOCLDWAIT; 2173 vec.sv_flags ^= SA_RESTART; 2174 error = copyout(&vec, uap->osv, sizeof(vec)); 2175 } 2176 return (error); 2177 } 2178 2179 int 2180 ofreebsd32_sigblock(struct thread *td, 2181 struct ofreebsd32_sigblock_args *uap) 2182 { 2183 sigset_t set, oset; 2184 2185 OSIG2SIG(uap->mask, set); 2186 kern_sigprocmask(td, SIG_BLOCK, &set, &oset, 0); 2187 SIG2OSIG(oset, td->td_retval[0]); 2188 return (0); 2189 } 2190 2191 int 2192 ofreebsd32_sigsetmask(struct thread *td, 2193 struct ofreebsd32_sigsetmask_args *uap) 2194 { 2195 sigset_t set, oset; 2196 2197 OSIG2SIG(uap->mask, set); 2198 kern_sigprocmask(td, SIG_SETMASK, &set, &oset, 0); 2199 SIG2OSIG(oset, td->td_retval[0]); 2200 return (0); 2201 } 2202 2203 int 2204 ofreebsd32_sigsuspend(struct thread *td, 2205 struct ofreebsd32_sigsuspend_args *uap) 2206 { 2207 sigset_t mask; 2208 2209 OSIG2SIG(uap->mask, mask); 2210 return (kern_sigsuspend(td, mask)); 2211 } 2212 2213 struct sigstack32 { 2214 u_int32_t ss_sp; 2215 int ss_onstack; 2216 }; 2217 2218 int 2219 ofreebsd32_sigstack(struct thread *td, 2220 struct ofreebsd32_sigstack_args *uap) 2221 { 2222 struct sigstack32 s32; 2223 struct sigstack nss, oss; 2224 int error = 0, unss; 2225 2226 if (uap->nss != NULL) { 2227 error = copyin(uap->nss, &s32, sizeof(s32)); 2228 if (error) 2229 return (error); 2230 nss.ss_sp = PTRIN(s32.ss_sp); 2231 CP(s32, nss, ss_onstack); 2232 unss = 1; 2233 } else { 2234 unss = 0; 2235 } 2236 oss.ss_sp = td->td_sigstk.ss_sp; 2237 oss.ss_onstack = sigonstack(cpu_getstack(td)); 2238 if (unss) { 2239 td->td_sigstk.ss_sp = nss.ss_sp; 2240 td->td_sigstk.ss_size = 0; 2241 td->td_sigstk.ss_flags |= (nss.ss_onstack & SS_ONSTACK); 2242 td->td_pflags |= TDP_ALTSTACK; 2243 } 2244 if (uap->oss != NULL) { 2245 s32.ss_sp = PTROUT(oss.ss_sp); 2246 CP(oss, s32, ss_onstack); 2247 error = copyout(&s32, uap->oss, sizeof(s32)); 2248 } 2249 return (error); 2250 } 2251 #endif 2252 2253 int 2254 freebsd32_nanosleep(struct thread *td, struct freebsd32_nanosleep_args *uap) 2255 { 2256 struct timespec32 rmt32, rqt32; 2257 struct timespec rmt, rqt; 2258 int error; 2259 2260 error = copyin(uap->rqtp, &rqt32, sizeof(rqt32)); 2261 if (error) 2262 return (error); 2263 2264 CP(rqt32, rqt, tv_sec); 2265 CP(rqt32, rqt, tv_nsec); 2266 2267 if (uap->rmtp && 2268 !useracc((caddr_t)uap->rmtp, sizeof(rmt), VM_PROT_WRITE)) 2269 return (EFAULT); 2270 error = kern_nanosleep(td, &rqt, &rmt); 2271 if (error && uap->rmtp) { 2272 int error2; 2273 2274 CP(rmt, rmt32, tv_sec); 2275 CP(rmt, rmt32, tv_nsec); 2276 2277 error2 = copyout(&rmt32, uap->rmtp, sizeof(rmt32)); 2278 if (error2) 2279 error = error2; 2280 } 2281 return (error); 2282 } 2283 2284 int 2285 freebsd32_clock_gettime(struct thread *td, 2286 struct freebsd32_clock_gettime_args *uap) 2287 { 2288 struct timespec ats; 2289 struct timespec32 ats32; 2290 int error; 2291 2292 error = kern_clock_gettime(td, uap->clock_id, &ats); 2293 if (error == 0) { 2294 CP(ats, ats32, tv_sec); 2295 CP(ats, ats32, tv_nsec); 2296 error = copyout(&ats32, uap->tp, sizeof(ats32)); 2297 } 2298 return (error); 2299 } 2300 2301 int 2302 freebsd32_clock_settime(struct thread *td, 2303 struct freebsd32_clock_settime_args *uap) 2304 { 2305 struct timespec ats; 2306 struct timespec32 ats32; 2307 int error; 2308 2309 error = copyin(uap->tp, &ats32, sizeof(ats32)); 2310 if (error) 2311 return (error); 2312 CP(ats32, ats, tv_sec); 2313 CP(ats32, ats, tv_nsec); 2314 2315 return (kern_clock_settime(td, uap->clock_id, &ats)); 2316 } 2317 2318 int 2319 freebsd32_clock_getres(struct thread *td, 2320 struct freebsd32_clock_getres_args *uap) 2321 { 2322 struct timespec ts; 2323 struct timespec32 ts32; 2324 int error; 2325 2326 if (uap->tp == NULL) 2327 return (0); 2328 error = kern_clock_getres(td, uap->clock_id, &ts); 2329 if (error == 0) { 2330 CP(ts, ts32, tv_sec); 2331 CP(ts, ts32, tv_nsec); 2332 error = copyout(&ts32, uap->tp, sizeof(ts32)); 2333 } 2334 return (error); 2335 } 2336 2337 int freebsd32_ktimer_create(struct thread *td, 2338 struct freebsd32_ktimer_create_args *uap) 2339 { 2340 struct sigevent32 ev32; 2341 struct sigevent ev, *evp; 2342 int error, id; 2343 2344 if (uap->evp == NULL) { 2345 evp = NULL; 2346 } else { 2347 evp = &ev; 2348 error = copyin(uap->evp, &ev32, sizeof(ev32)); 2349 if (error != 0) 2350 return (error); 2351 error = convert_sigevent32(&ev32, &ev); 2352 if (error != 0) 2353 return (error); 2354 } 2355 error = kern_ktimer_create(td, uap->clock_id, evp, &id, -1); 2356 if (error == 0) { 2357 error = copyout(&id, uap->timerid, sizeof(int)); 2358 if (error != 0) 2359 kern_ktimer_delete(td, id); 2360 } 2361 return (error); 2362 } 2363 2364 int 2365 freebsd32_ktimer_settime(struct thread *td, 2366 struct freebsd32_ktimer_settime_args *uap) 2367 { 2368 struct itimerspec32 val32, oval32; 2369 struct itimerspec val, oval, *ovalp; 2370 int error; 2371 2372 error = copyin(uap->value, &val32, sizeof(val32)); 2373 if (error != 0) 2374 return (error); 2375 ITS_CP(val32, val); 2376 ovalp = uap->ovalue != NULL ? &oval : NULL; 2377 error = kern_ktimer_settime(td, uap->timerid, uap->flags, &val, ovalp); 2378 if (error == 0 && uap->ovalue != NULL) { 2379 ITS_CP(oval, oval32); 2380 error = copyout(&oval32, uap->ovalue, sizeof(oval32)); 2381 } 2382 return (error); 2383 } 2384 2385 int 2386 freebsd32_ktimer_gettime(struct thread *td, 2387 struct freebsd32_ktimer_gettime_args *uap) 2388 { 2389 struct itimerspec32 val32; 2390 struct itimerspec val; 2391 int error; 2392 2393 error = kern_ktimer_gettime(td, uap->timerid, &val); 2394 if (error == 0) { 2395 ITS_CP(val, val32); 2396 error = copyout(&val32, uap->value, sizeof(val32)); 2397 } 2398 return (error); 2399 } 2400 2401 int 2402 freebsd32_clock_getcpuclockid2(struct thread *td, 2403 struct freebsd32_clock_getcpuclockid2_args *uap) 2404 { 2405 clockid_t clk_id; 2406 int error; 2407 2408 error = kern_clock_getcpuclockid2(td, PAIR32TO64(id_t, uap->id), 2409 uap->which, &clk_id); 2410 if (error == 0) 2411 error = copyout(&clk_id, uap->clock_id, sizeof(clockid_t)); 2412 return (error); 2413 } 2414 2415 int 2416 freebsd32_thr_new(struct thread *td, 2417 struct freebsd32_thr_new_args *uap) 2418 { 2419 struct thr_param32 param32; 2420 struct thr_param param; 2421 int error; 2422 2423 if (uap->param_size < 0 || 2424 uap->param_size > sizeof(struct thr_param32)) 2425 return (EINVAL); 2426 bzero(¶m, sizeof(struct thr_param)); 2427 bzero(¶m32, sizeof(struct thr_param32)); 2428 error = copyin(uap->param, ¶m32, uap->param_size); 2429 if (error != 0) 2430 return (error); 2431 param.start_func = PTRIN(param32.start_func); 2432 param.arg = PTRIN(param32.arg); 2433 param.stack_base = PTRIN(param32.stack_base); 2434 param.stack_size = param32.stack_size; 2435 param.tls_base = PTRIN(param32.tls_base); 2436 param.tls_size = param32.tls_size; 2437 param.child_tid = PTRIN(param32.child_tid); 2438 param.parent_tid = PTRIN(param32.parent_tid); 2439 param.flags = param32.flags; 2440 param.rtp = PTRIN(param32.rtp); 2441 param.spare[0] = PTRIN(param32.spare[0]); 2442 param.spare[1] = PTRIN(param32.spare[1]); 2443 param.spare[2] = PTRIN(param32.spare[2]); 2444 2445 return (kern_thr_new(td, ¶m)); 2446 } 2447 2448 int 2449 freebsd32_thr_suspend(struct thread *td, struct freebsd32_thr_suspend_args *uap) 2450 { 2451 struct timespec32 ts32; 2452 struct timespec ts, *tsp; 2453 int error; 2454 2455 error = 0; 2456 tsp = NULL; 2457 if (uap->timeout != NULL) { 2458 error = copyin((const void *)uap->timeout, (void *)&ts32, 2459 sizeof(struct timespec32)); 2460 if (error != 0) 2461 return (error); 2462 ts.tv_sec = ts32.tv_sec; 2463 ts.tv_nsec = ts32.tv_nsec; 2464 tsp = &ts; 2465 } 2466 return (kern_thr_suspend(td, tsp)); 2467 } 2468 2469 void 2470 siginfo_to_siginfo32(const siginfo_t *src, struct siginfo32 *dst) 2471 { 2472 bzero(dst, sizeof(*dst)); 2473 dst->si_signo = src->si_signo; 2474 dst->si_errno = src->si_errno; 2475 dst->si_code = src->si_code; 2476 dst->si_pid = src->si_pid; 2477 dst->si_uid = src->si_uid; 2478 dst->si_status = src->si_status; 2479 dst->si_addr = (uintptr_t)src->si_addr; 2480 dst->si_value.sival_int = src->si_value.sival_int; 2481 dst->si_timerid = src->si_timerid; 2482 dst->si_overrun = src->si_overrun; 2483 } 2484 2485 int 2486 freebsd32_sigtimedwait(struct thread *td, struct freebsd32_sigtimedwait_args *uap) 2487 { 2488 struct timespec32 ts32; 2489 struct timespec ts; 2490 struct timespec *timeout; 2491 sigset_t set; 2492 ksiginfo_t ksi; 2493 struct siginfo32 si32; 2494 int error; 2495 2496 if (uap->timeout) { 2497 error = copyin(uap->timeout, &ts32, sizeof(ts32)); 2498 if (error) 2499 return (error); 2500 ts.tv_sec = ts32.tv_sec; 2501 ts.tv_nsec = ts32.tv_nsec; 2502 timeout = &ts; 2503 } else 2504 timeout = NULL; 2505 2506 error = copyin(uap->set, &set, sizeof(set)); 2507 if (error) 2508 return (error); 2509 2510 error = kern_sigtimedwait(td, set, &ksi, timeout); 2511 if (error) 2512 return (error); 2513 2514 if (uap->info) { 2515 siginfo_to_siginfo32(&ksi.ksi_info, &si32); 2516 error = copyout(&si32, uap->info, sizeof(struct siginfo32)); 2517 } 2518 2519 if (error == 0) 2520 td->td_retval[0] = ksi.ksi_signo; 2521 return (error); 2522 } 2523 2524 /* 2525 * MPSAFE 2526 */ 2527 int 2528 freebsd32_sigwaitinfo(struct thread *td, struct freebsd32_sigwaitinfo_args *uap) 2529 { 2530 ksiginfo_t ksi; 2531 struct siginfo32 si32; 2532 sigset_t set; 2533 int error; 2534 2535 error = copyin(uap->set, &set, sizeof(set)); 2536 if (error) 2537 return (error); 2538 2539 error = kern_sigtimedwait(td, set, &ksi, NULL); 2540 if (error) 2541 return (error); 2542 2543 if (uap->info) { 2544 siginfo_to_siginfo32(&ksi.ksi_info, &si32); 2545 error = copyout(&si32, uap->info, sizeof(struct siginfo32)); 2546 } 2547 if (error == 0) 2548 td->td_retval[0] = ksi.ksi_signo; 2549 return (error); 2550 } 2551 2552 int 2553 freebsd32_cpuset_setid(struct thread *td, 2554 struct freebsd32_cpuset_setid_args *uap) 2555 { 2556 struct cpuset_setid_args ap; 2557 2558 ap.which = uap->which; 2559 ap.id = PAIR32TO64(id_t,uap->id); 2560 ap.setid = uap->setid; 2561 2562 return (sys_cpuset_setid(td, &ap)); 2563 } 2564 2565 int 2566 freebsd32_cpuset_getid(struct thread *td, 2567 struct freebsd32_cpuset_getid_args *uap) 2568 { 2569 struct cpuset_getid_args ap; 2570 2571 ap.level = uap->level; 2572 ap.which = uap->which; 2573 ap.id = PAIR32TO64(id_t,uap->id); 2574 ap.setid = uap->setid; 2575 2576 return (sys_cpuset_getid(td, &ap)); 2577 } 2578 2579 int 2580 freebsd32_cpuset_getaffinity(struct thread *td, 2581 struct freebsd32_cpuset_getaffinity_args *uap) 2582 { 2583 struct cpuset_getaffinity_args ap; 2584 2585 ap.level = uap->level; 2586 ap.which = uap->which; 2587 ap.id = PAIR32TO64(id_t,uap->id); 2588 ap.cpusetsize = uap->cpusetsize; 2589 ap.mask = uap->mask; 2590 2591 return (sys_cpuset_getaffinity(td, &ap)); 2592 } 2593 2594 int 2595 freebsd32_cpuset_setaffinity(struct thread *td, 2596 struct freebsd32_cpuset_setaffinity_args *uap) 2597 { 2598 struct cpuset_setaffinity_args ap; 2599 2600 ap.level = uap->level; 2601 ap.which = uap->which; 2602 ap.id = PAIR32TO64(id_t,uap->id); 2603 ap.cpusetsize = uap->cpusetsize; 2604 ap.mask = uap->mask; 2605 2606 return (sys_cpuset_setaffinity(td, &ap)); 2607 } 2608 2609 int 2610 freebsd32_nmount(struct thread *td, 2611 struct freebsd32_nmount_args /* { 2612 struct iovec *iovp; 2613 unsigned int iovcnt; 2614 int flags; 2615 } */ *uap) 2616 { 2617 struct uio *auio; 2618 uint64_t flags; 2619 int error; 2620 2621 /* 2622 * Mount flags are now 64-bits. On 32-bit archtectures only 2623 * 32-bits are passed in, but from here on everything handles 2624 * 64-bit flags correctly. 2625 */ 2626 flags = uap->flags; 2627 2628 AUDIT_ARG_FFLAGS(flags); 2629 2630 /* 2631 * Filter out MNT_ROOTFS. We do not want clients of nmount() in 2632 * userspace to set this flag, but we must filter it out if we want 2633 * MNT_UPDATE on the root file system to work. 2634 * MNT_ROOTFS should only be set by the kernel when mounting its 2635 * root file system. 2636 */ 2637 flags &= ~MNT_ROOTFS; 2638 2639 /* 2640 * check that we have an even number of iovec's 2641 * and that we have at least two options. 2642 */ 2643 if ((uap->iovcnt & 1) || (uap->iovcnt < 4)) 2644 return (EINVAL); 2645 2646 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 2647 if (error) 2648 return (error); 2649 error = vfs_donmount(td, flags, auio); 2650 2651 free(auio, M_IOV); 2652 return error; 2653 } 2654 2655 #if 0 2656 int 2657 freebsd32_xxx(struct thread *td, struct freebsd32_xxx_args *uap) 2658 { 2659 struct yyy32 *p32, s32; 2660 struct yyy *p = NULL, s; 2661 struct xxx_arg ap; 2662 int error; 2663 2664 if (uap->zzz) { 2665 error = copyin(uap->zzz, &s32, sizeof(s32)); 2666 if (error) 2667 return (error); 2668 /* translate in */ 2669 p = &s; 2670 } 2671 error = kern_xxx(td, p); 2672 if (error) 2673 return (error); 2674 if (uap->zzz) { 2675 /* translate out */ 2676 error = copyout(&s32, p32, sizeof(s32)); 2677 } 2678 return (error); 2679 } 2680 #endif 2681 2682 int 2683 syscall32_register(int *offset, struct sysent *new_sysent, 2684 struct sysent *old_sysent, int flags) 2685 { 2686 2687 if ((flags & ~SY_THR_STATIC) != 0) 2688 return (EINVAL); 2689 2690 if (*offset == NO_SYSCALL) { 2691 int i; 2692 2693 for (i = 1; i < SYS_MAXSYSCALL; ++i) 2694 if (freebsd32_sysent[i].sy_call == 2695 (sy_call_t *)lkmnosys) 2696 break; 2697 if (i == SYS_MAXSYSCALL) 2698 return (ENFILE); 2699 *offset = i; 2700 } else if (*offset < 0 || *offset >= SYS_MAXSYSCALL) 2701 return (EINVAL); 2702 else if (freebsd32_sysent[*offset].sy_call != (sy_call_t *)lkmnosys && 2703 freebsd32_sysent[*offset].sy_call != (sy_call_t *)lkmressys) 2704 return (EEXIST); 2705 2706 *old_sysent = freebsd32_sysent[*offset]; 2707 freebsd32_sysent[*offset] = *new_sysent; 2708 atomic_store_rel_32(&freebsd32_sysent[*offset].sy_thrcnt, flags); 2709 return (0); 2710 } 2711 2712 int 2713 syscall32_deregister(int *offset, struct sysent *old_sysent) 2714 { 2715 2716 if (*offset == 0) 2717 return (0); 2718 2719 freebsd32_sysent[*offset] = *old_sysent; 2720 return (0); 2721 } 2722 2723 int 2724 syscall32_module_handler(struct module *mod, int what, void *arg) 2725 { 2726 struct syscall_module_data *data = (struct syscall_module_data*)arg; 2727 modspecific_t ms; 2728 int error; 2729 2730 switch (what) { 2731 case MOD_LOAD: 2732 error = syscall32_register(data->offset, data->new_sysent, 2733 &data->old_sysent, SY_THR_STATIC_KLD); 2734 if (error) { 2735 /* Leave a mark so we know to safely unload below. */ 2736 data->offset = NULL; 2737 return error; 2738 } 2739 ms.intval = *data->offset; 2740 MOD_XLOCK; 2741 module_setspecific(mod, &ms); 2742 MOD_XUNLOCK; 2743 if (data->chainevh) 2744 error = data->chainevh(mod, what, data->chainarg); 2745 return (error); 2746 case MOD_UNLOAD: 2747 /* 2748 * MOD_LOAD failed, so just return without calling the 2749 * chained handler since we didn't pass along the MOD_LOAD 2750 * event. 2751 */ 2752 if (data->offset == NULL) 2753 return (0); 2754 if (data->chainevh) { 2755 error = data->chainevh(mod, what, data->chainarg); 2756 if (error) 2757 return (error); 2758 } 2759 error = syscall32_deregister(data->offset, &data->old_sysent); 2760 return (error); 2761 default: 2762 error = EOPNOTSUPP; 2763 if (data->chainevh) 2764 error = data->chainevh(mod, what, data->chainarg); 2765 return (error); 2766 } 2767 } 2768 2769 int 2770 syscall32_helper_register(struct syscall_helper_data *sd, int flags) 2771 { 2772 struct syscall_helper_data *sd1; 2773 int error; 2774 2775 for (sd1 = sd; sd1->syscall_no != NO_SYSCALL; sd1++) { 2776 error = syscall32_register(&sd1->syscall_no, &sd1->new_sysent, 2777 &sd1->old_sysent, flags); 2778 if (error != 0) { 2779 syscall32_helper_unregister(sd); 2780 return (error); 2781 } 2782 sd1->registered = 1; 2783 } 2784 return (0); 2785 } 2786 2787 int 2788 syscall32_helper_unregister(struct syscall_helper_data *sd) 2789 { 2790 struct syscall_helper_data *sd1; 2791 2792 for (sd1 = sd; sd1->registered != 0; sd1++) { 2793 syscall32_deregister(&sd1->syscall_no, &sd1->old_sysent); 2794 sd1->registered = 0; 2795 } 2796 return (0); 2797 } 2798 2799 register_t * 2800 freebsd32_copyout_strings(struct image_params *imgp) 2801 { 2802 int argc, envc, i; 2803 u_int32_t *vectp; 2804 char *stringp; 2805 uintptr_t destp; 2806 u_int32_t *stack_base; 2807 struct freebsd32_ps_strings *arginfo; 2808 char canary[sizeof(long) * 8]; 2809 int32_t pagesizes32[MAXPAGESIZES]; 2810 size_t execpath_len; 2811 int szsigcode; 2812 2813 /* 2814 * Calculate string base and vector table pointers. 2815 * Also deal with signal trampoline code for this exec type. 2816 */ 2817 if (imgp->execpath != NULL && imgp->auxargs != NULL) 2818 execpath_len = strlen(imgp->execpath) + 1; 2819 else 2820 execpath_len = 0; 2821 arginfo = (struct freebsd32_ps_strings *)curproc->p_sysent-> 2822 sv_psstrings; 2823 if (imgp->proc->p_sysent->sv_sigcode_base == 0) 2824 szsigcode = *(imgp->proc->p_sysent->sv_szsigcode); 2825 else 2826 szsigcode = 0; 2827 destp = (uintptr_t)arginfo; 2828 2829 /* 2830 * install sigcode 2831 */ 2832 if (szsigcode != 0) { 2833 destp -= szsigcode; 2834 destp = rounddown2(destp, sizeof(uint32_t)); 2835 copyout(imgp->proc->p_sysent->sv_sigcode, (void *)destp, 2836 szsigcode); 2837 } 2838 2839 /* 2840 * Copy the image path for the rtld. 2841 */ 2842 if (execpath_len != 0) { 2843 destp -= execpath_len; 2844 imgp->execpathp = destp; 2845 copyout(imgp->execpath, (void *)destp, execpath_len); 2846 } 2847 2848 /* 2849 * Prepare the canary for SSP. 2850 */ 2851 arc4rand(canary, sizeof(canary), 0); 2852 destp -= sizeof(canary); 2853 imgp->canary = destp; 2854 copyout(canary, (void *)destp, sizeof(canary)); 2855 imgp->canarylen = sizeof(canary); 2856 2857 /* 2858 * Prepare the pagesizes array. 2859 */ 2860 for (i = 0; i < MAXPAGESIZES; i++) 2861 pagesizes32[i] = (uint32_t)pagesizes[i]; 2862 destp -= sizeof(pagesizes32); 2863 destp = rounddown2(destp, sizeof(uint32_t)); 2864 imgp->pagesizes = destp; 2865 copyout(pagesizes32, (void *)destp, sizeof(pagesizes32)); 2866 imgp->pagesizeslen = sizeof(pagesizes32); 2867 2868 destp -= ARG_MAX - imgp->args->stringspace; 2869 destp = rounddown2(destp, sizeof(uint32_t)); 2870 2871 /* 2872 * If we have a valid auxargs ptr, prepare some room 2873 * on the stack. 2874 */ 2875 if (imgp->auxargs) { 2876 /* 2877 * 'AT_COUNT*2' is size for the ELF Auxargs data. This is for 2878 * lower compatibility. 2879 */ 2880 imgp->auxarg_size = (imgp->auxarg_size) ? imgp->auxarg_size 2881 : (AT_COUNT * 2); 2882 /* 2883 * The '+ 2' is for the null pointers at the end of each of 2884 * the arg and env vector sets,and imgp->auxarg_size is room 2885 * for argument of Runtime loader. 2886 */ 2887 vectp = (u_int32_t *) (destp - (imgp->args->argc + 2888 imgp->args->envc + 2 + imgp->auxarg_size + execpath_len) * 2889 sizeof(u_int32_t)); 2890 } else { 2891 /* 2892 * The '+ 2' is for the null pointers at the end of each of 2893 * the arg and env vector sets 2894 */ 2895 vectp = (u_int32_t *)(destp - (imgp->args->argc + 2896 imgp->args->envc + 2) * sizeof(u_int32_t)); 2897 } 2898 2899 /* 2900 * vectp also becomes our initial stack base 2901 */ 2902 stack_base = vectp; 2903 2904 stringp = imgp->args->begin_argv; 2905 argc = imgp->args->argc; 2906 envc = imgp->args->envc; 2907 /* 2908 * Copy out strings - arguments and environment. 2909 */ 2910 copyout(stringp, (void *)destp, ARG_MAX - imgp->args->stringspace); 2911 2912 /* 2913 * Fill in "ps_strings" struct for ps, w, etc. 2914 */ 2915 suword32(&arginfo->ps_argvstr, (u_int32_t)(intptr_t)vectp); 2916 suword32(&arginfo->ps_nargvstr, argc); 2917 2918 /* 2919 * Fill in argument portion of vector table. 2920 */ 2921 for (; argc > 0; --argc) { 2922 suword32(vectp++, (u_int32_t)(intptr_t)destp); 2923 while (*stringp++ != 0) 2924 destp++; 2925 destp++; 2926 } 2927 2928 /* a null vector table pointer separates the argp's from the envp's */ 2929 suword32(vectp++, 0); 2930 2931 suword32(&arginfo->ps_envstr, (u_int32_t)(intptr_t)vectp); 2932 suword32(&arginfo->ps_nenvstr, envc); 2933 2934 /* 2935 * Fill in environment portion of vector table. 2936 */ 2937 for (; envc > 0; --envc) { 2938 suword32(vectp++, (u_int32_t)(intptr_t)destp); 2939 while (*stringp++ != 0) 2940 destp++; 2941 destp++; 2942 } 2943 2944 /* end of vector table is a null pointer */ 2945 suword32(vectp, 0); 2946 2947 return ((register_t *)stack_base); 2948 } 2949 2950 int 2951 freebsd32_kldstat(struct thread *td, struct freebsd32_kldstat_args *uap) 2952 { 2953 struct kld_file_stat stat; 2954 struct kld32_file_stat stat32; 2955 int error, version; 2956 2957 if ((error = copyin(&uap->stat->version, &version, sizeof(version))) 2958 != 0) 2959 return (error); 2960 if (version != sizeof(struct kld32_file_stat_1) && 2961 version != sizeof(struct kld32_file_stat)) 2962 return (EINVAL); 2963 2964 error = kern_kldstat(td, uap->fileid, &stat); 2965 if (error != 0) 2966 return (error); 2967 2968 bcopy(&stat.name[0], &stat32.name[0], sizeof(stat.name)); 2969 CP(stat, stat32, refs); 2970 CP(stat, stat32, id); 2971 PTROUT_CP(stat, stat32, address); 2972 CP(stat, stat32, size); 2973 bcopy(&stat.pathname[0], &stat32.pathname[0], sizeof(stat.pathname)); 2974 return (copyout(&stat32, uap->stat, version)); 2975 } 2976 2977 int 2978 freebsd32_posix_fallocate(struct thread *td, 2979 struct freebsd32_posix_fallocate_args *uap) 2980 { 2981 int error; 2982 2983 error = kern_posix_fallocate(td, uap->fd, 2984 PAIR32TO64(off_t, uap->offset), PAIR32TO64(off_t, uap->len)); 2985 return (kern_posix_error(td, error)); 2986 } 2987 2988 int 2989 freebsd32_posix_fadvise(struct thread *td, 2990 struct freebsd32_posix_fadvise_args *uap) 2991 { 2992 int error; 2993 2994 error = kern_posix_fadvise(td, uap->fd, PAIR32TO64(off_t, uap->offset), 2995 PAIR32TO64(off_t, uap->len), uap->advice); 2996 return (kern_posix_error(td, error)); 2997 } 2998 2999 int 3000 convert_sigevent32(struct sigevent32 *sig32, struct sigevent *sig) 3001 { 3002 3003 CP(*sig32, *sig, sigev_notify); 3004 switch (sig->sigev_notify) { 3005 case SIGEV_NONE: 3006 break; 3007 case SIGEV_THREAD_ID: 3008 CP(*sig32, *sig, sigev_notify_thread_id); 3009 /* FALLTHROUGH */ 3010 case SIGEV_SIGNAL: 3011 CP(*sig32, *sig, sigev_signo); 3012 PTRIN_CP(*sig32, *sig, sigev_value.sival_ptr); 3013 break; 3014 case SIGEV_KEVENT: 3015 CP(*sig32, *sig, sigev_notify_kqueue); 3016 CP(*sig32, *sig, sigev_notify_kevent_flags); 3017 PTRIN_CP(*sig32, *sig, sigev_value.sival_ptr); 3018 break; 3019 default: 3020 return (EINVAL); 3021 } 3022 return (0); 3023 } 3024 3025 int 3026 freebsd32_procctl(struct thread *td, struct freebsd32_procctl_args *uap) 3027 { 3028 void *data; 3029 union { 3030 struct procctl_reaper_status rs; 3031 struct procctl_reaper_pids rp; 3032 struct procctl_reaper_kill rk; 3033 } x; 3034 union { 3035 struct procctl_reaper_pids32 rp; 3036 } x32; 3037 int error, error1, flags; 3038 3039 switch (uap->com) { 3040 case PROC_SPROTECT: 3041 case PROC_TRACE_CTL: 3042 error = copyin(PTRIN(uap->data), &flags, sizeof(flags)); 3043 if (error != 0) 3044 return (error); 3045 data = &flags; 3046 break; 3047 case PROC_REAP_ACQUIRE: 3048 case PROC_REAP_RELEASE: 3049 if (uap->data != NULL) 3050 return (EINVAL); 3051 data = NULL; 3052 break; 3053 case PROC_REAP_STATUS: 3054 data = &x.rs; 3055 break; 3056 case PROC_REAP_GETPIDS: 3057 error = copyin(uap->data, &x32.rp, sizeof(x32.rp)); 3058 if (error != 0) 3059 return (error); 3060 CP(x32.rp, x.rp, rp_count); 3061 PTRIN_CP(x32.rp, x.rp, rp_pids); 3062 data = &x.rp; 3063 break; 3064 case PROC_REAP_KILL: 3065 error = copyin(uap->data, &x.rk, sizeof(x.rk)); 3066 if (error != 0) 3067 return (error); 3068 data = &x.rk; 3069 break; 3070 case PROC_TRACE_STATUS: 3071 data = &flags; 3072 break; 3073 default: 3074 return (EINVAL); 3075 } 3076 error = kern_procctl(td, uap->idtype, PAIR32TO64(id_t, uap->id), 3077 uap->com, data); 3078 switch (uap->com) { 3079 case PROC_REAP_STATUS: 3080 if (error == 0) 3081 error = copyout(&x.rs, uap->data, sizeof(x.rs)); 3082 break; 3083 case PROC_REAP_KILL: 3084 error1 = copyout(&x.rk, uap->data, sizeof(x.rk)); 3085 if (error == 0) 3086 error = error1; 3087 break; 3088 case PROC_TRACE_STATUS: 3089 if (error == 0) 3090 error = copyout(&flags, uap->data, sizeof(flags)); 3091 break; 3092 } 3093 return (error); 3094 } 3095 3096 int 3097 freebsd32_fcntl(struct thread *td, struct freebsd32_fcntl_args *uap) 3098 { 3099 long tmp; 3100 3101 switch (uap->cmd) { 3102 /* 3103 * Do unsigned conversion for arg when operation 3104 * interprets it as flags or pointer. 3105 */ 3106 case F_SETLK_REMOTE: 3107 case F_SETLKW: 3108 case F_SETLK: 3109 case F_GETLK: 3110 case F_SETFD: 3111 case F_SETFL: 3112 case F_OGETLK: 3113 case F_OSETLK: 3114 case F_OSETLKW: 3115 tmp = (unsigned int)(uap->arg); 3116 break; 3117 default: 3118 tmp = uap->arg; 3119 break; 3120 } 3121 return (kern_fcntl_freebsd(td, uap->fd, uap->cmd, tmp)); 3122 } 3123 3124 int 3125 freebsd32_ppoll(struct thread *td, struct freebsd32_ppoll_args *uap) 3126 { 3127 struct timespec32 ts32; 3128 struct timespec ts, *tsp; 3129 sigset_t set, *ssp; 3130 int error; 3131 3132 if (uap->ts != NULL) { 3133 error = copyin(uap->ts, &ts32, sizeof(ts32)); 3134 if (error != 0) 3135 return (error); 3136 CP(ts32, ts, tv_sec); 3137 CP(ts32, ts, tv_nsec); 3138 tsp = &ts; 3139 } else 3140 tsp = NULL; 3141 if (uap->set != NULL) { 3142 error = copyin(uap->set, &set, sizeof(set)); 3143 if (error != 0) 3144 return (error); 3145 ssp = &set; 3146 } else 3147 ssp = NULL; 3148 3149 return (kern_poll(td, uap->fds, uap->nfds, tsp, ssp)); 3150 } 3151