1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2002 Doug Rabson 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include "opt_ffclock.h" 33 #include "opt_inet.h" 34 #include "opt_inet6.h" 35 #include "opt_ktrace.h" 36 37 #define __ELF_WORD_SIZE 32 38 39 #ifdef COMPAT_FREEBSD11 40 #define _WANT_FREEBSD11_KEVENT 41 #endif 42 43 #include <sys/param.h> 44 #include <sys/bus.h> 45 #include <sys/capsicum.h> 46 #include <sys/clock.h> 47 #include <sys/exec.h> 48 #include <sys/fcntl.h> 49 #include <sys/filedesc.h> 50 #include <sys/imgact.h> 51 #include <sys/jail.h> 52 #include <sys/kernel.h> 53 #include <sys/limits.h> 54 #include <sys/linker.h> 55 #include <sys/lock.h> 56 #include <sys/malloc.h> 57 #include <sys/file.h> /* Must come after sys/malloc.h */ 58 #include <sys/imgact.h> 59 #include <sys/mbuf.h> 60 #include <sys/mman.h> 61 #include <sys/module.h> 62 #include <sys/mount.h> 63 #include <sys/mutex.h> 64 #include <sys/namei.h> 65 #include <sys/priv.h> 66 #include <sys/proc.h> 67 #include <sys/procctl.h> 68 #include <sys/ptrace.h> 69 #include <sys/reboot.h> 70 #include <sys/resource.h> 71 #include <sys/resourcevar.h> 72 #include <sys/selinfo.h> 73 #include <sys/eventvar.h> /* Must come after sys/selinfo.h */ 74 #include <sys/pipe.h> /* Must come after sys/selinfo.h */ 75 #include <sys/signal.h> 76 #include <sys/signalvar.h> 77 #include <sys/socket.h> 78 #include <sys/socketvar.h> 79 #include <sys/stat.h> 80 #include <sys/syscall.h> 81 #include <sys/syscallsubr.h> 82 #include <sys/sysctl.h> 83 #include <sys/sysent.h> 84 #include <sys/sysproto.h> 85 #include <sys/systm.h> 86 #include <sys/thr.h> 87 #include <sys/timex.h> 88 #include <sys/unistd.h> 89 #include <sys/ucontext.h> 90 #include <sys/vnode.h> 91 #include <sys/wait.h> 92 #include <sys/ipc.h> 93 #include <sys/msg.h> 94 #include <sys/sem.h> 95 #include <sys/shm.h> 96 #include <sys/timeffc.h> 97 #ifdef KTRACE 98 #include <sys/ktrace.h> 99 #endif 100 101 #ifdef INET 102 #include <netinet/in.h> 103 #endif 104 105 #include <vm/vm.h> 106 #include <vm/vm_param.h> 107 #include <vm/pmap.h> 108 #include <vm/vm_map.h> 109 #include <vm/vm_object.h> 110 #include <vm/vm_extern.h> 111 112 #include <machine/cpu.h> 113 #include <machine/elf.h> 114 #ifdef __amd64__ 115 #include <machine/md_var.h> 116 #endif 117 118 #include <security/audit/audit.h> 119 120 #include <compat/freebsd32/freebsd32_util.h> 121 #include <compat/freebsd32/freebsd32.h> 122 #include <compat/freebsd32/freebsd32_ipc.h> 123 #include <compat/freebsd32/freebsd32_misc.h> 124 #include <compat/freebsd32/freebsd32_signal.h> 125 #include <compat/freebsd32/freebsd32_proto.h> 126 127 FEATURE(compat_freebsd_32bit, "Compatible with 32-bit FreeBSD"); 128 129 struct ptrace_io_desc32 { 130 int piod_op; 131 uint32_t piod_offs; 132 uint32_t piod_addr; 133 uint32_t piod_len; 134 }; 135 136 struct ptrace_sc_ret32 { 137 uint32_t sr_retval[2]; 138 int sr_error; 139 }; 140 141 struct ptrace_vm_entry32 { 142 int pve_entry; 143 int pve_timestamp; 144 uint32_t pve_start; 145 uint32_t pve_end; 146 uint32_t pve_offset; 147 u_int pve_prot; 148 u_int pve_pathlen; 149 int32_t pve_fileid; 150 u_int pve_fsid; 151 uint32_t pve_path; 152 }; 153 154 #ifdef __amd64__ 155 CTASSERT(sizeof(struct timeval32) == 8); 156 CTASSERT(sizeof(struct timespec32) == 8); 157 CTASSERT(sizeof(struct itimerval32) == 16); 158 CTASSERT(sizeof(struct bintime32) == 12); 159 #endif 160 CTASSERT(sizeof(struct ostatfs32) == 256); 161 #ifdef __amd64__ 162 CTASSERT(sizeof(struct rusage32) == 72); 163 #endif 164 CTASSERT(sizeof(struct sigaltstack32) == 12); 165 #ifdef __amd64__ 166 CTASSERT(sizeof(struct kevent32) == 56); 167 #else 168 CTASSERT(sizeof(struct kevent32) == 64); 169 #endif 170 CTASSERT(sizeof(struct iovec32) == 8); 171 CTASSERT(sizeof(struct msghdr32) == 28); 172 #ifdef __amd64__ 173 CTASSERT(sizeof(struct stat32) == 208); 174 CTASSERT(sizeof(struct freebsd11_stat32) == 96); 175 #endif 176 CTASSERT(sizeof(struct sigaction32) == 24); 177 178 static int freebsd32_kevent_copyout(void *arg, struct kevent *kevp, int count); 179 static int freebsd32_kevent_copyin(void *arg, struct kevent *kevp, int count); 180 static int freebsd32_user_clock_nanosleep(struct thread *td, clockid_t clock_id, 181 int flags, const struct timespec32 *ua_rqtp, struct timespec32 *ua_rmtp); 182 183 void 184 freebsd32_rusage_out(const struct rusage *s, struct rusage32 *s32) 185 { 186 187 TV_CP(*s, *s32, ru_utime); 188 TV_CP(*s, *s32, ru_stime); 189 CP(*s, *s32, ru_maxrss); 190 CP(*s, *s32, ru_ixrss); 191 CP(*s, *s32, ru_idrss); 192 CP(*s, *s32, ru_isrss); 193 CP(*s, *s32, ru_minflt); 194 CP(*s, *s32, ru_majflt); 195 CP(*s, *s32, ru_nswap); 196 CP(*s, *s32, ru_inblock); 197 CP(*s, *s32, ru_oublock); 198 CP(*s, *s32, ru_msgsnd); 199 CP(*s, *s32, ru_msgrcv); 200 CP(*s, *s32, ru_nsignals); 201 CP(*s, *s32, ru_nvcsw); 202 CP(*s, *s32, ru_nivcsw); 203 } 204 205 int 206 freebsd32_wait4(struct thread *td, struct freebsd32_wait4_args *uap) 207 { 208 int error, status; 209 struct rusage32 ru32; 210 struct rusage ru, *rup; 211 212 if (uap->rusage != NULL) 213 rup = &ru; 214 else 215 rup = NULL; 216 error = kern_wait(td, uap->pid, &status, uap->options, rup); 217 if (error) 218 return (error); 219 if (uap->status != NULL) 220 error = copyout(&status, uap->status, sizeof(status)); 221 if (uap->rusage != NULL && error == 0) { 222 freebsd32_rusage_out(&ru, &ru32); 223 error = copyout(&ru32, uap->rusage, sizeof(ru32)); 224 } 225 return (error); 226 } 227 228 int 229 freebsd32_wait6(struct thread *td, struct freebsd32_wait6_args *uap) 230 { 231 struct __wrusage32 wru32; 232 struct __wrusage wru, *wrup; 233 struct siginfo32 si32; 234 struct __siginfo si, *sip; 235 int error, status; 236 237 if (uap->wrusage != NULL) 238 wrup = &wru; 239 else 240 wrup = NULL; 241 if (uap->info != NULL) { 242 sip = &si; 243 bzero(sip, sizeof(*sip)); 244 } else 245 sip = NULL; 246 error = kern_wait6(td, uap->idtype, PAIR32TO64(id_t, uap->id), 247 &status, uap->options, wrup, sip); 248 if (error != 0) 249 return (error); 250 if (uap->status != NULL) 251 error = copyout(&status, uap->status, sizeof(status)); 252 if (uap->wrusage != NULL && error == 0) { 253 freebsd32_rusage_out(&wru.wru_self, &wru32.wru_self); 254 freebsd32_rusage_out(&wru.wru_children, &wru32.wru_children); 255 error = copyout(&wru32, uap->wrusage, sizeof(wru32)); 256 } 257 if (uap->info != NULL && error == 0) { 258 siginfo_to_siginfo32 (&si, &si32); 259 error = copyout(&si32, uap->info, sizeof(si32)); 260 } 261 return (error); 262 } 263 264 #ifdef COMPAT_FREEBSD4 265 static void 266 copy_statfs(struct statfs *in, struct ostatfs32 *out) 267 { 268 269 statfs_scale_blocks(in, INT32_MAX); 270 bzero(out, sizeof(*out)); 271 CP(*in, *out, f_bsize); 272 out->f_iosize = MIN(in->f_iosize, INT32_MAX); 273 CP(*in, *out, f_blocks); 274 CP(*in, *out, f_bfree); 275 CP(*in, *out, f_bavail); 276 out->f_files = MIN(in->f_files, INT32_MAX); 277 out->f_ffree = MIN(in->f_ffree, INT32_MAX); 278 CP(*in, *out, f_fsid); 279 CP(*in, *out, f_owner); 280 CP(*in, *out, f_type); 281 CP(*in, *out, f_flags); 282 out->f_syncwrites = MIN(in->f_syncwrites, INT32_MAX); 283 out->f_asyncwrites = MIN(in->f_asyncwrites, INT32_MAX); 284 strlcpy(out->f_fstypename, 285 in->f_fstypename, MFSNAMELEN); 286 strlcpy(out->f_mntonname, 287 in->f_mntonname, min(MNAMELEN, FREEBSD4_OMNAMELEN)); 288 out->f_syncreads = MIN(in->f_syncreads, INT32_MAX); 289 out->f_asyncreads = MIN(in->f_asyncreads, INT32_MAX); 290 strlcpy(out->f_mntfromname, 291 in->f_mntfromname, min(MNAMELEN, FREEBSD4_OMNAMELEN)); 292 } 293 #endif 294 295 int 296 freebsd32_getfsstat(struct thread *td, struct freebsd32_getfsstat_args *uap) 297 { 298 size_t count; 299 int error; 300 301 if (uap->bufsize < 0 || uap->bufsize > SIZE_MAX) 302 return (EINVAL); 303 error = kern_getfsstat(td, &uap->buf, uap->bufsize, &count, 304 UIO_USERSPACE, uap->mode); 305 if (error == 0) 306 td->td_retval[0] = count; 307 return (error); 308 } 309 310 #ifdef COMPAT_FREEBSD4 311 int 312 freebsd4_freebsd32_getfsstat(struct thread *td, 313 struct freebsd4_freebsd32_getfsstat_args *uap) 314 { 315 struct statfs *buf, *sp; 316 struct ostatfs32 stat32; 317 size_t count, size, copycount; 318 int error; 319 320 count = uap->bufsize / sizeof(struct ostatfs32); 321 size = count * sizeof(struct statfs); 322 error = kern_getfsstat(td, &buf, size, &count, UIO_SYSSPACE, uap->mode); 323 if (size > 0) { 324 sp = buf; 325 copycount = count; 326 while (copycount > 0 && error == 0) { 327 copy_statfs(sp, &stat32); 328 error = copyout(&stat32, uap->buf, sizeof(stat32)); 329 sp++; 330 uap->buf++; 331 copycount--; 332 } 333 free(buf, M_STATFS); 334 } 335 if (error == 0) 336 td->td_retval[0] = count; 337 return (error); 338 } 339 #endif 340 341 #ifdef COMPAT_FREEBSD11 342 int 343 freebsd11_freebsd32_getfsstat(struct thread *td, 344 struct freebsd11_freebsd32_getfsstat_args *uap) 345 { 346 return(kern_freebsd11_getfsstat(td, uap->buf, uap->bufsize, 347 uap->mode)); 348 } 349 #endif 350 351 int 352 freebsd32_sigaltstack(struct thread *td, 353 struct freebsd32_sigaltstack_args *uap) 354 { 355 struct sigaltstack32 s32; 356 struct sigaltstack ss, oss, *ssp; 357 int error; 358 359 if (uap->ss != NULL) { 360 error = copyin(uap->ss, &s32, sizeof(s32)); 361 if (error) 362 return (error); 363 PTRIN_CP(s32, ss, ss_sp); 364 CP(s32, ss, ss_size); 365 CP(s32, ss, ss_flags); 366 ssp = &ss; 367 } else 368 ssp = NULL; 369 error = kern_sigaltstack(td, ssp, &oss); 370 if (error == 0 && uap->oss != NULL) { 371 PTROUT_CP(oss, s32, ss_sp); 372 CP(oss, s32, ss_size); 373 CP(oss, s32, ss_flags); 374 error = copyout(&s32, uap->oss, sizeof(s32)); 375 } 376 return (error); 377 } 378 379 /* 380 * Custom version of exec_copyin_args() so that we can translate 381 * the pointers. 382 */ 383 int 384 freebsd32_exec_copyin_args(struct image_args *args, const char *fname, 385 enum uio_seg segflg, u_int32_t *argv, u_int32_t *envv) 386 { 387 char *argp, *envp; 388 u_int32_t *p32, arg; 389 int error; 390 391 bzero(args, sizeof(*args)); 392 if (argv == NULL) 393 return (EFAULT); 394 395 /* 396 * Allocate demand-paged memory for the file name, argument, and 397 * environment strings. 398 */ 399 error = exec_alloc_args(args); 400 if (error != 0) 401 return (error); 402 403 /* 404 * Copy the file name. 405 */ 406 error = exec_args_add_fname(args, fname, segflg); 407 if (error != 0) 408 goto err_exit; 409 410 /* 411 * extract arguments first 412 */ 413 p32 = argv; 414 for (;;) { 415 error = copyin(p32++, &arg, sizeof(arg)); 416 if (error) 417 goto err_exit; 418 if (arg == 0) 419 break; 420 argp = PTRIN(arg); 421 error = exec_args_add_arg(args, argp, UIO_USERSPACE); 422 if (error != 0) 423 goto err_exit; 424 } 425 426 /* 427 * extract environment strings 428 */ 429 if (envv) { 430 p32 = envv; 431 for (;;) { 432 error = copyin(p32++, &arg, sizeof(arg)); 433 if (error) 434 goto err_exit; 435 if (arg == 0) 436 break; 437 envp = PTRIN(arg); 438 error = exec_args_add_env(args, envp, UIO_USERSPACE); 439 if (error != 0) 440 goto err_exit; 441 } 442 } 443 444 return (0); 445 446 err_exit: 447 exec_free_args(args); 448 return (error); 449 } 450 451 int 452 freebsd32_execve(struct thread *td, struct freebsd32_execve_args *uap) 453 { 454 struct image_args eargs; 455 struct vmspace *oldvmspace; 456 int error; 457 458 error = pre_execve(td, &oldvmspace); 459 if (error != 0) 460 return (error); 461 error = freebsd32_exec_copyin_args(&eargs, uap->fname, UIO_USERSPACE, 462 uap->argv, uap->envv); 463 if (error == 0) 464 error = kern_execve(td, &eargs, NULL, oldvmspace); 465 post_execve(td, error, oldvmspace); 466 AUDIT_SYSCALL_EXIT(error == EJUSTRETURN ? 0 : error, td); 467 return (error); 468 } 469 470 int 471 freebsd32_fexecve(struct thread *td, struct freebsd32_fexecve_args *uap) 472 { 473 struct image_args eargs; 474 struct vmspace *oldvmspace; 475 int error; 476 477 error = pre_execve(td, &oldvmspace); 478 if (error != 0) 479 return (error); 480 error = freebsd32_exec_copyin_args(&eargs, NULL, UIO_SYSSPACE, 481 uap->argv, uap->envv); 482 if (error == 0) { 483 eargs.fd = uap->fd; 484 error = kern_execve(td, &eargs, NULL, oldvmspace); 485 } 486 post_execve(td, error, oldvmspace); 487 AUDIT_SYSCALL_EXIT(error == EJUSTRETURN ? 0 : error, td); 488 return (error); 489 } 490 491 int 492 freebsd32_mknodat(struct thread *td, struct freebsd32_mknodat_args *uap) 493 { 494 495 return (kern_mknodat(td, uap->fd, uap->path, UIO_USERSPACE, 496 uap->mode, PAIR32TO64(dev_t, uap->dev))); 497 } 498 499 int 500 freebsd32_mprotect(struct thread *td, struct freebsd32_mprotect_args *uap) 501 { 502 int prot; 503 504 prot = uap->prot; 505 #if defined(__amd64__) 506 if (i386_read_exec && (prot & PROT_READ) != 0) 507 prot |= PROT_EXEC; 508 #endif 509 return (kern_mprotect(td, (uintptr_t)PTRIN(uap->addr), uap->len, 510 prot)); 511 } 512 513 int 514 freebsd32_mmap(struct thread *td, struct freebsd32_mmap_args *uap) 515 { 516 int prot; 517 518 prot = uap->prot; 519 #if defined(__amd64__) 520 if (i386_read_exec && (prot & PROT_READ)) 521 prot |= PROT_EXEC; 522 #endif 523 524 return (kern_mmap(td, &(struct mmap_req){ 525 .mr_hint = (uintptr_t)uap->addr, 526 .mr_len = uap->len, 527 .mr_prot = prot, 528 .mr_flags = uap->flags, 529 .mr_fd = uap->fd, 530 .mr_pos = PAIR32TO64(off_t, uap->pos), 531 })); 532 } 533 534 #ifdef COMPAT_FREEBSD6 535 int 536 freebsd6_freebsd32_mmap(struct thread *td, 537 struct freebsd6_freebsd32_mmap_args *uap) 538 { 539 int prot; 540 541 prot = uap->prot; 542 #if defined(__amd64__) 543 if (i386_read_exec && (prot & PROT_READ)) 544 prot |= PROT_EXEC; 545 #endif 546 547 return (kern_mmap(td, &(struct mmap_req){ 548 .mr_hint = (uintptr_t)uap->addr, 549 .mr_len = uap->len, 550 .mr_prot = prot, 551 .mr_flags = uap->flags, 552 .mr_fd = uap->fd, 553 .mr_pos = PAIR32TO64(off_t, uap->pos), 554 })); 555 } 556 #endif 557 558 #ifdef COMPAT_43 559 int 560 ofreebsd32_mmap(struct thread *td, struct ofreebsd32_mmap_args *uap) 561 { 562 return (kern_ommap(td, (uintptr_t)uap->addr, uap->len, uap->prot, 563 uap->flags, uap->fd, uap->pos)); 564 } 565 #endif 566 567 int 568 freebsd32_setitimer(struct thread *td, struct freebsd32_setitimer_args *uap) 569 { 570 struct itimerval itv, oitv, *itvp; 571 struct itimerval32 i32; 572 int error; 573 574 if (uap->itv != NULL) { 575 error = copyin(uap->itv, &i32, sizeof(i32)); 576 if (error) 577 return (error); 578 TV_CP(i32, itv, it_interval); 579 TV_CP(i32, itv, it_value); 580 itvp = &itv; 581 } else 582 itvp = NULL; 583 error = kern_setitimer(td, uap->which, itvp, &oitv); 584 if (error || uap->oitv == NULL) 585 return (error); 586 TV_CP(oitv, i32, it_interval); 587 TV_CP(oitv, i32, it_value); 588 return (copyout(&i32, uap->oitv, sizeof(i32))); 589 } 590 591 int 592 freebsd32_getitimer(struct thread *td, struct freebsd32_getitimer_args *uap) 593 { 594 struct itimerval itv; 595 struct itimerval32 i32; 596 int error; 597 598 error = kern_getitimer(td, uap->which, &itv); 599 if (error || uap->itv == NULL) 600 return (error); 601 TV_CP(itv, i32, it_interval); 602 TV_CP(itv, i32, it_value); 603 return (copyout(&i32, uap->itv, sizeof(i32))); 604 } 605 606 int 607 freebsd32_select(struct thread *td, struct freebsd32_select_args *uap) 608 { 609 struct timeval32 tv32; 610 struct timeval tv, *tvp; 611 int error; 612 613 if (uap->tv != NULL) { 614 error = copyin(uap->tv, &tv32, sizeof(tv32)); 615 if (error) 616 return (error); 617 CP(tv32, tv, tv_sec); 618 CP(tv32, tv, tv_usec); 619 tvp = &tv; 620 } else 621 tvp = NULL; 622 /* 623 * XXX Do pointers need PTRIN()? 624 */ 625 return (kern_select(td, uap->nd, uap->in, uap->ou, uap->ex, tvp, 626 sizeof(int32_t) * 8)); 627 } 628 629 int 630 freebsd32_pselect(struct thread *td, struct freebsd32_pselect_args *uap) 631 { 632 struct timespec32 ts32; 633 struct timespec ts; 634 struct timeval tv, *tvp; 635 sigset_t set, *uset; 636 int error; 637 638 if (uap->ts != NULL) { 639 error = copyin(uap->ts, &ts32, sizeof(ts32)); 640 if (error != 0) 641 return (error); 642 CP(ts32, ts, tv_sec); 643 CP(ts32, ts, tv_nsec); 644 TIMESPEC_TO_TIMEVAL(&tv, &ts); 645 tvp = &tv; 646 } else 647 tvp = NULL; 648 if (uap->sm != NULL) { 649 error = copyin(uap->sm, &set, sizeof(set)); 650 if (error != 0) 651 return (error); 652 uset = &set; 653 } else 654 uset = NULL; 655 /* 656 * XXX Do pointers need PTRIN()? 657 */ 658 error = kern_pselect(td, uap->nd, uap->in, uap->ou, uap->ex, tvp, 659 uset, sizeof(int32_t) * 8); 660 return (error); 661 } 662 663 /* 664 * Copy 'count' items into the destination list pointed to by uap->eventlist. 665 */ 666 static int 667 freebsd32_kevent_copyout(void *arg, struct kevent *kevp, int count) 668 { 669 struct freebsd32_kevent_args *uap; 670 struct kevent32 ks32[KQ_NEVENTS]; 671 uint64_t e; 672 int i, j, error; 673 674 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count)); 675 uap = (struct freebsd32_kevent_args *)arg; 676 677 for (i = 0; i < count; i++) { 678 CP(kevp[i], ks32[i], ident); 679 CP(kevp[i], ks32[i], filter); 680 CP(kevp[i], ks32[i], flags); 681 CP(kevp[i], ks32[i], fflags); 682 #if BYTE_ORDER == LITTLE_ENDIAN 683 ks32[i].data1 = kevp[i].data; 684 ks32[i].data2 = kevp[i].data >> 32; 685 #else 686 ks32[i].data1 = kevp[i].data >> 32; 687 ks32[i].data2 = kevp[i].data; 688 #endif 689 PTROUT_CP(kevp[i], ks32[i], udata); 690 for (j = 0; j < nitems(kevp->ext); j++) { 691 e = kevp[i].ext[j]; 692 #if BYTE_ORDER == LITTLE_ENDIAN 693 ks32[i].ext64[2 * j] = e; 694 ks32[i].ext64[2 * j + 1] = e >> 32; 695 #else 696 ks32[i].ext64[2 * j] = e >> 32; 697 ks32[i].ext64[2 * j + 1] = e; 698 #endif 699 } 700 } 701 error = copyout(ks32, uap->eventlist, count * sizeof *ks32); 702 if (error == 0) 703 uap->eventlist += count; 704 return (error); 705 } 706 707 /* 708 * Copy 'count' items from the list pointed to by uap->changelist. 709 */ 710 static int 711 freebsd32_kevent_copyin(void *arg, struct kevent *kevp, int count) 712 { 713 struct freebsd32_kevent_args *uap; 714 struct kevent32 ks32[KQ_NEVENTS]; 715 uint64_t e; 716 int i, j, error; 717 718 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count)); 719 uap = (struct freebsd32_kevent_args *)arg; 720 721 error = copyin(uap->changelist, ks32, count * sizeof *ks32); 722 if (error) 723 goto done; 724 uap->changelist += count; 725 726 for (i = 0; i < count; i++) { 727 CP(ks32[i], kevp[i], ident); 728 CP(ks32[i], kevp[i], filter); 729 CP(ks32[i], kevp[i], flags); 730 CP(ks32[i], kevp[i], fflags); 731 kevp[i].data = PAIR32TO64(uint64_t, ks32[i].data); 732 PTRIN_CP(ks32[i], kevp[i], udata); 733 for (j = 0; j < nitems(kevp->ext); j++) { 734 #if BYTE_ORDER == LITTLE_ENDIAN 735 e = ks32[i].ext64[2 * j + 1]; 736 e <<= 32; 737 e += ks32[i].ext64[2 * j]; 738 #else 739 e = ks32[i].ext64[2 * j]; 740 e <<= 32; 741 e += ks32[i].ext64[2 * j + 1]; 742 #endif 743 kevp[i].ext[j] = e; 744 } 745 } 746 done: 747 return (error); 748 } 749 750 int 751 freebsd32_kevent(struct thread *td, struct freebsd32_kevent_args *uap) 752 { 753 struct timespec32 ts32; 754 struct timespec ts, *tsp; 755 struct kevent_copyops k_ops = { 756 .arg = uap, 757 .k_copyout = freebsd32_kevent_copyout, 758 .k_copyin = freebsd32_kevent_copyin, 759 }; 760 #ifdef KTRACE 761 struct kevent32 *eventlist = uap->eventlist; 762 #endif 763 int error; 764 765 if (uap->timeout) { 766 error = copyin(uap->timeout, &ts32, sizeof(ts32)); 767 if (error) 768 return (error); 769 CP(ts32, ts, tv_sec); 770 CP(ts32, ts, tv_nsec); 771 tsp = &ts; 772 } else 773 tsp = NULL; 774 #ifdef KTRACE 775 if (KTRPOINT(td, KTR_STRUCT_ARRAY)) 776 ktrstructarray("kevent32", UIO_USERSPACE, uap->changelist, 777 uap->nchanges, sizeof(struct kevent32)); 778 #endif 779 error = kern_kevent(td, uap->fd, uap->nchanges, uap->nevents, 780 &k_ops, tsp); 781 #ifdef KTRACE 782 if (error == 0 && KTRPOINT(td, KTR_STRUCT_ARRAY)) 783 ktrstructarray("kevent32", UIO_USERSPACE, eventlist, 784 td->td_retval[0], sizeof(struct kevent32)); 785 #endif 786 return (error); 787 } 788 789 #ifdef COMPAT_FREEBSD11 790 static int 791 freebsd32_kevent11_copyout(void *arg, struct kevent *kevp, int count) 792 { 793 struct freebsd11_freebsd32_kevent_args *uap; 794 struct freebsd11_kevent32 ks32[KQ_NEVENTS]; 795 int i, error; 796 797 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count)); 798 uap = (struct freebsd11_freebsd32_kevent_args *)arg; 799 800 for (i = 0; i < count; i++) { 801 CP(kevp[i], ks32[i], ident); 802 CP(kevp[i], ks32[i], filter); 803 CP(kevp[i], ks32[i], flags); 804 CP(kevp[i], ks32[i], fflags); 805 CP(kevp[i], ks32[i], data); 806 PTROUT_CP(kevp[i], ks32[i], udata); 807 } 808 error = copyout(ks32, uap->eventlist, count * sizeof *ks32); 809 if (error == 0) 810 uap->eventlist += count; 811 return (error); 812 } 813 814 /* 815 * Copy 'count' items from the list pointed to by uap->changelist. 816 */ 817 static int 818 freebsd32_kevent11_copyin(void *arg, struct kevent *kevp, int count) 819 { 820 struct freebsd11_freebsd32_kevent_args *uap; 821 struct freebsd11_kevent32 ks32[KQ_NEVENTS]; 822 int i, j, error; 823 824 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count)); 825 uap = (struct freebsd11_freebsd32_kevent_args *)arg; 826 827 error = copyin(uap->changelist, ks32, count * sizeof *ks32); 828 if (error) 829 goto done; 830 uap->changelist += count; 831 832 for (i = 0; i < count; i++) { 833 CP(ks32[i], kevp[i], ident); 834 CP(ks32[i], kevp[i], filter); 835 CP(ks32[i], kevp[i], flags); 836 CP(ks32[i], kevp[i], fflags); 837 CP(ks32[i], kevp[i], data); 838 PTRIN_CP(ks32[i], kevp[i], udata); 839 for (j = 0; j < nitems(kevp->ext); j++) 840 kevp[i].ext[j] = 0; 841 } 842 done: 843 return (error); 844 } 845 846 int 847 freebsd11_freebsd32_kevent(struct thread *td, 848 struct freebsd11_freebsd32_kevent_args *uap) 849 { 850 struct timespec32 ts32; 851 struct timespec ts, *tsp; 852 struct kevent_copyops k_ops = { 853 .arg = uap, 854 .k_copyout = freebsd32_kevent11_copyout, 855 .k_copyin = freebsd32_kevent11_copyin, 856 }; 857 #ifdef KTRACE 858 struct freebsd11_kevent32 *eventlist = uap->eventlist; 859 #endif 860 int error; 861 862 if (uap->timeout) { 863 error = copyin(uap->timeout, &ts32, sizeof(ts32)); 864 if (error) 865 return (error); 866 CP(ts32, ts, tv_sec); 867 CP(ts32, ts, tv_nsec); 868 tsp = &ts; 869 } else 870 tsp = NULL; 871 #ifdef KTRACE 872 if (KTRPOINT(td, KTR_STRUCT_ARRAY)) 873 ktrstructarray("freebsd11_kevent32", UIO_USERSPACE, 874 uap->changelist, uap->nchanges, 875 sizeof(struct freebsd11_kevent32)); 876 #endif 877 error = kern_kevent(td, uap->fd, uap->nchanges, uap->nevents, 878 &k_ops, tsp); 879 #ifdef KTRACE 880 if (error == 0 && KTRPOINT(td, KTR_STRUCT_ARRAY)) 881 ktrstructarray("freebsd11_kevent32", UIO_USERSPACE, 882 eventlist, td->td_retval[0], 883 sizeof(struct freebsd11_kevent32)); 884 #endif 885 return (error); 886 } 887 #endif 888 889 int 890 freebsd32_gettimeofday(struct thread *td, 891 struct freebsd32_gettimeofday_args *uap) 892 { 893 struct timeval atv; 894 struct timeval32 atv32; 895 struct timezone rtz; 896 int error = 0; 897 898 if (uap->tp) { 899 microtime(&atv); 900 CP(atv, atv32, tv_sec); 901 CP(atv, atv32, tv_usec); 902 error = copyout(&atv32, uap->tp, sizeof (atv32)); 903 } 904 if (error == 0 && uap->tzp != NULL) { 905 rtz.tz_minuteswest = 0; 906 rtz.tz_dsttime = 0; 907 error = copyout(&rtz, uap->tzp, sizeof (rtz)); 908 } 909 return (error); 910 } 911 912 int 913 freebsd32_getrusage(struct thread *td, struct freebsd32_getrusage_args *uap) 914 { 915 struct rusage32 s32; 916 struct rusage s; 917 int error; 918 919 error = kern_getrusage(td, uap->who, &s); 920 if (error == 0) { 921 freebsd32_rusage_out(&s, &s32); 922 error = copyout(&s32, uap->rusage, sizeof(s32)); 923 } 924 return (error); 925 } 926 927 static void 928 ptrace_lwpinfo_to32(const struct ptrace_lwpinfo *pl, 929 struct ptrace_lwpinfo32 *pl32) 930 { 931 932 bzero(pl32, sizeof(*pl32)); 933 pl32->pl_lwpid = pl->pl_lwpid; 934 pl32->pl_event = pl->pl_event; 935 pl32->pl_flags = pl->pl_flags; 936 pl32->pl_sigmask = pl->pl_sigmask; 937 pl32->pl_siglist = pl->pl_siglist; 938 siginfo_to_siginfo32(&pl->pl_siginfo, &pl32->pl_siginfo); 939 strcpy(pl32->pl_tdname, pl->pl_tdname); 940 pl32->pl_child_pid = pl->pl_child_pid; 941 pl32->pl_syscall_code = pl->pl_syscall_code; 942 pl32->pl_syscall_narg = pl->pl_syscall_narg; 943 } 944 945 static void 946 ptrace_sc_ret_to32(const struct ptrace_sc_ret *psr, 947 struct ptrace_sc_ret32 *psr32) 948 { 949 950 bzero(psr32, sizeof(*psr32)); 951 psr32->sr_retval[0] = psr->sr_retval[0]; 952 psr32->sr_retval[1] = psr->sr_retval[1]; 953 psr32->sr_error = psr->sr_error; 954 } 955 956 int 957 freebsd32_ptrace(struct thread *td, struct freebsd32_ptrace_args *uap) 958 { 959 union { 960 struct ptrace_io_desc piod; 961 struct ptrace_lwpinfo pl; 962 struct ptrace_vm_entry pve; 963 struct ptrace_coredump pc; 964 struct dbreg32 dbreg; 965 struct fpreg32 fpreg; 966 struct reg32 reg; 967 register_t args[nitems(td->td_sa.args)]; 968 struct ptrace_sc_ret psr; 969 int ptevents; 970 } r; 971 union { 972 struct ptrace_io_desc32 piod; 973 struct ptrace_lwpinfo32 pl; 974 struct ptrace_vm_entry32 pve; 975 struct ptrace_coredump32 pc; 976 uint32_t args[nitems(td->td_sa.args)]; 977 struct ptrace_sc_ret32 psr; 978 } r32; 979 void *addr; 980 int data, error = 0, i; 981 982 AUDIT_ARG_PID(uap->pid); 983 AUDIT_ARG_CMD(uap->req); 984 AUDIT_ARG_VALUE(uap->data); 985 addr = &r; 986 data = uap->data; 987 switch (uap->req) { 988 case PT_GET_EVENT_MASK: 989 case PT_GET_SC_ARGS: 990 case PT_GET_SC_RET: 991 break; 992 case PT_LWPINFO: 993 if (uap->data > sizeof(r32.pl)) 994 return (EINVAL); 995 996 /* 997 * Pass size of native structure in 'data'. Truncate 998 * if necessary to avoid siginfo. 999 */ 1000 data = sizeof(r.pl); 1001 if (uap->data < offsetof(struct ptrace_lwpinfo32, pl_siginfo) + 1002 sizeof(struct siginfo32)) 1003 data = offsetof(struct ptrace_lwpinfo, pl_siginfo); 1004 break; 1005 case PT_GETREGS: 1006 bzero(&r.reg, sizeof(r.reg)); 1007 break; 1008 case PT_GETFPREGS: 1009 bzero(&r.fpreg, sizeof(r.fpreg)); 1010 break; 1011 case PT_GETDBREGS: 1012 bzero(&r.dbreg, sizeof(r.dbreg)); 1013 break; 1014 case PT_SETREGS: 1015 error = copyin(uap->addr, &r.reg, sizeof(r.reg)); 1016 break; 1017 case PT_SETFPREGS: 1018 error = copyin(uap->addr, &r.fpreg, sizeof(r.fpreg)); 1019 break; 1020 case PT_SETDBREGS: 1021 error = copyin(uap->addr, &r.dbreg, sizeof(r.dbreg)); 1022 break; 1023 case PT_SET_EVENT_MASK: 1024 if (uap->data != sizeof(r.ptevents)) 1025 error = EINVAL; 1026 else 1027 error = copyin(uap->addr, &r.ptevents, uap->data); 1028 break; 1029 case PT_IO: 1030 error = copyin(uap->addr, &r32.piod, sizeof(r32.piod)); 1031 if (error) 1032 break; 1033 CP(r32.piod, r.piod, piod_op); 1034 PTRIN_CP(r32.piod, r.piod, piod_offs); 1035 PTRIN_CP(r32.piod, r.piod, piod_addr); 1036 CP(r32.piod, r.piod, piod_len); 1037 break; 1038 case PT_VM_ENTRY: 1039 error = copyin(uap->addr, &r32.pve, sizeof(r32.pve)); 1040 if (error) 1041 break; 1042 1043 CP(r32.pve, r.pve, pve_entry); 1044 CP(r32.pve, r.pve, pve_timestamp); 1045 CP(r32.pve, r.pve, pve_start); 1046 CP(r32.pve, r.pve, pve_end); 1047 CP(r32.pve, r.pve, pve_offset); 1048 CP(r32.pve, r.pve, pve_prot); 1049 CP(r32.pve, r.pve, pve_pathlen); 1050 CP(r32.pve, r.pve, pve_fileid); 1051 CP(r32.pve, r.pve, pve_fsid); 1052 PTRIN_CP(r32.pve, r.pve, pve_path); 1053 break; 1054 case PT_COREDUMP: 1055 if (uap->data != sizeof(r32.pc)) 1056 error = EINVAL; 1057 else 1058 error = copyin(uap->addr, &r32.pc, uap->data); 1059 CP(r32.pc, r.pc, pc_fd); 1060 CP(r32.pc, r.pc, pc_flags); 1061 r.pc.pc_limit = PAIR32TO64(off_t, r32.pc.pc_limit); 1062 data = sizeof(r.pc); 1063 break; 1064 default: 1065 addr = uap->addr; 1066 break; 1067 } 1068 if (error) 1069 return (error); 1070 1071 error = kern_ptrace(td, uap->req, uap->pid, addr, data); 1072 if (error) 1073 return (error); 1074 1075 switch (uap->req) { 1076 case PT_VM_ENTRY: 1077 CP(r.pve, r32.pve, pve_entry); 1078 CP(r.pve, r32.pve, pve_timestamp); 1079 CP(r.pve, r32.pve, pve_start); 1080 CP(r.pve, r32.pve, pve_end); 1081 CP(r.pve, r32.pve, pve_offset); 1082 CP(r.pve, r32.pve, pve_prot); 1083 CP(r.pve, r32.pve, pve_pathlen); 1084 CP(r.pve, r32.pve, pve_fileid); 1085 CP(r.pve, r32.pve, pve_fsid); 1086 error = copyout(&r32.pve, uap->addr, sizeof(r32.pve)); 1087 break; 1088 case PT_IO: 1089 CP(r.piod, r32.piod, piod_len); 1090 error = copyout(&r32.piod, uap->addr, sizeof(r32.piod)); 1091 break; 1092 case PT_GETREGS: 1093 error = copyout(&r.reg, uap->addr, sizeof(r.reg)); 1094 break; 1095 case PT_GETFPREGS: 1096 error = copyout(&r.fpreg, uap->addr, sizeof(r.fpreg)); 1097 break; 1098 case PT_GETDBREGS: 1099 error = copyout(&r.dbreg, uap->addr, sizeof(r.dbreg)); 1100 break; 1101 case PT_GET_EVENT_MASK: 1102 /* NB: The size in uap->data is validated in kern_ptrace(). */ 1103 error = copyout(&r.ptevents, uap->addr, uap->data); 1104 break; 1105 case PT_LWPINFO: 1106 ptrace_lwpinfo_to32(&r.pl, &r32.pl); 1107 error = copyout(&r32.pl, uap->addr, uap->data); 1108 break; 1109 case PT_GET_SC_ARGS: 1110 for (i = 0; i < nitems(r.args); i++) 1111 r32.args[i] = (uint32_t)r.args[i]; 1112 error = copyout(r32.args, uap->addr, MIN(uap->data, 1113 sizeof(r32.args))); 1114 break; 1115 case PT_GET_SC_RET: 1116 ptrace_sc_ret_to32(&r.psr, &r32.psr); 1117 error = copyout(&r32.psr, uap->addr, MIN(uap->data, 1118 sizeof(r32.psr))); 1119 break; 1120 } 1121 1122 return (error); 1123 } 1124 1125 int 1126 freebsd32_copyinuio(struct iovec32 *iovp, u_int iovcnt, struct uio **uiop) 1127 { 1128 struct iovec32 iov32; 1129 struct iovec *iov; 1130 struct uio *uio; 1131 u_int iovlen; 1132 int error, i; 1133 1134 *uiop = NULL; 1135 if (iovcnt > UIO_MAXIOV) 1136 return (EINVAL); 1137 iovlen = iovcnt * sizeof(struct iovec); 1138 uio = malloc(iovlen + sizeof *uio, M_IOV, M_WAITOK); 1139 iov = (struct iovec *)(uio + 1); 1140 for (i = 0; i < iovcnt; i++) { 1141 error = copyin(&iovp[i], &iov32, sizeof(struct iovec32)); 1142 if (error) { 1143 free(uio, M_IOV); 1144 return (error); 1145 } 1146 iov[i].iov_base = PTRIN(iov32.iov_base); 1147 iov[i].iov_len = iov32.iov_len; 1148 } 1149 uio->uio_iov = iov; 1150 uio->uio_iovcnt = iovcnt; 1151 uio->uio_segflg = UIO_USERSPACE; 1152 uio->uio_offset = -1; 1153 uio->uio_resid = 0; 1154 for (i = 0; i < iovcnt; i++) { 1155 if (iov->iov_len > INT_MAX - uio->uio_resid) { 1156 free(uio, M_IOV); 1157 return (EINVAL); 1158 } 1159 uio->uio_resid += iov->iov_len; 1160 iov++; 1161 } 1162 *uiop = uio; 1163 return (0); 1164 } 1165 1166 int 1167 freebsd32_readv(struct thread *td, struct freebsd32_readv_args *uap) 1168 { 1169 struct uio *auio; 1170 int error; 1171 1172 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 1173 if (error) 1174 return (error); 1175 error = kern_readv(td, uap->fd, auio); 1176 free(auio, M_IOV); 1177 return (error); 1178 } 1179 1180 int 1181 freebsd32_writev(struct thread *td, struct freebsd32_writev_args *uap) 1182 { 1183 struct uio *auio; 1184 int error; 1185 1186 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 1187 if (error) 1188 return (error); 1189 error = kern_writev(td, uap->fd, auio); 1190 free(auio, M_IOV); 1191 return (error); 1192 } 1193 1194 int 1195 freebsd32_preadv(struct thread *td, struct freebsd32_preadv_args *uap) 1196 { 1197 struct uio *auio; 1198 int error; 1199 1200 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 1201 if (error) 1202 return (error); 1203 error = kern_preadv(td, uap->fd, auio, PAIR32TO64(off_t,uap->offset)); 1204 free(auio, M_IOV); 1205 return (error); 1206 } 1207 1208 int 1209 freebsd32_pwritev(struct thread *td, struct freebsd32_pwritev_args *uap) 1210 { 1211 struct uio *auio; 1212 int error; 1213 1214 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 1215 if (error) 1216 return (error); 1217 error = kern_pwritev(td, uap->fd, auio, PAIR32TO64(off_t,uap->offset)); 1218 free(auio, M_IOV); 1219 return (error); 1220 } 1221 1222 int 1223 freebsd32_copyiniov(struct iovec32 *iovp32, u_int iovcnt, struct iovec **iovp, 1224 int error) 1225 { 1226 struct iovec32 iov32; 1227 struct iovec *iov; 1228 u_int iovlen; 1229 int i; 1230 1231 *iovp = NULL; 1232 if (iovcnt > UIO_MAXIOV) 1233 return (error); 1234 iovlen = iovcnt * sizeof(struct iovec); 1235 iov = malloc(iovlen, M_IOV, M_WAITOK); 1236 for (i = 0; i < iovcnt; i++) { 1237 error = copyin(&iovp32[i], &iov32, sizeof(struct iovec32)); 1238 if (error) { 1239 free(iov, M_IOV); 1240 return (error); 1241 } 1242 iov[i].iov_base = PTRIN(iov32.iov_base); 1243 iov[i].iov_len = iov32.iov_len; 1244 } 1245 *iovp = iov; 1246 return (0); 1247 } 1248 1249 static int 1250 freebsd32_copyinmsghdr(const struct msghdr32 *msg32, struct msghdr *msg) 1251 { 1252 struct msghdr32 m32; 1253 int error; 1254 1255 error = copyin(msg32, &m32, sizeof(m32)); 1256 if (error) 1257 return (error); 1258 msg->msg_name = PTRIN(m32.msg_name); 1259 msg->msg_namelen = m32.msg_namelen; 1260 msg->msg_iov = PTRIN(m32.msg_iov); 1261 msg->msg_iovlen = m32.msg_iovlen; 1262 msg->msg_control = PTRIN(m32.msg_control); 1263 msg->msg_controllen = m32.msg_controllen; 1264 msg->msg_flags = m32.msg_flags; 1265 return (0); 1266 } 1267 1268 static int 1269 freebsd32_copyoutmsghdr(struct msghdr *msg, struct msghdr32 *msg32) 1270 { 1271 struct msghdr32 m32; 1272 int error; 1273 1274 m32.msg_name = PTROUT(msg->msg_name); 1275 m32.msg_namelen = msg->msg_namelen; 1276 m32.msg_iov = PTROUT(msg->msg_iov); 1277 m32.msg_iovlen = msg->msg_iovlen; 1278 m32.msg_control = PTROUT(msg->msg_control); 1279 m32.msg_controllen = msg->msg_controllen; 1280 m32.msg_flags = msg->msg_flags; 1281 error = copyout(&m32, msg32, sizeof(m32)); 1282 return (error); 1283 } 1284 1285 #ifndef __mips__ 1286 #define FREEBSD32_ALIGNBYTES (sizeof(int) - 1) 1287 #else 1288 #define FREEBSD32_ALIGNBYTES (sizeof(long) - 1) 1289 #endif 1290 #define FREEBSD32_ALIGN(p) \ 1291 (((u_long)(p) + FREEBSD32_ALIGNBYTES) & ~FREEBSD32_ALIGNBYTES) 1292 #define FREEBSD32_CMSG_SPACE(l) \ 1293 (FREEBSD32_ALIGN(sizeof(struct cmsghdr)) + FREEBSD32_ALIGN(l)) 1294 1295 #define FREEBSD32_CMSG_DATA(cmsg) ((unsigned char *)(cmsg) + \ 1296 FREEBSD32_ALIGN(sizeof(struct cmsghdr))) 1297 1298 static size_t 1299 freebsd32_cmsg_convert(const struct cmsghdr *cm, void *data, socklen_t datalen) 1300 { 1301 size_t copylen; 1302 union { 1303 struct timespec32 ts; 1304 struct timeval32 tv; 1305 struct bintime32 bt; 1306 } tmp32; 1307 1308 union { 1309 struct timespec ts; 1310 struct timeval tv; 1311 struct bintime bt; 1312 } *in; 1313 1314 in = data; 1315 copylen = 0; 1316 switch (cm->cmsg_level) { 1317 case SOL_SOCKET: 1318 switch (cm->cmsg_type) { 1319 case SCM_TIMESTAMP: 1320 TV_CP(*in, tmp32, tv); 1321 copylen = sizeof(tmp32.tv); 1322 break; 1323 1324 case SCM_BINTIME: 1325 BT_CP(*in, tmp32, bt); 1326 copylen = sizeof(tmp32.bt); 1327 break; 1328 1329 case SCM_REALTIME: 1330 case SCM_MONOTONIC: 1331 TS_CP(*in, tmp32, ts); 1332 copylen = sizeof(tmp32.ts); 1333 break; 1334 1335 default: 1336 break; 1337 } 1338 1339 default: 1340 break; 1341 } 1342 1343 if (copylen == 0) 1344 return (datalen); 1345 1346 KASSERT((datalen >= copylen), ("corrupted cmsghdr")); 1347 1348 bcopy(&tmp32, data, copylen); 1349 return (copylen); 1350 } 1351 1352 static int 1353 freebsd32_copy_msg_out(struct msghdr *msg, struct mbuf *control) 1354 { 1355 struct cmsghdr *cm; 1356 void *data; 1357 socklen_t clen, datalen, datalen_out, oldclen; 1358 int error; 1359 caddr_t ctlbuf; 1360 int len, copylen; 1361 struct mbuf *m; 1362 error = 0; 1363 1364 len = msg->msg_controllen; 1365 msg->msg_controllen = 0; 1366 1367 ctlbuf = msg->msg_control; 1368 for (m = control; m != NULL && len > 0; m = m->m_next) { 1369 cm = mtod(m, struct cmsghdr *); 1370 clen = m->m_len; 1371 while (cm != NULL) { 1372 if (sizeof(struct cmsghdr) > clen || 1373 cm->cmsg_len > clen) { 1374 error = EINVAL; 1375 break; 1376 } 1377 1378 data = CMSG_DATA(cm); 1379 datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data; 1380 datalen_out = freebsd32_cmsg_convert(cm, data, datalen); 1381 1382 /* 1383 * Copy out the message header. Preserve the native 1384 * message size in case we need to inspect the message 1385 * contents later. 1386 */ 1387 copylen = sizeof(struct cmsghdr); 1388 if (len < copylen) { 1389 msg->msg_flags |= MSG_CTRUNC; 1390 m_dispose_extcontrolm(m); 1391 goto exit; 1392 } 1393 oldclen = cm->cmsg_len; 1394 cm->cmsg_len = FREEBSD32_ALIGN(sizeof(struct cmsghdr)) + 1395 datalen_out; 1396 error = copyout(cm, ctlbuf, copylen); 1397 cm->cmsg_len = oldclen; 1398 if (error != 0) 1399 goto exit; 1400 1401 ctlbuf += FREEBSD32_ALIGN(copylen); 1402 len -= FREEBSD32_ALIGN(copylen); 1403 1404 copylen = datalen_out; 1405 if (len < copylen) { 1406 msg->msg_flags |= MSG_CTRUNC; 1407 m_dispose_extcontrolm(m); 1408 break; 1409 } 1410 1411 /* Copy out the message data. */ 1412 error = copyout(data, ctlbuf, copylen); 1413 if (error) 1414 goto exit; 1415 1416 ctlbuf += FREEBSD32_ALIGN(copylen); 1417 len -= FREEBSD32_ALIGN(copylen); 1418 1419 if (CMSG_SPACE(datalen) < clen) { 1420 clen -= CMSG_SPACE(datalen); 1421 cm = (struct cmsghdr *) 1422 ((caddr_t)cm + CMSG_SPACE(datalen)); 1423 } else { 1424 clen = 0; 1425 cm = NULL; 1426 } 1427 1428 msg->msg_controllen += 1429 FREEBSD32_CMSG_SPACE(datalen_out); 1430 } 1431 } 1432 if (len == 0 && m != NULL) { 1433 msg->msg_flags |= MSG_CTRUNC; 1434 m_dispose_extcontrolm(m); 1435 } 1436 1437 exit: 1438 return (error); 1439 } 1440 1441 int 1442 freebsd32_recvmsg(struct thread *td, struct freebsd32_recvmsg_args *uap) 1443 { 1444 struct msghdr msg; 1445 struct iovec *uiov, *iov; 1446 struct mbuf *control = NULL; 1447 struct mbuf **controlp; 1448 int error; 1449 1450 error = freebsd32_copyinmsghdr(uap->msg, &msg); 1451 if (error) 1452 return (error); 1453 error = freebsd32_copyiniov((void *)msg.msg_iov, msg.msg_iovlen, &iov, 1454 EMSGSIZE); 1455 if (error) 1456 return (error); 1457 msg.msg_flags = uap->flags; 1458 uiov = msg.msg_iov; 1459 msg.msg_iov = iov; 1460 1461 controlp = (msg.msg_control != NULL) ? &control : NULL; 1462 error = kern_recvit(td, uap->s, &msg, UIO_USERSPACE, controlp); 1463 if (error == 0) { 1464 msg.msg_iov = uiov; 1465 1466 if (control != NULL) 1467 error = freebsd32_copy_msg_out(&msg, control); 1468 else 1469 msg.msg_controllen = 0; 1470 1471 if (error == 0) 1472 error = freebsd32_copyoutmsghdr(&msg, uap->msg); 1473 } 1474 free(iov, M_IOV); 1475 1476 if (control != NULL) { 1477 if (error != 0) 1478 m_dispose_extcontrolm(control); 1479 m_freem(control); 1480 } 1481 1482 return (error); 1483 } 1484 1485 #ifdef COMPAT_43 1486 int 1487 ofreebsd32_recvmsg(struct thread *td, struct ofreebsd32_recvmsg_args *uap) 1488 { 1489 return (ENOSYS); 1490 } 1491 #endif 1492 1493 /* 1494 * Copy-in the array of control messages constructed using alignment 1495 * and padding suitable for a 32-bit environment and construct an 1496 * mbuf using alignment and padding suitable for a 64-bit kernel. 1497 * The alignment and padding are defined indirectly by CMSG_DATA(), 1498 * CMSG_SPACE() and CMSG_LEN(). 1499 */ 1500 static int 1501 freebsd32_copyin_control(struct mbuf **mp, caddr_t buf, u_int buflen) 1502 { 1503 struct cmsghdr *cm; 1504 struct mbuf *m; 1505 void *in, *in1, *md; 1506 u_int msglen, outlen; 1507 int error; 1508 1509 if (buflen > MCLBYTES) 1510 return (EINVAL); 1511 1512 in = malloc(buflen, M_TEMP, M_WAITOK); 1513 error = copyin(buf, in, buflen); 1514 if (error != 0) 1515 goto out; 1516 1517 /* 1518 * Make a pass over the input buffer to determine the amount of space 1519 * required for 64 bit-aligned copies of the control messages. 1520 */ 1521 in1 = in; 1522 outlen = 0; 1523 while (buflen > 0) { 1524 if (buflen < sizeof(*cm)) { 1525 error = EINVAL; 1526 break; 1527 } 1528 cm = (struct cmsghdr *)in1; 1529 if (cm->cmsg_len < FREEBSD32_ALIGN(sizeof(*cm))) { 1530 error = EINVAL; 1531 break; 1532 } 1533 msglen = FREEBSD32_ALIGN(cm->cmsg_len); 1534 if (msglen > buflen || msglen < cm->cmsg_len) { 1535 error = EINVAL; 1536 break; 1537 } 1538 buflen -= msglen; 1539 1540 in1 = (char *)in1 + msglen; 1541 outlen += CMSG_ALIGN(sizeof(*cm)) + 1542 CMSG_ALIGN(msglen - FREEBSD32_ALIGN(sizeof(*cm))); 1543 } 1544 if (error == 0 && outlen > MCLBYTES) { 1545 /* 1546 * XXXMJ This implies that the upper limit on 32-bit aligned 1547 * control messages is less than MCLBYTES, and so we are not 1548 * perfectly compatible. However, there is no platform 1549 * guarantee that mbuf clusters larger than MCLBYTES can be 1550 * allocated. 1551 */ 1552 error = EINVAL; 1553 } 1554 if (error != 0) 1555 goto out; 1556 1557 m = m_get2(outlen, M_WAITOK, MT_CONTROL, 0); 1558 m->m_len = outlen; 1559 md = mtod(m, void *); 1560 1561 /* 1562 * Make a second pass over input messages, copying them into the output 1563 * buffer. 1564 */ 1565 in1 = in; 1566 while (outlen > 0) { 1567 /* Copy the message header and align the length field. */ 1568 cm = md; 1569 memcpy(cm, in1, sizeof(*cm)); 1570 msglen = cm->cmsg_len - FREEBSD32_ALIGN(sizeof(*cm)); 1571 cm->cmsg_len = CMSG_ALIGN(sizeof(*cm)) + msglen; 1572 1573 /* Copy the message body. */ 1574 in1 = (char *)in1 + FREEBSD32_ALIGN(sizeof(*cm)); 1575 md = (char *)md + CMSG_ALIGN(sizeof(*cm)); 1576 memcpy(md, in1, msglen); 1577 in1 = (char *)in1 + FREEBSD32_ALIGN(msglen); 1578 md = (char *)md + CMSG_ALIGN(msglen); 1579 KASSERT(outlen >= CMSG_ALIGN(sizeof(*cm)) + CMSG_ALIGN(msglen), 1580 ("outlen %u underflow, msglen %u", outlen, msglen)); 1581 outlen -= CMSG_ALIGN(sizeof(*cm)) + CMSG_ALIGN(msglen); 1582 } 1583 1584 *mp = m; 1585 out: 1586 free(in, M_TEMP); 1587 return (error); 1588 } 1589 1590 int 1591 freebsd32_sendmsg(struct thread *td, struct freebsd32_sendmsg_args *uap) 1592 { 1593 struct msghdr msg; 1594 struct iovec *iov; 1595 struct mbuf *control = NULL; 1596 struct sockaddr *to = NULL; 1597 int error; 1598 1599 error = freebsd32_copyinmsghdr(uap->msg, &msg); 1600 if (error) 1601 return (error); 1602 error = freebsd32_copyiniov((void *)msg.msg_iov, msg.msg_iovlen, &iov, 1603 EMSGSIZE); 1604 if (error) 1605 return (error); 1606 msg.msg_iov = iov; 1607 if (msg.msg_name != NULL) { 1608 error = getsockaddr(&to, msg.msg_name, msg.msg_namelen); 1609 if (error) { 1610 to = NULL; 1611 goto out; 1612 } 1613 msg.msg_name = to; 1614 } 1615 1616 if (msg.msg_control) { 1617 if (msg.msg_controllen < sizeof(struct cmsghdr)) { 1618 error = EINVAL; 1619 goto out; 1620 } 1621 1622 error = freebsd32_copyin_control(&control, msg.msg_control, 1623 msg.msg_controllen); 1624 if (error) 1625 goto out; 1626 1627 msg.msg_control = NULL; 1628 msg.msg_controllen = 0; 1629 } 1630 1631 error = kern_sendit(td, uap->s, &msg, uap->flags, control, 1632 UIO_USERSPACE); 1633 1634 out: 1635 free(iov, M_IOV); 1636 if (to) 1637 free(to, M_SONAME); 1638 return (error); 1639 } 1640 1641 #ifdef COMPAT_43 1642 int 1643 ofreebsd32_sendmsg(struct thread *td, struct ofreebsd32_sendmsg_args *uap) 1644 { 1645 return (ENOSYS); 1646 } 1647 #endif 1648 1649 1650 int 1651 freebsd32_settimeofday(struct thread *td, 1652 struct freebsd32_settimeofday_args *uap) 1653 { 1654 struct timeval32 tv32; 1655 struct timeval tv, *tvp; 1656 struct timezone tz, *tzp; 1657 int error; 1658 1659 if (uap->tv) { 1660 error = copyin(uap->tv, &tv32, sizeof(tv32)); 1661 if (error) 1662 return (error); 1663 CP(tv32, tv, tv_sec); 1664 CP(tv32, tv, tv_usec); 1665 tvp = &tv; 1666 } else 1667 tvp = NULL; 1668 if (uap->tzp) { 1669 error = copyin(uap->tzp, &tz, sizeof(tz)); 1670 if (error) 1671 return (error); 1672 tzp = &tz; 1673 } else 1674 tzp = NULL; 1675 return (kern_settimeofday(td, tvp, tzp)); 1676 } 1677 1678 int 1679 freebsd32_utimes(struct thread *td, struct freebsd32_utimes_args *uap) 1680 { 1681 struct timeval32 s32[2]; 1682 struct timeval s[2], *sp; 1683 int error; 1684 1685 if (uap->tptr != NULL) { 1686 error = copyin(uap->tptr, s32, sizeof(s32)); 1687 if (error) 1688 return (error); 1689 CP(s32[0], s[0], tv_sec); 1690 CP(s32[0], s[0], tv_usec); 1691 CP(s32[1], s[1], tv_sec); 1692 CP(s32[1], s[1], tv_usec); 1693 sp = s; 1694 } else 1695 sp = NULL; 1696 return (kern_utimesat(td, AT_FDCWD, uap->path, UIO_USERSPACE, 1697 sp, UIO_SYSSPACE)); 1698 } 1699 1700 int 1701 freebsd32_lutimes(struct thread *td, struct freebsd32_lutimes_args *uap) 1702 { 1703 struct timeval32 s32[2]; 1704 struct timeval s[2], *sp; 1705 int error; 1706 1707 if (uap->tptr != NULL) { 1708 error = copyin(uap->tptr, s32, sizeof(s32)); 1709 if (error) 1710 return (error); 1711 CP(s32[0], s[0], tv_sec); 1712 CP(s32[0], s[0], tv_usec); 1713 CP(s32[1], s[1], tv_sec); 1714 CP(s32[1], s[1], tv_usec); 1715 sp = s; 1716 } else 1717 sp = NULL; 1718 return (kern_lutimes(td, uap->path, UIO_USERSPACE, sp, UIO_SYSSPACE)); 1719 } 1720 1721 int 1722 freebsd32_futimes(struct thread *td, struct freebsd32_futimes_args *uap) 1723 { 1724 struct timeval32 s32[2]; 1725 struct timeval s[2], *sp; 1726 int error; 1727 1728 if (uap->tptr != NULL) { 1729 error = copyin(uap->tptr, s32, sizeof(s32)); 1730 if (error) 1731 return (error); 1732 CP(s32[0], s[0], tv_sec); 1733 CP(s32[0], s[0], tv_usec); 1734 CP(s32[1], s[1], tv_sec); 1735 CP(s32[1], s[1], tv_usec); 1736 sp = s; 1737 } else 1738 sp = NULL; 1739 return (kern_futimes(td, uap->fd, sp, UIO_SYSSPACE)); 1740 } 1741 1742 int 1743 freebsd32_futimesat(struct thread *td, struct freebsd32_futimesat_args *uap) 1744 { 1745 struct timeval32 s32[2]; 1746 struct timeval s[2], *sp; 1747 int error; 1748 1749 if (uap->times != NULL) { 1750 error = copyin(uap->times, s32, sizeof(s32)); 1751 if (error) 1752 return (error); 1753 CP(s32[0], s[0], tv_sec); 1754 CP(s32[0], s[0], tv_usec); 1755 CP(s32[1], s[1], tv_sec); 1756 CP(s32[1], s[1], tv_usec); 1757 sp = s; 1758 } else 1759 sp = NULL; 1760 return (kern_utimesat(td, uap->fd, uap->path, UIO_USERSPACE, 1761 sp, UIO_SYSSPACE)); 1762 } 1763 1764 int 1765 freebsd32_futimens(struct thread *td, struct freebsd32_futimens_args *uap) 1766 { 1767 struct timespec32 ts32[2]; 1768 struct timespec ts[2], *tsp; 1769 int error; 1770 1771 if (uap->times != NULL) { 1772 error = copyin(uap->times, ts32, sizeof(ts32)); 1773 if (error) 1774 return (error); 1775 CP(ts32[0], ts[0], tv_sec); 1776 CP(ts32[0], ts[0], tv_nsec); 1777 CP(ts32[1], ts[1], tv_sec); 1778 CP(ts32[1], ts[1], tv_nsec); 1779 tsp = ts; 1780 } else 1781 tsp = NULL; 1782 return (kern_futimens(td, uap->fd, tsp, UIO_SYSSPACE)); 1783 } 1784 1785 int 1786 freebsd32_utimensat(struct thread *td, struct freebsd32_utimensat_args *uap) 1787 { 1788 struct timespec32 ts32[2]; 1789 struct timespec ts[2], *tsp; 1790 int error; 1791 1792 if (uap->times != NULL) { 1793 error = copyin(uap->times, ts32, sizeof(ts32)); 1794 if (error) 1795 return (error); 1796 CP(ts32[0], ts[0], tv_sec); 1797 CP(ts32[0], ts[0], tv_nsec); 1798 CP(ts32[1], ts[1], tv_sec); 1799 CP(ts32[1], ts[1], tv_nsec); 1800 tsp = ts; 1801 } else 1802 tsp = NULL; 1803 return (kern_utimensat(td, uap->fd, uap->path, UIO_USERSPACE, 1804 tsp, UIO_SYSSPACE, uap->flag)); 1805 } 1806 1807 int 1808 freebsd32_adjtime(struct thread *td, struct freebsd32_adjtime_args *uap) 1809 { 1810 struct timeval32 tv32; 1811 struct timeval delta, olddelta, *deltap; 1812 int error; 1813 1814 if (uap->delta) { 1815 error = copyin(uap->delta, &tv32, sizeof(tv32)); 1816 if (error) 1817 return (error); 1818 CP(tv32, delta, tv_sec); 1819 CP(tv32, delta, tv_usec); 1820 deltap = δ 1821 } else 1822 deltap = NULL; 1823 error = kern_adjtime(td, deltap, &olddelta); 1824 if (uap->olddelta && error == 0) { 1825 CP(olddelta, tv32, tv_sec); 1826 CP(olddelta, tv32, tv_usec); 1827 error = copyout(&tv32, uap->olddelta, sizeof(tv32)); 1828 } 1829 return (error); 1830 } 1831 1832 #ifdef COMPAT_FREEBSD4 1833 int 1834 freebsd4_freebsd32_statfs(struct thread *td, struct freebsd4_freebsd32_statfs_args *uap) 1835 { 1836 struct ostatfs32 s32; 1837 struct statfs *sp; 1838 int error; 1839 1840 sp = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK); 1841 error = kern_statfs(td, uap->path, UIO_USERSPACE, sp); 1842 if (error == 0) { 1843 copy_statfs(sp, &s32); 1844 error = copyout(&s32, uap->buf, sizeof(s32)); 1845 } 1846 free(sp, M_STATFS); 1847 return (error); 1848 } 1849 #endif 1850 1851 #ifdef COMPAT_FREEBSD4 1852 int 1853 freebsd4_freebsd32_fstatfs(struct thread *td, struct freebsd4_freebsd32_fstatfs_args *uap) 1854 { 1855 struct ostatfs32 s32; 1856 struct statfs *sp; 1857 int error; 1858 1859 sp = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK); 1860 error = kern_fstatfs(td, uap->fd, sp); 1861 if (error == 0) { 1862 copy_statfs(sp, &s32); 1863 error = copyout(&s32, uap->buf, sizeof(s32)); 1864 } 1865 free(sp, M_STATFS); 1866 return (error); 1867 } 1868 #endif 1869 1870 #ifdef COMPAT_FREEBSD4 1871 int 1872 freebsd4_freebsd32_fhstatfs(struct thread *td, struct freebsd4_freebsd32_fhstatfs_args *uap) 1873 { 1874 struct ostatfs32 s32; 1875 struct statfs *sp; 1876 fhandle_t fh; 1877 int error; 1878 1879 if ((error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t))) != 0) 1880 return (error); 1881 sp = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK); 1882 error = kern_fhstatfs(td, fh, sp); 1883 if (error == 0) { 1884 copy_statfs(sp, &s32); 1885 error = copyout(&s32, uap->buf, sizeof(s32)); 1886 } 1887 free(sp, M_STATFS); 1888 return (error); 1889 } 1890 #endif 1891 1892 int 1893 freebsd32_pread(struct thread *td, struct freebsd32_pread_args *uap) 1894 { 1895 1896 return (kern_pread(td, uap->fd, uap->buf, uap->nbyte, 1897 PAIR32TO64(off_t, uap->offset))); 1898 } 1899 1900 int 1901 freebsd32_pwrite(struct thread *td, struct freebsd32_pwrite_args *uap) 1902 { 1903 1904 return (kern_pwrite(td, uap->fd, uap->buf, uap->nbyte, 1905 PAIR32TO64(off_t, uap->offset))); 1906 } 1907 1908 #ifdef COMPAT_43 1909 int 1910 ofreebsd32_lseek(struct thread *td, struct ofreebsd32_lseek_args *uap) 1911 { 1912 1913 return (kern_lseek(td, uap->fd, uap->offset, uap->whence)); 1914 } 1915 #endif 1916 1917 int 1918 freebsd32_lseek(struct thread *td, struct freebsd32_lseek_args *uap) 1919 { 1920 int error; 1921 off_t pos; 1922 1923 error = kern_lseek(td, uap->fd, PAIR32TO64(off_t, uap->offset), 1924 uap->whence); 1925 /* Expand the quad return into two parts for eax and edx */ 1926 pos = td->td_uretoff.tdu_off; 1927 td->td_retval[RETVAL_LO] = pos & 0xffffffff; /* %eax */ 1928 td->td_retval[RETVAL_HI] = pos >> 32; /* %edx */ 1929 return error; 1930 } 1931 1932 int 1933 freebsd32_truncate(struct thread *td, struct freebsd32_truncate_args *uap) 1934 { 1935 1936 return (kern_truncate(td, uap->path, UIO_USERSPACE, 1937 PAIR32TO64(off_t, uap->length))); 1938 } 1939 1940 #ifdef COMPAT_43 1941 int 1942 ofreebsd32_truncate(struct thread *td, struct ofreebsd32_truncate_args *uap) 1943 { 1944 return (kern_truncate(td, uap->path, UIO_USERSPACE, uap->length)); 1945 } 1946 #endif 1947 1948 int 1949 freebsd32_ftruncate(struct thread *td, struct freebsd32_ftruncate_args *uap) 1950 { 1951 1952 return (kern_ftruncate(td, uap->fd, PAIR32TO64(off_t, uap->length))); 1953 } 1954 1955 #ifdef COMPAT_43 1956 int 1957 ofreebsd32_ftruncate(struct thread *td, struct ofreebsd32_ftruncate_args *uap) 1958 { 1959 return (kern_ftruncate(td, uap->fd, uap->length)); 1960 } 1961 1962 int 1963 ofreebsd32_getdirentries(struct thread *td, 1964 struct ofreebsd32_getdirentries_args *uap) 1965 { 1966 struct ogetdirentries_args ap; 1967 int error; 1968 long loff; 1969 int32_t loff_cut; 1970 1971 ap.fd = uap->fd; 1972 ap.buf = uap->buf; 1973 ap.count = uap->count; 1974 ap.basep = NULL; 1975 error = kern_ogetdirentries(td, &ap, &loff); 1976 if (error == 0) { 1977 loff_cut = loff; 1978 error = copyout(&loff_cut, uap->basep, sizeof(int32_t)); 1979 } 1980 return (error); 1981 } 1982 #endif 1983 1984 #if defined(COMPAT_FREEBSD11) 1985 int 1986 freebsd11_freebsd32_getdirentries(struct thread *td, 1987 struct freebsd11_freebsd32_getdirentries_args *uap) 1988 { 1989 long base; 1990 int32_t base32; 1991 int error; 1992 1993 error = freebsd11_kern_getdirentries(td, uap->fd, uap->buf, uap->count, 1994 &base, NULL); 1995 if (error) 1996 return (error); 1997 if (uap->basep != NULL) { 1998 base32 = base; 1999 error = copyout(&base32, uap->basep, sizeof(int32_t)); 2000 } 2001 return (error); 2002 } 2003 #endif /* COMPAT_FREEBSD11 */ 2004 2005 #ifdef COMPAT_FREEBSD6 2006 /* versions with the 'int pad' argument */ 2007 int 2008 freebsd6_freebsd32_pread(struct thread *td, struct freebsd6_freebsd32_pread_args *uap) 2009 { 2010 2011 return (kern_pread(td, uap->fd, uap->buf, uap->nbyte, 2012 PAIR32TO64(off_t, uap->offset))); 2013 } 2014 2015 int 2016 freebsd6_freebsd32_pwrite(struct thread *td, struct freebsd6_freebsd32_pwrite_args *uap) 2017 { 2018 2019 return (kern_pwrite(td, uap->fd, uap->buf, uap->nbyte, 2020 PAIR32TO64(off_t, uap->offset))); 2021 } 2022 2023 int 2024 freebsd6_freebsd32_lseek(struct thread *td, struct freebsd6_freebsd32_lseek_args *uap) 2025 { 2026 int error; 2027 off_t pos; 2028 2029 error = kern_lseek(td, uap->fd, PAIR32TO64(off_t, uap->offset), 2030 uap->whence); 2031 /* Expand the quad return into two parts for eax and edx */ 2032 pos = *(off_t *)(td->td_retval); 2033 td->td_retval[RETVAL_LO] = pos & 0xffffffff; /* %eax */ 2034 td->td_retval[RETVAL_HI] = pos >> 32; /* %edx */ 2035 return error; 2036 } 2037 2038 int 2039 freebsd6_freebsd32_truncate(struct thread *td, struct freebsd6_freebsd32_truncate_args *uap) 2040 { 2041 2042 return (kern_truncate(td, uap->path, UIO_USERSPACE, 2043 PAIR32TO64(off_t, uap->length))); 2044 } 2045 2046 int 2047 freebsd6_freebsd32_ftruncate(struct thread *td, struct freebsd6_freebsd32_ftruncate_args *uap) 2048 { 2049 2050 return (kern_ftruncate(td, uap->fd, PAIR32TO64(off_t, uap->length))); 2051 } 2052 #endif /* COMPAT_FREEBSD6 */ 2053 2054 struct sf_hdtr32 { 2055 uint32_t headers; 2056 int hdr_cnt; 2057 uint32_t trailers; 2058 int trl_cnt; 2059 }; 2060 2061 static int 2062 freebsd32_do_sendfile(struct thread *td, 2063 struct freebsd32_sendfile_args *uap, int compat) 2064 { 2065 struct sf_hdtr32 hdtr32; 2066 struct sf_hdtr hdtr; 2067 struct uio *hdr_uio, *trl_uio; 2068 struct file *fp; 2069 cap_rights_t rights; 2070 struct iovec32 *iov32; 2071 off_t offset, sbytes; 2072 int error; 2073 2074 offset = PAIR32TO64(off_t, uap->offset); 2075 if (offset < 0) 2076 return (EINVAL); 2077 2078 hdr_uio = trl_uio = NULL; 2079 2080 if (uap->hdtr != NULL) { 2081 error = copyin(uap->hdtr, &hdtr32, sizeof(hdtr32)); 2082 if (error) 2083 goto out; 2084 PTRIN_CP(hdtr32, hdtr, headers); 2085 CP(hdtr32, hdtr, hdr_cnt); 2086 PTRIN_CP(hdtr32, hdtr, trailers); 2087 CP(hdtr32, hdtr, trl_cnt); 2088 2089 if (hdtr.headers != NULL) { 2090 iov32 = PTRIN(hdtr32.headers); 2091 error = freebsd32_copyinuio(iov32, 2092 hdtr32.hdr_cnt, &hdr_uio); 2093 if (error) 2094 goto out; 2095 #ifdef COMPAT_FREEBSD4 2096 /* 2097 * In FreeBSD < 5.0 the nbytes to send also included 2098 * the header. If compat is specified subtract the 2099 * header size from nbytes. 2100 */ 2101 if (compat) { 2102 if (uap->nbytes > hdr_uio->uio_resid) 2103 uap->nbytes -= hdr_uio->uio_resid; 2104 else 2105 uap->nbytes = 0; 2106 } 2107 #endif 2108 } 2109 if (hdtr.trailers != NULL) { 2110 iov32 = PTRIN(hdtr32.trailers); 2111 error = freebsd32_copyinuio(iov32, 2112 hdtr32.trl_cnt, &trl_uio); 2113 if (error) 2114 goto out; 2115 } 2116 } 2117 2118 AUDIT_ARG_FD(uap->fd); 2119 2120 if ((error = fget_read(td, uap->fd, 2121 cap_rights_init_one(&rights, CAP_PREAD), &fp)) != 0) 2122 goto out; 2123 2124 error = fo_sendfile(fp, uap->s, hdr_uio, trl_uio, offset, 2125 uap->nbytes, &sbytes, uap->flags, td); 2126 fdrop(fp, td); 2127 2128 if (uap->sbytes != NULL) 2129 copyout(&sbytes, uap->sbytes, sizeof(off_t)); 2130 2131 out: 2132 if (hdr_uio) 2133 free(hdr_uio, M_IOV); 2134 if (trl_uio) 2135 free(trl_uio, M_IOV); 2136 return (error); 2137 } 2138 2139 #ifdef COMPAT_FREEBSD4 2140 int 2141 freebsd4_freebsd32_sendfile(struct thread *td, 2142 struct freebsd4_freebsd32_sendfile_args *uap) 2143 { 2144 return (freebsd32_do_sendfile(td, 2145 (struct freebsd32_sendfile_args *)uap, 1)); 2146 } 2147 #endif 2148 2149 int 2150 freebsd32_sendfile(struct thread *td, struct freebsd32_sendfile_args *uap) 2151 { 2152 2153 return (freebsd32_do_sendfile(td, uap, 0)); 2154 } 2155 2156 static void 2157 copy_stat(struct stat *in, struct stat32 *out) 2158 { 2159 2160 CP(*in, *out, st_dev); 2161 CP(*in, *out, st_ino); 2162 CP(*in, *out, st_mode); 2163 CP(*in, *out, st_nlink); 2164 CP(*in, *out, st_uid); 2165 CP(*in, *out, st_gid); 2166 CP(*in, *out, st_rdev); 2167 TS_CP(*in, *out, st_atim); 2168 TS_CP(*in, *out, st_mtim); 2169 TS_CP(*in, *out, st_ctim); 2170 CP(*in, *out, st_size); 2171 CP(*in, *out, st_blocks); 2172 CP(*in, *out, st_blksize); 2173 CP(*in, *out, st_flags); 2174 CP(*in, *out, st_gen); 2175 TS_CP(*in, *out, st_birthtim); 2176 out->st_padding0 = 0; 2177 out->st_padding1 = 0; 2178 #ifdef __STAT32_TIME_T_EXT 2179 out->st_atim_ext = 0; 2180 out->st_mtim_ext = 0; 2181 out->st_ctim_ext = 0; 2182 out->st_btim_ext = 0; 2183 #endif 2184 bzero(out->st_spare, sizeof(out->st_spare)); 2185 } 2186 2187 #ifdef COMPAT_43 2188 static void 2189 copy_ostat(struct stat *in, struct ostat32 *out) 2190 { 2191 2192 bzero(out, sizeof(*out)); 2193 CP(*in, *out, st_dev); 2194 CP(*in, *out, st_ino); 2195 CP(*in, *out, st_mode); 2196 CP(*in, *out, st_nlink); 2197 CP(*in, *out, st_uid); 2198 CP(*in, *out, st_gid); 2199 CP(*in, *out, st_rdev); 2200 out->st_size = MIN(in->st_size, INT32_MAX); 2201 TS_CP(*in, *out, st_atim); 2202 TS_CP(*in, *out, st_mtim); 2203 TS_CP(*in, *out, st_ctim); 2204 CP(*in, *out, st_blksize); 2205 CP(*in, *out, st_blocks); 2206 CP(*in, *out, st_flags); 2207 CP(*in, *out, st_gen); 2208 } 2209 #endif 2210 2211 #ifdef COMPAT_43 2212 int 2213 ofreebsd32_stat(struct thread *td, struct ofreebsd32_stat_args *uap) 2214 { 2215 struct stat sb; 2216 struct ostat32 sb32; 2217 int error; 2218 2219 error = kern_statat(td, 0, AT_FDCWD, uap->path, UIO_USERSPACE, 2220 &sb, NULL); 2221 if (error) 2222 return (error); 2223 copy_ostat(&sb, &sb32); 2224 error = copyout(&sb32, uap->ub, sizeof (sb32)); 2225 return (error); 2226 } 2227 #endif 2228 2229 int 2230 freebsd32_fstat(struct thread *td, struct freebsd32_fstat_args *uap) 2231 { 2232 struct stat ub; 2233 struct stat32 ub32; 2234 int error; 2235 2236 error = kern_fstat(td, uap->fd, &ub); 2237 if (error) 2238 return (error); 2239 copy_stat(&ub, &ub32); 2240 error = copyout(&ub32, uap->sb, sizeof(ub32)); 2241 return (error); 2242 } 2243 2244 #ifdef COMPAT_43 2245 int 2246 ofreebsd32_fstat(struct thread *td, struct ofreebsd32_fstat_args *uap) 2247 { 2248 struct stat ub; 2249 struct ostat32 ub32; 2250 int error; 2251 2252 error = kern_fstat(td, uap->fd, &ub); 2253 if (error) 2254 return (error); 2255 copy_ostat(&ub, &ub32); 2256 error = copyout(&ub32, uap->sb, sizeof(ub32)); 2257 return (error); 2258 } 2259 #endif 2260 2261 int 2262 freebsd32_fstatat(struct thread *td, struct freebsd32_fstatat_args *uap) 2263 { 2264 struct stat ub; 2265 struct stat32 ub32; 2266 int error; 2267 2268 error = kern_statat(td, uap->flag, uap->fd, uap->path, UIO_USERSPACE, 2269 &ub, NULL); 2270 if (error) 2271 return (error); 2272 copy_stat(&ub, &ub32); 2273 error = copyout(&ub32, uap->buf, sizeof(ub32)); 2274 return (error); 2275 } 2276 2277 #ifdef COMPAT_43 2278 int 2279 ofreebsd32_lstat(struct thread *td, struct ofreebsd32_lstat_args *uap) 2280 { 2281 struct stat sb; 2282 struct ostat32 sb32; 2283 int error; 2284 2285 error = kern_statat(td, AT_SYMLINK_NOFOLLOW, AT_FDCWD, uap->path, 2286 UIO_USERSPACE, &sb, NULL); 2287 if (error) 2288 return (error); 2289 copy_ostat(&sb, &sb32); 2290 error = copyout(&sb32, uap->ub, sizeof (sb32)); 2291 return (error); 2292 } 2293 #endif 2294 2295 int 2296 freebsd32_fhstat(struct thread *td, struct freebsd32_fhstat_args *uap) 2297 { 2298 struct stat sb; 2299 struct stat32 sb32; 2300 struct fhandle fh; 2301 int error; 2302 2303 error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t)); 2304 if (error != 0) 2305 return (error); 2306 error = kern_fhstat(td, fh, &sb); 2307 if (error != 0) 2308 return (error); 2309 copy_stat(&sb, &sb32); 2310 error = copyout(&sb32, uap->sb, sizeof (sb32)); 2311 return (error); 2312 } 2313 2314 #if defined(COMPAT_FREEBSD11) 2315 extern int ino64_trunc_error; 2316 2317 static int 2318 freebsd11_cvtstat32(struct stat *in, struct freebsd11_stat32 *out) 2319 { 2320 2321 CP(*in, *out, st_ino); 2322 if (in->st_ino != out->st_ino) { 2323 switch (ino64_trunc_error) { 2324 default: 2325 case 0: 2326 break; 2327 case 1: 2328 return (EOVERFLOW); 2329 case 2: 2330 out->st_ino = UINT32_MAX; 2331 break; 2332 } 2333 } 2334 CP(*in, *out, st_nlink); 2335 if (in->st_nlink != out->st_nlink) { 2336 switch (ino64_trunc_error) { 2337 default: 2338 case 0: 2339 break; 2340 case 1: 2341 return (EOVERFLOW); 2342 case 2: 2343 out->st_nlink = UINT16_MAX; 2344 break; 2345 } 2346 } 2347 out->st_dev = in->st_dev; 2348 if (out->st_dev != in->st_dev) { 2349 switch (ino64_trunc_error) { 2350 default: 2351 break; 2352 case 1: 2353 return (EOVERFLOW); 2354 } 2355 } 2356 CP(*in, *out, st_mode); 2357 CP(*in, *out, st_uid); 2358 CP(*in, *out, st_gid); 2359 out->st_rdev = in->st_rdev; 2360 if (out->st_rdev != in->st_rdev) { 2361 switch (ino64_trunc_error) { 2362 default: 2363 break; 2364 case 1: 2365 return (EOVERFLOW); 2366 } 2367 } 2368 TS_CP(*in, *out, st_atim); 2369 TS_CP(*in, *out, st_mtim); 2370 TS_CP(*in, *out, st_ctim); 2371 CP(*in, *out, st_size); 2372 CP(*in, *out, st_blocks); 2373 CP(*in, *out, st_blksize); 2374 CP(*in, *out, st_flags); 2375 CP(*in, *out, st_gen); 2376 TS_CP(*in, *out, st_birthtim); 2377 out->st_lspare = 0; 2378 bzero((char *)&out->st_birthtim + sizeof(out->st_birthtim), 2379 sizeof(*out) - offsetof(struct freebsd11_stat32, 2380 st_birthtim) - sizeof(out->st_birthtim)); 2381 return (0); 2382 } 2383 2384 int 2385 freebsd11_freebsd32_stat(struct thread *td, 2386 struct freebsd11_freebsd32_stat_args *uap) 2387 { 2388 struct stat sb; 2389 struct freebsd11_stat32 sb32; 2390 int error; 2391 2392 error = kern_statat(td, 0, AT_FDCWD, uap->path, UIO_USERSPACE, 2393 &sb, NULL); 2394 if (error != 0) 2395 return (error); 2396 error = freebsd11_cvtstat32(&sb, &sb32); 2397 if (error == 0) 2398 error = copyout(&sb32, uap->ub, sizeof (sb32)); 2399 return (error); 2400 } 2401 2402 int 2403 freebsd11_freebsd32_fstat(struct thread *td, 2404 struct freebsd11_freebsd32_fstat_args *uap) 2405 { 2406 struct stat sb; 2407 struct freebsd11_stat32 sb32; 2408 int error; 2409 2410 error = kern_fstat(td, uap->fd, &sb); 2411 if (error != 0) 2412 return (error); 2413 error = freebsd11_cvtstat32(&sb, &sb32); 2414 if (error == 0) 2415 error = copyout(&sb32, uap->sb, sizeof (sb32)); 2416 return (error); 2417 } 2418 2419 int 2420 freebsd11_freebsd32_fstatat(struct thread *td, 2421 struct freebsd11_freebsd32_fstatat_args *uap) 2422 { 2423 struct stat sb; 2424 struct freebsd11_stat32 sb32; 2425 int error; 2426 2427 error = kern_statat(td, uap->flag, uap->fd, uap->path, UIO_USERSPACE, 2428 &sb, NULL); 2429 if (error != 0) 2430 return (error); 2431 error = freebsd11_cvtstat32(&sb, &sb32); 2432 if (error == 0) 2433 error = copyout(&sb32, uap->buf, sizeof (sb32)); 2434 return (error); 2435 } 2436 2437 int 2438 freebsd11_freebsd32_lstat(struct thread *td, 2439 struct freebsd11_freebsd32_lstat_args *uap) 2440 { 2441 struct stat sb; 2442 struct freebsd11_stat32 sb32; 2443 int error; 2444 2445 error = kern_statat(td, AT_SYMLINK_NOFOLLOW, AT_FDCWD, uap->path, 2446 UIO_USERSPACE, &sb, NULL); 2447 if (error != 0) 2448 return (error); 2449 error = freebsd11_cvtstat32(&sb, &sb32); 2450 if (error == 0) 2451 error = copyout(&sb32, uap->ub, sizeof (sb32)); 2452 return (error); 2453 } 2454 2455 int 2456 freebsd11_freebsd32_fhstat(struct thread *td, 2457 struct freebsd11_freebsd32_fhstat_args *uap) 2458 { 2459 struct stat sb; 2460 struct freebsd11_stat32 sb32; 2461 struct fhandle fh; 2462 int error; 2463 2464 error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t)); 2465 if (error != 0) 2466 return (error); 2467 error = kern_fhstat(td, fh, &sb); 2468 if (error != 0) 2469 return (error); 2470 error = freebsd11_cvtstat32(&sb, &sb32); 2471 if (error == 0) 2472 error = copyout(&sb32, uap->sb, sizeof (sb32)); 2473 return (error); 2474 } 2475 2476 static int 2477 freebsd11_cvtnstat32(struct stat *sb, struct nstat32 *nsb32) 2478 { 2479 struct nstat nsb; 2480 int error; 2481 2482 error = freebsd11_cvtnstat(sb, &nsb); 2483 if (error != 0) 2484 return (error); 2485 2486 bzero(nsb32, sizeof(*nsb32)); 2487 CP(nsb, *nsb32, st_dev); 2488 CP(nsb, *nsb32, st_ino); 2489 CP(nsb, *nsb32, st_mode); 2490 CP(nsb, *nsb32, st_nlink); 2491 CP(nsb, *nsb32, st_uid); 2492 CP(nsb, *nsb32, st_gid); 2493 CP(nsb, *nsb32, st_rdev); 2494 CP(nsb, *nsb32, st_atim.tv_sec); 2495 CP(nsb, *nsb32, st_atim.tv_nsec); 2496 CP(nsb, *nsb32, st_mtim.tv_sec); 2497 CP(nsb, *nsb32, st_mtim.tv_nsec); 2498 CP(nsb, *nsb32, st_ctim.tv_sec); 2499 CP(nsb, *nsb32, st_ctim.tv_nsec); 2500 CP(nsb, *nsb32, st_size); 2501 CP(nsb, *nsb32, st_blocks); 2502 CP(nsb, *nsb32, st_blksize); 2503 CP(nsb, *nsb32, st_flags); 2504 CP(nsb, *nsb32, st_gen); 2505 CP(nsb, *nsb32, st_birthtim.tv_sec); 2506 CP(nsb, *nsb32, st_birthtim.tv_nsec); 2507 return (0); 2508 } 2509 2510 int 2511 freebsd11_freebsd32_nstat(struct thread *td, 2512 struct freebsd11_freebsd32_nstat_args *uap) 2513 { 2514 struct stat sb; 2515 struct nstat32 nsb; 2516 int error; 2517 2518 error = kern_statat(td, 0, AT_FDCWD, uap->path, UIO_USERSPACE, 2519 &sb, NULL); 2520 if (error != 0) 2521 return (error); 2522 error = freebsd11_cvtnstat32(&sb, &nsb); 2523 if (error != 0) 2524 error = copyout(&nsb, uap->ub, sizeof (nsb)); 2525 return (error); 2526 } 2527 2528 int 2529 freebsd11_freebsd32_nlstat(struct thread *td, 2530 struct freebsd11_freebsd32_nlstat_args *uap) 2531 { 2532 struct stat sb; 2533 struct nstat32 nsb; 2534 int error; 2535 2536 error = kern_statat(td, AT_SYMLINK_NOFOLLOW, AT_FDCWD, uap->path, 2537 UIO_USERSPACE, &sb, NULL); 2538 if (error != 0) 2539 return (error); 2540 error = freebsd11_cvtnstat32(&sb, &nsb); 2541 if (error == 0) 2542 error = copyout(&nsb, uap->ub, sizeof (nsb)); 2543 return (error); 2544 } 2545 2546 int 2547 freebsd11_freebsd32_nfstat(struct thread *td, 2548 struct freebsd11_freebsd32_nfstat_args *uap) 2549 { 2550 struct nstat32 nub; 2551 struct stat ub; 2552 int error; 2553 2554 error = kern_fstat(td, uap->fd, &ub); 2555 if (error != 0) 2556 return (error); 2557 error = freebsd11_cvtnstat32(&ub, &nub); 2558 if (error == 0) 2559 error = copyout(&nub, uap->sb, sizeof(nub)); 2560 return (error); 2561 } 2562 #endif 2563 2564 int 2565 freebsd32___sysctl(struct thread *td, struct freebsd32___sysctl_args *uap) 2566 { 2567 int error, name[CTL_MAXNAME]; 2568 size_t j, oldlen; 2569 uint32_t tmp; 2570 2571 if (uap->namelen > CTL_MAXNAME || uap->namelen < 2) 2572 return (EINVAL); 2573 error = copyin(uap->name, name, uap->namelen * sizeof(int)); 2574 if (error) 2575 return (error); 2576 if (uap->oldlenp) { 2577 error = fueword32(uap->oldlenp, &tmp); 2578 oldlen = tmp; 2579 } else { 2580 oldlen = 0; 2581 } 2582 if (error != 0) 2583 return (EFAULT); 2584 error = userland_sysctl(td, name, uap->namelen, 2585 uap->old, &oldlen, 1, 2586 uap->new, uap->newlen, &j, SCTL_MASK32); 2587 if (error) 2588 return (error); 2589 if (uap->oldlenp) 2590 suword32(uap->oldlenp, j); 2591 return (0); 2592 } 2593 2594 int 2595 freebsd32___sysctlbyname(struct thread *td, 2596 struct freebsd32___sysctlbyname_args *uap) 2597 { 2598 size_t oldlen, rv; 2599 int error; 2600 uint32_t tmp; 2601 2602 if (uap->oldlenp != NULL) { 2603 error = fueword32(uap->oldlenp, &tmp); 2604 oldlen = tmp; 2605 } else { 2606 error = oldlen = 0; 2607 } 2608 if (error != 0) 2609 return (EFAULT); 2610 error = kern___sysctlbyname(td, uap->name, uap->namelen, uap->old, 2611 &oldlen, uap->new, uap->newlen, &rv, SCTL_MASK32, 1); 2612 if (error != 0) 2613 return (error); 2614 if (uap->oldlenp != NULL) 2615 error = suword32(uap->oldlenp, rv); 2616 2617 return (error); 2618 } 2619 2620 int 2621 freebsd32_jail(struct thread *td, struct freebsd32_jail_args *uap) 2622 { 2623 uint32_t version; 2624 int error; 2625 struct jail j; 2626 2627 error = copyin(uap->jail, &version, sizeof(uint32_t)); 2628 if (error) 2629 return (error); 2630 2631 switch (version) { 2632 case 0: 2633 { 2634 /* FreeBSD single IPv4 jails. */ 2635 struct jail32_v0 j32_v0; 2636 2637 bzero(&j, sizeof(struct jail)); 2638 error = copyin(uap->jail, &j32_v0, sizeof(struct jail32_v0)); 2639 if (error) 2640 return (error); 2641 CP(j32_v0, j, version); 2642 PTRIN_CP(j32_v0, j, path); 2643 PTRIN_CP(j32_v0, j, hostname); 2644 j.ip4s = htonl(j32_v0.ip_number); /* jail_v0 is host order */ 2645 break; 2646 } 2647 2648 case 1: 2649 /* 2650 * Version 1 was used by multi-IPv4 jail implementations 2651 * that never made it into the official kernel. 2652 */ 2653 return (EINVAL); 2654 2655 case 2: /* JAIL_API_VERSION */ 2656 { 2657 /* FreeBSD multi-IPv4/IPv6,noIP jails. */ 2658 struct jail32 j32; 2659 2660 error = copyin(uap->jail, &j32, sizeof(struct jail32)); 2661 if (error) 2662 return (error); 2663 CP(j32, j, version); 2664 PTRIN_CP(j32, j, path); 2665 PTRIN_CP(j32, j, hostname); 2666 PTRIN_CP(j32, j, jailname); 2667 CP(j32, j, ip4s); 2668 CP(j32, j, ip6s); 2669 PTRIN_CP(j32, j, ip4); 2670 PTRIN_CP(j32, j, ip6); 2671 break; 2672 } 2673 2674 default: 2675 /* Sci-Fi jails are not supported, sorry. */ 2676 return (EINVAL); 2677 } 2678 return (kern_jail(td, &j)); 2679 } 2680 2681 int 2682 freebsd32_jail_set(struct thread *td, struct freebsd32_jail_set_args *uap) 2683 { 2684 struct uio *auio; 2685 int error; 2686 2687 /* Check that we have an even number of iovecs. */ 2688 if (uap->iovcnt & 1) 2689 return (EINVAL); 2690 2691 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 2692 if (error) 2693 return (error); 2694 error = kern_jail_set(td, auio, uap->flags); 2695 free(auio, M_IOV); 2696 return (error); 2697 } 2698 2699 int 2700 freebsd32_jail_get(struct thread *td, struct freebsd32_jail_get_args *uap) 2701 { 2702 struct iovec32 iov32; 2703 struct uio *auio; 2704 int error, i; 2705 2706 /* Check that we have an even number of iovecs. */ 2707 if (uap->iovcnt & 1) 2708 return (EINVAL); 2709 2710 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 2711 if (error) 2712 return (error); 2713 error = kern_jail_get(td, auio, uap->flags); 2714 if (error == 0) 2715 for (i = 0; i < uap->iovcnt; i++) { 2716 PTROUT_CP(auio->uio_iov[i], iov32, iov_base); 2717 CP(auio->uio_iov[i], iov32, iov_len); 2718 error = copyout(&iov32, uap->iovp + i, sizeof(iov32)); 2719 if (error != 0) 2720 break; 2721 } 2722 free(auio, M_IOV); 2723 return (error); 2724 } 2725 2726 int 2727 freebsd32_sigaction(struct thread *td, struct freebsd32_sigaction_args *uap) 2728 { 2729 struct sigaction32 s32; 2730 struct sigaction sa, osa, *sap; 2731 int error; 2732 2733 if (uap->act) { 2734 error = copyin(uap->act, &s32, sizeof(s32)); 2735 if (error) 2736 return (error); 2737 sa.sa_handler = PTRIN(s32.sa_u); 2738 CP(s32, sa, sa_flags); 2739 CP(s32, sa, sa_mask); 2740 sap = &sa; 2741 } else 2742 sap = NULL; 2743 error = kern_sigaction(td, uap->sig, sap, &osa, 0); 2744 if (error == 0 && uap->oact != NULL) { 2745 s32.sa_u = PTROUT(osa.sa_handler); 2746 CP(osa, s32, sa_flags); 2747 CP(osa, s32, sa_mask); 2748 error = copyout(&s32, uap->oact, sizeof(s32)); 2749 } 2750 return (error); 2751 } 2752 2753 #ifdef COMPAT_FREEBSD4 2754 int 2755 freebsd4_freebsd32_sigaction(struct thread *td, 2756 struct freebsd4_freebsd32_sigaction_args *uap) 2757 { 2758 struct sigaction32 s32; 2759 struct sigaction sa, osa, *sap; 2760 int error; 2761 2762 if (uap->act) { 2763 error = copyin(uap->act, &s32, sizeof(s32)); 2764 if (error) 2765 return (error); 2766 sa.sa_handler = PTRIN(s32.sa_u); 2767 CP(s32, sa, sa_flags); 2768 CP(s32, sa, sa_mask); 2769 sap = &sa; 2770 } else 2771 sap = NULL; 2772 error = kern_sigaction(td, uap->sig, sap, &osa, KSA_FREEBSD4); 2773 if (error == 0 && uap->oact != NULL) { 2774 s32.sa_u = PTROUT(osa.sa_handler); 2775 CP(osa, s32, sa_flags); 2776 CP(osa, s32, sa_mask); 2777 error = copyout(&s32, uap->oact, sizeof(s32)); 2778 } 2779 return (error); 2780 } 2781 #endif 2782 2783 #ifdef COMPAT_43 2784 struct osigaction32 { 2785 u_int32_t sa_u; 2786 osigset_t sa_mask; 2787 int sa_flags; 2788 }; 2789 2790 #define ONSIG 32 2791 2792 int 2793 ofreebsd32_sigaction(struct thread *td, 2794 struct ofreebsd32_sigaction_args *uap) 2795 { 2796 struct osigaction32 s32; 2797 struct sigaction sa, osa, *sap; 2798 int error; 2799 2800 if (uap->signum <= 0 || uap->signum >= ONSIG) 2801 return (EINVAL); 2802 2803 if (uap->nsa) { 2804 error = copyin(uap->nsa, &s32, sizeof(s32)); 2805 if (error) 2806 return (error); 2807 sa.sa_handler = PTRIN(s32.sa_u); 2808 CP(s32, sa, sa_flags); 2809 OSIG2SIG(s32.sa_mask, sa.sa_mask); 2810 sap = &sa; 2811 } else 2812 sap = NULL; 2813 error = kern_sigaction(td, uap->signum, sap, &osa, KSA_OSIGSET); 2814 if (error == 0 && uap->osa != NULL) { 2815 s32.sa_u = PTROUT(osa.sa_handler); 2816 CP(osa, s32, sa_flags); 2817 SIG2OSIG(osa.sa_mask, s32.sa_mask); 2818 error = copyout(&s32, uap->osa, sizeof(s32)); 2819 } 2820 return (error); 2821 } 2822 2823 struct sigvec32 { 2824 u_int32_t sv_handler; 2825 int sv_mask; 2826 int sv_flags; 2827 }; 2828 2829 int 2830 ofreebsd32_sigvec(struct thread *td, 2831 struct ofreebsd32_sigvec_args *uap) 2832 { 2833 struct sigvec32 vec; 2834 struct sigaction sa, osa, *sap; 2835 int error; 2836 2837 if (uap->signum <= 0 || uap->signum >= ONSIG) 2838 return (EINVAL); 2839 2840 if (uap->nsv) { 2841 error = copyin(uap->nsv, &vec, sizeof(vec)); 2842 if (error) 2843 return (error); 2844 sa.sa_handler = PTRIN(vec.sv_handler); 2845 OSIG2SIG(vec.sv_mask, sa.sa_mask); 2846 sa.sa_flags = vec.sv_flags; 2847 sa.sa_flags ^= SA_RESTART; 2848 sap = &sa; 2849 } else 2850 sap = NULL; 2851 error = kern_sigaction(td, uap->signum, sap, &osa, KSA_OSIGSET); 2852 if (error == 0 && uap->osv != NULL) { 2853 vec.sv_handler = PTROUT(osa.sa_handler); 2854 SIG2OSIG(osa.sa_mask, vec.sv_mask); 2855 vec.sv_flags = osa.sa_flags; 2856 vec.sv_flags &= ~SA_NOCLDWAIT; 2857 vec.sv_flags ^= SA_RESTART; 2858 error = copyout(&vec, uap->osv, sizeof(vec)); 2859 } 2860 return (error); 2861 } 2862 2863 struct sigstack32 { 2864 u_int32_t ss_sp; 2865 int ss_onstack; 2866 }; 2867 2868 int 2869 ofreebsd32_sigstack(struct thread *td, 2870 struct ofreebsd32_sigstack_args *uap) 2871 { 2872 struct sigstack32 s32; 2873 struct sigstack nss, oss; 2874 int error = 0, unss; 2875 2876 if (uap->nss != NULL) { 2877 error = copyin(uap->nss, &s32, sizeof(s32)); 2878 if (error) 2879 return (error); 2880 nss.ss_sp = PTRIN(s32.ss_sp); 2881 CP(s32, nss, ss_onstack); 2882 unss = 1; 2883 } else { 2884 unss = 0; 2885 } 2886 oss.ss_sp = td->td_sigstk.ss_sp; 2887 oss.ss_onstack = sigonstack(cpu_getstack(td)); 2888 if (unss) { 2889 td->td_sigstk.ss_sp = nss.ss_sp; 2890 td->td_sigstk.ss_size = 0; 2891 td->td_sigstk.ss_flags |= (nss.ss_onstack & SS_ONSTACK); 2892 td->td_pflags |= TDP_ALTSTACK; 2893 } 2894 if (uap->oss != NULL) { 2895 s32.ss_sp = PTROUT(oss.ss_sp); 2896 CP(oss, s32, ss_onstack); 2897 error = copyout(&s32, uap->oss, sizeof(s32)); 2898 } 2899 return (error); 2900 } 2901 #endif 2902 2903 int 2904 freebsd32_nanosleep(struct thread *td, struct freebsd32_nanosleep_args *uap) 2905 { 2906 2907 return (freebsd32_user_clock_nanosleep(td, CLOCK_REALTIME, 2908 TIMER_RELTIME, uap->rqtp, uap->rmtp)); 2909 } 2910 2911 int 2912 freebsd32_clock_nanosleep(struct thread *td, 2913 struct freebsd32_clock_nanosleep_args *uap) 2914 { 2915 int error; 2916 2917 error = freebsd32_user_clock_nanosleep(td, uap->clock_id, uap->flags, 2918 uap->rqtp, uap->rmtp); 2919 return (kern_posix_error(td, error)); 2920 } 2921 2922 static int 2923 freebsd32_user_clock_nanosleep(struct thread *td, clockid_t clock_id, 2924 int flags, const struct timespec32 *ua_rqtp, struct timespec32 *ua_rmtp) 2925 { 2926 struct timespec32 rmt32, rqt32; 2927 struct timespec rmt, rqt; 2928 int error, error2; 2929 2930 error = copyin(ua_rqtp, &rqt32, sizeof(rqt32)); 2931 if (error) 2932 return (error); 2933 2934 CP(rqt32, rqt, tv_sec); 2935 CP(rqt32, rqt, tv_nsec); 2936 2937 error = kern_clock_nanosleep(td, clock_id, flags, &rqt, &rmt); 2938 if (error == EINTR && ua_rmtp != NULL && (flags & TIMER_ABSTIME) == 0) { 2939 CP(rmt, rmt32, tv_sec); 2940 CP(rmt, rmt32, tv_nsec); 2941 2942 error2 = copyout(&rmt32, ua_rmtp, sizeof(rmt32)); 2943 if (error2 != 0) 2944 error = error2; 2945 } 2946 return (error); 2947 } 2948 2949 int 2950 freebsd32_clock_gettime(struct thread *td, 2951 struct freebsd32_clock_gettime_args *uap) 2952 { 2953 struct timespec ats; 2954 struct timespec32 ats32; 2955 int error; 2956 2957 error = kern_clock_gettime(td, uap->clock_id, &ats); 2958 if (error == 0) { 2959 CP(ats, ats32, tv_sec); 2960 CP(ats, ats32, tv_nsec); 2961 error = copyout(&ats32, uap->tp, sizeof(ats32)); 2962 } 2963 return (error); 2964 } 2965 2966 int 2967 freebsd32_clock_settime(struct thread *td, 2968 struct freebsd32_clock_settime_args *uap) 2969 { 2970 struct timespec ats; 2971 struct timespec32 ats32; 2972 int error; 2973 2974 error = copyin(uap->tp, &ats32, sizeof(ats32)); 2975 if (error) 2976 return (error); 2977 CP(ats32, ats, tv_sec); 2978 CP(ats32, ats, tv_nsec); 2979 2980 return (kern_clock_settime(td, uap->clock_id, &ats)); 2981 } 2982 2983 int 2984 freebsd32_clock_getres(struct thread *td, 2985 struct freebsd32_clock_getres_args *uap) 2986 { 2987 struct timespec ts; 2988 struct timespec32 ts32; 2989 int error; 2990 2991 if (uap->tp == NULL) 2992 return (0); 2993 error = kern_clock_getres(td, uap->clock_id, &ts); 2994 if (error == 0) { 2995 CP(ts, ts32, tv_sec); 2996 CP(ts, ts32, tv_nsec); 2997 error = copyout(&ts32, uap->tp, sizeof(ts32)); 2998 } 2999 return (error); 3000 } 3001 3002 int freebsd32_ktimer_create(struct thread *td, 3003 struct freebsd32_ktimer_create_args *uap) 3004 { 3005 struct sigevent32 ev32; 3006 struct sigevent ev, *evp; 3007 int error, id; 3008 3009 if (uap->evp == NULL) { 3010 evp = NULL; 3011 } else { 3012 evp = &ev; 3013 error = copyin(uap->evp, &ev32, sizeof(ev32)); 3014 if (error != 0) 3015 return (error); 3016 error = convert_sigevent32(&ev32, &ev); 3017 if (error != 0) 3018 return (error); 3019 } 3020 error = kern_ktimer_create(td, uap->clock_id, evp, &id, -1); 3021 if (error == 0) { 3022 error = copyout(&id, uap->timerid, sizeof(int)); 3023 if (error != 0) 3024 kern_ktimer_delete(td, id); 3025 } 3026 return (error); 3027 } 3028 3029 int 3030 freebsd32_ktimer_settime(struct thread *td, 3031 struct freebsd32_ktimer_settime_args *uap) 3032 { 3033 struct itimerspec32 val32, oval32; 3034 struct itimerspec val, oval, *ovalp; 3035 int error; 3036 3037 error = copyin(uap->value, &val32, sizeof(val32)); 3038 if (error != 0) 3039 return (error); 3040 ITS_CP(val32, val); 3041 ovalp = uap->ovalue != NULL ? &oval : NULL; 3042 error = kern_ktimer_settime(td, uap->timerid, uap->flags, &val, ovalp); 3043 if (error == 0 && uap->ovalue != NULL) { 3044 ITS_CP(oval, oval32); 3045 error = copyout(&oval32, uap->ovalue, sizeof(oval32)); 3046 } 3047 return (error); 3048 } 3049 3050 int 3051 freebsd32_ktimer_gettime(struct thread *td, 3052 struct freebsd32_ktimer_gettime_args *uap) 3053 { 3054 struct itimerspec32 val32; 3055 struct itimerspec val; 3056 int error; 3057 3058 error = kern_ktimer_gettime(td, uap->timerid, &val); 3059 if (error == 0) { 3060 ITS_CP(val, val32); 3061 error = copyout(&val32, uap->value, sizeof(val32)); 3062 } 3063 return (error); 3064 } 3065 3066 int 3067 freebsd32_clock_getcpuclockid2(struct thread *td, 3068 struct freebsd32_clock_getcpuclockid2_args *uap) 3069 { 3070 clockid_t clk_id; 3071 int error; 3072 3073 error = kern_clock_getcpuclockid2(td, PAIR32TO64(id_t, uap->id), 3074 uap->which, &clk_id); 3075 if (error == 0) 3076 error = copyout(&clk_id, uap->clock_id, sizeof(clockid_t)); 3077 return (error); 3078 } 3079 3080 int 3081 freebsd32_thr_new(struct thread *td, 3082 struct freebsd32_thr_new_args *uap) 3083 { 3084 struct thr_param32 param32; 3085 struct thr_param param; 3086 int error; 3087 3088 if (uap->param_size < 0 || 3089 uap->param_size > sizeof(struct thr_param32)) 3090 return (EINVAL); 3091 bzero(¶m, sizeof(struct thr_param)); 3092 bzero(¶m32, sizeof(struct thr_param32)); 3093 error = copyin(uap->param, ¶m32, uap->param_size); 3094 if (error != 0) 3095 return (error); 3096 param.start_func = PTRIN(param32.start_func); 3097 param.arg = PTRIN(param32.arg); 3098 param.stack_base = PTRIN(param32.stack_base); 3099 param.stack_size = param32.stack_size; 3100 param.tls_base = PTRIN(param32.tls_base); 3101 param.tls_size = param32.tls_size; 3102 param.child_tid = PTRIN(param32.child_tid); 3103 param.parent_tid = PTRIN(param32.parent_tid); 3104 param.flags = param32.flags; 3105 param.rtp = PTRIN(param32.rtp); 3106 param.spare[0] = PTRIN(param32.spare[0]); 3107 param.spare[1] = PTRIN(param32.spare[1]); 3108 param.spare[2] = PTRIN(param32.spare[2]); 3109 3110 return (kern_thr_new(td, ¶m)); 3111 } 3112 3113 int 3114 freebsd32_thr_suspend(struct thread *td, struct freebsd32_thr_suspend_args *uap) 3115 { 3116 struct timespec32 ts32; 3117 struct timespec ts, *tsp; 3118 int error; 3119 3120 error = 0; 3121 tsp = NULL; 3122 if (uap->timeout != NULL) { 3123 error = copyin((const void *)uap->timeout, (void *)&ts32, 3124 sizeof(struct timespec32)); 3125 if (error != 0) 3126 return (error); 3127 ts.tv_sec = ts32.tv_sec; 3128 ts.tv_nsec = ts32.tv_nsec; 3129 tsp = &ts; 3130 } 3131 return (kern_thr_suspend(td, tsp)); 3132 } 3133 3134 void 3135 siginfo_to_siginfo32(const siginfo_t *src, struct siginfo32 *dst) 3136 { 3137 bzero(dst, sizeof(*dst)); 3138 dst->si_signo = src->si_signo; 3139 dst->si_errno = src->si_errno; 3140 dst->si_code = src->si_code; 3141 dst->si_pid = src->si_pid; 3142 dst->si_uid = src->si_uid; 3143 dst->si_status = src->si_status; 3144 dst->si_addr = (uintptr_t)src->si_addr; 3145 dst->si_value.sival_int = src->si_value.sival_int; 3146 dst->si_timerid = src->si_timerid; 3147 dst->si_overrun = src->si_overrun; 3148 } 3149 3150 #ifndef _FREEBSD32_SYSPROTO_H_ 3151 struct freebsd32_sigqueue_args { 3152 pid_t pid; 3153 int signum; 3154 /* union sigval32 */ int value; 3155 }; 3156 #endif 3157 int 3158 freebsd32_sigqueue(struct thread *td, struct freebsd32_sigqueue_args *uap) 3159 { 3160 union sigval sv; 3161 3162 /* 3163 * On 32-bit ABIs, sival_int and sival_ptr are the same. 3164 * On 64-bit little-endian ABIs, the low bits are the same. 3165 * In 64-bit big-endian ABIs, sival_int overlaps with 3166 * sival_ptr's HIGH bits. We choose to support sival_int 3167 * rather than sival_ptr in this case as it seems to be 3168 * more common. 3169 */ 3170 bzero(&sv, sizeof(sv)); 3171 sv.sival_int = (uint32_t)(uint64_t)uap->value; 3172 3173 return (kern_sigqueue(td, uap->pid, uap->signum, &sv)); 3174 } 3175 3176 int 3177 freebsd32_sigtimedwait(struct thread *td, struct freebsd32_sigtimedwait_args *uap) 3178 { 3179 struct timespec32 ts32; 3180 struct timespec ts; 3181 struct timespec *timeout; 3182 sigset_t set; 3183 ksiginfo_t ksi; 3184 struct siginfo32 si32; 3185 int error; 3186 3187 if (uap->timeout) { 3188 error = copyin(uap->timeout, &ts32, sizeof(ts32)); 3189 if (error) 3190 return (error); 3191 ts.tv_sec = ts32.tv_sec; 3192 ts.tv_nsec = ts32.tv_nsec; 3193 timeout = &ts; 3194 } else 3195 timeout = NULL; 3196 3197 error = copyin(uap->set, &set, sizeof(set)); 3198 if (error) 3199 return (error); 3200 3201 error = kern_sigtimedwait(td, set, &ksi, timeout); 3202 if (error) 3203 return (error); 3204 3205 if (uap->info) { 3206 siginfo_to_siginfo32(&ksi.ksi_info, &si32); 3207 error = copyout(&si32, uap->info, sizeof(struct siginfo32)); 3208 } 3209 3210 if (error == 0) 3211 td->td_retval[0] = ksi.ksi_signo; 3212 return (error); 3213 } 3214 3215 /* 3216 * MPSAFE 3217 */ 3218 int 3219 freebsd32_sigwaitinfo(struct thread *td, struct freebsd32_sigwaitinfo_args *uap) 3220 { 3221 ksiginfo_t ksi; 3222 struct siginfo32 si32; 3223 sigset_t set; 3224 int error; 3225 3226 error = copyin(uap->set, &set, sizeof(set)); 3227 if (error) 3228 return (error); 3229 3230 error = kern_sigtimedwait(td, set, &ksi, NULL); 3231 if (error) 3232 return (error); 3233 3234 if (uap->info) { 3235 siginfo_to_siginfo32(&ksi.ksi_info, &si32); 3236 error = copyout(&si32, uap->info, sizeof(struct siginfo32)); 3237 } 3238 if (error == 0) 3239 td->td_retval[0] = ksi.ksi_signo; 3240 return (error); 3241 } 3242 3243 int 3244 freebsd32_cpuset_setid(struct thread *td, 3245 struct freebsd32_cpuset_setid_args *uap) 3246 { 3247 3248 return (kern_cpuset_setid(td, uap->which, 3249 PAIR32TO64(id_t, uap->id), uap->setid)); 3250 } 3251 3252 int 3253 freebsd32_cpuset_getid(struct thread *td, 3254 struct freebsd32_cpuset_getid_args *uap) 3255 { 3256 3257 return (kern_cpuset_getid(td, uap->level, uap->which, 3258 PAIR32TO64(id_t, uap->id), uap->setid)); 3259 } 3260 3261 int 3262 freebsd32_cpuset_getaffinity(struct thread *td, 3263 struct freebsd32_cpuset_getaffinity_args *uap) 3264 { 3265 3266 return (kern_cpuset_getaffinity(td, uap->level, uap->which, 3267 PAIR32TO64(id_t,uap->id), uap->cpusetsize, uap->mask)); 3268 } 3269 3270 int 3271 freebsd32_cpuset_setaffinity(struct thread *td, 3272 struct freebsd32_cpuset_setaffinity_args *uap) 3273 { 3274 3275 return (kern_cpuset_setaffinity(td, uap->level, uap->which, 3276 PAIR32TO64(id_t,uap->id), uap->cpusetsize, uap->mask)); 3277 } 3278 3279 int 3280 freebsd32_cpuset_getdomain(struct thread *td, 3281 struct freebsd32_cpuset_getdomain_args *uap) 3282 { 3283 3284 return (kern_cpuset_getdomain(td, uap->level, uap->which, 3285 PAIR32TO64(id_t,uap->id), uap->domainsetsize, uap->mask, uap->policy)); 3286 } 3287 3288 int 3289 freebsd32_cpuset_setdomain(struct thread *td, 3290 struct freebsd32_cpuset_setdomain_args *uap) 3291 { 3292 3293 return (kern_cpuset_setdomain(td, uap->level, uap->which, 3294 PAIR32TO64(id_t,uap->id), uap->domainsetsize, uap->mask, uap->policy)); 3295 } 3296 3297 int 3298 freebsd32_nmount(struct thread *td, 3299 struct freebsd32_nmount_args /* { 3300 struct iovec *iovp; 3301 unsigned int iovcnt; 3302 int flags; 3303 } */ *uap) 3304 { 3305 struct uio *auio; 3306 uint64_t flags; 3307 int error; 3308 3309 /* 3310 * Mount flags are now 64-bits. On 32-bit archtectures only 3311 * 32-bits are passed in, but from here on everything handles 3312 * 64-bit flags correctly. 3313 */ 3314 flags = uap->flags; 3315 3316 AUDIT_ARG_FFLAGS(flags); 3317 3318 /* 3319 * Filter out MNT_ROOTFS. We do not want clients of nmount() in 3320 * userspace to set this flag, but we must filter it out if we want 3321 * MNT_UPDATE on the root file system to work. 3322 * MNT_ROOTFS should only be set by the kernel when mounting its 3323 * root file system. 3324 */ 3325 flags &= ~MNT_ROOTFS; 3326 3327 /* 3328 * check that we have an even number of iovec's 3329 * and that we have at least two options. 3330 */ 3331 if ((uap->iovcnt & 1) || (uap->iovcnt < 4)) 3332 return (EINVAL); 3333 3334 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 3335 if (error) 3336 return (error); 3337 error = vfs_donmount(td, flags, auio); 3338 3339 free(auio, M_IOV); 3340 return error; 3341 } 3342 3343 #if 0 3344 int 3345 freebsd32_xxx(struct thread *td, struct freebsd32_xxx_args *uap) 3346 { 3347 struct yyy32 *p32, s32; 3348 struct yyy *p = NULL, s; 3349 struct xxx_arg ap; 3350 int error; 3351 3352 if (uap->zzz) { 3353 error = copyin(uap->zzz, &s32, sizeof(s32)); 3354 if (error) 3355 return (error); 3356 /* translate in */ 3357 p = &s; 3358 } 3359 error = kern_xxx(td, p); 3360 if (error) 3361 return (error); 3362 if (uap->zzz) { 3363 /* translate out */ 3364 error = copyout(&s32, p32, sizeof(s32)); 3365 } 3366 return (error); 3367 } 3368 #endif 3369 3370 int 3371 syscall32_module_handler(struct module *mod, int what, void *arg) 3372 { 3373 3374 return (kern_syscall_module_handler(freebsd32_sysent, mod, what, arg)); 3375 } 3376 3377 int 3378 syscall32_helper_register(struct syscall_helper_data *sd, int flags) 3379 { 3380 3381 return (kern_syscall_helper_register(freebsd32_sysent, sd, flags)); 3382 } 3383 3384 int 3385 syscall32_helper_unregister(struct syscall_helper_data *sd) 3386 { 3387 3388 return (kern_syscall_helper_unregister(freebsd32_sysent, sd)); 3389 } 3390 3391 int 3392 freebsd32_copyout_strings(struct image_params *imgp, uintptr_t *stack_base) 3393 { 3394 int argc, envc, i; 3395 u_int32_t *vectp; 3396 char *stringp; 3397 uintptr_t destp, ustringp; 3398 struct freebsd32_ps_strings *arginfo; 3399 char canary[sizeof(long) * 8]; 3400 int32_t pagesizes32[MAXPAGESIZES]; 3401 size_t execpath_len; 3402 int error, szsigcode; 3403 3404 /* 3405 * Calculate string base and vector table pointers. 3406 * Also deal with signal trampoline code for this exec type. 3407 */ 3408 if (imgp->execpath != NULL && imgp->auxargs != NULL) 3409 execpath_len = strlen(imgp->execpath) + 1; 3410 else 3411 execpath_len = 0; 3412 arginfo = (struct freebsd32_ps_strings *)curproc->p_sysent-> 3413 sv_psstrings; 3414 imgp->ps_strings = arginfo; 3415 if (imgp->proc->p_sysent->sv_sigcode_base == 0) 3416 szsigcode = *(imgp->proc->p_sysent->sv_szsigcode); 3417 else 3418 szsigcode = 0; 3419 destp = (uintptr_t)arginfo; 3420 3421 /* 3422 * install sigcode 3423 */ 3424 if (szsigcode != 0) { 3425 destp -= szsigcode; 3426 destp = rounddown2(destp, sizeof(uint32_t)); 3427 error = copyout(imgp->proc->p_sysent->sv_sigcode, (void *)destp, 3428 szsigcode); 3429 if (error != 0) 3430 return (error); 3431 } 3432 3433 /* 3434 * Copy the image path for the rtld. 3435 */ 3436 if (execpath_len != 0) { 3437 destp -= execpath_len; 3438 imgp->execpathp = (void *)destp; 3439 error = copyout(imgp->execpath, imgp->execpathp, execpath_len); 3440 if (error != 0) 3441 return (error); 3442 } 3443 3444 /* 3445 * Prepare the canary for SSP. 3446 */ 3447 arc4rand(canary, sizeof(canary), 0); 3448 destp -= sizeof(canary); 3449 imgp->canary = (void *)destp; 3450 error = copyout(canary, imgp->canary, sizeof(canary)); 3451 if (error != 0) 3452 return (error); 3453 imgp->canarylen = sizeof(canary); 3454 3455 /* 3456 * Prepare the pagesizes array. 3457 */ 3458 for (i = 0; i < MAXPAGESIZES; i++) 3459 pagesizes32[i] = (uint32_t)pagesizes[i]; 3460 destp -= sizeof(pagesizes32); 3461 destp = rounddown2(destp, sizeof(uint32_t)); 3462 imgp->pagesizes = (void *)destp; 3463 error = copyout(pagesizes32, imgp->pagesizes, sizeof(pagesizes32)); 3464 if (error != 0) 3465 return (error); 3466 imgp->pagesizeslen = sizeof(pagesizes32); 3467 3468 /* 3469 * Allocate room for the argument and environment strings. 3470 */ 3471 destp -= ARG_MAX - imgp->args->stringspace; 3472 destp = rounddown2(destp, sizeof(uint32_t)); 3473 ustringp = destp; 3474 3475 exec_stackgap(imgp, &destp); 3476 3477 if (imgp->auxargs) { 3478 /* 3479 * Allocate room on the stack for the ELF auxargs 3480 * array. It has up to AT_COUNT entries. 3481 */ 3482 destp -= AT_COUNT * sizeof(Elf32_Auxinfo); 3483 destp = rounddown2(destp, sizeof(uint32_t)); 3484 } 3485 3486 vectp = (uint32_t *)destp; 3487 3488 /* 3489 * Allocate room for the argv[] and env vectors including the 3490 * terminating NULL pointers. 3491 */ 3492 vectp -= imgp->args->argc + 1 + imgp->args->envc + 1; 3493 3494 /* 3495 * vectp also becomes our initial stack base 3496 */ 3497 *stack_base = (uintptr_t)vectp; 3498 3499 stringp = imgp->args->begin_argv; 3500 argc = imgp->args->argc; 3501 envc = imgp->args->envc; 3502 /* 3503 * Copy out strings - arguments and environment. 3504 */ 3505 error = copyout(stringp, (void *)ustringp, 3506 ARG_MAX - imgp->args->stringspace); 3507 if (error != 0) 3508 return (error); 3509 3510 /* 3511 * Fill in "ps_strings" struct for ps, w, etc. 3512 */ 3513 imgp->argv = vectp; 3514 if (suword32(&arginfo->ps_argvstr, (u_int32_t)(intptr_t)vectp) != 0 || 3515 suword32(&arginfo->ps_nargvstr, argc) != 0) 3516 return (EFAULT); 3517 3518 /* 3519 * Fill in argument portion of vector table. 3520 */ 3521 for (; argc > 0; --argc) { 3522 if (suword32(vectp++, ustringp) != 0) 3523 return (EFAULT); 3524 while (*stringp++ != 0) 3525 ustringp++; 3526 ustringp++; 3527 } 3528 3529 /* a null vector table pointer separates the argp's from the envp's */ 3530 if (suword32(vectp++, 0) != 0) 3531 return (EFAULT); 3532 3533 imgp->envv = vectp; 3534 if (suword32(&arginfo->ps_envstr, (u_int32_t)(intptr_t)vectp) != 0 || 3535 suword32(&arginfo->ps_nenvstr, envc) != 0) 3536 return (EFAULT); 3537 3538 /* 3539 * Fill in environment portion of vector table. 3540 */ 3541 for (; envc > 0; --envc) { 3542 if (suword32(vectp++, ustringp) != 0) 3543 return (EFAULT); 3544 while (*stringp++ != 0) 3545 ustringp++; 3546 ustringp++; 3547 } 3548 3549 /* end of vector table is a null pointer */ 3550 if (suword32(vectp, 0) != 0) 3551 return (EFAULT); 3552 3553 if (imgp->auxargs) { 3554 vectp++; 3555 error = imgp->sysent->sv_copyout_auxargs(imgp, 3556 (uintptr_t)vectp); 3557 if (error != 0) 3558 return (error); 3559 } 3560 3561 return (0); 3562 } 3563 3564 int 3565 freebsd32_kldstat(struct thread *td, struct freebsd32_kldstat_args *uap) 3566 { 3567 struct kld_file_stat *stat; 3568 struct kld_file_stat32 *stat32; 3569 int error, version; 3570 3571 if ((error = copyin(&uap->stat->version, &version, sizeof(version))) 3572 != 0) 3573 return (error); 3574 if (version != sizeof(struct kld_file_stat_1_32) && 3575 version != sizeof(struct kld_file_stat32)) 3576 return (EINVAL); 3577 3578 stat = malloc(sizeof(*stat), M_TEMP, M_WAITOK | M_ZERO); 3579 stat32 = malloc(sizeof(*stat32), M_TEMP, M_WAITOK | M_ZERO); 3580 error = kern_kldstat(td, uap->fileid, stat); 3581 if (error == 0) { 3582 bcopy(&stat->name[0], &stat32->name[0], sizeof(stat->name)); 3583 CP(*stat, *stat32, refs); 3584 CP(*stat, *stat32, id); 3585 PTROUT_CP(*stat, *stat32, address); 3586 CP(*stat, *stat32, size); 3587 bcopy(&stat->pathname[0], &stat32->pathname[0], 3588 sizeof(stat->pathname)); 3589 stat32->version = version; 3590 error = copyout(stat32, uap->stat, version); 3591 } 3592 free(stat, M_TEMP); 3593 free(stat32, M_TEMP); 3594 return (error); 3595 } 3596 3597 int 3598 freebsd32_posix_fallocate(struct thread *td, 3599 struct freebsd32_posix_fallocate_args *uap) 3600 { 3601 int error; 3602 3603 error = kern_posix_fallocate(td, uap->fd, 3604 PAIR32TO64(off_t, uap->offset), PAIR32TO64(off_t, uap->len)); 3605 return (kern_posix_error(td, error)); 3606 } 3607 3608 int 3609 freebsd32_posix_fadvise(struct thread *td, 3610 struct freebsd32_posix_fadvise_args *uap) 3611 { 3612 int error; 3613 3614 error = kern_posix_fadvise(td, uap->fd, PAIR32TO64(off_t, uap->offset), 3615 PAIR32TO64(off_t, uap->len), uap->advice); 3616 return (kern_posix_error(td, error)); 3617 } 3618 3619 int 3620 convert_sigevent32(struct sigevent32 *sig32, struct sigevent *sig) 3621 { 3622 3623 CP(*sig32, *sig, sigev_notify); 3624 switch (sig->sigev_notify) { 3625 case SIGEV_NONE: 3626 break; 3627 case SIGEV_THREAD_ID: 3628 CP(*sig32, *sig, sigev_notify_thread_id); 3629 /* FALLTHROUGH */ 3630 case SIGEV_SIGNAL: 3631 CP(*sig32, *sig, sigev_signo); 3632 PTRIN_CP(*sig32, *sig, sigev_value.sival_ptr); 3633 break; 3634 case SIGEV_KEVENT: 3635 CP(*sig32, *sig, sigev_notify_kqueue); 3636 CP(*sig32, *sig, sigev_notify_kevent_flags); 3637 PTRIN_CP(*sig32, *sig, sigev_value.sival_ptr); 3638 break; 3639 default: 3640 return (EINVAL); 3641 } 3642 return (0); 3643 } 3644 3645 int 3646 freebsd32_procctl(struct thread *td, struct freebsd32_procctl_args *uap) 3647 { 3648 void *data; 3649 union { 3650 struct procctl_reaper_status rs; 3651 struct procctl_reaper_pids rp; 3652 struct procctl_reaper_kill rk; 3653 } x; 3654 union { 3655 struct procctl_reaper_pids32 rp; 3656 } x32; 3657 int error, error1, flags, signum; 3658 3659 if (uap->com >= PROC_PROCCTL_MD_MIN) 3660 return (cpu_procctl(td, uap->idtype, PAIR32TO64(id_t, uap->id), 3661 uap->com, PTRIN(uap->data))); 3662 3663 switch (uap->com) { 3664 case PROC_ASLR_CTL: 3665 case PROC_PROTMAX_CTL: 3666 case PROC_SPROTECT: 3667 case PROC_STACKGAP_CTL: 3668 case PROC_TRACE_CTL: 3669 case PROC_TRAPCAP_CTL: 3670 case PROC_NO_NEW_PRIVS_CTL: 3671 case PROC_WXMAP_CTL: 3672 error = copyin(PTRIN(uap->data), &flags, sizeof(flags)); 3673 if (error != 0) 3674 return (error); 3675 data = &flags; 3676 break; 3677 case PROC_REAP_ACQUIRE: 3678 case PROC_REAP_RELEASE: 3679 if (uap->data != NULL) 3680 return (EINVAL); 3681 data = NULL; 3682 break; 3683 case PROC_REAP_STATUS: 3684 data = &x.rs; 3685 break; 3686 case PROC_REAP_GETPIDS: 3687 error = copyin(uap->data, &x32.rp, sizeof(x32.rp)); 3688 if (error != 0) 3689 return (error); 3690 CP(x32.rp, x.rp, rp_count); 3691 PTRIN_CP(x32.rp, x.rp, rp_pids); 3692 data = &x.rp; 3693 break; 3694 case PROC_REAP_KILL: 3695 error = copyin(uap->data, &x.rk, sizeof(x.rk)); 3696 if (error != 0) 3697 return (error); 3698 data = &x.rk; 3699 break; 3700 case PROC_ASLR_STATUS: 3701 case PROC_PROTMAX_STATUS: 3702 case PROC_STACKGAP_STATUS: 3703 case PROC_TRACE_STATUS: 3704 case PROC_TRAPCAP_STATUS: 3705 case PROC_NO_NEW_PRIVS_STATUS: 3706 case PROC_WXMAP_STATUS: 3707 data = &flags; 3708 break; 3709 case PROC_PDEATHSIG_CTL: 3710 error = copyin(uap->data, &signum, sizeof(signum)); 3711 if (error != 0) 3712 return (error); 3713 data = &signum; 3714 break; 3715 case PROC_PDEATHSIG_STATUS: 3716 data = &signum; 3717 break; 3718 default: 3719 return (EINVAL); 3720 } 3721 error = kern_procctl(td, uap->idtype, PAIR32TO64(id_t, uap->id), 3722 uap->com, data); 3723 switch (uap->com) { 3724 case PROC_REAP_STATUS: 3725 if (error == 0) 3726 error = copyout(&x.rs, uap->data, sizeof(x.rs)); 3727 break; 3728 case PROC_REAP_KILL: 3729 error1 = copyout(&x.rk, uap->data, sizeof(x.rk)); 3730 if (error == 0) 3731 error = error1; 3732 break; 3733 case PROC_ASLR_STATUS: 3734 case PROC_PROTMAX_STATUS: 3735 case PROC_STACKGAP_STATUS: 3736 case PROC_TRACE_STATUS: 3737 case PROC_TRAPCAP_STATUS: 3738 case PROC_NO_NEW_PRIVS_STATUS: 3739 case PROC_WXMAP_STATUS: 3740 if (error == 0) 3741 error = copyout(&flags, uap->data, sizeof(flags)); 3742 break; 3743 case PROC_PDEATHSIG_STATUS: 3744 if (error == 0) 3745 error = copyout(&signum, uap->data, sizeof(signum)); 3746 break; 3747 } 3748 return (error); 3749 } 3750 3751 int 3752 freebsd32_fcntl(struct thread *td, struct freebsd32_fcntl_args *uap) 3753 { 3754 long tmp; 3755 3756 switch (uap->cmd) { 3757 /* 3758 * Do unsigned conversion for arg when operation 3759 * interprets it as flags or pointer. 3760 */ 3761 case F_SETLK_REMOTE: 3762 case F_SETLKW: 3763 case F_SETLK: 3764 case F_GETLK: 3765 case F_SETFD: 3766 case F_SETFL: 3767 case F_OGETLK: 3768 case F_OSETLK: 3769 case F_OSETLKW: 3770 tmp = (unsigned int)(uap->arg); 3771 break; 3772 default: 3773 tmp = uap->arg; 3774 break; 3775 } 3776 return (kern_fcntl_freebsd(td, uap->fd, uap->cmd, tmp)); 3777 } 3778 3779 int 3780 freebsd32_ppoll(struct thread *td, struct freebsd32_ppoll_args *uap) 3781 { 3782 struct timespec32 ts32; 3783 struct timespec ts, *tsp; 3784 sigset_t set, *ssp; 3785 int error; 3786 3787 if (uap->ts != NULL) { 3788 error = copyin(uap->ts, &ts32, sizeof(ts32)); 3789 if (error != 0) 3790 return (error); 3791 CP(ts32, ts, tv_sec); 3792 CP(ts32, ts, tv_nsec); 3793 tsp = &ts; 3794 } else 3795 tsp = NULL; 3796 if (uap->set != NULL) { 3797 error = copyin(uap->set, &set, sizeof(set)); 3798 if (error != 0) 3799 return (error); 3800 ssp = &set; 3801 } else 3802 ssp = NULL; 3803 3804 return (kern_poll(td, uap->fds, uap->nfds, tsp, ssp)); 3805 } 3806 3807 int 3808 freebsd32_sched_rr_get_interval(struct thread *td, 3809 struct freebsd32_sched_rr_get_interval_args *uap) 3810 { 3811 struct timespec ts; 3812 struct timespec32 ts32; 3813 int error; 3814 3815 error = kern_sched_rr_get_interval(td, uap->pid, &ts); 3816 if (error == 0) { 3817 CP(ts, ts32, tv_sec); 3818 CP(ts, ts32, tv_nsec); 3819 error = copyout(&ts32, uap->interval, sizeof(ts32)); 3820 } 3821 return (error); 3822 } 3823 3824 static void 3825 timex_to_32(struct timex32 *dst, struct timex *src) 3826 { 3827 CP(*src, *dst, modes); 3828 CP(*src, *dst, offset); 3829 CP(*src, *dst, freq); 3830 CP(*src, *dst, maxerror); 3831 CP(*src, *dst, esterror); 3832 CP(*src, *dst, status); 3833 CP(*src, *dst, constant); 3834 CP(*src, *dst, precision); 3835 CP(*src, *dst, tolerance); 3836 CP(*src, *dst, ppsfreq); 3837 CP(*src, *dst, jitter); 3838 CP(*src, *dst, shift); 3839 CP(*src, *dst, stabil); 3840 CP(*src, *dst, jitcnt); 3841 CP(*src, *dst, calcnt); 3842 CP(*src, *dst, errcnt); 3843 CP(*src, *dst, stbcnt); 3844 } 3845 3846 static void 3847 timex_from_32(struct timex *dst, struct timex32 *src) 3848 { 3849 CP(*src, *dst, modes); 3850 CP(*src, *dst, offset); 3851 CP(*src, *dst, freq); 3852 CP(*src, *dst, maxerror); 3853 CP(*src, *dst, esterror); 3854 CP(*src, *dst, status); 3855 CP(*src, *dst, constant); 3856 CP(*src, *dst, precision); 3857 CP(*src, *dst, tolerance); 3858 CP(*src, *dst, ppsfreq); 3859 CP(*src, *dst, jitter); 3860 CP(*src, *dst, shift); 3861 CP(*src, *dst, stabil); 3862 CP(*src, *dst, jitcnt); 3863 CP(*src, *dst, calcnt); 3864 CP(*src, *dst, errcnt); 3865 CP(*src, *dst, stbcnt); 3866 } 3867 3868 int 3869 freebsd32_ntp_adjtime(struct thread *td, struct freebsd32_ntp_adjtime_args *uap) 3870 { 3871 struct timex tx; 3872 struct timex32 tx32; 3873 int error, retval; 3874 3875 error = copyin(uap->tp, &tx32, sizeof(tx32)); 3876 if (error == 0) { 3877 timex_from_32(&tx, &tx32); 3878 error = kern_ntp_adjtime(td, &tx, &retval); 3879 if (error == 0) { 3880 timex_to_32(&tx32, &tx); 3881 error = copyout(&tx32, uap->tp, sizeof(tx32)); 3882 if (error == 0) 3883 td->td_retval[0] = retval; 3884 } 3885 } 3886 return (error); 3887 } 3888 3889 #ifdef FFCLOCK 3890 extern struct mtx ffclock_mtx; 3891 extern struct ffclock_estimate ffclock_estimate; 3892 extern int8_t ffclock_updated; 3893 3894 int 3895 freebsd32_ffclock_setestimate(struct thread *td, 3896 struct freebsd32_ffclock_setestimate_args *uap) 3897 { 3898 struct ffclock_estimate cest; 3899 struct ffclock_estimate32 cest32; 3900 int error; 3901 3902 /* Reuse of PRIV_CLOCK_SETTIME. */ 3903 if ((error = priv_check(td, PRIV_CLOCK_SETTIME)) != 0) 3904 return (error); 3905 3906 if ((error = copyin(uap->cest, &cest32, 3907 sizeof(struct ffclock_estimate32))) != 0) 3908 return (error); 3909 3910 CP(cest.update_time, cest32.update_time, sec); 3911 memcpy(&cest.update_time.frac, &cest32.update_time.frac, sizeof(uint64_t)); 3912 CP(cest, cest32, update_ffcount); 3913 CP(cest, cest32, leapsec_next); 3914 CP(cest, cest32, period); 3915 CP(cest, cest32, errb_abs); 3916 CP(cest, cest32, errb_rate); 3917 CP(cest, cest32, status); 3918 CP(cest, cest32, leapsec_total); 3919 CP(cest, cest32, leapsec); 3920 3921 mtx_lock(&ffclock_mtx); 3922 memcpy(&ffclock_estimate, &cest, sizeof(struct ffclock_estimate)); 3923 ffclock_updated++; 3924 mtx_unlock(&ffclock_mtx); 3925 return (error); 3926 } 3927 3928 int 3929 freebsd32_ffclock_getestimate(struct thread *td, 3930 struct freebsd32_ffclock_getestimate_args *uap) 3931 { 3932 struct ffclock_estimate cest; 3933 struct ffclock_estimate32 cest32; 3934 int error; 3935 3936 mtx_lock(&ffclock_mtx); 3937 memcpy(&cest, &ffclock_estimate, sizeof(struct ffclock_estimate)); 3938 mtx_unlock(&ffclock_mtx); 3939 3940 CP(cest32.update_time, cest.update_time, sec); 3941 memcpy(&cest32.update_time.frac, &cest.update_time.frac, sizeof(uint64_t)); 3942 CP(cest32, cest, update_ffcount); 3943 CP(cest32, cest, leapsec_next); 3944 CP(cest32, cest, period); 3945 CP(cest32, cest, errb_abs); 3946 CP(cest32, cest, errb_rate); 3947 CP(cest32, cest, status); 3948 CP(cest32, cest, leapsec_total); 3949 CP(cest32, cest, leapsec); 3950 3951 error = copyout(&cest32, uap->cest, sizeof(struct ffclock_estimate32)); 3952 return (error); 3953 } 3954 #else /* !FFCLOCK */ 3955 int 3956 freebsd32_ffclock_setestimate(struct thread *td, 3957 struct freebsd32_ffclock_setestimate_args *uap) 3958 { 3959 return (ENOSYS); 3960 } 3961 3962 int 3963 freebsd32_ffclock_getestimate(struct thread *td, 3964 struct freebsd32_ffclock_getestimate_args *uap) 3965 { 3966 return (ENOSYS); 3967 } 3968 #endif /* FFCLOCK */ 3969 3970 #ifdef COMPAT_43 3971 int 3972 ofreebsd32_sethostid(struct thread *td, struct ofreebsd32_sethostid_args *uap) 3973 { 3974 int name[] = { CTL_KERN, KERN_HOSTID }; 3975 long hostid; 3976 3977 hostid = uap->hostid; 3978 return (kernel_sysctl(td, name, nitems(name), NULL, NULL, &hostid, 3979 sizeof(hostid), NULL, 0)); 3980 } 3981 #endif 3982