1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2002 Doug Rabson 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include "opt_inet.h" 33 #include "opt_inet6.h" 34 #include "opt_ktrace.h" 35 36 #define __ELF_WORD_SIZE 32 37 38 #ifdef COMPAT_FREEBSD11 39 #define _WANT_FREEBSD11_KEVENT 40 #endif 41 42 #include <sys/param.h> 43 #include <sys/bus.h> 44 #include <sys/capsicum.h> 45 #include <sys/clock.h> 46 #include <sys/exec.h> 47 #include <sys/fcntl.h> 48 #include <sys/filedesc.h> 49 #include <sys/imgact.h> 50 #include <sys/jail.h> 51 #include <sys/kernel.h> 52 #include <sys/limits.h> 53 #include <sys/linker.h> 54 #include <sys/lock.h> 55 #include <sys/malloc.h> 56 #include <sys/file.h> /* Must come after sys/malloc.h */ 57 #include <sys/imgact.h> 58 #include <sys/mbuf.h> 59 #include <sys/mman.h> 60 #include <sys/module.h> 61 #include <sys/mount.h> 62 #include <sys/mutex.h> 63 #include <sys/namei.h> 64 #include <sys/proc.h> 65 #include <sys/procctl.h> 66 #include <sys/reboot.h> 67 #include <sys/resource.h> 68 #include <sys/resourcevar.h> 69 #include <sys/selinfo.h> 70 #include <sys/eventvar.h> /* Must come after sys/selinfo.h */ 71 #include <sys/pipe.h> /* Must come after sys/selinfo.h */ 72 #include <sys/signal.h> 73 #include <sys/signalvar.h> 74 #include <sys/socket.h> 75 #include <sys/socketvar.h> 76 #include <sys/stat.h> 77 #include <sys/syscall.h> 78 #include <sys/syscallsubr.h> 79 #include <sys/sysctl.h> 80 #include <sys/sysent.h> 81 #include <sys/sysproto.h> 82 #include <sys/systm.h> 83 #include <sys/thr.h> 84 #include <sys/unistd.h> 85 #include <sys/ucontext.h> 86 #include <sys/vnode.h> 87 #include <sys/wait.h> 88 #include <sys/ipc.h> 89 #include <sys/msg.h> 90 #include <sys/sem.h> 91 #include <sys/shm.h> 92 #ifdef KTRACE 93 #include <sys/ktrace.h> 94 #endif 95 96 #ifdef INET 97 #include <netinet/in.h> 98 #endif 99 100 #include <vm/vm.h> 101 #include <vm/vm_param.h> 102 #include <vm/pmap.h> 103 #include <vm/vm_map.h> 104 #include <vm/vm_object.h> 105 #include <vm/vm_extern.h> 106 107 #include <machine/cpu.h> 108 #include <machine/elf.h> 109 110 #include <security/audit/audit.h> 111 112 #include <compat/freebsd32/freebsd32_util.h> 113 #include <compat/freebsd32/freebsd32.h> 114 #include <compat/freebsd32/freebsd32_ipc.h> 115 #include <compat/freebsd32/freebsd32_misc.h> 116 #include <compat/freebsd32/freebsd32_signal.h> 117 #include <compat/freebsd32/freebsd32_proto.h> 118 119 FEATURE(compat_freebsd_32bit, "Compatible with 32-bit FreeBSD"); 120 121 #ifdef __amd64__ 122 CTASSERT(sizeof(struct timeval32) == 8); 123 CTASSERT(sizeof(struct timespec32) == 8); 124 CTASSERT(sizeof(struct itimerval32) == 16); 125 CTASSERT(sizeof(struct bintime32) == 12); 126 #endif 127 CTASSERT(sizeof(struct statfs32) == 256); 128 #ifdef __amd64__ 129 CTASSERT(sizeof(struct rusage32) == 72); 130 #endif 131 CTASSERT(sizeof(struct sigaltstack32) == 12); 132 #ifdef __amd64__ 133 CTASSERT(sizeof(struct kevent32) == 56); 134 #else 135 CTASSERT(sizeof(struct kevent32) == 64); 136 #endif 137 CTASSERT(sizeof(struct iovec32) == 8); 138 CTASSERT(sizeof(struct msghdr32) == 28); 139 #ifdef __amd64__ 140 CTASSERT(sizeof(struct stat32) == 208); 141 CTASSERT(sizeof(struct freebsd11_stat32) == 96); 142 #endif 143 CTASSERT(sizeof(struct sigaction32) == 24); 144 145 static int freebsd32_kevent_copyout(void *arg, struct kevent *kevp, int count); 146 static int freebsd32_kevent_copyin(void *arg, struct kevent *kevp, int count); 147 static int freebsd32_user_clock_nanosleep(struct thread *td, clockid_t clock_id, 148 int flags, const struct timespec32 *ua_rqtp, struct timespec32 *ua_rmtp); 149 150 void 151 freebsd32_rusage_out(const struct rusage *s, struct rusage32 *s32) 152 { 153 154 TV_CP(*s, *s32, ru_utime); 155 TV_CP(*s, *s32, ru_stime); 156 CP(*s, *s32, ru_maxrss); 157 CP(*s, *s32, ru_ixrss); 158 CP(*s, *s32, ru_idrss); 159 CP(*s, *s32, ru_isrss); 160 CP(*s, *s32, ru_minflt); 161 CP(*s, *s32, ru_majflt); 162 CP(*s, *s32, ru_nswap); 163 CP(*s, *s32, ru_inblock); 164 CP(*s, *s32, ru_oublock); 165 CP(*s, *s32, ru_msgsnd); 166 CP(*s, *s32, ru_msgrcv); 167 CP(*s, *s32, ru_nsignals); 168 CP(*s, *s32, ru_nvcsw); 169 CP(*s, *s32, ru_nivcsw); 170 } 171 172 int 173 freebsd32_wait4(struct thread *td, struct freebsd32_wait4_args *uap) 174 { 175 int error, status; 176 struct rusage32 ru32; 177 struct rusage ru, *rup; 178 179 if (uap->rusage != NULL) 180 rup = &ru; 181 else 182 rup = NULL; 183 error = kern_wait(td, uap->pid, &status, uap->options, rup); 184 if (error) 185 return (error); 186 if (uap->status != NULL) 187 error = copyout(&status, uap->status, sizeof(status)); 188 if (uap->rusage != NULL && error == 0) { 189 freebsd32_rusage_out(&ru, &ru32); 190 error = copyout(&ru32, uap->rusage, sizeof(ru32)); 191 } 192 return (error); 193 } 194 195 int 196 freebsd32_wait6(struct thread *td, struct freebsd32_wait6_args *uap) 197 { 198 struct wrusage32 wru32; 199 struct __wrusage wru, *wrup; 200 struct siginfo32 si32; 201 struct __siginfo si, *sip; 202 int error, status; 203 204 if (uap->wrusage != NULL) 205 wrup = &wru; 206 else 207 wrup = NULL; 208 if (uap->info != NULL) { 209 sip = &si; 210 bzero(sip, sizeof(*sip)); 211 } else 212 sip = NULL; 213 error = kern_wait6(td, uap->idtype, PAIR32TO64(id_t, uap->id), 214 &status, uap->options, wrup, sip); 215 if (error != 0) 216 return (error); 217 if (uap->status != NULL) 218 error = copyout(&status, uap->status, sizeof(status)); 219 if (uap->wrusage != NULL && error == 0) { 220 freebsd32_rusage_out(&wru.wru_self, &wru32.wru_self); 221 freebsd32_rusage_out(&wru.wru_children, &wru32.wru_children); 222 error = copyout(&wru32, uap->wrusage, sizeof(wru32)); 223 } 224 if (uap->info != NULL && error == 0) { 225 siginfo_to_siginfo32 (&si, &si32); 226 error = copyout(&si32, uap->info, sizeof(si32)); 227 } 228 return (error); 229 } 230 231 #ifdef COMPAT_FREEBSD4 232 static void 233 copy_statfs(struct statfs *in, struct statfs32 *out) 234 { 235 236 statfs_scale_blocks(in, INT32_MAX); 237 bzero(out, sizeof(*out)); 238 CP(*in, *out, f_bsize); 239 out->f_iosize = MIN(in->f_iosize, INT32_MAX); 240 CP(*in, *out, f_blocks); 241 CP(*in, *out, f_bfree); 242 CP(*in, *out, f_bavail); 243 out->f_files = MIN(in->f_files, INT32_MAX); 244 out->f_ffree = MIN(in->f_ffree, INT32_MAX); 245 CP(*in, *out, f_fsid); 246 CP(*in, *out, f_owner); 247 CP(*in, *out, f_type); 248 CP(*in, *out, f_flags); 249 out->f_syncwrites = MIN(in->f_syncwrites, INT32_MAX); 250 out->f_asyncwrites = MIN(in->f_asyncwrites, INT32_MAX); 251 strlcpy(out->f_fstypename, 252 in->f_fstypename, MFSNAMELEN); 253 strlcpy(out->f_mntonname, 254 in->f_mntonname, min(MNAMELEN, FREEBSD4_MNAMELEN)); 255 out->f_syncreads = MIN(in->f_syncreads, INT32_MAX); 256 out->f_asyncreads = MIN(in->f_asyncreads, INT32_MAX); 257 strlcpy(out->f_mntfromname, 258 in->f_mntfromname, min(MNAMELEN, FREEBSD4_MNAMELEN)); 259 } 260 #endif 261 262 #ifdef COMPAT_FREEBSD4 263 int 264 freebsd4_freebsd32_getfsstat(struct thread *td, 265 struct freebsd4_freebsd32_getfsstat_args *uap) 266 { 267 struct statfs *buf, *sp; 268 struct statfs32 stat32; 269 size_t count, size, copycount; 270 int error; 271 272 count = uap->bufsize / sizeof(struct statfs32); 273 size = count * sizeof(struct statfs); 274 error = kern_getfsstat(td, &buf, size, &count, UIO_SYSSPACE, uap->mode); 275 if (size > 0) { 276 sp = buf; 277 copycount = count; 278 while (copycount > 0 && error == 0) { 279 copy_statfs(sp, &stat32); 280 error = copyout(&stat32, uap->buf, sizeof(stat32)); 281 sp++; 282 uap->buf++; 283 copycount--; 284 } 285 free(buf, M_STATFS); 286 } 287 if (error == 0) 288 td->td_retval[0] = count; 289 return (error); 290 } 291 #endif 292 293 #ifdef COMPAT_FREEBSD10 294 int 295 freebsd10_freebsd32_pipe(struct thread *td, 296 struct freebsd10_freebsd32_pipe_args *uap) { 297 298 return (freebsd10_pipe(td, (struct freebsd10_pipe_args*)uap)); 299 } 300 #endif 301 302 int 303 freebsd32_sigaltstack(struct thread *td, 304 struct freebsd32_sigaltstack_args *uap) 305 { 306 struct sigaltstack32 s32; 307 struct sigaltstack ss, oss, *ssp; 308 int error; 309 310 if (uap->ss != NULL) { 311 error = copyin(uap->ss, &s32, sizeof(s32)); 312 if (error) 313 return (error); 314 PTRIN_CP(s32, ss, ss_sp); 315 CP(s32, ss, ss_size); 316 CP(s32, ss, ss_flags); 317 ssp = &ss; 318 } else 319 ssp = NULL; 320 error = kern_sigaltstack(td, ssp, &oss); 321 if (error == 0 && uap->oss != NULL) { 322 PTROUT_CP(oss, s32, ss_sp); 323 CP(oss, s32, ss_size); 324 CP(oss, s32, ss_flags); 325 error = copyout(&s32, uap->oss, sizeof(s32)); 326 } 327 return (error); 328 } 329 330 /* 331 * Custom version of exec_copyin_args() so that we can translate 332 * the pointers. 333 */ 334 int 335 freebsd32_exec_copyin_args(struct image_args *args, char *fname, 336 enum uio_seg segflg, u_int32_t *argv, u_int32_t *envv) 337 { 338 char *argp, *envp; 339 u_int32_t *p32, arg; 340 size_t length; 341 int error; 342 343 bzero(args, sizeof(*args)); 344 if (argv == NULL) 345 return (EFAULT); 346 347 /* 348 * Allocate demand-paged memory for the file name, argument, and 349 * environment strings. 350 */ 351 error = exec_alloc_args(args); 352 if (error != 0) 353 return (error); 354 355 /* 356 * Copy the file name. 357 */ 358 if (fname != NULL) { 359 args->fname = args->buf; 360 error = (segflg == UIO_SYSSPACE) ? 361 copystr(fname, args->fname, PATH_MAX, &length) : 362 copyinstr(fname, args->fname, PATH_MAX, &length); 363 if (error != 0) 364 goto err_exit; 365 } else 366 length = 0; 367 368 args->begin_argv = args->buf + length; 369 args->endp = args->begin_argv; 370 args->stringspace = ARG_MAX; 371 372 /* 373 * extract arguments first 374 */ 375 p32 = argv; 376 for (;;) { 377 error = copyin(p32++, &arg, sizeof(arg)); 378 if (error) 379 goto err_exit; 380 if (arg == 0) 381 break; 382 argp = PTRIN(arg); 383 error = copyinstr(argp, args->endp, args->stringspace, &length); 384 if (error) { 385 if (error == ENAMETOOLONG) 386 error = E2BIG; 387 goto err_exit; 388 } 389 args->stringspace -= length; 390 args->endp += length; 391 args->argc++; 392 } 393 394 args->begin_envv = args->endp; 395 396 /* 397 * extract environment strings 398 */ 399 if (envv) { 400 p32 = envv; 401 for (;;) { 402 error = copyin(p32++, &arg, sizeof(arg)); 403 if (error) 404 goto err_exit; 405 if (arg == 0) 406 break; 407 envp = PTRIN(arg); 408 error = copyinstr(envp, args->endp, args->stringspace, 409 &length); 410 if (error) { 411 if (error == ENAMETOOLONG) 412 error = E2BIG; 413 goto err_exit; 414 } 415 args->stringspace -= length; 416 args->endp += length; 417 args->envc++; 418 } 419 } 420 421 return (0); 422 423 err_exit: 424 exec_free_args(args); 425 return (error); 426 } 427 428 int 429 freebsd32_execve(struct thread *td, struct freebsd32_execve_args *uap) 430 { 431 struct image_args eargs; 432 struct vmspace *oldvmspace; 433 int error; 434 435 error = pre_execve(td, &oldvmspace); 436 if (error != 0) 437 return (error); 438 error = freebsd32_exec_copyin_args(&eargs, uap->fname, UIO_USERSPACE, 439 uap->argv, uap->envv); 440 if (error == 0) 441 error = kern_execve(td, &eargs, NULL); 442 post_execve(td, error, oldvmspace); 443 return (error); 444 } 445 446 int 447 freebsd32_fexecve(struct thread *td, struct freebsd32_fexecve_args *uap) 448 { 449 struct image_args eargs; 450 struct vmspace *oldvmspace; 451 int error; 452 453 error = pre_execve(td, &oldvmspace); 454 if (error != 0) 455 return (error); 456 error = freebsd32_exec_copyin_args(&eargs, NULL, UIO_SYSSPACE, 457 uap->argv, uap->envv); 458 if (error == 0) { 459 eargs.fd = uap->fd; 460 error = kern_execve(td, &eargs, NULL); 461 } 462 post_execve(td, error, oldvmspace); 463 return (error); 464 } 465 466 #if defined(COMPAT_FREEBSD11) 467 int 468 freebsd11_freebsd32_mknod(struct thread *td, 469 struct freebsd11_freebsd32_mknod_args *uap) 470 { 471 472 return (kern_mknodat(td, AT_FDCWD, uap->path, UIO_USERSPACE, uap->mode, 473 uap->dev)); 474 } 475 476 int 477 freebsd11_freebsd32_mknodat(struct thread *td, 478 struct freebsd11_freebsd32_mknodat_args *uap) 479 { 480 481 return (kern_mknodat(td, uap->fd, uap->path, UIO_USERSPACE, uap->mode, 482 uap->dev)); 483 } 484 #endif /* COMPAT_FREEBSD11 */ 485 486 int 487 freebsd32_mprotect(struct thread *td, struct freebsd32_mprotect_args *uap) 488 { 489 int prot; 490 491 prot = uap->prot; 492 #if defined(__amd64__) 493 if (i386_read_exec && (prot & PROT_READ) != 0) 494 prot |= PROT_EXEC; 495 #endif 496 return (kern_mprotect(td, (uintptr_t)PTRIN(uap->addr), uap->len, 497 prot)); 498 } 499 500 int 501 freebsd32_mmap(struct thread *td, struct freebsd32_mmap_args *uap) 502 { 503 int prot; 504 505 prot = uap->prot; 506 #if defined(__amd64__) 507 if (i386_read_exec && (prot & PROT_READ)) 508 prot |= PROT_EXEC; 509 #endif 510 511 return (kern_mmap(td, (uintptr_t)uap->addr, uap->len, prot, 512 uap->flags, uap->fd, PAIR32TO64(off_t, uap->pos))); 513 } 514 515 #ifdef COMPAT_FREEBSD6 516 int 517 freebsd6_freebsd32_mmap(struct thread *td, 518 struct freebsd6_freebsd32_mmap_args *uap) 519 { 520 int prot; 521 522 prot = uap->prot; 523 #if defined(__amd64__) 524 if (i386_read_exec && (prot & PROT_READ)) 525 prot |= PROT_EXEC; 526 #endif 527 528 return (kern_mmap(td, (uintptr_t)uap->addr, uap->len, prot, 529 uap->flags, uap->fd, PAIR32TO64(off_t, uap->pos))); 530 } 531 #endif 532 533 int 534 freebsd32_setitimer(struct thread *td, struct freebsd32_setitimer_args *uap) 535 { 536 struct itimerval itv, oitv, *itvp; 537 struct itimerval32 i32; 538 int error; 539 540 if (uap->itv != NULL) { 541 error = copyin(uap->itv, &i32, sizeof(i32)); 542 if (error) 543 return (error); 544 TV_CP(i32, itv, it_interval); 545 TV_CP(i32, itv, it_value); 546 itvp = &itv; 547 } else 548 itvp = NULL; 549 error = kern_setitimer(td, uap->which, itvp, &oitv); 550 if (error || uap->oitv == NULL) 551 return (error); 552 TV_CP(oitv, i32, it_interval); 553 TV_CP(oitv, i32, it_value); 554 return (copyout(&i32, uap->oitv, sizeof(i32))); 555 } 556 557 int 558 freebsd32_getitimer(struct thread *td, struct freebsd32_getitimer_args *uap) 559 { 560 struct itimerval itv; 561 struct itimerval32 i32; 562 int error; 563 564 error = kern_getitimer(td, uap->which, &itv); 565 if (error || uap->itv == NULL) 566 return (error); 567 TV_CP(itv, i32, it_interval); 568 TV_CP(itv, i32, it_value); 569 return (copyout(&i32, uap->itv, sizeof(i32))); 570 } 571 572 int 573 freebsd32_select(struct thread *td, struct freebsd32_select_args *uap) 574 { 575 struct timeval32 tv32; 576 struct timeval tv, *tvp; 577 int error; 578 579 if (uap->tv != NULL) { 580 error = copyin(uap->tv, &tv32, sizeof(tv32)); 581 if (error) 582 return (error); 583 CP(tv32, tv, tv_sec); 584 CP(tv32, tv, tv_usec); 585 tvp = &tv; 586 } else 587 tvp = NULL; 588 /* 589 * XXX Do pointers need PTRIN()? 590 */ 591 return (kern_select(td, uap->nd, uap->in, uap->ou, uap->ex, tvp, 592 sizeof(int32_t) * 8)); 593 } 594 595 int 596 freebsd32_pselect(struct thread *td, struct freebsd32_pselect_args *uap) 597 { 598 struct timespec32 ts32; 599 struct timespec ts; 600 struct timeval tv, *tvp; 601 sigset_t set, *uset; 602 int error; 603 604 if (uap->ts != NULL) { 605 error = copyin(uap->ts, &ts32, sizeof(ts32)); 606 if (error != 0) 607 return (error); 608 CP(ts32, ts, tv_sec); 609 CP(ts32, ts, tv_nsec); 610 TIMESPEC_TO_TIMEVAL(&tv, &ts); 611 tvp = &tv; 612 } else 613 tvp = NULL; 614 if (uap->sm != NULL) { 615 error = copyin(uap->sm, &set, sizeof(set)); 616 if (error != 0) 617 return (error); 618 uset = &set; 619 } else 620 uset = NULL; 621 /* 622 * XXX Do pointers need PTRIN()? 623 */ 624 error = kern_pselect(td, uap->nd, uap->in, uap->ou, uap->ex, tvp, 625 uset, sizeof(int32_t) * 8); 626 return (error); 627 } 628 629 /* 630 * Copy 'count' items into the destination list pointed to by uap->eventlist. 631 */ 632 static int 633 freebsd32_kevent_copyout(void *arg, struct kevent *kevp, int count) 634 { 635 struct freebsd32_kevent_args *uap; 636 struct kevent32 ks32[KQ_NEVENTS]; 637 uint64_t e; 638 int i, j, error; 639 640 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count)); 641 uap = (struct freebsd32_kevent_args *)arg; 642 643 for (i = 0; i < count; i++) { 644 CP(kevp[i], ks32[i], ident); 645 CP(kevp[i], ks32[i], filter); 646 CP(kevp[i], ks32[i], flags); 647 CP(kevp[i], ks32[i], fflags); 648 #if BYTE_ORDER == LITTLE_ENDIAN 649 ks32[i].data1 = kevp[i].data; 650 ks32[i].data2 = kevp[i].data >> 32; 651 #else 652 ks32[i].data1 = kevp[i].data >> 32; 653 ks32[i].data2 = kevp[i].data; 654 #endif 655 PTROUT_CP(kevp[i], ks32[i], udata); 656 for (j = 0; j < nitems(kevp->ext); j++) { 657 e = kevp[i].ext[j]; 658 #if BYTE_ORDER == LITTLE_ENDIAN 659 ks32[i].ext64[2 * j] = e; 660 ks32[i].ext64[2 * j + 1] = e >> 32; 661 #else 662 ks32[i].ext64[2 * j] = e >> 32; 663 ks32[i].ext64[2 * j + 1] = e; 664 #endif 665 } 666 } 667 error = copyout(ks32, uap->eventlist, count * sizeof *ks32); 668 if (error == 0) 669 uap->eventlist += count; 670 return (error); 671 } 672 673 /* 674 * Copy 'count' items from the list pointed to by uap->changelist. 675 */ 676 static int 677 freebsd32_kevent_copyin(void *arg, struct kevent *kevp, int count) 678 { 679 struct freebsd32_kevent_args *uap; 680 struct kevent32 ks32[KQ_NEVENTS]; 681 uint64_t e; 682 int i, j, error; 683 684 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count)); 685 uap = (struct freebsd32_kevent_args *)arg; 686 687 error = copyin(uap->changelist, ks32, count * sizeof *ks32); 688 if (error) 689 goto done; 690 uap->changelist += count; 691 692 for (i = 0; i < count; i++) { 693 CP(ks32[i], kevp[i], ident); 694 CP(ks32[i], kevp[i], filter); 695 CP(ks32[i], kevp[i], flags); 696 CP(ks32[i], kevp[i], fflags); 697 kevp[i].data = PAIR32TO64(uint64_t, ks32[i].data); 698 PTRIN_CP(ks32[i], kevp[i], udata); 699 for (j = 0; j < nitems(kevp->ext); j++) { 700 #if BYTE_ORDER == LITTLE_ENDIAN 701 e = ks32[i].ext64[2 * j + 1]; 702 e <<= 32; 703 e += ks32[i].ext64[2 * j]; 704 #else 705 e = ks32[i].ext64[2 * j]; 706 e <<= 32; 707 e += ks32[i].ext64[2 * j + 1]; 708 #endif 709 kevp[i].ext[j] = e; 710 } 711 } 712 done: 713 return (error); 714 } 715 716 int 717 freebsd32_kevent(struct thread *td, struct freebsd32_kevent_args *uap) 718 { 719 struct timespec32 ts32; 720 struct timespec ts, *tsp; 721 struct kevent_copyops k_ops = { 722 .arg = uap, 723 .k_copyout = freebsd32_kevent_copyout, 724 .k_copyin = freebsd32_kevent_copyin, 725 }; 726 #ifdef KTRACE 727 struct kevent32 *eventlist = uap->eventlist; 728 #endif 729 int error; 730 731 if (uap->timeout) { 732 error = copyin(uap->timeout, &ts32, sizeof(ts32)); 733 if (error) 734 return (error); 735 CP(ts32, ts, tv_sec); 736 CP(ts32, ts, tv_nsec); 737 tsp = &ts; 738 } else 739 tsp = NULL; 740 #ifdef KTRACE 741 if (KTRPOINT(td, KTR_STRUCT_ARRAY)) 742 ktrstructarray("kevent32", UIO_USERSPACE, uap->changelist, 743 uap->nchanges, sizeof(struct kevent32)); 744 #endif 745 error = kern_kevent(td, uap->fd, uap->nchanges, uap->nevents, 746 &k_ops, tsp); 747 #ifdef KTRACE 748 if (error == 0 && KTRPOINT(td, KTR_STRUCT_ARRAY)) 749 ktrstructarray("kevent32", UIO_USERSPACE, eventlist, 750 td->td_retval[0], sizeof(struct kevent32)); 751 #endif 752 return (error); 753 } 754 755 #ifdef COMPAT_FREEBSD11 756 static int 757 freebsd32_kevent11_copyout(void *arg, struct kevent *kevp, int count) 758 { 759 struct freebsd11_freebsd32_kevent_args *uap; 760 struct kevent32_freebsd11 ks32[KQ_NEVENTS]; 761 int i, error; 762 763 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count)); 764 uap = (struct freebsd11_freebsd32_kevent_args *)arg; 765 766 for (i = 0; i < count; i++) { 767 CP(kevp[i], ks32[i], ident); 768 CP(kevp[i], ks32[i], filter); 769 CP(kevp[i], ks32[i], flags); 770 CP(kevp[i], ks32[i], fflags); 771 CP(kevp[i], ks32[i], data); 772 PTROUT_CP(kevp[i], ks32[i], udata); 773 } 774 error = copyout(ks32, uap->eventlist, count * sizeof *ks32); 775 if (error == 0) 776 uap->eventlist += count; 777 return (error); 778 } 779 780 /* 781 * Copy 'count' items from the list pointed to by uap->changelist. 782 */ 783 static int 784 freebsd32_kevent11_copyin(void *arg, struct kevent *kevp, int count) 785 { 786 struct freebsd11_freebsd32_kevent_args *uap; 787 struct kevent32_freebsd11 ks32[KQ_NEVENTS]; 788 int i, j, error; 789 790 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count)); 791 uap = (struct freebsd11_freebsd32_kevent_args *)arg; 792 793 error = copyin(uap->changelist, ks32, count * sizeof *ks32); 794 if (error) 795 goto done; 796 uap->changelist += count; 797 798 for (i = 0; i < count; i++) { 799 CP(ks32[i], kevp[i], ident); 800 CP(ks32[i], kevp[i], filter); 801 CP(ks32[i], kevp[i], flags); 802 CP(ks32[i], kevp[i], fflags); 803 CP(ks32[i], kevp[i], data); 804 PTRIN_CP(ks32[i], kevp[i], udata); 805 for (j = 0; j < nitems(kevp->ext); j++) 806 kevp[i].ext[j] = 0; 807 } 808 done: 809 return (error); 810 } 811 812 int 813 freebsd11_freebsd32_kevent(struct thread *td, 814 struct freebsd11_freebsd32_kevent_args *uap) 815 { 816 struct timespec32 ts32; 817 struct timespec ts, *tsp; 818 struct kevent_copyops k_ops = { 819 .arg = uap, 820 .k_copyout = freebsd32_kevent11_copyout, 821 .k_copyin = freebsd32_kevent11_copyin, 822 }; 823 #ifdef KTRACE 824 struct kevent32_freebsd11 *eventlist = uap->eventlist; 825 #endif 826 int error; 827 828 if (uap->timeout) { 829 error = copyin(uap->timeout, &ts32, sizeof(ts32)); 830 if (error) 831 return (error); 832 CP(ts32, ts, tv_sec); 833 CP(ts32, ts, tv_nsec); 834 tsp = &ts; 835 } else 836 tsp = NULL; 837 #ifdef KTRACE 838 if (KTRPOINT(td, KTR_STRUCT_ARRAY)) 839 ktrstructarray("kevent32_freebsd11", UIO_USERSPACE, 840 uap->changelist, uap->nchanges, 841 sizeof(struct kevent32_freebsd11)); 842 #endif 843 error = kern_kevent(td, uap->fd, uap->nchanges, uap->nevents, 844 &k_ops, tsp); 845 #ifdef KTRACE 846 if (error == 0 && KTRPOINT(td, KTR_STRUCT_ARRAY)) 847 ktrstructarray("kevent32_freebsd11", UIO_USERSPACE, 848 eventlist, td->td_retval[0], 849 sizeof(struct kevent32_freebsd11)); 850 #endif 851 return (error); 852 } 853 #endif 854 855 int 856 freebsd32_gettimeofday(struct thread *td, 857 struct freebsd32_gettimeofday_args *uap) 858 { 859 struct timeval atv; 860 struct timeval32 atv32; 861 struct timezone rtz; 862 int error = 0; 863 864 if (uap->tp) { 865 microtime(&atv); 866 CP(atv, atv32, tv_sec); 867 CP(atv, atv32, tv_usec); 868 error = copyout(&atv32, uap->tp, sizeof (atv32)); 869 } 870 if (error == 0 && uap->tzp != NULL) { 871 rtz.tz_minuteswest = tz_minuteswest; 872 rtz.tz_dsttime = tz_dsttime; 873 error = copyout(&rtz, uap->tzp, sizeof (rtz)); 874 } 875 return (error); 876 } 877 878 int 879 freebsd32_getrusage(struct thread *td, struct freebsd32_getrusage_args *uap) 880 { 881 struct rusage32 s32; 882 struct rusage s; 883 int error; 884 885 error = kern_getrusage(td, uap->who, &s); 886 if (error == 0) { 887 freebsd32_rusage_out(&s, &s32); 888 error = copyout(&s32, uap->rusage, sizeof(s32)); 889 } 890 return (error); 891 } 892 893 static int 894 freebsd32_copyinuio(struct iovec32 *iovp, u_int iovcnt, struct uio **uiop) 895 { 896 struct iovec32 iov32; 897 struct iovec *iov; 898 struct uio *uio; 899 u_int iovlen; 900 int error, i; 901 902 *uiop = NULL; 903 if (iovcnt > UIO_MAXIOV) 904 return (EINVAL); 905 iovlen = iovcnt * sizeof(struct iovec); 906 uio = malloc(iovlen + sizeof *uio, M_IOV, M_WAITOK); 907 iov = (struct iovec *)(uio + 1); 908 for (i = 0; i < iovcnt; i++) { 909 error = copyin(&iovp[i], &iov32, sizeof(struct iovec32)); 910 if (error) { 911 free(uio, M_IOV); 912 return (error); 913 } 914 iov[i].iov_base = PTRIN(iov32.iov_base); 915 iov[i].iov_len = iov32.iov_len; 916 } 917 uio->uio_iov = iov; 918 uio->uio_iovcnt = iovcnt; 919 uio->uio_segflg = UIO_USERSPACE; 920 uio->uio_offset = -1; 921 uio->uio_resid = 0; 922 for (i = 0; i < iovcnt; i++) { 923 if (iov->iov_len > INT_MAX - uio->uio_resid) { 924 free(uio, M_IOV); 925 return (EINVAL); 926 } 927 uio->uio_resid += iov->iov_len; 928 iov++; 929 } 930 *uiop = uio; 931 return (0); 932 } 933 934 int 935 freebsd32_readv(struct thread *td, struct freebsd32_readv_args *uap) 936 { 937 struct uio *auio; 938 int error; 939 940 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 941 if (error) 942 return (error); 943 error = kern_readv(td, uap->fd, auio); 944 free(auio, M_IOV); 945 return (error); 946 } 947 948 int 949 freebsd32_writev(struct thread *td, struct freebsd32_writev_args *uap) 950 { 951 struct uio *auio; 952 int error; 953 954 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 955 if (error) 956 return (error); 957 error = kern_writev(td, uap->fd, auio); 958 free(auio, M_IOV); 959 return (error); 960 } 961 962 int 963 freebsd32_preadv(struct thread *td, struct freebsd32_preadv_args *uap) 964 { 965 struct uio *auio; 966 int error; 967 968 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 969 if (error) 970 return (error); 971 error = kern_preadv(td, uap->fd, auio, PAIR32TO64(off_t,uap->offset)); 972 free(auio, M_IOV); 973 return (error); 974 } 975 976 int 977 freebsd32_pwritev(struct thread *td, struct freebsd32_pwritev_args *uap) 978 { 979 struct uio *auio; 980 int error; 981 982 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 983 if (error) 984 return (error); 985 error = kern_pwritev(td, uap->fd, auio, PAIR32TO64(off_t,uap->offset)); 986 free(auio, M_IOV); 987 return (error); 988 } 989 990 int 991 freebsd32_copyiniov(struct iovec32 *iovp32, u_int iovcnt, struct iovec **iovp, 992 int error) 993 { 994 struct iovec32 iov32; 995 struct iovec *iov; 996 u_int iovlen; 997 int i; 998 999 *iovp = NULL; 1000 if (iovcnt > UIO_MAXIOV) 1001 return (error); 1002 iovlen = iovcnt * sizeof(struct iovec); 1003 iov = malloc(iovlen, M_IOV, M_WAITOK); 1004 for (i = 0; i < iovcnt; i++) { 1005 error = copyin(&iovp32[i], &iov32, sizeof(struct iovec32)); 1006 if (error) { 1007 free(iov, M_IOV); 1008 return (error); 1009 } 1010 iov[i].iov_base = PTRIN(iov32.iov_base); 1011 iov[i].iov_len = iov32.iov_len; 1012 } 1013 *iovp = iov; 1014 return (0); 1015 } 1016 1017 static int 1018 freebsd32_copyinmsghdr(struct msghdr32 *msg32, struct msghdr *msg) 1019 { 1020 struct msghdr32 m32; 1021 int error; 1022 1023 error = copyin(msg32, &m32, sizeof(m32)); 1024 if (error) 1025 return (error); 1026 msg->msg_name = PTRIN(m32.msg_name); 1027 msg->msg_namelen = m32.msg_namelen; 1028 msg->msg_iov = PTRIN(m32.msg_iov); 1029 msg->msg_iovlen = m32.msg_iovlen; 1030 msg->msg_control = PTRIN(m32.msg_control); 1031 msg->msg_controllen = m32.msg_controllen; 1032 msg->msg_flags = m32.msg_flags; 1033 return (0); 1034 } 1035 1036 static int 1037 freebsd32_copyoutmsghdr(struct msghdr *msg, struct msghdr32 *msg32) 1038 { 1039 struct msghdr32 m32; 1040 int error; 1041 1042 m32.msg_name = PTROUT(msg->msg_name); 1043 m32.msg_namelen = msg->msg_namelen; 1044 m32.msg_iov = PTROUT(msg->msg_iov); 1045 m32.msg_iovlen = msg->msg_iovlen; 1046 m32.msg_control = PTROUT(msg->msg_control); 1047 m32.msg_controllen = msg->msg_controllen; 1048 m32.msg_flags = msg->msg_flags; 1049 error = copyout(&m32, msg32, sizeof(m32)); 1050 return (error); 1051 } 1052 1053 #ifndef __mips__ 1054 #define FREEBSD32_ALIGNBYTES (sizeof(int) - 1) 1055 #else 1056 #define FREEBSD32_ALIGNBYTES (sizeof(long) - 1) 1057 #endif 1058 #define FREEBSD32_ALIGN(p) \ 1059 (((u_long)(p) + FREEBSD32_ALIGNBYTES) & ~FREEBSD32_ALIGNBYTES) 1060 #define FREEBSD32_CMSG_SPACE(l) \ 1061 (FREEBSD32_ALIGN(sizeof(struct cmsghdr)) + FREEBSD32_ALIGN(l)) 1062 1063 #define FREEBSD32_CMSG_DATA(cmsg) ((unsigned char *)(cmsg) + \ 1064 FREEBSD32_ALIGN(sizeof(struct cmsghdr))) 1065 1066 static size_t 1067 freebsd32_cmsg_convert(struct cmsghdr *cm, void *data, socklen_t datalen) 1068 { 1069 size_t copylen; 1070 union { 1071 struct timespec32 ts; 1072 struct timeval32 tv; 1073 struct bintime32 bt; 1074 } tmp32; 1075 1076 union { 1077 struct timespec ts; 1078 struct timeval tv; 1079 struct bintime bt; 1080 } *in; 1081 1082 in = data; 1083 copylen = 0; 1084 switch (cm->cmsg_level) { 1085 case SOL_SOCKET: 1086 switch (cm->cmsg_type) { 1087 case SCM_TIMESTAMP: 1088 TV_CP(*in, tmp32, tv); 1089 copylen = sizeof(tmp32.tv); 1090 break; 1091 1092 case SCM_BINTIME: 1093 BT_CP(*in, tmp32, bt); 1094 copylen = sizeof(tmp32.bt); 1095 break; 1096 1097 case SCM_REALTIME: 1098 case SCM_MONOTONIC: 1099 TS_CP(*in, tmp32, ts); 1100 copylen = sizeof(tmp32.ts); 1101 break; 1102 1103 default: 1104 break; 1105 } 1106 1107 default: 1108 break; 1109 } 1110 1111 if (copylen == 0) 1112 return (datalen); 1113 1114 KASSERT((datalen >= copylen), ("corrupted cmsghdr")); 1115 1116 bcopy(&tmp32, data, copylen); 1117 return (copylen); 1118 } 1119 1120 static int 1121 freebsd32_copy_msg_out(struct msghdr *msg, struct mbuf *control) 1122 { 1123 struct cmsghdr *cm; 1124 void *data; 1125 socklen_t clen, datalen, datalen_out; 1126 int error; 1127 caddr_t ctlbuf; 1128 int len, maxlen, copylen; 1129 struct mbuf *m; 1130 error = 0; 1131 1132 len = msg->msg_controllen; 1133 maxlen = msg->msg_controllen; 1134 msg->msg_controllen = 0; 1135 1136 m = control; 1137 ctlbuf = msg->msg_control; 1138 1139 while (m && len > 0) { 1140 cm = mtod(m, struct cmsghdr *); 1141 clen = m->m_len; 1142 1143 while (cm != NULL) { 1144 1145 if (sizeof(struct cmsghdr) > clen || 1146 cm->cmsg_len > clen) { 1147 error = EINVAL; 1148 break; 1149 } 1150 1151 data = CMSG_DATA(cm); 1152 datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data; 1153 datalen_out = freebsd32_cmsg_convert(cm, data, datalen); 1154 1155 /* Adjust message length */ 1156 cm->cmsg_len = FREEBSD32_ALIGN(sizeof(struct cmsghdr)) + 1157 datalen_out; 1158 1159 /* Copy cmsghdr */ 1160 copylen = sizeof(struct cmsghdr); 1161 if (len < copylen) { 1162 msg->msg_flags |= MSG_CTRUNC; 1163 copylen = len; 1164 } 1165 1166 error = copyout(cm, ctlbuf, copylen); 1167 if (error) 1168 goto exit; 1169 1170 ctlbuf += FREEBSD32_ALIGN(copylen); 1171 len -= FREEBSD32_ALIGN(copylen); 1172 1173 if (len <= 0) 1174 break; 1175 1176 /* Copy data */ 1177 copylen = datalen_out; 1178 if (len < copylen) { 1179 msg->msg_flags |= MSG_CTRUNC; 1180 copylen = len; 1181 } 1182 1183 error = copyout(data, ctlbuf, copylen); 1184 if (error) 1185 goto exit; 1186 1187 ctlbuf += FREEBSD32_ALIGN(copylen); 1188 len -= FREEBSD32_ALIGN(copylen); 1189 1190 if (CMSG_SPACE(datalen) < clen) { 1191 clen -= CMSG_SPACE(datalen); 1192 cm = (struct cmsghdr *) 1193 ((caddr_t)cm + CMSG_SPACE(datalen)); 1194 } else { 1195 clen = 0; 1196 cm = NULL; 1197 } 1198 } 1199 m = m->m_next; 1200 } 1201 1202 msg->msg_controllen = (len <= 0) ? maxlen : ctlbuf - (caddr_t)msg->msg_control; 1203 1204 exit: 1205 return (error); 1206 1207 } 1208 1209 int 1210 freebsd32_recvmsg(td, uap) 1211 struct thread *td; 1212 struct freebsd32_recvmsg_args /* { 1213 int s; 1214 struct msghdr32 *msg; 1215 int flags; 1216 } */ *uap; 1217 { 1218 struct msghdr msg; 1219 struct msghdr32 m32; 1220 struct iovec *uiov, *iov; 1221 struct mbuf *control = NULL; 1222 struct mbuf **controlp; 1223 1224 int error; 1225 error = copyin(uap->msg, &m32, sizeof(m32)); 1226 if (error) 1227 return (error); 1228 error = freebsd32_copyinmsghdr(uap->msg, &msg); 1229 if (error) 1230 return (error); 1231 error = freebsd32_copyiniov(PTRIN(m32.msg_iov), m32.msg_iovlen, &iov, 1232 EMSGSIZE); 1233 if (error) 1234 return (error); 1235 msg.msg_flags = uap->flags; 1236 uiov = msg.msg_iov; 1237 msg.msg_iov = iov; 1238 1239 controlp = (msg.msg_control != NULL) ? &control : NULL; 1240 error = kern_recvit(td, uap->s, &msg, UIO_USERSPACE, controlp); 1241 if (error == 0) { 1242 msg.msg_iov = uiov; 1243 1244 if (control != NULL) 1245 error = freebsd32_copy_msg_out(&msg, control); 1246 else 1247 msg.msg_controllen = 0; 1248 1249 if (error == 0) 1250 error = freebsd32_copyoutmsghdr(&msg, uap->msg); 1251 } 1252 free(iov, M_IOV); 1253 1254 if (control != NULL) 1255 m_freem(control); 1256 1257 return (error); 1258 } 1259 1260 /* 1261 * Copy-in the array of control messages constructed using alignment 1262 * and padding suitable for a 32-bit environment and construct an 1263 * mbuf using alignment and padding suitable for a 64-bit kernel. 1264 * The alignment and padding are defined indirectly by CMSG_DATA(), 1265 * CMSG_SPACE() and CMSG_LEN(). 1266 */ 1267 static int 1268 freebsd32_copyin_control(struct mbuf **mp, caddr_t buf, u_int buflen) 1269 { 1270 struct mbuf *m; 1271 void *md; 1272 u_int idx, len, msglen; 1273 int error; 1274 1275 buflen = FREEBSD32_ALIGN(buflen); 1276 1277 if (buflen > MCLBYTES) 1278 return (EINVAL); 1279 1280 /* 1281 * Iterate over the buffer and get the length of each message 1282 * in there. This has 32-bit alignment and padding. Use it to 1283 * determine the length of these messages when using 64-bit 1284 * alignment and padding. 1285 */ 1286 idx = 0; 1287 len = 0; 1288 while (idx < buflen) { 1289 error = copyin(buf + idx, &msglen, sizeof(msglen)); 1290 if (error) 1291 return (error); 1292 if (msglen < sizeof(struct cmsghdr)) 1293 return (EINVAL); 1294 msglen = FREEBSD32_ALIGN(msglen); 1295 if (idx + msglen > buflen) 1296 return (EINVAL); 1297 idx += msglen; 1298 msglen += CMSG_ALIGN(sizeof(struct cmsghdr)) - 1299 FREEBSD32_ALIGN(sizeof(struct cmsghdr)); 1300 len += CMSG_ALIGN(msglen); 1301 } 1302 1303 if (len > MCLBYTES) 1304 return (EINVAL); 1305 1306 m = m_get(M_WAITOK, MT_CONTROL); 1307 if (len > MLEN) 1308 MCLGET(m, M_WAITOK); 1309 m->m_len = len; 1310 1311 md = mtod(m, void *); 1312 while (buflen > 0) { 1313 error = copyin(buf, md, sizeof(struct cmsghdr)); 1314 if (error) 1315 break; 1316 msglen = *(u_int *)md; 1317 msglen = FREEBSD32_ALIGN(msglen); 1318 1319 /* Modify the message length to account for alignment. */ 1320 *(u_int *)md = msglen + CMSG_ALIGN(sizeof(struct cmsghdr)) - 1321 FREEBSD32_ALIGN(sizeof(struct cmsghdr)); 1322 1323 md = (char *)md + CMSG_ALIGN(sizeof(struct cmsghdr)); 1324 buf += FREEBSD32_ALIGN(sizeof(struct cmsghdr)); 1325 buflen -= FREEBSD32_ALIGN(sizeof(struct cmsghdr)); 1326 1327 msglen -= FREEBSD32_ALIGN(sizeof(struct cmsghdr)); 1328 if (msglen > 0) { 1329 error = copyin(buf, md, msglen); 1330 if (error) 1331 break; 1332 md = (char *)md + CMSG_ALIGN(msglen); 1333 buf += msglen; 1334 buflen -= msglen; 1335 } 1336 } 1337 1338 if (error) 1339 m_free(m); 1340 else 1341 *mp = m; 1342 return (error); 1343 } 1344 1345 int 1346 freebsd32_sendmsg(struct thread *td, 1347 struct freebsd32_sendmsg_args *uap) 1348 { 1349 struct msghdr msg; 1350 struct msghdr32 m32; 1351 struct iovec *iov; 1352 struct mbuf *control = NULL; 1353 struct sockaddr *to = NULL; 1354 int error; 1355 1356 error = copyin(uap->msg, &m32, sizeof(m32)); 1357 if (error) 1358 return (error); 1359 error = freebsd32_copyinmsghdr(uap->msg, &msg); 1360 if (error) 1361 return (error); 1362 error = freebsd32_copyiniov(PTRIN(m32.msg_iov), m32.msg_iovlen, &iov, 1363 EMSGSIZE); 1364 if (error) 1365 return (error); 1366 msg.msg_iov = iov; 1367 if (msg.msg_name != NULL) { 1368 error = getsockaddr(&to, msg.msg_name, msg.msg_namelen); 1369 if (error) { 1370 to = NULL; 1371 goto out; 1372 } 1373 msg.msg_name = to; 1374 } 1375 1376 if (msg.msg_control) { 1377 if (msg.msg_controllen < sizeof(struct cmsghdr)) { 1378 error = EINVAL; 1379 goto out; 1380 } 1381 1382 error = freebsd32_copyin_control(&control, msg.msg_control, 1383 msg.msg_controllen); 1384 if (error) 1385 goto out; 1386 1387 msg.msg_control = NULL; 1388 msg.msg_controllen = 0; 1389 } 1390 1391 error = kern_sendit(td, uap->s, &msg, uap->flags, control, 1392 UIO_USERSPACE); 1393 1394 out: 1395 free(iov, M_IOV); 1396 if (to) 1397 free(to, M_SONAME); 1398 return (error); 1399 } 1400 1401 int 1402 freebsd32_recvfrom(struct thread *td, 1403 struct freebsd32_recvfrom_args *uap) 1404 { 1405 struct msghdr msg; 1406 struct iovec aiov; 1407 int error; 1408 1409 if (uap->fromlenaddr) { 1410 error = copyin(PTRIN(uap->fromlenaddr), &msg.msg_namelen, 1411 sizeof(msg.msg_namelen)); 1412 if (error) 1413 return (error); 1414 } else { 1415 msg.msg_namelen = 0; 1416 } 1417 1418 msg.msg_name = PTRIN(uap->from); 1419 msg.msg_iov = &aiov; 1420 msg.msg_iovlen = 1; 1421 aiov.iov_base = PTRIN(uap->buf); 1422 aiov.iov_len = uap->len; 1423 msg.msg_control = NULL; 1424 msg.msg_flags = uap->flags; 1425 error = kern_recvit(td, uap->s, &msg, UIO_USERSPACE, NULL); 1426 if (error == 0 && uap->fromlenaddr) 1427 error = copyout(&msg.msg_namelen, PTRIN(uap->fromlenaddr), 1428 sizeof (msg.msg_namelen)); 1429 return (error); 1430 } 1431 1432 int 1433 freebsd32_settimeofday(struct thread *td, 1434 struct freebsd32_settimeofday_args *uap) 1435 { 1436 struct timeval32 tv32; 1437 struct timeval tv, *tvp; 1438 struct timezone tz, *tzp; 1439 int error; 1440 1441 if (uap->tv) { 1442 error = copyin(uap->tv, &tv32, sizeof(tv32)); 1443 if (error) 1444 return (error); 1445 CP(tv32, tv, tv_sec); 1446 CP(tv32, tv, tv_usec); 1447 tvp = &tv; 1448 } else 1449 tvp = NULL; 1450 if (uap->tzp) { 1451 error = copyin(uap->tzp, &tz, sizeof(tz)); 1452 if (error) 1453 return (error); 1454 tzp = &tz; 1455 } else 1456 tzp = NULL; 1457 return (kern_settimeofday(td, tvp, tzp)); 1458 } 1459 1460 int 1461 freebsd32_utimes(struct thread *td, struct freebsd32_utimes_args *uap) 1462 { 1463 struct timeval32 s32[2]; 1464 struct timeval s[2], *sp; 1465 int error; 1466 1467 if (uap->tptr != NULL) { 1468 error = copyin(uap->tptr, s32, sizeof(s32)); 1469 if (error) 1470 return (error); 1471 CP(s32[0], s[0], tv_sec); 1472 CP(s32[0], s[0], tv_usec); 1473 CP(s32[1], s[1], tv_sec); 1474 CP(s32[1], s[1], tv_usec); 1475 sp = s; 1476 } else 1477 sp = NULL; 1478 return (kern_utimesat(td, AT_FDCWD, uap->path, UIO_USERSPACE, 1479 sp, UIO_SYSSPACE)); 1480 } 1481 1482 int 1483 freebsd32_lutimes(struct thread *td, struct freebsd32_lutimes_args *uap) 1484 { 1485 struct timeval32 s32[2]; 1486 struct timeval s[2], *sp; 1487 int error; 1488 1489 if (uap->tptr != NULL) { 1490 error = copyin(uap->tptr, s32, sizeof(s32)); 1491 if (error) 1492 return (error); 1493 CP(s32[0], s[0], tv_sec); 1494 CP(s32[0], s[0], tv_usec); 1495 CP(s32[1], s[1], tv_sec); 1496 CP(s32[1], s[1], tv_usec); 1497 sp = s; 1498 } else 1499 sp = NULL; 1500 return (kern_lutimes(td, uap->path, UIO_USERSPACE, sp, UIO_SYSSPACE)); 1501 } 1502 1503 int 1504 freebsd32_futimes(struct thread *td, struct freebsd32_futimes_args *uap) 1505 { 1506 struct timeval32 s32[2]; 1507 struct timeval s[2], *sp; 1508 int error; 1509 1510 if (uap->tptr != NULL) { 1511 error = copyin(uap->tptr, s32, sizeof(s32)); 1512 if (error) 1513 return (error); 1514 CP(s32[0], s[0], tv_sec); 1515 CP(s32[0], s[0], tv_usec); 1516 CP(s32[1], s[1], tv_sec); 1517 CP(s32[1], s[1], tv_usec); 1518 sp = s; 1519 } else 1520 sp = NULL; 1521 return (kern_futimes(td, uap->fd, sp, UIO_SYSSPACE)); 1522 } 1523 1524 int 1525 freebsd32_futimesat(struct thread *td, struct freebsd32_futimesat_args *uap) 1526 { 1527 struct timeval32 s32[2]; 1528 struct timeval s[2], *sp; 1529 int error; 1530 1531 if (uap->times != NULL) { 1532 error = copyin(uap->times, s32, sizeof(s32)); 1533 if (error) 1534 return (error); 1535 CP(s32[0], s[0], tv_sec); 1536 CP(s32[0], s[0], tv_usec); 1537 CP(s32[1], s[1], tv_sec); 1538 CP(s32[1], s[1], tv_usec); 1539 sp = s; 1540 } else 1541 sp = NULL; 1542 return (kern_utimesat(td, uap->fd, uap->path, UIO_USERSPACE, 1543 sp, UIO_SYSSPACE)); 1544 } 1545 1546 int 1547 freebsd32_futimens(struct thread *td, struct freebsd32_futimens_args *uap) 1548 { 1549 struct timespec32 ts32[2]; 1550 struct timespec ts[2], *tsp; 1551 int error; 1552 1553 if (uap->times != NULL) { 1554 error = copyin(uap->times, ts32, sizeof(ts32)); 1555 if (error) 1556 return (error); 1557 CP(ts32[0], ts[0], tv_sec); 1558 CP(ts32[0], ts[0], tv_nsec); 1559 CP(ts32[1], ts[1], tv_sec); 1560 CP(ts32[1], ts[1], tv_nsec); 1561 tsp = ts; 1562 } else 1563 tsp = NULL; 1564 return (kern_futimens(td, uap->fd, tsp, UIO_SYSSPACE)); 1565 } 1566 1567 int 1568 freebsd32_utimensat(struct thread *td, struct freebsd32_utimensat_args *uap) 1569 { 1570 struct timespec32 ts32[2]; 1571 struct timespec ts[2], *tsp; 1572 int error; 1573 1574 if (uap->times != NULL) { 1575 error = copyin(uap->times, ts32, sizeof(ts32)); 1576 if (error) 1577 return (error); 1578 CP(ts32[0], ts[0], tv_sec); 1579 CP(ts32[0], ts[0], tv_nsec); 1580 CP(ts32[1], ts[1], tv_sec); 1581 CP(ts32[1], ts[1], tv_nsec); 1582 tsp = ts; 1583 } else 1584 tsp = NULL; 1585 return (kern_utimensat(td, uap->fd, uap->path, UIO_USERSPACE, 1586 tsp, UIO_SYSSPACE, uap->flag)); 1587 } 1588 1589 int 1590 freebsd32_adjtime(struct thread *td, struct freebsd32_adjtime_args *uap) 1591 { 1592 struct timeval32 tv32; 1593 struct timeval delta, olddelta, *deltap; 1594 int error; 1595 1596 if (uap->delta) { 1597 error = copyin(uap->delta, &tv32, sizeof(tv32)); 1598 if (error) 1599 return (error); 1600 CP(tv32, delta, tv_sec); 1601 CP(tv32, delta, tv_usec); 1602 deltap = δ 1603 } else 1604 deltap = NULL; 1605 error = kern_adjtime(td, deltap, &olddelta); 1606 if (uap->olddelta && error == 0) { 1607 CP(olddelta, tv32, tv_sec); 1608 CP(olddelta, tv32, tv_usec); 1609 error = copyout(&tv32, uap->olddelta, sizeof(tv32)); 1610 } 1611 return (error); 1612 } 1613 1614 #ifdef COMPAT_FREEBSD4 1615 int 1616 freebsd4_freebsd32_statfs(struct thread *td, struct freebsd4_freebsd32_statfs_args *uap) 1617 { 1618 struct statfs32 s32; 1619 struct statfs *sp; 1620 int error; 1621 1622 sp = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK); 1623 error = kern_statfs(td, uap->path, UIO_USERSPACE, sp); 1624 if (error == 0) { 1625 copy_statfs(sp, &s32); 1626 error = copyout(&s32, uap->buf, sizeof(s32)); 1627 } 1628 free(sp, M_STATFS); 1629 return (error); 1630 } 1631 #endif 1632 1633 #ifdef COMPAT_FREEBSD4 1634 int 1635 freebsd4_freebsd32_fstatfs(struct thread *td, struct freebsd4_freebsd32_fstatfs_args *uap) 1636 { 1637 struct statfs32 s32; 1638 struct statfs *sp; 1639 int error; 1640 1641 sp = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK); 1642 error = kern_fstatfs(td, uap->fd, sp); 1643 if (error == 0) { 1644 copy_statfs(sp, &s32); 1645 error = copyout(&s32, uap->buf, sizeof(s32)); 1646 } 1647 free(sp, M_STATFS); 1648 return (error); 1649 } 1650 #endif 1651 1652 #ifdef COMPAT_FREEBSD4 1653 int 1654 freebsd4_freebsd32_fhstatfs(struct thread *td, struct freebsd4_freebsd32_fhstatfs_args *uap) 1655 { 1656 struct statfs32 s32; 1657 struct statfs *sp; 1658 fhandle_t fh; 1659 int error; 1660 1661 if ((error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t))) != 0) 1662 return (error); 1663 sp = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK); 1664 error = kern_fhstatfs(td, fh, sp); 1665 if (error == 0) { 1666 copy_statfs(sp, &s32); 1667 error = copyout(&s32, uap->buf, sizeof(s32)); 1668 } 1669 free(sp, M_STATFS); 1670 return (error); 1671 } 1672 #endif 1673 1674 int 1675 freebsd32_pread(struct thread *td, struct freebsd32_pread_args *uap) 1676 { 1677 1678 return (kern_pread(td, uap->fd, uap->buf, uap->nbyte, 1679 PAIR32TO64(off_t, uap->offset))); 1680 } 1681 1682 int 1683 freebsd32_pwrite(struct thread *td, struct freebsd32_pwrite_args *uap) 1684 { 1685 1686 return (kern_pwrite(td, uap->fd, uap->buf, uap->nbyte, 1687 PAIR32TO64(off_t, uap->offset))); 1688 } 1689 1690 #ifdef COMPAT_43 1691 int 1692 ofreebsd32_lseek(struct thread *td, struct ofreebsd32_lseek_args *uap) 1693 { 1694 1695 return (kern_lseek(td, uap->fd, uap->offset, uap->whence)); 1696 } 1697 #endif 1698 1699 int 1700 freebsd32_lseek(struct thread *td, struct freebsd32_lseek_args *uap) 1701 { 1702 int error; 1703 off_t pos; 1704 1705 error = kern_lseek(td, uap->fd, PAIR32TO64(off_t, uap->offset), 1706 uap->whence); 1707 /* Expand the quad return into two parts for eax and edx */ 1708 pos = td->td_uretoff.tdu_off; 1709 td->td_retval[RETVAL_LO] = pos & 0xffffffff; /* %eax */ 1710 td->td_retval[RETVAL_HI] = pos >> 32; /* %edx */ 1711 return error; 1712 } 1713 1714 int 1715 freebsd32_truncate(struct thread *td, struct freebsd32_truncate_args *uap) 1716 { 1717 1718 return (kern_truncate(td, uap->path, UIO_USERSPACE, 1719 PAIR32TO64(off_t, uap->length))); 1720 } 1721 1722 int 1723 freebsd32_ftruncate(struct thread *td, struct freebsd32_ftruncate_args *uap) 1724 { 1725 1726 return (kern_ftruncate(td, uap->fd, PAIR32TO64(off_t, uap->length))); 1727 } 1728 1729 #ifdef COMPAT_43 1730 int 1731 ofreebsd32_getdirentries(struct thread *td, 1732 struct ofreebsd32_getdirentries_args *uap) 1733 { 1734 struct ogetdirentries_args ap; 1735 int error; 1736 long loff; 1737 int32_t loff_cut; 1738 1739 ap.fd = uap->fd; 1740 ap.buf = uap->buf; 1741 ap.count = uap->count; 1742 ap.basep = NULL; 1743 error = kern_ogetdirentries(td, &ap, &loff); 1744 if (error == 0) { 1745 loff_cut = loff; 1746 error = copyout(&loff_cut, uap->basep, sizeof(int32_t)); 1747 } 1748 return (error); 1749 } 1750 #endif 1751 1752 #if defined(COMPAT_FREEBSD11) 1753 int 1754 freebsd11_freebsd32_getdirentries(struct thread *td, 1755 struct freebsd11_freebsd32_getdirentries_args *uap) 1756 { 1757 long base; 1758 int32_t base32; 1759 int error; 1760 1761 error = freebsd11_kern_getdirentries(td, uap->fd, uap->buf, uap->count, 1762 &base, NULL); 1763 if (error) 1764 return (error); 1765 if (uap->basep != NULL) { 1766 base32 = base; 1767 error = copyout(&base32, uap->basep, sizeof(int32_t)); 1768 } 1769 return (error); 1770 } 1771 1772 int 1773 freebsd11_freebsd32_getdents(struct thread *td, 1774 struct freebsd11_freebsd32_getdents_args *uap) 1775 { 1776 struct freebsd11_freebsd32_getdirentries_args ap; 1777 1778 ap.fd = uap->fd; 1779 ap.buf = uap->buf; 1780 ap.count = uap->count; 1781 ap.basep = NULL; 1782 return (freebsd11_freebsd32_getdirentries(td, &ap)); 1783 } 1784 #endif /* COMPAT_FREEBSD11 */ 1785 1786 #ifdef COMPAT_FREEBSD6 1787 /* versions with the 'int pad' argument */ 1788 int 1789 freebsd6_freebsd32_pread(struct thread *td, struct freebsd6_freebsd32_pread_args *uap) 1790 { 1791 1792 return (kern_pread(td, uap->fd, uap->buf, uap->nbyte, 1793 PAIR32TO64(off_t, uap->offset))); 1794 } 1795 1796 int 1797 freebsd6_freebsd32_pwrite(struct thread *td, struct freebsd6_freebsd32_pwrite_args *uap) 1798 { 1799 1800 return (kern_pwrite(td, uap->fd, uap->buf, uap->nbyte, 1801 PAIR32TO64(off_t, uap->offset))); 1802 } 1803 1804 int 1805 freebsd6_freebsd32_lseek(struct thread *td, struct freebsd6_freebsd32_lseek_args *uap) 1806 { 1807 int error; 1808 off_t pos; 1809 1810 error = kern_lseek(td, uap->fd, PAIR32TO64(off_t, uap->offset), 1811 uap->whence); 1812 /* Expand the quad return into two parts for eax and edx */ 1813 pos = *(off_t *)(td->td_retval); 1814 td->td_retval[RETVAL_LO] = pos & 0xffffffff; /* %eax */ 1815 td->td_retval[RETVAL_HI] = pos >> 32; /* %edx */ 1816 return error; 1817 } 1818 1819 int 1820 freebsd6_freebsd32_truncate(struct thread *td, struct freebsd6_freebsd32_truncate_args *uap) 1821 { 1822 1823 return (kern_truncate(td, uap->path, UIO_USERSPACE, 1824 PAIR32TO64(off_t, uap->length))); 1825 } 1826 1827 int 1828 freebsd6_freebsd32_ftruncate(struct thread *td, struct freebsd6_freebsd32_ftruncate_args *uap) 1829 { 1830 1831 return (kern_ftruncate(td, uap->fd, PAIR32TO64(off_t, uap->length))); 1832 } 1833 #endif /* COMPAT_FREEBSD6 */ 1834 1835 struct sf_hdtr32 { 1836 uint32_t headers; 1837 int hdr_cnt; 1838 uint32_t trailers; 1839 int trl_cnt; 1840 }; 1841 1842 static int 1843 freebsd32_do_sendfile(struct thread *td, 1844 struct freebsd32_sendfile_args *uap, int compat) 1845 { 1846 struct sf_hdtr32 hdtr32; 1847 struct sf_hdtr hdtr; 1848 struct uio *hdr_uio, *trl_uio; 1849 struct file *fp; 1850 cap_rights_t rights; 1851 struct iovec32 *iov32; 1852 off_t offset, sbytes; 1853 int error; 1854 1855 offset = PAIR32TO64(off_t, uap->offset); 1856 if (offset < 0) 1857 return (EINVAL); 1858 1859 hdr_uio = trl_uio = NULL; 1860 1861 if (uap->hdtr != NULL) { 1862 error = copyin(uap->hdtr, &hdtr32, sizeof(hdtr32)); 1863 if (error) 1864 goto out; 1865 PTRIN_CP(hdtr32, hdtr, headers); 1866 CP(hdtr32, hdtr, hdr_cnt); 1867 PTRIN_CP(hdtr32, hdtr, trailers); 1868 CP(hdtr32, hdtr, trl_cnt); 1869 1870 if (hdtr.headers != NULL) { 1871 iov32 = PTRIN(hdtr32.headers); 1872 error = freebsd32_copyinuio(iov32, 1873 hdtr32.hdr_cnt, &hdr_uio); 1874 if (error) 1875 goto out; 1876 #ifdef COMPAT_FREEBSD4 1877 /* 1878 * In FreeBSD < 5.0 the nbytes to send also included 1879 * the header. If compat is specified subtract the 1880 * header size from nbytes. 1881 */ 1882 if (compat) { 1883 if (uap->nbytes > hdr_uio->uio_resid) 1884 uap->nbytes -= hdr_uio->uio_resid; 1885 else 1886 uap->nbytes = 0; 1887 } 1888 #endif 1889 } 1890 if (hdtr.trailers != NULL) { 1891 iov32 = PTRIN(hdtr32.trailers); 1892 error = freebsd32_copyinuio(iov32, 1893 hdtr32.trl_cnt, &trl_uio); 1894 if (error) 1895 goto out; 1896 } 1897 } 1898 1899 AUDIT_ARG_FD(uap->fd); 1900 1901 if ((error = fget_read(td, uap->fd, 1902 cap_rights_init(&rights, CAP_PREAD), &fp)) != 0) 1903 goto out; 1904 1905 error = fo_sendfile(fp, uap->s, hdr_uio, trl_uio, offset, 1906 uap->nbytes, &sbytes, uap->flags, td); 1907 fdrop(fp, td); 1908 1909 if (uap->sbytes != NULL) 1910 copyout(&sbytes, uap->sbytes, sizeof(off_t)); 1911 1912 out: 1913 if (hdr_uio) 1914 free(hdr_uio, M_IOV); 1915 if (trl_uio) 1916 free(trl_uio, M_IOV); 1917 return (error); 1918 } 1919 1920 #ifdef COMPAT_FREEBSD4 1921 int 1922 freebsd4_freebsd32_sendfile(struct thread *td, 1923 struct freebsd4_freebsd32_sendfile_args *uap) 1924 { 1925 return (freebsd32_do_sendfile(td, 1926 (struct freebsd32_sendfile_args *)uap, 1)); 1927 } 1928 #endif 1929 1930 int 1931 freebsd32_sendfile(struct thread *td, struct freebsd32_sendfile_args *uap) 1932 { 1933 1934 return (freebsd32_do_sendfile(td, uap, 0)); 1935 } 1936 1937 static void 1938 copy_stat(struct stat *in, struct stat32 *out) 1939 { 1940 1941 CP(*in, *out, st_dev); 1942 CP(*in, *out, st_ino); 1943 CP(*in, *out, st_mode); 1944 CP(*in, *out, st_nlink); 1945 CP(*in, *out, st_uid); 1946 CP(*in, *out, st_gid); 1947 CP(*in, *out, st_rdev); 1948 TS_CP(*in, *out, st_atim); 1949 TS_CP(*in, *out, st_mtim); 1950 TS_CP(*in, *out, st_ctim); 1951 CP(*in, *out, st_size); 1952 CP(*in, *out, st_blocks); 1953 CP(*in, *out, st_blksize); 1954 CP(*in, *out, st_flags); 1955 CP(*in, *out, st_gen); 1956 TS_CP(*in, *out, st_birthtim); 1957 out->st_padding0 = 0; 1958 out->st_padding1 = 0; 1959 #ifdef __STAT32_TIME_T_EXT 1960 out->st_atim_ext = 0; 1961 out->st_mtim_ext = 0; 1962 out->st_ctim_ext = 0; 1963 out->st_btim_ext = 0; 1964 #endif 1965 bzero(out->st_spare, sizeof(out->st_spare)); 1966 } 1967 1968 #ifdef COMPAT_43 1969 static void 1970 copy_ostat(struct stat *in, struct ostat32 *out) 1971 { 1972 1973 bzero(out, sizeof(*out)); 1974 CP(*in, *out, st_dev); 1975 CP(*in, *out, st_ino); 1976 CP(*in, *out, st_mode); 1977 CP(*in, *out, st_nlink); 1978 CP(*in, *out, st_uid); 1979 CP(*in, *out, st_gid); 1980 CP(*in, *out, st_rdev); 1981 out->st_size = MIN(in->st_size, INT32_MAX); 1982 TS_CP(*in, *out, st_atim); 1983 TS_CP(*in, *out, st_mtim); 1984 TS_CP(*in, *out, st_ctim); 1985 CP(*in, *out, st_blksize); 1986 CP(*in, *out, st_blocks); 1987 CP(*in, *out, st_flags); 1988 CP(*in, *out, st_gen); 1989 } 1990 #endif 1991 1992 #ifdef COMPAT_43 1993 int 1994 ofreebsd32_stat(struct thread *td, struct ofreebsd32_stat_args *uap) 1995 { 1996 struct stat sb; 1997 struct ostat32 sb32; 1998 int error; 1999 2000 error = kern_statat(td, 0, AT_FDCWD, uap->path, UIO_USERSPACE, 2001 &sb, NULL); 2002 if (error) 2003 return (error); 2004 copy_ostat(&sb, &sb32); 2005 error = copyout(&sb32, uap->ub, sizeof (sb32)); 2006 return (error); 2007 } 2008 #endif 2009 2010 int 2011 freebsd32_fstat(struct thread *td, struct freebsd32_fstat_args *uap) 2012 { 2013 struct stat ub; 2014 struct stat32 ub32; 2015 int error; 2016 2017 error = kern_fstat(td, uap->fd, &ub); 2018 if (error) 2019 return (error); 2020 copy_stat(&ub, &ub32); 2021 error = copyout(&ub32, uap->ub, sizeof(ub32)); 2022 return (error); 2023 } 2024 2025 #ifdef COMPAT_43 2026 int 2027 ofreebsd32_fstat(struct thread *td, struct ofreebsd32_fstat_args *uap) 2028 { 2029 struct stat ub; 2030 struct ostat32 ub32; 2031 int error; 2032 2033 error = kern_fstat(td, uap->fd, &ub); 2034 if (error) 2035 return (error); 2036 copy_ostat(&ub, &ub32); 2037 error = copyout(&ub32, uap->ub, sizeof(ub32)); 2038 return (error); 2039 } 2040 #endif 2041 2042 int 2043 freebsd32_fstatat(struct thread *td, struct freebsd32_fstatat_args *uap) 2044 { 2045 struct stat ub; 2046 struct stat32 ub32; 2047 int error; 2048 2049 error = kern_statat(td, uap->flag, uap->fd, uap->path, UIO_USERSPACE, 2050 &ub, NULL); 2051 if (error) 2052 return (error); 2053 copy_stat(&ub, &ub32); 2054 error = copyout(&ub32, uap->buf, sizeof(ub32)); 2055 return (error); 2056 } 2057 2058 #ifdef COMPAT_43 2059 int 2060 ofreebsd32_lstat(struct thread *td, struct ofreebsd32_lstat_args *uap) 2061 { 2062 struct stat sb; 2063 struct ostat32 sb32; 2064 int error; 2065 2066 error = kern_statat(td, AT_SYMLINK_NOFOLLOW, AT_FDCWD, uap->path, 2067 UIO_USERSPACE, &sb, NULL); 2068 if (error) 2069 return (error); 2070 copy_ostat(&sb, &sb32); 2071 error = copyout(&sb32, uap->ub, sizeof (sb32)); 2072 return (error); 2073 } 2074 #endif 2075 2076 int 2077 freebsd32_fhstat(struct thread *td, struct freebsd32_fhstat_args *uap) 2078 { 2079 struct stat sb; 2080 struct stat32 sb32; 2081 struct fhandle fh; 2082 int error; 2083 2084 error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t)); 2085 if (error != 0) 2086 return (error); 2087 error = kern_fhstat(td, fh, &sb); 2088 if (error != 0) 2089 return (error); 2090 copy_stat(&sb, &sb32); 2091 error = copyout(&sb32, uap->sb, sizeof (sb32)); 2092 return (error); 2093 } 2094 2095 #if defined(COMPAT_FREEBSD11) 2096 extern int ino64_trunc_error; 2097 2098 static int 2099 freebsd11_cvtstat32(struct stat *in, struct freebsd11_stat32 *out) 2100 { 2101 2102 CP(*in, *out, st_ino); 2103 if (in->st_ino != out->st_ino) { 2104 switch (ino64_trunc_error) { 2105 default: 2106 case 0: 2107 break; 2108 case 1: 2109 return (EOVERFLOW); 2110 case 2: 2111 out->st_ino = UINT32_MAX; 2112 break; 2113 } 2114 } 2115 CP(*in, *out, st_nlink); 2116 if (in->st_nlink != out->st_nlink) { 2117 switch (ino64_trunc_error) { 2118 default: 2119 case 0: 2120 break; 2121 case 1: 2122 return (EOVERFLOW); 2123 case 2: 2124 out->st_nlink = UINT16_MAX; 2125 break; 2126 } 2127 } 2128 out->st_dev = in->st_dev; 2129 if (out->st_dev != in->st_dev) { 2130 switch (ino64_trunc_error) { 2131 default: 2132 break; 2133 case 1: 2134 return (EOVERFLOW); 2135 } 2136 } 2137 CP(*in, *out, st_mode); 2138 CP(*in, *out, st_uid); 2139 CP(*in, *out, st_gid); 2140 out->st_rdev = in->st_rdev; 2141 if (out->st_rdev != in->st_rdev) { 2142 switch (ino64_trunc_error) { 2143 default: 2144 break; 2145 case 1: 2146 return (EOVERFLOW); 2147 } 2148 } 2149 TS_CP(*in, *out, st_atim); 2150 TS_CP(*in, *out, st_mtim); 2151 TS_CP(*in, *out, st_ctim); 2152 CP(*in, *out, st_size); 2153 CP(*in, *out, st_blocks); 2154 CP(*in, *out, st_blksize); 2155 CP(*in, *out, st_flags); 2156 CP(*in, *out, st_gen); 2157 TS_CP(*in, *out, st_birthtim); 2158 out->st_lspare = 0; 2159 bzero((char *)&out->st_birthtim + sizeof(out->st_birthtim), 2160 sizeof(*out) - offsetof(struct freebsd11_stat32, 2161 st_birthtim) - sizeof(out->st_birthtim)); 2162 return (0); 2163 } 2164 2165 int 2166 freebsd11_freebsd32_stat(struct thread *td, 2167 struct freebsd11_freebsd32_stat_args *uap) 2168 { 2169 struct stat sb; 2170 struct freebsd11_stat32 sb32; 2171 int error; 2172 2173 error = kern_statat(td, 0, AT_FDCWD, uap->path, UIO_USERSPACE, 2174 &sb, NULL); 2175 if (error != 0) 2176 return (error); 2177 error = freebsd11_cvtstat32(&sb, &sb32); 2178 if (error == 0) 2179 error = copyout(&sb32, uap->ub, sizeof (sb32)); 2180 return (error); 2181 } 2182 2183 int 2184 freebsd11_freebsd32_fstat(struct thread *td, 2185 struct freebsd11_freebsd32_fstat_args *uap) 2186 { 2187 struct stat sb; 2188 struct freebsd11_stat32 sb32; 2189 int error; 2190 2191 error = kern_fstat(td, uap->fd, &sb); 2192 if (error != 0) 2193 return (error); 2194 error = freebsd11_cvtstat32(&sb, &sb32); 2195 if (error == 0) 2196 error = copyout(&sb32, uap->ub, sizeof (sb32)); 2197 return (error); 2198 } 2199 2200 int 2201 freebsd11_freebsd32_fstatat(struct thread *td, 2202 struct freebsd11_freebsd32_fstatat_args *uap) 2203 { 2204 struct stat sb; 2205 struct freebsd11_stat32 sb32; 2206 int error; 2207 2208 error = kern_statat(td, uap->flag, uap->fd, uap->path, UIO_USERSPACE, 2209 &sb, NULL); 2210 if (error != 0) 2211 return (error); 2212 error = freebsd11_cvtstat32(&sb, &sb32); 2213 if (error == 0) 2214 error = copyout(&sb32, uap->buf, sizeof (sb32)); 2215 return (error); 2216 } 2217 2218 int 2219 freebsd11_freebsd32_lstat(struct thread *td, 2220 struct freebsd11_freebsd32_lstat_args *uap) 2221 { 2222 struct stat sb; 2223 struct freebsd11_stat32 sb32; 2224 int error; 2225 2226 error = kern_statat(td, AT_SYMLINK_NOFOLLOW, AT_FDCWD, uap->path, 2227 UIO_USERSPACE, &sb, NULL); 2228 if (error != 0) 2229 return (error); 2230 error = freebsd11_cvtstat32(&sb, &sb32); 2231 if (error == 0) 2232 error = copyout(&sb32, uap->ub, sizeof (sb32)); 2233 return (error); 2234 } 2235 2236 int 2237 freebsd11_freebsd32_fhstat(struct thread *td, 2238 struct freebsd11_freebsd32_fhstat_args *uap) 2239 { 2240 struct stat sb; 2241 struct freebsd11_stat32 sb32; 2242 struct fhandle fh; 2243 int error; 2244 2245 error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t)); 2246 if (error != 0) 2247 return (error); 2248 error = kern_fhstat(td, fh, &sb); 2249 if (error != 0) 2250 return (error); 2251 error = freebsd11_cvtstat32(&sb, &sb32); 2252 if (error == 0) 2253 error = copyout(&sb32, uap->sb, sizeof (sb32)); 2254 return (error); 2255 } 2256 #endif 2257 2258 int 2259 freebsd32_sysctl(struct thread *td, struct freebsd32_sysctl_args *uap) 2260 { 2261 int error, name[CTL_MAXNAME]; 2262 size_t j, oldlen; 2263 uint32_t tmp; 2264 2265 if (uap->namelen > CTL_MAXNAME || uap->namelen < 2) 2266 return (EINVAL); 2267 error = copyin(uap->name, name, uap->namelen * sizeof(int)); 2268 if (error) 2269 return (error); 2270 if (uap->oldlenp) { 2271 error = fueword32(uap->oldlenp, &tmp); 2272 oldlen = tmp; 2273 } else { 2274 oldlen = 0; 2275 } 2276 if (error != 0) 2277 return (EFAULT); 2278 error = userland_sysctl(td, name, uap->namelen, 2279 uap->old, &oldlen, 1, 2280 uap->new, uap->newlen, &j, SCTL_MASK32); 2281 if (error) 2282 return (error); 2283 if (uap->oldlenp) 2284 suword32(uap->oldlenp, j); 2285 return (0); 2286 } 2287 2288 int 2289 freebsd32_jail(struct thread *td, struct freebsd32_jail_args *uap) 2290 { 2291 uint32_t version; 2292 int error; 2293 struct jail j; 2294 2295 error = copyin(uap->jail, &version, sizeof(uint32_t)); 2296 if (error) 2297 return (error); 2298 2299 switch (version) { 2300 case 0: 2301 { 2302 /* FreeBSD single IPv4 jails. */ 2303 struct jail32_v0 j32_v0; 2304 2305 bzero(&j, sizeof(struct jail)); 2306 error = copyin(uap->jail, &j32_v0, sizeof(struct jail32_v0)); 2307 if (error) 2308 return (error); 2309 CP(j32_v0, j, version); 2310 PTRIN_CP(j32_v0, j, path); 2311 PTRIN_CP(j32_v0, j, hostname); 2312 j.ip4s = htonl(j32_v0.ip_number); /* jail_v0 is host order */ 2313 break; 2314 } 2315 2316 case 1: 2317 /* 2318 * Version 1 was used by multi-IPv4 jail implementations 2319 * that never made it into the official kernel. 2320 */ 2321 return (EINVAL); 2322 2323 case 2: /* JAIL_API_VERSION */ 2324 { 2325 /* FreeBSD multi-IPv4/IPv6,noIP jails. */ 2326 struct jail32 j32; 2327 2328 error = copyin(uap->jail, &j32, sizeof(struct jail32)); 2329 if (error) 2330 return (error); 2331 CP(j32, j, version); 2332 PTRIN_CP(j32, j, path); 2333 PTRIN_CP(j32, j, hostname); 2334 PTRIN_CP(j32, j, jailname); 2335 CP(j32, j, ip4s); 2336 CP(j32, j, ip6s); 2337 PTRIN_CP(j32, j, ip4); 2338 PTRIN_CP(j32, j, ip6); 2339 break; 2340 } 2341 2342 default: 2343 /* Sci-Fi jails are not supported, sorry. */ 2344 return (EINVAL); 2345 } 2346 return (kern_jail(td, &j)); 2347 } 2348 2349 int 2350 freebsd32_jail_set(struct thread *td, struct freebsd32_jail_set_args *uap) 2351 { 2352 struct uio *auio; 2353 int error; 2354 2355 /* Check that we have an even number of iovecs. */ 2356 if (uap->iovcnt & 1) 2357 return (EINVAL); 2358 2359 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 2360 if (error) 2361 return (error); 2362 error = kern_jail_set(td, auio, uap->flags); 2363 free(auio, M_IOV); 2364 return (error); 2365 } 2366 2367 int 2368 freebsd32_jail_get(struct thread *td, struct freebsd32_jail_get_args *uap) 2369 { 2370 struct iovec32 iov32; 2371 struct uio *auio; 2372 int error, i; 2373 2374 /* Check that we have an even number of iovecs. */ 2375 if (uap->iovcnt & 1) 2376 return (EINVAL); 2377 2378 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 2379 if (error) 2380 return (error); 2381 error = kern_jail_get(td, auio, uap->flags); 2382 if (error == 0) 2383 for (i = 0; i < uap->iovcnt; i++) { 2384 PTROUT_CP(auio->uio_iov[i], iov32, iov_base); 2385 CP(auio->uio_iov[i], iov32, iov_len); 2386 error = copyout(&iov32, uap->iovp + i, sizeof(iov32)); 2387 if (error != 0) 2388 break; 2389 } 2390 free(auio, M_IOV); 2391 return (error); 2392 } 2393 2394 int 2395 freebsd32_sigaction(struct thread *td, struct freebsd32_sigaction_args *uap) 2396 { 2397 struct sigaction32 s32; 2398 struct sigaction sa, osa, *sap; 2399 int error; 2400 2401 if (uap->act) { 2402 error = copyin(uap->act, &s32, sizeof(s32)); 2403 if (error) 2404 return (error); 2405 sa.sa_handler = PTRIN(s32.sa_u); 2406 CP(s32, sa, sa_flags); 2407 CP(s32, sa, sa_mask); 2408 sap = &sa; 2409 } else 2410 sap = NULL; 2411 error = kern_sigaction(td, uap->sig, sap, &osa, 0); 2412 if (error == 0 && uap->oact != NULL) { 2413 s32.sa_u = PTROUT(osa.sa_handler); 2414 CP(osa, s32, sa_flags); 2415 CP(osa, s32, sa_mask); 2416 error = copyout(&s32, uap->oact, sizeof(s32)); 2417 } 2418 return (error); 2419 } 2420 2421 #ifdef COMPAT_FREEBSD4 2422 int 2423 freebsd4_freebsd32_sigaction(struct thread *td, 2424 struct freebsd4_freebsd32_sigaction_args *uap) 2425 { 2426 struct sigaction32 s32; 2427 struct sigaction sa, osa, *sap; 2428 int error; 2429 2430 if (uap->act) { 2431 error = copyin(uap->act, &s32, sizeof(s32)); 2432 if (error) 2433 return (error); 2434 sa.sa_handler = PTRIN(s32.sa_u); 2435 CP(s32, sa, sa_flags); 2436 CP(s32, sa, sa_mask); 2437 sap = &sa; 2438 } else 2439 sap = NULL; 2440 error = kern_sigaction(td, uap->sig, sap, &osa, KSA_FREEBSD4); 2441 if (error == 0 && uap->oact != NULL) { 2442 s32.sa_u = PTROUT(osa.sa_handler); 2443 CP(osa, s32, sa_flags); 2444 CP(osa, s32, sa_mask); 2445 error = copyout(&s32, uap->oact, sizeof(s32)); 2446 } 2447 return (error); 2448 } 2449 #endif 2450 2451 #ifdef COMPAT_43 2452 struct osigaction32 { 2453 u_int32_t sa_u; 2454 osigset_t sa_mask; 2455 int sa_flags; 2456 }; 2457 2458 #define ONSIG 32 2459 2460 int 2461 ofreebsd32_sigaction(struct thread *td, 2462 struct ofreebsd32_sigaction_args *uap) 2463 { 2464 struct osigaction32 s32; 2465 struct sigaction sa, osa, *sap; 2466 int error; 2467 2468 if (uap->signum <= 0 || uap->signum >= ONSIG) 2469 return (EINVAL); 2470 2471 if (uap->nsa) { 2472 error = copyin(uap->nsa, &s32, sizeof(s32)); 2473 if (error) 2474 return (error); 2475 sa.sa_handler = PTRIN(s32.sa_u); 2476 CP(s32, sa, sa_flags); 2477 OSIG2SIG(s32.sa_mask, sa.sa_mask); 2478 sap = &sa; 2479 } else 2480 sap = NULL; 2481 error = kern_sigaction(td, uap->signum, sap, &osa, KSA_OSIGSET); 2482 if (error == 0 && uap->osa != NULL) { 2483 s32.sa_u = PTROUT(osa.sa_handler); 2484 CP(osa, s32, sa_flags); 2485 SIG2OSIG(osa.sa_mask, s32.sa_mask); 2486 error = copyout(&s32, uap->osa, sizeof(s32)); 2487 } 2488 return (error); 2489 } 2490 2491 int 2492 ofreebsd32_sigprocmask(struct thread *td, 2493 struct ofreebsd32_sigprocmask_args *uap) 2494 { 2495 sigset_t set, oset; 2496 int error; 2497 2498 OSIG2SIG(uap->mask, set); 2499 error = kern_sigprocmask(td, uap->how, &set, &oset, SIGPROCMASK_OLD); 2500 SIG2OSIG(oset, td->td_retval[0]); 2501 return (error); 2502 } 2503 2504 int 2505 ofreebsd32_sigpending(struct thread *td, 2506 struct ofreebsd32_sigpending_args *uap) 2507 { 2508 struct proc *p = td->td_proc; 2509 sigset_t siglist; 2510 2511 PROC_LOCK(p); 2512 siglist = p->p_siglist; 2513 SIGSETOR(siglist, td->td_siglist); 2514 PROC_UNLOCK(p); 2515 SIG2OSIG(siglist, td->td_retval[0]); 2516 return (0); 2517 } 2518 2519 struct sigvec32 { 2520 u_int32_t sv_handler; 2521 int sv_mask; 2522 int sv_flags; 2523 }; 2524 2525 int 2526 ofreebsd32_sigvec(struct thread *td, 2527 struct ofreebsd32_sigvec_args *uap) 2528 { 2529 struct sigvec32 vec; 2530 struct sigaction sa, osa, *sap; 2531 int error; 2532 2533 if (uap->signum <= 0 || uap->signum >= ONSIG) 2534 return (EINVAL); 2535 2536 if (uap->nsv) { 2537 error = copyin(uap->nsv, &vec, sizeof(vec)); 2538 if (error) 2539 return (error); 2540 sa.sa_handler = PTRIN(vec.sv_handler); 2541 OSIG2SIG(vec.sv_mask, sa.sa_mask); 2542 sa.sa_flags = vec.sv_flags; 2543 sa.sa_flags ^= SA_RESTART; 2544 sap = &sa; 2545 } else 2546 sap = NULL; 2547 error = kern_sigaction(td, uap->signum, sap, &osa, KSA_OSIGSET); 2548 if (error == 0 && uap->osv != NULL) { 2549 vec.sv_handler = PTROUT(osa.sa_handler); 2550 SIG2OSIG(osa.sa_mask, vec.sv_mask); 2551 vec.sv_flags = osa.sa_flags; 2552 vec.sv_flags &= ~SA_NOCLDWAIT; 2553 vec.sv_flags ^= SA_RESTART; 2554 error = copyout(&vec, uap->osv, sizeof(vec)); 2555 } 2556 return (error); 2557 } 2558 2559 int 2560 ofreebsd32_sigblock(struct thread *td, 2561 struct ofreebsd32_sigblock_args *uap) 2562 { 2563 sigset_t set, oset; 2564 2565 OSIG2SIG(uap->mask, set); 2566 kern_sigprocmask(td, SIG_BLOCK, &set, &oset, 0); 2567 SIG2OSIG(oset, td->td_retval[0]); 2568 return (0); 2569 } 2570 2571 int 2572 ofreebsd32_sigsetmask(struct thread *td, 2573 struct ofreebsd32_sigsetmask_args *uap) 2574 { 2575 sigset_t set, oset; 2576 2577 OSIG2SIG(uap->mask, set); 2578 kern_sigprocmask(td, SIG_SETMASK, &set, &oset, 0); 2579 SIG2OSIG(oset, td->td_retval[0]); 2580 return (0); 2581 } 2582 2583 int 2584 ofreebsd32_sigsuspend(struct thread *td, 2585 struct ofreebsd32_sigsuspend_args *uap) 2586 { 2587 sigset_t mask; 2588 2589 OSIG2SIG(uap->mask, mask); 2590 return (kern_sigsuspend(td, mask)); 2591 } 2592 2593 struct sigstack32 { 2594 u_int32_t ss_sp; 2595 int ss_onstack; 2596 }; 2597 2598 int 2599 ofreebsd32_sigstack(struct thread *td, 2600 struct ofreebsd32_sigstack_args *uap) 2601 { 2602 struct sigstack32 s32; 2603 struct sigstack nss, oss; 2604 int error = 0, unss; 2605 2606 if (uap->nss != NULL) { 2607 error = copyin(uap->nss, &s32, sizeof(s32)); 2608 if (error) 2609 return (error); 2610 nss.ss_sp = PTRIN(s32.ss_sp); 2611 CP(s32, nss, ss_onstack); 2612 unss = 1; 2613 } else { 2614 unss = 0; 2615 } 2616 oss.ss_sp = td->td_sigstk.ss_sp; 2617 oss.ss_onstack = sigonstack(cpu_getstack(td)); 2618 if (unss) { 2619 td->td_sigstk.ss_sp = nss.ss_sp; 2620 td->td_sigstk.ss_size = 0; 2621 td->td_sigstk.ss_flags |= (nss.ss_onstack & SS_ONSTACK); 2622 td->td_pflags |= TDP_ALTSTACK; 2623 } 2624 if (uap->oss != NULL) { 2625 s32.ss_sp = PTROUT(oss.ss_sp); 2626 CP(oss, s32, ss_onstack); 2627 error = copyout(&s32, uap->oss, sizeof(s32)); 2628 } 2629 return (error); 2630 } 2631 #endif 2632 2633 int 2634 freebsd32_nanosleep(struct thread *td, struct freebsd32_nanosleep_args *uap) 2635 { 2636 2637 return (freebsd32_user_clock_nanosleep(td, CLOCK_REALTIME, 2638 TIMER_RELTIME, uap->rqtp, uap->rmtp)); 2639 } 2640 2641 int 2642 freebsd32_clock_nanosleep(struct thread *td, 2643 struct freebsd32_clock_nanosleep_args *uap) 2644 { 2645 int error; 2646 2647 error = freebsd32_user_clock_nanosleep(td, uap->clock_id, uap->flags, 2648 uap->rqtp, uap->rmtp); 2649 return (kern_posix_error(td, error)); 2650 } 2651 2652 static int 2653 freebsd32_user_clock_nanosleep(struct thread *td, clockid_t clock_id, 2654 int flags, const struct timespec32 *ua_rqtp, struct timespec32 *ua_rmtp) 2655 { 2656 struct timespec32 rmt32, rqt32; 2657 struct timespec rmt, rqt; 2658 int error; 2659 2660 error = copyin(ua_rqtp, &rqt32, sizeof(rqt32)); 2661 if (error) 2662 return (error); 2663 2664 CP(rqt32, rqt, tv_sec); 2665 CP(rqt32, rqt, tv_nsec); 2666 2667 if (ua_rmtp != NULL && (flags & TIMER_ABSTIME) == 0 && 2668 !useracc(ua_rmtp, sizeof(rmt32), VM_PROT_WRITE)) 2669 return (EFAULT); 2670 error = kern_clock_nanosleep(td, clock_id, flags, &rqt, &rmt); 2671 if (error == EINTR && ua_rmtp != NULL && (flags & TIMER_ABSTIME) == 0) { 2672 int error2; 2673 2674 CP(rmt, rmt32, tv_sec); 2675 CP(rmt, rmt32, tv_nsec); 2676 2677 error2 = copyout(&rmt32, ua_rmtp, sizeof(rmt32)); 2678 if (error2) 2679 error = error2; 2680 } 2681 return (error); 2682 } 2683 2684 int 2685 freebsd32_clock_gettime(struct thread *td, 2686 struct freebsd32_clock_gettime_args *uap) 2687 { 2688 struct timespec ats; 2689 struct timespec32 ats32; 2690 int error; 2691 2692 error = kern_clock_gettime(td, uap->clock_id, &ats); 2693 if (error == 0) { 2694 CP(ats, ats32, tv_sec); 2695 CP(ats, ats32, tv_nsec); 2696 error = copyout(&ats32, uap->tp, sizeof(ats32)); 2697 } 2698 return (error); 2699 } 2700 2701 int 2702 freebsd32_clock_settime(struct thread *td, 2703 struct freebsd32_clock_settime_args *uap) 2704 { 2705 struct timespec ats; 2706 struct timespec32 ats32; 2707 int error; 2708 2709 error = copyin(uap->tp, &ats32, sizeof(ats32)); 2710 if (error) 2711 return (error); 2712 CP(ats32, ats, tv_sec); 2713 CP(ats32, ats, tv_nsec); 2714 2715 return (kern_clock_settime(td, uap->clock_id, &ats)); 2716 } 2717 2718 int 2719 freebsd32_clock_getres(struct thread *td, 2720 struct freebsd32_clock_getres_args *uap) 2721 { 2722 struct timespec ts; 2723 struct timespec32 ts32; 2724 int error; 2725 2726 if (uap->tp == NULL) 2727 return (0); 2728 error = kern_clock_getres(td, uap->clock_id, &ts); 2729 if (error == 0) { 2730 CP(ts, ts32, tv_sec); 2731 CP(ts, ts32, tv_nsec); 2732 error = copyout(&ts32, uap->tp, sizeof(ts32)); 2733 } 2734 return (error); 2735 } 2736 2737 int freebsd32_ktimer_create(struct thread *td, 2738 struct freebsd32_ktimer_create_args *uap) 2739 { 2740 struct sigevent32 ev32; 2741 struct sigevent ev, *evp; 2742 int error, id; 2743 2744 if (uap->evp == NULL) { 2745 evp = NULL; 2746 } else { 2747 evp = &ev; 2748 error = copyin(uap->evp, &ev32, sizeof(ev32)); 2749 if (error != 0) 2750 return (error); 2751 error = convert_sigevent32(&ev32, &ev); 2752 if (error != 0) 2753 return (error); 2754 } 2755 error = kern_ktimer_create(td, uap->clock_id, evp, &id, -1); 2756 if (error == 0) { 2757 error = copyout(&id, uap->timerid, sizeof(int)); 2758 if (error != 0) 2759 kern_ktimer_delete(td, id); 2760 } 2761 return (error); 2762 } 2763 2764 int 2765 freebsd32_ktimer_settime(struct thread *td, 2766 struct freebsd32_ktimer_settime_args *uap) 2767 { 2768 struct itimerspec32 val32, oval32; 2769 struct itimerspec val, oval, *ovalp; 2770 int error; 2771 2772 error = copyin(uap->value, &val32, sizeof(val32)); 2773 if (error != 0) 2774 return (error); 2775 ITS_CP(val32, val); 2776 ovalp = uap->ovalue != NULL ? &oval : NULL; 2777 error = kern_ktimer_settime(td, uap->timerid, uap->flags, &val, ovalp); 2778 if (error == 0 && uap->ovalue != NULL) { 2779 ITS_CP(oval, oval32); 2780 error = copyout(&oval32, uap->ovalue, sizeof(oval32)); 2781 } 2782 return (error); 2783 } 2784 2785 int 2786 freebsd32_ktimer_gettime(struct thread *td, 2787 struct freebsd32_ktimer_gettime_args *uap) 2788 { 2789 struct itimerspec32 val32; 2790 struct itimerspec val; 2791 int error; 2792 2793 error = kern_ktimer_gettime(td, uap->timerid, &val); 2794 if (error == 0) { 2795 ITS_CP(val, val32); 2796 error = copyout(&val32, uap->value, sizeof(val32)); 2797 } 2798 return (error); 2799 } 2800 2801 int 2802 freebsd32_clock_getcpuclockid2(struct thread *td, 2803 struct freebsd32_clock_getcpuclockid2_args *uap) 2804 { 2805 clockid_t clk_id; 2806 int error; 2807 2808 error = kern_clock_getcpuclockid2(td, PAIR32TO64(id_t, uap->id), 2809 uap->which, &clk_id); 2810 if (error == 0) 2811 error = copyout(&clk_id, uap->clock_id, sizeof(clockid_t)); 2812 return (error); 2813 } 2814 2815 int 2816 freebsd32_thr_new(struct thread *td, 2817 struct freebsd32_thr_new_args *uap) 2818 { 2819 struct thr_param32 param32; 2820 struct thr_param param; 2821 int error; 2822 2823 if (uap->param_size < 0 || 2824 uap->param_size > sizeof(struct thr_param32)) 2825 return (EINVAL); 2826 bzero(¶m, sizeof(struct thr_param)); 2827 bzero(¶m32, sizeof(struct thr_param32)); 2828 error = copyin(uap->param, ¶m32, uap->param_size); 2829 if (error != 0) 2830 return (error); 2831 param.start_func = PTRIN(param32.start_func); 2832 param.arg = PTRIN(param32.arg); 2833 param.stack_base = PTRIN(param32.stack_base); 2834 param.stack_size = param32.stack_size; 2835 param.tls_base = PTRIN(param32.tls_base); 2836 param.tls_size = param32.tls_size; 2837 param.child_tid = PTRIN(param32.child_tid); 2838 param.parent_tid = PTRIN(param32.parent_tid); 2839 param.flags = param32.flags; 2840 param.rtp = PTRIN(param32.rtp); 2841 param.spare[0] = PTRIN(param32.spare[0]); 2842 param.spare[1] = PTRIN(param32.spare[1]); 2843 param.spare[2] = PTRIN(param32.spare[2]); 2844 2845 return (kern_thr_new(td, ¶m)); 2846 } 2847 2848 int 2849 freebsd32_thr_suspend(struct thread *td, struct freebsd32_thr_suspend_args *uap) 2850 { 2851 struct timespec32 ts32; 2852 struct timespec ts, *tsp; 2853 int error; 2854 2855 error = 0; 2856 tsp = NULL; 2857 if (uap->timeout != NULL) { 2858 error = copyin((const void *)uap->timeout, (void *)&ts32, 2859 sizeof(struct timespec32)); 2860 if (error != 0) 2861 return (error); 2862 ts.tv_sec = ts32.tv_sec; 2863 ts.tv_nsec = ts32.tv_nsec; 2864 tsp = &ts; 2865 } 2866 return (kern_thr_suspend(td, tsp)); 2867 } 2868 2869 void 2870 siginfo_to_siginfo32(const siginfo_t *src, struct siginfo32 *dst) 2871 { 2872 bzero(dst, sizeof(*dst)); 2873 dst->si_signo = src->si_signo; 2874 dst->si_errno = src->si_errno; 2875 dst->si_code = src->si_code; 2876 dst->si_pid = src->si_pid; 2877 dst->si_uid = src->si_uid; 2878 dst->si_status = src->si_status; 2879 dst->si_addr = (uintptr_t)src->si_addr; 2880 dst->si_value.sival_int = src->si_value.sival_int; 2881 dst->si_timerid = src->si_timerid; 2882 dst->si_overrun = src->si_overrun; 2883 } 2884 2885 #ifndef _FREEBSD32_SYSPROTO_H_ 2886 struct freebsd32_sigqueue_args { 2887 pid_t pid; 2888 int signum; 2889 /* union sigval32 */ int value; 2890 }; 2891 #endif 2892 int 2893 freebsd32_sigqueue(struct thread *td, struct freebsd32_sigqueue_args *uap) 2894 { 2895 union sigval sv; 2896 2897 /* 2898 * On 32-bit ABIs, sival_int and sival_ptr are the same. 2899 * On 64-bit little-endian ABIs, the low bits are the same. 2900 * In 64-bit big-endian ABIs, sival_int overlaps with 2901 * sival_ptr's HIGH bits. We choose to support sival_int 2902 * rather than sival_ptr in this case as it seems to be 2903 * more common. 2904 */ 2905 bzero(&sv, sizeof(sv)); 2906 sv.sival_int = uap->value; 2907 2908 return (kern_sigqueue(td, uap->pid, uap->signum, &sv)); 2909 } 2910 2911 int 2912 freebsd32_sigtimedwait(struct thread *td, struct freebsd32_sigtimedwait_args *uap) 2913 { 2914 struct timespec32 ts32; 2915 struct timespec ts; 2916 struct timespec *timeout; 2917 sigset_t set; 2918 ksiginfo_t ksi; 2919 struct siginfo32 si32; 2920 int error; 2921 2922 if (uap->timeout) { 2923 error = copyin(uap->timeout, &ts32, sizeof(ts32)); 2924 if (error) 2925 return (error); 2926 ts.tv_sec = ts32.tv_sec; 2927 ts.tv_nsec = ts32.tv_nsec; 2928 timeout = &ts; 2929 } else 2930 timeout = NULL; 2931 2932 error = copyin(uap->set, &set, sizeof(set)); 2933 if (error) 2934 return (error); 2935 2936 error = kern_sigtimedwait(td, set, &ksi, timeout); 2937 if (error) 2938 return (error); 2939 2940 if (uap->info) { 2941 siginfo_to_siginfo32(&ksi.ksi_info, &si32); 2942 error = copyout(&si32, uap->info, sizeof(struct siginfo32)); 2943 } 2944 2945 if (error == 0) 2946 td->td_retval[0] = ksi.ksi_signo; 2947 return (error); 2948 } 2949 2950 /* 2951 * MPSAFE 2952 */ 2953 int 2954 freebsd32_sigwaitinfo(struct thread *td, struct freebsd32_sigwaitinfo_args *uap) 2955 { 2956 ksiginfo_t ksi; 2957 struct siginfo32 si32; 2958 sigset_t set; 2959 int error; 2960 2961 error = copyin(uap->set, &set, sizeof(set)); 2962 if (error) 2963 return (error); 2964 2965 error = kern_sigtimedwait(td, set, &ksi, NULL); 2966 if (error) 2967 return (error); 2968 2969 if (uap->info) { 2970 siginfo_to_siginfo32(&ksi.ksi_info, &si32); 2971 error = copyout(&si32, uap->info, sizeof(struct siginfo32)); 2972 } 2973 if (error == 0) 2974 td->td_retval[0] = ksi.ksi_signo; 2975 return (error); 2976 } 2977 2978 int 2979 freebsd32_cpuset_setid(struct thread *td, 2980 struct freebsd32_cpuset_setid_args *uap) 2981 { 2982 2983 return (kern_cpuset_setid(td, uap->which, 2984 PAIR32TO64(id_t, uap->id), uap->setid)); 2985 } 2986 2987 int 2988 freebsd32_cpuset_getid(struct thread *td, 2989 struct freebsd32_cpuset_getid_args *uap) 2990 { 2991 2992 return (kern_cpuset_getid(td, uap->level, uap->which, 2993 PAIR32TO64(id_t, uap->id), uap->setid)); 2994 } 2995 2996 int 2997 freebsd32_cpuset_getaffinity(struct thread *td, 2998 struct freebsd32_cpuset_getaffinity_args *uap) 2999 { 3000 3001 return (kern_cpuset_getaffinity(td, uap->level, uap->which, 3002 PAIR32TO64(id_t,uap->id), uap->cpusetsize, uap->mask)); 3003 } 3004 3005 int 3006 freebsd32_cpuset_setaffinity(struct thread *td, 3007 struct freebsd32_cpuset_setaffinity_args *uap) 3008 { 3009 3010 return (kern_cpuset_setaffinity(td, uap->level, uap->which, 3011 PAIR32TO64(id_t,uap->id), uap->cpusetsize, uap->mask)); 3012 } 3013 3014 int 3015 freebsd32_cpuset_getdomain(struct thread *td, 3016 struct freebsd32_cpuset_getdomain_args *uap) 3017 { 3018 3019 return (kern_cpuset_getdomain(td, uap->level, uap->which, 3020 PAIR32TO64(id_t,uap->id), uap->domainsetsize, uap->mask, uap->policy)); 3021 } 3022 3023 int 3024 freebsd32_cpuset_setdomain(struct thread *td, 3025 struct freebsd32_cpuset_setdomain_args *uap) 3026 { 3027 3028 return (kern_cpuset_setdomain(td, uap->level, uap->which, 3029 PAIR32TO64(id_t,uap->id), uap->domainsetsize, uap->mask, uap->policy)); 3030 } 3031 3032 int 3033 freebsd32_nmount(struct thread *td, 3034 struct freebsd32_nmount_args /* { 3035 struct iovec *iovp; 3036 unsigned int iovcnt; 3037 int flags; 3038 } */ *uap) 3039 { 3040 struct uio *auio; 3041 uint64_t flags; 3042 int error; 3043 3044 /* 3045 * Mount flags are now 64-bits. On 32-bit archtectures only 3046 * 32-bits are passed in, but from here on everything handles 3047 * 64-bit flags correctly. 3048 */ 3049 flags = uap->flags; 3050 3051 AUDIT_ARG_FFLAGS(flags); 3052 3053 /* 3054 * Filter out MNT_ROOTFS. We do not want clients of nmount() in 3055 * userspace to set this flag, but we must filter it out if we want 3056 * MNT_UPDATE on the root file system to work. 3057 * MNT_ROOTFS should only be set by the kernel when mounting its 3058 * root file system. 3059 */ 3060 flags &= ~MNT_ROOTFS; 3061 3062 /* 3063 * check that we have an even number of iovec's 3064 * and that we have at least two options. 3065 */ 3066 if ((uap->iovcnt & 1) || (uap->iovcnt < 4)) 3067 return (EINVAL); 3068 3069 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 3070 if (error) 3071 return (error); 3072 error = vfs_donmount(td, flags, auio); 3073 3074 free(auio, M_IOV); 3075 return error; 3076 } 3077 3078 #if 0 3079 int 3080 freebsd32_xxx(struct thread *td, struct freebsd32_xxx_args *uap) 3081 { 3082 struct yyy32 *p32, s32; 3083 struct yyy *p = NULL, s; 3084 struct xxx_arg ap; 3085 int error; 3086 3087 if (uap->zzz) { 3088 error = copyin(uap->zzz, &s32, sizeof(s32)); 3089 if (error) 3090 return (error); 3091 /* translate in */ 3092 p = &s; 3093 } 3094 error = kern_xxx(td, p); 3095 if (error) 3096 return (error); 3097 if (uap->zzz) { 3098 /* translate out */ 3099 error = copyout(&s32, p32, sizeof(s32)); 3100 } 3101 return (error); 3102 } 3103 #endif 3104 3105 int 3106 syscall32_module_handler(struct module *mod, int what, void *arg) 3107 { 3108 3109 return (kern_syscall_module_handler(freebsd32_sysent, mod, what, arg)); 3110 } 3111 3112 int 3113 syscall32_helper_register(struct syscall_helper_data *sd, int flags) 3114 { 3115 3116 return (kern_syscall_helper_register(freebsd32_sysent, sd, flags)); 3117 } 3118 3119 int 3120 syscall32_helper_unregister(struct syscall_helper_data *sd) 3121 { 3122 3123 return (kern_syscall_helper_unregister(freebsd32_sysent, sd)); 3124 } 3125 3126 register_t * 3127 freebsd32_copyout_strings(struct image_params *imgp) 3128 { 3129 int argc, envc, i; 3130 u_int32_t *vectp; 3131 char *stringp; 3132 uintptr_t destp; 3133 u_int32_t *stack_base; 3134 struct freebsd32_ps_strings *arginfo; 3135 char canary[sizeof(long) * 8]; 3136 int32_t pagesizes32[MAXPAGESIZES]; 3137 size_t execpath_len; 3138 int szsigcode; 3139 3140 /* 3141 * Calculate string base and vector table pointers. 3142 * Also deal with signal trampoline code for this exec type. 3143 */ 3144 if (imgp->execpath != NULL && imgp->auxargs != NULL) 3145 execpath_len = strlen(imgp->execpath) + 1; 3146 else 3147 execpath_len = 0; 3148 arginfo = (struct freebsd32_ps_strings *)curproc->p_sysent-> 3149 sv_psstrings; 3150 if (imgp->proc->p_sysent->sv_sigcode_base == 0) 3151 szsigcode = *(imgp->proc->p_sysent->sv_szsigcode); 3152 else 3153 szsigcode = 0; 3154 destp = (uintptr_t)arginfo; 3155 3156 /* 3157 * install sigcode 3158 */ 3159 if (szsigcode != 0) { 3160 destp -= szsigcode; 3161 destp = rounddown2(destp, sizeof(uint32_t)); 3162 copyout(imgp->proc->p_sysent->sv_sigcode, (void *)destp, 3163 szsigcode); 3164 } 3165 3166 /* 3167 * Copy the image path for the rtld. 3168 */ 3169 if (execpath_len != 0) { 3170 destp -= execpath_len; 3171 imgp->execpathp = destp; 3172 copyout(imgp->execpath, (void *)destp, execpath_len); 3173 } 3174 3175 /* 3176 * Prepare the canary for SSP. 3177 */ 3178 arc4rand(canary, sizeof(canary), 0); 3179 destp -= sizeof(canary); 3180 imgp->canary = destp; 3181 copyout(canary, (void *)destp, sizeof(canary)); 3182 imgp->canarylen = sizeof(canary); 3183 3184 /* 3185 * Prepare the pagesizes array. 3186 */ 3187 for (i = 0; i < MAXPAGESIZES; i++) 3188 pagesizes32[i] = (uint32_t)pagesizes[i]; 3189 destp -= sizeof(pagesizes32); 3190 destp = rounddown2(destp, sizeof(uint32_t)); 3191 imgp->pagesizes = destp; 3192 copyout(pagesizes32, (void *)destp, sizeof(pagesizes32)); 3193 imgp->pagesizeslen = sizeof(pagesizes32); 3194 3195 destp -= ARG_MAX - imgp->args->stringspace; 3196 destp = rounddown2(destp, sizeof(uint32_t)); 3197 3198 vectp = (uint32_t *)destp; 3199 if (imgp->auxargs) { 3200 /* 3201 * Allocate room on the stack for the ELF auxargs 3202 * array. It has up to AT_COUNT entries. 3203 */ 3204 vectp -= howmany(AT_COUNT * sizeof(Elf32_Auxinfo), 3205 sizeof(*vectp)); 3206 } 3207 3208 /* 3209 * Allocate room for the argv[] and env vectors including the 3210 * terminating NULL pointers. 3211 */ 3212 vectp -= imgp->args->argc + 1 + imgp->args->envc + 1; 3213 3214 /* 3215 * vectp also becomes our initial stack base 3216 */ 3217 stack_base = vectp; 3218 3219 stringp = imgp->args->begin_argv; 3220 argc = imgp->args->argc; 3221 envc = imgp->args->envc; 3222 /* 3223 * Copy out strings - arguments and environment. 3224 */ 3225 copyout(stringp, (void *)destp, ARG_MAX - imgp->args->stringspace); 3226 3227 /* 3228 * Fill in "ps_strings" struct for ps, w, etc. 3229 */ 3230 suword32(&arginfo->ps_argvstr, (u_int32_t)(intptr_t)vectp); 3231 suword32(&arginfo->ps_nargvstr, argc); 3232 3233 /* 3234 * Fill in argument portion of vector table. 3235 */ 3236 for (; argc > 0; --argc) { 3237 suword32(vectp++, (u_int32_t)(intptr_t)destp); 3238 while (*stringp++ != 0) 3239 destp++; 3240 destp++; 3241 } 3242 3243 /* a null vector table pointer separates the argp's from the envp's */ 3244 suword32(vectp++, 0); 3245 3246 suword32(&arginfo->ps_envstr, (u_int32_t)(intptr_t)vectp); 3247 suword32(&arginfo->ps_nenvstr, envc); 3248 3249 /* 3250 * Fill in environment portion of vector table. 3251 */ 3252 for (; envc > 0; --envc) { 3253 suword32(vectp++, (u_int32_t)(intptr_t)destp); 3254 while (*stringp++ != 0) 3255 destp++; 3256 destp++; 3257 } 3258 3259 /* end of vector table is a null pointer */ 3260 suword32(vectp, 0); 3261 3262 return ((register_t *)stack_base); 3263 } 3264 3265 int 3266 freebsd32_kldstat(struct thread *td, struct freebsd32_kldstat_args *uap) 3267 { 3268 struct kld_file_stat *stat; 3269 struct kld32_file_stat *stat32; 3270 int error, version; 3271 3272 if ((error = copyin(&uap->stat->version, &version, sizeof(version))) 3273 != 0) 3274 return (error); 3275 if (version != sizeof(struct kld32_file_stat_1) && 3276 version != sizeof(struct kld32_file_stat)) 3277 return (EINVAL); 3278 3279 stat = malloc(sizeof(*stat), M_TEMP, M_WAITOK | M_ZERO); 3280 stat32 = malloc(sizeof(*stat32), M_TEMP, M_WAITOK | M_ZERO); 3281 error = kern_kldstat(td, uap->fileid, stat); 3282 if (error == 0) { 3283 bcopy(&stat->name[0], &stat32->name[0], sizeof(stat->name)); 3284 CP(*stat, *stat32, refs); 3285 CP(*stat, *stat32, id); 3286 PTROUT_CP(*stat, *stat32, address); 3287 CP(*stat, *stat32, size); 3288 bcopy(&stat->pathname[0], &stat32->pathname[0], 3289 sizeof(stat->pathname)); 3290 stat32->version = version; 3291 error = copyout(stat32, uap->stat, version); 3292 } 3293 free(stat, M_TEMP); 3294 free(stat32, M_TEMP); 3295 return (error); 3296 } 3297 3298 int 3299 freebsd32_posix_fallocate(struct thread *td, 3300 struct freebsd32_posix_fallocate_args *uap) 3301 { 3302 int error; 3303 3304 error = kern_posix_fallocate(td, uap->fd, 3305 PAIR32TO64(off_t, uap->offset), PAIR32TO64(off_t, uap->len)); 3306 return (kern_posix_error(td, error)); 3307 } 3308 3309 int 3310 freebsd32_posix_fadvise(struct thread *td, 3311 struct freebsd32_posix_fadvise_args *uap) 3312 { 3313 int error; 3314 3315 error = kern_posix_fadvise(td, uap->fd, PAIR32TO64(off_t, uap->offset), 3316 PAIR32TO64(off_t, uap->len), uap->advice); 3317 return (kern_posix_error(td, error)); 3318 } 3319 3320 int 3321 convert_sigevent32(struct sigevent32 *sig32, struct sigevent *sig) 3322 { 3323 3324 CP(*sig32, *sig, sigev_notify); 3325 switch (sig->sigev_notify) { 3326 case SIGEV_NONE: 3327 break; 3328 case SIGEV_THREAD_ID: 3329 CP(*sig32, *sig, sigev_notify_thread_id); 3330 /* FALLTHROUGH */ 3331 case SIGEV_SIGNAL: 3332 CP(*sig32, *sig, sigev_signo); 3333 PTRIN_CP(*sig32, *sig, sigev_value.sival_ptr); 3334 break; 3335 case SIGEV_KEVENT: 3336 CP(*sig32, *sig, sigev_notify_kqueue); 3337 CP(*sig32, *sig, sigev_notify_kevent_flags); 3338 PTRIN_CP(*sig32, *sig, sigev_value.sival_ptr); 3339 break; 3340 default: 3341 return (EINVAL); 3342 } 3343 return (0); 3344 } 3345 3346 int 3347 freebsd32_procctl(struct thread *td, struct freebsd32_procctl_args *uap) 3348 { 3349 void *data; 3350 union { 3351 struct procctl_reaper_status rs; 3352 struct procctl_reaper_pids rp; 3353 struct procctl_reaper_kill rk; 3354 } x; 3355 union { 3356 struct procctl_reaper_pids32 rp; 3357 } x32; 3358 int error, error1, flags, signum; 3359 3360 switch (uap->com) { 3361 case PROC_SPROTECT: 3362 case PROC_TRACE_CTL: 3363 case PROC_TRAPCAP_CTL: 3364 error = copyin(PTRIN(uap->data), &flags, sizeof(flags)); 3365 if (error != 0) 3366 return (error); 3367 data = &flags; 3368 break; 3369 case PROC_REAP_ACQUIRE: 3370 case PROC_REAP_RELEASE: 3371 if (uap->data != NULL) 3372 return (EINVAL); 3373 data = NULL; 3374 break; 3375 case PROC_REAP_STATUS: 3376 data = &x.rs; 3377 break; 3378 case PROC_REAP_GETPIDS: 3379 error = copyin(uap->data, &x32.rp, sizeof(x32.rp)); 3380 if (error != 0) 3381 return (error); 3382 CP(x32.rp, x.rp, rp_count); 3383 PTRIN_CP(x32.rp, x.rp, rp_pids); 3384 data = &x.rp; 3385 break; 3386 case PROC_REAP_KILL: 3387 error = copyin(uap->data, &x.rk, sizeof(x.rk)); 3388 if (error != 0) 3389 return (error); 3390 data = &x.rk; 3391 break; 3392 case PROC_TRACE_STATUS: 3393 case PROC_TRAPCAP_STATUS: 3394 data = &flags; 3395 break; 3396 case PROC_PDEATHSIG_CTL: 3397 error = copyin(uap->data, &signum, sizeof(signum)); 3398 if (error != 0) 3399 return (error); 3400 data = &signum; 3401 break; 3402 case PROC_PDEATHSIG_STATUS: 3403 data = &signum; 3404 break; 3405 default: 3406 return (EINVAL); 3407 } 3408 error = kern_procctl(td, uap->idtype, PAIR32TO64(id_t, uap->id), 3409 uap->com, data); 3410 switch (uap->com) { 3411 case PROC_REAP_STATUS: 3412 if (error == 0) 3413 error = copyout(&x.rs, uap->data, sizeof(x.rs)); 3414 break; 3415 case PROC_REAP_KILL: 3416 error1 = copyout(&x.rk, uap->data, sizeof(x.rk)); 3417 if (error == 0) 3418 error = error1; 3419 break; 3420 case PROC_TRACE_STATUS: 3421 case PROC_TRAPCAP_STATUS: 3422 if (error == 0) 3423 error = copyout(&flags, uap->data, sizeof(flags)); 3424 break; 3425 case PROC_PDEATHSIG_STATUS: 3426 if (error == 0) 3427 error = copyout(&signum, uap->data, sizeof(signum)); 3428 break; 3429 } 3430 return (error); 3431 } 3432 3433 int 3434 freebsd32_fcntl(struct thread *td, struct freebsd32_fcntl_args *uap) 3435 { 3436 long tmp; 3437 3438 switch (uap->cmd) { 3439 /* 3440 * Do unsigned conversion for arg when operation 3441 * interprets it as flags or pointer. 3442 */ 3443 case F_SETLK_REMOTE: 3444 case F_SETLKW: 3445 case F_SETLK: 3446 case F_GETLK: 3447 case F_SETFD: 3448 case F_SETFL: 3449 case F_OGETLK: 3450 case F_OSETLK: 3451 case F_OSETLKW: 3452 tmp = (unsigned int)(uap->arg); 3453 break; 3454 default: 3455 tmp = uap->arg; 3456 break; 3457 } 3458 return (kern_fcntl_freebsd(td, uap->fd, uap->cmd, tmp)); 3459 } 3460 3461 int 3462 freebsd32_ppoll(struct thread *td, struct freebsd32_ppoll_args *uap) 3463 { 3464 struct timespec32 ts32; 3465 struct timespec ts, *tsp; 3466 sigset_t set, *ssp; 3467 int error; 3468 3469 if (uap->ts != NULL) { 3470 error = copyin(uap->ts, &ts32, sizeof(ts32)); 3471 if (error != 0) 3472 return (error); 3473 CP(ts32, ts, tv_sec); 3474 CP(ts32, ts, tv_nsec); 3475 tsp = &ts; 3476 } else 3477 tsp = NULL; 3478 if (uap->set != NULL) { 3479 error = copyin(uap->set, &set, sizeof(set)); 3480 if (error != 0) 3481 return (error); 3482 ssp = &set; 3483 } else 3484 ssp = NULL; 3485 3486 return (kern_poll(td, uap->fds, uap->nfds, tsp, ssp)); 3487 } 3488 3489 int 3490 freebsd32_sched_rr_get_interval(struct thread *td, 3491 struct freebsd32_sched_rr_get_interval_args *uap) 3492 { 3493 struct timespec ts; 3494 struct timespec32 ts32; 3495 int error; 3496 3497 error = kern_sched_rr_get_interval(td, uap->pid, &ts); 3498 if (error == 0) { 3499 CP(ts, ts32, tv_sec); 3500 CP(ts, ts32, tv_nsec); 3501 error = copyout(&ts32, uap->interval, sizeof(ts32)); 3502 } 3503 return (error); 3504 } 3505