xref: /freebsd/sys/compat/freebsd32/freebsd32_misc.c (revision 82397d791966b09d344251bc709cd9db2b3a1902)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2002 Doug Rabson
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include "opt_inet.h"
33 #include "opt_inet6.h"
34 #include "opt_ktrace.h"
35 
36 #define __ELF_WORD_SIZE 32
37 
38 #ifdef COMPAT_FREEBSD11
39 #define	_WANT_FREEBSD11_KEVENT
40 #endif
41 
42 #include <sys/param.h>
43 #include <sys/bus.h>
44 #include <sys/capsicum.h>
45 #include <sys/clock.h>
46 #include <sys/exec.h>
47 #include <sys/fcntl.h>
48 #include <sys/filedesc.h>
49 #include <sys/imgact.h>
50 #include <sys/jail.h>
51 #include <sys/kernel.h>
52 #include <sys/limits.h>
53 #include <sys/linker.h>
54 #include <sys/lock.h>
55 #include <sys/malloc.h>
56 #include <sys/file.h>		/* Must come after sys/malloc.h */
57 #include <sys/imgact.h>
58 #include <sys/mbuf.h>
59 #include <sys/mman.h>
60 #include <sys/module.h>
61 #include <sys/mount.h>
62 #include <sys/mutex.h>
63 #include <sys/namei.h>
64 #include <sys/proc.h>
65 #include <sys/procctl.h>
66 #include <sys/ptrace.h>
67 #include <sys/reboot.h>
68 #include <sys/resource.h>
69 #include <sys/resourcevar.h>
70 #include <sys/selinfo.h>
71 #include <sys/eventvar.h>	/* Must come after sys/selinfo.h */
72 #include <sys/pipe.h>		/* Must come after sys/selinfo.h */
73 #include <sys/signal.h>
74 #include <sys/signalvar.h>
75 #include <sys/socket.h>
76 #include <sys/socketvar.h>
77 #include <sys/stat.h>
78 #include <sys/syscall.h>
79 #include <sys/syscallsubr.h>
80 #include <sys/sysctl.h>
81 #include <sys/sysent.h>
82 #include <sys/sysproto.h>
83 #include <sys/systm.h>
84 #include <sys/thr.h>
85 #include <sys/timex.h>
86 #include <sys/unistd.h>
87 #include <sys/ucontext.h>
88 #include <sys/umtx.h>
89 #include <sys/vnode.h>
90 #include <sys/wait.h>
91 #include <sys/ipc.h>
92 #include <sys/msg.h>
93 #include <sys/sem.h>
94 #include <sys/shm.h>
95 #ifdef KTRACE
96 #include <sys/ktrace.h>
97 #endif
98 
99 #ifdef INET
100 #include <netinet/in.h>
101 #endif
102 
103 #include <vm/vm.h>
104 #include <vm/vm_param.h>
105 #include <vm/pmap.h>
106 #include <vm/vm_map.h>
107 #include <vm/vm_object.h>
108 #include <vm/vm_extern.h>
109 
110 #include <machine/cpu.h>
111 #include <machine/elf.h>
112 #ifdef __amd64__
113 #include <machine/md_var.h>
114 #endif
115 
116 #include <security/audit/audit.h>
117 
118 #include <compat/freebsd32/freebsd32_util.h>
119 #include <compat/freebsd32/freebsd32.h>
120 #include <compat/freebsd32/freebsd32_ipc.h>
121 #include <compat/freebsd32/freebsd32_misc.h>
122 #include <compat/freebsd32/freebsd32_signal.h>
123 #include <compat/freebsd32/freebsd32_proto.h>
124 
125 FEATURE(compat_freebsd_32bit, "Compatible with 32-bit FreeBSD");
126 
127 struct ptrace_io_desc32 {
128 	int		piod_op;
129 	uint32_t	piod_offs;
130 	uint32_t	piod_addr;
131 	uint32_t	piod_len;
132 };
133 
134 struct ptrace_sc_ret32 {
135 	uint32_t	sr_retval[2];
136 	int		sr_error;
137 };
138 
139 struct ptrace_vm_entry32 {
140 	int		pve_entry;
141 	int		pve_timestamp;
142 	uint32_t	pve_start;
143 	uint32_t	pve_end;
144 	uint32_t	pve_offset;
145 	u_int		pve_prot;
146 	u_int		pve_pathlen;
147 	int32_t		pve_fileid;
148 	u_int		pve_fsid;
149 	uint32_t	pve_path;
150 };
151 
152 #ifdef __amd64__
153 CTASSERT(sizeof(struct timeval32) == 8);
154 CTASSERT(sizeof(struct timespec32) == 8);
155 CTASSERT(sizeof(struct itimerval32) == 16);
156 CTASSERT(sizeof(struct bintime32) == 12);
157 #endif
158 CTASSERT(sizeof(struct statfs32) == 256);
159 #ifdef __amd64__
160 CTASSERT(sizeof(struct rusage32) == 72);
161 #endif
162 CTASSERT(sizeof(struct sigaltstack32) == 12);
163 #ifdef __amd64__
164 CTASSERT(sizeof(struct kevent32) == 56);
165 #else
166 CTASSERT(sizeof(struct kevent32) == 64);
167 #endif
168 CTASSERT(sizeof(struct iovec32) == 8);
169 CTASSERT(sizeof(struct msghdr32) == 28);
170 #ifdef __amd64__
171 CTASSERT(sizeof(struct stat32) == 208);
172 CTASSERT(sizeof(struct freebsd11_stat32) == 96);
173 #endif
174 CTASSERT(sizeof(struct sigaction32) == 24);
175 
176 static int freebsd32_kevent_copyout(void *arg, struct kevent *kevp, int count);
177 static int freebsd32_kevent_copyin(void *arg, struct kevent *kevp, int count);
178 static int freebsd32_user_clock_nanosleep(struct thread *td, clockid_t clock_id,
179     int flags, const struct timespec32 *ua_rqtp, struct timespec32 *ua_rmtp);
180 
181 void
182 freebsd32_rusage_out(const struct rusage *s, struct rusage32 *s32)
183 {
184 
185 	TV_CP(*s, *s32, ru_utime);
186 	TV_CP(*s, *s32, ru_stime);
187 	CP(*s, *s32, ru_maxrss);
188 	CP(*s, *s32, ru_ixrss);
189 	CP(*s, *s32, ru_idrss);
190 	CP(*s, *s32, ru_isrss);
191 	CP(*s, *s32, ru_minflt);
192 	CP(*s, *s32, ru_majflt);
193 	CP(*s, *s32, ru_nswap);
194 	CP(*s, *s32, ru_inblock);
195 	CP(*s, *s32, ru_oublock);
196 	CP(*s, *s32, ru_msgsnd);
197 	CP(*s, *s32, ru_msgrcv);
198 	CP(*s, *s32, ru_nsignals);
199 	CP(*s, *s32, ru_nvcsw);
200 	CP(*s, *s32, ru_nivcsw);
201 }
202 
203 int
204 freebsd32_wait4(struct thread *td, struct freebsd32_wait4_args *uap)
205 {
206 	int error, status;
207 	struct rusage32 ru32;
208 	struct rusage ru, *rup;
209 
210 	if (uap->rusage != NULL)
211 		rup = &ru;
212 	else
213 		rup = NULL;
214 	error = kern_wait(td, uap->pid, &status, uap->options, rup);
215 	if (error)
216 		return (error);
217 	if (uap->status != NULL)
218 		error = copyout(&status, uap->status, sizeof(status));
219 	if (uap->rusage != NULL && error == 0) {
220 		freebsd32_rusage_out(&ru, &ru32);
221 		error = copyout(&ru32, uap->rusage, sizeof(ru32));
222 	}
223 	return (error);
224 }
225 
226 int
227 freebsd32_wait6(struct thread *td, struct freebsd32_wait6_args *uap)
228 {
229 	struct wrusage32 wru32;
230 	struct __wrusage wru, *wrup;
231 	struct siginfo32 si32;
232 	struct __siginfo si, *sip;
233 	int error, status;
234 
235 	if (uap->wrusage != NULL)
236 		wrup = &wru;
237 	else
238 		wrup = NULL;
239 	if (uap->info != NULL) {
240 		sip = &si;
241 		bzero(sip, sizeof(*sip));
242 	} else
243 		sip = NULL;
244 	error = kern_wait6(td, uap->idtype, PAIR32TO64(id_t, uap->id),
245 	    &status, uap->options, wrup, sip);
246 	if (error != 0)
247 		return (error);
248 	if (uap->status != NULL)
249 		error = copyout(&status, uap->status, sizeof(status));
250 	if (uap->wrusage != NULL && error == 0) {
251 		freebsd32_rusage_out(&wru.wru_self, &wru32.wru_self);
252 		freebsd32_rusage_out(&wru.wru_children, &wru32.wru_children);
253 		error = copyout(&wru32, uap->wrusage, sizeof(wru32));
254 	}
255 	if (uap->info != NULL && error == 0) {
256 		siginfo_to_siginfo32 (&si, &si32);
257 		error = copyout(&si32, uap->info, sizeof(si32));
258 	}
259 	return (error);
260 }
261 
262 #ifdef COMPAT_FREEBSD4
263 static void
264 copy_statfs(struct statfs *in, struct statfs32 *out)
265 {
266 
267 	statfs_scale_blocks(in, INT32_MAX);
268 	bzero(out, sizeof(*out));
269 	CP(*in, *out, f_bsize);
270 	out->f_iosize = MIN(in->f_iosize, INT32_MAX);
271 	CP(*in, *out, f_blocks);
272 	CP(*in, *out, f_bfree);
273 	CP(*in, *out, f_bavail);
274 	out->f_files = MIN(in->f_files, INT32_MAX);
275 	out->f_ffree = MIN(in->f_ffree, INT32_MAX);
276 	CP(*in, *out, f_fsid);
277 	CP(*in, *out, f_owner);
278 	CP(*in, *out, f_type);
279 	CP(*in, *out, f_flags);
280 	out->f_syncwrites = MIN(in->f_syncwrites, INT32_MAX);
281 	out->f_asyncwrites = MIN(in->f_asyncwrites, INT32_MAX);
282 	strlcpy(out->f_fstypename,
283 	      in->f_fstypename, MFSNAMELEN);
284 	strlcpy(out->f_mntonname,
285 	      in->f_mntonname, min(MNAMELEN, FREEBSD4_MNAMELEN));
286 	out->f_syncreads = MIN(in->f_syncreads, INT32_MAX);
287 	out->f_asyncreads = MIN(in->f_asyncreads, INT32_MAX);
288 	strlcpy(out->f_mntfromname,
289 	      in->f_mntfromname, min(MNAMELEN, FREEBSD4_MNAMELEN));
290 }
291 #endif
292 
293 #ifdef COMPAT_FREEBSD4
294 int
295 freebsd4_freebsd32_getfsstat(struct thread *td,
296     struct freebsd4_freebsd32_getfsstat_args *uap)
297 {
298 	struct statfs *buf, *sp;
299 	struct statfs32 stat32;
300 	size_t count, size, copycount;
301 	int error;
302 
303 	count = uap->bufsize / sizeof(struct statfs32);
304 	size = count * sizeof(struct statfs);
305 	error = kern_getfsstat(td, &buf, size, &count, UIO_SYSSPACE, uap->mode);
306 	if (size > 0) {
307 		sp = buf;
308 		copycount = count;
309 		while (copycount > 0 && error == 0) {
310 			copy_statfs(sp, &stat32);
311 			error = copyout(&stat32, uap->buf, sizeof(stat32));
312 			sp++;
313 			uap->buf++;
314 			copycount--;
315 		}
316 		free(buf, M_STATFS);
317 	}
318 	if (error == 0)
319 		td->td_retval[0] = count;
320 	return (error);
321 }
322 #endif
323 
324 #ifdef COMPAT_FREEBSD10
325 int
326 freebsd10_freebsd32_pipe(struct thread *td,
327     struct freebsd10_freebsd32_pipe_args *uap) {
328 	return (freebsd10_pipe(td, (struct freebsd10_pipe_args*)uap));
329 }
330 #endif
331 
332 int
333 freebsd32_sigaltstack(struct thread *td,
334 		      struct freebsd32_sigaltstack_args *uap)
335 {
336 	struct sigaltstack32 s32;
337 	struct sigaltstack ss, oss, *ssp;
338 	int error;
339 
340 	if (uap->ss != NULL) {
341 		error = copyin(uap->ss, &s32, sizeof(s32));
342 		if (error)
343 			return (error);
344 		PTRIN_CP(s32, ss, ss_sp);
345 		CP(s32, ss, ss_size);
346 		CP(s32, ss, ss_flags);
347 		ssp = &ss;
348 	} else
349 		ssp = NULL;
350 	error = kern_sigaltstack(td, ssp, &oss);
351 	if (error == 0 && uap->oss != NULL) {
352 		PTROUT_CP(oss, s32, ss_sp);
353 		CP(oss, s32, ss_size);
354 		CP(oss, s32, ss_flags);
355 		error = copyout(&s32, uap->oss, sizeof(s32));
356 	}
357 	return (error);
358 }
359 
360 /*
361  * Custom version of exec_copyin_args() so that we can translate
362  * the pointers.
363  */
364 int
365 freebsd32_exec_copyin_args(struct image_args *args, const char *fname,
366     enum uio_seg segflg, u_int32_t *argv, u_int32_t *envv)
367 {
368 	char *argp, *envp;
369 	u_int32_t *p32, arg;
370 	int error;
371 
372 	bzero(args, sizeof(*args));
373 	if (argv == NULL)
374 		return (EFAULT);
375 
376 	/*
377 	 * Allocate demand-paged memory for the file name, argument, and
378 	 * environment strings.
379 	 */
380 	error = exec_alloc_args(args);
381 	if (error != 0)
382 		return (error);
383 
384 	/*
385 	 * Copy the file name.
386 	 */
387 	error = exec_args_add_fname(args, fname, segflg);
388 	if (error != 0)
389 		goto err_exit;
390 
391 	/*
392 	 * extract arguments first
393 	 */
394 	p32 = argv;
395 	for (;;) {
396 		error = copyin(p32++, &arg, sizeof(arg));
397 		if (error)
398 			goto err_exit;
399 		if (arg == 0)
400 			break;
401 		argp = PTRIN(arg);
402 		error = exec_args_add_arg(args, argp, UIO_USERSPACE);
403 		if (error != 0)
404 			goto err_exit;
405 	}
406 
407 	/*
408 	 * extract environment strings
409 	 */
410 	if (envv) {
411 		p32 = envv;
412 		for (;;) {
413 			error = copyin(p32++, &arg, sizeof(arg));
414 			if (error)
415 				goto err_exit;
416 			if (arg == 0)
417 				break;
418 			envp = PTRIN(arg);
419 			error = exec_args_add_env(args, envp, UIO_USERSPACE);
420 			if (error != 0)
421 				goto err_exit;
422 		}
423 	}
424 
425 	return (0);
426 
427 err_exit:
428 	exec_free_args(args);
429 	return (error);
430 }
431 
432 int
433 freebsd32_execve(struct thread *td, struct freebsd32_execve_args *uap)
434 {
435 	struct image_args eargs;
436 	struct vmspace *oldvmspace;
437 	int error;
438 
439 	error = pre_execve(td, &oldvmspace);
440 	if (error != 0)
441 		return (error);
442 	error = freebsd32_exec_copyin_args(&eargs, uap->fname, UIO_USERSPACE,
443 	    uap->argv, uap->envv);
444 	if (error == 0)
445 		error = kern_execve(td, &eargs, NULL, oldvmspace);
446 	post_execve(td, error, oldvmspace);
447 	AUDIT_SYSCALL_EXIT(error == EJUSTRETURN ? 0 : error, td);
448 	return (error);
449 }
450 
451 int
452 freebsd32_fexecve(struct thread *td, struct freebsd32_fexecve_args *uap)
453 {
454 	struct image_args eargs;
455 	struct vmspace *oldvmspace;
456 	int error;
457 
458 	error = pre_execve(td, &oldvmspace);
459 	if (error != 0)
460 		return (error);
461 	error = freebsd32_exec_copyin_args(&eargs, NULL, UIO_SYSSPACE,
462 	    uap->argv, uap->envv);
463 	if (error == 0) {
464 		eargs.fd = uap->fd;
465 		error = kern_execve(td, &eargs, NULL, oldvmspace);
466 	}
467 	post_execve(td, error, oldvmspace);
468 	AUDIT_SYSCALL_EXIT(error == EJUSTRETURN ? 0 : error, td);
469 	return (error);
470 }
471 
472 int
473 freebsd32_mknodat(struct thread *td, struct freebsd32_mknodat_args *uap)
474 {
475 
476 	return (kern_mknodat(td, uap->fd, uap->path, UIO_USERSPACE,
477 	    uap->mode, PAIR32TO64(dev_t, uap->dev)));
478 }
479 
480 int
481 freebsd32_mprotect(struct thread *td, struct freebsd32_mprotect_args *uap)
482 {
483 	int prot;
484 
485 	prot = uap->prot;
486 #if defined(__amd64__)
487 	if (i386_read_exec && (prot & PROT_READ) != 0)
488 		prot |= PROT_EXEC;
489 #endif
490 	return (kern_mprotect(td, (uintptr_t)PTRIN(uap->addr), uap->len,
491 	    prot));
492 }
493 
494 int
495 freebsd32_mmap(struct thread *td, struct freebsd32_mmap_args *uap)
496 {
497 	int prot;
498 
499 	prot = uap->prot;
500 #if defined(__amd64__)
501 	if (i386_read_exec && (prot & PROT_READ))
502 		prot |= PROT_EXEC;
503 #endif
504 
505 	return (kern_mmap(td, (uintptr_t)uap->addr, uap->len, prot,
506 	    uap->flags, uap->fd, PAIR32TO64(off_t, uap->pos)));
507 }
508 
509 #ifdef COMPAT_FREEBSD6
510 int
511 freebsd6_freebsd32_mmap(struct thread *td,
512     struct freebsd6_freebsd32_mmap_args *uap)
513 {
514 	int prot;
515 
516 	prot = uap->prot;
517 #if defined(__amd64__)
518 	if (i386_read_exec && (prot & PROT_READ))
519 		prot |= PROT_EXEC;
520 #endif
521 
522 	return (kern_mmap(td, (uintptr_t)uap->addr, uap->len, prot,
523 	    uap->flags, uap->fd, PAIR32TO64(off_t, uap->pos)));
524 }
525 #endif
526 
527 int
528 freebsd32_setitimer(struct thread *td, struct freebsd32_setitimer_args *uap)
529 {
530 	struct itimerval itv, oitv, *itvp;
531 	struct itimerval32 i32;
532 	int error;
533 
534 	if (uap->itv != NULL) {
535 		error = copyin(uap->itv, &i32, sizeof(i32));
536 		if (error)
537 			return (error);
538 		TV_CP(i32, itv, it_interval);
539 		TV_CP(i32, itv, it_value);
540 		itvp = &itv;
541 	} else
542 		itvp = NULL;
543 	error = kern_setitimer(td, uap->which, itvp, &oitv);
544 	if (error || uap->oitv == NULL)
545 		return (error);
546 	TV_CP(oitv, i32, it_interval);
547 	TV_CP(oitv, i32, it_value);
548 	return (copyout(&i32, uap->oitv, sizeof(i32)));
549 }
550 
551 int
552 freebsd32_getitimer(struct thread *td, struct freebsd32_getitimer_args *uap)
553 {
554 	struct itimerval itv;
555 	struct itimerval32 i32;
556 	int error;
557 
558 	error = kern_getitimer(td, uap->which, &itv);
559 	if (error || uap->itv == NULL)
560 		return (error);
561 	TV_CP(itv, i32, it_interval);
562 	TV_CP(itv, i32, it_value);
563 	return (copyout(&i32, uap->itv, sizeof(i32)));
564 }
565 
566 int
567 freebsd32_select(struct thread *td, struct freebsd32_select_args *uap)
568 {
569 	struct timeval32 tv32;
570 	struct timeval tv, *tvp;
571 	int error;
572 
573 	if (uap->tv != NULL) {
574 		error = copyin(uap->tv, &tv32, sizeof(tv32));
575 		if (error)
576 			return (error);
577 		CP(tv32, tv, tv_sec);
578 		CP(tv32, tv, tv_usec);
579 		tvp = &tv;
580 	} else
581 		tvp = NULL;
582 	/*
583 	 * XXX Do pointers need PTRIN()?
584 	 */
585 	return (kern_select(td, uap->nd, uap->in, uap->ou, uap->ex, tvp,
586 	    sizeof(int32_t) * 8));
587 }
588 
589 int
590 freebsd32_pselect(struct thread *td, struct freebsd32_pselect_args *uap)
591 {
592 	struct timespec32 ts32;
593 	struct timespec ts;
594 	struct timeval tv, *tvp;
595 	sigset_t set, *uset;
596 	int error;
597 
598 	if (uap->ts != NULL) {
599 		error = copyin(uap->ts, &ts32, sizeof(ts32));
600 		if (error != 0)
601 			return (error);
602 		CP(ts32, ts, tv_sec);
603 		CP(ts32, ts, tv_nsec);
604 		TIMESPEC_TO_TIMEVAL(&tv, &ts);
605 		tvp = &tv;
606 	} else
607 		tvp = NULL;
608 	if (uap->sm != NULL) {
609 		error = copyin(uap->sm, &set, sizeof(set));
610 		if (error != 0)
611 			return (error);
612 		uset = &set;
613 	} else
614 		uset = NULL;
615 	/*
616 	 * XXX Do pointers need PTRIN()?
617 	 */
618 	error = kern_pselect(td, uap->nd, uap->in, uap->ou, uap->ex, tvp,
619 	    uset, sizeof(int32_t) * 8);
620 	return (error);
621 }
622 
623 /*
624  * Copy 'count' items into the destination list pointed to by uap->eventlist.
625  */
626 static int
627 freebsd32_kevent_copyout(void *arg, struct kevent *kevp, int count)
628 {
629 	struct freebsd32_kevent_args *uap;
630 	struct kevent32	ks32[KQ_NEVENTS];
631 	uint64_t e;
632 	int i, j, error;
633 
634 	KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
635 	uap = (struct freebsd32_kevent_args *)arg;
636 
637 	for (i = 0; i < count; i++) {
638 		CP(kevp[i], ks32[i], ident);
639 		CP(kevp[i], ks32[i], filter);
640 		CP(kevp[i], ks32[i], flags);
641 		CP(kevp[i], ks32[i], fflags);
642 #if BYTE_ORDER == LITTLE_ENDIAN
643 		ks32[i].data1 = kevp[i].data;
644 		ks32[i].data2 = kevp[i].data >> 32;
645 #else
646 		ks32[i].data1 = kevp[i].data >> 32;
647 		ks32[i].data2 = kevp[i].data;
648 #endif
649 		PTROUT_CP(kevp[i], ks32[i], udata);
650 		for (j = 0; j < nitems(kevp->ext); j++) {
651 			e = kevp[i].ext[j];
652 #if BYTE_ORDER == LITTLE_ENDIAN
653 			ks32[i].ext64[2 * j] = e;
654 			ks32[i].ext64[2 * j + 1] = e >> 32;
655 #else
656 			ks32[i].ext64[2 * j] = e >> 32;
657 			ks32[i].ext64[2 * j + 1] = e;
658 #endif
659 		}
660 	}
661 	error = copyout(ks32, uap->eventlist, count * sizeof *ks32);
662 	if (error == 0)
663 		uap->eventlist += count;
664 	return (error);
665 }
666 
667 /*
668  * Copy 'count' items from the list pointed to by uap->changelist.
669  */
670 static int
671 freebsd32_kevent_copyin(void *arg, struct kevent *kevp, int count)
672 {
673 	struct freebsd32_kevent_args *uap;
674 	struct kevent32	ks32[KQ_NEVENTS];
675 	uint64_t e;
676 	int i, j, error;
677 
678 	KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
679 	uap = (struct freebsd32_kevent_args *)arg;
680 
681 	error = copyin(uap->changelist, ks32, count * sizeof *ks32);
682 	if (error)
683 		goto done;
684 	uap->changelist += count;
685 
686 	for (i = 0; i < count; i++) {
687 		CP(ks32[i], kevp[i], ident);
688 		CP(ks32[i], kevp[i], filter);
689 		CP(ks32[i], kevp[i], flags);
690 		CP(ks32[i], kevp[i], fflags);
691 		kevp[i].data = PAIR32TO64(uint64_t, ks32[i].data);
692 		PTRIN_CP(ks32[i], kevp[i], udata);
693 		for (j = 0; j < nitems(kevp->ext); j++) {
694 #if BYTE_ORDER == LITTLE_ENDIAN
695 			e = ks32[i].ext64[2 * j + 1];
696 			e <<= 32;
697 			e += ks32[i].ext64[2 * j];
698 #else
699 			e = ks32[i].ext64[2 * j];
700 			e <<= 32;
701 			e += ks32[i].ext64[2 * j + 1];
702 #endif
703 			kevp[i].ext[j] = e;
704 		}
705 	}
706 done:
707 	return (error);
708 }
709 
710 int
711 freebsd32_kevent(struct thread *td, struct freebsd32_kevent_args *uap)
712 {
713 	struct timespec32 ts32;
714 	struct timespec ts, *tsp;
715 	struct kevent_copyops k_ops = {
716 		.arg = uap,
717 		.k_copyout = freebsd32_kevent_copyout,
718 		.k_copyin = freebsd32_kevent_copyin,
719 	};
720 #ifdef KTRACE
721 	struct kevent32 *eventlist = uap->eventlist;
722 #endif
723 	int error;
724 
725 	if (uap->timeout) {
726 		error = copyin(uap->timeout, &ts32, sizeof(ts32));
727 		if (error)
728 			return (error);
729 		CP(ts32, ts, tv_sec);
730 		CP(ts32, ts, tv_nsec);
731 		tsp = &ts;
732 	} else
733 		tsp = NULL;
734 #ifdef KTRACE
735 	if (KTRPOINT(td, KTR_STRUCT_ARRAY))
736 		ktrstructarray("kevent32", UIO_USERSPACE, uap->changelist,
737 		    uap->nchanges, sizeof(struct kevent32));
738 #endif
739 	error = kern_kevent(td, uap->fd, uap->nchanges, uap->nevents,
740 	    &k_ops, tsp);
741 #ifdef KTRACE
742 	if (error == 0 && KTRPOINT(td, KTR_STRUCT_ARRAY))
743 		ktrstructarray("kevent32", UIO_USERSPACE, eventlist,
744 		    td->td_retval[0], sizeof(struct kevent32));
745 #endif
746 	return (error);
747 }
748 
749 #ifdef COMPAT_FREEBSD11
750 static int
751 freebsd32_kevent11_copyout(void *arg, struct kevent *kevp, int count)
752 {
753 	struct freebsd11_freebsd32_kevent_args *uap;
754 	struct kevent32_freebsd11 ks32[KQ_NEVENTS];
755 	int i, error;
756 
757 	KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
758 	uap = (struct freebsd11_freebsd32_kevent_args *)arg;
759 
760 	for (i = 0; i < count; i++) {
761 		CP(kevp[i], ks32[i], ident);
762 		CP(kevp[i], ks32[i], filter);
763 		CP(kevp[i], ks32[i], flags);
764 		CP(kevp[i], ks32[i], fflags);
765 		CP(kevp[i], ks32[i], data);
766 		PTROUT_CP(kevp[i], ks32[i], udata);
767 	}
768 	error = copyout(ks32, uap->eventlist, count * sizeof *ks32);
769 	if (error == 0)
770 		uap->eventlist += count;
771 	return (error);
772 }
773 
774 /*
775  * Copy 'count' items from the list pointed to by uap->changelist.
776  */
777 static int
778 freebsd32_kevent11_copyin(void *arg, struct kevent *kevp, int count)
779 {
780 	struct freebsd11_freebsd32_kevent_args *uap;
781 	struct kevent32_freebsd11 ks32[KQ_NEVENTS];
782 	int i, j, error;
783 
784 	KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
785 	uap = (struct freebsd11_freebsd32_kevent_args *)arg;
786 
787 	error = copyin(uap->changelist, ks32, count * sizeof *ks32);
788 	if (error)
789 		goto done;
790 	uap->changelist += count;
791 
792 	for (i = 0; i < count; i++) {
793 		CP(ks32[i], kevp[i], ident);
794 		CP(ks32[i], kevp[i], filter);
795 		CP(ks32[i], kevp[i], flags);
796 		CP(ks32[i], kevp[i], fflags);
797 		CP(ks32[i], kevp[i], data);
798 		PTRIN_CP(ks32[i], kevp[i], udata);
799 		for (j = 0; j < nitems(kevp->ext); j++)
800 			kevp[i].ext[j] = 0;
801 	}
802 done:
803 	return (error);
804 }
805 
806 int
807 freebsd11_freebsd32_kevent(struct thread *td,
808     struct freebsd11_freebsd32_kevent_args *uap)
809 {
810 	struct timespec32 ts32;
811 	struct timespec ts, *tsp;
812 	struct kevent_copyops k_ops = {
813 		.arg = uap,
814 		.k_copyout = freebsd32_kevent11_copyout,
815 		.k_copyin = freebsd32_kevent11_copyin,
816 	};
817 #ifdef KTRACE
818 	struct kevent32_freebsd11 *eventlist = uap->eventlist;
819 #endif
820 	int error;
821 
822 	if (uap->timeout) {
823 		error = copyin(uap->timeout, &ts32, sizeof(ts32));
824 		if (error)
825 			return (error);
826 		CP(ts32, ts, tv_sec);
827 		CP(ts32, ts, tv_nsec);
828 		tsp = &ts;
829 	} else
830 		tsp = NULL;
831 #ifdef KTRACE
832 	if (KTRPOINT(td, KTR_STRUCT_ARRAY))
833 		ktrstructarray("kevent32_freebsd11", UIO_USERSPACE,
834 		    uap->changelist, uap->nchanges,
835 		    sizeof(struct kevent32_freebsd11));
836 #endif
837 	error = kern_kevent(td, uap->fd, uap->nchanges, uap->nevents,
838 	    &k_ops, tsp);
839 #ifdef KTRACE
840 	if (error == 0 && KTRPOINT(td, KTR_STRUCT_ARRAY))
841 		ktrstructarray("kevent32_freebsd11", UIO_USERSPACE,
842 		    eventlist, td->td_retval[0],
843 		    sizeof(struct kevent32_freebsd11));
844 #endif
845 	return (error);
846 }
847 #endif
848 
849 int
850 freebsd32_gettimeofday(struct thread *td,
851 		       struct freebsd32_gettimeofday_args *uap)
852 {
853 	struct timeval atv;
854 	struct timeval32 atv32;
855 	struct timezone rtz;
856 	int error = 0;
857 
858 	if (uap->tp) {
859 		microtime(&atv);
860 		CP(atv, atv32, tv_sec);
861 		CP(atv, atv32, tv_usec);
862 		error = copyout(&atv32, uap->tp, sizeof (atv32));
863 	}
864 	if (error == 0 && uap->tzp != NULL) {
865 		rtz.tz_minuteswest = 0;
866 		rtz.tz_dsttime = 0;
867 		error = copyout(&rtz, uap->tzp, sizeof (rtz));
868 	}
869 	return (error);
870 }
871 
872 int
873 freebsd32_getrusage(struct thread *td, struct freebsd32_getrusage_args *uap)
874 {
875 	struct rusage32 s32;
876 	struct rusage s;
877 	int error;
878 
879 	error = kern_getrusage(td, uap->who, &s);
880 	if (error == 0) {
881 		freebsd32_rusage_out(&s, &s32);
882 		error = copyout(&s32, uap->rusage, sizeof(s32));
883 	}
884 	return (error);
885 }
886 
887 static void
888 ptrace_lwpinfo_to32(const struct ptrace_lwpinfo *pl,
889     struct ptrace_lwpinfo32 *pl32)
890 {
891 
892 	bzero(pl32, sizeof(*pl32));
893 	pl32->pl_lwpid = pl->pl_lwpid;
894 	pl32->pl_event = pl->pl_event;
895 	pl32->pl_flags = pl->pl_flags;
896 	pl32->pl_sigmask = pl->pl_sigmask;
897 	pl32->pl_siglist = pl->pl_siglist;
898 	siginfo_to_siginfo32(&pl->pl_siginfo, &pl32->pl_siginfo);
899 	strcpy(pl32->pl_tdname, pl->pl_tdname);
900 	pl32->pl_child_pid = pl->pl_child_pid;
901 	pl32->pl_syscall_code = pl->pl_syscall_code;
902 	pl32->pl_syscall_narg = pl->pl_syscall_narg;
903 }
904 
905 static void
906 ptrace_sc_ret_to32(const struct ptrace_sc_ret *psr,
907     struct ptrace_sc_ret32 *psr32)
908 {
909 
910 	bzero(psr32, sizeof(*psr32));
911 	psr32->sr_retval[0] = psr->sr_retval[0];
912 	psr32->sr_retval[1] = psr->sr_retval[1];
913 	psr32->sr_error = psr->sr_error;
914 }
915 
916 int
917 freebsd32_ptrace(struct thread *td, struct freebsd32_ptrace_args *uap)
918 {
919 	union {
920 		struct ptrace_io_desc piod;
921 		struct ptrace_lwpinfo pl;
922 		struct ptrace_vm_entry pve;
923 		struct dbreg32 dbreg;
924 		struct fpreg32 fpreg;
925 		struct reg32 reg;
926 		register_t args[nitems(td->td_sa.args)];
927 		struct ptrace_sc_ret psr;
928 		int ptevents;
929 	} r;
930 	union {
931 		struct ptrace_io_desc32 piod;
932 		struct ptrace_lwpinfo32 pl;
933 		struct ptrace_vm_entry32 pve;
934 		uint32_t args[nitems(td->td_sa.args)];
935 		struct ptrace_sc_ret32 psr;
936 	} r32;
937 	void *addr;
938 	int data, error = 0, i;
939 
940 	AUDIT_ARG_PID(uap->pid);
941 	AUDIT_ARG_CMD(uap->req);
942 	AUDIT_ARG_VALUE(uap->data);
943 	addr = &r;
944 	data = uap->data;
945 	switch (uap->req) {
946 	case PT_GET_EVENT_MASK:
947 	case PT_GET_SC_ARGS:
948 	case PT_GET_SC_RET:
949 		break;
950 	case PT_LWPINFO:
951 		if (uap->data > sizeof(r32.pl))
952 			return (EINVAL);
953 
954 		/*
955 		 * Pass size of native structure in 'data'.  Truncate
956 		 * if necessary to avoid siginfo.
957 		 */
958 		data = sizeof(r.pl);
959 		if (uap->data < offsetof(struct ptrace_lwpinfo32, pl_siginfo) +
960 		    sizeof(struct siginfo32))
961 			data = offsetof(struct ptrace_lwpinfo, pl_siginfo);
962 		break;
963 	case PT_GETREGS:
964 		bzero(&r.reg, sizeof(r.reg));
965 		break;
966 	case PT_GETFPREGS:
967 		bzero(&r.fpreg, sizeof(r.fpreg));
968 		break;
969 	case PT_GETDBREGS:
970 		bzero(&r.dbreg, sizeof(r.dbreg));
971 		break;
972 	case PT_SETREGS:
973 		error = copyin(uap->addr, &r.reg, sizeof(r.reg));
974 		break;
975 	case PT_SETFPREGS:
976 		error = copyin(uap->addr, &r.fpreg, sizeof(r.fpreg));
977 		break;
978 	case PT_SETDBREGS:
979 		error = copyin(uap->addr, &r.dbreg, sizeof(r.dbreg));
980 		break;
981 	case PT_SET_EVENT_MASK:
982 		if (uap->data != sizeof(r.ptevents))
983 			error = EINVAL;
984 		else
985 			error = copyin(uap->addr, &r.ptevents, uap->data);
986 		break;
987 	case PT_IO:
988 		error = copyin(uap->addr, &r32.piod, sizeof(r32.piod));
989 		if (error)
990 			break;
991 		CP(r32.piod, r.piod, piod_op);
992 		PTRIN_CP(r32.piod, r.piod, piod_offs);
993 		PTRIN_CP(r32.piod, r.piod, piod_addr);
994 		CP(r32.piod, r.piod, piod_len);
995 		break;
996 	case PT_VM_ENTRY:
997 		error = copyin(uap->addr, &r32.pve, sizeof(r32.pve));
998 		if (error)
999 			break;
1000 
1001 		CP(r32.pve, r.pve, pve_entry);
1002 		CP(r32.pve, r.pve, pve_timestamp);
1003 		CP(r32.pve, r.pve, pve_start);
1004 		CP(r32.pve, r.pve, pve_end);
1005 		CP(r32.pve, r.pve, pve_offset);
1006 		CP(r32.pve, r.pve, pve_prot);
1007 		CP(r32.pve, r.pve, pve_pathlen);
1008 		CP(r32.pve, r.pve, pve_fileid);
1009 		CP(r32.pve, r.pve, pve_fsid);
1010 		PTRIN_CP(r32.pve, r.pve, pve_path);
1011 		break;
1012 	default:
1013 		addr = uap->addr;
1014 		break;
1015 	}
1016 	if (error)
1017 		return (error);
1018 
1019 	error = kern_ptrace(td, uap->req, uap->pid, addr, data);
1020 	if (error)
1021 		return (error);
1022 
1023 	switch (uap->req) {
1024 	case PT_VM_ENTRY:
1025 		CP(r.pve, r32.pve, pve_entry);
1026 		CP(r.pve, r32.pve, pve_timestamp);
1027 		CP(r.pve, r32.pve, pve_start);
1028 		CP(r.pve, r32.pve, pve_end);
1029 		CP(r.pve, r32.pve, pve_offset);
1030 		CP(r.pve, r32.pve, pve_prot);
1031 		CP(r.pve, r32.pve, pve_pathlen);
1032 		CP(r.pve, r32.pve, pve_fileid);
1033 		CP(r.pve, r32.pve, pve_fsid);
1034 		error = copyout(&r32.pve, uap->addr, sizeof(r32.pve));
1035 		break;
1036 	case PT_IO:
1037 		CP(r.piod, r32.piod, piod_len);
1038 		error = copyout(&r32.piod, uap->addr, sizeof(r32.piod));
1039 		break;
1040 	case PT_GETREGS:
1041 		error = copyout(&r.reg, uap->addr, sizeof(r.reg));
1042 		break;
1043 	case PT_GETFPREGS:
1044 		error = copyout(&r.fpreg, uap->addr, sizeof(r.fpreg));
1045 		break;
1046 	case PT_GETDBREGS:
1047 		error = copyout(&r.dbreg, uap->addr, sizeof(r.dbreg));
1048 		break;
1049 	case PT_GET_EVENT_MASK:
1050 		/* NB: The size in uap->data is validated in kern_ptrace(). */
1051 		error = copyout(&r.ptevents, uap->addr, uap->data);
1052 		break;
1053 	case PT_LWPINFO:
1054 		ptrace_lwpinfo_to32(&r.pl, &r32.pl);
1055 		error = copyout(&r32.pl, uap->addr, uap->data);
1056 		break;
1057 	case PT_GET_SC_ARGS:
1058 		for (i = 0; i < nitems(r.args); i++)
1059 			r32.args[i] = (uint32_t)r.args[i];
1060 		error = copyout(r32.args, uap->addr, MIN(uap->data,
1061 		    sizeof(r32.args)));
1062 		break;
1063 	case PT_GET_SC_RET:
1064 		ptrace_sc_ret_to32(&r.psr, &r32.psr);
1065 		error = copyout(&r32.psr, uap->addr, MIN(uap->data,
1066 		    sizeof(r32.psr)));
1067 		break;
1068 	}
1069 
1070 	return (error);
1071 }
1072 
1073 int
1074 freebsd32_copyinuio(struct iovec32 *iovp, u_int iovcnt, struct uio **uiop)
1075 {
1076 	struct iovec32 iov32;
1077 	struct iovec *iov;
1078 	struct uio *uio;
1079 	u_int iovlen;
1080 	int error, i;
1081 
1082 	*uiop = NULL;
1083 	if (iovcnt > UIO_MAXIOV)
1084 		return (EINVAL);
1085 	iovlen = iovcnt * sizeof(struct iovec);
1086 	uio = malloc(iovlen + sizeof *uio, M_IOV, M_WAITOK);
1087 	iov = (struct iovec *)(uio + 1);
1088 	for (i = 0; i < iovcnt; i++) {
1089 		error = copyin(&iovp[i], &iov32, sizeof(struct iovec32));
1090 		if (error) {
1091 			free(uio, M_IOV);
1092 			return (error);
1093 		}
1094 		iov[i].iov_base = PTRIN(iov32.iov_base);
1095 		iov[i].iov_len = iov32.iov_len;
1096 	}
1097 	uio->uio_iov = iov;
1098 	uio->uio_iovcnt = iovcnt;
1099 	uio->uio_segflg = UIO_USERSPACE;
1100 	uio->uio_offset = -1;
1101 	uio->uio_resid = 0;
1102 	for (i = 0; i < iovcnt; i++) {
1103 		if (iov->iov_len > INT_MAX - uio->uio_resid) {
1104 			free(uio, M_IOV);
1105 			return (EINVAL);
1106 		}
1107 		uio->uio_resid += iov->iov_len;
1108 		iov++;
1109 	}
1110 	*uiop = uio;
1111 	return (0);
1112 }
1113 
1114 int
1115 freebsd32_readv(struct thread *td, struct freebsd32_readv_args *uap)
1116 {
1117 	struct uio *auio;
1118 	int error;
1119 
1120 	error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio);
1121 	if (error)
1122 		return (error);
1123 	error = kern_readv(td, uap->fd, auio);
1124 	free(auio, M_IOV);
1125 	return (error);
1126 }
1127 
1128 int
1129 freebsd32_writev(struct thread *td, struct freebsd32_writev_args *uap)
1130 {
1131 	struct uio *auio;
1132 	int error;
1133 
1134 	error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio);
1135 	if (error)
1136 		return (error);
1137 	error = kern_writev(td, uap->fd, auio);
1138 	free(auio, M_IOV);
1139 	return (error);
1140 }
1141 
1142 int
1143 freebsd32_preadv(struct thread *td, struct freebsd32_preadv_args *uap)
1144 {
1145 	struct uio *auio;
1146 	int error;
1147 
1148 	error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio);
1149 	if (error)
1150 		return (error);
1151 	error = kern_preadv(td, uap->fd, auio, PAIR32TO64(off_t,uap->offset));
1152 	free(auio, M_IOV);
1153 	return (error);
1154 }
1155 
1156 int
1157 freebsd32_pwritev(struct thread *td, struct freebsd32_pwritev_args *uap)
1158 {
1159 	struct uio *auio;
1160 	int error;
1161 
1162 	error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio);
1163 	if (error)
1164 		return (error);
1165 	error = kern_pwritev(td, uap->fd, auio, PAIR32TO64(off_t,uap->offset));
1166 	free(auio, M_IOV);
1167 	return (error);
1168 }
1169 
1170 int
1171 freebsd32_copyiniov(struct iovec32 *iovp32, u_int iovcnt, struct iovec **iovp,
1172     int error)
1173 {
1174 	struct iovec32 iov32;
1175 	struct iovec *iov;
1176 	u_int iovlen;
1177 	int i;
1178 
1179 	*iovp = NULL;
1180 	if (iovcnt > UIO_MAXIOV)
1181 		return (error);
1182 	iovlen = iovcnt * sizeof(struct iovec);
1183 	iov = malloc(iovlen, M_IOV, M_WAITOK);
1184 	for (i = 0; i < iovcnt; i++) {
1185 		error = copyin(&iovp32[i], &iov32, sizeof(struct iovec32));
1186 		if (error) {
1187 			free(iov, M_IOV);
1188 			return (error);
1189 		}
1190 		iov[i].iov_base = PTRIN(iov32.iov_base);
1191 		iov[i].iov_len = iov32.iov_len;
1192 	}
1193 	*iovp = iov;
1194 	return (0);
1195 }
1196 
1197 static int
1198 freebsd32_copyinmsghdr(struct msghdr32 *msg32, struct msghdr *msg)
1199 {
1200 	struct msghdr32 m32;
1201 	int error;
1202 
1203 	error = copyin(msg32, &m32, sizeof(m32));
1204 	if (error)
1205 		return (error);
1206 	msg->msg_name = PTRIN(m32.msg_name);
1207 	msg->msg_namelen = m32.msg_namelen;
1208 	msg->msg_iov = PTRIN(m32.msg_iov);
1209 	msg->msg_iovlen = m32.msg_iovlen;
1210 	msg->msg_control = PTRIN(m32.msg_control);
1211 	msg->msg_controllen = m32.msg_controllen;
1212 	msg->msg_flags = m32.msg_flags;
1213 	return (0);
1214 }
1215 
1216 static int
1217 freebsd32_copyoutmsghdr(struct msghdr *msg, struct msghdr32 *msg32)
1218 {
1219 	struct msghdr32 m32;
1220 	int error;
1221 
1222 	m32.msg_name = PTROUT(msg->msg_name);
1223 	m32.msg_namelen = msg->msg_namelen;
1224 	m32.msg_iov = PTROUT(msg->msg_iov);
1225 	m32.msg_iovlen = msg->msg_iovlen;
1226 	m32.msg_control = PTROUT(msg->msg_control);
1227 	m32.msg_controllen = msg->msg_controllen;
1228 	m32.msg_flags = msg->msg_flags;
1229 	error = copyout(&m32, msg32, sizeof(m32));
1230 	return (error);
1231 }
1232 
1233 #ifndef __mips__
1234 #define FREEBSD32_ALIGNBYTES	(sizeof(int) - 1)
1235 #else
1236 #define FREEBSD32_ALIGNBYTES	(sizeof(long) - 1)
1237 #endif
1238 #define FREEBSD32_ALIGN(p)	\
1239 	(((u_long)(p) + FREEBSD32_ALIGNBYTES) & ~FREEBSD32_ALIGNBYTES)
1240 #define	FREEBSD32_CMSG_SPACE(l)	\
1241 	(FREEBSD32_ALIGN(sizeof(struct cmsghdr)) + FREEBSD32_ALIGN(l))
1242 
1243 #define	FREEBSD32_CMSG_DATA(cmsg)	((unsigned char *)(cmsg) + \
1244 				 FREEBSD32_ALIGN(sizeof(struct cmsghdr)))
1245 
1246 static size_t
1247 freebsd32_cmsg_convert(const struct cmsghdr *cm, void *data, socklen_t datalen)
1248 {
1249 	size_t copylen;
1250 	union {
1251 		struct timespec32 ts;
1252 		struct timeval32 tv;
1253 		struct bintime32 bt;
1254 	} tmp32;
1255 
1256 	union {
1257 		struct timespec ts;
1258 		struct timeval tv;
1259 		struct bintime bt;
1260 	} *in;
1261 
1262 	in = data;
1263 	copylen = 0;
1264 	switch (cm->cmsg_level) {
1265 	case SOL_SOCKET:
1266 		switch (cm->cmsg_type) {
1267 		case SCM_TIMESTAMP:
1268 			TV_CP(*in, tmp32, tv);
1269 			copylen = sizeof(tmp32.tv);
1270 			break;
1271 
1272 		case SCM_BINTIME:
1273 			BT_CP(*in, tmp32, bt);
1274 			copylen = sizeof(tmp32.bt);
1275 			break;
1276 
1277 		case SCM_REALTIME:
1278 		case SCM_MONOTONIC:
1279 			TS_CP(*in, tmp32, ts);
1280 			copylen = sizeof(tmp32.ts);
1281 			break;
1282 
1283 		default:
1284 			break;
1285 		}
1286 
1287 	default:
1288 		break;
1289 	}
1290 
1291 	if (copylen == 0)
1292 		return (datalen);
1293 
1294 	KASSERT((datalen >= copylen), ("corrupted cmsghdr"));
1295 
1296 	bcopy(&tmp32, data, copylen);
1297 	return (copylen);
1298 }
1299 
1300 static int
1301 freebsd32_copy_msg_out(struct msghdr *msg, struct mbuf *control)
1302 {
1303 	struct cmsghdr *cm;
1304 	void *data;
1305 	socklen_t clen, datalen, datalen_out, oldclen;
1306 	int error;
1307 	caddr_t ctlbuf;
1308 	int len, maxlen, copylen;
1309 	struct mbuf *m;
1310 	error = 0;
1311 
1312 	len    = msg->msg_controllen;
1313 	maxlen = msg->msg_controllen;
1314 	msg->msg_controllen = 0;
1315 
1316 	ctlbuf = msg->msg_control;
1317 	for (m = control; m != NULL && len > 0; m = m->m_next) {
1318 		cm = mtod(m, struct cmsghdr *);
1319 		clen = m->m_len;
1320 		while (cm != NULL) {
1321 			if (sizeof(struct cmsghdr) > clen ||
1322 			    cm->cmsg_len > clen) {
1323 				error = EINVAL;
1324 				break;
1325 			}
1326 
1327 			data   = CMSG_DATA(cm);
1328 			datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data;
1329 			datalen_out = freebsd32_cmsg_convert(cm, data, datalen);
1330 
1331 			/*
1332 			 * Copy out the message header.  Preserve the native
1333 			 * message size in case we need to inspect the message
1334 			 * contents later.
1335 			 */
1336 			copylen = sizeof(struct cmsghdr);
1337 			if (len < copylen) {
1338 				msg->msg_flags |= MSG_CTRUNC;
1339 				m_dispose_extcontrolm(m);
1340 				goto exit;
1341 			}
1342 			oldclen = cm->cmsg_len;
1343 			cm->cmsg_len = FREEBSD32_ALIGN(sizeof(struct cmsghdr)) +
1344 			    datalen_out;
1345 			error = copyout(cm, ctlbuf, copylen);
1346 			cm->cmsg_len = oldclen;
1347 			if (error != 0)
1348 				goto exit;
1349 
1350 			ctlbuf += FREEBSD32_ALIGN(copylen);
1351 			len    -= FREEBSD32_ALIGN(copylen);
1352 
1353 			copylen = datalen_out;
1354 			if (len < copylen) {
1355 				msg->msg_flags |= MSG_CTRUNC;
1356 				m_dispose_extcontrolm(m);
1357 				break;
1358 			}
1359 
1360 			/* Copy out the message data. */
1361 			error = copyout(data, ctlbuf, copylen);
1362 			if (error)
1363 				goto exit;
1364 
1365 			ctlbuf += FREEBSD32_ALIGN(copylen);
1366 			len    -= FREEBSD32_ALIGN(copylen);
1367 
1368 			if (CMSG_SPACE(datalen) < clen) {
1369 				clen -= CMSG_SPACE(datalen);
1370 				cm = (struct cmsghdr *)
1371 				    ((caddr_t)cm + CMSG_SPACE(datalen));
1372 			} else {
1373 				clen = 0;
1374 				cm = NULL;
1375 			}
1376 
1377 			msg->msg_controllen +=
1378 			    FREEBSD32_CMSG_SPACE(datalen_out);
1379 		}
1380 	}
1381 	if (len == 0 && m != NULL) {
1382 		msg->msg_flags |= MSG_CTRUNC;
1383 		m_dispose_extcontrolm(m);
1384 	}
1385 
1386 exit:
1387 	return (error);
1388 }
1389 
1390 int
1391 freebsd32_recvmsg(td, uap)
1392 	struct thread *td;
1393 	struct freebsd32_recvmsg_args /* {
1394 		int	s;
1395 		struct	msghdr32 *msg;
1396 		int	flags;
1397 	} */ *uap;
1398 {
1399 	struct msghdr msg;
1400 	struct msghdr32 m32;
1401 	struct iovec *uiov, *iov;
1402 	struct mbuf *control = NULL;
1403 	struct mbuf **controlp;
1404 
1405 	int error;
1406 	error = copyin(uap->msg, &m32, sizeof(m32));
1407 	if (error)
1408 		return (error);
1409 	error = freebsd32_copyinmsghdr(uap->msg, &msg);
1410 	if (error)
1411 		return (error);
1412 	error = freebsd32_copyiniov(PTRIN(m32.msg_iov), m32.msg_iovlen, &iov,
1413 	    EMSGSIZE);
1414 	if (error)
1415 		return (error);
1416 	msg.msg_flags = uap->flags;
1417 	uiov = msg.msg_iov;
1418 	msg.msg_iov = iov;
1419 
1420 	controlp = (msg.msg_control != NULL) ?  &control : NULL;
1421 	error = kern_recvit(td, uap->s, &msg, UIO_USERSPACE, controlp);
1422 	if (error == 0) {
1423 		msg.msg_iov = uiov;
1424 
1425 		if (control != NULL)
1426 			error = freebsd32_copy_msg_out(&msg, control);
1427 		else
1428 			msg.msg_controllen = 0;
1429 
1430 		if (error == 0)
1431 			error = freebsd32_copyoutmsghdr(&msg, uap->msg);
1432 	}
1433 	free(iov, M_IOV);
1434 
1435 	if (control != NULL) {
1436 		if (error != 0)
1437 			m_dispose_extcontrolm(control);
1438 		m_freem(control);
1439 	}
1440 
1441 	return (error);
1442 }
1443 
1444 /*
1445  * Copy-in the array of control messages constructed using alignment
1446  * and padding suitable for a 32-bit environment and construct an
1447  * mbuf using alignment and padding suitable for a 64-bit kernel.
1448  * The alignment and padding are defined indirectly by CMSG_DATA(),
1449  * CMSG_SPACE() and CMSG_LEN().
1450  */
1451 static int
1452 freebsd32_copyin_control(struct mbuf **mp, caddr_t buf, u_int buflen)
1453 {
1454 	struct cmsghdr *cm;
1455 	struct mbuf *m;
1456 	void *in, *in1, *md;
1457 	u_int msglen, outlen;
1458 	int error;
1459 
1460 	if (buflen > MCLBYTES)
1461 		return (EINVAL);
1462 
1463 	in = malloc(buflen, M_TEMP, M_WAITOK);
1464 	error = copyin(buf, in, buflen);
1465 	if (error != 0)
1466 		goto out;
1467 
1468 	/*
1469 	 * Make a pass over the input buffer to determine the amount of space
1470 	 * required for 64 bit-aligned copies of the control messages.
1471 	 */
1472 	in1 = in;
1473 	outlen = 0;
1474 	while (buflen > 0) {
1475 		if (buflen < sizeof(*cm)) {
1476 			error = EINVAL;
1477 			break;
1478 		}
1479 		cm = (struct cmsghdr *)in1;
1480 		if (cm->cmsg_len < FREEBSD32_ALIGN(sizeof(*cm))) {
1481 			error = EINVAL;
1482 			break;
1483 		}
1484 		msglen = FREEBSD32_ALIGN(cm->cmsg_len);
1485 		if (msglen > buflen || msglen < cm->cmsg_len) {
1486 			error = EINVAL;
1487 			break;
1488 		}
1489 		buflen -= msglen;
1490 
1491 		in1 = (char *)in1 + msglen;
1492 		outlen += CMSG_ALIGN(sizeof(*cm)) +
1493 		    CMSG_ALIGN(msglen - FREEBSD32_ALIGN(sizeof(*cm)));
1494 	}
1495 	if (error == 0 && outlen > MCLBYTES) {
1496 		/*
1497 		 * XXXMJ This implies that the upper limit on 32-bit aligned
1498 		 * control messages is less than MCLBYTES, and so we are not
1499 		 * perfectly compatible.  However, there is no platform
1500 		 * guarantee that mbuf clusters larger than MCLBYTES can be
1501 		 * allocated.
1502 		 */
1503 		error = EINVAL;
1504 	}
1505 	if (error != 0)
1506 		goto out;
1507 
1508 	m = m_get2(outlen, M_WAITOK, MT_CONTROL, 0);
1509 	m->m_len = outlen;
1510 	md = mtod(m, void *);
1511 
1512 	/*
1513 	 * Make a second pass over input messages, copying them into the output
1514 	 * buffer.
1515 	 */
1516 	in1 = in;
1517 	while (outlen > 0) {
1518 		/* Copy the message header and align the length field. */
1519 		cm = md;
1520 		memcpy(cm, in1, sizeof(*cm));
1521 		msglen = cm->cmsg_len - FREEBSD32_ALIGN(sizeof(*cm));
1522 		cm->cmsg_len = CMSG_ALIGN(sizeof(*cm)) + msglen;
1523 
1524 		/* Copy the message body. */
1525 		in1 = (char *)in1 + FREEBSD32_ALIGN(sizeof(*cm));
1526 		md = (char *)md + CMSG_ALIGN(sizeof(*cm));
1527 		memcpy(md, in1, msglen);
1528 		in1 = (char *)in1 + FREEBSD32_ALIGN(msglen);
1529 		md = (char *)md + CMSG_ALIGN(msglen);
1530 		KASSERT(outlen >= CMSG_ALIGN(sizeof(*cm)) + CMSG_ALIGN(msglen),
1531 		    ("outlen %u underflow, msglen %u", outlen, msglen));
1532 		outlen -= CMSG_ALIGN(sizeof(*cm)) + CMSG_ALIGN(msglen);
1533 	}
1534 
1535 	*mp = m;
1536 out:
1537 	free(in, M_TEMP);
1538 	return (error);
1539 }
1540 
1541 int
1542 freebsd32_sendmsg(struct thread *td,
1543 		  struct freebsd32_sendmsg_args *uap)
1544 {
1545 	struct msghdr msg;
1546 	struct msghdr32 m32;
1547 	struct iovec *iov;
1548 	struct mbuf *control = NULL;
1549 	struct sockaddr *to = NULL;
1550 	int error;
1551 
1552 	error = copyin(uap->msg, &m32, sizeof(m32));
1553 	if (error)
1554 		return (error);
1555 	error = freebsd32_copyinmsghdr(uap->msg, &msg);
1556 	if (error)
1557 		return (error);
1558 	error = freebsd32_copyiniov(PTRIN(m32.msg_iov), m32.msg_iovlen, &iov,
1559 	    EMSGSIZE);
1560 	if (error)
1561 		return (error);
1562 	msg.msg_iov = iov;
1563 	if (msg.msg_name != NULL) {
1564 		error = getsockaddr(&to, msg.msg_name, msg.msg_namelen);
1565 		if (error) {
1566 			to = NULL;
1567 			goto out;
1568 		}
1569 		msg.msg_name = to;
1570 	}
1571 
1572 	if (msg.msg_control) {
1573 		if (msg.msg_controllen < sizeof(struct cmsghdr)) {
1574 			error = EINVAL;
1575 			goto out;
1576 		}
1577 
1578 		error = freebsd32_copyin_control(&control, msg.msg_control,
1579 		    msg.msg_controllen);
1580 		if (error)
1581 			goto out;
1582 
1583 		msg.msg_control = NULL;
1584 		msg.msg_controllen = 0;
1585 	}
1586 
1587 	error = kern_sendit(td, uap->s, &msg, uap->flags, control,
1588 	    UIO_USERSPACE);
1589 
1590 out:
1591 	free(iov, M_IOV);
1592 	if (to)
1593 		free(to, M_SONAME);
1594 	return (error);
1595 }
1596 
1597 int
1598 freebsd32_recvfrom(struct thread *td,
1599 		   struct freebsd32_recvfrom_args *uap)
1600 {
1601 	struct msghdr msg;
1602 	struct iovec aiov;
1603 	int error;
1604 
1605 	if (uap->fromlenaddr) {
1606 		error = copyin(PTRIN(uap->fromlenaddr), &msg.msg_namelen,
1607 		    sizeof(msg.msg_namelen));
1608 		if (error)
1609 			return (error);
1610 	} else {
1611 		msg.msg_namelen = 0;
1612 	}
1613 
1614 	msg.msg_name = PTRIN(uap->from);
1615 	msg.msg_iov = &aiov;
1616 	msg.msg_iovlen = 1;
1617 	aiov.iov_base = PTRIN(uap->buf);
1618 	aiov.iov_len = uap->len;
1619 	msg.msg_control = NULL;
1620 	msg.msg_flags = uap->flags;
1621 	error = kern_recvit(td, uap->s, &msg, UIO_USERSPACE, NULL);
1622 	if (error == 0 && uap->fromlenaddr)
1623 		error = copyout(&msg.msg_namelen, PTRIN(uap->fromlenaddr),
1624 		    sizeof (msg.msg_namelen));
1625 	return (error);
1626 }
1627 
1628 int
1629 freebsd32_settimeofday(struct thread *td,
1630 		       struct freebsd32_settimeofday_args *uap)
1631 {
1632 	struct timeval32 tv32;
1633 	struct timeval tv, *tvp;
1634 	struct timezone tz, *tzp;
1635 	int error;
1636 
1637 	if (uap->tv) {
1638 		error = copyin(uap->tv, &tv32, sizeof(tv32));
1639 		if (error)
1640 			return (error);
1641 		CP(tv32, tv, tv_sec);
1642 		CP(tv32, tv, tv_usec);
1643 		tvp = &tv;
1644 	} else
1645 		tvp = NULL;
1646 	if (uap->tzp) {
1647 		error = copyin(uap->tzp, &tz, sizeof(tz));
1648 		if (error)
1649 			return (error);
1650 		tzp = &tz;
1651 	} else
1652 		tzp = NULL;
1653 	return (kern_settimeofday(td, tvp, tzp));
1654 }
1655 
1656 int
1657 freebsd32_utimes(struct thread *td, struct freebsd32_utimes_args *uap)
1658 {
1659 	struct timeval32 s32[2];
1660 	struct timeval s[2], *sp;
1661 	int error;
1662 
1663 	if (uap->tptr != NULL) {
1664 		error = copyin(uap->tptr, s32, sizeof(s32));
1665 		if (error)
1666 			return (error);
1667 		CP(s32[0], s[0], tv_sec);
1668 		CP(s32[0], s[0], tv_usec);
1669 		CP(s32[1], s[1], tv_sec);
1670 		CP(s32[1], s[1], tv_usec);
1671 		sp = s;
1672 	} else
1673 		sp = NULL;
1674 	return (kern_utimesat(td, AT_FDCWD, uap->path, UIO_USERSPACE,
1675 	    sp, UIO_SYSSPACE));
1676 }
1677 
1678 int
1679 freebsd32_lutimes(struct thread *td, struct freebsd32_lutimes_args *uap)
1680 {
1681 	struct timeval32 s32[2];
1682 	struct timeval s[2], *sp;
1683 	int error;
1684 
1685 	if (uap->tptr != NULL) {
1686 		error = copyin(uap->tptr, s32, sizeof(s32));
1687 		if (error)
1688 			return (error);
1689 		CP(s32[0], s[0], tv_sec);
1690 		CP(s32[0], s[0], tv_usec);
1691 		CP(s32[1], s[1], tv_sec);
1692 		CP(s32[1], s[1], tv_usec);
1693 		sp = s;
1694 	} else
1695 		sp = NULL;
1696 	return (kern_lutimes(td, uap->path, UIO_USERSPACE, sp, UIO_SYSSPACE));
1697 }
1698 
1699 int
1700 freebsd32_futimes(struct thread *td, struct freebsd32_futimes_args *uap)
1701 {
1702 	struct timeval32 s32[2];
1703 	struct timeval s[2], *sp;
1704 	int error;
1705 
1706 	if (uap->tptr != NULL) {
1707 		error = copyin(uap->tptr, s32, sizeof(s32));
1708 		if (error)
1709 			return (error);
1710 		CP(s32[0], s[0], tv_sec);
1711 		CP(s32[0], s[0], tv_usec);
1712 		CP(s32[1], s[1], tv_sec);
1713 		CP(s32[1], s[1], tv_usec);
1714 		sp = s;
1715 	} else
1716 		sp = NULL;
1717 	return (kern_futimes(td, uap->fd, sp, UIO_SYSSPACE));
1718 }
1719 
1720 int
1721 freebsd32_futimesat(struct thread *td, struct freebsd32_futimesat_args *uap)
1722 {
1723 	struct timeval32 s32[2];
1724 	struct timeval s[2], *sp;
1725 	int error;
1726 
1727 	if (uap->times != NULL) {
1728 		error = copyin(uap->times, s32, sizeof(s32));
1729 		if (error)
1730 			return (error);
1731 		CP(s32[0], s[0], tv_sec);
1732 		CP(s32[0], s[0], tv_usec);
1733 		CP(s32[1], s[1], tv_sec);
1734 		CP(s32[1], s[1], tv_usec);
1735 		sp = s;
1736 	} else
1737 		sp = NULL;
1738 	return (kern_utimesat(td, uap->fd, uap->path, UIO_USERSPACE,
1739 		sp, UIO_SYSSPACE));
1740 }
1741 
1742 int
1743 freebsd32_futimens(struct thread *td, struct freebsd32_futimens_args *uap)
1744 {
1745 	struct timespec32 ts32[2];
1746 	struct timespec ts[2], *tsp;
1747 	int error;
1748 
1749 	if (uap->times != NULL) {
1750 		error = copyin(uap->times, ts32, sizeof(ts32));
1751 		if (error)
1752 			return (error);
1753 		CP(ts32[0], ts[0], tv_sec);
1754 		CP(ts32[0], ts[0], tv_nsec);
1755 		CP(ts32[1], ts[1], tv_sec);
1756 		CP(ts32[1], ts[1], tv_nsec);
1757 		tsp = ts;
1758 	} else
1759 		tsp = NULL;
1760 	return (kern_futimens(td, uap->fd, tsp, UIO_SYSSPACE));
1761 }
1762 
1763 int
1764 freebsd32_utimensat(struct thread *td, struct freebsd32_utimensat_args *uap)
1765 {
1766 	struct timespec32 ts32[2];
1767 	struct timespec ts[2], *tsp;
1768 	int error;
1769 
1770 	if (uap->times != NULL) {
1771 		error = copyin(uap->times, ts32, sizeof(ts32));
1772 		if (error)
1773 			return (error);
1774 		CP(ts32[0], ts[0], tv_sec);
1775 		CP(ts32[0], ts[0], tv_nsec);
1776 		CP(ts32[1], ts[1], tv_sec);
1777 		CP(ts32[1], ts[1], tv_nsec);
1778 		tsp = ts;
1779 	} else
1780 		tsp = NULL;
1781 	return (kern_utimensat(td, uap->fd, uap->path, UIO_USERSPACE,
1782 	    tsp, UIO_SYSSPACE, uap->flag));
1783 }
1784 
1785 int
1786 freebsd32_adjtime(struct thread *td, struct freebsd32_adjtime_args *uap)
1787 {
1788 	struct timeval32 tv32;
1789 	struct timeval delta, olddelta, *deltap;
1790 	int error;
1791 
1792 	if (uap->delta) {
1793 		error = copyin(uap->delta, &tv32, sizeof(tv32));
1794 		if (error)
1795 			return (error);
1796 		CP(tv32, delta, tv_sec);
1797 		CP(tv32, delta, tv_usec);
1798 		deltap = &delta;
1799 	} else
1800 		deltap = NULL;
1801 	error = kern_adjtime(td, deltap, &olddelta);
1802 	if (uap->olddelta && error == 0) {
1803 		CP(olddelta, tv32, tv_sec);
1804 		CP(olddelta, tv32, tv_usec);
1805 		error = copyout(&tv32, uap->olddelta, sizeof(tv32));
1806 	}
1807 	return (error);
1808 }
1809 
1810 #ifdef COMPAT_FREEBSD4
1811 int
1812 freebsd4_freebsd32_statfs(struct thread *td, struct freebsd4_freebsd32_statfs_args *uap)
1813 {
1814 	struct statfs32 s32;
1815 	struct statfs *sp;
1816 	int error;
1817 
1818 	sp = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK);
1819 	error = kern_statfs(td, uap->path, UIO_USERSPACE, sp);
1820 	if (error == 0) {
1821 		copy_statfs(sp, &s32);
1822 		error = copyout(&s32, uap->buf, sizeof(s32));
1823 	}
1824 	free(sp, M_STATFS);
1825 	return (error);
1826 }
1827 #endif
1828 
1829 #ifdef COMPAT_FREEBSD4
1830 int
1831 freebsd4_freebsd32_fstatfs(struct thread *td, struct freebsd4_freebsd32_fstatfs_args *uap)
1832 {
1833 	struct statfs32 s32;
1834 	struct statfs *sp;
1835 	int error;
1836 
1837 	sp = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK);
1838 	error = kern_fstatfs(td, uap->fd, sp);
1839 	if (error == 0) {
1840 		copy_statfs(sp, &s32);
1841 		error = copyout(&s32, uap->buf, sizeof(s32));
1842 	}
1843 	free(sp, M_STATFS);
1844 	return (error);
1845 }
1846 #endif
1847 
1848 #ifdef COMPAT_FREEBSD4
1849 int
1850 freebsd4_freebsd32_fhstatfs(struct thread *td, struct freebsd4_freebsd32_fhstatfs_args *uap)
1851 {
1852 	struct statfs32 s32;
1853 	struct statfs *sp;
1854 	fhandle_t fh;
1855 	int error;
1856 
1857 	if ((error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t))) != 0)
1858 		return (error);
1859 	sp = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK);
1860 	error = kern_fhstatfs(td, fh, sp);
1861 	if (error == 0) {
1862 		copy_statfs(sp, &s32);
1863 		error = copyout(&s32, uap->buf, sizeof(s32));
1864 	}
1865 	free(sp, M_STATFS);
1866 	return (error);
1867 }
1868 #endif
1869 
1870 int
1871 freebsd32_pread(struct thread *td, struct freebsd32_pread_args *uap)
1872 {
1873 
1874 	return (kern_pread(td, uap->fd, uap->buf, uap->nbyte,
1875 	    PAIR32TO64(off_t, uap->offset)));
1876 }
1877 
1878 int
1879 freebsd32_pwrite(struct thread *td, struct freebsd32_pwrite_args *uap)
1880 {
1881 
1882 	return (kern_pwrite(td, uap->fd, uap->buf, uap->nbyte,
1883 	    PAIR32TO64(off_t, uap->offset)));
1884 }
1885 
1886 #ifdef COMPAT_43
1887 int
1888 ofreebsd32_lseek(struct thread *td, struct ofreebsd32_lseek_args *uap)
1889 {
1890 
1891 	return (kern_lseek(td, uap->fd, uap->offset, uap->whence));
1892 }
1893 #endif
1894 
1895 int
1896 freebsd32_lseek(struct thread *td, struct freebsd32_lseek_args *uap)
1897 {
1898 	int error;
1899 	off_t pos;
1900 
1901 	error = kern_lseek(td, uap->fd, PAIR32TO64(off_t, uap->offset),
1902 	    uap->whence);
1903 	/* Expand the quad return into two parts for eax and edx */
1904 	pos = td->td_uretoff.tdu_off;
1905 	td->td_retval[RETVAL_LO] = pos & 0xffffffff;	/* %eax */
1906 	td->td_retval[RETVAL_HI] = pos >> 32;		/* %edx */
1907 	return error;
1908 }
1909 
1910 int
1911 freebsd32_truncate(struct thread *td, struct freebsd32_truncate_args *uap)
1912 {
1913 
1914 	return (kern_truncate(td, uap->path, UIO_USERSPACE,
1915 	    PAIR32TO64(off_t, uap->length)));
1916 }
1917 
1918 int
1919 freebsd32_ftruncate(struct thread *td, struct freebsd32_ftruncate_args *uap)
1920 {
1921 
1922 	return (kern_ftruncate(td, uap->fd, PAIR32TO64(off_t, uap->length)));
1923 }
1924 
1925 #ifdef COMPAT_43
1926 int
1927 ofreebsd32_getdirentries(struct thread *td,
1928     struct ofreebsd32_getdirentries_args *uap)
1929 {
1930 	struct ogetdirentries_args ap;
1931 	int error;
1932 	long loff;
1933 	int32_t loff_cut;
1934 
1935 	ap.fd = uap->fd;
1936 	ap.buf = uap->buf;
1937 	ap.count = uap->count;
1938 	ap.basep = NULL;
1939 	error = kern_ogetdirentries(td, &ap, &loff);
1940 	if (error == 0) {
1941 		loff_cut = loff;
1942 		error = copyout(&loff_cut, uap->basep, sizeof(int32_t));
1943 	}
1944 	return (error);
1945 }
1946 #endif
1947 
1948 #if defined(COMPAT_FREEBSD11)
1949 int
1950 freebsd11_freebsd32_getdirentries(struct thread *td,
1951     struct freebsd11_freebsd32_getdirentries_args *uap)
1952 {
1953 	long base;
1954 	int32_t base32;
1955 	int error;
1956 
1957 	error = freebsd11_kern_getdirentries(td, uap->fd, uap->buf, uap->count,
1958 	    &base, NULL);
1959 	if (error)
1960 		return (error);
1961 	if (uap->basep != NULL) {
1962 		base32 = base;
1963 		error = copyout(&base32, uap->basep, sizeof(int32_t));
1964 	}
1965 	return (error);
1966 }
1967 
1968 int
1969 freebsd11_freebsd32_getdents(struct thread *td,
1970     struct freebsd11_freebsd32_getdents_args *uap)
1971 {
1972 	struct freebsd11_freebsd32_getdirentries_args ap;
1973 
1974 	ap.fd = uap->fd;
1975 	ap.buf = uap->buf;
1976 	ap.count = uap->count;
1977 	ap.basep = NULL;
1978 	return (freebsd11_freebsd32_getdirentries(td, &ap));
1979 }
1980 #endif /* COMPAT_FREEBSD11 */
1981 
1982 #ifdef COMPAT_FREEBSD6
1983 /* versions with the 'int pad' argument */
1984 int
1985 freebsd6_freebsd32_pread(struct thread *td, struct freebsd6_freebsd32_pread_args *uap)
1986 {
1987 
1988 	return (kern_pread(td, uap->fd, uap->buf, uap->nbyte,
1989 	    PAIR32TO64(off_t, uap->offset)));
1990 }
1991 
1992 int
1993 freebsd6_freebsd32_pwrite(struct thread *td, struct freebsd6_freebsd32_pwrite_args *uap)
1994 {
1995 
1996 	return (kern_pwrite(td, uap->fd, uap->buf, uap->nbyte,
1997 	    PAIR32TO64(off_t, uap->offset)));
1998 }
1999 
2000 int
2001 freebsd6_freebsd32_lseek(struct thread *td, struct freebsd6_freebsd32_lseek_args *uap)
2002 {
2003 	int error;
2004 	off_t pos;
2005 
2006 	error = kern_lseek(td, uap->fd, PAIR32TO64(off_t, uap->offset),
2007 	    uap->whence);
2008 	/* Expand the quad return into two parts for eax and edx */
2009 	pos = *(off_t *)(td->td_retval);
2010 	td->td_retval[RETVAL_LO] = pos & 0xffffffff;	/* %eax */
2011 	td->td_retval[RETVAL_HI] = pos >> 32;		/* %edx */
2012 	return error;
2013 }
2014 
2015 int
2016 freebsd6_freebsd32_truncate(struct thread *td, struct freebsd6_freebsd32_truncate_args *uap)
2017 {
2018 
2019 	return (kern_truncate(td, uap->path, UIO_USERSPACE,
2020 	    PAIR32TO64(off_t, uap->length)));
2021 }
2022 
2023 int
2024 freebsd6_freebsd32_ftruncate(struct thread *td, struct freebsd6_freebsd32_ftruncate_args *uap)
2025 {
2026 
2027 	return (kern_ftruncate(td, uap->fd, PAIR32TO64(off_t, uap->length)));
2028 }
2029 #endif /* COMPAT_FREEBSD6 */
2030 
2031 struct sf_hdtr32 {
2032 	uint32_t headers;
2033 	int hdr_cnt;
2034 	uint32_t trailers;
2035 	int trl_cnt;
2036 };
2037 
2038 static int
2039 freebsd32_do_sendfile(struct thread *td,
2040     struct freebsd32_sendfile_args *uap, int compat)
2041 {
2042 	struct sf_hdtr32 hdtr32;
2043 	struct sf_hdtr hdtr;
2044 	struct uio *hdr_uio, *trl_uio;
2045 	struct file *fp;
2046 	cap_rights_t rights;
2047 	struct iovec32 *iov32;
2048 	off_t offset, sbytes;
2049 	int error;
2050 
2051 	offset = PAIR32TO64(off_t, uap->offset);
2052 	if (offset < 0)
2053 		return (EINVAL);
2054 
2055 	hdr_uio = trl_uio = NULL;
2056 
2057 	if (uap->hdtr != NULL) {
2058 		error = copyin(uap->hdtr, &hdtr32, sizeof(hdtr32));
2059 		if (error)
2060 			goto out;
2061 		PTRIN_CP(hdtr32, hdtr, headers);
2062 		CP(hdtr32, hdtr, hdr_cnt);
2063 		PTRIN_CP(hdtr32, hdtr, trailers);
2064 		CP(hdtr32, hdtr, trl_cnt);
2065 
2066 		if (hdtr.headers != NULL) {
2067 			iov32 = PTRIN(hdtr32.headers);
2068 			error = freebsd32_copyinuio(iov32,
2069 			    hdtr32.hdr_cnt, &hdr_uio);
2070 			if (error)
2071 				goto out;
2072 #ifdef COMPAT_FREEBSD4
2073 			/*
2074 			 * In FreeBSD < 5.0 the nbytes to send also included
2075 			 * the header.  If compat is specified subtract the
2076 			 * header size from nbytes.
2077 			 */
2078 			if (compat) {
2079 				if (uap->nbytes > hdr_uio->uio_resid)
2080 					uap->nbytes -= hdr_uio->uio_resid;
2081 				else
2082 					uap->nbytes = 0;
2083 			}
2084 #endif
2085 		}
2086 		if (hdtr.trailers != NULL) {
2087 			iov32 = PTRIN(hdtr32.trailers);
2088 			error = freebsd32_copyinuio(iov32,
2089 			    hdtr32.trl_cnt, &trl_uio);
2090 			if (error)
2091 				goto out;
2092 		}
2093 	}
2094 
2095 	AUDIT_ARG_FD(uap->fd);
2096 
2097 	if ((error = fget_read(td, uap->fd,
2098 	    cap_rights_init(&rights, CAP_PREAD), &fp)) != 0)
2099 		goto out;
2100 
2101 	error = fo_sendfile(fp, uap->s, hdr_uio, trl_uio, offset,
2102 	    uap->nbytes, &sbytes, uap->flags, td);
2103 	fdrop(fp, td);
2104 
2105 	if (uap->sbytes != NULL)
2106 		copyout(&sbytes, uap->sbytes, sizeof(off_t));
2107 
2108 out:
2109 	if (hdr_uio)
2110 		free(hdr_uio, M_IOV);
2111 	if (trl_uio)
2112 		free(trl_uio, M_IOV);
2113 	return (error);
2114 }
2115 
2116 #ifdef COMPAT_FREEBSD4
2117 int
2118 freebsd4_freebsd32_sendfile(struct thread *td,
2119     struct freebsd4_freebsd32_sendfile_args *uap)
2120 {
2121 	return (freebsd32_do_sendfile(td,
2122 	    (struct freebsd32_sendfile_args *)uap, 1));
2123 }
2124 #endif
2125 
2126 int
2127 freebsd32_sendfile(struct thread *td, struct freebsd32_sendfile_args *uap)
2128 {
2129 
2130 	return (freebsd32_do_sendfile(td, uap, 0));
2131 }
2132 
2133 static void
2134 copy_stat(struct stat *in, struct stat32 *out)
2135 {
2136 
2137 	CP(*in, *out, st_dev);
2138 	CP(*in, *out, st_ino);
2139 	CP(*in, *out, st_mode);
2140 	CP(*in, *out, st_nlink);
2141 	CP(*in, *out, st_uid);
2142 	CP(*in, *out, st_gid);
2143 	CP(*in, *out, st_rdev);
2144 	TS_CP(*in, *out, st_atim);
2145 	TS_CP(*in, *out, st_mtim);
2146 	TS_CP(*in, *out, st_ctim);
2147 	CP(*in, *out, st_size);
2148 	CP(*in, *out, st_blocks);
2149 	CP(*in, *out, st_blksize);
2150 	CP(*in, *out, st_flags);
2151 	CP(*in, *out, st_gen);
2152 	TS_CP(*in, *out, st_birthtim);
2153 	out->st_padding0 = 0;
2154 	out->st_padding1 = 0;
2155 #ifdef __STAT32_TIME_T_EXT
2156 	out->st_atim_ext = 0;
2157 	out->st_mtim_ext = 0;
2158 	out->st_ctim_ext = 0;
2159 	out->st_btim_ext = 0;
2160 #endif
2161 	bzero(out->st_spare, sizeof(out->st_spare));
2162 }
2163 
2164 #ifdef COMPAT_43
2165 static void
2166 copy_ostat(struct stat *in, struct ostat32 *out)
2167 {
2168 
2169 	bzero(out, sizeof(*out));
2170 	CP(*in, *out, st_dev);
2171 	CP(*in, *out, st_ino);
2172 	CP(*in, *out, st_mode);
2173 	CP(*in, *out, st_nlink);
2174 	CP(*in, *out, st_uid);
2175 	CP(*in, *out, st_gid);
2176 	CP(*in, *out, st_rdev);
2177 	out->st_size = MIN(in->st_size, INT32_MAX);
2178 	TS_CP(*in, *out, st_atim);
2179 	TS_CP(*in, *out, st_mtim);
2180 	TS_CP(*in, *out, st_ctim);
2181 	CP(*in, *out, st_blksize);
2182 	CP(*in, *out, st_blocks);
2183 	CP(*in, *out, st_flags);
2184 	CP(*in, *out, st_gen);
2185 }
2186 #endif
2187 
2188 #ifdef COMPAT_43
2189 int
2190 ofreebsd32_stat(struct thread *td, struct ofreebsd32_stat_args *uap)
2191 {
2192 	struct stat sb;
2193 	struct ostat32 sb32;
2194 	int error;
2195 
2196 	error = kern_statat(td, 0, AT_FDCWD, uap->path, UIO_USERSPACE,
2197 	    &sb, NULL);
2198 	if (error)
2199 		return (error);
2200 	copy_ostat(&sb, &sb32);
2201 	error = copyout(&sb32, uap->ub, sizeof (sb32));
2202 	return (error);
2203 }
2204 #endif
2205 
2206 int
2207 freebsd32_fstat(struct thread *td, struct freebsd32_fstat_args *uap)
2208 {
2209 	struct stat ub;
2210 	struct stat32 ub32;
2211 	int error;
2212 
2213 	error = kern_fstat(td, uap->fd, &ub);
2214 	if (error)
2215 		return (error);
2216 	copy_stat(&ub, &ub32);
2217 	error = copyout(&ub32, uap->ub, sizeof(ub32));
2218 	return (error);
2219 }
2220 
2221 #ifdef COMPAT_43
2222 int
2223 ofreebsd32_fstat(struct thread *td, struct ofreebsd32_fstat_args *uap)
2224 {
2225 	struct stat ub;
2226 	struct ostat32 ub32;
2227 	int error;
2228 
2229 	error = kern_fstat(td, uap->fd, &ub);
2230 	if (error)
2231 		return (error);
2232 	copy_ostat(&ub, &ub32);
2233 	error = copyout(&ub32, uap->ub, sizeof(ub32));
2234 	return (error);
2235 }
2236 #endif
2237 
2238 int
2239 freebsd32_fstatat(struct thread *td, struct freebsd32_fstatat_args *uap)
2240 {
2241 	struct stat ub;
2242 	struct stat32 ub32;
2243 	int error;
2244 
2245 	error = kern_statat(td, uap->flag, uap->fd, uap->path, UIO_USERSPACE,
2246 	    &ub, NULL);
2247 	if (error)
2248 		return (error);
2249 	copy_stat(&ub, &ub32);
2250 	error = copyout(&ub32, uap->buf, sizeof(ub32));
2251 	return (error);
2252 }
2253 
2254 #ifdef COMPAT_43
2255 int
2256 ofreebsd32_lstat(struct thread *td, struct ofreebsd32_lstat_args *uap)
2257 {
2258 	struct stat sb;
2259 	struct ostat32 sb32;
2260 	int error;
2261 
2262 	error = kern_statat(td, AT_SYMLINK_NOFOLLOW, AT_FDCWD, uap->path,
2263 	    UIO_USERSPACE, &sb, NULL);
2264 	if (error)
2265 		return (error);
2266 	copy_ostat(&sb, &sb32);
2267 	error = copyout(&sb32, uap->ub, sizeof (sb32));
2268 	return (error);
2269 }
2270 #endif
2271 
2272 int
2273 freebsd32_fhstat(struct thread *td, struct freebsd32_fhstat_args *uap)
2274 {
2275 	struct stat sb;
2276 	struct stat32 sb32;
2277 	struct fhandle fh;
2278 	int error;
2279 
2280 	error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t));
2281         if (error != 0)
2282                 return (error);
2283 	error = kern_fhstat(td, fh, &sb);
2284 	if (error != 0)
2285 		return (error);
2286 	copy_stat(&sb, &sb32);
2287 	error = copyout(&sb32, uap->sb, sizeof (sb32));
2288 	return (error);
2289 }
2290 
2291 #if defined(COMPAT_FREEBSD11)
2292 extern int ino64_trunc_error;
2293 
2294 static int
2295 freebsd11_cvtstat32(struct stat *in, struct freebsd11_stat32 *out)
2296 {
2297 
2298 	CP(*in, *out, st_ino);
2299 	if (in->st_ino != out->st_ino) {
2300 		switch (ino64_trunc_error) {
2301 		default:
2302 		case 0:
2303 			break;
2304 		case 1:
2305 			return (EOVERFLOW);
2306 		case 2:
2307 			out->st_ino = UINT32_MAX;
2308 			break;
2309 		}
2310 	}
2311 	CP(*in, *out, st_nlink);
2312 	if (in->st_nlink != out->st_nlink) {
2313 		switch (ino64_trunc_error) {
2314 		default:
2315 		case 0:
2316 			break;
2317 		case 1:
2318 			return (EOVERFLOW);
2319 		case 2:
2320 			out->st_nlink = UINT16_MAX;
2321 			break;
2322 		}
2323 	}
2324 	out->st_dev = in->st_dev;
2325 	if (out->st_dev != in->st_dev) {
2326 		switch (ino64_trunc_error) {
2327 		default:
2328 			break;
2329 		case 1:
2330 			return (EOVERFLOW);
2331 		}
2332 	}
2333 	CP(*in, *out, st_mode);
2334 	CP(*in, *out, st_uid);
2335 	CP(*in, *out, st_gid);
2336 	out->st_rdev = in->st_rdev;
2337 	if (out->st_rdev != in->st_rdev) {
2338 		switch (ino64_trunc_error) {
2339 		default:
2340 			break;
2341 		case 1:
2342 			return (EOVERFLOW);
2343 		}
2344 	}
2345 	TS_CP(*in, *out, st_atim);
2346 	TS_CP(*in, *out, st_mtim);
2347 	TS_CP(*in, *out, st_ctim);
2348 	CP(*in, *out, st_size);
2349 	CP(*in, *out, st_blocks);
2350 	CP(*in, *out, st_blksize);
2351 	CP(*in, *out, st_flags);
2352 	CP(*in, *out, st_gen);
2353 	TS_CP(*in, *out, st_birthtim);
2354 	out->st_lspare = 0;
2355 	bzero((char *)&out->st_birthtim + sizeof(out->st_birthtim),
2356 	    sizeof(*out) - offsetof(struct freebsd11_stat32,
2357 	    st_birthtim) - sizeof(out->st_birthtim));
2358 	return (0);
2359 }
2360 
2361 int
2362 freebsd11_freebsd32_stat(struct thread *td,
2363     struct freebsd11_freebsd32_stat_args *uap)
2364 {
2365 	struct stat sb;
2366 	struct freebsd11_stat32 sb32;
2367 	int error;
2368 
2369 	error = kern_statat(td, 0, AT_FDCWD, uap->path, UIO_USERSPACE,
2370 	    &sb, NULL);
2371 	if (error != 0)
2372 		return (error);
2373 	error = freebsd11_cvtstat32(&sb, &sb32);
2374 	if (error == 0)
2375 		error = copyout(&sb32, uap->ub, sizeof (sb32));
2376 	return (error);
2377 }
2378 
2379 int
2380 freebsd11_freebsd32_fstat(struct thread *td,
2381     struct freebsd11_freebsd32_fstat_args *uap)
2382 {
2383 	struct stat sb;
2384 	struct freebsd11_stat32 sb32;
2385 	int error;
2386 
2387 	error = kern_fstat(td, uap->fd, &sb);
2388 	if (error != 0)
2389 		return (error);
2390 	error = freebsd11_cvtstat32(&sb, &sb32);
2391 	if (error == 0)
2392 		error = copyout(&sb32, uap->ub, sizeof (sb32));
2393 	return (error);
2394 }
2395 
2396 int
2397 freebsd11_freebsd32_fstatat(struct thread *td,
2398     struct freebsd11_freebsd32_fstatat_args *uap)
2399 {
2400 	struct stat sb;
2401 	struct freebsd11_stat32 sb32;
2402 	int error;
2403 
2404 	error = kern_statat(td, uap->flag, uap->fd, uap->path, UIO_USERSPACE,
2405 	    &sb, NULL);
2406 	if (error != 0)
2407 		return (error);
2408 	error = freebsd11_cvtstat32(&sb, &sb32);
2409 	if (error == 0)
2410 		error = copyout(&sb32, uap->buf, sizeof (sb32));
2411 	return (error);
2412 }
2413 
2414 int
2415 freebsd11_freebsd32_lstat(struct thread *td,
2416     struct freebsd11_freebsd32_lstat_args *uap)
2417 {
2418 	struct stat sb;
2419 	struct freebsd11_stat32 sb32;
2420 	int error;
2421 
2422 	error = kern_statat(td, AT_SYMLINK_NOFOLLOW, AT_FDCWD, uap->path,
2423 	    UIO_USERSPACE, &sb, NULL);
2424 	if (error != 0)
2425 		return (error);
2426 	error = freebsd11_cvtstat32(&sb, &sb32);
2427 	if (error == 0)
2428 		error = copyout(&sb32, uap->ub, sizeof (sb32));
2429 	return (error);
2430 }
2431 
2432 int
2433 freebsd11_freebsd32_fhstat(struct thread *td,
2434     struct freebsd11_freebsd32_fhstat_args *uap)
2435 {
2436 	struct stat sb;
2437 	struct freebsd11_stat32 sb32;
2438 	struct fhandle fh;
2439 	int error;
2440 
2441 	error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t));
2442         if (error != 0)
2443                 return (error);
2444 	error = kern_fhstat(td, fh, &sb);
2445 	if (error != 0)
2446 		return (error);
2447 	error = freebsd11_cvtstat32(&sb, &sb32);
2448 	if (error == 0)
2449 		error = copyout(&sb32, uap->sb, sizeof (sb32));
2450 	return (error);
2451 }
2452 #endif
2453 
2454 int
2455 freebsd32___sysctl(struct thread *td, struct freebsd32___sysctl_args *uap)
2456 {
2457 	int error, name[CTL_MAXNAME];
2458 	size_t j, oldlen;
2459 	uint32_t tmp;
2460 
2461 	if (uap->namelen > CTL_MAXNAME || uap->namelen < 2)
2462 		return (EINVAL);
2463  	error = copyin(uap->name, name, uap->namelen * sizeof(int));
2464  	if (error)
2465 		return (error);
2466 	if (uap->oldlenp) {
2467 		error = fueword32(uap->oldlenp, &tmp);
2468 		oldlen = tmp;
2469 	} else {
2470 		oldlen = 0;
2471 	}
2472 	if (error != 0)
2473 		return (EFAULT);
2474 	error = userland_sysctl(td, name, uap->namelen,
2475 		uap->old, &oldlen, 1,
2476 		uap->new, uap->newlen, &j, SCTL_MASK32);
2477 	if (error)
2478 		return (error);
2479 	if (uap->oldlenp)
2480 		suword32(uap->oldlenp, j);
2481 	return (0);
2482 }
2483 
2484 int
2485 freebsd32___sysctlbyname(struct thread *td,
2486     struct freebsd32___sysctlbyname_args *uap)
2487 {
2488 	size_t oldlen, rv;
2489 	int error;
2490 	uint32_t tmp;
2491 
2492 	if (uap->oldlenp != NULL) {
2493 		error = fueword32(uap->oldlenp, &tmp);
2494 		oldlen = tmp;
2495 	} else {
2496 		error = oldlen = 0;
2497 	}
2498 	if (error != 0)
2499 		return (EFAULT);
2500 	error = kern___sysctlbyname(td, uap->name, uap->namelen, uap->old,
2501 	    &oldlen, uap->new, uap->newlen, &rv, SCTL_MASK32, 1);
2502 	if (error != 0)
2503 		return (error);
2504 	if (uap->oldlenp != NULL)
2505 		error = suword32(uap->oldlenp, rv);
2506 
2507 	return (error);
2508 }
2509 
2510 int
2511 freebsd32_jail(struct thread *td, struct freebsd32_jail_args *uap)
2512 {
2513 	uint32_t version;
2514 	int error;
2515 	struct jail j;
2516 
2517 	error = copyin(uap->jail, &version, sizeof(uint32_t));
2518 	if (error)
2519 		return (error);
2520 
2521 	switch (version) {
2522 	case 0:
2523 	{
2524 		/* FreeBSD single IPv4 jails. */
2525 		struct jail32_v0 j32_v0;
2526 
2527 		bzero(&j, sizeof(struct jail));
2528 		error = copyin(uap->jail, &j32_v0, sizeof(struct jail32_v0));
2529 		if (error)
2530 			return (error);
2531 		CP(j32_v0, j, version);
2532 		PTRIN_CP(j32_v0, j, path);
2533 		PTRIN_CP(j32_v0, j, hostname);
2534 		j.ip4s = htonl(j32_v0.ip_number);	/* jail_v0 is host order */
2535 		break;
2536 	}
2537 
2538 	case 1:
2539 		/*
2540 		 * Version 1 was used by multi-IPv4 jail implementations
2541 		 * that never made it into the official kernel.
2542 		 */
2543 		return (EINVAL);
2544 
2545 	case 2:	/* JAIL_API_VERSION */
2546 	{
2547 		/* FreeBSD multi-IPv4/IPv6,noIP jails. */
2548 		struct jail32 j32;
2549 
2550 		error = copyin(uap->jail, &j32, sizeof(struct jail32));
2551 		if (error)
2552 			return (error);
2553 		CP(j32, j, version);
2554 		PTRIN_CP(j32, j, path);
2555 		PTRIN_CP(j32, j, hostname);
2556 		PTRIN_CP(j32, j, jailname);
2557 		CP(j32, j, ip4s);
2558 		CP(j32, j, ip6s);
2559 		PTRIN_CP(j32, j, ip4);
2560 		PTRIN_CP(j32, j, ip6);
2561 		break;
2562 	}
2563 
2564 	default:
2565 		/* Sci-Fi jails are not supported, sorry. */
2566 		return (EINVAL);
2567 	}
2568 	return (kern_jail(td, &j));
2569 }
2570 
2571 int
2572 freebsd32_jail_set(struct thread *td, struct freebsd32_jail_set_args *uap)
2573 {
2574 	struct uio *auio;
2575 	int error;
2576 
2577 	/* Check that we have an even number of iovecs. */
2578 	if (uap->iovcnt & 1)
2579 		return (EINVAL);
2580 
2581 	error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio);
2582 	if (error)
2583 		return (error);
2584 	error = kern_jail_set(td, auio, uap->flags);
2585 	free(auio, M_IOV);
2586 	return (error);
2587 }
2588 
2589 int
2590 freebsd32_jail_get(struct thread *td, struct freebsd32_jail_get_args *uap)
2591 {
2592 	struct iovec32 iov32;
2593 	struct uio *auio;
2594 	int error, i;
2595 
2596 	/* Check that we have an even number of iovecs. */
2597 	if (uap->iovcnt & 1)
2598 		return (EINVAL);
2599 
2600 	error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio);
2601 	if (error)
2602 		return (error);
2603 	error = kern_jail_get(td, auio, uap->flags);
2604 	if (error == 0)
2605 		for (i = 0; i < uap->iovcnt; i++) {
2606 			PTROUT_CP(auio->uio_iov[i], iov32, iov_base);
2607 			CP(auio->uio_iov[i], iov32, iov_len);
2608 			error = copyout(&iov32, uap->iovp + i, sizeof(iov32));
2609 			if (error != 0)
2610 				break;
2611 		}
2612 	free(auio, M_IOV);
2613 	return (error);
2614 }
2615 
2616 int
2617 freebsd32_sigaction(struct thread *td, struct freebsd32_sigaction_args *uap)
2618 {
2619 	struct sigaction32 s32;
2620 	struct sigaction sa, osa, *sap;
2621 	int error;
2622 
2623 	if (uap->act) {
2624 		error = copyin(uap->act, &s32, sizeof(s32));
2625 		if (error)
2626 			return (error);
2627 		sa.sa_handler = PTRIN(s32.sa_u);
2628 		CP(s32, sa, sa_flags);
2629 		CP(s32, sa, sa_mask);
2630 		sap = &sa;
2631 	} else
2632 		sap = NULL;
2633 	error = kern_sigaction(td, uap->sig, sap, &osa, 0);
2634 	if (error == 0 && uap->oact != NULL) {
2635 		s32.sa_u = PTROUT(osa.sa_handler);
2636 		CP(osa, s32, sa_flags);
2637 		CP(osa, s32, sa_mask);
2638 		error = copyout(&s32, uap->oact, sizeof(s32));
2639 	}
2640 	return (error);
2641 }
2642 
2643 #ifdef COMPAT_FREEBSD4
2644 int
2645 freebsd4_freebsd32_sigaction(struct thread *td,
2646 			     struct freebsd4_freebsd32_sigaction_args *uap)
2647 {
2648 	struct sigaction32 s32;
2649 	struct sigaction sa, osa, *sap;
2650 	int error;
2651 
2652 	if (uap->act) {
2653 		error = copyin(uap->act, &s32, sizeof(s32));
2654 		if (error)
2655 			return (error);
2656 		sa.sa_handler = PTRIN(s32.sa_u);
2657 		CP(s32, sa, sa_flags);
2658 		CP(s32, sa, sa_mask);
2659 		sap = &sa;
2660 	} else
2661 		sap = NULL;
2662 	error = kern_sigaction(td, uap->sig, sap, &osa, KSA_FREEBSD4);
2663 	if (error == 0 && uap->oact != NULL) {
2664 		s32.sa_u = PTROUT(osa.sa_handler);
2665 		CP(osa, s32, sa_flags);
2666 		CP(osa, s32, sa_mask);
2667 		error = copyout(&s32, uap->oact, sizeof(s32));
2668 	}
2669 	return (error);
2670 }
2671 #endif
2672 
2673 #ifdef COMPAT_43
2674 struct osigaction32 {
2675 	u_int32_t	sa_u;
2676 	osigset_t	sa_mask;
2677 	int		sa_flags;
2678 };
2679 
2680 #define	ONSIG	32
2681 
2682 int
2683 ofreebsd32_sigaction(struct thread *td,
2684 			     struct ofreebsd32_sigaction_args *uap)
2685 {
2686 	struct osigaction32 s32;
2687 	struct sigaction sa, osa, *sap;
2688 	int error;
2689 
2690 	if (uap->signum <= 0 || uap->signum >= ONSIG)
2691 		return (EINVAL);
2692 
2693 	if (uap->nsa) {
2694 		error = copyin(uap->nsa, &s32, sizeof(s32));
2695 		if (error)
2696 			return (error);
2697 		sa.sa_handler = PTRIN(s32.sa_u);
2698 		CP(s32, sa, sa_flags);
2699 		OSIG2SIG(s32.sa_mask, sa.sa_mask);
2700 		sap = &sa;
2701 	} else
2702 		sap = NULL;
2703 	error = kern_sigaction(td, uap->signum, sap, &osa, KSA_OSIGSET);
2704 	if (error == 0 && uap->osa != NULL) {
2705 		s32.sa_u = PTROUT(osa.sa_handler);
2706 		CP(osa, s32, sa_flags);
2707 		SIG2OSIG(osa.sa_mask, s32.sa_mask);
2708 		error = copyout(&s32, uap->osa, sizeof(s32));
2709 	}
2710 	return (error);
2711 }
2712 
2713 int
2714 ofreebsd32_sigprocmask(struct thread *td,
2715 			       struct ofreebsd32_sigprocmask_args *uap)
2716 {
2717 	sigset_t set, oset;
2718 	int error;
2719 
2720 	OSIG2SIG(uap->mask, set);
2721 	error = kern_sigprocmask(td, uap->how, &set, &oset, SIGPROCMASK_OLD);
2722 	SIG2OSIG(oset, td->td_retval[0]);
2723 	return (error);
2724 }
2725 
2726 int
2727 ofreebsd32_sigpending(struct thread *td,
2728 			      struct ofreebsd32_sigpending_args *uap)
2729 {
2730 	struct proc *p = td->td_proc;
2731 	sigset_t siglist;
2732 
2733 	PROC_LOCK(p);
2734 	siglist = p->p_siglist;
2735 	SIGSETOR(siglist, td->td_siglist);
2736 	PROC_UNLOCK(p);
2737 	SIG2OSIG(siglist, td->td_retval[0]);
2738 	return (0);
2739 }
2740 
2741 struct sigvec32 {
2742 	u_int32_t	sv_handler;
2743 	int		sv_mask;
2744 	int		sv_flags;
2745 };
2746 
2747 int
2748 ofreebsd32_sigvec(struct thread *td,
2749 			  struct ofreebsd32_sigvec_args *uap)
2750 {
2751 	struct sigvec32 vec;
2752 	struct sigaction sa, osa, *sap;
2753 	int error;
2754 
2755 	if (uap->signum <= 0 || uap->signum >= ONSIG)
2756 		return (EINVAL);
2757 
2758 	if (uap->nsv) {
2759 		error = copyin(uap->nsv, &vec, sizeof(vec));
2760 		if (error)
2761 			return (error);
2762 		sa.sa_handler = PTRIN(vec.sv_handler);
2763 		OSIG2SIG(vec.sv_mask, sa.sa_mask);
2764 		sa.sa_flags = vec.sv_flags;
2765 		sa.sa_flags ^= SA_RESTART;
2766 		sap = &sa;
2767 	} else
2768 		sap = NULL;
2769 	error = kern_sigaction(td, uap->signum, sap, &osa, KSA_OSIGSET);
2770 	if (error == 0 && uap->osv != NULL) {
2771 		vec.sv_handler = PTROUT(osa.sa_handler);
2772 		SIG2OSIG(osa.sa_mask, vec.sv_mask);
2773 		vec.sv_flags = osa.sa_flags;
2774 		vec.sv_flags &= ~SA_NOCLDWAIT;
2775 		vec.sv_flags ^= SA_RESTART;
2776 		error = copyout(&vec, uap->osv, sizeof(vec));
2777 	}
2778 	return (error);
2779 }
2780 
2781 int
2782 ofreebsd32_sigblock(struct thread *td,
2783 			    struct ofreebsd32_sigblock_args *uap)
2784 {
2785 	sigset_t set, oset;
2786 
2787 	OSIG2SIG(uap->mask, set);
2788 	kern_sigprocmask(td, SIG_BLOCK, &set, &oset, 0);
2789 	SIG2OSIG(oset, td->td_retval[0]);
2790 	return (0);
2791 }
2792 
2793 int
2794 ofreebsd32_sigsetmask(struct thread *td,
2795 			      struct ofreebsd32_sigsetmask_args *uap)
2796 {
2797 	sigset_t set, oset;
2798 
2799 	OSIG2SIG(uap->mask, set);
2800 	kern_sigprocmask(td, SIG_SETMASK, &set, &oset, 0);
2801 	SIG2OSIG(oset, td->td_retval[0]);
2802 	return (0);
2803 }
2804 
2805 int
2806 ofreebsd32_sigsuspend(struct thread *td,
2807 			      struct ofreebsd32_sigsuspend_args *uap)
2808 {
2809 	sigset_t mask;
2810 
2811 	OSIG2SIG(uap->mask, mask);
2812 	return (kern_sigsuspend(td, mask));
2813 }
2814 
2815 struct sigstack32 {
2816 	u_int32_t	ss_sp;
2817 	int		ss_onstack;
2818 };
2819 
2820 int
2821 ofreebsd32_sigstack(struct thread *td,
2822 			    struct ofreebsd32_sigstack_args *uap)
2823 {
2824 	struct sigstack32 s32;
2825 	struct sigstack nss, oss;
2826 	int error = 0, unss;
2827 
2828 	if (uap->nss != NULL) {
2829 		error = copyin(uap->nss, &s32, sizeof(s32));
2830 		if (error)
2831 			return (error);
2832 		nss.ss_sp = PTRIN(s32.ss_sp);
2833 		CP(s32, nss, ss_onstack);
2834 		unss = 1;
2835 	} else {
2836 		unss = 0;
2837 	}
2838 	oss.ss_sp = td->td_sigstk.ss_sp;
2839 	oss.ss_onstack = sigonstack(cpu_getstack(td));
2840 	if (unss) {
2841 		td->td_sigstk.ss_sp = nss.ss_sp;
2842 		td->td_sigstk.ss_size = 0;
2843 		td->td_sigstk.ss_flags |= (nss.ss_onstack & SS_ONSTACK);
2844 		td->td_pflags |= TDP_ALTSTACK;
2845 	}
2846 	if (uap->oss != NULL) {
2847 		s32.ss_sp = PTROUT(oss.ss_sp);
2848 		CP(oss, s32, ss_onstack);
2849 		error = copyout(&s32, uap->oss, sizeof(s32));
2850 	}
2851 	return (error);
2852 }
2853 #endif
2854 
2855 int
2856 freebsd32_nanosleep(struct thread *td, struct freebsd32_nanosleep_args *uap)
2857 {
2858 
2859 	return (freebsd32_user_clock_nanosleep(td, CLOCK_REALTIME,
2860 	    TIMER_RELTIME, uap->rqtp, uap->rmtp));
2861 }
2862 
2863 int
2864 freebsd32_clock_nanosleep(struct thread *td,
2865     struct freebsd32_clock_nanosleep_args *uap)
2866 {
2867 	int error;
2868 
2869 	error = freebsd32_user_clock_nanosleep(td, uap->clock_id, uap->flags,
2870 	    uap->rqtp, uap->rmtp);
2871 	return (kern_posix_error(td, error));
2872 }
2873 
2874 static int
2875 freebsd32_user_clock_nanosleep(struct thread *td, clockid_t clock_id,
2876     int flags, const struct timespec32 *ua_rqtp, struct timespec32 *ua_rmtp)
2877 {
2878 	struct timespec32 rmt32, rqt32;
2879 	struct timespec rmt, rqt;
2880 	int error, error2;
2881 
2882 	error = copyin(ua_rqtp, &rqt32, sizeof(rqt32));
2883 	if (error)
2884 		return (error);
2885 
2886 	CP(rqt32, rqt, tv_sec);
2887 	CP(rqt32, rqt, tv_nsec);
2888 
2889 	error = kern_clock_nanosleep(td, clock_id, flags, &rqt, &rmt);
2890 	if (error == EINTR && ua_rmtp != NULL && (flags & TIMER_ABSTIME) == 0) {
2891 		CP(rmt, rmt32, tv_sec);
2892 		CP(rmt, rmt32, tv_nsec);
2893 
2894 		error2 = copyout(&rmt32, ua_rmtp, sizeof(rmt32));
2895 		if (error2 != 0)
2896 			error = error2;
2897 	}
2898 	return (error);
2899 }
2900 
2901 int
2902 freebsd32_clock_gettime(struct thread *td,
2903 			struct freebsd32_clock_gettime_args *uap)
2904 {
2905 	struct timespec	ats;
2906 	struct timespec32 ats32;
2907 	int error;
2908 
2909 	error = kern_clock_gettime(td, uap->clock_id, &ats);
2910 	if (error == 0) {
2911 		CP(ats, ats32, tv_sec);
2912 		CP(ats, ats32, tv_nsec);
2913 		error = copyout(&ats32, uap->tp, sizeof(ats32));
2914 	}
2915 	return (error);
2916 }
2917 
2918 int
2919 freebsd32_clock_settime(struct thread *td,
2920 			struct freebsd32_clock_settime_args *uap)
2921 {
2922 	struct timespec	ats;
2923 	struct timespec32 ats32;
2924 	int error;
2925 
2926 	error = copyin(uap->tp, &ats32, sizeof(ats32));
2927 	if (error)
2928 		return (error);
2929 	CP(ats32, ats, tv_sec);
2930 	CP(ats32, ats, tv_nsec);
2931 
2932 	return (kern_clock_settime(td, uap->clock_id, &ats));
2933 }
2934 
2935 int
2936 freebsd32_clock_getres(struct thread *td,
2937 		       struct freebsd32_clock_getres_args *uap)
2938 {
2939 	struct timespec	ts;
2940 	struct timespec32 ts32;
2941 	int error;
2942 
2943 	if (uap->tp == NULL)
2944 		return (0);
2945 	error = kern_clock_getres(td, uap->clock_id, &ts);
2946 	if (error == 0) {
2947 		CP(ts, ts32, tv_sec);
2948 		CP(ts, ts32, tv_nsec);
2949 		error = copyout(&ts32, uap->tp, sizeof(ts32));
2950 	}
2951 	return (error);
2952 }
2953 
2954 int freebsd32_ktimer_create(struct thread *td,
2955     struct freebsd32_ktimer_create_args *uap)
2956 {
2957 	struct sigevent32 ev32;
2958 	struct sigevent ev, *evp;
2959 	int error, id;
2960 
2961 	if (uap->evp == NULL) {
2962 		evp = NULL;
2963 	} else {
2964 		evp = &ev;
2965 		error = copyin(uap->evp, &ev32, sizeof(ev32));
2966 		if (error != 0)
2967 			return (error);
2968 		error = convert_sigevent32(&ev32, &ev);
2969 		if (error != 0)
2970 			return (error);
2971 	}
2972 	error = kern_ktimer_create(td, uap->clock_id, evp, &id, -1);
2973 	if (error == 0) {
2974 		error = copyout(&id, uap->timerid, sizeof(int));
2975 		if (error != 0)
2976 			kern_ktimer_delete(td, id);
2977 	}
2978 	return (error);
2979 }
2980 
2981 int
2982 freebsd32_ktimer_settime(struct thread *td,
2983     struct freebsd32_ktimer_settime_args *uap)
2984 {
2985 	struct itimerspec32 val32, oval32;
2986 	struct itimerspec val, oval, *ovalp;
2987 	int error;
2988 
2989 	error = copyin(uap->value, &val32, sizeof(val32));
2990 	if (error != 0)
2991 		return (error);
2992 	ITS_CP(val32, val);
2993 	ovalp = uap->ovalue != NULL ? &oval : NULL;
2994 	error = kern_ktimer_settime(td, uap->timerid, uap->flags, &val, ovalp);
2995 	if (error == 0 && uap->ovalue != NULL) {
2996 		ITS_CP(oval, oval32);
2997 		error = copyout(&oval32, uap->ovalue, sizeof(oval32));
2998 	}
2999 	return (error);
3000 }
3001 
3002 int
3003 freebsd32_ktimer_gettime(struct thread *td,
3004     struct freebsd32_ktimer_gettime_args *uap)
3005 {
3006 	struct itimerspec32 val32;
3007 	struct itimerspec val;
3008 	int error;
3009 
3010 	error = kern_ktimer_gettime(td, uap->timerid, &val);
3011 	if (error == 0) {
3012 		ITS_CP(val, val32);
3013 		error = copyout(&val32, uap->value, sizeof(val32));
3014 	}
3015 	return (error);
3016 }
3017 
3018 int
3019 freebsd32_clock_getcpuclockid2(struct thread *td,
3020     struct freebsd32_clock_getcpuclockid2_args *uap)
3021 {
3022 	clockid_t clk_id;
3023 	int error;
3024 
3025 	error = kern_clock_getcpuclockid2(td, PAIR32TO64(id_t, uap->id),
3026 	    uap->which, &clk_id);
3027 	if (error == 0)
3028 		error = copyout(&clk_id, uap->clock_id, sizeof(clockid_t));
3029 	return (error);
3030 }
3031 
3032 int
3033 freebsd32_thr_new(struct thread *td,
3034 		  struct freebsd32_thr_new_args *uap)
3035 {
3036 	struct thr_param32 param32;
3037 	struct thr_param param;
3038 	int error;
3039 
3040 	if (uap->param_size < 0 ||
3041 	    uap->param_size > sizeof(struct thr_param32))
3042 		return (EINVAL);
3043 	bzero(&param, sizeof(struct thr_param));
3044 	bzero(&param32, sizeof(struct thr_param32));
3045 	error = copyin(uap->param, &param32, uap->param_size);
3046 	if (error != 0)
3047 		return (error);
3048 	param.start_func = PTRIN(param32.start_func);
3049 	param.arg = PTRIN(param32.arg);
3050 	param.stack_base = PTRIN(param32.stack_base);
3051 	param.stack_size = param32.stack_size;
3052 	param.tls_base = PTRIN(param32.tls_base);
3053 	param.tls_size = param32.tls_size;
3054 	param.child_tid = PTRIN(param32.child_tid);
3055 	param.parent_tid = PTRIN(param32.parent_tid);
3056 	param.flags = param32.flags;
3057 	param.rtp = PTRIN(param32.rtp);
3058 	param.spare[0] = PTRIN(param32.spare[0]);
3059 	param.spare[1] = PTRIN(param32.spare[1]);
3060 	param.spare[2] = PTRIN(param32.spare[2]);
3061 
3062 	return (kern_thr_new(td, &param));
3063 }
3064 
3065 int
3066 freebsd32_thr_suspend(struct thread *td, struct freebsd32_thr_suspend_args *uap)
3067 {
3068 	struct timespec32 ts32;
3069 	struct timespec ts, *tsp;
3070 	int error;
3071 
3072 	error = 0;
3073 	tsp = NULL;
3074 	if (uap->timeout != NULL) {
3075 		error = copyin((const void *)uap->timeout, (void *)&ts32,
3076 		    sizeof(struct timespec32));
3077 		if (error != 0)
3078 			return (error);
3079 		ts.tv_sec = ts32.tv_sec;
3080 		ts.tv_nsec = ts32.tv_nsec;
3081 		tsp = &ts;
3082 	}
3083 	return (kern_thr_suspend(td, tsp));
3084 }
3085 
3086 void
3087 siginfo_to_siginfo32(const siginfo_t *src, struct siginfo32 *dst)
3088 {
3089 	bzero(dst, sizeof(*dst));
3090 	dst->si_signo = src->si_signo;
3091 	dst->si_errno = src->si_errno;
3092 	dst->si_code = src->si_code;
3093 	dst->si_pid = src->si_pid;
3094 	dst->si_uid = src->si_uid;
3095 	dst->si_status = src->si_status;
3096 	dst->si_addr = (uintptr_t)src->si_addr;
3097 	dst->si_value.sival_int = src->si_value.sival_int;
3098 	dst->si_timerid = src->si_timerid;
3099 	dst->si_overrun = src->si_overrun;
3100 }
3101 
3102 #ifndef _FREEBSD32_SYSPROTO_H_
3103 struct freebsd32_sigqueue_args {
3104         pid_t pid;
3105         int signum;
3106         /* union sigval32 */ int value;
3107 };
3108 #endif
3109 int
3110 freebsd32_sigqueue(struct thread *td, struct freebsd32_sigqueue_args *uap)
3111 {
3112 	union sigval sv;
3113 
3114 	/*
3115 	 * On 32-bit ABIs, sival_int and sival_ptr are the same.
3116 	 * On 64-bit little-endian ABIs, the low bits are the same.
3117 	 * In 64-bit big-endian ABIs, sival_int overlaps with
3118 	 * sival_ptr's HIGH bits.  We choose to support sival_int
3119 	 * rather than sival_ptr in this case as it seems to be
3120 	 * more common.
3121 	 */
3122 	bzero(&sv, sizeof(sv));
3123 	sv.sival_int = uap->value;
3124 
3125 	return (kern_sigqueue(td, uap->pid, uap->signum, &sv));
3126 }
3127 
3128 int
3129 freebsd32_sigtimedwait(struct thread *td, struct freebsd32_sigtimedwait_args *uap)
3130 {
3131 	struct timespec32 ts32;
3132 	struct timespec ts;
3133 	struct timespec *timeout;
3134 	sigset_t set;
3135 	ksiginfo_t ksi;
3136 	struct siginfo32 si32;
3137 	int error;
3138 
3139 	if (uap->timeout) {
3140 		error = copyin(uap->timeout, &ts32, sizeof(ts32));
3141 		if (error)
3142 			return (error);
3143 		ts.tv_sec = ts32.tv_sec;
3144 		ts.tv_nsec = ts32.tv_nsec;
3145 		timeout = &ts;
3146 	} else
3147 		timeout = NULL;
3148 
3149 	error = copyin(uap->set, &set, sizeof(set));
3150 	if (error)
3151 		return (error);
3152 
3153 	error = kern_sigtimedwait(td, set, &ksi, timeout);
3154 	if (error)
3155 		return (error);
3156 
3157 	if (uap->info) {
3158 		siginfo_to_siginfo32(&ksi.ksi_info, &si32);
3159 		error = copyout(&si32, uap->info, sizeof(struct siginfo32));
3160 	}
3161 
3162 	if (error == 0)
3163 		td->td_retval[0] = ksi.ksi_signo;
3164 	return (error);
3165 }
3166 
3167 /*
3168  * MPSAFE
3169  */
3170 int
3171 freebsd32_sigwaitinfo(struct thread *td, struct freebsd32_sigwaitinfo_args *uap)
3172 {
3173 	ksiginfo_t ksi;
3174 	struct siginfo32 si32;
3175 	sigset_t set;
3176 	int error;
3177 
3178 	error = copyin(uap->set, &set, sizeof(set));
3179 	if (error)
3180 		return (error);
3181 
3182 	error = kern_sigtimedwait(td, set, &ksi, NULL);
3183 	if (error)
3184 		return (error);
3185 
3186 	if (uap->info) {
3187 		siginfo_to_siginfo32(&ksi.ksi_info, &si32);
3188 		error = copyout(&si32, uap->info, sizeof(struct siginfo32));
3189 	}
3190 	if (error == 0)
3191 		td->td_retval[0] = ksi.ksi_signo;
3192 	return (error);
3193 }
3194 
3195 int
3196 freebsd32_cpuset_setid(struct thread *td,
3197     struct freebsd32_cpuset_setid_args *uap)
3198 {
3199 
3200 	return (kern_cpuset_setid(td, uap->which,
3201 	    PAIR32TO64(id_t, uap->id), uap->setid));
3202 }
3203 
3204 int
3205 freebsd32_cpuset_getid(struct thread *td,
3206     struct freebsd32_cpuset_getid_args *uap)
3207 {
3208 
3209 	return (kern_cpuset_getid(td, uap->level, uap->which,
3210 	    PAIR32TO64(id_t, uap->id), uap->setid));
3211 }
3212 
3213 int
3214 freebsd32_cpuset_getaffinity(struct thread *td,
3215     struct freebsd32_cpuset_getaffinity_args *uap)
3216 {
3217 
3218 	return (kern_cpuset_getaffinity(td, uap->level, uap->which,
3219 	    PAIR32TO64(id_t,uap->id), uap->cpusetsize, uap->mask));
3220 }
3221 
3222 int
3223 freebsd32_cpuset_setaffinity(struct thread *td,
3224     struct freebsd32_cpuset_setaffinity_args *uap)
3225 {
3226 
3227 	return (kern_cpuset_setaffinity(td, uap->level, uap->which,
3228 	    PAIR32TO64(id_t,uap->id), uap->cpusetsize, uap->mask));
3229 }
3230 
3231 int
3232 freebsd32_cpuset_getdomain(struct thread *td,
3233     struct freebsd32_cpuset_getdomain_args *uap)
3234 {
3235 
3236 	return (kern_cpuset_getdomain(td, uap->level, uap->which,
3237 	    PAIR32TO64(id_t,uap->id), uap->domainsetsize, uap->mask, uap->policy));
3238 }
3239 
3240 int
3241 freebsd32_cpuset_setdomain(struct thread *td,
3242     struct freebsd32_cpuset_setdomain_args *uap)
3243 {
3244 
3245 	return (kern_cpuset_setdomain(td, uap->level, uap->which,
3246 	    PAIR32TO64(id_t,uap->id), uap->domainsetsize, uap->mask, uap->policy));
3247 }
3248 
3249 int
3250 freebsd32_nmount(struct thread *td,
3251     struct freebsd32_nmount_args /* {
3252     	struct iovec *iovp;
3253     	unsigned int iovcnt;
3254     	int flags;
3255     } */ *uap)
3256 {
3257 	struct uio *auio;
3258 	uint64_t flags;
3259 	int error;
3260 
3261 	/*
3262 	 * Mount flags are now 64-bits. On 32-bit archtectures only
3263 	 * 32-bits are passed in, but from here on everything handles
3264 	 * 64-bit flags correctly.
3265 	 */
3266 	flags = uap->flags;
3267 
3268 	AUDIT_ARG_FFLAGS(flags);
3269 
3270 	/*
3271 	 * Filter out MNT_ROOTFS.  We do not want clients of nmount() in
3272 	 * userspace to set this flag, but we must filter it out if we want
3273 	 * MNT_UPDATE on the root file system to work.
3274 	 * MNT_ROOTFS should only be set by the kernel when mounting its
3275 	 * root file system.
3276 	 */
3277 	flags &= ~MNT_ROOTFS;
3278 
3279 	/*
3280 	 * check that we have an even number of iovec's
3281 	 * and that we have at least two options.
3282 	 */
3283 	if ((uap->iovcnt & 1) || (uap->iovcnt < 4))
3284 		return (EINVAL);
3285 
3286 	error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio);
3287 	if (error)
3288 		return (error);
3289 	error = vfs_donmount(td, flags, auio);
3290 
3291 	free(auio, M_IOV);
3292 	return error;
3293 }
3294 
3295 #if 0
3296 int
3297 freebsd32_xxx(struct thread *td, struct freebsd32_xxx_args *uap)
3298 {
3299 	struct yyy32 *p32, s32;
3300 	struct yyy *p = NULL, s;
3301 	struct xxx_arg ap;
3302 	int error;
3303 
3304 	if (uap->zzz) {
3305 		error = copyin(uap->zzz, &s32, sizeof(s32));
3306 		if (error)
3307 			return (error);
3308 		/* translate in */
3309 		p = &s;
3310 	}
3311 	error = kern_xxx(td, p);
3312 	if (error)
3313 		return (error);
3314 	if (uap->zzz) {
3315 		/* translate out */
3316 		error = copyout(&s32, p32, sizeof(s32));
3317 	}
3318 	return (error);
3319 }
3320 #endif
3321 
3322 int
3323 syscall32_module_handler(struct module *mod, int what, void *arg)
3324 {
3325 
3326 	return (kern_syscall_module_handler(freebsd32_sysent, mod, what, arg));
3327 }
3328 
3329 int
3330 syscall32_helper_register(struct syscall_helper_data *sd, int flags)
3331 {
3332 
3333 	return (kern_syscall_helper_register(freebsd32_sysent, sd, flags));
3334 }
3335 
3336 int
3337 syscall32_helper_unregister(struct syscall_helper_data *sd)
3338 {
3339 
3340 	return (kern_syscall_helper_unregister(freebsd32_sysent, sd));
3341 }
3342 
3343 int
3344 freebsd32_copyout_strings(struct image_params *imgp, uintptr_t *stack_base)
3345 {
3346 	int argc, envc, i;
3347 	u_int32_t *vectp;
3348 	char *stringp;
3349 	uintptr_t destp, ustringp;
3350 	struct freebsd32_ps_strings *arginfo;
3351 	char canary[sizeof(long) * 8];
3352 	int32_t pagesizes32[MAXPAGESIZES];
3353 	size_t execpath_len;
3354 	int error, szsigcode;
3355 
3356 	/*
3357 	 * Calculate string base and vector table pointers.
3358 	 * Also deal with signal trampoline code for this exec type.
3359 	 */
3360 	if (imgp->execpath != NULL && imgp->auxargs != NULL)
3361 		execpath_len = strlen(imgp->execpath) + 1;
3362 	else
3363 		execpath_len = 0;
3364 	arginfo = (struct freebsd32_ps_strings *)curproc->p_sysent->
3365 	    sv_psstrings;
3366 	imgp->ps_strings = arginfo;
3367 	if (imgp->proc->p_sysent->sv_sigcode_base == 0)
3368 		szsigcode = *(imgp->proc->p_sysent->sv_szsigcode);
3369 	else
3370 		szsigcode = 0;
3371 	destp =	(uintptr_t)arginfo;
3372 
3373 	/*
3374 	 * install sigcode
3375 	 */
3376 	if (szsigcode != 0) {
3377 		destp -= szsigcode;
3378 		destp = rounddown2(destp, sizeof(uint32_t));
3379 		error = copyout(imgp->proc->p_sysent->sv_sigcode, (void *)destp,
3380 		    szsigcode);
3381 		if (error != 0)
3382 			return (error);
3383 	}
3384 
3385 	/*
3386 	 * Copy the image path for the rtld.
3387 	 */
3388 	if (execpath_len != 0) {
3389 		destp -= execpath_len;
3390 		imgp->execpathp = (void *)destp;
3391 		error = copyout(imgp->execpath, imgp->execpathp, execpath_len);
3392 		if (error != 0)
3393 			return (error);
3394 	}
3395 
3396 	/*
3397 	 * Prepare the canary for SSP.
3398 	 */
3399 	arc4rand(canary, sizeof(canary), 0);
3400 	destp -= sizeof(canary);
3401 	imgp->canary = (void *)destp;
3402 	error = copyout(canary, imgp->canary, sizeof(canary));
3403 	if (error != 0)
3404 		return (error);
3405 	imgp->canarylen = sizeof(canary);
3406 
3407 	/*
3408 	 * Prepare the pagesizes array.
3409 	 */
3410 	for (i = 0; i < MAXPAGESIZES; i++)
3411 		pagesizes32[i] = (uint32_t)pagesizes[i];
3412 	destp -= sizeof(pagesizes32);
3413 	destp = rounddown2(destp, sizeof(uint32_t));
3414 	imgp->pagesizes = (void *)destp;
3415 	error = copyout(pagesizes32, imgp->pagesizes, sizeof(pagesizes32));
3416 	if (error != 0)
3417 		return (error);
3418 	imgp->pagesizeslen = sizeof(pagesizes32);
3419 
3420 	/*
3421 	 * Allocate room for the argument and environment strings.
3422 	 */
3423 	destp -= ARG_MAX - imgp->args->stringspace;
3424 	destp = rounddown2(destp, sizeof(uint32_t));
3425 	ustringp = destp;
3426 
3427 	exec_stackgap(imgp, &destp);
3428 
3429 	if (imgp->auxargs) {
3430 		/*
3431 		 * Allocate room on the stack for the ELF auxargs
3432 		 * array.  It has up to AT_COUNT entries.
3433 		 */
3434 		destp -= AT_COUNT * sizeof(Elf32_Auxinfo);
3435 		destp = rounddown2(destp, sizeof(uint32_t));
3436 	}
3437 
3438 	vectp = (uint32_t *)destp;
3439 
3440 	/*
3441 	 * Allocate room for the argv[] and env vectors including the
3442 	 * terminating NULL pointers.
3443 	 */
3444 	vectp -= imgp->args->argc + 1 + imgp->args->envc + 1;
3445 
3446 	/*
3447 	 * vectp also becomes our initial stack base
3448 	 */
3449 	*stack_base = (uintptr_t)vectp;
3450 
3451 	stringp = imgp->args->begin_argv;
3452 	argc = imgp->args->argc;
3453 	envc = imgp->args->envc;
3454 	/*
3455 	 * Copy out strings - arguments and environment.
3456 	 */
3457 	error = copyout(stringp, (void *)ustringp,
3458 	    ARG_MAX - imgp->args->stringspace);
3459 	if (error != 0)
3460 		return (error);
3461 
3462 	/*
3463 	 * Fill in "ps_strings" struct for ps, w, etc.
3464 	 */
3465 	imgp->argv = vectp;
3466 	if (suword32(&arginfo->ps_argvstr, (u_int32_t)(intptr_t)vectp) != 0 ||
3467 	    suword32(&arginfo->ps_nargvstr, argc) != 0)
3468 		return (EFAULT);
3469 
3470 	/*
3471 	 * Fill in argument portion of vector table.
3472 	 */
3473 	for (; argc > 0; --argc) {
3474 		if (suword32(vectp++, ustringp) != 0)
3475 			return (EFAULT);
3476 		while (*stringp++ != 0)
3477 			ustringp++;
3478 		ustringp++;
3479 	}
3480 
3481 	/* a null vector table pointer separates the argp's from the envp's */
3482 	if (suword32(vectp++, 0) != 0)
3483 		return (EFAULT);
3484 
3485 	imgp->envv = vectp;
3486 	if (suword32(&arginfo->ps_envstr, (u_int32_t)(intptr_t)vectp) != 0 ||
3487 	    suword32(&arginfo->ps_nenvstr, envc) != 0)
3488 		return (EFAULT);
3489 
3490 	/*
3491 	 * Fill in environment portion of vector table.
3492 	 */
3493 	for (; envc > 0; --envc) {
3494 		if (suword32(vectp++, ustringp) != 0)
3495 			return (EFAULT);
3496 		while (*stringp++ != 0)
3497 			ustringp++;
3498 		ustringp++;
3499 	}
3500 
3501 	/* end of vector table is a null pointer */
3502 	if (suword32(vectp, 0) != 0)
3503 		return (EFAULT);
3504 
3505 	if (imgp->auxargs) {
3506 		vectp++;
3507 		error = imgp->sysent->sv_copyout_auxargs(imgp,
3508 		    (uintptr_t)vectp);
3509 		if (error != 0)
3510 			return (error);
3511 	}
3512 
3513 	return (0);
3514 }
3515 
3516 int
3517 freebsd32_kldstat(struct thread *td, struct freebsd32_kldstat_args *uap)
3518 {
3519 	struct kld_file_stat *stat;
3520 	struct kld32_file_stat *stat32;
3521 	int error, version;
3522 
3523 	if ((error = copyin(&uap->stat->version, &version, sizeof(version)))
3524 	    != 0)
3525 		return (error);
3526 	if (version != sizeof(struct kld32_file_stat_1) &&
3527 	    version != sizeof(struct kld32_file_stat))
3528 		return (EINVAL);
3529 
3530 	stat = malloc(sizeof(*stat), M_TEMP, M_WAITOK | M_ZERO);
3531 	stat32 = malloc(sizeof(*stat32), M_TEMP, M_WAITOK | M_ZERO);
3532 	error = kern_kldstat(td, uap->fileid, stat);
3533 	if (error == 0) {
3534 		bcopy(&stat->name[0], &stat32->name[0], sizeof(stat->name));
3535 		CP(*stat, *stat32, refs);
3536 		CP(*stat, *stat32, id);
3537 		PTROUT_CP(*stat, *stat32, address);
3538 		CP(*stat, *stat32, size);
3539 		bcopy(&stat->pathname[0], &stat32->pathname[0],
3540 		    sizeof(stat->pathname));
3541 		stat32->version  = version;
3542 		error = copyout(stat32, uap->stat, version);
3543 	}
3544 	free(stat, M_TEMP);
3545 	free(stat32, M_TEMP);
3546 	return (error);
3547 }
3548 
3549 int
3550 freebsd32_posix_fallocate(struct thread *td,
3551     struct freebsd32_posix_fallocate_args *uap)
3552 {
3553 	int error;
3554 
3555 	error = kern_posix_fallocate(td, uap->fd,
3556 	    PAIR32TO64(off_t, uap->offset), PAIR32TO64(off_t, uap->len));
3557 	return (kern_posix_error(td, error));
3558 }
3559 
3560 int
3561 freebsd32_posix_fadvise(struct thread *td,
3562     struct freebsd32_posix_fadvise_args *uap)
3563 {
3564 	int error;
3565 
3566 	error = kern_posix_fadvise(td, uap->fd, PAIR32TO64(off_t, uap->offset),
3567 	    PAIR32TO64(off_t, uap->len), uap->advice);
3568 	return (kern_posix_error(td, error));
3569 }
3570 
3571 int
3572 convert_sigevent32(struct sigevent32 *sig32, struct sigevent *sig)
3573 {
3574 
3575 	CP(*sig32, *sig, sigev_notify);
3576 	switch (sig->sigev_notify) {
3577 	case SIGEV_NONE:
3578 		break;
3579 	case SIGEV_THREAD_ID:
3580 		CP(*sig32, *sig, sigev_notify_thread_id);
3581 		/* FALLTHROUGH */
3582 	case SIGEV_SIGNAL:
3583 		CP(*sig32, *sig, sigev_signo);
3584 		PTRIN_CP(*sig32, *sig, sigev_value.sival_ptr);
3585 		break;
3586 	case SIGEV_KEVENT:
3587 		CP(*sig32, *sig, sigev_notify_kqueue);
3588 		CP(*sig32, *sig, sigev_notify_kevent_flags);
3589 		PTRIN_CP(*sig32, *sig, sigev_value.sival_ptr);
3590 		break;
3591 	default:
3592 		return (EINVAL);
3593 	}
3594 	return (0);
3595 }
3596 
3597 int
3598 freebsd32_procctl(struct thread *td, struct freebsd32_procctl_args *uap)
3599 {
3600 	void *data;
3601 	union {
3602 		struct procctl_reaper_status rs;
3603 		struct procctl_reaper_pids rp;
3604 		struct procctl_reaper_kill rk;
3605 	} x;
3606 	union {
3607 		struct procctl_reaper_pids32 rp;
3608 	} x32;
3609 	int error, error1, flags, signum;
3610 
3611 	if (uap->com >= PROC_PROCCTL_MD_MIN)
3612 		return (cpu_procctl(td, uap->idtype, PAIR32TO64(id_t, uap->id),
3613 		    uap->com, PTRIN(uap->data)));
3614 
3615 	switch (uap->com) {
3616 	case PROC_ASLR_CTL:
3617 	case PROC_PROTMAX_CTL:
3618 	case PROC_SPROTECT:
3619 	case PROC_STACKGAP_CTL:
3620 	case PROC_TRACE_CTL:
3621 	case PROC_TRAPCAP_CTL:
3622 		error = copyin(PTRIN(uap->data), &flags, sizeof(flags));
3623 		if (error != 0)
3624 			return (error);
3625 		data = &flags;
3626 		break;
3627 	case PROC_REAP_ACQUIRE:
3628 	case PROC_REAP_RELEASE:
3629 		if (uap->data != NULL)
3630 			return (EINVAL);
3631 		data = NULL;
3632 		break;
3633 	case PROC_REAP_STATUS:
3634 		data = &x.rs;
3635 		break;
3636 	case PROC_REAP_GETPIDS:
3637 		error = copyin(uap->data, &x32.rp, sizeof(x32.rp));
3638 		if (error != 0)
3639 			return (error);
3640 		CP(x32.rp, x.rp, rp_count);
3641 		PTRIN_CP(x32.rp, x.rp, rp_pids);
3642 		data = &x.rp;
3643 		break;
3644 	case PROC_REAP_KILL:
3645 		error = copyin(uap->data, &x.rk, sizeof(x.rk));
3646 		if (error != 0)
3647 			return (error);
3648 		data = &x.rk;
3649 		break;
3650 	case PROC_ASLR_STATUS:
3651 	case PROC_PROTMAX_STATUS:
3652 	case PROC_STACKGAP_STATUS:
3653 	case PROC_TRACE_STATUS:
3654 	case PROC_TRAPCAP_STATUS:
3655 		data = &flags;
3656 		break;
3657 	case PROC_PDEATHSIG_CTL:
3658 		error = copyin(uap->data, &signum, sizeof(signum));
3659 		if (error != 0)
3660 			return (error);
3661 		data = &signum;
3662 		break;
3663 	case PROC_PDEATHSIG_STATUS:
3664 		data = &signum;
3665 		break;
3666 	default:
3667 		return (EINVAL);
3668 	}
3669 	error = kern_procctl(td, uap->idtype, PAIR32TO64(id_t, uap->id),
3670 	    uap->com, data);
3671 	switch (uap->com) {
3672 	case PROC_REAP_STATUS:
3673 		if (error == 0)
3674 			error = copyout(&x.rs, uap->data, sizeof(x.rs));
3675 		break;
3676 	case PROC_REAP_KILL:
3677 		error1 = copyout(&x.rk, uap->data, sizeof(x.rk));
3678 		if (error == 0)
3679 			error = error1;
3680 		break;
3681 	case PROC_ASLR_STATUS:
3682 	case PROC_PROTMAX_STATUS:
3683 	case PROC_STACKGAP_STATUS:
3684 	case PROC_TRACE_STATUS:
3685 	case PROC_TRAPCAP_STATUS:
3686 		if (error == 0)
3687 			error = copyout(&flags, uap->data, sizeof(flags));
3688 		break;
3689 	case PROC_PDEATHSIG_STATUS:
3690 		if (error == 0)
3691 			error = copyout(&signum, uap->data, sizeof(signum));
3692 		break;
3693 	}
3694 	return (error);
3695 }
3696 
3697 int
3698 freebsd32_fcntl(struct thread *td, struct freebsd32_fcntl_args *uap)
3699 {
3700 	long tmp;
3701 
3702 	switch (uap->cmd) {
3703 	/*
3704 	 * Do unsigned conversion for arg when operation
3705 	 * interprets it as flags or pointer.
3706 	 */
3707 	case F_SETLK_REMOTE:
3708 	case F_SETLKW:
3709 	case F_SETLK:
3710 	case F_GETLK:
3711 	case F_SETFD:
3712 	case F_SETFL:
3713 	case F_OGETLK:
3714 	case F_OSETLK:
3715 	case F_OSETLKW:
3716 		tmp = (unsigned int)(uap->arg);
3717 		break;
3718 	default:
3719 		tmp = uap->arg;
3720 		break;
3721 	}
3722 	return (kern_fcntl_freebsd(td, uap->fd, uap->cmd, tmp));
3723 }
3724 
3725 int
3726 freebsd32_ppoll(struct thread *td, struct freebsd32_ppoll_args *uap)
3727 {
3728 	struct timespec32 ts32;
3729 	struct timespec ts, *tsp;
3730 	sigset_t set, *ssp;
3731 	int error;
3732 
3733 	if (uap->ts != NULL) {
3734 		error = copyin(uap->ts, &ts32, sizeof(ts32));
3735 		if (error != 0)
3736 			return (error);
3737 		CP(ts32, ts, tv_sec);
3738 		CP(ts32, ts, tv_nsec);
3739 		tsp = &ts;
3740 	} else
3741 		tsp = NULL;
3742 	if (uap->set != NULL) {
3743 		error = copyin(uap->set, &set, sizeof(set));
3744 		if (error != 0)
3745 			return (error);
3746 		ssp = &set;
3747 	} else
3748 		ssp = NULL;
3749 
3750 	return (kern_poll(td, uap->fds, uap->nfds, tsp, ssp));
3751 }
3752 
3753 int
3754 freebsd32_sched_rr_get_interval(struct thread *td,
3755     struct freebsd32_sched_rr_get_interval_args *uap)
3756 {
3757 	struct timespec ts;
3758 	struct timespec32 ts32;
3759 	int error;
3760 
3761 	error = kern_sched_rr_get_interval(td, uap->pid, &ts);
3762 	if (error == 0) {
3763 		CP(ts, ts32, tv_sec);
3764 		CP(ts, ts32, tv_nsec);
3765 		error = copyout(&ts32, uap->interval, sizeof(ts32));
3766 	}
3767 	return (error);
3768 }
3769 
3770 static void
3771 timex_to_32(struct timex32 *dst, struct timex *src)
3772 {
3773 	CP(*src, *dst, modes);
3774 	CP(*src, *dst, offset);
3775 	CP(*src, *dst, freq);
3776 	CP(*src, *dst, maxerror);
3777 	CP(*src, *dst, esterror);
3778 	CP(*src, *dst, status);
3779 	CP(*src, *dst, constant);
3780 	CP(*src, *dst, precision);
3781 	CP(*src, *dst, tolerance);
3782 	CP(*src, *dst, ppsfreq);
3783 	CP(*src, *dst, jitter);
3784 	CP(*src, *dst, shift);
3785 	CP(*src, *dst, stabil);
3786 	CP(*src, *dst, jitcnt);
3787 	CP(*src, *dst, calcnt);
3788 	CP(*src, *dst, errcnt);
3789 	CP(*src, *dst, stbcnt);
3790 }
3791 
3792 static void
3793 timex_from_32(struct timex *dst, struct timex32 *src)
3794 {
3795 	CP(*src, *dst, modes);
3796 	CP(*src, *dst, offset);
3797 	CP(*src, *dst, freq);
3798 	CP(*src, *dst, maxerror);
3799 	CP(*src, *dst, esterror);
3800 	CP(*src, *dst, status);
3801 	CP(*src, *dst, constant);
3802 	CP(*src, *dst, precision);
3803 	CP(*src, *dst, tolerance);
3804 	CP(*src, *dst, ppsfreq);
3805 	CP(*src, *dst, jitter);
3806 	CP(*src, *dst, shift);
3807 	CP(*src, *dst, stabil);
3808 	CP(*src, *dst, jitcnt);
3809 	CP(*src, *dst, calcnt);
3810 	CP(*src, *dst, errcnt);
3811 	CP(*src, *dst, stbcnt);
3812 }
3813 
3814 int
3815 freebsd32_ntp_adjtime(struct thread *td, struct freebsd32_ntp_adjtime_args *uap)
3816 {
3817 	struct timex tx;
3818 	struct timex32 tx32;
3819 	int error, retval;
3820 
3821 	error = copyin(uap->tp, &tx32, sizeof(tx32));
3822 	if (error == 0) {
3823 		timex_from_32(&tx, &tx32);
3824 		error = kern_ntp_adjtime(td, &tx, &retval);
3825 		if (error == 0) {
3826 			timex_to_32(&tx32, &tx);
3827 			error = copyout(&tx32, uap->tp, sizeof(tx32));
3828 			if (error == 0)
3829 				td->td_retval[0] = retval;
3830 		}
3831 	}
3832 	return (error);
3833 }
3834