1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2002 Doug Rabson 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include "opt_inet.h" 33 #include "opt_inet6.h" 34 #include "opt_ktrace.h" 35 36 #define __ELF_WORD_SIZE 32 37 38 #ifdef COMPAT_FREEBSD11 39 #define _WANT_FREEBSD11_KEVENT 40 #endif 41 42 #include <sys/param.h> 43 #include <sys/bus.h> 44 #include <sys/capsicum.h> 45 #include <sys/clock.h> 46 #include <sys/exec.h> 47 #include <sys/fcntl.h> 48 #include <sys/filedesc.h> 49 #include <sys/imgact.h> 50 #include <sys/jail.h> 51 #include <sys/kernel.h> 52 #include <sys/limits.h> 53 #include <sys/linker.h> 54 #include <sys/lock.h> 55 #include <sys/malloc.h> 56 #include <sys/file.h> /* Must come after sys/malloc.h */ 57 #include <sys/imgact.h> 58 #include <sys/mbuf.h> 59 #include <sys/mman.h> 60 #include <sys/module.h> 61 #include <sys/mount.h> 62 #include <sys/mutex.h> 63 #include <sys/namei.h> 64 #include <sys/proc.h> 65 #include <sys/procctl.h> 66 #include <sys/ptrace.h> 67 #include <sys/reboot.h> 68 #include <sys/resource.h> 69 #include <sys/resourcevar.h> 70 #include <sys/selinfo.h> 71 #include <sys/eventvar.h> /* Must come after sys/selinfo.h */ 72 #include <sys/pipe.h> /* Must come after sys/selinfo.h */ 73 #include <sys/signal.h> 74 #include <sys/signalvar.h> 75 #include <sys/socket.h> 76 #include <sys/socketvar.h> 77 #include <sys/stat.h> 78 #include <sys/syscall.h> 79 #include <sys/syscallsubr.h> 80 #include <sys/sysctl.h> 81 #include <sys/sysent.h> 82 #include <sys/sysproto.h> 83 #include <sys/systm.h> 84 #include <sys/thr.h> 85 #include <sys/unistd.h> 86 #include <sys/ucontext.h> 87 #include <sys/vnode.h> 88 #include <sys/wait.h> 89 #include <sys/ipc.h> 90 #include <sys/msg.h> 91 #include <sys/sem.h> 92 #include <sys/shm.h> 93 #ifdef KTRACE 94 #include <sys/ktrace.h> 95 #endif 96 97 #ifdef INET 98 #include <netinet/in.h> 99 #endif 100 101 #include <vm/vm.h> 102 #include <vm/vm_param.h> 103 #include <vm/pmap.h> 104 #include <vm/vm_map.h> 105 #include <vm/vm_object.h> 106 #include <vm/vm_extern.h> 107 108 #include <machine/cpu.h> 109 #include <machine/elf.h> 110 #ifdef __amd64__ 111 #include <machine/md_var.h> 112 #endif 113 114 #include <security/audit/audit.h> 115 116 #include <compat/freebsd32/freebsd32_util.h> 117 #include <compat/freebsd32/freebsd32.h> 118 #include <compat/freebsd32/freebsd32_ipc.h> 119 #include <compat/freebsd32/freebsd32_misc.h> 120 #include <compat/freebsd32/freebsd32_signal.h> 121 #include <compat/freebsd32/freebsd32_proto.h> 122 123 FEATURE(compat_freebsd_32bit, "Compatible with 32-bit FreeBSD"); 124 125 struct ptrace_io_desc32 { 126 int piod_op; 127 uint32_t piod_offs; 128 uint32_t piod_addr; 129 uint32_t piod_len; 130 }; 131 132 struct ptrace_sc_ret32 { 133 uint32_t sr_retval[2]; 134 int sr_error; 135 }; 136 137 struct ptrace_vm_entry32 { 138 int pve_entry; 139 int pve_timestamp; 140 uint32_t pve_start; 141 uint32_t pve_end; 142 uint32_t pve_offset; 143 u_int pve_prot; 144 u_int pve_pathlen; 145 int32_t pve_fileid; 146 u_int pve_fsid; 147 uint32_t pve_path; 148 }; 149 150 #ifdef __amd64__ 151 CTASSERT(sizeof(struct timeval32) == 8); 152 CTASSERT(sizeof(struct timespec32) == 8); 153 CTASSERT(sizeof(struct itimerval32) == 16); 154 CTASSERT(sizeof(struct bintime32) == 12); 155 #endif 156 CTASSERT(sizeof(struct statfs32) == 256); 157 #ifdef __amd64__ 158 CTASSERT(sizeof(struct rusage32) == 72); 159 #endif 160 CTASSERT(sizeof(struct sigaltstack32) == 12); 161 #ifdef __amd64__ 162 CTASSERT(sizeof(struct kevent32) == 56); 163 #else 164 CTASSERT(sizeof(struct kevent32) == 64); 165 #endif 166 CTASSERT(sizeof(struct iovec32) == 8); 167 CTASSERT(sizeof(struct msghdr32) == 28); 168 #ifdef __amd64__ 169 CTASSERT(sizeof(struct stat32) == 208); 170 CTASSERT(sizeof(struct freebsd11_stat32) == 96); 171 #endif 172 CTASSERT(sizeof(struct sigaction32) == 24); 173 174 static int freebsd32_kevent_copyout(void *arg, struct kevent *kevp, int count); 175 static int freebsd32_kevent_copyin(void *arg, struct kevent *kevp, int count); 176 static int freebsd32_user_clock_nanosleep(struct thread *td, clockid_t clock_id, 177 int flags, const struct timespec32 *ua_rqtp, struct timespec32 *ua_rmtp); 178 179 void 180 freebsd32_rusage_out(const struct rusage *s, struct rusage32 *s32) 181 { 182 183 TV_CP(*s, *s32, ru_utime); 184 TV_CP(*s, *s32, ru_stime); 185 CP(*s, *s32, ru_maxrss); 186 CP(*s, *s32, ru_ixrss); 187 CP(*s, *s32, ru_idrss); 188 CP(*s, *s32, ru_isrss); 189 CP(*s, *s32, ru_minflt); 190 CP(*s, *s32, ru_majflt); 191 CP(*s, *s32, ru_nswap); 192 CP(*s, *s32, ru_inblock); 193 CP(*s, *s32, ru_oublock); 194 CP(*s, *s32, ru_msgsnd); 195 CP(*s, *s32, ru_msgrcv); 196 CP(*s, *s32, ru_nsignals); 197 CP(*s, *s32, ru_nvcsw); 198 CP(*s, *s32, ru_nivcsw); 199 } 200 201 int 202 freebsd32_wait4(struct thread *td, struct freebsd32_wait4_args *uap) 203 { 204 int error, status; 205 struct rusage32 ru32; 206 struct rusage ru, *rup; 207 208 if (uap->rusage != NULL) 209 rup = &ru; 210 else 211 rup = NULL; 212 error = kern_wait(td, uap->pid, &status, uap->options, rup); 213 if (error) 214 return (error); 215 if (uap->status != NULL) 216 error = copyout(&status, uap->status, sizeof(status)); 217 if (uap->rusage != NULL && error == 0) { 218 freebsd32_rusage_out(&ru, &ru32); 219 error = copyout(&ru32, uap->rusage, sizeof(ru32)); 220 } 221 return (error); 222 } 223 224 int 225 freebsd32_wait6(struct thread *td, struct freebsd32_wait6_args *uap) 226 { 227 struct wrusage32 wru32; 228 struct __wrusage wru, *wrup; 229 struct siginfo32 si32; 230 struct __siginfo si, *sip; 231 int error, status; 232 233 if (uap->wrusage != NULL) 234 wrup = &wru; 235 else 236 wrup = NULL; 237 if (uap->info != NULL) { 238 sip = &si; 239 bzero(sip, sizeof(*sip)); 240 } else 241 sip = NULL; 242 error = kern_wait6(td, uap->idtype, PAIR32TO64(id_t, uap->id), 243 &status, uap->options, wrup, sip); 244 if (error != 0) 245 return (error); 246 if (uap->status != NULL) 247 error = copyout(&status, uap->status, sizeof(status)); 248 if (uap->wrusage != NULL && error == 0) { 249 freebsd32_rusage_out(&wru.wru_self, &wru32.wru_self); 250 freebsd32_rusage_out(&wru.wru_children, &wru32.wru_children); 251 error = copyout(&wru32, uap->wrusage, sizeof(wru32)); 252 } 253 if (uap->info != NULL && error == 0) { 254 siginfo_to_siginfo32 (&si, &si32); 255 error = copyout(&si32, uap->info, sizeof(si32)); 256 } 257 return (error); 258 } 259 260 #ifdef COMPAT_FREEBSD4 261 static void 262 copy_statfs(struct statfs *in, struct statfs32 *out) 263 { 264 265 statfs_scale_blocks(in, INT32_MAX); 266 bzero(out, sizeof(*out)); 267 CP(*in, *out, f_bsize); 268 out->f_iosize = MIN(in->f_iosize, INT32_MAX); 269 CP(*in, *out, f_blocks); 270 CP(*in, *out, f_bfree); 271 CP(*in, *out, f_bavail); 272 out->f_files = MIN(in->f_files, INT32_MAX); 273 out->f_ffree = MIN(in->f_ffree, INT32_MAX); 274 CP(*in, *out, f_fsid); 275 CP(*in, *out, f_owner); 276 CP(*in, *out, f_type); 277 CP(*in, *out, f_flags); 278 out->f_syncwrites = MIN(in->f_syncwrites, INT32_MAX); 279 out->f_asyncwrites = MIN(in->f_asyncwrites, INT32_MAX); 280 strlcpy(out->f_fstypename, 281 in->f_fstypename, MFSNAMELEN); 282 strlcpy(out->f_mntonname, 283 in->f_mntonname, min(MNAMELEN, FREEBSD4_MNAMELEN)); 284 out->f_syncreads = MIN(in->f_syncreads, INT32_MAX); 285 out->f_asyncreads = MIN(in->f_asyncreads, INT32_MAX); 286 strlcpy(out->f_mntfromname, 287 in->f_mntfromname, min(MNAMELEN, FREEBSD4_MNAMELEN)); 288 } 289 #endif 290 291 #ifdef COMPAT_FREEBSD4 292 int 293 freebsd4_freebsd32_getfsstat(struct thread *td, 294 struct freebsd4_freebsd32_getfsstat_args *uap) 295 { 296 struct statfs *buf, *sp; 297 struct statfs32 stat32; 298 size_t count, size, copycount; 299 int error; 300 301 count = uap->bufsize / sizeof(struct statfs32); 302 size = count * sizeof(struct statfs); 303 error = kern_getfsstat(td, &buf, size, &count, UIO_SYSSPACE, uap->mode); 304 if (size > 0) { 305 sp = buf; 306 copycount = count; 307 while (copycount > 0 && error == 0) { 308 copy_statfs(sp, &stat32); 309 error = copyout(&stat32, uap->buf, sizeof(stat32)); 310 sp++; 311 uap->buf++; 312 copycount--; 313 } 314 free(buf, M_STATFS); 315 } 316 if (error == 0) 317 td->td_retval[0] = count; 318 return (error); 319 } 320 #endif 321 322 #ifdef COMPAT_FREEBSD10 323 int 324 freebsd10_freebsd32_pipe(struct thread *td, 325 struct freebsd10_freebsd32_pipe_args *uap) { 326 return (freebsd10_pipe(td, (struct freebsd10_pipe_args*)uap)); 327 } 328 #endif 329 330 int 331 freebsd32_sigaltstack(struct thread *td, 332 struct freebsd32_sigaltstack_args *uap) 333 { 334 struct sigaltstack32 s32; 335 struct sigaltstack ss, oss, *ssp; 336 int error; 337 338 if (uap->ss != NULL) { 339 error = copyin(uap->ss, &s32, sizeof(s32)); 340 if (error) 341 return (error); 342 PTRIN_CP(s32, ss, ss_sp); 343 CP(s32, ss, ss_size); 344 CP(s32, ss, ss_flags); 345 ssp = &ss; 346 } else 347 ssp = NULL; 348 error = kern_sigaltstack(td, ssp, &oss); 349 if (error == 0 && uap->oss != NULL) { 350 PTROUT_CP(oss, s32, ss_sp); 351 CP(oss, s32, ss_size); 352 CP(oss, s32, ss_flags); 353 error = copyout(&s32, uap->oss, sizeof(s32)); 354 } 355 return (error); 356 } 357 358 /* 359 * Custom version of exec_copyin_args() so that we can translate 360 * the pointers. 361 */ 362 int 363 freebsd32_exec_copyin_args(struct image_args *args, const char *fname, 364 enum uio_seg segflg, u_int32_t *argv, u_int32_t *envv) 365 { 366 char *argp, *envp; 367 u_int32_t *p32, arg; 368 int error; 369 370 bzero(args, sizeof(*args)); 371 if (argv == NULL) 372 return (EFAULT); 373 374 /* 375 * Allocate demand-paged memory for the file name, argument, and 376 * environment strings. 377 */ 378 error = exec_alloc_args(args); 379 if (error != 0) 380 return (error); 381 382 /* 383 * Copy the file name. 384 */ 385 error = exec_args_add_fname(args, fname, segflg); 386 if (error != 0) 387 goto err_exit; 388 389 /* 390 * extract arguments first 391 */ 392 p32 = argv; 393 for (;;) { 394 error = copyin(p32++, &arg, sizeof(arg)); 395 if (error) 396 goto err_exit; 397 if (arg == 0) 398 break; 399 argp = PTRIN(arg); 400 error = exec_args_add_arg(args, argp, UIO_USERSPACE); 401 if (error != 0) 402 goto err_exit; 403 } 404 405 /* 406 * extract environment strings 407 */ 408 if (envv) { 409 p32 = envv; 410 for (;;) { 411 error = copyin(p32++, &arg, sizeof(arg)); 412 if (error) 413 goto err_exit; 414 if (arg == 0) 415 break; 416 envp = PTRIN(arg); 417 error = exec_args_add_env(args, envp, UIO_USERSPACE); 418 if (error != 0) 419 goto err_exit; 420 } 421 } 422 423 return (0); 424 425 err_exit: 426 exec_free_args(args); 427 return (error); 428 } 429 430 int 431 freebsd32_execve(struct thread *td, struct freebsd32_execve_args *uap) 432 { 433 struct image_args eargs; 434 struct vmspace *oldvmspace; 435 int error; 436 437 error = pre_execve(td, &oldvmspace); 438 if (error != 0) 439 return (error); 440 error = freebsd32_exec_copyin_args(&eargs, uap->fname, UIO_USERSPACE, 441 uap->argv, uap->envv); 442 if (error == 0) 443 error = kern_execve(td, &eargs, NULL, oldvmspace); 444 post_execve(td, error, oldvmspace); 445 return (error); 446 } 447 448 int 449 freebsd32_fexecve(struct thread *td, struct freebsd32_fexecve_args *uap) 450 { 451 struct image_args eargs; 452 struct vmspace *oldvmspace; 453 int error; 454 455 error = pre_execve(td, &oldvmspace); 456 if (error != 0) 457 return (error); 458 error = freebsd32_exec_copyin_args(&eargs, NULL, UIO_SYSSPACE, 459 uap->argv, uap->envv); 460 if (error == 0) { 461 eargs.fd = uap->fd; 462 error = kern_execve(td, &eargs, NULL, oldvmspace); 463 } 464 post_execve(td, error, oldvmspace); 465 return (error); 466 } 467 468 int 469 freebsd32_mknodat(struct thread *td, struct freebsd32_mknodat_args *uap) 470 { 471 472 return (kern_mknodat(td, uap->fd, uap->path, UIO_USERSPACE, 473 uap->mode, PAIR32TO64(dev_t, uap->dev))); 474 } 475 476 int 477 freebsd32_mprotect(struct thread *td, struct freebsd32_mprotect_args *uap) 478 { 479 int prot; 480 481 prot = uap->prot; 482 #if defined(__amd64__) 483 if (i386_read_exec && (prot & PROT_READ) != 0) 484 prot |= PROT_EXEC; 485 #endif 486 return (kern_mprotect(td, (uintptr_t)PTRIN(uap->addr), uap->len, 487 prot)); 488 } 489 490 int 491 freebsd32_mmap(struct thread *td, struct freebsd32_mmap_args *uap) 492 { 493 int prot; 494 495 prot = uap->prot; 496 #if defined(__amd64__) 497 if (i386_read_exec && (prot & PROT_READ)) 498 prot |= PROT_EXEC; 499 #endif 500 501 return (kern_mmap(td, (uintptr_t)uap->addr, uap->len, prot, 502 uap->flags, uap->fd, PAIR32TO64(off_t, uap->pos))); 503 } 504 505 #ifdef COMPAT_FREEBSD6 506 int 507 freebsd6_freebsd32_mmap(struct thread *td, 508 struct freebsd6_freebsd32_mmap_args *uap) 509 { 510 int prot; 511 512 prot = uap->prot; 513 #if defined(__amd64__) 514 if (i386_read_exec && (prot & PROT_READ)) 515 prot |= PROT_EXEC; 516 #endif 517 518 return (kern_mmap(td, (uintptr_t)uap->addr, uap->len, prot, 519 uap->flags, uap->fd, PAIR32TO64(off_t, uap->pos))); 520 } 521 #endif 522 523 int 524 freebsd32_setitimer(struct thread *td, struct freebsd32_setitimer_args *uap) 525 { 526 struct itimerval itv, oitv, *itvp; 527 struct itimerval32 i32; 528 int error; 529 530 if (uap->itv != NULL) { 531 error = copyin(uap->itv, &i32, sizeof(i32)); 532 if (error) 533 return (error); 534 TV_CP(i32, itv, it_interval); 535 TV_CP(i32, itv, it_value); 536 itvp = &itv; 537 } else 538 itvp = NULL; 539 error = kern_setitimer(td, uap->which, itvp, &oitv); 540 if (error || uap->oitv == NULL) 541 return (error); 542 TV_CP(oitv, i32, it_interval); 543 TV_CP(oitv, i32, it_value); 544 return (copyout(&i32, uap->oitv, sizeof(i32))); 545 } 546 547 int 548 freebsd32_getitimer(struct thread *td, struct freebsd32_getitimer_args *uap) 549 { 550 struct itimerval itv; 551 struct itimerval32 i32; 552 int error; 553 554 error = kern_getitimer(td, uap->which, &itv); 555 if (error || uap->itv == NULL) 556 return (error); 557 TV_CP(itv, i32, it_interval); 558 TV_CP(itv, i32, it_value); 559 return (copyout(&i32, uap->itv, sizeof(i32))); 560 } 561 562 int 563 freebsd32_select(struct thread *td, struct freebsd32_select_args *uap) 564 { 565 struct timeval32 tv32; 566 struct timeval tv, *tvp; 567 int error; 568 569 if (uap->tv != NULL) { 570 error = copyin(uap->tv, &tv32, sizeof(tv32)); 571 if (error) 572 return (error); 573 CP(tv32, tv, tv_sec); 574 CP(tv32, tv, tv_usec); 575 tvp = &tv; 576 } else 577 tvp = NULL; 578 /* 579 * XXX Do pointers need PTRIN()? 580 */ 581 return (kern_select(td, uap->nd, uap->in, uap->ou, uap->ex, tvp, 582 sizeof(int32_t) * 8)); 583 } 584 585 int 586 freebsd32_pselect(struct thread *td, struct freebsd32_pselect_args *uap) 587 { 588 struct timespec32 ts32; 589 struct timespec ts; 590 struct timeval tv, *tvp; 591 sigset_t set, *uset; 592 int error; 593 594 if (uap->ts != NULL) { 595 error = copyin(uap->ts, &ts32, sizeof(ts32)); 596 if (error != 0) 597 return (error); 598 CP(ts32, ts, tv_sec); 599 CP(ts32, ts, tv_nsec); 600 TIMESPEC_TO_TIMEVAL(&tv, &ts); 601 tvp = &tv; 602 } else 603 tvp = NULL; 604 if (uap->sm != NULL) { 605 error = copyin(uap->sm, &set, sizeof(set)); 606 if (error != 0) 607 return (error); 608 uset = &set; 609 } else 610 uset = NULL; 611 /* 612 * XXX Do pointers need PTRIN()? 613 */ 614 error = kern_pselect(td, uap->nd, uap->in, uap->ou, uap->ex, tvp, 615 uset, sizeof(int32_t) * 8); 616 return (error); 617 } 618 619 /* 620 * Copy 'count' items into the destination list pointed to by uap->eventlist. 621 */ 622 static int 623 freebsd32_kevent_copyout(void *arg, struct kevent *kevp, int count) 624 { 625 struct freebsd32_kevent_args *uap; 626 struct kevent32 ks32[KQ_NEVENTS]; 627 uint64_t e; 628 int i, j, error; 629 630 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count)); 631 uap = (struct freebsd32_kevent_args *)arg; 632 633 for (i = 0; i < count; i++) { 634 CP(kevp[i], ks32[i], ident); 635 CP(kevp[i], ks32[i], filter); 636 CP(kevp[i], ks32[i], flags); 637 CP(kevp[i], ks32[i], fflags); 638 #if BYTE_ORDER == LITTLE_ENDIAN 639 ks32[i].data1 = kevp[i].data; 640 ks32[i].data2 = kevp[i].data >> 32; 641 #else 642 ks32[i].data1 = kevp[i].data >> 32; 643 ks32[i].data2 = kevp[i].data; 644 #endif 645 PTROUT_CP(kevp[i], ks32[i], udata); 646 for (j = 0; j < nitems(kevp->ext); j++) { 647 e = kevp[i].ext[j]; 648 #if BYTE_ORDER == LITTLE_ENDIAN 649 ks32[i].ext64[2 * j] = e; 650 ks32[i].ext64[2 * j + 1] = e >> 32; 651 #else 652 ks32[i].ext64[2 * j] = e >> 32; 653 ks32[i].ext64[2 * j + 1] = e; 654 #endif 655 } 656 } 657 error = copyout(ks32, uap->eventlist, count * sizeof *ks32); 658 if (error == 0) 659 uap->eventlist += count; 660 return (error); 661 } 662 663 /* 664 * Copy 'count' items from the list pointed to by uap->changelist. 665 */ 666 static int 667 freebsd32_kevent_copyin(void *arg, struct kevent *kevp, int count) 668 { 669 struct freebsd32_kevent_args *uap; 670 struct kevent32 ks32[KQ_NEVENTS]; 671 uint64_t e; 672 int i, j, error; 673 674 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count)); 675 uap = (struct freebsd32_kevent_args *)arg; 676 677 error = copyin(uap->changelist, ks32, count * sizeof *ks32); 678 if (error) 679 goto done; 680 uap->changelist += count; 681 682 for (i = 0; i < count; i++) { 683 CP(ks32[i], kevp[i], ident); 684 CP(ks32[i], kevp[i], filter); 685 CP(ks32[i], kevp[i], flags); 686 CP(ks32[i], kevp[i], fflags); 687 kevp[i].data = PAIR32TO64(uint64_t, ks32[i].data); 688 PTRIN_CP(ks32[i], kevp[i], udata); 689 for (j = 0; j < nitems(kevp->ext); j++) { 690 #if BYTE_ORDER == LITTLE_ENDIAN 691 e = ks32[i].ext64[2 * j + 1]; 692 e <<= 32; 693 e += ks32[i].ext64[2 * j]; 694 #else 695 e = ks32[i].ext64[2 * j]; 696 e <<= 32; 697 e += ks32[i].ext64[2 * j + 1]; 698 #endif 699 kevp[i].ext[j] = e; 700 } 701 } 702 done: 703 return (error); 704 } 705 706 int 707 freebsd32_kevent(struct thread *td, struct freebsd32_kevent_args *uap) 708 { 709 struct timespec32 ts32; 710 struct timespec ts, *tsp; 711 struct kevent_copyops k_ops = { 712 .arg = uap, 713 .k_copyout = freebsd32_kevent_copyout, 714 .k_copyin = freebsd32_kevent_copyin, 715 }; 716 #ifdef KTRACE 717 struct kevent32 *eventlist = uap->eventlist; 718 #endif 719 int error; 720 721 if (uap->timeout) { 722 error = copyin(uap->timeout, &ts32, sizeof(ts32)); 723 if (error) 724 return (error); 725 CP(ts32, ts, tv_sec); 726 CP(ts32, ts, tv_nsec); 727 tsp = &ts; 728 } else 729 tsp = NULL; 730 #ifdef KTRACE 731 if (KTRPOINT(td, KTR_STRUCT_ARRAY)) 732 ktrstructarray("kevent32", UIO_USERSPACE, uap->changelist, 733 uap->nchanges, sizeof(struct kevent32)); 734 #endif 735 error = kern_kevent(td, uap->fd, uap->nchanges, uap->nevents, 736 &k_ops, tsp); 737 #ifdef KTRACE 738 if (error == 0 && KTRPOINT(td, KTR_STRUCT_ARRAY)) 739 ktrstructarray("kevent32", UIO_USERSPACE, eventlist, 740 td->td_retval[0], sizeof(struct kevent32)); 741 #endif 742 return (error); 743 } 744 745 #ifdef COMPAT_FREEBSD11 746 static int 747 freebsd32_kevent11_copyout(void *arg, struct kevent *kevp, int count) 748 { 749 struct freebsd11_freebsd32_kevent_args *uap; 750 struct kevent32_freebsd11 ks32[KQ_NEVENTS]; 751 int i, error; 752 753 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count)); 754 uap = (struct freebsd11_freebsd32_kevent_args *)arg; 755 756 for (i = 0; i < count; i++) { 757 CP(kevp[i], ks32[i], ident); 758 CP(kevp[i], ks32[i], filter); 759 CP(kevp[i], ks32[i], flags); 760 CP(kevp[i], ks32[i], fflags); 761 CP(kevp[i], ks32[i], data); 762 PTROUT_CP(kevp[i], ks32[i], udata); 763 } 764 error = copyout(ks32, uap->eventlist, count * sizeof *ks32); 765 if (error == 0) 766 uap->eventlist += count; 767 return (error); 768 } 769 770 /* 771 * Copy 'count' items from the list pointed to by uap->changelist. 772 */ 773 static int 774 freebsd32_kevent11_copyin(void *arg, struct kevent *kevp, int count) 775 { 776 struct freebsd11_freebsd32_kevent_args *uap; 777 struct kevent32_freebsd11 ks32[KQ_NEVENTS]; 778 int i, j, error; 779 780 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count)); 781 uap = (struct freebsd11_freebsd32_kevent_args *)arg; 782 783 error = copyin(uap->changelist, ks32, count * sizeof *ks32); 784 if (error) 785 goto done; 786 uap->changelist += count; 787 788 for (i = 0; i < count; i++) { 789 CP(ks32[i], kevp[i], ident); 790 CP(ks32[i], kevp[i], filter); 791 CP(ks32[i], kevp[i], flags); 792 CP(ks32[i], kevp[i], fflags); 793 CP(ks32[i], kevp[i], data); 794 PTRIN_CP(ks32[i], kevp[i], udata); 795 for (j = 0; j < nitems(kevp->ext); j++) 796 kevp[i].ext[j] = 0; 797 } 798 done: 799 return (error); 800 } 801 802 int 803 freebsd11_freebsd32_kevent(struct thread *td, 804 struct freebsd11_freebsd32_kevent_args *uap) 805 { 806 struct timespec32 ts32; 807 struct timespec ts, *tsp; 808 struct kevent_copyops k_ops = { 809 .arg = uap, 810 .k_copyout = freebsd32_kevent11_copyout, 811 .k_copyin = freebsd32_kevent11_copyin, 812 }; 813 #ifdef KTRACE 814 struct kevent32_freebsd11 *eventlist = uap->eventlist; 815 #endif 816 int error; 817 818 if (uap->timeout) { 819 error = copyin(uap->timeout, &ts32, sizeof(ts32)); 820 if (error) 821 return (error); 822 CP(ts32, ts, tv_sec); 823 CP(ts32, ts, tv_nsec); 824 tsp = &ts; 825 } else 826 tsp = NULL; 827 #ifdef KTRACE 828 if (KTRPOINT(td, KTR_STRUCT_ARRAY)) 829 ktrstructarray("kevent32_freebsd11", UIO_USERSPACE, 830 uap->changelist, uap->nchanges, 831 sizeof(struct kevent32_freebsd11)); 832 #endif 833 error = kern_kevent(td, uap->fd, uap->nchanges, uap->nevents, 834 &k_ops, tsp); 835 #ifdef KTRACE 836 if (error == 0 && KTRPOINT(td, KTR_STRUCT_ARRAY)) 837 ktrstructarray("kevent32_freebsd11", UIO_USERSPACE, 838 eventlist, td->td_retval[0], 839 sizeof(struct kevent32_freebsd11)); 840 #endif 841 return (error); 842 } 843 #endif 844 845 int 846 freebsd32_gettimeofday(struct thread *td, 847 struct freebsd32_gettimeofday_args *uap) 848 { 849 struct timeval atv; 850 struct timeval32 atv32; 851 struct timezone rtz; 852 int error = 0; 853 854 if (uap->tp) { 855 microtime(&atv); 856 CP(atv, atv32, tv_sec); 857 CP(atv, atv32, tv_usec); 858 error = copyout(&atv32, uap->tp, sizeof (atv32)); 859 } 860 if (error == 0 && uap->tzp != NULL) { 861 rtz.tz_minuteswest = 0; 862 rtz.tz_dsttime = 0; 863 error = copyout(&rtz, uap->tzp, sizeof (rtz)); 864 } 865 return (error); 866 } 867 868 int 869 freebsd32_getrusage(struct thread *td, struct freebsd32_getrusage_args *uap) 870 { 871 struct rusage32 s32; 872 struct rusage s; 873 int error; 874 875 error = kern_getrusage(td, uap->who, &s); 876 if (error == 0) { 877 freebsd32_rusage_out(&s, &s32); 878 error = copyout(&s32, uap->rusage, sizeof(s32)); 879 } 880 return (error); 881 } 882 883 static void 884 ptrace_lwpinfo_to32(const struct ptrace_lwpinfo *pl, 885 struct ptrace_lwpinfo32 *pl32) 886 { 887 888 bzero(pl32, sizeof(*pl32)); 889 pl32->pl_lwpid = pl->pl_lwpid; 890 pl32->pl_event = pl->pl_event; 891 pl32->pl_flags = pl->pl_flags; 892 pl32->pl_sigmask = pl->pl_sigmask; 893 pl32->pl_siglist = pl->pl_siglist; 894 siginfo_to_siginfo32(&pl->pl_siginfo, &pl32->pl_siginfo); 895 strcpy(pl32->pl_tdname, pl->pl_tdname); 896 pl32->pl_child_pid = pl->pl_child_pid; 897 pl32->pl_syscall_code = pl->pl_syscall_code; 898 pl32->pl_syscall_narg = pl->pl_syscall_narg; 899 } 900 901 static void 902 ptrace_sc_ret_to32(const struct ptrace_sc_ret *psr, 903 struct ptrace_sc_ret32 *psr32) 904 { 905 906 bzero(psr32, sizeof(*psr32)); 907 psr32->sr_retval[0] = psr->sr_retval[0]; 908 psr32->sr_retval[1] = psr->sr_retval[1]; 909 psr32->sr_error = psr->sr_error; 910 } 911 912 int 913 freebsd32_ptrace(struct thread *td, struct freebsd32_ptrace_args *uap) 914 { 915 union { 916 struct ptrace_io_desc piod; 917 struct ptrace_lwpinfo pl; 918 struct ptrace_vm_entry pve; 919 struct dbreg32 dbreg; 920 struct fpreg32 fpreg; 921 struct reg32 reg; 922 register_t args[nitems(td->td_sa.args)]; 923 struct ptrace_sc_ret psr; 924 int ptevents; 925 } r; 926 union { 927 struct ptrace_io_desc32 piod; 928 struct ptrace_lwpinfo32 pl; 929 struct ptrace_vm_entry32 pve; 930 uint32_t args[nitems(td->td_sa.args)]; 931 struct ptrace_sc_ret32 psr; 932 } r32; 933 void *addr; 934 int data, error = 0, i; 935 936 AUDIT_ARG_PID(uap->pid); 937 AUDIT_ARG_CMD(uap->req); 938 AUDIT_ARG_VALUE(uap->data); 939 addr = &r; 940 data = uap->data; 941 switch (uap->req) { 942 case PT_GET_EVENT_MASK: 943 case PT_GET_SC_ARGS: 944 case PT_GET_SC_RET: 945 break; 946 case PT_LWPINFO: 947 if (uap->data > sizeof(r32.pl)) 948 return (EINVAL); 949 950 /* 951 * Pass size of native structure in 'data'. Truncate 952 * if necessary to avoid siginfo. 953 */ 954 data = sizeof(r.pl); 955 if (uap->data < offsetof(struct ptrace_lwpinfo32, pl_siginfo) + 956 sizeof(struct siginfo32)) 957 data = offsetof(struct ptrace_lwpinfo, pl_siginfo); 958 break; 959 case PT_GETREGS: 960 bzero(&r.reg, sizeof(r.reg)); 961 break; 962 case PT_GETFPREGS: 963 bzero(&r.fpreg, sizeof(r.fpreg)); 964 break; 965 case PT_GETDBREGS: 966 bzero(&r.dbreg, sizeof(r.dbreg)); 967 break; 968 case PT_SETREGS: 969 error = copyin(uap->addr, &r.reg, sizeof(r.reg)); 970 break; 971 case PT_SETFPREGS: 972 error = copyin(uap->addr, &r.fpreg, sizeof(r.fpreg)); 973 break; 974 case PT_SETDBREGS: 975 error = copyin(uap->addr, &r.dbreg, sizeof(r.dbreg)); 976 break; 977 case PT_SET_EVENT_MASK: 978 if (uap->data != sizeof(r.ptevents)) 979 error = EINVAL; 980 else 981 error = copyin(uap->addr, &r.ptevents, uap->data); 982 break; 983 case PT_IO: 984 error = copyin(uap->addr, &r32.piod, sizeof(r32.piod)); 985 if (error) 986 break; 987 CP(r32.piod, r.piod, piod_op); 988 PTRIN_CP(r32.piod, r.piod, piod_offs); 989 PTRIN_CP(r32.piod, r.piod, piod_addr); 990 CP(r32.piod, r.piod, piod_len); 991 break; 992 case PT_VM_ENTRY: 993 error = copyin(uap->addr, &r32.pve, sizeof(r32.pve)); 994 if (error) 995 break; 996 997 CP(r32.pve, r.pve, pve_entry); 998 CP(r32.pve, r.pve, pve_timestamp); 999 CP(r32.pve, r.pve, pve_start); 1000 CP(r32.pve, r.pve, pve_end); 1001 CP(r32.pve, r.pve, pve_offset); 1002 CP(r32.pve, r.pve, pve_prot); 1003 CP(r32.pve, r.pve, pve_pathlen); 1004 CP(r32.pve, r.pve, pve_fileid); 1005 CP(r32.pve, r.pve, pve_fsid); 1006 PTRIN_CP(r32.pve, r.pve, pve_path); 1007 break; 1008 default: 1009 addr = uap->addr; 1010 break; 1011 } 1012 if (error) 1013 return (error); 1014 1015 error = kern_ptrace(td, uap->req, uap->pid, addr, data); 1016 if (error) 1017 return (error); 1018 1019 switch (uap->req) { 1020 case PT_VM_ENTRY: 1021 CP(r.pve, r32.pve, pve_entry); 1022 CP(r.pve, r32.pve, pve_timestamp); 1023 CP(r.pve, r32.pve, pve_start); 1024 CP(r.pve, r32.pve, pve_end); 1025 CP(r.pve, r32.pve, pve_offset); 1026 CP(r.pve, r32.pve, pve_prot); 1027 CP(r.pve, r32.pve, pve_pathlen); 1028 CP(r.pve, r32.pve, pve_fileid); 1029 CP(r.pve, r32.pve, pve_fsid); 1030 error = copyout(&r32.pve, uap->addr, sizeof(r32.pve)); 1031 break; 1032 case PT_IO: 1033 CP(r.piod, r32.piod, piod_len); 1034 error = copyout(&r32.piod, uap->addr, sizeof(r32.piod)); 1035 break; 1036 case PT_GETREGS: 1037 error = copyout(&r.reg, uap->addr, sizeof(r.reg)); 1038 break; 1039 case PT_GETFPREGS: 1040 error = copyout(&r.fpreg, uap->addr, sizeof(r.fpreg)); 1041 break; 1042 case PT_GETDBREGS: 1043 error = copyout(&r.dbreg, uap->addr, sizeof(r.dbreg)); 1044 break; 1045 case PT_GET_EVENT_MASK: 1046 /* NB: The size in uap->data is validated in kern_ptrace(). */ 1047 error = copyout(&r.ptevents, uap->addr, uap->data); 1048 break; 1049 case PT_LWPINFO: 1050 ptrace_lwpinfo_to32(&r.pl, &r32.pl); 1051 error = copyout(&r32.pl, uap->addr, uap->data); 1052 break; 1053 case PT_GET_SC_ARGS: 1054 for (i = 0; i < nitems(r.args); i++) 1055 r32.args[i] = (uint32_t)r.args[i]; 1056 error = copyout(r32.args, uap->addr, MIN(uap->data, 1057 sizeof(r32.args))); 1058 break; 1059 case PT_GET_SC_RET: 1060 ptrace_sc_ret_to32(&r.psr, &r32.psr); 1061 error = copyout(&r32.psr, uap->addr, MIN(uap->data, 1062 sizeof(r32.psr))); 1063 break; 1064 } 1065 1066 return (error); 1067 } 1068 1069 static int 1070 freebsd32_copyinuio(struct iovec32 *iovp, u_int iovcnt, struct uio **uiop) 1071 { 1072 struct iovec32 iov32; 1073 struct iovec *iov; 1074 struct uio *uio; 1075 u_int iovlen; 1076 int error, i; 1077 1078 *uiop = NULL; 1079 if (iovcnt > UIO_MAXIOV) 1080 return (EINVAL); 1081 iovlen = iovcnt * sizeof(struct iovec); 1082 uio = malloc(iovlen + sizeof *uio, M_IOV, M_WAITOK); 1083 iov = (struct iovec *)(uio + 1); 1084 for (i = 0; i < iovcnt; i++) { 1085 error = copyin(&iovp[i], &iov32, sizeof(struct iovec32)); 1086 if (error) { 1087 free(uio, M_IOV); 1088 return (error); 1089 } 1090 iov[i].iov_base = PTRIN(iov32.iov_base); 1091 iov[i].iov_len = iov32.iov_len; 1092 } 1093 uio->uio_iov = iov; 1094 uio->uio_iovcnt = iovcnt; 1095 uio->uio_segflg = UIO_USERSPACE; 1096 uio->uio_offset = -1; 1097 uio->uio_resid = 0; 1098 for (i = 0; i < iovcnt; i++) { 1099 if (iov->iov_len > INT_MAX - uio->uio_resid) { 1100 free(uio, M_IOV); 1101 return (EINVAL); 1102 } 1103 uio->uio_resid += iov->iov_len; 1104 iov++; 1105 } 1106 *uiop = uio; 1107 return (0); 1108 } 1109 1110 int 1111 freebsd32_readv(struct thread *td, struct freebsd32_readv_args *uap) 1112 { 1113 struct uio *auio; 1114 int error; 1115 1116 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 1117 if (error) 1118 return (error); 1119 error = kern_readv(td, uap->fd, auio); 1120 free(auio, M_IOV); 1121 return (error); 1122 } 1123 1124 int 1125 freebsd32_writev(struct thread *td, struct freebsd32_writev_args *uap) 1126 { 1127 struct uio *auio; 1128 int error; 1129 1130 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 1131 if (error) 1132 return (error); 1133 error = kern_writev(td, uap->fd, auio); 1134 free(auio, M_IOV); 1135 return (error); 1136 } 1137 1138 int 1139 freebsd32_preadv(struct thread *td, struct freebsd32_preadv_args *uap) 1140 { 1141 struct uio *auio; 1142 int error; 1143 1144 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 1145 if (error) 1146 return (error); 1147 error = kern_preadv(td, uap->fd, auio, PAIR32TO64(off_t,uap->offset)); 1148 free(auio, M_IOV); 1149 return (error); 1150 } 1151 1152 int 1153 freebsd32_pwritev(struct thread *td, struct freebsd32_pwritev_args *uap) 1154 { 1155 struct uio *auio; 1156 int error; 1157 1158 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 1159 if (error) 1160 return (error); 1161 error = kern_pwritev(td, uap->fd, auio, PAIR32TO64(off_t,uap->offset)); 1162 free(auio, M_IOV); 1163 return (error); 1164 } 1165 1166 int 1167 freebsd32_copyiniov(struct iovec32 *iovp32, u_int iovcnt, struct iovec **iovp, 1168 int error) 1169 { 1170 struct iovec32 iov32; 1171 struct iovec *iov; 1172 u_int iovlen; 1173 int i; 1174 1175 *iovp = NULL; 1176 if (iovcnt > UIO_MAXIOV) 1177 return (error); 1178 iovlen = iovcnt * sizeof(struct iovec); 1179 iov = malloc(iovlen, M_IOV, M_WAITOK); 1180 for (i = 0; i < iovcnt; i++) { 1181 error = copyin(&iovp32[i], &iov32, sizeof(struct iovec32)); 1182 if (error) { 1183 free(iov, M_IOV); 1184 return (error); 1185 } 1186 iov[i].iov_base = PTRIN(iov32.iov_base); 1187 iov[i].iov_len = iov32.iov_len; 1188 } 1189 *iovp = iov; 1190 return (0); 1191 } 1192 1193 static int 1194 freebsd32_copyinmsghdr(struct msghdr32 *msg32, struct msghdr *msg) 1195 { 1196 struct msghdr32 m32; 1197 int error; 1198 1199 error = copyin(msg32, &m32, sizeof(m32)); 1200 if (error) 1201 return (error); 1202 msg->msg_name = PTRIN(m32.msg_name); 1203 msg->msg_namelen = m32.msg_namelen; 1204 msg->msg_iov = PTRIN(m32.msg_iov); 1205 msg->msg_iovlen = m32.msg_iovlen; 1206 msg->msg_control = PTRIN(m32.msg_control); 1207 msg->msg_controllen = m32.msg_controllen; 1208 msg->msg_flags = m32.msg_flags; 1209 return (0); 1210 } 1211 1212 static int 1213 freebsd32_copyoutmsghdr(struct msghdr *msg, struct msghdr32 *msg32) 1214 { 1215 struct msghdr32 m32; 1216 int error; 1217 1218 m32.msg_name = PTROUT(msg->msg_name); 1219 m32.msg_namelen = msg->msg_namelen; 1220 m32.msg_iov = PTROUT(msg->msg_iov); 1221 m32.msg_iovlen = msg->msg_iovlen; 1222 m32.msg_control = PTROUT(msg->msg_control); 1223 m32.msg_controllen = msg->msg_controllen; 1224 m32.msg_flags = msg->msg_flags; 1225 error = copyout(&m32, msg32, sizeof(m32)); 1226 return (error); 1227 } 1228 1229 #ifndef __mips__ 1230 #define FREEBSD32_ALIGNBYTES (sizeof(int) - 1) 1231 #else 1232 #define FREEBSD32_ALIGNBYTES (sizeof(long) - 1) 1233 #endif 1234 #define FREEBSD32_ALIGN(p) \ 1235 (((u_long)(p) + FREEBSD32_ALIGNBYTES) & ~FREEBSD32_ALIGNBYTES) 1236 #define FREEBSD32_CMSG_SPACE(l) \ 1237 (FREEBSD32_ALIGN(sizeof(struct cmsghdr)) + FREEBSD32_ALIGN(l)) 1238 1239 #define FREEBSD32_CMSG_DATA(cmsg) ((unsigned char *)(cmsg) + \ 1240 FREEBSD32_ALIGN(sizeof(struct cmsghdr))) 1241 1242 static size_t 1243 freebsd32_cmsg_convert(const struct cmsghdr *cm, void *data, socklen_t datalen) 1244 { 1245 size_t copylen; 1246 union { 1247 struct timespec32 ts; 1248 struct timeval32 tv; 1249 struct bintime32 bt; 1250 } tmp32; 1251 1252 union { 1253 struct timespec ts; 1254 struct timeval tv; 1255 struct bintime bt; 1256 } *in; 1257 1258 in = data; 1259 copylen = 0; 1260 switch (cm->cmsg_level) { 1261 case SOL_SOCKET: 1262 switch (cm->cmsg_type) { 1263 case SCM_TIMESTAMP: 1264 TV_CP(*in, tmp32, tv); 1265 copylen = sizeof(tmp32.tv); 1266 break; 1267 1268 case SCM_BINTIME: 1269 BT_CP(*in, tmp32, bt); 1270 copylen = sizeof(tmp32.bt); 1271 break; 1272 1273 case SCM_REALTIME: 1274 case SCM_MONOTONIC: 1275 TS_CP(*in, tmp32, ts); 1276 copylen = sizeof(tmp32.ts); 1277 break; 1278 1279 default: 1280 break; 1281 } 1282 1283 default: 1284 break; 1285 } 1286 1287 if (copylen == 0) 1288 return (datalen); 1289 1290 KASSERT((datalen >= copylen), ("corrupted cmsghdr")); 1291 1292 bcopy(&tmp32, data, copylen); 1293 return (copylen); 1294 } 1295 1296 static int 1297 freebsd32_copy_msg_out(struct msghdr *msg, struct mbuf *control) 1298 { 1299 struct cmsghdr *cm; 1300 void *data; 1301 socklen_t clen, datalen, datalen_out, oldclen; 1302 int error; 1303 caddr_t ctlbuf; 1304 int len, maxlen, copylen; 1305 struct mbuf *m; 1306 error = 0; 1307 1308 len = msg->msg_controllen; 1309 maxlen = msg->msg_controllen; 1310 msg->msg_controllen = 0; 1311 1312 ctlbuf = msg->msg_control; 1313 for (m = control; m != NULL && len > 0; m = m->m_next) { 1314 cm = mtod(m, struct cmsghdr *); 1315 clen = m->m_len; 1316 while (cm != NULL) { 1317 if (sizeof(struct cmsghdr) > clen || 1318 cm->cmsg_len > clen) { 1319 error = EINVAL; 1320 break; 1321 } 1322 1323 data = CMSG_DATA(cm); 1324 datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data; 1325 datalen_out = freebsd32_cmsg_convert(cm, data, datalen); 1326 1327 /* 1328 * Copy out the message header. Preserve the native 1329 * message size in case we need to inspect the message 1330 * contents later. 1331 */ 1332 copylen = sizeof(struct cmsghdr); 1333 if (len < copylen) { 1334 msg->msg_flags |= MSG_CTRUNC; 1335 m_dispose_extcontrolm(m); 1336 goto exit; 1337 } 1338 oldclen = cm->cmsg_len; 1339 cm->cmsg_len = FREEBSD32_ALIGN(sizeof(struct cmsghdr)) + 1340 datalen_out; 1341 error = copyout(cm, ctlbuf, copylen); 1342 cm->cmsg_len = oldclen; 1343 if (error != 0) 1344 goto exit; 1345 1346 ctlbuf += FREEBSD32_ALIGN(copylen); 1347 len -= FREEBSD32_ALIGN(copylen); 1348 1349 copylen = datalen_out; 1350 if (len < copylen) { 1351 msg->msg_flags |= MSG_CTRUNC; 1352 m_dispose_extcontrolm(m); 1353 break; 1354 } 1355 1356 /* Copy out the message data. */ 1357 error = copyout(data, ctlbuf, copylen); 1358 if (error) 1359 goto exit; 1360 1361 ctlbuf += FREEBSD32_ALIGN(copylen); 1362 len -= FREEBSD32_ALIGN(copylen); 1363 1364 if (CMSG_SPACE(datalen) < clen) { 1365 clen -= CMSG_SPACE(datalen); 1366 cm = (struct cmsghdr *) 1367 ((caddr_t)cm + CMSG_SPACE(datalen)); 1368 } else { 1369 clen = 0; 1370 cm = NULL; 1371 } 1372 1373 msg->msg_controllen += 1374 FREEBSD32_CMSG_SPACE(datalen_out); 1375 } 1376 } 1377 if (len == 0 && m != NULL) { 1378 msg->msg_flags |= MSG_CTRUNC; 1379 m_dispose_extcontrolm(m); 1380 } 1381 1382 exit: 1383 return (error); 1384 } 1385 1386 int 1387 freebsd32_recvmsg(td, uap) 1388 struct thread *td; 1389 struct freebsd32_recvmsg_args /* { 1390 int s; 1391 struct msghdr32 *msg; 1392 int flags; 1393 } */ *uap; 1394 { 1395 struct msghdr msg; 1396 struct msghdr32 m32; 1397 struct iovec *uiov, *iov; 1398 struct mbuf *control = NULL; 1399 struct mbuf **controlp; 1400 1401 int error; 1402 error = copyin(uap->msg, &m32, sizeof(m32)); 1403 if (error) 1404 return (error); 1405 error = freebsd32_copyinmsghdr(uap->msg, &msg); 1406 if (error) 1407 return (error); 1408 error = freebsd32_copyiniov(PTRIN(m32.msg_iov), m32.msg_iovlen, &iov, 1409 EMSGSIZE); 1410 if (error) 1411 return (error); 1412 msg.msg_flags = uap->flags; 1413 uiov = msg.msg_iov; 1414 msg.msg_iov = iov; 1415 1416 controlp = (msg.msg_control != NULL) ? &control : NULL; 1417 error = kern_recvit(td, uap->s, &msg, UIO_USERSPACE, controlp); 1418 if (error == 0) { 1419 msg.msg_iov = uiov; 1420 1421 if (control != NULL) 1422 error = freebsd32_copy_msg_out(&msg, control); 1423 else 1424 msg.msg_controllen = 0; 1425 1426 if (error == 0) 1427 error = freebsd32_copyoutmsghdr(&msg, uap->msg); 1428 } 1429 free(iov, M_IOV); 1430 1431 if (control != NULL) { 1432 if (error != 0) 1433 m_dispose_extcontrolm(control); 1434 m_freem(control); 1435 } 1436 1437 return (error); 1438 } 1439 1440 /* 1441 * Copy-in the array of control messages constructed using alignment 1442 * and padding suitable for a 32-bit environment and construct an 1443 * mbuf using alignment and padding suitable for a 64-bit kernel. 1444 * The alignment and padding are defined indirectly by CMSG_DATA(), 1445 * CMSG_SPACE() and CMSG_LEN(). 1446 */ 1447 static int 1448 freebsd32_copyin_control(struct mbuf **mp, caddr_t buf, u_int buflen) 1449 { 1450 struct cmsghdr *cm; 1451 struct mbuf *m; 1452 void *in, *in1, *md; 1453 u_int msglen, outlen; 1454 int error; 1455 1456 if (buflen > MCLBYTES) 1457 return (EINVAL); 1458 1459 in = malloc(buflen, M_TEMP, M_WAITOK); 1460 error = copyin(buf, in, buflen); 1461 if (error != 0) 1462 goto out; 1463 1464 /* 1465 * Make a pass over the input buffer to determine the amount of space 1466 * required for 64 bit-aligned copies of the control messages. 1467 */ 1468 in1 = in; 1469 outlen = 0; 1470 while (buflen > 0) { 1471 if (buflen < sizeof(*cm)) { 1472 error = EINVAL; 1473 break; 1474 } 1475 cm = (struct cmsghdr *)in1; 1476 if (cm->cmsg_len < FREEBSD32_ALIGN(sizeof(*cm))) { 1477 error = EINVAL; 1478 break; 1479 } 1480 msglen = FREEBSD32_ALIGN(cm->cmsg_len); 1481 if (msglen > buflen || msglen < cm->cmsg_len) { 1482 error = EINVAL; 1483 break; 1484 } 1485 buflen -= msglen; 1486 1487 in1 = (char *)in1 + msglen; 1488 outlen += CMSG_ALIGN(sizeof(*cm)) + 1489 CMSG_ALIGN(msglen - FREEBSD32_ALIGN(sizeof(*cm))); 1490 } 1491 if (error == 0 && outlen > MCLBYTES) { 1492 /* 1493 * XXXMJ This implies that the upper limit on 32-bit aligned 1494 * control messages is less than MCLBYTES, and so we are not 1495 * perfectly compatible. However, there is no platform 1496 * guarantee that mbuf clusters larger than MCLBYTES can be 1497 * allocated. 1498 */ 1499 error = EINVAL; 1500 } 1501 if (error != 0) 1502 goto out; 1503 1504 m = m_get2(outlen, M_WAITOK, MT_CONTROL, 0); 1505 m->m_len = outlen; 1506 md = mtod(m, void *); 1507 1508 /* 1509 * Make a second pass over input messages, copying them into the output 1510 * buffer. 1511 */ 1512 in1 = in; 1513 while (outlen > 0) { 1514 /* Copy the message header and align the length field. */ 1515 cm = md; 1516 memcpy(cm, in1, sizeof(*cm)); 1517 msglen = cm->cmsg_len - FREEBSD32_ALIGN(sizeof(*cm)); 1518 cm->cmsg_len = CMSG_ALIGN(sizeof(*cm)) + msglen; 1519 1520 /* Copy the message body. */ 1521 in1 = (char *)in1 + FREEBSD32_ALIGN(sizeof(*cm)); 1522 md = (char *)md + CMSG_ALIGN(sizeof(*cm)); 1523 memcpy(md, in1, msglen); 1524 in1 = (char *)in1 + FREEBSD32_ALIGN(msglen); 1525 md = (char *)md + CMSG_ALIGN(msglen); 1526 KASSERT(outlen >= CMSG_ALIGN(sizeof(*cm)) + CMSG_ALIGN(msglen), 1527 ("outlen %u underflow, msglen %u", outlen, msglen)); 1528 outlen -= CMSG_ALIGN(sizeof(*cm)) + CMSG_ALIGN(msglen); 1529 } 1530 1531 *mp = m; 1532 out: 1533 free(in, M_TEMP); 1534 return (error); 1535 } 1536 1537 int 1538 freebsd32_sendmsg(struct thread *td, 1539 struct freebsd32_sendmsg_args *uap) 1540 { 1541 struct msghdr msg; 1542 struct msghdr32 m32; 1543 struct iovec *iov; 1544 struct mbuf *control = NULL; 1545 struct sockaddr *to = NULL; 1546 int error; 1547 1548 error = copyin(uap->msg, &m32, sizeof(m32)); 1549 if (error) 1550 return (error); 1551 error = freebsd32_copyinmsghdr(uap->msg, &msg); 1552 if (error) 1553 return (error); 1554 error = freebsd32_copyiniov(PTRIN(m32.msg_iov), m32.msg_iovlen, &iov, 1555 EMSGSIZE); 1556 if (error) 1557 return (error); 1558 msg.msg_iov = iov; 1559 if (msg.msg_name != NULL) { 1560 error = getsockaddr(&to, msg.msg_name, msg.msg_namelen); 1561 if (error) { 1562 to = NULL; 1563 goto out; 1564 } 1565 msg.msg_name = to; 1566 } 1567 1568 if (msg.msg_control) { 1569 if (msg.msg_controllen < sizeof(struct cmsghdr)) { 1570 error = EINVAL; 1571 goto out; 1572 } 1573 1574 error = freebsd32_copyin_control(&control, msg.msg_control, 1575 msg.msg_controllen); 1576 if (error) 1577 goto out; 1578 1579 msg.msg_control = NULL; 1580 msg.msg_controllen = 0; 1581 } 1582 1583 error = kern_sendit(td, uap->s, &msg, uap->flags, control, 1584 UIO_USERSPACE); 1585 1586 out: 1587 free(iov, M_IOV); 1588 if (to) 1589 free(to, M_SONAME); 1590 return (error); 1591 } 1592 1593 int 1594 freebsd32_recvfrom(struct thread *td, 1595 struct freebsd32_recvfrom_args *uap) 1596 { 1597 struct msghdr msg; 1598 struct iovec aiov; 1599 int error; 1600 1601 if (uap->fromlenaddr) { 1602 error = copyin(PTRIN(uap->fromlenaddr), &msg.msg_namelen, 1603 sizeof(msg.msg_namelen)); 1604 if (error) 1605 return (error); 1606 } else { 1607 msg.msg_namelen = 0; 1608 } 1609 1610 msg.msg_name = PTRIN(uap->from); 1611 msg.msg_iov = &aiov; 1612 msg.msg_iovlen = 1; 1613 aiov.iov_base = PTRIN(uap->buf); 1614 aiov.iov_len = uap->len; 1615 msg.msg_control = NULL; 1616 msg.msg_flags = uap->flags; 1617 error = kern_recvit(td, uap->s, &msg, UIO_USERSPACE, NULL); 1618 if (error == 0 && uap->fromlenaddr) 1619 error = copyout(&msg.msg_namelen, PTRIN(uap->fromlenaddr), 1620 sizeof (msg.msg_namelen)); 1621 return (error); 1622 } 1623 1624 int 1625 freebsd32_settimeofday(struct thread *td, 1626 struct freebsd32_settimeofday_args *uap) 1627 { 1628 struct timeval32 tv32; 1629 struct timeval tv, *tvp; 1630 struct timezone tz, *tzp; 1631 int error; 1632 1633 if (uap->tv) { 1634 error = copyin(uap->tv, &tv32, sizeof(tv32)); 1635 if (error) 1636 return (error); 1637 CP(tv32, tv, tv_sec); 1638 CP(tv32, tv, tv_usec); 1639 tvp = &tv; 1640 } else 1641 tvp = NULL; 1642 if (uap->tzp) { 1643 error = copyin(uap->tzp, &tz, sizeof(tz)); 1644 if (error) 1645 return (error); 1646 tzp = &tz; 1647 } else 1648 tzp = NULL; 1649 return (kern_settimeofday(td, tvp, tzp)); 1650 } 1651 1652 int 1653 freebsd32_utimes(struct thread *td, struct freebsd32_utimes_args *uap) 1654 { 1655 struct timeval32 s32[2]; 1656 struct timeval s[2], *sp; 1657 int error; 1658 1659 if (uap->tptr != NULL) { 1660 error = copyin(uap->tptr, s32, sizeof(s32)); 1661 if (error) 1662 return (error); 1663 CP(s32[0], s[0], tv_sec); 1664 CP(s32[0], s[0], tv_usec); 1665 CP(s32[1], s[1], tv_sec); 1666 CP(s32[1], s[1], tv_usec); 1667 sp = s; 1668 } else 1669 sp = NULL; 1670 return (kern_utimesat(td, AT_FDCWD, uap->path, UIO_USERSPACE, 1671 sp, UIO_SYSSPACE)); 1672 } 1673 1674 int 1675 freebsd32_lutimes(struct thread *td, struct freebsd32_lutimes_args *uap) 1676 { 1677 struct timeval32 s32[2]; 1678 struct timeval s[2], *sp; 1679 int error; 1680 1681 if (uap->tptr != NULL) { 1682 error = copyin(uap->tptr, s32, sizeof(s32)); 1683 if (error) 1684 return (error); 1685 CP(s32[0], s[0], tv_sec); 1686 CP(s32[0], s[0], tv_usec); 1687 CP(s32[1], s[1], tv_sec); 1688 CP(s32[1], s[1], tv_usec); 1689 sp = s; 1690 } else 1691 sp = NULL; 1692 return (kern_lutimes(td, uap->path, UIO_USERSPACE, sp, UIO_SYSSPACE)); 1693 } 1694 1695 int 1696 freebsd32_futimes(struct thread *td, struct freebsd32_futimes_args *uap) 1697 { 1698 struct timeval32 s32[2]; 1699 struct timeval s[2], *sp; 1700 int error; 1701 1702 if (uap->tptr != NULL) { 1703 error = copyin(uap->tptr, s32, sizeof(s32)); 1704 if (error) 1705 return (error); 1706 CP(s32[0], s[0], tv_sec); 1707 CP(s32[0], s[0], tv_usec); 1708 CP(s32[1], s[1], tv_sec); 1709 CP(s32[1], s[1], tv_usec); 1710 sp = s; 1711 } else 1712 sp = NULL; 1713 return (kern_futimes(td, uap->fd, sp, UIO_SYSSPACE)); 1714 } 1715 1716 int 1717 freebsd32_futimesat(struct thread *td, struct freebsd32_futimesat_args *uap) 1718 { 1719 struct timeval32 s32[2]; 1720 struct timeval s[2], *sp; 1721 int error; 1722 1723 if (uap->times != NULL) { 1724 error = copyin(uap->times, s32, sizeof(s32)); 1725 if (error) 1726 return (error); 1727 CP(s32[0], s[0], tv_sec); 1728 CP(s32[0], s[0], tv_usec); 1729 CP(s32[1], s[1], tv_sec); 1730 CP(s32[1], s[1], tv_usec); 1731 sp = s; 1732 } else 1733 sp = NULL; 1734 return (kern_utimesat(td, uap->fd, uap->path, UIO_USERSPACE, 1735 sp, UIO_SYSSPACE)); 1736 } 1737 1738 int 1739 freebsd32_futimens(struct thread *td, struct freebsd32_futimens_args *uap) 1740 { 1741 struct timespec32 ts32[2]; 1742 struct timespec ts[2], *tsp; 1743 int error; 1744 1745 if (uap->times != NULL) { 1746 error = copyin(uap->times, ts32, sizeof(ts32)); 1747 if (error) 1748 return (error); 1749 CP(ts32[0], ts[0], tv_sec); 1750 CP(ts32[0], ts[0], tv_nsec); 1751 CP(ts32[1], ts[1], tv_sec); 1752 CP(ts32[1], ts[1], tv_nsec); 1753 tsp = ts; 1754 } else 1755 tsp = NULL; 1756 return (kern_futimens(td, uap->fd, tsp, UIO_SYSSPACE)); 1757 } 1758 1759 int 1760 freebsd32_utimensat(struct thread *td, struct freebsd32_utimensat_args *uap) 1761 { 1762 struct timespec32 ts32[2]; 1763 struct timespec ts[2], *tsp; 1764 int error; 1765 1766 if (uap->times != NULL) { 1767 error = copyin(uap->times, ts32, sizeof(ts32)); 1768 if (error) 1769 return (error); 1770 CP(ts32[0], ts[0], tv_sec); 1771 CP(ts32[0], ts[0], tv_nsec); 1772 CP(ts32[1], ts[1], tv_sec); 1773 CP(ts32[1], ts[1], tv_nsec); 1774 tsp = ts; 1775 } else 1776 tsp = NULL; 1777 return (kern_utimensat(td, uap->fd, uap->path, UIO_USERSPACE, 1778 tsp, UIO_SYSSPACE, uap->flag)); 1779 } 1780 1781 int 1782 freebsd32_adjtime(struct thread *td, struct freebsd32_adjtime_args *uap) 1783 { 1784 struct timeval32 tv32; 1785 struct timeval delta, olddelta, *deltap; 1786 int error; 1787 1788 if (uap->delta) { 1789 error = copyin(uap->delta, &tv32, sizeof(tv32)); 1790 if (error) 1791 return (error); 1792 CP(tv32, delta, tv_sec); 1793 CP(tv32, delta, tv_usec); 1794 deltap = δ 1795 } else 1796 deltap = NULL; 1797 error = kern_adjtime(td, deltap, &olddelta); 1798 if (uap->olddelta && error == 0) { 1799 CP(olddelta, tv32, tv_sec); 1800 CP(olddelta, tv32, tv_usec); 1801 error = copyout(&tv32, uap->olddelta, sizeof(tv32)); 1802 } 1803 return (error); 1804 } 1805 1806 #ifdef COMPAT_FREEBSD4 1807 int 1808 freebsd4_freebsd32_statfs(struct thread *td, struct freebsd4_freebsd32_statfs_args *uap) 1809 { 1810 struct statfs32 s32; 1811 struct statfs *sp; 1812 int error; 1813 1814 sp = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK); 1815 error = kern_statfs(td, uap->path, UIO_USERSPACE, sp); 1816 if (error == 0) { 1817 copy_statfs(sp, &s32); 1818 error = copyout(&s32, uap->buf, sizeof(s32)); 1819 } 1820 free(sp, M_STATFS); 1821 return (error); 1822 } 1823 #endif 1824 1825 #ifdef COMPAT_FREEBSD4 1826 int 1827 freebsd4_freebsd32_fstatfs(struct thread *td, struct freebsd4_freebsd32_fstatfs_args *uap) 1828 { 1829 struct statfs32 s32; 1830 struct statfs *sp; 1831 int error; 1832 1833 sp = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK); 1834 error = kern_fstatfs(td, uap->fd, sp); 1835 if (error == 0) { 1836 copy_statfs(sp, &s32); 1837 error = copyout(&s32, uap->buf, sizeof(s32)); 1838 } 1839 free(sp, M_STATFS); 1840 return (error); 1841 } 1842 #endif 1843 1844 #ifdef COMPAT_FREEBSD4 1845 int 1846 freebsd4_freebsd32_fhstatfs(struct thread *td, struct freebsd4_freebsd32_fhstatfs_args *uap) 1847 { 1848 struct statfs32 s32; 1849 struct statfs *sp; 1850 fhandle_t fh; 1851 int error; 1852 1853 if ((error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t))) != 0) 1854 return (error); 1855 sp = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK); 1856 error = kern_fhstatfs(td, fh, sp); 1857 if (error == 0) { 1858 copy_statfs(sp, &s32); 1859 error = copyout(&s32, uap->buf, sizeof(s32)); 1860 } 1861 free(sp, M_STATFS); 1862 return (error); 1863 } 1864 #endif 1865 1866 int 1867 freebsd32_pread(struct thread *td, struct freebsd32_pread_args *uap) 1868 { 1869 1870 return (kern_pread(td, uap->fd, uap->buf, uap->nbyte, 1871 PAIR32TO64(off_t, uap->offset))); 1872 } 1873 1874 int 1875 freebsd32_pwrite(struct thread *td, struct freebsd32_pwrite_args *uap) 1876 { 1877 1878 return (kern_pwrite(td, uap->fd, uap->buf, uap->nbyte, 1879 PAIR32TO64(off_t, uap->offset))); 1880 } 1881 1882 #ifdef COMPAT_43 1883 int 1884 ofreebsd32_lseek(struct thread *td, struct ofreebsd32_lseek_args *uap) 1885 { 1886 1887 return (kern_lseek(td, uap->fd, uap->offset, uap->whence)); 1888 } 1889 #endif 1890 1891 int 1892 freebsd32_lseek(struct thread *td, struct freebsd32_lseek_args *uap) 1893 { 1894 int error; 1895 off_t pos; 1896 1897 error = kern_lseek(td, uap->fd, PAIR32TO64(off_t, uap->offset), 1898 uap->whence); 1899 /* Expand the quad return into two parts for eax and edx */ 1900 pos = td->td_uretoff.tdu_off; 1901 td->td_retval[RETVAL_LO] = pos & 0xffffffff; /* %eax */ 1902 td->td_retval[RETVAL_HI] = pos >> 32; /* %edx */ 1903 return error; 1904 } 1905 1906 int 1907 freebsd32_truncate(struct thread *td, struct freebsd32_truncate_args *uap) 1908 { 1909 1910 return (kern_truncate(td, uap->path, UIO_USERSPACE, 1911 PAIR32TO64(off_t, uap->length))); 1912 } 1913 1914 int 1915 freebsd32_ftruncate(struct thread *td, struct freebsd32_ftruncate_args *uap) 1916 { 1917 1918 return (kern_ftruncate(td, uap->fd, PAIR32TO64(off_t, uap->length))); 1919 } 1920 1921 #ifdef COMPAT_43 1922 int 1923 ofreebsd32_getdirentries(struct thread *td, 1924 struct ofreebsd32_getdirentries_args *uap) 1925 { 1926 struct ogetdirentries_args ap; 1927 int error; 1928 long loff; 1929 int32_t loff_cut; 1930 1931 ap.fd = uap->fd; 1932 ap.buf = uap->buf; 1933 ap.count = uap->count; 1934 ap.basep = NULL; 1935 error = kern_ogetdirentries(td, &ap, &loff); 1936 if (error == 0) { 1937 loff_cut = loff; 1938 error = copyout(&loff_cut, uap->basep, sizeof(int32_t)); 1939 } 1940 return (error); 1941 } 1942 #endif 1943 1944 #if defined(COMPAT_FREEBSD11) 1945 int 1946 freebsd11_freebsd32_getdirentries(struct thread *td, 1947 struct freebsd11_freebsd32_getdirentries_args *uap) 1948 { 1949 long base; 1950 int32_t base32; 1951 int error; 1952 1953 error = freebsd11_kern_getdirentries(td, uap->fd, uap->buf, uap->count, 1954 &base, NULL); 1955 if (error) 1956 return (error); 1957 if (uap->basep != NULL) { 1958 base32 = base; 1959 error = copyout(&base32, uap->basep, sizeof(int32_t)); 1960 } 1961 return (error); 1962 } 1963 1964 int 1965 freebsd11_freebsd32_getdents(struct thread *td, 1966 struct freebsd11_freebsd32_getdents_args *uap) 1967 { 1968 struct freebsd11_freebsd32_getdirentries_args ap; 1969 1970 ap.fd = uap->fd; 1971 ap.buf = uap->buf; 1972 ap.count = uap->count; 1973 ap.basep = NULL; 1974 return (freebsd11_freebsd32_getdirentries(td, &ap)); 1975 } 1976 #endif /* COMPAT_FREEBSD11 */ 1977 1978 #ifdef COMPAT_FREEBSD6 1979 /* versions with the 'int pad' argument */ 1980 int 1981 freebsd6_freebsd32_pread(struct thread *td, struct freebsd6_freebsd32_pread_args *uap) 1982 { 1983 1984 return (kern_pread(td, uap->fd, uap->buf, uap->nbyte, 1985 PAIR32TO64(off_t, uap->offset))); 1986 } 1987 1988 int 1989 freebsd6_freebsd32_pwrite(struct thread *td, struct freebsd6_freebsd32_pwrite_args *uap) 1990 { 1991 1992 return (kern_pwrite(td, uap->fd, uap->buf, uap->nbyte, 1993 PAIR32TO64(off_t, uap->offset))); 1994 } 1995 1996 int 1997 freebsd6_freebsd32_lseek(struct thread *td, struct freebsd6_freebsd32_lseek_args *uap) 1998 { 1999 int error; 2000 off_t pos; 2001 2002 error = kern_lseek(td, uap->fd, PAIR32TO64(off_t, uap->offset), 2003 uap->whence); 2004 /* Expand the quad return into two parts for eax and edx */ 2005 pos = *(off_t *)(td->td_retval); 2006 td->td_retval[RETVAL_LO] = pos & 0xffffffff; /* %eax */ 2007 td->td_retval[RETVAL_HI] = pos >> 32; /* %edx */ 2008 return error; 2009 } 2010 2011 int 2012 freebsd6_freebsd32_truncate(struct thread *td, struct freebsd6_freebsd32_truncate_args *uap) 2013 { 2014 2015 return (kern_truncate(td, uap->path, UIO_USERSPACE, 2016 PAIR32TO64(off_t, uap->length))); 2017 } 2018 2019 int 2020 freebsd6_freebsd32_ftruncate(struct thread *td, struct freebsd6_freebsd32_ftruncate_args *uap) 2021 { 2022 2023 return (kern_ftruncate(td, uap->fd, PAIR32TO64(off_t, uap->length))); 2024 } 2025 #endif /* COMPAT_FREEBSD6 */ 2026 2027 struct sf_hdtr32 { 2028 uint32_t headers; 2029 int hdr_cnt; 2030 uint32_t trailers; 2031 int trl_cnt; 2032 }; 2033 2034 static int 2035 freebsd32_do_sendfile(struct thread *td, 2036 struct freebsd32_sendfile_args *uap, int compat) 2037 { 2038 struct sf_hdtr32 hdtr32; 2039 struct sf_hdtr hdtr; 2040 struct uio *hdr_uio, *trl_uio; 2041 struct file *fp; 2042 cap_rights_t rights; 2043 struct iovec32 *iov32; 2044 off_t offset, sbytes; 2045 int error; 2046 2047 offset = PAIR32TO64(off_t, uap->offset); 2048 if (offset < 0) 2049 return (EINVAL); 2050 2051 hdr_uio = trl_uio = NULL; 2052 2053 if (uap->hdtr != NULL) { 2054 error = copyin(uap->hdtr, &hdtr32, sizeof(hdtr32)); 2055 if (error) 2056 goto out; 2057 PTRIN_CP(hdtr32, hdtr, headers); 2058 CP(hdtr32, hdtr, hdr_cnt); 2059 PTRIN_CP(hdtr32, hdtr, trailers); 2060 CP(hdtr32, hdtr, trl_cnt); 2061 2062 if (hdtr.headers != NULL) { 2063 iov32 = PTRIN(hdtr32.headers); 2064 error = freebsd32_copyinuio(iov32, 2065 hdtr32.hdr_cnt, &hdr_uio); 2066 if (error) 2067 goto out; 2068 #ifdef COMPAT_FREEBSD4 2069 /* 2070 * In FreeBSD < 5.0 the nbytes to send also included 2071 * the header. If compat is specified subtract the 2072 * header size from nbytes. 2073 */ 2074 if (compat) { 2075 if (uap->nbytes > hdr_uio->uio_resid) 2076 uap->nbytes -= hdr_uio->uio_resid; 2077 else 2078 uap->nbytes = 0; 2079 } 2080 #endif 2081 } 2082 if (hdtr.trailers != NULL) { 2083 iov32 = PTRIN(hdtr32.trailers); 2084 error = freebsd32_copyinuio(iov32, 2085 hdtr32.trl_cnt, &trl_uio); 2086 if (error) 2087 goto out; 2088 } 2089 } 2090 2091 AUDIT_ARG_FD(uap->fd); 2092 2093 if ((error = fget_read(td, uap->fd, 2094 cap_rights_init(&rights, CAP_PREAD), &fp)) != 0) 2095 goto out; 2096 2097 error = fo_sendfile(fp, uap->s, hdr_uio, trl_uio, offset, 2098 uap->nbytes, &sbytes, uap->flags, td); 2099 fdrop(fp, td); 2100 2101 if (uap->sbytes != NULL) 2102 copyout(&sbytes, uap->sbytes, sizeof(off_t)); 2103 2104 out: 2105 if (hdr_uio) 2106 free(hdr_uio, M_IOV); 2107 if (trl_uio) 2108 free(trl_uio, M_IOV); 2109 return (error); 2110 } 2111 2112 #ifdef COMPAT_FREEBSD4 2113 int 2114 freebsd4_freebsd32_sendfile(struct thread *td, 2115 struct freebsd4_freebsd32_sendfile_args *uap) 2116 { 2117 return (freebsd32_do_sendfile(td, 2118 (struct freebsd32_sendfile_args *)uap, 1)); 2119 } 2120 #endif 2121 2122 int 2123 freebsd32_sendfile(struct thread *td, struct freebsd32_sendfile_args *uap) 2124 { 2125 2126 return (freebsd32_do_sendfile(td, uap, 0)); 2127 } 2128 2129 static void 2130 copy_stat(struct stat *in, struct stat32 *out) 2131 { 2132 2133 CP(*in, *out, st_dev); 2134 CP(*in, *out, st_ino); 2135 CP(*in, *out, st_mode); 2136 CP(*in, *out, st_nlink); 2137 CP(*in, *out, st_uid); 2138 CP(*in, *out, st_gid); 2139 CP(*in, *out, st_rdev); 2140 TS_CP(*in, *out, st_atim); 2141 TS_CP(*in, *out, st_mtim); 2142 TS_CP(*in, *out, st_ctim); 2143 CP(*in, *out, st_size); 2144 CP(*in, *out, st_blocks); 2145 CP(*in, *out, st_blksize); 2146 CP(*in, *out, st_flags); 2147 CP(*in, *out, st_gen); 2148 TS_CP(*in, *out, st_birthtim); 2149 out->st_padding0 = 0; 2150 out->st_padding1 = 0; 2151 #ifdef __STAT32_TIME_T_EXT 2152 out->st_atim_ext = 0; 2153 out->st_mtim_ext = 0; 2154 out->st_ctim_ext = 0; 2155 out->st_btim_ext = 0; 2156 #endif 2157 bzero(out->st_spare, sizeof(out->st_spare)); 2158 } 2159 2160 #ifdef COMPAT_43 2161 static void 2162 copy_ostat(struct stat *in, struct ostat32 *out) 2163 { 2164 2165 bzero(out, sizeof(*out)); 2166 CP(*in, *out, st_dev); 2167 CP(*in, *out, st_ino); 2168 CP(*in, *out, st_mode); 2169 CP(*in, *out, st_nlink); 2170 CP(*in, *out, st_uid); 2171 CP(*in, *out, st_gid); 2172 CP(*in, *out, st_rdev); 2173 out->st_size = MIN(in->st_size, INT32_MAX); 2174 TS_CP(*in, *out, st_atim); 2175 TS_CP(*in, *out, st_mtim); 2176 TS_CP(*in, *out, st_ctim); 2177 CP(*in, *out, st_blksize); 2178 CP(*in, *out, st_blocks); 2179 CP(*in, *out, st_flags); 2180 CP(*in, *out, st_gen); 2181 } 2182 #endif 2183 2184 #ifdef COMPAT_43 2185 int 2186 ofreebsd32_stat(struct thread *td, struct ofreebsd32_stat_args *uap) 2187 { 2188 struct stat sb; 2189 struct ostat32 sb32; 2190 int error; 2191 2192 error = kern_statat(td, 0, AT_FDCWD, uap->path, UIO_USERSPACE, 2193 &sb, NULL); 2194 if (error) 2195 return (error); 2196 copy_ostat(&sb, &sb32); 2197 error = copyout(&sb32, uap->ub, sizeof (sb32)); 2198 return (error); 2199 } 2200 #endif 2201 2202 int 2203 freebsd32_fstat(struct thread *td, struct freebsd32_fstat_args *uap) 2204 { 2205 struct stat ub; 2206 struct stat32 ub32; 2207 int error; 2208 2209 error = kern_fstat(td, uap->fd, &ub); 2210 if (error) 2211 return (error); 2212 copy_stat(&ub, &ub32); 2213 error = copyout(&ub32, uap->ub, sizeof(ub32)); 2214 return (error); 2215 } 2216 2217 #ifdef COMPAT_43 2218 int 2219 ofreebsd32_fstat(struct thread *td, struct ofreebsd32_fstat_args *uap) 2220 { 2221 struct stat ub; 2222 struct ostat32 ub32; 2223 int error; 2224 2225 error = kern_fstat(td, uap->fd, &ub); 2226 if (error) 2227 return (error); 2228 copy_ostat(&ub, &ub32); 2229 error = copyout(&ub32, uap->ub, sizeof(ub32)); 2230 return (error); 2231 } 2232 #endif 2233 2234 int 2235 freebsd32_fstatat(struct thread *td, struct freebsd32_fstatat_args *uap) 2236 { 2237 struct stat ub; 2238 struct stat32 ub32; 2239 int error; 2240 2241 error = kern_statat(td, uap->flag, uap->fd, uap->path, UIO_USERSPACE, 2242 &ub, NULL); 2243 if (error) 2244 return (error); 2245 copy_stat(&ub, &ub32); 2246 error = copyout(&ub32, uap->buf, sizeof(ub32)); 2247 return (error); 2248 } 2249 2250 #ifdef COMPAT_43 2251 int 2252 ofreebsd32_lstat(struct thread *td, struct ofreebsd32_lstat_args *uap) 2253 { 2254 struct stat sb; 2255 struct ostat32 sb32; 2256 int error; 2257 2258 error = kern_statat(td, AT_SYMLINK_NOFOLLOW, AT_FDCWD, uap->path, 2259 UIO_USERSPACE, &sb, NULL); 2260 if (error) 2261 return (error); 2262 copy_ostat(&sb, &sb32); 2263 error = copyout(&sb32, uap->ub, sizeof (sb32)); 2264 return (error); 2265 } 2266 #endif 2267 2268 int 2269 freebsd32_fhstat(struct thread *td, struct freebsd32_fhstat_args *uap) 2270 { 2271 struct stat sb; 2272 struct stat32 sb32; 2273 struct fhandle fh; 2274 int error; 2275 2276 error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t)); 2277 if (error != 0) 2278 return (error); 2279 error = kern_fhstat(td, fh, &sb); 2280 if (error != 0) 2281 return (error); 2282 copy_stat(&sb, &sb32); 2283 error = copyout(&sb32, uap->sb, sizeof (sb32)); 2284 return (error); 2285 } 2286 2287 #if defined(COMPAT_FREEBSD11) 2288 extern int ino64_trunc_error; 2289 2290 static int 2291 freebsd11_cvtstat32(struct stat *in, struct freebsd11_stat32 *out) 2292 { 2293 2294 CP(*in, *out, st_ino); 2295 if (in->st_ino != out->st_ino) { 2296 switch (ino64_trunc_error) { 2297 default: 2298 case 0: 2299 break; 2300 case 1: 2301 return (EOVERFLOW); 2302 case 2: 2303 out->st_ino = UINT32_MAX; 2304 break; 2305 } 2306 } 2307 CP(*in, *out, st_nlink); 2308 if (in->st_nlink != out->st_nlink) { 2309 switch (ino64_trunc_error) { 2310 default: 2311 case 0: 2312 break; 2313 case 1: 2314 return (EOVERFLOW); 2315 case 2: 2316 out->st_nlink = UINT16_MAX; 2317 break; 2318 } 2319 } 2320 out->st_dev = in->st_dev; 2321 if (out->st_dev != in->st_dev) { 2322 switch (ino64_trunc_error) { 2323 default: 2324 break; 2325 case 1: 2326 return (EOVERFLOW); 2327 } 2328 } 2329 CP(*in, *out, st_mode); 2330 CP(*in, *out, st_uid); 2331 CP(*in, *out, st_gid); 2332 out->st_rdev = in->st_rdev; 2333 if (out->st_rdev != in->st_rdev) { 2334 switch (ino64_trunc_error) { 2335 default: 2336 break; 2337 case 1: 2338 return (EOVERFLOW); 2339 } 2340 } 2341 TS_CP(*in, *out, st_atim); 2342 TS_CP(*in, *out, st_mtim); 2343 TS_CP(*in, *out, st_ctim); 2344 CP(*in, *out, st_size); 2345 CP(*in, *out, st_blocks); 2346 CP(*in, *out, st_blksize); 2347 CP(*in, *out, st_flags); 2348 CP(*in, *out, st_gen); 2349 TS_CP(*in, *out, st_birthtim); 2350 out->st_lspare = 0; 2351 bzero((char *)&out->st_birthtim + sizeof(out->st_birthtim), 2352 sizeof(*out) - offsetof(struct freebsd11_stat32, 2353 st_birthtim) - sizeof(out->st_birthtim)); 2354 return (0); 2355 } 2356 2357 int 2358 freebsd11_freebsd32_stat(struct thread *td, 2359 struct freebsd11_freebsd32_stat_args *uap) 2360 { 2361 struct stat sb; 2362 struct freebsd11_stat32 sb32; 2363 int error; 2364 2365 error = kern_statat(td, 0, AT_FDCWD, uap->path, UIO_USERSPACE, 2366 &sb, NULL); 2367 if (error != 0) 2368 return (error); 2369 error = freebsd11_cvtstat32(&sb, &sb32); 2370 if (error == 0) 2371 error = copyout(&sb32, uap->ub, sizeof (sb32)); 2372 return (error); 2373 } 2374 2375 int 2376 freebsd11_freebsd32_fstat(struct thread *td, 2377 struct freebsd11_freebsd32_fstat_args *uap) 2378 { 2379 struct stat sb; 2380 struct freebsd11_stat32 sb32; 2381 int error; 2382 2383 error = kern_fstat(td, uap->fd, &sb); 2384 if (error != 0) 2385 return (error); 2386 error = freebsd11_cvtstat32(&sb, &sb32); 2387 if (error == 0) 2388 error = copyout(&sb32, uap->ub, sizeof (sb32)); 2389 return (error); 2390 } 2391 2392 int 2393 freebsd11_freebsd32_fstatat(struct thread *td, 2394 struct freebsd11_freebsd32_fstatat_args *uap) 2395 { 2396 struct stat sb; 2397 struct freebsd11_stat32 sb32; 2398 int error; 2399 2400 error = kern_statat(td, uap->flag, uap->fd, uap->path, UIO_USERSPACE, 2401 &sb, NULL); 2402 if (error != 0) 2403 return (error); 2404 error = freebsd11_cvtstat32(&sb, &sb32); 2405 if (error == 0) 2406 error = copyout(&sb32, uap->buf, sizeof (sb32)); 2407 return (error); 2408 } 2409 2410 int 2411 freebsd11_freebsd32_lstat(struct thread *td, 2412 struct freebsd11_freebsd32_lstat_args *uap) 2413 { 2414 struct stat sb; 2415 struct freebsd11_stat32 sb32; 2416 int error; 2417 2418 error = kern_statat(td, AT_SYMLINK_NOFOLLOW, AT_FDCWD, uap->path, 2419 UIO_USERSPACE, &sb, NULL); 2420 if (error != 0) 2421 return (error); 2422 error = freebsd11_cvtstat32(&sb, &sb32); 2423 if (error == 0) 2424 error = copyout(&sb32, uap->ub, sizeof (sb32)); 2425 return (error); 2426 } 2427 2428 int 2429 freebsd11_freebsd32_fhstat(struct thread *td, 2430 struct freebsd11_freebsd32_fhstat_args *uap) 2431 { 2432 struct stat sb; 2433 struct freebsd11_stat32 sb32; 2434 struct fhandle fh; 2435 int error; 2436 2437 error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t)); 2438 if (error != 0) 2439 return (error); 2440 error = kern_fhstat(td, fh, &sb); 2441 if (error != 0) 2442 return (error); 2443 error = freebsd11_cvtstat32(&sb, &sb32); 2444 if (error == 0) 2445 error = copyout(&sb32, uap->sb, sizeof (sb32)); 2446 return (error); 2447 } 2448 #endif 2449 2450 int 2451 freebsd32___sysctl(struct thread *td, struct freebsd32___sysctl_args *uap) 2452 { 2453 int error, name[CTL_MAXNAME]; 2454 size_t j, oldlen; 2455 uint32_t tmp; 2456 2457 if (uap->namelen > CTL_MAXNAME || uap->namelen < 2) 2458 return (EINVAL); 2459 error = copyin(uap->name, name, uap->namelen * sizeof(int)); 2460 if (error) 2461 return (error); 2462 if (uap->oldlenp) { 2463 error = fueword32(uap->oldlenp, &tmp); 2464 oldlen = tmp; 2465 } else { 2466 oldlen = 0; 2467 } 2468 if (error != 0) 2469 return (EFAULT); 2470 error = userland_sysctl(td, name, uap->namelen, 2471 uap->old, &oldlen, 1, 2472 uap->new, uap->newlen, &j, SCTL_MASK32); 2473 if (error) 2474 return (error); 2475 if (uap->oldlenp) 2476 suword32(uap->oldlenp, j); 2477 return (0); 2478 } 2479 2480 int 2481 freebsd32___sysctlbyname(struct thread *td, 2482 struct freebsd32___sysctlbyname_args *uap) 2483 { 2484 size_t oldlen, rv; 2485 int error; 2486 uint32_t tmp; 2487 2488 if (uap->oldlenp != NULL) { 2489 error = fueword32(uap->oldlenp, &tmp); 2490 oldlen = tmp; 2491 } else { 2492 error = oldlen = 0; 2493 } 2494 if (error != 0) 2495 return (EFAULT); 2496 error = kern___sysctlbyname(td, uap->name, uap->namelen, uap->old, 2497 &oldlen, uap->new, uap->newlen, &rv, SCTL_MASK32, 1); 2498 if (error != 0) 2499 return (error); 2500 if (uap->oldlenp != NULL) 2501 error = suword32(uap->oldlenp, rv); 2502 2503 return (error); 2504 } 2505 2506 int 2507 freebsd32_jail(struct thread *td, struct freebsd32_jail_args *uap) 2508 { 2509 uint32_t version; 2510 int error; 2511 struct jail j; 2512 2513 error = copyin(uap->jail, &version, sizeof(uint32_t)); 2514 if (error) 2515 return (error); 2516 2517 switch (version) { 2518 case 0: 2519 { 2520 /* FreeBSD single IPv4 jails. */ 2521 struct jail32_v0 j32_v0; 2522 2523 bzero(&j, sizeof(struct jail)); 2524 error = copyin(uap->jail, &j32_v0, sizeof(struct jail32_v0)); 2525 if (error) 2526 return (error); 2527 CP(j32_v0, j, version); 2528 PTRIN_CP(j32_v0, j, path); 2529 PTRIN_CP(j32_v0, j, hostname); 2530 j.ip4s = htonl(j32_v0.ip_number); /* jail_v0 is host order */ 2531 break; 2532 } 2533 2534 case 1: 2535 /* 2536 * Version 1 was used by multi-IPv4 jail implementations 2537 * that never made it into the official kernel. 2538 */ 2539 return (EINVAL); 2540 2541 case 2: /* JAIL_API_VERSION */ 2542 { 2543 /* FreeBSD multi-IPv4/IPv6,noIP jails. */ 2544 struct jail32 j32; 2545 2546 error = copyin(uap->jail, &j32, sizeof(struct jail32)); 2547 if (error) 2548 return (error); 2549 CP(j32, j, version); 2550 PTRIN_CP(j32, j, path); 2551 PTRIN_CP(j32, j, hostname); 2552 PTRIN_CP(j32, j, jailname); 2553 CP(j32, j, ip4s); 2554 CP(j32, j, ip6s); 2555 PTRIN_CP(j32, j, ip4); 2556 PTRIN_CP(j32, j, ip6); 2557 break; 2558 } 2559 2560 default: 2561 /* Sci-Fi jails are not supported, sorry. */ 2562 return (EINVAL); 2563 } 2564 return (kern_jail(td, &j)); 2565 } 2566 2567 int 2568 freebsd32_jail_set(struct thread *td, struct freebsd32_jail_set_args *uap) 2569 { 2570 struct uio *auio; 2571 int error; 2572 2573 /* Check that we have an even number of iovecs. */ 2574 if (uap->iovcnt & 1) 2575 return (EINVAL); 2576 2577 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 2578 if (error) 2579 return (error); 2580 error = kern_jail_set(td, auio, uap->flags); 2581 free(auio, M_IOV); 2582 return (error); 2583 } 2584 2585 int 2586 freebsd32_jail_get(struct thread *td, struct freebsd32_jail_get_args *uap) 2587 { 2588 struct iovec32 iov32; 2589 struct uio *auio; 2590 int error, i; 2591 2592 /* Check that we have an even number of iovecs. */ 2593 if (uap->iovcnt & 1) 2594 return (EINVAL); 2595 2596 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 2597 if (error) 2598 return (error); 2599 error = kern_jail_get(td, auio, uap->flags); 2600 if (error == 0) 2601 for (i = 0; i < uap->iovcnt; i++) { 2602 PTROUT_CP(auio->uio_iov[i], iov32, iov_base); 2603 CP(auio->uio_iov[i], iov32, iov_len); 2604 error = copyout(&iov32, uap->iovp + i, sizeof(iov32)); 2605 if (error != 0) 2606 break; 2607 } 2608 free(auio, M_IOV); 2609 return (error); 2610 } 2611 2612 int 2613 freebsd32_sigaction(struct thread *td, struct freebsd32_sigaction_args *uap) 2614 { 2615 struct sigaction32 s32; 2616 struct sigaction sa, osa, *sap; 2617 int error; 2618 2619 if (uap->act) { 2620 error = copyin(uap->act, &s32, sizeof(s32)); 2621 if (error) 2622 return (error); 2623 sa.sa_handler = PTRIN(s32.sa_u); 2624 CP(s32, sa, sa_flags); 2625 CP(s32, sa, sa_mask); 2626 sap = &sa; 2627 } else 2628 sap = NULL; 2629 error = kern_sigaction(td, uap->sig, sap, &osa, 0); 2630 if (error == 0 && uap->oact != NULL) { 2631 s32.sa_u = PTROUT(osa.sa_handler); 2632 CP(osa, s32, sa_flags); 2633 CP(osa, s32, sa_mask); 2634 error = copyout(&s32, uap->oact, sizeof(s32)); 2635 } 2636 return (error); 2637 } 2638 2639 #ifdef COMPAT_FREEBSD4 2640 int 2641 freebsd4_freebsd32_sigaction(struct thread *td, 2642 struct freebsd4_freebsd32_sigaction_args *uap) 2643 { 2644 struct sigaction32 s32; 2645 struct sigaction sa, osa, *sap; 2646 int error; 2647 2648 if (uap->act) { 2649 error = copyin(uap->act, &s32, sizeof(s32)); 2650 if (error) 2651 return (error); 2652 sa.sa_handler = PTRIN(s32.sa_u); 2653 CP(s32, sa, sa_flags); 2654 CP(s32, sa, sa_mask); 2655 sap = &sa; 2656 } else 2657 sap = NULL; 2658 error = kern_sigaction(td, uap->sig, sap, &osa, KSA_FREEBSD4); 2659 if (error == 0 && uap->oact != NULL) { 2660 s32.sa_u = PTROUT(osa.sa_handler); 2661 CP(osa, s32, sa_flags); 2662 CP(osa, s32, sa_mask); 2663 error = copyout(&s32, uap->oact, sizeof(s32)); 2664 } 2665 return (error); 2666 } 2667 #endif 2668 2669 #ifdef COMPAT_43 2670 struct osigaction32 { 2671 u_int32_t sa_u; 2672 osigset_t sa_mask; 2673 int sa_flags; 2674 }; 2675 2676 #define ONSIG 32 2677 2678 int 2679 ofreebsd32_sigaction(struct thread *td, 2680 struct ofreebsd32_sigaction_args *uap) 2681 { 2682 struct osigaction32 s32; 2683 struct sigaction sa, osa, *sap; 2684 int error; 2685 2686 if (uap->signum <= 0 || uap->signum >= ONSIG) 2687 return (EINVAL); 2688 2689 if (uap->nsa) { 2690 error = copyin(uap->nsa, &s32, sizeof(s32)); 2691 if (error) 2692 return (error); 2693 sa.sa_handler = PTRIN(s32.sa_u); 2694 CP(s32, sa, sa_flags); 2695 OSIG2SIG(s32.sa_mask, sa.sa_mask); 2696 sap = &sa; 2697 } else 2698 sap = NULL; 2699 error = kern_sigaction(td, uap->signum, sap, &osa, KSA_OSIGSET); 2700 if (error == 0 && uap->osa != NULL) { 2701 s32.sa_u = PTROUT(osa.sa_handler); 2702 CP(osa, s32, sa_flags); 2703 SIG2OSIG(osa.sa_mask, s32.sa_mask); 2704 error = copyout(&s32, uap->osa, sizeof(s32)); 2705 } 2706 return (error); 2707 } 2708 2709 int 2710 ofreebsd32_sigprocmask(struct thread *td, 2711 struct ofreebsd32_sigprocmask_args *uap) 2712 { 2713 sigset_t set, oset; 2714 int error; 2715 2716 OSIG2SIG(uap->mask, set); 2717 error = kern_sigprocmask(td, uap->how, &set, &oset, SIGPROCMASK_OLD); 2718 SIG2OSIG(oset, td->td_retval[0]); 2719 return (error); 2720 } 2721 2722 int 2723 ofreebsd32_sigpending(struct thread *td, 2724 struct ofreebsd32_sigpending_args *uap) 2725 { 2726 struct proc *p = td->td_proc; 2727 sigset_t siglist; 2728 2729 PROC_LOCK(p); 2730 siglist = p->p_siglist; 2731 SIGSETOR(siglist, td->td_siglist); 2732 PROC_UNLOCK(p); 2733 SIG2OSIG(siglist, td->td_retval[0]); 2734 return (0); 2735 } 2736 2737 struct sigvec32 { 2738 u_int32_t sv_handler; 2739 int sv_mask; 2740 int sv_flags; 2741 }; 2742 2743 int 2744 ofreebsd32_sigvec(struct thread *td, 2745 struct ofreebsd32_sigvec_args *uap) 2746 { 2747 struct sigvec32 vec; 2748 struct sigaction sa, osa, *sap; 2749 int error; 2750 2751 if (uap->signum <= 0 || uap->signum >= ONSIG) 2752 return (EINVAL); 2753 2754 if (uap->nsv) { 2755 error = copyin(uap->nsv, &vec, sizeof(vec)); 2756 if (error) 2757 return (error); 2758 sa.sa_handler = PTRIN(vec.sv_handler); 2759 OSIG2SIG(vec.sv_mask, sa.sa_mask); 2760 sa.sa_flags = vec.sv_flags; 2761 sa.sa_flags ^= SA_RESTART; 2762 sap = &sa; 2763 } else 2764 sap = NULL; 2765 error = kern_sigaction(td, uap->signum, sap, &osa, KSA_OSIGSET); 2766 if (error == 0 && uap->osv != NULL) { 2767 vec.sv_handler = PTROUT(osa.sa_handler); 2768 SIG2OSIG(osa.sa_mask, vec.sv_mask); 2769 vec.sv_flags = osa.sa_flags; 2770 vec.sv_flags &= ~SA_NOCLDWAIT; 2771 vec.sv_flags ^= SA_RESTART; 2772 error = copyout(&vec, uap->osv, sizeof(vec)); 2773 } 2774 return (error); 2775 } 2776 2777 int 2778 ofreebsd32_sigblock(struct thread *td, 2779 struct ofreebsd32_sigblock_args *uap) 2780 { 2781 sigset_t set, oset; 2782 2783 OSIG2SIG(uap->mask, set); 2784 kern_sigprocmask(td, SIG_BLOCK, &set, &oset, 0); 2785 SIG2OSIG(oset, td->td_retval[0]); 2786 return (0); 2787 } 2788 2789 int 2790 ofreebsd32_sigsetmask(struct thread *td, 2791 struct ofreebsd32_sigsetmask_args *uap) 2792 { 2793 sigset_t set, oset; 2794 2795 OSIG2SIG(uap->mask, set); 2796 kern_sigprocmask(td, SIG_SETMASK, &set, &oset, 0); 2797 SIG2OSIG(oset, td->td_retval[0]); 2798 return (0); 2799 } 2800 2801 int 2802 ofreebsd32_sigsuspend(struct thread *td, 2803 struct ofreebsd32_sigsuspend_args *uap) 2804 { 2805 sigset_t mask; 2806 2807 OSIG2SIG(uap->mask, mask); 2808 return (kern_sigsuspend(td, mask)); 2809 } 2810 2811 struct sigstack32 { 2812 u_int32_t ss_sp; 2813 int ss_onstack; 2814 }; 2815 2816 int 2817 ofreebsd32_sigstack(struct thread *td, 2818 struct ofreebsd32_sigstack_args *uap) 2819 { 2820 struct sigstack32 s32; 2821 struct sigstack nss, oss; 2822 int error = 0, unss; 2823 2824 if (uap->nss != NULL) { 2825 error = copyin(uap->nss, &s32, sizeof(s32)); 2826 if (error) 2827 return (error); 2828 nss.ss_sp = PTRIN(s32.ss_sp); 2829 CP(s32, nss, ss_onstack); 2830 unss = 1; 2831 } else { 2832 unss = 0; 2833 } 2834 oss.ss_sp = td->td_sigstk.ss_sp; 2835 oss.ss_onstack = sigonstack(cpu_getstack(td)); 2836 if (unss) { 2837 td->td_sigstk.ss_sp = nss.ss_sp; 2838 td->td_sigstk.ss_size = 0; 2839 td->td_sigstk.ss_flags |= (nss.ss_onstack & SS_ONSTACK); 2840 td->td_pflags |= TDP_ALTSTACK; 2841 } 2842 if (uap->oss != NULL) { 2843 s32.ss_sp = PTROUT(oss.ss_sp); 2844 CP(oss, s32, ss_onstack); 2845 error = copyout(&s32, uap->oss, sizeof(s32)); 2846 } 2847 return (error); 2848 } 2849 #endif 2850 2851 int 2852 freebsd32_nanosleep(struct thread *td, struct freebsd32_nanosleep_args *uap) 2853 { 2854 2855 return (freebsd32_user_clock_nanosleep(td, CLOCK_REALTIME, 2856 TIMER_RELTIME, uap->rqtp, uap->rmtp)); 2857 } 2858 2859 int 2860 freebsd32_clock_nanosleep(struct thread *td, 2861 struct freebsd32_clock_nanosleep_args *uap) 2862 { 2863 int error; 2864 2865 error = freebsd32_user_clock_nanosleep(td, uap->clock_id, uap->flags, 2866 uap->rqtp, uap->rmtp); 2867 return (kern_posix_error(td, error)); 2868 } 2869 2870 static int 2871 freebsd32_user_clock_nanosleep(struct thread *td, clockid_t clock_id, 2872 int flags, const struct timespec32 *ua_rqtp, struct timespec32 *ua_rmtp) 2873 { 2874 struct timespec32 rmt32, rqt32; 2875 struct timespec rmt, rqt; 2876 int error, error2; 2877 2878 error = copyin(ua_rqtp, &rqt32, sizeof(rqt32)); 2879 if (error) 2880 return (error); 2881 2882 CP(rqt32, rqt, tv_sec); 2883 CP(rqt32, rqt, tv_nsec); 2884 2885 error = kern_clock_nanosleep(td, clock_id, flags, &rqt, &rmt); 2886 if (error == EINTR && ua_rmtp != NULL && (flags & TIMER_ABSTIME) == 0) { 2887 CP(rmt, rmt32, tv_sec); 2888 CP(rmt, rmt32, tv_nsec); 2889 2890 error2 = copyout(&rmt32, ua_rmtp, sizeof(rmt32)); 2891 if (error2 != 0) 2892 error = error2; 2893 } 2894 return (error); 2895 } 2896 2897 int 2898 freebsd32_clock_gettime(struct thread *td, 2899 struct freebsd32_clock_gettime_args *uap) 2900 { 2901 struct timespec ats; 2902 struct timespec32 ats32; 2903 int error; 2904 2905 error = kern_clock_gettime(td, uap->clock_id, &ats); 2906 if (error == 0) { 2907 CP(ats, ats32, tv_sec); 2908 CP(ats, ats32, tv_nsec); 2909 error = copyout(&ats32, uap->tp, sizeof(ats32)); 2910 } 2911 return (error); 2912 } 2913 2914 int 2915 freebsd32_clock_settime(struct thread *td, 2916 struct freebsd32_clock_settime_args *uap) 2917 { 2918 struct timespec ats; 2919 struct timespec32 ats32; 2920 int error; 2921 2922 error = copyin(uap->tp, &ats32, sizeof(ats32)); 2923 if (error) 2924 return (error); 2925 CP(ats32, ats, tv_sec); 2926 CP(ats32, ats, tv_nsec); 2927 2928 return (kern_clock_settime(td, uap->clock_id, &ats)); 2929 } 2930 2931 int 2932 freebsd32_clock_getres(struct thread *td, 2933 struct freebsd32_clock_getres_args *uap) 2934 { 2935 struct timespec ts; 2936 struct timespec32 ts32; 2937 int error; 2938 2939 if (uap->tp == NULL) 2940 return (0); 2941 error = kern_clock_getres(td, uap->clock_id, &ts); 2942 if (error == 0) { 2943 CP(ts, ts32, tv_sec); 2944 CP(ts, ts32, tv_nsec); 2945 error = copyout(&ts32, uap->tp, sizeof(ts32)); 2946 } 2947 return (error); 2948 } 2949 2950 int freebsd32_ktimer_create(struct thread *td, 2951 struct freebsd32_ktimer_create_args *uap) 2952 { 2953 struct sigevent32 ev32; 2954 struct sigevent ev, *evp; 2955 int error, id; 2956 2957 if (uap->evp == NULL) { 2958 evp = NULL; 2959 } else { 2960 evp = &ev; 2961 error = copyin(uap->evp, &ev32, sizeof(ev32)); 2962 if (error != 0) 2963 return (error); 2964 error = convert_sigevent32(&ev32, &ev); 2965 if (error != 0) 2966 return (error); 2967 } 2968 error = kern_ktimer_create(td, uap->clock_id, evp, &id, -1); 2969 if (error == 0) { 2970 error = copyout(&id, uap->timerid, sizeof(int)); 2971 if (error != 0) 2972 kern_ktimer_delete(td, id); 2973 } 2974 return (error); 2975 } 2976 2977 int 2978 freebsd32_ktimer_settime(struct thread *td, 2979 struct freebsd32_ktimer_settime_args *uap) 2980 { 2981 struct itimerspec32 val32, oval32; 2982 struct itimerspec val, oval, *ovalp; 2983 int error; 2984 2985 error = copyin(uap->value, &val32, sizeof(val32)); 2986 if (error != 0) 2987 return (error); 2988 ITS_CP(val32, val); 2989 ovalp = uap->ovalue != NULL ? &oval : NULL; 2990 error = kern_ktimer_settime(td, uap->timerid, uap->flags, &val, ovalp); 2991 if (error == 0 && uap->ovalue != NULL) { 2992 ITS_CP(oval, oval32); 2993 error = copyout(&oval32, uap->ovalue, sizeof(oval32)); 2994 } 2995 return (error); 2996 } 2997 2998 int 2999 freebsd32_ktimer_gettime(struct thread *td, 3000 struct freebsd32_ktimer_gettime_args *uap) 3001 { 3002 struct itimerspec32 val32; 3003 struct itimerspec val; 3004 int error; 3005 3006 error = kern_ktimer_gettime(td, uap->timerid, &val); 3007 if (error == 0) { 3008 ITS_CP(val, val32); 3009 error = copyout(&val32, uap->value, sizeof(val32)); 3010 } 3011 return (error); 3012 } 3013 3014 int 3015 freebsd32_clock_getcpuclockid2(struct thread *td, 3016 struct freebsd32_clock_getcpuclockid2_args *uap) 3017 { 3018 clockid_t clk_id; 3019 int error; 3020 3021 error = kern_clock_getcpuclockid2(td, PAIR32TO64(id_t, uap->id), 3022 uap->which, &clk_id); 3023 if (error == 0) 3024 error = copyout(&clk_id, uap->clock_id, sizeof(clockid_t)); 3025 return (error); 3026 } 3027 3028 int 3029 freebsd32_thr_new(struct thread *td, 3030 struct freebsd32_thr_new_args *uap) 3031 { 3032 struct thr_param32 param32; 3033 struct thr_param param; 3034 int error; 3035 3036 if (uap->param_size < 0 || 3037 uap->param_size > sizeof(struct thr_param32)) 3038 return (EINVAL); 3039 bzero(¶m, sizeof(struct thr_param)); 3040 bzero(¶m32, sizeof(struct thr_param32)); 3041 error = copyin(uap->param, ¶m32, uap->param_size); 3042 if (error != 0) 3043 return (error); 3044 param.start_func = PTRIN(param32.start_func); 3045 param.arg = PTRIN(param32.arg); 3046 param.stack_base = PTRIN(param32.stack_base); 3047 param.stack_size = param32.stack_size; 3048 param.tls_base = PTRIN(param32.tls_base); 3049 param.tls_size = param32.tls_size; 3050 param.child_tid = PTRIN(param32.child_tid); 3051 param.parent_tid = PTRIN(param32.parent_tid); 3052 param.flags = param32.flags; 3053 param.rtp = PTRIN(param32.rtp); 3054 param.spare[0] = PTRIN(param32.spare[0]); 3055 param.spare[1] = PTRIN(param32.spare[1]); 3056 param.spare[2] = PTRIN(param32.spare[2]); 3057 3058 return (kern_thr_new(td, ¶m)); 3059 } 3060 3061 int 3062 freebsd32_thr_suspend(struct thread *td, struct freebsd32_thr_suspend_args *uap) 3063 { 3064 struct timespec32 ts32; 3065 struct timespec ts, *tsp; 3066 int error; 3067 3068 error = 0; 3069 tsp = NULL; 3070 if (uap->timeout != NULL) { 3071 error = copyin((const void *)uap->timeout, (void *)&ts32, 3072 sizeof(struct timespec32)); 3073 if (error != 0) 3074 return (error); 3075 ts.tv_sec = ts32.tv_sec; 3076 ts.tv_nsec = ts32.tv_nsec; 3077 tsp = &ts; 3078 } 3079 return (kern_thr_suspend(td, tsp)); 3080 } 3081 3082 void 3083 siginfo_to_siginfo32(const siginfo_t *src, struct siginfo32 *dst) 3084 { 3085 bzero(dst, sizeof(*dst)); 3086 dst->si_signo = src->si_signo; 3087 dst->si_errno = src->si_errno; 3088 dst->si_code = src->si_code; 3089 dst->si_pid = src->si_pid; 3090 dst->si_uid = src->si_uid; 3091 dst->si_status = src->si_status; 3092 dst->si_addr = (uintptr_t)src->si_addr; 3093 dst->si_value.sival_int = src->si_value.sival_int; 3094 dst->si_timerid = src->si_timerid; 3095 dst->si_overrun = src->si_overrun; 3096 } 3097 3098 #ifndef _FREEBSD32_SYSPROTO_H_ 3099 struct freebsd32_sigqueue_args { 3100 pid_t pid; 3101 int signum; 3102 /* union sigval32 */ int value; 3103 }; 3104 #endif 3105 int 3106 freebsd32_sigqueue(struct thread *td, struct freebsd32_sigqueue_args *uap) 3107 { 3108 union sigval sv; 3109 3110 /* 3111 * On 32-bit ABIs, sival_int and sival_ptr are the same. 3112 * On 64-bit little-endian ABIs, the low bits are the same. 3113 * In 64-bit big-endian ABIs, sival_int overlaps with 3114 * sival_ptr's HIGH bits. We choose to support sival_int 3115 * rather than sival_ptr in this case as it seems to be 3116 * more common. 3117 */ 3118 bzero(&sv, sizeof(sv)); 3119 sv.sival_int = uap->value; 3120 3121 return (kern_sigqueue(td, uap->pid, uap->signum, &sv)); 3122 } 3123 3124 int 3125 freebsd32_sigtimedwait(struct thread *td, struct freebsd32_sigtimedwait_args *uap) 3126 { 3127 struct timespec32 ts32; 3128 struct timespec ts; 3129 struct timespec *timeout; 3130 sigset_t set; 3131 ksiginfo_t ksi; 3132 struct siginfo32 si32; 3133 int error; 3134 3135 if (uap->timeout) { 3136 error = copyin(uap->timeout, &ts32, sizeof(ts32)); 3137 if (error) 3138 return (error); 3139 ts.tv_sec = ts32.tv_sec; 3140 ts.tv_nsec = ts32.tv_nsec; 3141 timeout = &ts; 3142 } else 3143 timeout = NULL; 3144 3145 error = copyin(uap->set, &set, sizeof(set)); 3146 if (error) 3147 return (error); 3148 3149 error = kern_sigtimedwait(td, set, &ksi, timeout); 3150 if (error) 3151 return (error); 3152 3153 if (uap->info) { 3154 siginfo_to_siginfo32(&ksi.ksi_info, &si32); 3155 error = copyout(&si32, uap->info, sizeof(struct siginfo32)); 3156 } 3157 3158 if (error == 0) 3159 td->td_retval[0] = ksi.ksi_signo; 3160 return (error); 3161 } 3162 3163 /* 3164 * MPSAFE 3165 */ 3166 int 3167 freebsd32_sigwaitinfo(struct thread *td, struct freebsd32_sigwaitinfo_args *uap) 3168 { 3169 ksiginfo_t ksi; 3170 struct siginfo32 si32; 3171 sigset_t set; 3172 int error; 3173 3174 error = copyin(uap->set, &set, sizeof(set)); 3175 if (error) 3176 return (error); 3177 3178 error = kern_sigtimedwait(td, set, &ksi, NULL); 3179 if (error) 3180 return (error); 3181 3182 if (uap->info) { 3183 siginfo_to_siginfo32(&ksi.ksi_info, &si32); 3184 error = copyout(&si32, uap->info, sizeof(struct siginfo32)); 3185 } 3186 if (error == 0) 3187 td->td_retval[0] = ksi.ksi_signo; 3188 return (error); 3189 } 3190 3191 int 3192 freebsd32_cpuset_setid(struct thread *td, 3193 struct freebsd32_cpuset_setid_args *uap) 3194 { 3195 3196 return (kern_cpuset_setid(td, uap->which, 3197 PAIR32TO64(id_t, uap->id), uap->setid)); 3198 } 3199 3200 int 3201 freebsd32_cpuset_getid(struct thread *td, 3202 struct freebsd32_cpuset_getid_args *uap) 3203 { 3204 3205 return (kern_cpuset_getid(td, uap->level, uap->which, 3206 PAIR32TO64(id_t, uap->id), uap->setid)); 3207 } 3208 3209 int 3210 freebsd32_cpuset_getaffinity(struct thread *td, 3211 struct freebsd32_cpuset_getaffinity_args *uap) 3212 { 3213 3214 return (kern_cpuset_getaffinity(td, uap->level, uap->which, 3215 PAIR32TO64(id_t,uap->id), uap->cpusetsize, uap->mask)); 3216 } 3217 3218 int 3219 freebsd32_cpuset_setaffinity(struct thread *td, 3220 struct freebsd32_cpuset_setaffinity_args *uap) 3221 { 3222 3223 return (kern_cpuset_setaffinity(td, uap->level, uap->which, 3224 PAIR32TO64(id_t,uap->id), uap->cpusetsize, uap->mask)); 3225 } 3226 3227 int 3228 freebsd32_cpuset_getdomain(struct thread *td, 3229 struct freebsd32_cpuset_getdomain_args *uap) 3230 { 3231 3232 return (kern_cpuset_getdomain(td, uap->level, uap->which, 3233 PAIR32TO64(id_t,uap->id), uap->domainsetsize, uap->mask, uap->policy)); 3234 } 3235 3236 int 3237 freebsd32_cpuset_setdomain(struct thread *td, 3238 struct freebsd32_cpuset_setdomain_args *uap) 3239 { 3240 3241 return (kern_cpuset_setdomain(td, uap->level, uap->which, 3242 PAIR32TO64(id_t,uap->id), uap->domainsetsize, uap->mask, uap->policy)); 3243 } 3244 3245 int 3246 freebsd32_nmount(struct thread *td, 3247 struct freebsd32_nmount_args /* { 3248 struct iovec *iovp; 3249 unsigned int iovcnt; 3250 int flags; 3251 } */ *uap) 3252 { 3253 struct uio *auio; 3254 uint64_t flags; 3255 int error; 3256 3257 /* 3258 * Mount flags are now 64-bits. On 32-bit archtectures only 3259 * 32-bits are passed in, but from here on everything handles 3260 * 64-bit flags correctly. 3261 */ 3262 flags = uap->flags; 3263 3264 AUDIT_ARG_FFLAGS(flags); 3265 3266 /* 3267 * Filter out MNT_ROOTFS. We do not want clients of nmount() in 3268 * userspace to set this flag, but we must filter it out if we want 3269 * MNT_UPDATE on the root file system to work. 3270 * MNT_ROOTFS should only be set by the kernel when mounting its 3271 * root file system. 3272 */ 3273 flags &= ~MNT_ROOTFS; 3274 3275 /* 3276 * check that we have an even number of iovec's 3277 * and that we have at least two options. 3278 */ 3279 if ((uap->iovcnt & 1) || (uap->iovcnt < 4)) 3280 return (EINVAL); 3281 3282 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 3283 if (error) 3284 return (error); 3285 error = vfs_donmount(td, flags, auio); 3286 3287 free(auio, M_IOV); 3288 return error; 3289 } 3290 3291 #if 0 3292 int 3293 freebsd32_xxx(struct thread *td, struct freebsd32_xxx_args *uap) 3294 { 3295 struct yyy32 *p32, s32; 3296 struct yyy *p = NULL, s; 3297 struct xxx_arg ap; 3298 int error; 3299 3300 if (uap->zzz) { 3301 error = copyin(uap->zzz, &s32, sizeof(s32)); 3302 if (error) 3303 return (error); 3304 /* translate in */ 3305 p = &s; 3306 } 3307 error = kern_xxx(td, p); 3308 if (error) 3309 return (error); 3310 if (uap->zzz) { 3311 /* translate out */ 3312 error = copyout(&s32, p32, sizeof(s32)); 3313 } 3314 return (error); 3315 } 3316 #endif 3317 3318 int 3319 syscall32_module_handler(struct module *mod, int what, void *arg) 3320 { 3321 3322 return (kern_syscall_module_handler(freebsd32_sysent, mod, what, arg)); 3323 } 3324 3325 int 3326 syscall32_helper_register(struct syscall_helper_data *sd, int flags) 3327 { 3328 3329 return (kern_syscall_helper_register(freebsd32_sysent, sd, flags)); 3330 } 3331 3332 int 3333 syscall32_helper_unregister(struct syscall_helper_data *sd) 3334 { 3335 3336 return (kern_syscall_helper_unregister(freebsd32_sysent, sd)); 3337 } 3338 3339 int 3340 freebsd32_copyout_strings(struct image_params *imgp, uintptr_t *stack_base) 3341 { 3342 int argc, envc, i; 3343 u_int32_t *vectp; 3344 char *stringp; 3345 uintptr_t destp, ustringp; 3346 struct freebsd32_ps_strings *arginfo; 3347 char canary[sizeof(long) * 8]; 3348 int32_t pagesizes32[MAXPAGESIZES]; 3349 size_t execpath_len; 3350 int error, szsigcode; 3351 3352 /* 3353 * Calculate string base and vector table pointers. 3354 * Also deal with signal trampoline code for this exec type. 3355 */ 3356 if (imgp->execpath != NULL && imgp->auxargs != NULL) 3357 execpath_len = strlen(imgp->execpath) + 1; 3358 else 3359 execpath_len = 0; 3360 arginfo = (struct freebsd32_ps_strings *)curproc->p_sysent-> 3361 sv_psstrings; 3362 imgp->ps_strings = arginfo; 3363 if (imgp->proc->p_sysent->sv_sigcode_base == 0) 3364 szsigcode = *(imgp->proc->p_sysent->sv_szsigcode); 3365 else 3366 szsigcode = 0; 3367 destp = (uintptr_t)arginfo; 3368 3369 /* 3370 * install sigcode 3371 */ 3372 if (szsigcode != 0) { 3373 destp -= szsigcode; 3374 destp = rounddown2(destp, sizeof(uint32_t)); 3375 error = copyout(imgp->proc->p_sysent->sv_sigcode, (void *)destp, 3376 szsigcode); 3377 if (error != 0) 3378 return (error); 3379 } 3380 3381 /* 3382 * Copy the image path for the rtld. 3383 */ 3384 if (execpath_len != 0) { 3385 destp -= execpath_len; 3386 imgp->execpathp = (void *)destp; 3387 error = copyout(imgp->execpath, imgp->execpathp, execpath_len); 3388 if (error != 0) 3389 return (error); 3390 } 3391 3392 /* 3393 * Prepare the canary for SSP. 3394 */ 3395 arc4rand(canary, sizeof(canary), 0); 3396 destp -= sizeof(canary); 3397 imgp->canary = (void *)destp; 3398 error = copyout(canary, imgp->canary, sizeof(canary)); 3399 if (error != 0) 3400 return (error); 3401 imgp->canarylen = sizeof(canary); 3402 3403 /* 3404 * Prepare the pagesizes array. 3405 */ 3406 for (i = 0; i < MAXPAGESIZES; i++) 3407 pagesizes32[i] = (uint32_t)pagesizes[i]; 3408 destp -= sizeof(pagesizes32); 3409 destp = rounddown2(destp, sizeof(uint32_t)); 3410 imgp->pagesizes = (void *)destp; 3411 error = copyout(pagesizes32, imgp->pagesizes, sizeof(pagesizes32)); 3412 if (error != 0) 3413 return (error); 3414 imgp->pagesizeslen = sizeof(pagesizes32); 3415 3416 /* 3417 * Allocate room for the argument and environment strings. 3418 */ 3419 destp -= ARG_MAX - imgp->args->stringspace; 3420 destp = rounddown2(destp, sizeof(uint32_t)); 3421 ustringp = destp; 3422 3423 if (imgp->sysent->sv_stackgap != NULL) 3424 imgp->sysent->sv_stackgap(imgp, &destp); 3425 3426 if (imgp->auxargs) { 3427 /* 3428 * Allocate room on the stack for the ELF auxargs 3429 * array. It has up to AT_COUNT entries. 3430 */ 3431 destp -= AT_COUNT * sizeof(Elf32_Auxinfo); 3432 destp = rounddown2(destp, sizeof(uint32_t)); 3433 } 3434 3435 vectp = (uint32_t *)destp; 3436 3437 /* 3438 * Allocate room for the argv[] and env vectors including the 3439 * terminating NULL pointers. 3440 */ 3441 vectp -= imgp->args->argc + 1 + imgp->args->envc + 1; 3442 3443 /* 3444 * vectp also becomes our initial stack base 3445 */ 3446 *stack_base = (uintptr_t)vectp; 3447 3448 stringp = imgp->args->begin_argv; 3449 argc = imgp->args->argc; 3450 envc = imgp->args->envc; 3451 /* 3452 * Copy out strings - arguments and environment. 3453 */ 3454 error = copyout(stringp, (void *)ustringp, 3455 ARG_MAX - imgp->args->stringspace); 3456 if (error != 0) 3457 return (error); 3458 3459 /* 3460 * Fill in "ps_strings" struct for ps, w, etc. 3461 */ 3462 imgp->argv = vectp; 3463 if (suword32(&arginfo->ps_argvstr, (u_int32_t)(intptr_t)vectp) != 0 || 3464 suword32(&arginfo->ps_nargvstr, argc) != 0) 3465 return (EFAULT); 3466 3467 /* 3468 * Fill in argument portion of vector table. 3469 */ 3470 for (; argc > 0; --argc) { 3471 if (suword32(vectp++, ustringp) != 0) 3472 return (EFAULT); 3473 while (*stringp++ != 0) 3474 ustringp++; 3475 ustringp++; 3476 } 3477 3478 /* a null vector table pointer separates the argp's from the envp's */ 3479 if (suword32(vectp++, 0) != 0) 3480 return (EFAULT); 3481 3482 imgp->envv = vectp; 3483 if (suword32(&arginfo->ps_envstr, (u_int32_t)(intptr_t)vectp) != 0 || 3484 suword32(&arginfo->ps_nenvstr, envc) != 0) 3485 return (EFAULT); 3486 3487 /* 3488 * Fill in environment portion of vector table. 3489 */ 3490 for (; envc > 0; --envc) { 3491 if (suword32(vectp++, ustringp) != 0) 3492 return (EFAULT); 3493 while (*stringp++ != 0) 3494 ustringp++; 3495 ustringp++; 3496 } 3497 3498 /* end of vector table is a null pointer */ 3499 if (suword32(vectp, 0) != 0) 3500 return (EFAULT); 3501 3502 if (imgp->auxargs) { 3503 vectp++; 3504 error = imgp->sysent->sv_copyout_auxargs(imgp, 3505 (uintptr_t)vectp); 3506 if (error != 0) 3507 return (error); 3508 } 3509 3510 return (0); 3511 } 3512 3513 int 3514 freebsd32_kldstat(struct thread *td, struct freebsd32_kldstat_args *uap) 3515 { 3516 struct kld_file_stat *stat; 3517 struct kld32_file_stat *stat32; 3518 int error, version; 3519 3520 if ((error = copyin(&uap->stat->version, &version, sizeof(version))) 3521 != 0) 3522 return (error); 3523 if (version != sizeof(struct kld32_file_stat_1) && 3524 version != sizeof(struct kld32_file_stat)) 3525 return (EINVAL); 3526 3527 stat = malloc(sizeof(*stat), M_TEMP, M_WAITOK | M_ZERO); 3528 stat32 = malloc(sizeof(*stat32), M_TEMP, M_WAITOK | M_ZERO); 3529 error = kern_kldstat(td, uap->fileid, stat); 3530 if (error == 0) { 3531 bcopy(&stat->name[0], &stat32->name[0], sizeof(stat->name)); 3532 CP(*stat, *stat32, refs); 3533 CP(*stat, *stat32, id); 3534 PTROUT_CP(*stat, *stat32, address); 3535 CP(*stat, *stat32, size); 3536 bcopy(&stat->pathname[0], &stat32->pathname[0], 3537 sizeof(stat->pathname)); 3538 stat32->version = version; 3539 error = copyout(stat32, uap->stat, version); 3540 } 3541 free(stat, M_TEMP); 3542 free(stat32, M_TEMP); 3543 return (error); 3544 } 3545 3546 int 3547 freebsd32_posix_fallocate(struct thread *td, 3548 struct freebsd32_posix_fallocate_args *uap) 3549 { 3550 int error; 3551 3552 error = kern_posix_fallocate(td, uap->fd, 3553 PAIR32TO64(off_t, uap->offset), PAIR32TO64(off_t, uap->len)); 3554 return (kern_posix_error(td, error)); 3555 } 3556 3557 int 3558 freebsd32_posix_fadvise(struct thread *td, 3559 struct freebsd32_posix_fadvise_args *uap) 3560 { 3561 int error; 3562 3563 error = kern_posix_fadvise(td, uap->fd, PAIR32TO64(off_t, uap->offset), 3564 PAIR32TO64(off_t, uap->len), uap->advice); 3565 return (kern_posix_error(td, error)); 3566 } 3567 3568 int 3569 convert_sigevent32(struct sigevent32 *sig32, struct sigevent *sig) 3570 { 3571 3572 CP(*sig32, *sig, sigev_notify); 3573 switch (sig->sigev_notify) { 3574 case SIGEV_NONE: 3575 break; 3576 case SIGEV_THREAD_ID: 3577 CP(*sig32, *sig, sigev_notify_thread_id); 3578 /* FALLTHROUGH */ 3579 case SIGEV_SIGNAL: 3580 CP(*sig32, *sig, sigev_signo); 3581 PTRIN_CP(*sig32, *sig, sigev_value.sival_ptr); 3582 break; 3583 case SIGEV_KEVENT: 3584 CP(*sig32, *sig, sigev_notify_kqueue); 3585 CP(*sig32, *sig, sigev_notify_kevent_flags); 3586 PTRIN_CP(*sig32, *sig, sigev_value.sival_ptr); 3587 break; 3588 default: 3589 return (EINVAL); 3590 } 3591 return (0); 3592 } 3593 3594 int 3595 freebsd32_procctl(struct thread *td, struct freebsd32_procctl_args *uap) 3596 { 3597 void *data; 3598 union { 3599 struct procctl_reaper_status rs; 3600 struct procctl_reaper_pids rp; 3601 struct procctl_reaper_kill rk; 3602 } x; 3603 union { 3604 struct procctl_reaper_pids32 rp; 3605 } x32; 3606 int error, error1, flags, signum; 3607 3608 if (uap->com >= PROC_PROCCTL_MD_MIN) 3609 return (cpu_procctl(td, uap->idtype, PAIR32TO64(id_t, uap->id), 3610 uap->com, PTRIN(uap->data))); 3611 3612 switch (uap->com) { 3613 case PROC_ASLR_CTL: 3614 case PROC_PROTMAX_CTL: 3615 case PROC_SPROTECT: 3616 case PROC_STACKGAP_CTL: 3617 case PROC_TRACE_CTL: 3618 case PROC_TRAPCAP_CTL: 3619 error = copyin(PTRIN(uap->data), &flags, sizeof(flags)); 3620 if (error != 0) 3621 return (error); 3622 data = &flags; 3623 break; 3624 case PROC_REAP_ACQUIRE: 3625 case PROC_REAP_RELEASE: 3626 if (uap->data != NULL) 3627 return (EINVAL); 3628 data = NULL; 3629 break; 3630 case PROC_REAP_STATUS: 3631 data = &x.rs; 3632 break; 3633 case PROC_REAP_GETPIDS: 3634 error = copyin(uap->data, &x32.rp, sizeof(x32.rp)); 3635 if (error != 0) 3636 return (error); 3637 CP(x32.rp, x.rp, rp_count); 3638 PTRIN_CP(x32.rp, x.rp, rp_pids); 3639 data = &x.rp; 3640 break; 3641 case PROC_REAP_KILL: 3642 error = copyin(uap->data, &x.rk, sizeof(x.rk)); 3643 if (error != 0) 3644 return (error); 3645 data = &x.rk; 3646 break; 3647 case PROC_ASLR_STATUS: 3648 case PROC_PROTMAX_STATUS: 3649 case PROC_STACKGAP_STATUS: 3650 case PROC_TRACE_STATUS: 3651 case PROC_TRAPCAP_STATUS: 3652 data = &flags; 3653 break; 3654 case PROC_PDEATHSIG_CTL: 3655 error = copyin(uap->data, &signum, sizeof(signum)); 3656 if (error != 0) 3657 return (error); 3658 data = &signum; 3659 break; 3660 case PROC_PDEATHSIG_STATUS: 3661 data = &signum; 3662 break; 3663 default: 3664 return (EINVAL); 3665 } 3666 error = kern_procctl(td, uap->idtype, PAIR32TO64(id_t, uap->id), 3667 uap->com, data); 3668 switch (uap->com) { 3669 case PROC_REAP_STATUS: 3670 if (error == 0) 3671 error = copyout(&x.rs, uap->data, sizeof(x.rs)); 3672 break; 3673 case PROC_REAP_KILL: 3674 error1 = copyout(&x.rk, uap->data, sizeof(x.rk)); 3675 if (error == 0) 3676 error = error1; 3677 break; 3678 case PROC_ASLR_STATUS: 3679 case PROC_PROTMAX_STATUS: 3680 case PROC_STACKGAP_STATUS: 3681 case PROC_TRACE_STATUS: 3682 case PROC_TRAPCAP_STATUS: 3683 if (error == 0) 3684 error = copyout(&flags, uap->data, sizeof(flags)); 3685 break; 3686 case PROC_PDEATHSIG_STATUS: 3687 if (error == 0) 3688 error = copyout(&signum, uap->data, sizeof(signum)); 3689 break; 3690 } 3691 return (error); 3692 } 3693 3694 int 3695 freebsd32_fcntl(struct thread *td, struct freebsd32_fcntl_args *uap) 3696 { 3697 long tmp; 3698 3699 switch (uap->cmd) { 3700 /* 3701 * Do unsigned conversion for arg when operation 3702 * interprets it as flags or pointer. 3703 */ 3704 case F_SETLK_REMOTE: 3705 case F_SETLKW: 3706 case F_SETLK: 3707 case F_GETLK: 3708 case F_SETFD: 3709 case F_SETFL: 3710 case F_OGETLK: 3711 case F_OSETLK: 3712 case F_OSETLKW: 3713 tmp = (unsigned int)(uap->arg); 3714 break; 3715 default: 3716 tmp = uap->arg; 3717 break; 3718 } 3719 return (kern_fcntl_freebsd(td, uap->fd, uap->cmd, tmp)); 3720 } 3721 3722 int 3723 freebsd32_ppoll(struct thread *td, struct freebsd32_ppoll_args *uap) 3724 { 3725 struct timespec32 ts32; 3726 struct timespec ts, *tsp; 3727 sigset_t set, *ssp; 3728 int error; 3729 3730 if (uap->ts != NULL) { 3731 error = copyin(uap->ts, &ts32, sizeof(ts32)); 3732 if (error != 0) 3733 return (error); 3734 CP(ts32, ts, tv_sec); 3735 CP(ts32, ts, tv_nsec); 3736 tsp = &ts; 3737 } else 3738 tsp = NULL; 3739 if (uap->set != NULL) { 3740 error = copyin(uap->set, &set, sizeof(set)); 3741 if (error != 0) 3742 return (error); 3743 ssp = &set; 3744 } else 3745 ssp = NULL; 3746 3747 return (kern_poll(td, uap->fds, uap->nfds, tsp, ssp)); 3748 } 3749 3750 int 3751 freebsd32_sched_rr_get_interval(struct thread *td, 3752 struct freebsd32_sched_rr_get_interval_args *uap) 3753 { 3754 struct timespec ts; 3755 struct timespec32 ts32; 3756 int error; 3757 3758 error = kern_sched_rr_get_interval(td, uap->pid, &ts); 3759 if (error == 0) { 3760 CP(ts, ts32, tv_sec); 3761 CP(ts, ts32, tv_nsec); 3762 error = copyout(&ts32, uap->interval, sizeof(ts32)); 3763 } 3764 return (error); 3765 } 3766