1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2002 Doug Rabson 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include "opt_inet.h" 33 #include "opt_inet6.h" 34 #include "opt_ktrace.h" 35 36 #define __ELF_WORD_SIZE 32 37 38 #ifdef COMPAT_FREEBSD11 39 #define _WANT_FREEBSD11_KEVENT 40 #endif 41 42 #include <sys/param.h> 43 #include <sys/bus.h> 44 #include <sys/capsicum.h> 45 #include <sys/clock.h> 46 #include <sys/exec.h> 47 #include <sys/fcntl.h> 48 #include <sys/filedesc.h> 49 #include <sys/imgact.h> 50 #include <sys/jail.h> 51 #include <sys/kernel.h> 52 #include <sys/limits.h> 53 #include <sys/linker.h> 54 #include <sys/lock.h> 55 #include <sys/malloc.h> 56 #include <sys/file.h> /* Must come after sys/malloc.h */ 57 #include <sys/imgact.h> 58 #include <sys/mbuf.h> 59 #include <sys/mman.h> 60 #include <sys/module.h> 61 #include <sys/mount.h> 62 #include <sys/mutex.h> 63 #include <sys/namei.h> 64 #include <sys/proc.h> 65 #include <sys/procctl.h> 66 #include <sys/reboot.h> 67 #include <sys/resource.h> 68 #include <sys/resourcevar.h> 69 #include <sys/selinfo.h> 70 #include <sys/eventvar.h> /* Must come after sys/selinfo.h */ 71 #include <sys/pipe.h> /* Must come after sys/selinfo.h */ 72 #include <sys/signal.h> 73 #include <sys/signalvar.h> 74 #include <sys/socket.h> 75 #include <sys/socketvar.h> 76 #include <sys/stat.h> 77 #include <sys/syscall.h> 78 #include <sys/syscallsubr.h> 79 #include <sys/sysctl.h> 80 #include <sys/sysent.h> 81 #include <sys/sysproto.h> 82 #include <sys/systm.h> 83 #include <sys/thr.h> 84 #include <sys/unistd.h> 85 #include <sys/ucontext.h> 86 #include <sys/vnode.h> 87 #include <sys/wait.h> 88 #include <sys/ipc.h> 89 #include <sys/msg.h> 90 #include <sys/sem.h> 91 #include <sys/shm.h> 92 #ifdef KTRACE 93 #include <sys/ktrace.h> 94 #endif 95 96 #ifdef INET 97 #include <netinet/in.h> 98 #endif 99 100 #include <vm/vm.h> 101 #include <vm/vm_param.h> 102 #include <vm/pmap.h> 103 #include <vm/vm_map.h> 104 #include <vm/vm_object.h> 105 #include <vm/vm_extern.h> 106 107 #include <machine/cpu.h> 108 #include <machine/elf.h> 109 110 #include <security/audit/audit.h> 111 112 #include <compat/freebsd32/freebsd32_util.h> 113 #include <compat/freebsd32/freebsd32.h> 114 #include <compat/freebsd32/freebsd32_ipc.h> 115 #include <compat/freebsd32/freebsd32_misc.h> 116 #include <compat/freebsd32/freebsd32_signal.h> 117 #include <compat/freebsd32/freebsd32_proto.h> 118 119 FEATURE(compat_freebsd_32bit, "Compatible with 32-bit FreeBSD"); 120 121 #ifdef __amd64__ 122 CTASSERT(sizeof(struct timeval32) == 8); 123 CTASSERT(sizeof(struct timespec32) == 8); 124 CTASSERT(sizeof(struct itimerval32) == 16); 125 CTASSERT(sizeof(struct bintime32) == 12); 126 #endif 127 CTASSERT(sizeof(struct statfs32) == 256); 128 #ifdef __amd64__ 129 CTASSERT(sizeof(struct rusage32) == 72); 130 #endif 131 CTASSERT(sizeof(struct sigaltstack32) == 12); 132 #ifdef __amd64__ 133 CTASSERT(sizeof(struct kevent32) == 56); 134 #else 135 CTASSERT(sizeof(struct kevent32) == 64); 136 #endif 137 CTASSERT(sizeof(struct iovec32) == 8); 138 CTASSERT(sizeof(struct msghdr32) == 28); 139 #ifdef __amd64__ 140 CTASSERT(sizeof(struct stat32) == 208); 141 CTASSERT(sizeof(struct freebsd11_stat32) == 96); 142 #endif 143 CTASSERT(sizeof(struct sigaction32) == 24); 144 145 static int freebsd32_kevent_copyout(void *arg, struct kevent *kevp, int count); 146 static int freebsd32_kevent_copyin(void *arg, struct kevent *kevp, int count); 147 static int freebsd32_user_clock_nanosleep(struct thread *td, clockid_t clock_id, 148 int flags, const struct timespec32 *ua_rqtp, struct timespec32 *ua_rmtp); 149 150 void 151 freebsd32_rusage_out(const struct rusage *s, struct rusage32 *s32) 152 { 153 154 TV_CP(*s, *s32, ru_utime); 155 TV_CP(*s, *s32, ru_stime); 156 CP(*s, *s32, ru_maxrss); 157 CP(*s, *s32, ru_ixrss); 158 CP(*s, *s32, ru_idrss); 159 CP(*s, *s32, ru_isrss); 160 CP(*s, *s32, ru_minflt); 161 CP(*s, *s32, ru_majflt); 162 CP(*s, *s32, ru_nswap); 163 CP(*s, *s32, ru_inblock); 164 CP(*s, *s32, ru_oublock); 165 CP(*s, *s32, ru_msgsnd); 166 CP(*s, *s32, ru_msgrcv); 167 CP(*s, *s32, ru_nsignals); 168 CP(*s, *s32, ru_nvcsw); 169 CP(*s, *s32, ru_nivcsw); 170 } 171 172 int 173 freebsd32_wait4(struct thread *td, struct freebsd32_wait4_args *uap) 174 { 175 int error, status; 176 struct rusage32 ru32; 177 struct rusage ru, *rup; 178 179 if (uap->rusage != NULL) 180 rup = &ru; 181 else 182 rup = NULL; 183 error = kern_wait(td, uap->pid, &status, uap->options, rup); 184 if (error) 185 return (error); 186 if (uap->status != NULL) 187 error = copyout(&status, uap->status, sizeof(status)); 188 if (uap->rusage != NULL && error == 0) { 189 freebsd32_rusage_out(&ru, &ru32); 190 error = copyout(&ru32, uap->rusage, sizeof(ru32)); 191 } 192 return (error); 193 } 194 195 int 196 freebsd32_wait6(struct thread *td, struct freebsd32_wait6_args *uap) 197 { 198 struct wrusage32 wru32; 199 struct __wrusage wru, *wrup; 200 struct siginfo32 si32; 201 struct __siginfo si, *sip; 202 int error, status; 203 204 if (uap->wrusage != NULL) 205 wrup = &wru; 206 else 207 wrup = NULL; 208 if (uap->info != NULL) { 209 sip = &si; 210 bzero(sip, sizeof(*sip)); 211 } else 212 sip = NULL; 213 error = kern_wait6(td, uap->idtype, PAIR32TO64(id_t, uap->id), 214 &status, uap->options, wrup, sip); 215 if (error != 0) 216 return (error); 217 if (uap->status != NULL) 218 error = copyout(&status, uap->status, sizeof(status)); 219 if (uap->wrusage != NULL && error == 0) { 220 freebsd32_rusage_out(&wru.wru_self, &wru32.wru_self); 221 freebsd32_rusage_out(&wru.wru_children, &wru32.wru_children); 222 error = copyout(&wru32, uap->wrusage, sizeof(wru32)); 223 } 224 if (uap->info != NULL && error == 0) { 225 siginfo_to_siginfo32 (&si, &si32); 226 error = copyout(&si32, uap->info, sizeof(si32)); 227 } 228 return (error); 229 } 230 231 #ifdef COMPAT_FREEBSD4 232 static void 233 copy_statfs(struct statfs *in, struct statfs32 *out) 234 { 235 236 statfs_scale_blocks(in, INT32_MAX); 237 bzero(out, sizeof(*out)); 238 CP(*in, *out, f_bsize); 239 out->f_iosize = MIN(in->f_iosize, INT32_MAX); 240 CP(*in, *out, f_blocks); 241 CP(*in, *out, f_bfree); 242 CP(*in, *out, f_bavail); 243 out->f_files = MIN(in->f_files, INT32_MAX); 244 out->f_ffree = MIN(in->f_ffree, INT32_MAX); 245 CP(*in, *out, f_fsid); 246 CP(*in, *out, f_owner); 247 CP(*in, *out, f_type); 248 CP(*in, *out, f_flags); 249 out->f_syncwrites = MIN(in->f_syncwrites, INT32_MAX); 250 out->f_asyncwrites = MIN(in->f_asyncwrites, INT32_MAX); 251 strlcpy(out->f_fstypename, 252 in->f_fstypename, MFSNAMELEN); 253 strlcpy(out->f_mntonname, 254 in->f_mntonname, min(MNAMELEN, FREEBSD4_MNAMELEN)); 255 out->f_syncreads = MIN(in->f_syncreads, INT32_MAX); 256 out->f_asyncreads = MIN(in->f_asyncreads, INT32_MAX); 257 strlcpy(out->f_mntfromname, 258 in->f_mntfromname, min(MNAMELEN, FREEBSD4_MNAMELEN)); 259 } 260 #endif 261 262 #ifdef COMPAT_FREEBSD4 263 int 264 freebsd4_freebsd32_getfsstat(struct thread *td, 265 struct freebsd4_freebsd32_getfsstat_args *uap) 266 { 267 struct statfs *buf, *sp; 268 struct statfs32 stat32; 269 size_t count, size, copycount; 270 int error; 271 272 count = uap->bufsize / sizeof(struct statfs32); 273 size = count * sizeof(struct statfs); 274 error = kern_getfsstat(td, &buf, size, &count, UIO_SYSSPACE, uap->mode); 275 if (size > 0) { 276 sp = buf; 277 copycount = count; 278 while (copycount > 0 && error == 0) { 279 copy_statfs(sp, &stat32); 280 error = copyout(&stat32, uap->buf, sizeof(stat32)); 281 sp++; 282 uap->buf++; 283 copycount--; 284 } 285 free(buf, M_STATFS); 286 } 287 if (error == 0) 288 td->td_retval[0] = count; 289 return (error); 290 } 291 #endif 292 293 #ifdef COMPAT_FREEBSD10 294 int 295 freebsd10_freebsd32_pipe(struct thread *td, 296 struct freebsd10_freebsd32_pipe_args *uap) { 297 298 return (freebsd10_pipe(td, (struct freebsd10_pipe_args*)uap)); 299 } 300 #endif 301 302 int 303 freebsd32_sigaltstack(struct thread *td, 304 struct freebsd32_sigaltstack_args *uap) 305 { 306 struct sigaltstack32 s32; 307 struct sigaltstack ss, oss, *ssp; 308 int error; 309 310 if (uap->ss != NULL) { 311 error = copyin(uap->ss, &s32, sizeof(s32)); 312 if (error) 313 return (error); 314 PTRIN_CP(s32, ss, ss_sp); 315 CP(s32, ss, ss_size); 316 CP(s32, ss, ss_flags); 317 ssp = &ss; 318 } else 319 ssp = NULL; 320 error = kern_sigaltstack(td, ssp, &oss); 321 if (error == 0 && uap->oss != NULL) { 322 PTROUT_CP(oss, s32, ss_sp); 323 CP(oss, s32, ss_size); 324 CP(oss, s32, ss_flags); 325 error = copyout(&s32, uap->oss, sizeof(s32)); 326 } 327 return (error); 328 } 329 330 /* 331 * Custom version of exec_copyin_args() so that we can translate 332 * the pointers. 333 */ 334 int 335 freebsd32_exec_copyin_args(struct image_args *args, char *fname, 336 enum uio_seg segflg, u_int32_t *argv, u_int32_t *envv) 337 { 338 char *argp, *envp; 339 u_int32_t *p32, arg; 340 size_t length; 341 int error; 342 343 bzero(args, sizeof(*args)); 344 if (argv == NULL) 345 return (EFAULT); 346 347 /* 348 * Allocate demand-paged memory for the file name, argument, and 349 * environment strings. 350 */ 351 error = exec_alloc_args(args); 352 if (error != 0) 353 return (error); 354 355 /* 356 * Copy the file name. 357 */ 358 if (fname != NULL) { 359 args->fname = args->buf; 360 error = (segflg == UIO_SYSSPACE) ? 361 copystr(fname, args->fname, PATH_MAX, &length) : 362 copyinstr(fname, args->fname, PATH_MAX, &length); 363 if (error != 0) 364 goto err_exit; 365 } else 366 length = 0; 367 368 args->begin_argv = args->buf + length; 369 args->endp = args->begin_argv; 370 args->stringspace = ARG_MAX; 371 372 /* 373 * extract arguments first 374 */ 375 p32 = argv; 376 for (;;) { 377 error = copyin(p32++, &arg, sizeof(arg)); 378 if (error) 379 goto err_exit; 380 if (arg == 0) 381 break; 382 argp = PTRIN(arg); 383 error = copyinstr(argp, args->endp, args->stringspace, &length); 384 if (error) { 385 if (error == ENAMETOOLONG) 386 error = E2BIG; 387 goto err_exit; 388 } 389 args->stringspace -= length; 390 args->endp += length; 391 args->argc++; 392 } 393 394 args->begin_envv = args->endp; 395 396 /* 397 * extract environment strings 398 */ 399 if (envv) { 400 p32 = envv; 401 for (;;) { 402 error = copyin(p32++, &arg, sizeof(arg)); 403 if (error) 404 goto err_exit; 405 if (arg == 0) 406 break; 407 envp = PTRIN(arg); 408 error = copyinstr(envp, args->endp, args->stringspace, 409 &length); 410 if (error) { 411 if (error == ENAMETOOLONG) 412 error = E2BIG; 413 goto err_exit; 414 } 415 args->stringspace -= length; 416 args->endp += length; 417 args->envc++; 418 } 419 } 420 421 return (0); 422 423 err_exit: 424 exec_free_args(args); 425 return (error); 426 } 427 428 int 429 freebsd32_execve(struct thread *td, struct freebsd32_execve_args *uap) 430 { 431 struct image_args eargs; 432 struct vmspace *oldvmspace; 433 int error; 434 435 error = pre_execve(td, &oldvmspace); 436 if (error != 0) 437 return (error); 438 error = freebsd32_exec_copyin_args(&eargs, uap->fname, UIO_USERSPACE, 439 uap->argv, uap->envv); 440 if (error == 0) 441 error = kern_execve(td, &eargs, NULL); 442 post_execve(td, error, oldvmspace); 443 return (error); 444 } 445 446 int 447 freebsd32_fexecve(struct thread *td, struct freebsd32_fexecve_args *uap) 448 { 449 struct image_args eargs; 450 struct vmspace *oldvmspace; 451 int error; 452 453 error = pre_execve(td, &oldvmspace); 454 if (error != 0) 455 return (error); 456 error = freebsd32_exec_copyin_args(&eargs, NULL, UIO_SYSSPACE, 457 uap->argv, uap->envv); 458 if (error == 0) { 459 eargs.fd = uap->fd; 460 error = kern_execve(td, &eargs, NULL); 461 } 462 post_execve(td, error, oldvmspace); 463 return (error); 464 } 465 466 #if defined(COMPAT_FREEBSD11) 467 int 468 freebsd11_freebsd32_mknod(struct thread *td, 469 struct freebsd11_freebsd32_mknod_args *uap) 470 { 471 472 return (kern_mknodat(td, AT_FDCWD, uap->path, UIO_USERSPACE, uap->mode, 473 uap->dev)); 474 } 475 476 int 477 freebsd11_freebsd32_mknodat(struct thread *td, 478 struct freebsd11_freebsd32_mknodat_args *uap) 479 { 480 481 return (kern_mknodat(td, uap->fd, uap->path, UIO_USERSPACE, uap->mode, 482 uap->dev)); 483 } 484 #endif /* COMPAT_FREEBSD11 */ 485 486 int 487 freebsd32_mprotect(struct thread *td, struct freebsd32_mprotect_args *uap) 488 { 489 int prot; 490 491 prot = uap->prot; 492 #if defined(__amd64__) 493 if (i386_read_exec && (prot & PROT_READ) != 0) 494 prot |= PROT_EXEC; 495 #endif 496 return (kern_mprotect(td, (uintptr_t)PTRIN(uap->addr), uap->len, 497 prot)); 498 } 499 500 int 501 freebsd32_mmap(struct thread *td, struct freebsd32_mmap_args *uap) 502 { 503 int prot; 504 505 prot = uap->prot; 506 #if defined(__amd64__) 507 if (i386_read_exec && (prot & PROT_READ)) 508 prot |= PROT_EXEC; 509 #endif 510 511 return (kern_mmap(td, (uintptr_t)uap->addr, uap->len, prot, 512 uap->flags, uap->fd, PAIR32TO64(off_t, uap->pos))); 513 } 514 515 #ifdef COMPAT_FREEBSD6 516 int 517 freebsd6_freebsd32_mmap(struct thread *td, 518 struct freebsd6_freebsd32_mmap_args *uap) 519 { 520 int prot; 521 522 prot = uap->prot; 523 #if defined(__amd64__) 524 if (i386_read_exec && (prot & PROT_READ)) 525 prot |= PROT_EXEC; 526 #endif 527 528 return (kern_mmap(td, (uintptr_t)uap->addr, uap->len, prot, 529 uap->flags, uap->fd, PAIR32TO64(off_t, uap->pos))); 530 } 531 #endif 532 533 int 534 freebsd32_setitimer(struct thread *td, struct freebsd32_setitimer_args *uap) 535 { 536 struct itimerval itv, oitv, *itvp; 537 struct itimerval32 i32; 538 int error; 539 540 if (uap->itv != NULL) { 541 error = copyin(uap->itv, &i32, sizeof(i32)); 542 if (error) 543 return (error); 544 TV_CP(i32, itv, it_interval); 545 TV_CP(i32, itv, it_value); 546 itvp = &itv; 547 } else 548 itvp = NULL; 549 error = kern_setitimer(td, uap->which, itvp, &oitv); 550 if (error || uap->oitv == NULL) 551 return (error); 552 TV_CP(oitv, i32, it_interval); 553 TV_CP(oitv, i32, it_value); 554 return (copyout(&i32, uap->oitv, sizeof(i32))); 555 } 556 557 int 558 freebsd32_getitimer(struct thread *td, struct freebsd32_getitimer_args *uap) 559 { 560 struct itimerval itv; 561 struct itimerval32 i32; 562 int error; 563 564 error = kern_getitimer(td, uap->which, &itv); 565 if (error || uap->itv == NULL) 566 return (error); 567 TV_CP(itv, i32, it_interval); 568 TV_CP(itv, i32, it_value); 569 return (copyout(&i32, uap->itv, sizeof(i32))); 570 } 571 572 int 573 freebsd32_select(struct thread *td, struct freebsd32_select_args *uap) 574 { 575 struct timeval32 tv32; 576 struct timeval tv, *tvp; 577 int error; 578 579 if (uap->tv != NULL) { 580 error = copyin(uap->tv, &tv32, sizeof(tv32)); 581 if (error) 582 return (error); 583 CP(tv32, tv, tv_sec); 584 CP(tv32, tv, tv_usec); 585 tvp = &tv; 586 } else 587 tvp = NULL; 588 /* 589 * XXX Do pointers need PTRIN()? 590 */ 591 return (kern_select(td, uap->nd, uap->in, uap->ou, uap->ex, tvp, 592 sizeof(int32_t) * 8)); 593 } 594 595 int 596 freebsd32_pselect(struct thread *td, struct freebsd32_pselect_args *uap) 597 { 598 struct timespec32 ts32; 599 struct timespec ts; 600 struct timeval tv, *tvp; 601 sigset_t set, *uset; 602 int error; 603 604 if (uap->ts != NULL) { 605 error = copyin(uap->ts, &ts32, sizeof(ts32)); 606 if (error != 0) 607 return (error); 608 CP(ts32, ts, tv_sec); 609 CP(ts32, ts, tv_nsec); 610 TIMESPEC_TO_TIMEVAL(&tv, &ts); 611 tvp = &tv; 612 } else 613 tvp = NULL; 614 if (uap->sm != NULL) { 615 error = copyin(uap->sm, &set, sizeof(set)); 616 if (error != 0) 617 return (error); 618 uset = &set; 619 } else 620 uset = NULL; 621 /* 622 * XXX Do pointers need PTRIN()? 623 */ 624 error = kern_pselect(td, uap->nd, uap->in, uap->ou, uap->ex, tvp, 625 uset, sizeof(int32_t) * 8); 626 return (error); 627 } 628 629 /* 630 * Copy 'count' items into the destination list pointed to by uap->eventlist. 631 */ 632 static int 633 freebsd32_kevent_copyout(void *arg, struct kevent *kevp, int count) 634 { 635 struct freebsd32_kevent_args *uap; 636 struct kevent32 ks32[KQ_NEVENTS]; 637 uint64_t e; 638 int i, j, error; 639 640 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count)); 641 uap = (struct freebsd32_kevent_args *)arg; 642 643 for (i = 0; i < count; i++) { 644 CP(kevp[i], ks32[i], ident); 645 CP(kevp[i], ks32[i], filter); 646 CP(kevp[i], ks32[i], flags); 647 CP(kevp[i], ks32[i], fflags); 648 #if BYTE_ORDER == LITTLE_ENDIAN 649 ks32[i].data1 = kevp[i].data; 650 ks32[i].data2 = kevp[i].data >> 32; 651 #else 652 ks32[i].data1 = kevp[i].data >> 32; 653 ks32[i].data2 = kevp[i].data; 654 #endif 655 PTROUT_CP(kevp[i], ks32[i], udata); 656 for (j = 0; j < nitems(kevp->ext); j++) { 657 e = kevp[i].ext[j]; 658 #if BYTE_ORDER == LITTLE_ENDIAN 659 ks32[i].ext64[2 * j] = e; 660 ks32[i].ext64[2 * j + 1] = e >> 32; 661 #else 662 ks32[i].ext64[2 * j] = e >> 32; 663 ks32[i].ext64[2 * j + 1] = e; 664 #endif 665 } 666 } 667 error = copyout(ks32, uap->eventlist, count * sizeof *ks32); 668 if (error == 0) 669 uap->eventlist += count; 670 return (error); 671 } 672 673 /* 674 * Copy 'count' items from the list pointed to by uap->changelist. 675 */ 676 static int 677 freebsd32_kevent_copyin(void *arg, struct kevent *kevp, int count) 678 { 679 struct freebsd32_kevent_args *uap; 680 struct kevent32 ks32[KQ_NEVENTS]; 681 uint64_t e; 682 int i, j, error; 683 684 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count)); 685 uap = (struct freebsd32_kevent_args *)arg; 686 687 error = copyin(uap->changelist, ks32, count * sizeof *ks32); 688 if (error) 689 goto done; 690 uap->changelist += count; 691 692 for (i = 0; i < count; i++) { 693 CP(ks32[i], kevp[i], ident); 694 CP(ks32[i], kevp[i], filter); 695 CP(ks32[i], kevp[i], flags); 696 CP(ks32[i], kevp[i], fflags); 697 kevp[i].data = PAIR32TO64(uint64_t, ks32[i].data); 698 PTRIN_CP(ks32[i], kevp[i], udata); 699 for (j = 0; j < nitems(kevp->ext); j++) { 700 #if BYTE_ORDER == LITTLE_ENDIAN 701 e = ks32[i].ext64[2 * j + 1]; 702 e <<= 32; 703 e += ks32[i].ext64[2 * j]; 704 #else 705 e = ks32[i].ext64[2 * j]; 706 e <<= 32; 707 e += ks32[i].ext64[2 * j + 1]; 708 #endif 709 kevp[i].ext[j] = e; 710 } 711 } 712 done: 713 return (error); 714 } 715 716 int 717 freebsd32_kevent(struct thread *td, struct freebsd32_kevent_args *uap) 718 { 719 struct timespec32 ts32; 720 struct timespec ts, *tsp; 721 struct kevent_copyops k_ops = { 722 .arg = uap, 723 .k_copyout = freebsd32_kevent_copyout, 724 .k_copyin = freebsd32_kevent_copyin, 725 }; 726 #ifdef KTRACE 727 struct kevent32 *eventlist = uap->eventlist; 728 #endif 729 int error; 730 731 if (uap->timeout) { 732 error = copyin(uap->timeout, &ts32, sizeof(ts32)); 733 if (error) 734 return (error); 735 CP(ts32, ts, tv_sec); 736 CP(ts32, ts, tv_nsec); 737 tsp = &ts; 738 } else 739 tsp = NULL; 740 #ifdef KTRACE 741 if (KTRPOINT(td, KTR_STRUCT_ARRAY)) 742 ktrstructarray("kevent32", UIO_USERSPACE, uap->changelist, 743 uap->nchanges, sizeof(struct kevent32)); 744 #endif 745 error = kern_kevent(td, uap->fd, uap->nchanges, uap->nevents, 746 &k_ops, tsp); 747 #ifdef KTRACE 748 if (error == 0 && KTRPOINT(td, KTR_STRUCT_ARRAY)) 749 ktrstructarray("kevent32", UIO_USERSPACE, eventlist, 750 td->td_retval[0], sizeof(struct kevent32)); 751 #endif 752 return (error); 753 } 754 755 #ifdef COMPAT_FREEBSD11 756 static int 757 freebsd32_kevent11_copyout(void *arg, struct kevent *kevp, int count) 758 { 759 struct freebsd11_freebsd32_kevent_args *uap; 760 struct kevent32_freebsd11 ks32[KQ_NEVENTS]; 761 int i, error; 762 763 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count)); 764 uap = (struct freebsd11_freebsd32_kevent_args *)arg; 765 766 for (i = 0; i < count; i++) { 767 CP(kevp[i], ks32[i], ident); 768 CP(kevp[i], ks32[i], filter); 769 CP(kevp[i], ks32[i], flags); 770 CP(kevp[i], ks32[i], fflags); 771 CP(kevp[i], ks32[i], data); 772 PTROUT_CP(kevp[i], ks32[i], udata); 773 } 774 error = copyout(ks32, uap->eventlist, count * sizeof *ks32); 775 if (error == 0) 776 uap->eventlist += count; 777 return (error); 778 } 779 780 /* 781 * Copy 'count' items from the list pointed to by uap->changelist. 782 */ 783 static int 784 freebsd32_kevent11_copyin(void *arg, struct kevent *kevp, int count) 785 { 786 struct freebsd11_freebsd32_kevent_args *uap; 787 struct kevent32_freebsd11 ks32[KQ_NEVENTS]; 788 int i, j, error; 789 790 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count)); 791 uap = (struct freebsd11_freebsd32_kevent_args *)arg; 792 793 error = copyin(uap->changelist, ks32, count * sizeof *ks32); 794 if (error) 795 goto done; 796 uap->changelist += count; 797 798 for (i = 0; i < count; i++) { 799 CP(ks32[i], kevp[i], ident); 800 CP(ks32[i], kevp[i], filter); 801 CP(ks32[i], kevp[i], flags); 802 CP(ks32[i], kevp[i], fflags); 803 CP(ks32[i], kevp[i], data); 804 PTRIN_CP(ks32[i], kevp[i], udata); 805 for (j = 0; j < nitems(kevp->ext); j++) 806 kevp[i].ext[j] = 0; 807 } 808 done: 809 return (error); 810 } 811 812 int 813 freebsd11_freebsd32_kevent(struct thread *td, 814 struct freebsd11_freebsd32_kevent_args *uap) 815 { 816 struct timespec32 ts32; 817 struct timespec ts, *tsp; 818 struct kevent_copyops k_ops = { 819 .arg = uap, 820 .k_copyout = freebsd32_kevent11_copyout, 821 .k_copyin = freebsd32_kevent11_copyin, 822 }; 823 #ifdef KTRACE 824 struct kevent32_freebsd11 *eventlist = uap->eventlist; 825 #endif 826 int error; 827 828 if (uap->timeout) { 829 error = copyin(uap->timeout, &ts32, sizeof(ts32)); 830 if (error) 831 return (error); 832 CP(ts32, ts, tv_sec); 833 CP(ts32, ts, tv_nsec); 834 tsp = &ts; 835 } else 836 tsp = NULL; 837 #ifdef KTRACE 838 if (KTRPOINT(td, KTR_STRUCT_ARRAY)) 839 ktrstructarray("kevent32_freebsd11", UIO_USERSPACE, 840 uap->changelist, uap->nchanges, 841 sizeof(struct kevent32_freebsd11)); 842 #endif 843 error = kern_kevent(td, uap->fd, uap->nchanges, uap->nevents, 844 &k_ops, tsp); 845 #ifdef KTRACE 846 if (error == 0 && KTRPOINT(td, KTR_STRUCT_ARRAY)) 847 ktrstructarray("kevent32_freebsd11", UIO_USERSPACE, 848 eventlist, td->td_retval[0], 849 sizeof(struct kevent32_freebsd11)); 850 #endif 851 return (error); 852 } 853 #endif 854 855 int 856 freebsd32_gettimeofday(struct thread *td, 857 struct freebsd32_gettimeofday_args *uap) 858 { 859 struct timeval atv; 860 struct timeval32 atv32; 861 struct timezone rtz; 862 int error = 0; 863 864 if (uap->tp) { 865 microtime(&atv); 866 CP(atv, atv32, tv_sec); 867 CP(atv, atv32, tv_usec); 868 error = copyout(&atv32, uap->tp, sizeof (atv32)); 869 } 870 if (error == 0 && uap->tzp != NULL) { 871 rtz.tz_minuteswest = tz_minuteswest; 872 rtz.tz_dsttime = tz_dsttime; 873 error = copyout(&rtz, uap->tzp, sizeof (rtz)); 874 } 875 return (error); 876 } 877 878 int 879 freebsd32_getrusage(struct thread *td, struct freebsd32_getrusage_args *uap) 880 { 881 struct rusage32 s32; 882 struct rusage s; 883 int error; 884 885 error = kern_getrusage(td, uap->who, &s); 886 if (error == 0) { 887 freebsd32_rusage_out(&s, &s32); 888 error = copyout(&s32, uap->rusage, sizeof(s32)); 889 } 890 return (error); 891 } 892 893 static int 894 freebsd32_copyinuio(struct iovec32 *iovp, u_int iovcnt, struct uio **uiop) 895 { 896 struct iovec32 iov32; 897 struct iovec *iov; 898 struct uio *uio; 899 u_int iovlen; 900 int error, i; 901 902 *uiop = NULL; 903 if (iovcnt > UIO_MAXIOV) 904 return (EINVAL); 905 iovlen = iovcnt * sizeof(struct iovec); 906 uio = malloc(iovlen + sizeof *uio, M_IOV, M_WAITOK); 907 iov = (struct iovec *)(uio + 1); 908 for (i = 0; i < iovcnt; i++) { 909 error = copyin(&iovp[i], &iov32, sizeof(struct iovec32)); 910 if (error) { 911 free(uio, M_IOV); 912 return (error); 913 } 914 iov[i].iov_base = PTRIN(iov32.iov_base); 915 iov[i].iov_len = iov32.iov_len; 916 } 917 uio->uio_iov = iov; 918 uio->uio_iovcnt = iovcnt; 919 uio->uio_segflg = UIO_USERSPACE; 920 uio->uio_offset = -1; 921 uio->uio_resid = 0; 922 for (i = 0; i < iovcnt; i++) { 923 if (iov->iov_len > INT_MAX - uio->uio_resid) { 924 free(uio, M_IOV); 925 return (EINVAL); 926 } 927 uio->uio_resid += iov->iov_len; 928 iov++; 929 } 930 *uiop = uio; 931 return (0); 932 } 933 934 int 935 freebsd32_readv(struct thread *td, struct freebsd32_readv_args *uap) 936 { 937 struct uio *auio; 938 int error; 939 940 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 941 if (error) 942 return (error); 943 error = kern_readv(td, uap->fd, auio); 944 free(auio, M_IOV); 945 return (error); 946 } 947 948 int 949 freebsd32_writev(struct thread *td, struct freebsd32_writev_args *uap) 950 { 951 struct uio *auio; 952 int error; 953 954 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 955 if (error) 956 return (error); 957 error = kern_writev(td, uap->fd, auio); 958 free(auio, M_IOV); 959 return (error); 960 } 961 962 int 963 freebsd32_preadv(struct thread *td, struct freebsd32_preadv_args *uap) 964 { 965 struct uio *auio; 966 int error; 967 968 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 969 if (error) 970 return (error); 971 error = kern_preadv(td, uap->fd, auio, PAIR32TO64(off_t,uap->offset)); 972 free(auio, M_IOV); 973 return (error); 974 } 975 976 int 977 freebsd32_pwritev(struct thread *td, struct freebsd32_pwritev_args *uap) 978 { 979 struct uio *auio; 980 int error; 981 982 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 983 if (error) 984 return (error); 985 error = kern_pwritev(td, uap->fd, auio, PAIR32TO64(off_t,uap->offset)); 986 free(auio, M_IOV); 987 return (error); 988 } 989 990 int 991 freebsd32_copyiniov(struct iovec32 *iovp32, u_int iovcnt, struct iovec **iovp, 992 int error) 993 { 994 struct iovec32 iov32; 995 struct iovec *iov; 996 u_int iovlen; 997 int i; 998 999 *iovp = NULL; 1000 if (iovcnt > UIO_MAXIOV) 1001 return (error); 1002 iovlen = iovcnt * sizeof(struct iovec); 1003 iov = malloc(iovlen, M_IOV, M_WAITOK); 1004 for (i = 0; i < iovcnt; i++) { 1005 error = copyin(&iovp32[i], &iov32, sizeof(struct iovec32)); 1006 if (error) { 1007 free(iov, M_IOV); 1008 return (error); 1009 } 1010 iov[i].iov_base = PTRIN(iov32.iov_base); 1011 iov[i].iov_len = iov32.iov_len; 1012 } 1013 *iovp = iov; 1014 return (0); 1015 } 1016 1017 static int 1018 freebsd32_copyinmsghdr(struct msghdr32 *msg32, struct msghdr *msg) 1019 { 1020 struct msghdr32 m32; 1021 int error; 1022 1023 error = copyin(msg32, &m32, sizeof(m32)); 1024 if (error) 1025 return (error); 1026 msg->msg_name = PTRIN(m32.msg_name); 1027 msg->msg_namelen = m32.msg_namelen; 1028 msg->msg_iov = PTRIN(m32.msg_iov); 1029 msg->msg_iovlen = m32.msg_iovlen; 1030 msg->msg_control = PTRIN(m32.msg_control); 1031 msg->msg_controllen = m32.msg_controllen; 1032 msg->msg_flags = m32.msg_flags; 1033 return (0); 1034 } 1035 1036 static int 1037 freebsd32_copyoutmsghdr(struct msghdr *msg, struct msghdr32 *msg32) 1038 { 1039 struct msghdr32 m32; 1040 int error; 1041 1042 m32.msg_name = PTROUT(msg->msg_name); 1043 m32.msg_namelen = msg->msg_namelen; 1044 m32.msg_iov = PTROUT(msg->msg_iov); 1045 m32.msg_iovlen = msg->msg_iovlen; 1046 m32.msg_control = PTROUT(msg->msg_control); 1047 m32.msg_controllen = msg->msg_controllen; 1048 m32.msg_flags = msg->msg_flags; 1049 error = copyout(&m32, msg32, sizeof(m32)); 1050 return (error); 1051 } 1052 1053 #ifndef __mips__ 1054 #define FREEBSD32_ALIGNBYTES (sizeof(int) - 1) 1055 #else 1056 #define FREEBSD32_ALIGNBYTES (sizeof(long) - 1) 1057 #endif 1058 #define FREEBSD32_ALIGN(p) \ 1059 (((u_long)(p) + FREEBSD32_ALIGNBYTES) & ~FREEBSD32_ALIGNBYTES) 1060 #define FREEBSD32_CMSG_SPACE(l) \ 1061 (FREEBSD32_ALIGN(sizeof(struct cmsghdr)) + FREEBSD32_ALIGN(l)) 1062 1063 #define FREEBSD32_CMSG_DATA(cmsg) ((unsigned char *)(cmsg) + \ 1064 FREEBSD32_ALIGN(sizeof(struct cmsghdr))) 1065 1066 static size_t 1067 freebsd32_cmsg_convert(const struct cmsghdr *cm, void *data, socklen_t datalen) 1068 { 1069 size_t copylen; 1070 union { 1071 struct timespec32 ts; 1072 struct timeval32 tv; 1073 struct bintime32 bt; 1074 } tmp32; 1075 1076 union { 1077 struct timespec ts; 1078 struct timeval tv; 1079 struct bintime bt; 1080 } *in; 1081 1082 in = data; 1083 copylen = 0; 1084 switch (cm->cmsg_level) { 1085 case SOL_SOCKET: 1086 switch (cm->cmsg_type) { 1087 case SCM_TIMESTAMP: 1088 TV_CP(*in, tmp32, tv); 1089 copylen = sizeof(tmp32.tv); 1090 break; 1091 1092 case SCM_BINTIME: 1093 BT_CP(*in, tmp32, bt); 1094 copylen = sizeof(tmp32.bt); 1095 break; 1096 1097 case SCM_REALTIME: 1098 case SCM_MONOTONIC: 1099 TS_CP(*in, tmp32, ts); 1100 copylen = sizeof(tmp32.ts); 1101 break; 1102 1103 default: 1104 break; 1105 } 1106 1107 default: 1108 break; 1109 } 1110 1111 if (copylen == 0) 1112 return (datalen); 1113 1114 KASSERT((datalen >= copylen), ("corrupted cmsghdr")); 1115 1116 bcopy(&tmp32, data, copylen); 1117 return (copylen); 1118 } 1119 1120 static int 1121 freebsd32_copy_msg_out(struct msghdr *msg, struct mbuf *control) 1122 { 1123 struct cmsghdr *cm; 1124 void *data; 1125 socklen_t clen, datalen, datalen_out, oldclen; 1126 int error; 1127 caddr_t ctlbuf; 1128 int len, maxlen, copylen; 1129 struct mbuf *m; 1130 error = 0; 1131 1132 len = msg->msg_controllen; 1133 maxlen = msg->msg_controllen; 1134 msg->msg_controllen = 0; 1135 1136 ctlbuf = msg->msg_control; 1137 for (m = control; m != NULL && len > 0; m = m->m_next) { 1138 cm = mtod(m, struct cmsghdr *); 1139 clen = m->m_len; 1140 while (cm != NULL) { 1141 if (sizeof(struct cmsghdr) > clen || 1142 cm->cmsg_len > clen) { 1143 error = EINVAL; 1144 break; 1145 } 1146 1147 data = CMSG_DATA(cm); 1148 datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data; 1149 datalen_out = freebsd32_cmsg_convert(cm, data, datalen); 1150 1151 /* 1152 * Copy out the message header. Preserve the native 1153 * message size in case we need to inspect the message 1154 * contents later. 1155 */ 1156 copylen = sizeof(struct cmsghdr); 1157 if (len < copylen) { 1158 msg->msg_flags |= MSG_CTRUNC; 1159 m_dispose_extcontrolm(m); 1160 goto exit; 1161 } 1162 oldclen = cm->cmsg_len; 1163 cm->cmsg_len = FREEBSD32_ALIGN(sizeof(struct cmsghdr)) + 1164 datalen_out; 1165 error = copyout(cm, ctlbuf, copylen); 1166 cm->cmsg_len = oldclen; 1167 if (error != 0) 1168 goto exit; 1169 1170 ctlbuf += FREEBSD32_ALIGN(copylen); 1171 len -= FREEBSD32_ALIGN(copylen); 1172 1173 copylen = datalen_out; 1174 if (len < copylen) { 1175 msg->msg_flags |= MSG_CTRUNC; 1176 m_dispose_extcontrolm(m); 1177 break; 1178 } 1179 1180 /* Copy out the message data. */ 1181 error = copyout(data, ctlbuf, copylen); 1182 if (error) 1183 goto exit; 1184 1185 ctlbuf += FREEBSD32_ALIGN(copylen); 1186 len -= FREEBSD32_ALIGN(copylen); 1187 1188 if (CMSG_SPACE(datalen) < clen) { 1189 clen -= CMSG_SPACE(datalen); 1190 cm = (struct cmsghdr *) 1191 ((caddr_t)cm + CMSG_SPACE(datalen)); 1192 } else { 1193 clen = 0; 1194 cm = NULL; 1195 } 1196 1197 msg->msg_controllen += FREEBSD32_ALIGN(sizeof(*cm)) + 1198 datalen_out; 1199 } 1200 } 1201 if (len == 0 && m != NULL) { 1202 msg->msg_flags |= MSG_CTRUNC; 1203 m_dispose_extcontrolm(m); 1204 } 1205 1206 exit: 1207 return (error); 1208 } 1209 1210 int 1211 freebsd32_recvmsg(td, uap) 1212 struct thread *td; 1213 struct freebsd32_recvmsg_args /* { 1214 int s; 1215 struct msghdr32 *msg; 1216 int flags; 1217 } */ *uap; 1218 { 1219 struct msghdr msg; 1220 struct msghdr32 m32; 1221 struct iovec *uiov, *iov; 1222 struct mbuf *control = NULL; 1223 struct mbuf **controlp; 1224 1225 int error; 1226 error = copyin(uap->msg, &m32, sizeof(m32)); 1227 if (error) 1228 return (error); 1229 error = freebsd32_copyinmsghdr(uap->msg, &msg); 1230 if (error) 1231 return (error); 1232 error = freebsd32_copyiniov(PTRIN(m32.msg_iov), m32.msg_iovlen, &iov, 1233 EMSGSIZE); 1234 if (error) 1235 return (error); 1236 msg.msg_flags = uap->flags; 1237 uiov = msg.msg_iov; 1238 msg.msg_iov = iov; 1239 1240 controlp = (msg.msg_control != NULL) ? &control : NULL; 1241 error = kern_recvit(td, uap->s, &msg, UIO_USERSPACE, controlp); 1242 if (error == 0) { 1243 msg.msg_iov = uiov; 1244 1245 if (control != NULL) 1246 error = freebsd32_copy_msg_out(&msg, control); 1247 else 1248 msg.msg_controllen = 0; 1249 1250 if (error == 0) 1251 error = freebsd32_copyoutmsghdr(&msg, uap->msg); 1252 } 1253 free(iov, M_IOV); 1254 1255 if (control != NULL) { 1256 if (error != 0) 1257 m_dispose_extcontrolm(control); 1258 m_freem(control); 1259 } 1260 1261 return (error); 1262 } 1263 1264 /* 1265 * Copy-in the array of control messages constructed using alignment 1266 * and padding suitable for a 32-bit environment and construct an 1267 * mbuf using alignment and padding suitable for a 64-bit kernel. 1268 * The alignment and padding are defined indirectly by CMSG_DATA(), 1269 * CMSG_SPACE() and CMSG_LEN(). 1270 */ 1271 static int 1272 freebsd32_copyin_control(struct mbuf **mp, caddr_t buf, u_int buflen) 1273 { 1274 struct mbuf *m; 1275 void *md; 1276 u_int idx, len, msglen; 1277 int error; 1278 1279 buflen = FREEBSD32_ALIGN(buflen); 1280 1281 if (buflen > MCLBYTES) 1282 return (EINVAL); 1283 1284 /* 1285 * Iterate over the buffer and get the length of each message 1286 * in there. This has 32-bit alignment and padding. Use it to 1287 * determine the length of these messages when using 64-bit 1288 * alignment and padding. 1289 */ 1290 idx = 0; 1291 len = 0; 1292 while (idx < buflen) { 1293 error = copyin(buf + idx, &msglen, sizeof(msglen)); 1294 if (error) 1295 return (error); 1296 if (msglen < sizeof(struct cmsghdr)) 1297 return (EINVAL); 1298 msglen = FREEBSD32_ALIGN(msglen); 1299 if (idx + msglen > buflen) 1300 return (EINVAL); 1301 idx += msglen; 1302 msglen += CMSG_ALIGN(sizeof(struct cmsghdr)) - 1303 FREEBSD32_ALIGN(sizeof(struct cmsghdr)); 1304 len += CMSG_ALIGN(msglen); 1305 } 1306 1307 if (len > MCLBYTES) 1308 return (EINVAL); 1309 1310 m = m_get(M_WAITOK, MT_CONTROL); 1311 if (len > MLEN) 1312 MCLGET(m, M_WAITOK); 1313 m->m_len = len; 1314 1315 md = mtod(m, void *); 1316 while (buflen > 0) { 1317 error = copyin(buf, md, sizeof(struct cmsghdr)); 1318 if (error) 1319 break; 1320 msglen = *(u_int *)md; 1321 msglen = FREEBSD32_ALIGN(msglen); 1322 1323 /* Modify the message length to account for alignment. */ 1324 *(u_int *)md = msglen + CMSG_ALIGN(sizeof(struct cmsghdr)) - 1325 FREEBSD32_ALIGN(sizeof(struct cmsghdr)); 1326 1327 md = (char *)md + CMSG_ALIGN(sizeof(struct cmsghdr)); 1328 buf += FREEBSD32_ALIGN(sizeof(struct cmsghdr)); 1329 buflen -= FREEBSD32_ALIGN(sizeof(struct cmsghdr)); 1330 1331 msglen -= FREEBSD32_ALIGN(sizeof(struct cmsghdr)); 1332 if (msglen > 0) { 1333 error = copyin(buf, md, msglen); 1334 if (error) 1335 break; 1336 md = (char *)md + CMSG_ALIGN(msglen); 1337 buf += msglen; 1338 buflen -= msglen; 1339 } 1340 } 1341 1342 if (error) 1343 m_free(m); 1344 else 1345 *mp = m; 1346 return (error); 1347 } 1348 1349 int 1350 freebsd32_sendmsg(struct thread *td, 1351 struct freebsd32_sendmsg_args *uap) 1352 { 1353 struct msghdr msg; 1354 struct msghdr32 m32; 1355 struct iovec *iov; 1356 struct mbuf *control = NULL; 1357 struct sockaddr *to = NULL; 1358 int error; 1359 1360 error = copyin(uap->msg, &m32, sizeof(m32)); 1361 if (error) 1362 return (error); 1363 error = freebsd32_copyinmsghdr(uap->msg, &msg); 1364 if (error) 1365 return (error); 1366 error = freebsd32_copyiniov(PTRIN(m32.msg_iov), m32.msg_iovlen, &iov, 1367 EMSGSIZE); 1368 if (error) 1369 return (error); 1370 msg.msg_iov = iov; 1371 if (msg.msg_name != NULL) { 1372 error = getsockaddr(&to, msg.msg_name, msg.msg_namelen); 1373 if (error) { 1374 to = NULL; 1375 goto out; 1376 } 1377 msg.msg_name = to; 1378 } 1379 1380 if (msg.msg_control) { 1381 if (msg.msg_controllen < sizeof(struct cmsghdr)) { 1382 error = EINVAL; 1383 goto out; 1384 } 1385 1386 error = freebsd32_copyin_control(&control, msg.msg_control, 1387 msg.msg_controllen); 1388 if (error) 1389 goto out; 1390 1391 msg.msg_control = NULL; 1392 msg.msg_controllen = 0; 1393 } 1394 1395 error = kern_sendit(td, uap->s, &msg, uap->flags, control, 1396 UIO_USERSPACE); 1397 1398 out: 1399 free(iov, M_IOV); 1400 if (to) 1401 free(to, M_SONAME); 1402 return (error); 1403 } 1404 1405 int 1406 freebsd32_recvfrom(struct thread *td, 1407 struct freebsd32_recvfrom_args *uap) 1408 { 1409 struct msghdr msg; 1410 struct iovec aiov; 1411 int error; 1412 1413 if (uap->fromlenaddr) { 1414 error = copyin(PTRIN(uap->fromlenaddr), &msg.msg_namelen, 1415 sizeof(msg.msg_namelen)); 1416 if (error) 1417 return (error); 1418 } else { 1419 msg.msg_namelen = 0; 1420 } 1421 1422 msg.msg_name = PTRIN(uap->from); 1423 msg.msg_iov = &aiov; 1424 msg.msg_iovlen = 1; 1425 aiov.iov_base = PTRIN(uap->buf); 1426 aiov.iov_len = uap->len; 1427 msg.msg_control = NULL; 1428 msg.msg_flags = uap->flags; 1429 error = kern_recvit(td, uap->s, &msg, UIO_USERSPACE, NULL); 1430 if (error == 0 && uap->fromlenaddr) 1431 error = copyout(&msg.msg_namelen, PTRIN(uap->fromlenaddr), 1432 sizeof (msg.msg_namelen)); 1433 return (error); 1434 } 1435 1436 int 1437 freebsd32_settimeofday(struct thread *td, 1438 struct freebsd32_settimeofday_args *uap) 1439 { 1440 struct timeval32 tv32; 1441 struct timeval tv, *tvp; 1442 struct timezone tz, *tzp; 1443 int error; 1444 1445 if (uap->tv) { 1446 error = copyin(uap->tv, &tv32, sizeof(tv32)); 1447 if (error) 1448 return (error); 1449 CP(tv32, tv, tv_sec); 1450 CP(tv32, tv, tv_usec); 1451 tvp = &tv; 1452 } else 1453 tvp = NULL; 1454 if (uap->tzp) { 1455 error = copyin(uap->tzp, &tz, sizeof(tz)); 1456 if (error) 1457 return (error); 1458 tzp = &tz; 1459 } else 1460 tzp = NULL; 1461 return (kern_settimeofday(td, tvp, tzp)); 1462 } 1463 1464 int 1465 freebsd32_utimes(struct thread *td, struct freebsd32_utimes_args *uap) 1466 { 1467 struct timeval32 s32[2]; 1468 struct timeval s[2], *sp; 1469 int error; 1470 1471 if (uap->tptr != NULL) { 1472 error = copyin(uap->tptr, s32, sizeof(s32)); 1473 if (error) 1474 return (error); 1475 CP(s32[0], s[0], tv_sec); 1476 CP(s32[0], s[0], tv_usec); 1477 CP(s32[1], s[1], tv_sec); 1478 CP(s32[1], s[1], tv_usec); 1479 sp = s; 1480 } else 1481 sp = NULL; 1482 return (kern_utimesat(td, AT_FDCWD, uap->path, UIO_USERSPACE, 1483 sp, UIO_SYSSPACE)); 1484 } 1485 1486 int 1487 freebsd32_lutimes(struct thread *td, struct freebsd32_lutimes_args *uap) 1488 { 1489 struct timeval32 s32[2]; 1490 struct timeval s[2], *sp; 1491 int error; 1492 1493 if (uap->tptr != NULL) { 1494 error = copyin(uap->tptr, s32, sizeof(s32)); 1495 if (error) 1496 return (error); 1497 CP(s32[0], s[0], tv_sec); 1498 CP(s32[0], s[0], tv_usec); 1499 CP(s32[1], s[1], tv_sec); 1500 CP(s32[1], s[1], tv_usec); 1501 sp = s; 1502 } else 1503 sp = NULL; 1504 return (kern_lutimes(td, uap->path, UIO_USERSPACE, sp, UIO_SYSSPACE)); 1505 } 1506 1507 int 1508 freebsd32_futimes(struct thread *td, struct freebsd32_futimes_args *uap) 1509 { 1510 struct timeval32 s32[2]; 1511 struct timeval s[2], *sp; 1512 int error; 1513 1514 if (uap->tptr != NULL) { 1515 error = copyin(uap->tptr, s32, sizeof(s32)); 1516 if (error) 1517 return (error); 1518 CP(s32[0], s[0], tv_sec); 1519 CP(s32[0], s[0], tv_usec); 1520 CP(s32[1], s[1], tv_sec); 1521 CP(s32[1], s[1], tv_usec); 1522 sp = s; 1523 } else 1524 sp = NULL; 1525 return (kern_futimes(td, uap->fd, sp, UIO_SYSSPACE)); 1526 } 1527 1528 int 1529 freebsd32_futimesat(struct thread *td, struct freebsd32_futimesat_args *uap) 1530 { 1531 struct timeval32 s32[2]; 1532 struct timeval s[2], *sp; 1533 int error; 1534 1535 if (uap->times != NULL) { 1536 error = copyin(uap->times, s32, sizeof(s32)); 1537 if (error) 1538 return (error); 1539 CP(s32[0], s[0], tv_sec); 1540 CP(s32[0], s[0], tv_usec); 1541 CP(s32[1], s[1], tv_sec); 1542 CP(s32[1], s[1], tv_usec); 1543 sp = s; 1544 } else 1545 sp = NULL; 1546 return (kern_utimesat(td, uap->fd, uap->path, UIO_USERSPACE, 1547 sp, UIO_SYSSPACE)); 1548 } 1549 1550 int 1551 freebsd32_futimens(struct thread *td, struct freebsd32_futimens_args *uap) 1552 { 1553 struct timespec32 ts32[2]; 1554 struct timespec ts[2], *tsp; 1555 int error; 1556 1557 if (uap->times != NULL) { 1558 error = copyin(uap->times, ts32, sizeof(ts32)); 1559 if (error) 1560 return (error); 1561 CP(ts32[0], ts[0], tv_sec); 1562 CP(ts32[0], ts[0], tv_nsec); 1563 CP(ts32[1], ts[1], tv_sec); 1564 CP(ts32[1], ts[1], tv_nsec); 1565 tsp = ts; 1566 } else 1567 tsp = NULL; 1568 return (kern_futimens(td, uap->fd, tsp, UIO_SYSSPACE)); 1569 } 1570 1571 int 1572 freebsd32_utimensat(struct thread *td, struct freebsd32_utimensat_args *uap) 1573 { 1574 struct timespec32 ts32[2]; 1575 struct timespec ts[2], *tsp; 1576 int error; 1577 1578 if (uap->times != NULL) { 1579 error = copyin(uap->times, ts32, sizeof(ts32)); 1580 if (error) 1581 return (error); 1582 CP(ts32[0], ts[0], tv_sec); 1583 CP(ts32[0], ts[0], tv_nsec); 1584 CP(ts32[1], ts[1], tv_sec); 1585 CP(ts32[1], ts[1], tv_nsec); 1586 tsp = ts; 1587 } else 1588 tsp = NULL; 1589 return (kern_utimensat(td, uap->fd, uap->path, UIO_USERSPACE, 1590 tsp, UIO_SYSSPACE, uap->flag)); 1591 } 1592 1593 int 1594 freebsd32_adjtime(struct thread *td, struct freebsd32_adjtime_args *uap) 1595 { 1596 struct timeval32 tv32; 1597 struct timeval delta, olddelta, *deltap; 1598 int error; 1599 1600 if (uap->delta) { 1601 error = copyin(uap->delta, &tv32, sizeof(tv32)); 1602 if (error) 1603 return (error); 1604 CP(tv32, delta, tv_sec); 1605 CP(tv32, delta, tv_usec); 1606 deltap = δ 1607 } else 1608 deltap = NULL; 1609 error = kern_adjtime(td, deltap, &olddelta); 1610 if (uap->olddelta && error == 0) { 1611 CP(olddelta, tv32, tv_sec); 1612 CP(olddelta, tv32, tv_usec); 1613 error = copyout(&tv32, uap->olddelta, sizeof(tv32)); 1614 } 1615 return (error); 1616 } 1617 1618 #ifdef COMPAT_FREEBSD4 1619 int 1620 freebsd4_freebsd32_statfs(struct thread *td, struct freebsd4_freebsd32_statfs_args *uap) 1621 { 1622 struct statfs32 s32; 1623 struct statfs *sp; 1624 int error; 1625 1626 sp = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK); 1627 error = kern_statfs(td, uap->path, UIO_USERSPACE, sp); 1628 if (error == 0) { 1629 copy_statfs(sp, &s32); 1630 error = copyout(&s32, uap->buf, sizeof(s32)); 1631 } 1632 free(sp, M_STATFS); 1633 return (error); 1634 } 1635 #endif 1636 1637 #ifdef COMPAT_FREEBSD4 1638 int 1639 freebsd4_freebsd32_fstatfs(struct thread *td, struct freebsd4_freebsd32_fstatfs_args *uap) 1640 { 1641 struct statfs32 s32; 1642 struct statfs *sp; 1643 int error; 1644 1645 sp = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK); 1646 error = kern_fstatfs(td, uap->fd, sp); 1647 if (error == 0) { 1648 copy_statfs(sp, &s32); 1649 error = copyout(&s32, uap->buf, sizeof(s32)); 1650 } 1651 free(sp, M_STATFS); 1652 return (error); 1653 } 1654 #endif 1655 1656 #ifdef COMPAT_FREEBSD4 1657 int 1658 freebsd4_freebsd32_fhstatfs(struct thread *td, struct freebsd4_freebsd32_fhstatfs_args *uap) 1659 { 1660 struct statfs32 s32; 1661 struct statfs *sp; 1662 fhandle_t fh; 1663 int error; 1664 1665 if ((error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t))) != 0) 1666 return (error); 1667 sp = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK); 1668 error = kern_fhstatfs(td, fh, sp); 1669 if (error == 0) { 1670 copy_statfs(sp, &s32); 1671 error = copyout(&s32, uap->buf, sizeof(s32)); 1672 } 1673 free(sp, M_STATFS); 1674 return (error); 1675 } 1676 #endif 1677 1678 int 1679 freebsd32_pread(struct thread *td, struct freebsd32_pread_args *uap) 1680 { 1681 1682 return (kern_pread(td, uap->fd, uap->buf, uap->nbyte, 1683 PAIR32TO64(off_t, uap->offset))); 1684 } 1685 1686 int 1687 freebsd32_pwrite(struct thread *td, struct freebsd32_pwrite_args *uap) 1688 { 1689 1690 return (kern_pwrite(td, uap->fd, uap->buf, uap->nbyte, 1691 PAIR32TO64(off_t, uap->offset))); 1692 } 1693 1694 #ifdef COMPAT_43 1695 int 1696 ofreebsd32_lseek(struct thread *td, struct ofreebsd32_lseek_args *uap) 1697 { 1698 1699 return (kern_lseek(td, uap->fd, uap->offset, uap->whence)); 1700 } 1701 #endif 1702 1703 int 1704 freebsd32_lseek(struct thread *td, struct freebsd32_lseek_args *uap) 1705 { 1706 int error; 1707 off_t pos; 1708 1709 error = kern_lseek(td, uap->fd, PAIR32TO64(off_t, uap->offset), 1710 uap->whence); 1711 /* Expand the quad return into two parts for eax and edx */ 1712 pos = td->td_uretoff.tdu_off; 1713 td->td_retval[RETVAL_LO] = pos & 0xffffffff; /* %eax */ 1714 td->td_retval[RETVAL_HI] = pos >> 32; /* %edx */ 1715 return error; 1716 } 1717 1718 int 1719 freebsd32_truncate(struct thread *td, struct freebsd32_truncate_args *uap) 1720 { 1721 1722 return (kern_truncate(td, uap->path, UIO_USERSPACE, 1723 PAIR32TO64(off_t, uap->length))); 1724 } 1725 1726 int 1727 freebsd32_ftruncate(struct thread *td, struct freebsd32_ftruncate_args *uap) 1728 { 1729 1730 return (kern_ftruncate(td, uap->fd, PAIR32TO64(off_t, uap->length))); 1731 } 1732 1733 #ifdef COMPAT_43 1734 int 1735 ofreebsd32_getdirentries(struct thread *td, 1736 struct ofreebsd32_getdirentries_args *uap) 1737 { 1738 struct ogetdirentries_args ap; 1739 int error; 1740 long loff; 1741 int32_t loff_cut; 1742 1743 ap.fd = uap->fd; 1744 ap.buf = uap->buf; 1745 ap.count = uap->count; 1746 ap.basep = NULL; 1747 error = kern_ogetdirentries(td, &ap, &loff); 1748 if (error == 0) { 1749 loff_cut = loff; 1750 error = copyout(&loff_cut, uap->basep, sizeof(int32_t)); 1751 } 1752 return (error); 1753 } 1754 #endif 1755 1756 #if defined(COMPAT_FREEBSD11) 1757 int 1758 freebsd11_freebsd32_getdirentries(struct thread *td, 1759 struct freebsd11_freebsd32_getdirentries_args *uap) 1760 { 1761 long base; 1762 int32_t base32; 1763 int error; 1764 1765 error = freebsd11_kern_getdirentries(td, uap->fd, uap->buf, uap->count, 1766 &base, NULL); 1767 if (error) 1768 return (error); 1769 if (uap->basep != NULL) { 1770 base32 = base; 1771 error = copyout(&base32, uap->basep, sizeof(int32_t)); 1772 } 1773 return (error); 1774 } 1775 1776 int 1777 freebsd11_freebsd32_getdents(struct thread *td, 1778 struct freebsd11_freebsd32_getdents_args *uap) 1779 { 1780 struct freebsd11_freebsd32_getdirentries_args ap; 1781 1782 ap.fd = uap->fd; 1783 ap.buf = uap->buf; 1784 ap.count = uap->count; 1785 ap.basep = NULL; 1786 return (freebsd11_freebsd32_getdirentries(td, &ap)); 1787 } 1788 #endif /* COMPAT_FREEBSD11 */ 1789 1790 #ifdef COMPAT_FREEBSD6 1791 /* versions with the 'int pad' argument */ 1792 int 1793 freebsd6_freebsd32_pread(struct thread *td, struct freebsd6_freebsd32_pread_args *uap) 1794 { 1795 1796 return (kern_pread(td, uap->fd, uap->buf, uap->nbyte, 1797 PAIR32TO64(off_t, uap->offset))); 1798 } 1799 1800 int 1801 freebsd6_freebsd32_pwrite(struct thread *td, struct freebsd6_freebsd32_pwrite_args *uap) 1802 { 1803 1804 return (kern_pwrite(td, uap->fd, uap->buf, uap->nbyte, 1805 PAIR32TO64(off_t, uap->offset))); 1806 } 1807 1808 int 1809 freebsd6_freebsd32_lseek(struct thread *td, struct freebsd6_freebsd32_lseek_args *uap) 1810 { 1811 int error; 1812 off_t pos; 1813 1814 error = kern_lseek(td, uap->fd, PAIR32TO64(off_t, uap->offset), 1815 uap->whence); 1816 /* Expand the quad return into two parts for eax and edx */ 1817 pos = *(off_t *)(td->td_retval); 1818 td->td_retval[RETVAL_LO] = pos & 0xffffffff; /* %eax */ 1819 td->td_retval[RETVAL_HI] = pos >> 32; /* %edx */ 1820 return error; 1821 } 1822 1823 int 1824 freebsd6_freebsd32_truncate(struct thread *td, struct freebsd6_freebsd32_truncate_args *uap) 1825 { 1826 1827 return (kern_truncate(td, uap->path, UIO_USERSPACE, 1828 PAIR32TO64(off_t, uap->length))); 1829 } 1830 1831 int 1832 freebsd6_freebsd32_ftruncate(struct thread *td, struct freebsd6_freebsd32_ftruncate_args *uap) 1833 { 1834 1835 return (kern_ftruncate(td, uap->fd, PAIR32TO64(off_t, uap->length))); 1836 } 1837 #endif /* COMPAT_FREEBSD6 */ 1838 1839 struct sf_hdtr32 { 1840 uint32_t headers; 1841 int hdr_cnt; 1842 uint32_t trailers; 1843 int trl_cnt; 1844 }; 1845 1846 static int 1847 freebsd32_do_sendfile(struct thread *td, 1848 struct freebsd32_sendfile_args *uap, int compat) 1849 { 1850 struct sf_hdtr32 hdtr32; 1851 struct sf_hdtr hdtr; 1852 struct uio *hdr_uio, *trl_uio; 1853 struct file *fp; 1854 cap_rights_t rights; 1855 struct iovec32 *iov32; 1856 off_t offset, sbytes; 1857 int error; 1858 1859 offset = PAIR32TO64(off_t, uap->offset); 1860 if (offset < 0) 1861 return (EINVAL); 1862 1863 hdr_uio = trl_uio = NULL; 1864 1865 if (uap->hdtr != NULL) { 1866 error = copyin(uap->hdtr, &hdtr32, sizeof(hdtr32)); 1867 if (error) 1868 goto out; 1869 PTRIN_CP(hdtr32, hdtr, headers); 1870 CP(hdtr32, hdtr, hdr_cnt); 1871 PTRIN_CP(hdtr32, hdtr, trailers); 1872 CP(hdtr32, hdtr, trl_cnt); 1873 1874 if (hdtr.headers != NULL) { 1875 iov32 = PTRIN(hdtr32.headers); 1876 error = freebsd32_copyinuio(iov32, 1877 hdtr32.hdr_cnt, &hdr_uio); 1878 if (error) 1879 goto out; 1880 #ifdef COMPAT_FREEBSD4 1881 /* 1882 * In FreeBSD < 5.0 the nbytes to send also included 1883 * the header. If compat is specified subtract the 1884 * header size from nbytes. 1885 */ 1886 if (compat) { 1887 if (uap->nbytes > hdr_uio->uio_resid) 1888 uap->nbytes -= hdr_uio->uio_resid; 1889 else 1890 uap->nbytes = 0; 1891 } 1892 #endif 1893 } 1894 if (hdtr.trailers != NULL) { 1895 iov32 = PTRIN(hdtr32.trailers); 1896 error = freebsd32_copyinuio(iov32, 1897 hdtr32.trl_cnt, &trl_uio); 1898 if (error) 1899 goto out; 1900 } 1901 } 1902 1903 AUDIT_ARG_FD(uap->fd); 1904 1905 if ((error = fget_read(td, uap->fd, 1906 cap_rights_init(&rights, CAP_PREAD), &fp)) != 0) 1907 goto out; 1908 1909 error = fo_sendfile(fp, uap->s, hdr_uio, trl_uio, offset, 1910 uap->nbytes, &sbytes, uap->flags, td); 1911 fdrop(fp, td); 1912 1913 if (uap->sbytes != NULL) 1914 copyout(&sbytes, uap->sbytes, sizeof(off_t)); 1915 1916 out: 1917 if (hdr_uio) 1918 free(hdr_uio, M_IOV); 1919 if (trl_uio) 1920 free(trl_uio, M_IOV); 1921 return (error); 1922 } 1923 1924 #ifdef COMPAT_FREEBSD4 1925 int 1926 freebsd4_freebsd32_sendfile(struct thread *td, 1927 struct freebsd4_freebsd32_sendfile_args *uap) 1928 { 1929 return (freebsd32_do_sendfile(td, 1930 (struct freebsd32_sendfile_args *)uap, 1)); 1931 } 1932 #endif 1933 1934 int 1935 freebsd32_sendfile(struct thread *td, struct freebsd32_sendfile_args *uap) 1936 { 1937 1938 return (freebsd32_do_sendfile(td, uap, 0)); 1939 } 1940 1941 static void 1942 copy_stat(struct stat *in, struct stat32 *out) 1943 { 1944 1945 CP(*in, *out, st_dev); 1946 CP(*in, *out, st_ino); 1947 CP(*in, *out, st_mode); 1948 CP(*in, *out, st_nlink); 1949 CP(*in, *out, st_uid); 1950 CP(*in, *out, st_gid); 1951 CP(*in, *out, st_rdev); 1952 TS_CP(*in, *out, st_atim); 1953 TS_CP(*in, *out, st_mtim); 1954 TS_CP(*in, *out, st_ctim); 1955 CP(*in, *out, st_size); 1956 CP(*in, *out, st_blocks); 1957 CP(*in, *out, st_blksize); 1958 CP(*in, *out, st_flags); 1959 CP(*in, *out, st_gen); 1960 TS_CP(*in, *out, st_birthtim); 1961 out->st_padding0 = 0; 1962 out->st_padding1 = 0; 1963 #ifdef __STAT32_TIME_T_EXT 1964 out->st_atim_ext = 0; 1965 out->st_mtim_ext = 0; 1966 out->st_ctim_ext = 0; 1967 out->st_btim_ext = 0; 1968 #endif 1969 bzero(out->st_spare, sizeof(out->st_spare)); 1970 } 1971 1972 #ifdef COMPAT_43 1973 static void 1974 copy_ostat(struct stat *in, struct ostat32 *out) 1975 { 1976 1977 bzero(out, sizeof(*out)); 1978 CP(*in, *out, st_dev); 1979 CP(*in, *out, st_ino); 1980 CP(*in, *out, st_mode); 1981 CP(*in, *out, st_nlink); 1982 CP(*in, *out, st_uid); 1983 CP(*in, *out, st_gid); 1984 CP(*in, *out, st_rdev); 1985 out->st_size = MIN(in->st_size, INT32_MAX); 1986 TS_CP(*in, *out, st_atim); 1987 TS_CP(*in, *out, st_mtim); 1988 TS_CP(*in, *out, st_ctim); 1989 CP(*in, *out, st_blksize); 1990 CP(*in, *out, st_blocks); 1991 CP(*in, *out, st_flags); 1992 CP(*in, *out, st_gen); 1993 } 1994 #endif 1995 1996 #ifdef COMPAT_43 1997 int 1998 ofreebsd32_stat(struct thread *td, struct ofreebsd32_stat_args *uap) 1999 { 2000 struct stat sb; 2001 struct ostat32 sb32; 2002 int error; 2003 2004 error = kern_statat(td, 0, AT_FDCWD, uap->path, UIO_USERSPACE, 2005 &sb, NULL); 2006 if (error) 2007 return (error); 2008 copy_ostat(&sb, &sb32); 2009 error = copyout(&sb32, uap->ub, sizeof (sb32)); 2010 return (error); 2011 } 2012 #endif 2013 2014 int 2015 freebsd32_fstat(struct thread *td, struct freebsd32_fstat_args *uap) 2016 { 2017 struct stat ub; 2018 struct stat32 ub32; 2019 int error; 2020 2021 error = kern_fstat(td, uap->fd, &ub); 2022 if (error) 2023 return (error); 2024 copy_stat(&ub, &ub32); 2025 error = copyout(&ub32, uap->ub, sizeof(ub32)); 2026 return (error); 2027 } 2028 2029 #ifdef COMPAT_43 2030 int 2031 ofreebsd32_fstat(struct thread *td, struct ofreebsd32_fstat_args *uap) 2032 { 2033 struct stat ub; 2034 struct ostat32 ub32; 2035 int error; 2036 2037 error = kern_fstat(td, uap->fd, &ub); 2038 if (error) 2039 return (error); 2040 copy_ostat(&ub, &ub32); 2041 error = copyout(&ub32, uap->ub, sizeof(ub32)); 2042 return (error); 2043 } 2044 #endif 2045 2046 int 2047 freebsd32_fstatat(struct thread *td, struct freebsd32_fstatat_args *uap) 2048 { 2049 struct stat ub; 2050 struct stat32 ub32; 2051 int error; 2052 2053 error = kern_statat(td, uap->flag, uap->fd, uap->path, UIO_USERSPACE, 2054 &ub, NULL); 2055 if (error) 2056 return (error); 2057 copy_stat(&ub, &ub32); 2058 error = copyout(&ub32, uap->buf, sizeof(ub32)); 2059 return (error); 2060 } 2061 2062 #ifdef COMPAT_43 2063 int 2064 ofreebsd32_lstat(struct thread *td, struct ofreebsd32_lstat_args *uap) 2065 { 2066 struct stat sb; 2067 struct ostat32 sb32; 2068 int error; 2069 2070 error = kern_statat(td, AT_SYMLINK_NOFOLLOW, AT_FDCWD, uap->path, 2071 UIO_USERSPACE, &sb, NULL); 2072 if (error) 2073 return (error); 2074 copy_ostat(&sb, &sb32); 2075 error = copyout(&sb32, uap->ub, sizeof (sb32)); 2076 return (error); 2077 } 2078 #endif 2079 2080 int 2081 freebsd32_fhstat(struct thread *td, struct freebsd32_fhstat_args *uap) 2082 { 2083 struct stat sb; 2084 struct stat32 sb32; 2085 struct fhandle fh; 2086 int error; 2087 2088 error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t)); 2089 if (error != 0) 2090 return (error); 2091 error = kern_fhstat(td, fh, &sb); 2092 if (error != 0) 2093 return (error); 2094 copy_stat(&sb, &sb32); 2095 error = copyout(&sb32, uap->sb, sizeof (sb32)); 2096 return (error); 2097 } 2098 2099 #if defined(COMPAT_FREEBSD11) 2100 extern int ino64_trunc_error; 2101 2102 static int 2103 freebsd11_cvtstat32(struct stat *in, struct freebsd11_stat32 *out) 2104 { 2105 2106 CP(*in, *out, st_ino); 2107 if (in->st_ino != out->st_ino) { 2108 switch (ino64_trunc_error) { 2109 default: 2110 case 0: 2111 break; 2112 case 1: 2113 return (EOVERFLOW); 2114 case 2: 2115 out->st_ino = UINT32_MAX; 2116 break; 2117 } 2118 } 2119 CP(*in, *out, st_nlink); 2120 if (in->st_nlink != out->st_nlink) { 2121 switch (ino64_trunc_error) { 2122 default: 2123 case 0: 2124 break; 2125 case 1: 2126 return (EOVERFLOW); 2127 case 2: 2128 out->st_nlink = UINT16_MAX; 2129 break; 2130 } 2131 } 2132 out->st_dev = in->st_dev; 2133 if (out->st_dev != in->st_dev) { 2134 switch (ino64_trunc_error) { 2135 default: 2136 break; 2137 case 1: 2138 return (EOVERFLOW); 2139 } 2140 } 2141 CP(*in, *out, st_mode); 2142 CP(*in, *out, st_uid); 2143 CP(*in, *out, st_gid); 2144 out->st_rdev = in->st_rdev; 2145 if (out->st_rdev != in->st_rdev) { 2146 switch (ino64_trunc_error) { 2147 default: 2148 break; 2149 case 1: 2150 return (EOVERFLOW); 2151 } 2152 } 2153 TS_CP(*in, *out, st_atim); 2154 TS_CP(*in, *out, st_mtim); 2155 TS_CP(*in, *out, st_ctim); 2156 CP(*in, *out, st_size); 2157 CP(*in, *out, st_blocks); 2158 CP(*in, *out, st_blksize); 2159 CP(*in, *out, st_flags); 2160 CP(*in, *out, st_gen); 2161 TS_CP(*in, *out, st_birthtim); 2162 out->st_lspare = 0; 2163 bzero((char *)&out->st_birthtim + sizeof(out->st_birthtim), 2164 sizeof(*out) - offsetof(struct freebsd11_stat32, 2165 st_birthtim) - sizeof(out->st_birthtim)); 2166 return (0); 2167 } 2168 2169 int 2170 freebsd11_freebsd32_stat(struct thread *td, 2171 struct freebsd11_freebsd32_stat_args *uap) 2172 { 2173 struct stat sb; 2174 struct freebsd11_stat32 sb32; 2175 int error; 2176 2177 error = kern_statat(td, 0, AT_FDCWD, uap->path, UIO_USERSPACE, 2178 &sb, NULL); 2179 if (error != 0) 2180 return (error); 2181 error = freebsd11_cvtstat32(&sb, &sb32); 2182 if (error == 0) 2183 error = copyout(&sb32, uap->ub, sizeof (sb32)); 2184 return (error); 2185 } 2186 2187 int 2188 freebsd11_freebsd32_fstat(struct thread *td, 2189 struct freebsd11_freebsd32_fstat_args *uap) 2190 { 2191 struct stat sb; 2192 struct freebsd11_stat32 sb32; 2193 int error; 2194 2195 error = kern_fstat(td, uap->fd, &sb); 2196 if (error != 0) 2197 return (error); 2198 error = freebsd11_cvtstat32(&sb, &sb32); 2199 if (error == 0) 2200 error = copyout(&sb32, uap->ub, sizeof (sb32)); 2201 return (error); 2202 } 2203 2204 int 2205 freebsd11_freebsd32_fstatat(struct thread *td, 2206 struct freebsd11_freebsd32_fstatat_args *uap) 2207 { 2208 struct stat sb; 2209 struct freebsd11_stat32 sb32; 2210 int error; 2211 2212 error = kern_statat(td, uap->flag, uap->fd, uap->path, UIO_USERSPACE, 2213 &sb, NULL); 2214 if (error != 0) 2215 return (error); 2216 error = freebsd11_cvtstat32(&sb, &sb32); 2217 if (error == 0) 2218 error = copyout(&sb32, uap->buf, sizeof (sb32)); 2219 return (error); 2220 } 2221 2222 int 2223 freebsd11_freebsd32_lstat(struct thread *td, 2224 struct freebsd11_freebsd32_lstat_args *uap) 2225 { 2226 struct stat sb; 2227 struct freebsd11_stat32 sb32; 2228 int error; 2229 2230 error = kern_statat(td, AT_SYMLINK_NOFOLLOW, AT_FDCWD, uap->path, 2231 UIO_USERSPACE, &sb, NULL); 2232 if (error != 0) 2233 return (error); 2234 error = freebsd11_cvtstat32(&sb, &sb32); 2235 if (error == 0) 2236 error = copyout(&sb32, uap->ub, sizeof (sb32)); 2237 return (error); 2238 } 2239 2240 int 2241 freebsd11_freebsd32_fhstat(struct thread *td, 2242 struct freebsd11_freebsd32_fhstat_args *uap) 2243 { 2244 struct stat sb; 2245 struct freebsd11_stat32 sb32; 2246 struct fhandle fh; 2247 int error; 2248 2249 error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t)); 2250 if (error != 0) 2251 return (error); 2252 error = kern_fhstat(td, fh, &sb); 2253 if (error != 0) 2254 return (error); 2255 error = freebsd11_cvtstat32(&sb, &sb32); 2256 if (error == 0) 2257 error = copyout(&sb32, uap->sb, sizeof (sb32)); 2258 return (error); 2259 } 2260 #endif 2261 2262 int 2263 freebsd32_sysctl(struct thread *td, struct freebsd32_sysctl_args *uap) 2264 { 2265 int error, name[CTL_MAXNAME]; 2266 size_t j, oldlen; 2267 uint32_t tmp; 2268 2269 if (uap->namelen > CTL_MAXNAME || uap->namelen < 2) 2270 return (EINVAL); 2271 error = copyin(uap->name, name, uap->namelen * sizeof(int)); 2272 if (error) 2273 return (error); 2274 if (uap->oldlenp) { 2275 error = fueword32(uap->oldlenp, &tmp); 2276 oldlen = tmp; 2277 } else { 2278 oldlen = 0; 2279 } 2280 if (error != 0) 2281 return (EFAULT); 2282 error = userland_sysctl(td, name, uap->namelen, 2283 uap->old, &oldlen, 1, 2284 uap->new, uap->newlen, &j, SCTL_MASK32); 2285 if (error) 2286 return (error); 2287 if (uap->oldlenp) 2288 suword32(uap->oldlenp, j); 2289 return (0); 2290 } 2291 2292 int 2293 freebsd32_jail(struct thread *td, struct freebsd32_jail_args *uap) 2294 { 2295 uint32_t version; 2296 int error; 2297 struct jail j; 2298 2299 error = copyin(uap->jail, &version, sizeof(uint32_t)); 2300 if (error) 2301 return (error); 2302 2303 switch (version) { 2304 case 0: 2305 { 2306 /* FreeBSD single IPv4 jails. */ 2307 struct jail32_v0 j32_v0; 2308 2309 bzero(&j, sizeof(struct jail)); 2310 error = copyin(uap->jail, &j32_v0, sizeof(struct jail32_v0)); 2311 if (error) 2312 return (error); 2313 CP(j32_v0, j, version); 2314 PTRIN_CP(j32_v0, j, path); 2315 PTRIN_CP(j32_v0, j, hostname); 2316 j.ip4s = htonl(j32_v0.ip_number); /* jail_v0 is host order */ 2317 break; 2318 } 2319 2320 case 1: 2321 /* 2322 * Version 1 was used by multi-IPv4 jail implementations 2323 * that never made it into the official kernel. 2324 */ 2325 return (EINVAL); 2326 2327 case 2: /* JAIL_API_VERSION */ 2328 { 2329 /* FreeBSD multi-IPv4/IPv6,noIP jails. */ 2330 struct jail32 j32; 2331 2332 error = copyin(uap->jail, &j32, sizeof(struct jail32)); 2333 if (error) 2334 return (error); 2335 CP(j32, j, version); 2336 PTRIN_CP(j32, j, path); 2337 PTRIN_CP(j32, j, hostname); 2338 PTRIN_CP(j32, j, jailname); 2339 CP(j32, j, ip4s); 2340 CP(j32, j, ip6s); 2341 PTRIN_CP(j32, j, ip4); 2342 PTRIN_CP(j32, j, ip6); 2343 break; 2344 } 2345 2346 default: 2347 /* Sci-Fi jails are not supported, sorry. */ 2348 return (EINVAL); 2349 } 2350 return (kern_jail(td, &j)); 2351 } 2352 2353 int 2354 freebsd32_jail_set(struct thread *td, struct freebsd32_jail_set_args *uap) 2355 { 2356 struct uio *auio; 2357 int error; 2358 2359 /* Check that we have an even number of iovecs. */ 2360 if (uap->iovcnt & 1) 2361 return (EINVAL); 2362 2363 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 2364 if (error) 2365 return (error); 2366 error = kern_jail_set(td, auio, uap->flags); 2367 free(auio, M_IOV); 2368 return (error); 2369 } 2370 2371 int 2372 freebsd32_jail_get(struct thread *td, struct freebsd32_jail_get_args *uap) 2373 { 2374 struct iovec32 iov32; 2375 struct uio *auio; 2376 int error, i; 2377 2378 /* Check that we have an even number of iovecs. */ 2379 if (uap->iovcnt & 1) 2380 return (EINVAL); 2381 2382 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 2383 if (error) 2384 return (error); 2385 error = kern_jail_get(td, auio, uap->flags); 2386 if (error == 0) 2387 for (i = 0; i < uap->iovcnt; i++) { 2388 PTROUT_CP(auio->uio_iov[i], iov32, iov_base); 2389 CP(auio->uio_iov[i], iov32, iov_len); 2390 error = copyout(&iov32, uap->iovp + i, sizeof(iov32)); 2391 if (error != 0) 2392 break; 2393 } 2394 free(auio, M_IOV); 2395 return (error); 2396 } 2397 2398 int 2399 freebsd32_sigaction(struct thread *td, struct freebsd32_sigaction_args *uap) 2400 { 2401 struct sigaction32 s32; 2402 struct sigaction sa, osa, *sap; 2403 int error; 2404 2405 if (uap->act) { 2406 error = copyin(uap->act, &s32, sizeof(s32)); 2407 if (error) 2408 return (error); 2409 sa.sa_handler = PTRIN(s32.sa_u); 2410 CP(s32, sa, sa_flags); 2411 CP(s32, sa, sa_mask); 2412 sap = &sa; 2413 } else 2414 sap = NULL; 2415 error = kern_sigaction(td, uap->sig, sap, &osa, 0); 2416 if (error == 0 && uap->oact != NULL) { 2417 s32.sa_u = PTROUT(osa.sa_handler); 2418 CP(osa, s32, sa_flags); 2419 CP(osa, s32, sa_mask); 2420 error = copyout(&s32, uap->oact, sizeof(s32)); 2421 } 2422 return (error); 2423 } 2424 2425 #ifdef COMPAT_FREEBSD4 2426 int 2427 freebsd4_freebsd32_sigaction(struct thread *td, 2428 struct freebsd4_freebsd32_sigaction_args *uap) 2429 { 2430 struct sigaction32 s32; 2431 struct sigaction sa, osa, *sap; 2432 int error; 2433 2434 if (uap->act) { 2435 error = copyin(uap->act, &s32, sizeof(s32)); 2436 if (error) 2437 return (error); 2438 sa.sa_handler = PTRIN(s32.sa_u); 2439 CP(s32, sa, sa_flags); 2440 CP(s32, sa, sa_mask); 2441 sap = &sa; 2442 } else 2443 sap = NULL; 2444 error = kern_sigaction(td, uap->sig, sap, &osa, KSA_FREEBSD4); 2445 if (error == 0 && uap->oact != NULL) { 2446 s32.sa_u = PTROUT(osa.sa_handler); 2447 CP(osa, s32, sa_flags); 2448 CP(osa, s32, sa_mask); 2449 error = copyout(&s32, uap->oact, sizeof(s32)); 2450 } 2451 return (error); 2452 } 2453 #endif 2454 2455 #ifdef COMPAT_43 2456 struct osigaction32 { 2457 u_int32_t sa_u; 2458 osigset_t sa_mask; 2459 int sa_flags; 2460 }; 2461 2462 #define ONSIG 32 2463 2464 int 2465 ofreebsd32_sigaction(struct thread *td, 2466 struct ofreebsd32_sigaction_args *uap) 2467 { 2468 struct osigaction32 s32; 2469 struct sigaction sa, osa, *sap; 2470 int error; 2471 2472 if (uap->signum <= 0 || uap->signum >= ONSIG) 2473 return (EINVAL); 2474 2475 if (uap->nsa) { 2476 error = copyin(uap->nsa, &s32, sizeof(s32)); 2477 if (error) 2478 return (error); 2479 sa.sa_handler = PTRIN(s32.sa_u); 2480 CP(s32, sa, sa_flags); 2481 OSIG2SIG(s32.sa_mask, sa.sa_mask); 2482 sap = &sa; 2483 } else 2484 sap = NULL; 2485 error = kern_sigaction(td, uap->signum, sap, &osa, KSA_OSIGSET); 2486 if (error == 0 && uap->osa != NULL) { 2487 s32.sa_u = PTROUT(osa.sa_handler); 2488 CP(osa, s32, sa_flags); 2489 SIG2OSIG(osa.sa_mask, s32.sa_mask); 2490 error = copyout(&s32, uap->osa, sizeof(s32)); 2491 } 2492 return (error); 2493 } 2494 2495 int 2496 ofreebsd32_sigprocmask(struct thread *td, 2497 struct ofreebsd32_sigprocmask_args *uap) 2498 { 2499 sigset_t set, oset; 2500 int error; 2501 2502 OSIG2SIG(uap->mask, set); 2503 error = kern_sigprocmask(td, uap->how, &set, &oset, SIGPROCMASK_OLD); 2504 SIG2OSIG(oset, td->td_retval[0]); 2505 return (error); 2506 } 2507 2508 int 2509 ofreebsd32_sigpending(struct thread *td, 2510 struct ofreebsd32_sigpending_args *uap) 2511 { 2512 struct proc *p = td->td_proc; 2513 sigset_t siglist; 2514 2515 PROC_LOCK(p); 2516 siglist = p->p_siglist; 2517 SIGSETOR(siglist, td->td_siglist); 2518 PROC_UNLOCK(p); 2519 SIG2OSIG(siglist, td->td_retval[0]); 2520 return (0); 2521 } 2522 2523 struct sigvec32 { 2524 u_int32_t sv_handler; 2525 int sv_mask; 2526 int sv_flags; 2527 }; 2528 2529 int 2530 ofreebsd32_sigvec(struct thread *td, 2531 struct ofreebsd32_sigvec_args *uap) 2532 { 2533 struct sigvec32 vec; 2534 struct sigaction sa, osa, *sap; 2535 int error; 2536 2537 if (uap->signum <= 0 || uap->signum >= ONSIG) 2538 return (EINVAL); 2539 2540 if (uap->nsv) { 2541 error = copyin(uap->nsv, &vec, sizeof(vec)); 2542 if (error) 2543 return (error); 2544 sa.sa_handler = PTRIN(vec.sv_handler); 2545 OSIG2SIG(vec.sv_mask, sa.sa_mask); 2546 sa.sa_flags = vec.sv_flags; 2547 sa.sa_flags ^= SA_RESTART; 2548 sap = &sa; 2549 } else 2550 sap = NULL; 2551 error = kern_sigaction(td, uap->signum, sap, &osa, KSA_OSIGSET); 2552 if (error == 0 && uap->osv != NULL) { 2553 vec.sv_handler = PTROUT(osa.sa_handler); 2554 SIG2OSIG(osa.sa_mask, vec.sv_mask); 2555 vec.sv_flags = osa.sa_flags; 2556 vec.sv_flags &= ~SA_NOCLDWAIT; 2557 vec.sv_flags ^= SA_RESTART; 2558 error = copyout(&vec, uap->osv, sizeof(vec)); 2559 } 2560 return (error); 2561 } 2562 2563 int 2564 ofreebsd32_sigblock(struct thread *td, 2565 struct ofreebsd32_sigblock_args *uap) 2566 { 2567 sigset_t set, oset; 2568 2569 OSIG2SIG(uap->mask, set); 2570 kern_sigprocmask(td, SIG_BLOCK, &set, &oset, 0); 2571 SIG2OSIG(oset, td->td_retval[0]); 2572 return (0); 2573 } 2574 2575 int 2576 ofreebsd32_sigsetmask(struct thread *td, 2577 struct ofreebsd32_sigsetmask_args *uap) 2578 { 2579 sigset_t set, oset; 2580 2581 OSIG2SIG(uap->mask, set); 2582 kern_sigprocmask(td, SIG_SETMASK, &set, &oset, 0); 2583 SIG2OSIG(oset, td->td_retval[0]); 2584 return (0); 2585 } 2586 2587 int 2588 ofreebsd32_sigsuspend(struct thread *td, 2589 struct ofreebsd32_sigsuspend_args *uap) 2590 { 2591 sigset_t mask; 2592 2593 OSIG2SIG(uap->mask, mask); 2594 return (kern_sigsuspend(td, mask)); 2595 } 2596 2597 struct sigstack32 { 2598 u_int32_t ss_sp; 2599 int ss_onstack; 2600 }; 2601 2602 int 2603 ofreebsd32_sigstack(struct thread *td, 2604 struct ofreebsd32_sigstack_args *uap) 2605 { 2606 struct sigstack32 s32; 2607 struct sigstack nss, oss; 2608 int error = 0, unss; 2609 2610 if (uap->nss != NULL) { 2611 error = copyin(uap->nss, &s32, sizeof(s32)); 2612 if (error) 2613 return (error); 2614 nss.ss_sp = PTRIN(s32.ss_sp); 2615 CP(s32, nss, ss_onstack); 2616 unss = 1; 2617 } else { 2618 unss = 0; 2619 } 2620 oss.ss_sp = td->td_sigstk.ss_sp; 2621 oss.ss_onstack = sigonstack(cpu_getstack(td)); 2622 if (unss) { 2623 td->td_sigstk.ss_sp = nss.ss_sp; 2624 td->td_sigstk.ss_size = 0; 2625 td->td_sigstk.ss_flags |= (nss.ss_onstack & SS_ONSTACK); 2626 td->td_pflags |= TDP_ALTSTACK; 2627 } 2628 if (uap->oss != NULL) { 2629 s32.ss_sp = PTROUT(oss.ss_sp); 2630 CP(oss, s32, ss_onstack); 2631 error = copyout(&s32, uap->oss, sizeof(s32)); 2632 } 2633 return (error); 2634 } 2635 #endif 2636 2637 int 2638 freebsd32_nanosleep(struct thread *td, struct freebsd32_nanosleep_args *uap) 2639 { 2640 2641 return (freebsd32_user_clock_nanosleep(td, CLOCK_REALTIME, 2642 TIMER_RELTIME, uap->rqtp, uap->rmtp)); 2643 } 2644 2645 int 2646 freebsd32_clock_nanosleep(struct thread *td, 2647 struct freebsd32_clock_nanosleep_args *uap) 2648 { 2649 int error; 2650 2651 error = freebsd32_user_clock_nanosleep(td, uap->clock_id, uap->flags, 2652 uap->rqtp, uap->rmtp); 2653 return (kern_posix_error(td, error)); 2654 } 2655 2656 static int 2657 freebsd32_user_clock_nanosleep(struct thread *td, clockid_t clock_id, 2658 int flags, const struct timespec32 *ua_rqtp, struct timespec32 *ua_rmtp) 2659 { 2660 struct timespec32 rmt32, rqt32; 2661 struct timespec rmt, rqt; 2662 int error; 2663 2664 error = copyin(ua_rqtp, &rqt32, sizeof(rqt32)); 2665 if (error) 2666 return (error); 2667 2668 CP(rqt32, rqt, tv_sec); 2669 CP(rqt32, rqt, tv_nsec); 2670 2671 if (ua_rmtp != NULL && (flags & TIMER_ABSTIME) == 0 && 2672 !useracc(ua_rmtp, sizeof(rmt32), VM_PROT_WRITE)) 2673 return (EFAULT); 2674 error = kern_clock_nanosleep(td, clock_id, flags, &rqt, &rmt); 2675 if (error == EINTR && ua_rmtp != NULL && (flags & TIMER_ABSTIME) == 0) { 2676 int error2; 2677 2678 CP(rmt, rmt32, tv_sec); 2679 CP(rmt, rmt32, tv_nsec); 2680 2681 error2 = copyout(&rmt32, ua_rmtp, sizeof(rmt32)); 2682 if (error2) 2683 error = error2; 2684 } 2685 return (error); 2686 } 2687 2688 int 2689 freebsd32_clock_gettime(struct thread *td, 2690 struct freebsd32_clock_gettime_args *uap) 2691 { 2692 struct timespec ats; 2693 struct timespec32 ats32; 2694 int error; 2695 2696 error = kern_clock_gettime(td, uap->clock_id, &ats); 2697 if (error == 0) { 2698 CP(ats, ats32, tv_sec); 2699 CP(ats, ats32, tv_nsec); 2700 error = copyout(&ats32, uap->tp, sizeof(ats32)); 2701 } 2702 return (error); 2703 } 2704 2705 int 2706 freebsd32_clock_settime(struct thread *td, 2707 struct freebsd32_clock_settime_args *uap) 2708 { 2709 struct timespec ats; 2710 struct timespec32 ats32; 2711 int error; 2712 2713 error = copyin(uap->tp, &ats32, sizeof(ats32)); 2714 if (error) 2715 return (error); 2716 CP(ats32, ats, tv_sec); 2717 CP(ats32, ats, tv_nsec); 2718 2719 return (kern_clock_settime(td, uap->clock_id, &ats)); 2720 } 2721 2722 int 2723 freebsd32_clock_getres(struct thread *td, 2724 struct freebsd32_clock_getres_args *uap) 2725 { 2726 struct timespec ts; 2727 struct timespec32 ts32; 2728 int error; 2729 2730 if (uap->tp == NULL) 2731 return (0); 2732 error = kern_clock_getres(td, uap->clock_id, &ts); 2733 if (error == 0) { 2734 CP(ts, ts32, tv_sec); 2735 CP(ts, ts32, tv_nsec); 2736 error = copyout(&ts32, uap->tp, sizeof(ts32)); 2737 } 2738 return (error); 2739 } 2740 2741 int freebsd32_ktimer_create(struct thread *td, 2742 struct freebsd32_ktimer_create_args *uap) 2743 { 2744 struct sigevent32 ev32; 2745 struct sigevent ev, *evp; 2746 int error, id; 2747 2748 if (uap->evp == NULL) { 2749 evp = NULL; 2750 } else { 2751 evp = &ev; 2752 error = copyin(uap->evp, &ev32, sizeof(ev32)); 2753 if (error != 0) 2754 return (error); 2755 error = convert_sigevent32(&ev32, &ev); 2756 if (error != 0) 2757 return (error); 2758 } 2759 error = kern_ktimer_create(td, uap->clock_id, evp, &id, -1); 2760 if (error == 0) { 2761 error = copyout(&id, uap->timerid, sizeof(int)); 2762 if (error != 0) 2763 kern_ktimer_delete(td, id); 2764 } 2765 return (error); 2766 } 2767 2768 int 2769 freebsd32_ktimer_settime(struct thread *td, 2770 struct freebsd32_ktimer_settime_args *uap) 2771 { 2772 struct itimerspec32 val32, oval32; 2773 struct itimerspec val, oval, *ovalp; 2774 int error; 2775 2776 error = copyin(uap->value, &val32, sizeof(val32)); 2777 if (error != 0) 2778 return (error); 2779 ITS_CP(val32, val); 2780 ovalp = uap->ovalue != NULL ? &oval : NULL; 2781 error = kern_ktimer_settime(td, uap->timerid, uap->flags, &val, ovalp); 2782 if (error == 0 && uap->ovalue != NULL) { 2783 ITS_CP(oval, oval32); 2784 error = copyout(&oval32, uap->ovalue, sizeof(oval32)); 2785 } 2786 return (error); 2787 } 2788 2789 int 2790 freebsd32_ktimer_gettime(struct thread *td, 2791 struct freebsd32_ktimer_gettime_args *uap) 2792 { 2793 struct itimerspec32 val32; 2794 struct itimerspec val; 2795 int error; 2796 2797 error = kern_ktimer_gettime(td, uap->timerid, &val); 2798 if (error == 0) { 2799 ITS_CP(val, val32); 2800 error = copyout(&val32, uap->value, sizeof(val32)); 2801 } 2802 return (error); 2803 } 2804 2805 int 2806 freebsd32_clock_getcpuclockid2(struct thread *td, 2807 struct freebsd32_clock_getcpuclockid2_args *uap) 2808 { 2809 clockid_t clk_id; 2810 int error; 2811 2812 error = kern_clock_getcpuclockid2(td, PAIR32TO64(id_t, uap->id), 2813 uap->which, &clk_id); 2814 if (error == 0) 2815 error = copyout(&clk_id, uap->clock_id, sizeof(clockid_t)); 2816 return (error); 2817 } 2818 2819 int 2820 freebsd32_thr_new(struct thread *td, 2821 struct freebsd32_thr_new_args *uap) 2822 { 2823 struct thr_param32 param32; 2824 struct thr_param param; 2825 int error; 2826 2827 if (uap->param_size < 0 || 2828 uap->param_size > sizeof(struct thr_param32)) 2829 return (EINVAL); 2830 bzero(¶m, sizeof(struct thr_param)); 2831 bzero(¶m32, sizeof(struct thr_param32)); 2832 error = copyin(uap->param, ¶m32, uap->param_size); 2833 if (error != 0) 2834 return (error); 2835 param.start_func = PTRIN(param32.start_func); 2836 param.arg = PTRIN(param32.arg); 2837 param.stack_base = PTRIN(param32.stack_base); 2838 param.stack_size = param32.stack_size; 2839 param.tls_base = PTRIN(param32.tls_base); 2840 param.tls_size = param32.tls_size; 2841 param.child_tid = PTRIN(param32.child_tid); 2842 param.parent_tid = PTRIN(param32.parent_tid); 2843 param.flags = param32.flags; 2844 param.rtp = PTRIN(param32.rtp); 2845 param.spare[0] = PTRIN(param32.spare[0]); 2846 param.spare[1] = PTRIN(param32.spare[1]); 2847 param.spare[2] = PTRIN(param32.spare[2]); 2848 2849 return (kern_thr_new(td, ¶m)); 2850 } 2851 2852 int 2853 freebsd32_thr_suspend(struct thread *td, struct freebsd32_thr_suspend_args *uap) 2854 { 2855 struct timespec32 ts32; 2856 struct timespec ts, *tsp; 2857 int error; 2858 2859 error = 0; 2860 tsp = NULL; 2861 if (uap->timeout != NULL) { 2862 error = copyin((const void *)uap->timeout, (void *)&ts32, 2863 sizeof(struct timespec32)); 2864 if (error != 0) 2865 return (error); 2866 ts.tv_sec = ts32.tv_sec; 2867 ts.tv_nsec = ts32.tv_nsec; 2868 tsp = &ts; 2869 } 2870 return (kern_thr_suspend(td, tsp)); 2871 } 2872 2873 void 2874 siginfo_to_siginfo32(const siginfo_t *src, struct siginfo32 *dst) 2875 { 2876 bzero(dst, sizeof(*dst)); 2877 dst->si_signo = src->si_signo; 2878 dst->si_errno = src->si_errno; 2879 dst->si_code = src->si_code; 2880 dst->si_pid = src->si_pid; 2881 dst->si_uid = src->si_uid; 2882 dst->si_status = src->si_status; 2883 dst->si_addr = (uintptr_t)src->si_addr; 2884 dst->si_value.sival_int = src->si_value.sival_int; 2885 dst->si_timerid = src->si_timerid; 2886 dst->si_overrun = src->si_overrun; 2887 } 2888 2889 #ifndef _FREEBSD32_SYSPROTO_H_ 2890 struct freebsd32_sigqueue_args { 2891 pid_t pid; 2892 int signum; 2893 /* union sigval32 */ int value; 2894 }; 2895 #endif 2896 int 2897 freebsd32_sigqueue(struct thread *td, struct freebsd32_sigqueue_args *uap) 2898 { 2899 union sigval sv; 2900 2901 /* 2902 * On 32-bit ABIs, sival_int and sival_ptr are the same. 2903 * On 64-bit little-endian ABIs, the low bits are the same. 2904 * In 64-bit big-endian ABIs, sival_int overlaps with 2905 * sival_ptr's HIGH bits. We choose to support sival_int 2906 * rather than sival_ptr in this case as it seems to be 2907 * more common. 2908 */ 2909 bzero(&sv, sizeof(sv)); 2910 sv.sival_int = uap->value; 2911 2912 return (kern_sigqueue(td, uap->pid, uap->signum, &sv)); 2913 } 2914 2915 int 2916 freebsd32_sigtimedwait(struct thread *td, struct freebsd32_sigtimedwait_args *uap) 2917 { 2918 struct timespec32 ts32; 2919 struct timespec ts; 2920 struct timespec *timeout; 2921 sigset_t set; 2922 ksiginfo_t ksi; 2923 struct siginfo32 si32; 2924 int error; 2925 2926 if (uap->timeout) { 2927 error = copyin(uap->timeout, &ts32, sizeof(ts32)); 2928 if (error) 2929 return (error); 2930 ts.tv_sec = ts32.tv_sec; 2931 ts.tv_nsec = ts32.tv_nsec; 2932 timeout = &ts; 2933 } else 2934 timeout = NULL; 2935 2936 error = copyin(uap->set, &set, sizeof(set)); 2937 if (error) 2938 return (error); 2939 2940 error = kern_sigtimedwait(td, set, &ksi, timeout); 2941 if (error) 2942 return (error); 2943 2944 if (uap->info) { 2945 siginfo_to_siginfo32(&ksi.ksi_info, &si32); 2946 error = copyout(&si32, uap->info, sizeof(struct siginfo32)); 2947 } 2948 2949 if (error == 0) 2950 td->td_retval[0] = ksi.ksi_signo; 2951 return (error); 2952 } 2953 2954 /* 2955 * MPSAFE 2956 */ 2957 int 2958 freebsd32_sigwaitinfo(struct thread *td, struct freebsd32_sigwaitinfo_args *uap) 2959 { 2960 ksiginfo_t ksi; 2961 struct siginfo32 si32; 2962 sigset_t set; 2963 int error; 2964 2965 error = copyin(uap->set, &set, sizeof(set)); 2966 if (error) 2967 return (error); 2968 2969 error = kern_sigtimedwait(td, set, &ksi, NULL); 2970 if (error) 2971 return (error); 2972 2973 if (uap->info) { 2974 siginfo_to_siginfo32(&ksi.ksi_info, &si32); 2975 error = copyout(&si32, uap->info, sizeof(struct siginfo32)); 2976 } 2977 if (error == 0) 2978 td->td_retval[0] = ksi.ksi_signo; 2979 return (error); 2980 } 2981 2982 int 2983 freebsd32_cpuset_setid(struct thread *td, 2984 struct freebsd32_cpuset_setid_args *uap) 2985 { 2986 2987 return (kern_cpuset_setid(td, uap->which, 2988 PAIR32TO64(id_t, uap->id), uap->setid)); 2989 } 2990 2991 int 2992 freebsd32_cpuset_getid(struct thread *td, 2993 struct freebsd32_cpuset_getid_args *uap) 2994 { 2995 2996 return (kern_cpuset_getid(td, uap->level, uap->which, 2997 PAIR32TO64(id_t, uap->id), uap->setid)); 2998 } 2999 3000 int 3001 freebsd32_cpuset_getaffinity(struct thread *td, 3002 struct freebsd32_cpuset_getaffinity_args *uap) 3003 { 3004 3005 return (kern_cpuset_getaffinity(td, uap->level, uap->which, 3006 PAIR32TO64(id_t,uap->id), uap->cpusetsize, uap->mask)); 3007 } 3008 3009 int 3010 freebsd32_cpuset_setaffinity(struct thread *td, 3011 struct freebsd32_cpuset_setaffinity_args *uap) 3012 { 3013 3014 return (kern_cpuset_setaffinity(td, uap->level, uap->which, 3015 PAIR32TO64(id_t,uap->id), uap->cpusetsize, uap->mask)); 3016 } 3017 3018 int 3019 freebsd32_cpuset_getdomain(struct thread *td, 3020 struct freebsd32_cpuset_getdomain_args *uap) 3021 { 3022 3023 return (kern_cpuset_getdomain(td, uap->level, uap->which, 3024 PAIR32TO64(id_t,uap->id), uap->domainsetsize, uap->mask, uap->policy)); 3025 } 3026 3027 int 3028 freebsd32_cpuset_setdomain(struct thread *td, 3029 struct freebsd32_cpuset_setdomain_args *uap) 3030 { 3031 3032 return (kern_cpuset_setdomain(td, uap->level, uap->which, 3033 PAIR32TO64(id_t,uap->id), uap->domainsetsize, uap->mask, uap->policy)); 3034 } 3035 3036 int 3037 freebsd32_nmount(struct thread *td, 3038 struct freebsd32_nmount_args /* { 3039 struct iovec *iovp; 3040 unsigned int iovcnt; 3041 int flags; 3042 } */ *uap) 3043 { 3044 struct uio *auio; 3045 uint64_t flags; 3046 int error; 3047 3048 /* 3049 * Mount flags are now 64-bits. On 32-bit archtectures only 3050 * 32-bits are passed in, but from here on everything handles 3051 * 64-bit flags correctly. 3052 */ 3053 flags = uap->flags; 3054 3055 AUDIT_ARG_FFLAGS(flags); 3056 3057 /* 3058 * Filter out MNT_ROOTFS. We do not want clients of nmount() in 3059 * userspace to set this flag, but we must filter it out if we want 3060 * MNT_UPDATE on the root file system to work. 3061 * MNT_ROOTFS should only be set by the kernel when mounting its 3062 * root file system. 3063 */ 3064 flags &= ~MNT_ROOTFS; 3065 3066 /* 3067 * check that we have an even number of iovec's 3068 * and that we have at least two options. 3069 */ 3070 if ((uap->iovcnt & 1) || (uap->iovcnt < 4)) 3071 return (EINVAL); 3072 3073 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 3074 if (error) 3075 return (error); 3076 error = vfs_donmount(td, flags, auio); 3077 3078 free(auio, M_IOV); 3079 return error; 3080 } 3081 3082 #if 0 3083 int 3084 freebsd32_xxx(struct thread *td, struct freebsd32_xxx_args *uap) 3085 { 3086 struct yyy32 *p32, s32; 3087 struct yyy *p = NULL, s; 3088 struct xxx_arg ap; 3089 int error; 3090 3091 if (uap->zzz) { 3092 error = copyin(uap->zzz, &s32, sizeof(s32)); 3093 if (error) 3094 return (error); 3095 /* translate in */ 3096 p = &s; 3097 } 3098 error = kern_xxx(td, p); 3099 if (error) 3100 return (error); 3101 if (uap->zzz) { 3102 /* translate out */ 3103 error = copyout(&s32, p32, sizeof(s32)); 3104 } 3105 return (error); 3106 } 3107 #endif 3108 3109 int 3110 syscall32_module_handler(struct module *mod, int what, void *arg) 3111 { 3112 3113 return (kern_syscall_module_handler(freebsd32_sysent, mod, what, arg)); 3114 } 3115 3116 int 3117 syscall32_helper_register(struct syscall_helper_data *sd, int flags) 3118 { 3119 3120 return (kern_syscall_helper_register(freebsd32_sysent, sd, flags)); 3121 } 3122 3123 int 3124 syscall32_helper_unregister(struct syscall_helper_data *sd) 3125 { 3126 3127 return (kern_syscall_helper_unregister(freebsd32_sysent, sd)); 3128 } 3129 3130 register_t * 3131 freebsd32_copyout_strings(struct image_params *imgp) 3132 { 3133 int argc, envc, i; 3134 u_int32_t *vectp; 3135 char *stringp; 3136 uintptr_t destp; 3137 u_int32_t *stack_base; 3138 struct freebsd32_ps_strings *arginfo; 3139 char canary[sizeof(long) * 8]; 3140 int32_t pagesizes32[MAXPAGESIZES]; 3141 size_t execpath_len; 3142 int szsigcode; 3143 3144 /* 3145 * Calculate string base and vector table pointers. 3146 * Also deal with signal trampoline code for this exec type. 3147 */ 3148 if (imgp->execpath != NULL && imgp->auxargs != NULL) 3149 execpath_len = strlen(imgp->execpath) + 1; 3150 else 3151 execpath_len = 0; 3152 arginfo = (struct freebsd32_ps_strings *)curproc->p_sysent-> 3153 sv_psstrings; 3154 if (imgp->proc->p_sysent->sv_sigcode_base == 0) 3155 szsigcode = *(imgp->proc->p_sysent->sv_szsigcode); 3156 else 3157 szsigcode = 0; 3158 destp = (uintptr_t)arginfo; 3159 3160 /* 3161 * install sigcode 3162 */ 3163 if (szsigcode != 0) { 3164 destp -= szsigcode; 3165 destp = rounddown2(destp, sizeof(uint32_t)); 3166 copyout(imgp->proc->p_sysent->sv_sigcode, (void *)destp, 3167 szsigcode); 3168 } 3169 3170 /* 3171 * Copy the image path for the rtld. 3172 */ 3173 if (execpath_len != 0) { 3174 destp -= execpath_len; 3175 imgp->execpathp = destp; 3176 copyout(imgp->execpath, (void *)destp, execpath_len); 3177 } 3178 3179 /* 3180 * Prepare the canary for SSP. 3181 */ 3182 arc4rand(canary, sizeof(canary), 0); 3183 destp -= sizeof(canary); 3184 imgp->canary = destp; 3185 copyout(canary, (void *)destp, sizeof(canary)); 3186 imgp->canarylen = sizeof(canary); 3187 3188 /* 3189 * Prepare the pagesizes array. 3190 */ 3191 for (i = 0; i < MAXPAGESIZES; i++) 3192 pagesizes32[i] = (uint32_t)pagesizes[i]; 3193 destp -= sizeof(pagesizes32); 3194 destp = rounddown2(destp, sizeof(uint32_t)); 3195 imgp->pagesizes = destp; 3196 copyout(pagesizes32, (void *)destp, sizeof(pagesizes32)); 3197 imgp->pagesizeslen = sizeof(pagesizes32); 3198 3199 destp -= ARG_MAX - imgp->args->stringspace; 3200 destp = rounddown2(destp, sizeof(uint32_t)); 3201 3202 vectp = (uint32_t *)destp; 3203 if (imgp->auxargs) { 3204 /* 3205 * Allocate room on the stack for the ELF auxargs 3206 * array. It has up to AT_COUNT entries. 3207 */ 3208 vectp -= howmany(AT_COUNT * sizeof(Elf32_Auxinfo), 3209 sizeof(*vectp)); 3210 } 3211 3212 /* 3213 * Allocate room for the argv[] and env vectors including the 3214 * terminating NULL pointers. 3215 */ 3216 vectp -= imgp->args->argc + 1 + imgp->args->envc + 1; 3217 3218 /* 3219 * vectp also becomes our initial stack base 3220 */ 3221 stack_base = vectp; 3222 3223 stringp = imgp->args->begin_argv; 3224 argc = imgp->args->argc; 3225 envc = imgp->args->envc; 3226 /* 3227 * Copy out strings - arguments and environment. 3228 */ 3229 copyout(stringp, (void *)destp, ARG_MAX - imgp->args->stringspace); 3230 3231 /* 3232 * Fill in "ps_strings" struct for ps, w, etc. 3233 */ 3234 suword32(&arginfo->ps_argvstr, (u_int32_t)(intptr_t)vectp); 3235 suword32(&arginfo->ps_nargvstr, argc); 3236 3237 /* 3238 * Fill in argument portion of vector table. 3239 */ 3240 for (; argc > 0; --argc) { 3241 suword32(vectp++, (u_int32_t)(intptr_t)destp); 3242 while (*stringp++ != 0) 3243 destp++; 3244 destp++; 3245 } 3246 3247 /* a null vector table pointer separates the argp's from the envp's */ 3248 suword32(vectp++, 0); 3249 3250 suword32(&arginfo->ps_envstr, (u_int32_t)(intptr_t)vectp); 3251 suword32(&arginfo->ps_nenvstr, envc); 3252 3253 /* 3254 * Fill in environment portion of vector table. 3255 */ 3256 for (; envc > 0; --envc) { 3257 suword32(vectp++, (u_int32_t)(intptr_t)destp); 3258 while (*stringp++ != 0) 3259 destp++; 3260 destp++; 3261 } 3262 3263 /* end of vector table is a null pointer */ 3264 suword32(vectp, 0); 3265 3266 return ((register_t *)stack_base); 3267 } 3268 3269 int 3270 freebsd32_kldstat(struct thread *td, struct freebsd32_kldstat_args *uap) 3271 { 3272 struct kld_file_stat *stat; 3273 struct kld32_file_stat *stat32; 3274 int error, version; 3275 3276 if ((error = copyin(&uap->stat->version, &version, sizeof(version))) 3277 != 0) 3278 return (error); 3279 if (version != sizeof(struct kld32_file_stat_1) && 3280 version != sizeof(struct kld32_file_stat)) 3281 return (EINVAL); 3282 3283 stat = malloc(sizeof(*stat), M_TEMP, M_WAITOK | M_ZERO); 3284 stat32 = malloc(sizeof(*stat32), M_TEMP, M_WAITOK | M_ZERO); 3285 error = kern_kldstat(td, uap->fileid, stat); 3286 if (error == 0) { 3287 bcopy(&stat->name[0], &stat32->name[0], sizeof(stat->name)); 3288 CP(*stat, *stat32, refs); 3289 CP(*stat, *stat32, id); 3290 PTROUT_CP(*stat, *stat32, address); 3291 CP(*stat, *stat32, size); 3292 bcopy(&stat->pathname[0], &stat32->pathname[0], 3293 sizeof(stat->pathname)); 3294 stat32->version = version; 3295 error = copyout(stat32, uap->stat, version); 3296 } 3297 free(stat, M_TEMP); 3298 free(stat32, M_TEMP); 3299 return (error); 3300 } 3301 3302 int 3303 freebsd32_posix_fallocate(struct thread *td, 3304 struct freebsd32_posix_fallocate_args *uap) 3305 { 3306 int error; 3307 3308 error = kern_posix_fallocate(td, uap->fd, 3309 PAIR32TO64(off_t, uap->offset), PAIR32TO64(off_t, uap->len)); 3310 return (kern_posix_error(td, error)); 3311 } 3312 3313 int 3314 freebsd32_posix_fadvise(struct thread *td, 3315 struct freebsd32_posix_fadvise_args *uap) 3316 { 3317 int error; 3318 3319 error = kern_posix_fadvise(td, uap->fd, PAIR32TO64(off_t, uap->offset), 3320 PAIR32TO64(off_t, uap->len), uap->advice); 3321 return (kern_posix_error(td, error)); 3322 } 3323 3324 int 3325 convert_sigevent32(struct sigevent32 *sig32, struct sigevent *sig) 3326 { 3327 3328 CP(*sig32, *sig, sigev_notify); 3329 switch (sig->sigev_notify) { 3330 case SIGEV_NONE: 3331 break; 3332 case SIGEV_THREAD_ID: 3333 CP(*sig32, *sig, sigev_notify_thread_id); 3334 /* FALLTHROUGH */ 3335 case SIGEV_SIGNAL: 3336 CP(*sig32, *sig, sigev_signo); 3337 PTRIN_CP(*sig32, *sig, sigev_value.sival_ptr); 3338 break; 3339 case SIGEV_KEVENT: 3340 CP(*sig32, *sig, sigev_notify_kqueue); 3341 CP(*sig32, *sig, sigev_notify_kevent_flags); 3342 PTRIN_CP(*sig32, *sig, sigev_value.sival_ptr); 3343 break; 3344 default: 3345 return (EINVAL); 3346 } 3347 return (0); 3348 } 3349 3350 int 3351 freebsd32_procctl(struct thread *td, struct freebsd32_procctl_args *uap) 3352 { 3353 void *data; 3354 union { 3355 struct procctl_reaper_status rs; 3356 struct procctl_reaper_pids rp; 3357 struct procctl_reaper_kill rk; 3358 } x; 3359 union { 3360 struct procctl_reaper_pids32 rp; 3361 } x32; 3362 int error, error1, flags, signum; 3363 3364 switch (uap->com) { 3365 case PROC_SPROTECT: 3366 case PROC_TRACE_CTL: 3367 case PROC_TRAPCAP_CTL: 3368 error = copyin(PTRIN(uap->data), &flags, sizeof(flags)); 3369 if (error != 0) 3370 return (error); 3371 data = &flags; 3372 break; 3373 case PROC_REAP_ACQUIRE: 3374 case PROC_REAP_RELEASE: 3375 if (uap->data != NULL) 3376 return (EINVAL); 3377 data = NULL; 3378 break; 3379 case PROC_REAP_STATUS: 3380 data = &x.rs; 3381 break; 3382 case PROC_REAP_GETPIDS: 3383 error = copyin(uap->data, &x32.rp, sizeof(x32.rp)); 3384 if (error != 0) 3385 return (error); 3386 CP(x32.rp, x.rp, rp_count); 3387 PTRIN_CP(x32.rp, x.rp, rp_pids); 3388 data = &x.rp; 3389 break; 3390 case PROC_REAP_KILL: 3391 error = copyin(uap->data, &x.rk, sizeof(x.rk)); 3392 if (error != 0) 3393 return (error); 3394 data = &x.rk; 3395 break; 3396 case PROC_TRACE_STATUS: 3397 case PROC_TRAPCAP_STATUS: 3398 data = &flags; 3399 break; 3400 case PROC_PDEATHSIG_CTL: 3401 error = copyin(uap->data, &signum, sizeof(signum)); 3402 if (error != 0) 3403 return (error); 3404 data = &signum; 3405 break; 3406 case PROC_PDEATHSIG_STATUS: 3407 data = &signum; 3408 break; 3409 default: 3410 return (EINVAL); 3411 } 3412 error = kern_procctl(td, uap->idtype, PAIR32TO64(id_t, uap->id), 3413 uap->com, data); 3414 switch (uap->com) { 3415 case PROC_REAP_STATUS: 3416 if (error == 0) 3417 error = copyout(&x.rs, uap->data, sizeof(x.rs)); 3418 break; 3419 case PROC_REAP_KILL: 3420 error1 = copyout(&x.rk, uap->data, sizeof(x.rk)); 3421 if (error == 0) 3422 error = error1; 3423 break; 3424 case PROC_TRACE_STATUS: 3425 case PROC_TRAPCAP_STATUS: 3426 if (error == 0) 3427 error = copyout(&flags, uap->data, sizeof(flags)); 3428 break; 3429 case PROC_PDEATHSIG_STATUS: 3430 if (error == 0) 3431 error = copyout(&signum, uap->data, sizeof(signum)); 3432 break; 3433 } 3434 return (error); 3435 } 3436 3437 int 3438 freebsd32_fcntl(struct thread *td, struct freebsd32_fcntl_args *uap) 3439 { 3440 long tmp; 3441 3442 switch (uap->cmd) { 3443 /* 3444 * Do unsigned conversion for arg when operation 3445 * interprets it as flags or pointer. 3446 */ 3447 case F_SETLK_REMOTE: 3448 case F_SETLKW: 3449 case F_SETLK: 3450 case F_GETLK: 3451 case F_SETFD: 3452 case F_SETFL: 3453 case F_OGETLK: 3454 case F_OSETLK: 3455 case F_OSETLKW: 3456 tmp = (unsigned int)(uap->arg); 3457 break; 3458 default: 3459 tmp = uap->arg; 3460 break; 3461 } 3462 return (kern_fcntl_freebsd(td, uap->fd, uap->cmd, tmp)); 3463 } 3464 3465 int 3466 freebsd32_ppoll(struct thread *td, struct freebsd32_ppoll_args *uap) 3467 { 3468 struct timespec32 ts32; 3469 struct timespec ts, *tsp; 3470 sigset_t set, *ssp; 3471 int error; 3472 3473 if (uap->ts != NULL) { 3474 error = copyin(uap->ts, &ts32, sizeof(ts32)); 3475 if (error != 0) 3476 return (error); 3477 CP(ts32, ts, tv_sec); 3478 CP(ts32, ts, tv_nsec); 3479 tsp = &ts; 3480 } else 3481 tsp = NULL; 3482 if (uap->set != NULL) { 3483 error = copyin(uap->set, &set, sizeof(set)); 3484 if (error != 0) 3485 return (error); 3486 ssp = &set; 3487 } else 3488 ssp = NULL; 3489 3490 return (kern_poll(td, uap->fds, uap->nfds, tsp, ssp)); 3491 } 3492 3493 int 3494 freebsd32_sched_rr_get_interval(struct thread *td, 3495 struct freebsd32_sched_rr_get_interval_args *uap) 3496 { 3497 struct timespec ts; 3498 struct timespec32 ts32; 3499 int error; 3500 3501 error = kern_sched_rr_get_interval(td, uap->pid, &ts); 3502 if (error == 0) { 3503 CP(ts, ts32, tv_sec); 3504 CP(ts, ts32, tv_nsec); 3505 error = copyout(&ts32, uap->interval, sizeof(ts32)); 3506 } 3507 return (error); 3508 } 3509