1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2002 Doug Rabson 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include "opt_ffclock.h" 33 #include "opt_inet.h" 34 #include "opt_inet6.h" 35 #include "opt_ktrace.h" 36 37 #define __ELF_WORD_SIZE 32 38 39 #ifdef COMPAT_FREEBSD11 40 #define _WANT_FREEBSD11_KEVENT 41 #endif 42 43 #include <sys/param.h> 44 #include <sys/bus.h> 45 #include <sys/capsicum.h> 46 #include <sys/clock.h> 47 #include <sys/exec.h> 48 #include <sys/fcntl.h> 49 #include <sys/filedesc.h> 50 #include <sys/imgact.h> 51 #include <sys/jail.h> 52 #include <sys/kernel.h> 53 #include <sys/limits.h> 54 #include <sys/linker.h> 55 #include <sys/lock.h> 56 #include <sys/malloc.h> 57 #include <sys/file.h> /* Must come after sys/malloc.h */ 58 #include <sys/imgact.h> 59 #include <sys/mbuf.h> 60 #include <sys/mman.h> 61 #include <sys/module.h> 62 #include <sys/mount.h> 63 #include <sys/mutex.h> 64 #include <sys/namei.h> 65 #include <sys/priv.h> 66 #include <sys/proc.h> 67 #include <sys/procctl.h> 68 #include <sys/ptrace.h> 69 #include <sys/reboot.h> 70 #include <sys/resource.h> 71 #include <sys/resourcevar.h> 72 #include <sys/selinfo.h> 73 #include <sys/eventvar.h> /* Must come after sys/selinfo.h */ 74 #include <sys/pipe.h> /* Must come after sys/selinfo.h */ 75 #include <sys/signal.h> 76 #include <sys/signalvar.h> 77 #include <sys/socket.h> 78 #include <sys/socketvar.h> 79 #include <sys/stat.h> 80 #include <sys/syscall.h> 81 #include <sys/syscallsubr.h> 82 #include <sys/sysctl.h> 83 #include <sys/sysent.h> 84 #include <sys/sysproto.h> 85 #include <sys/systm.h> 86 #include <sys/thr.h> 87 #include <sys/timex.h> 88 #include <sys/unistd.h> 89 #include <sys/ucontext.h> 90 #include <sys/vnode.h> 91 #include <sys/wait.h> 92 #include <sys/ipc.h> 93 #include <sys/msg.h> 94 #include <sys/sem.h> 95 #include <sys/shm.h> 96 #include <sys/timeffc.h> 97 #ifdef KTRACE 98 #include <sys/ktrace.h> 99 #endif 100 101 #ifdef INET 102 #include <netinet/in.h> 103 #endif 104 105 #include <vm/vm.h> 106 #include <vm/vm_param.h> 107 #include <vm/pmap.h> 108 #include <vm/vm_map.h> 109 #include <vm/vm_object.h> 110 #include <vm/vm_extern.h> 111 112 #include <machine/cpu.h> 113 #include <machine/elf.h> 114 #ifdef __amd64__ 115 #include <machine/md_var.h> 116 #endif 117 118 #include <security/audit/audit.h> 119 120 #include <compat/freebsd32/freebsd32_util.h> 121 #include <compat/freebsd32/freebsd32.h> 122 #include <compat/freebsd32/freebsd32_ipc.h> 123 #include <compat/freebsd32/freebsd32_misc.h> 124 #include <compat/freebsd32/freebsd32_signal.h> 125 #include <compat/freebsd32/freebsd32_proto.h> 126 127 FEATURE(compat_freebsd_32bit, "Compatible with 32-bit FreeBSD"); 128 129 struct ptrace_io_desc32 { 130 int piod_op; 131 uint32_t piod_offs; 132 uint32_t piod_addr; 133 uint32_t piod_len; 134 }; 135 136 struct ptrace_sc_ret32 { 137 uint32_t sr_retval[2]; 138 int sr_error; 139 }; 140 141 struct ptrace_vm_entry32 { 142 int pve_entry; 143 int pve_timestamp; 144 uint32_t pve_start; 145 uint32_t pve_end; 146 uint32_t pve_offset; 147 u_int pve_prot; 148 u_int pve_pathlen; 149 int32_t pve_fileid; 150 u_int pve_fsid; 151 uint32_t pve_path; 152 }; 153 154 #ifdef __amd64__ 155 CTASSERT(sizeof(struct timeval32) == 8); 156 CTASSERT(sizeof(struct timespec32) == 8); 157 CTASSERT(sizeof(struct itimerval32) == 16); 158 CTASSERT(sizeof(struct bintime32) == 12); 159 #endif 160 CTASSERT(sizeof(struct ostatfs32) == 256); 161 #ifdef __amd64__ 162 CTASSERT(sizeof(struct rusage32) == 72); 163 #endif 164 CTASSERT(sizeof(struct sigaltstack32) == 12); 165 #ifdef __amd64__ 166 CTASSERT(sizeof(struct kevent32) == 56); 167 #else 168 CTASSERT(sizeof(struct kevent32) == 64); 169 #endif 170 CTASSERT(sizeof(struct iovec32) == 8); 171 CTASSERT(sizeof(struct msghdr32) == 28); 172 #ifdef __amd64__ 173 CTASSERT(sizeof(struct stat32) == 208); 174 CTASSERT(sizeof(struct freebsd11_stat32) == 96); 175 #endif 176 CTASSERT(sizeof(struct sigaction32) == 24); 177 178 static int freebsd32_kevent_copyout(void *arg, struct kevent *kevp, int count); 179 static int freebsd32_kevent_copyin(void *arg, struct kevent *kevp, int count); 180 static int freebsd32_user_clock_nanosleep(struct thread *td, clockid_t clock_id, 181 int flags, const struct timespec32 *ua_rqtp, struct timespec32 *ua_rmtp); 182 183 void 184 freebsd32_rusage_out(const struct rusage *s, struct rusage32 *s32) 185 { 186 187 TV_CP(*s, *s32, ru_utime); 188 TV_CP(*s, *s32, ru_stime); 189 CP(*s, *s32, ru_maxrss); 190 CP(*s, *s32, ru_ixrss); 191 CP(*s, *s32, ru_idrss); 192 CP(*s, *s32, ru_isrss); 193 CP(*s, *s32, ru_minflt); 194 CP(*s, *s32, ru_majflt); 195 CP(*s, *s32, ru_nswap); 196 CP(*s, *s32, ru_inblock); 197 CP(*s, *s32, ru_oublock); 198 CP(*s, *s32, ru_msgsnd); 199 CP(*s, *s32, ru_msgrcv); 200 CP(*s, *s32, ru_nsignals); 201 CP(*s, *s32, ru_nvcsw); 202 CP(*s, *s32, ru_nivcsw); 203 } 204 205 int 206 freebsd32_wait4(struct thread *td, struct freebsd32_wait4_args *uap) 207 { 208 int error, status; 209 struct rusage32 ru32; 210 struct rusage ru, *rup; 211 212 if (uap->rusage != NULL) 213 rup = &ru; 214 else 215 rup = NULL; 216 error = kern_wait(td, uap->pid, &status, uap->options, rup); 217 if (error) 218 return (error); 219 if (uap->status != NULL) 220 error = copyout(&status, uap->status, sizeof(status)); 221 if (uap->rusage != NULL && error == 0) { 222 freebsd32_rusage_out(&ru, &ru32); 223 error = copyout(&ru32, uap->rusage, sizeof(ru32)); 224 } 225 return (error); 226 } 227 228 int 229 freebsd32_wait6(struct thread *td, struct freebsd32_wait6_args *uap) 230 { 231 struct __wrusage32 wru32; 232 struct __wrusage wru, *wrup; 233 struct siginfo32 si32; 234 struct __siginfo si, *sip; 235 int error, status; 236 237 if (uap->wrusage != NULL) 238 wrup = &wru; 239 else 240 wrup = NULL; 241 if (uap->info != NULL) { 242 sip = &si; 243 bzero(sip, sizeof(*sip)); 244 } else 245 sip = NULL; 246 error = kern_wait6(td, uap->idtype, PAIR32TO64(id_t, uap->id), 247 &status, uap->options, wrup, sip); 248 if (error != 0) 249 return (error); 250 if (uap->status != NULL) 251 error = copyout(&status, uap->status, sizeof(status)); 252 if (uap->wrusage != NULL && error == 0) { 253 freebsd32_rusage_out(&wru.wru_self, &wru32.wru_self); 254 freebsd32_rusage_out(&wru.wru_children, &wru32.wru_children); 255 error = copyout(&wru32, uap->wrusage, sizeof(wru32)); 256 } 257 if (uap->info != NULL && error == 0) { 258 siginfo_to_siginfo32 (&si, &si32); 259 error = copyout(&si32, uap->info, sizeof(si32)); 260 } 261 return (error); 262 } 263 264 #ifdef COMPAT_FREEBSD4 265 static void 266 copy_statfs(struct statfs *in, struct ostatfs32 *out) 267 { 268 269 statfs_scale_blocks(in, INT32_MAX); 270 bzero(out, sizeof(*out)); 271 CP(*in, *out, f_bsize); 272 out->f_iosize = MIN(in->f_iosize, INT32_MAX); 273 CP(*in, *out, f_blocks); 274 CP(*in, *out, f_bfree); 275 CP(*in, *out, f_bavail); 276 out->f_files = MIN(in->f_files, INT32_MAX); 277 out->f_ffree = MIN(in->f_ffree, INT32_MAX); 278 CP(*in, *out, f_fsid); 279 CP(*in, *out, f_owner); 280 CP(*in, *out, f_type); 281 CP(*in, *out, f_flags); 282 out->f_syncwrites = MIN(in->f_syncwrites, INT32_MAX); 283 out->f_asyncwrites = MIN(in->f_asyncwrites, INT32_MAX); 284 strlcpy(out->f_fstypename, 285 in->f_fstypename, MFSNAMELEN); 286 strlcpy(out->f_mntonname, 287 in->f_mntonname, min(MNAMELEN, FREEBSD4_OMNAMELEN)); 288 out->f_syncreads = MIN(in->f_syncreads, INT32_MAX); 289 out->f_asyncreads = MIN(in->f_asyncreads, INT32_MAX); 290 strlcpy(out->f_mntfromname, 291 in->f_mntfromname, min(MNAMELEN, FREEBSD4_OMNAMELEN)); 292 } 293 #endif 294 295 int 296 freebsd32_getfsstat(struct thread *td, struct freebsd32_getfsstat_args *uap) 297 { 298 size_t count; 299 int error; 300 301 if (uap->bufsize < 0 || uap->bufsize > SIZE_MAX) 302 return (EINVAL); 303 error = kern_getfsstat(td, &uap->buf, uap->bufsize, &count, 304 UIO_USERSPACE, uap->mode); 305 if (error == 0) 306 td->td_retval[0] = count; 307 return (error); 308 } 309 310 #ifdef COMPAT_FREEBSD4 311 int 312 freebsd4_freebsd32_getfsstat(struct thread *td, 313 struct freebsd4_freebsd32_getfsstat_args *uap) 314 { 315 struct statfs *buf, *sp; 316 struct ostatfs32 stat32; 317 size_t count, size, copycount; 318 int error; 319 320 count = uap->bufsize / sizeof(struct ostatfs32); 321 size = count * sizeof(struct statfs); 322 error = kern_getfsstat(td, &buf, size, &count, UIO_SYSSPACE, uap->mode); 323 if (size > 0) { 324 sp = buf; 325 copycount = count; 326 while (copycount > 0 && error == 0) { 327 copy_statfs(sp, &stat32); 328 error = copyout(&stat32, uap->buf, sizeof(stat32)); 329 sp++; 330 uap->buf++; 331 copycount--; 332 } 333 free(buf, M_STATFS); 334 } 335 if (error == 0) 336 td->td_retval[0] = count; 337 return (error); 338 } 339 #endif 340 341 #ifdef COMPAT_FREEBSD11 342 int 343 freebsd11_freebsd32_getfsstat(struct thread *td, 344 struct freebsd11_freebsd32_getfsstat_args *uap) 345 { 346 return(kern_freebsd11_getfsstat(td, uap->buf, uap->bufsize, 347 uap->mode)); 348 } 349 #endif 350 351 int 352 freebsd32_sigaltstack(struct thread *td, 353 struct freebsd32_sigaltstack_args *uap) 354 { 355 struct sigaltstack32 s32; 356 struct sigaltstack ss, oss, *ssp; 357 int error; 358 359 if (uap->ss != NULL) { 360 error = copyin(uap->ss, &s32, sizeof(s32)); 361 if (error) 362 return (error); 363 PTRIN_CP(s32, ss, ss_sp); 364 CP(s32, ss, ss_size); 365 CP(s32, ss, ss_flags); 366 ssp = &ss; 367 } else 368 ssp = NULL; 369 error = kern_sigaltstack(td, ssp, &oss); 370 if (error == 0 && uap->oss != NULL) { 371 PTROUT_CP(oss, s32, ss_sp); 372 CP(oss, s32, ss_size); 373 CP(oss, s32, ss_flags); 374 error = copyout(&s32, uap->oss, sizeof(s32)); 375 } 376 return (error); 377 } 378 379 /* 380 * Custom version of exec_copyin_args() so that we can translate 381 * the pointers. 382 */ 383 int 384 freebsd32_exec_copyin_args(struct image_args *args, const char *fname, 385 enum uio_seg segflg, u_int32_t *argv, u_int32_t *envv) 386 { 387 char *argp, *envp; 388 u_int32_t *p32, arg; 389 int error; 390 391 bzero(args, sizeof(*args)); 392 if (argv == NULL) 393 return (EFAULT); 394 395 /* 396 * Allocate demand-paged memory for the file name, argument, and 397 * environment strings. 398 */ 399 error = exec_alloc_args(args); 400 if (error != 0) 401 return (error); 402 403 /* 404 * Copy the file name. 405 */ 406 error = exec_args_add_fname(args, fname, segflg); 407 if (error != 0) 408 goto err_exit; 409 410 /* 411 * extract arguments first 412 */ 413 p32 = argv; 414 for (;;) { 415 error = copyin(p32++, &arg, sizeof(arg)); 416 if (error) 417 goto err_exit; 418 if (arg == 0) 419 break; 420 argp = PTRIN(arg); 421 error = exec_args_add_arg(args, argp, UIO_USERSPACE); 422 if (error != 0) 423 goto err_exit; 424 } 425 426 /* 427 * extract environment strings 428 */ 429 if (envv) { 430 p32 = envv; 431 for (;;) { 432 error = copyin(p32++, &arg, sizeof(arg)); 433 if (error) 434 goto err_exit; 435 if (arg == 0) 436 break; 437 envp = PTRIN(arg); 438 error = exec_args_add_env(args, envp, UIO_USERSPACE); 439 if (error != 0) 440 goto err_exit; 441 } 442 } 443 444 return (0); 445 446 err_exit: 447 exec_free_args(args); 448 return (error); 449 } 450 451 int 452 freebsd32_execve(struct thread *td, struct freebsd32_execve_args *uap) 453 { 454 struct image_args eargs; 455 struct vmspace *oldvmspace; 456 int error; 457 458 error = pre_execve(td, &oldvmspace); 459 if (error != 0) 460 return (error); 461 error = freebsd32_exec_copyin_args(&eargs, uap->fname, UIO_USERSPACE, 462 uap->argv, uap->envv); 463 if (error == 0) 464 error = kern_execve(td, &eargs, NULL, oldvmspace); 465 post_execve(td, error, oldvmspace); 466 AUDIT_SYSCALL_EXIT(error == EJUSTRETURN ? 0 : error, td); 467 return (error); 468 } 469 470 int 471 freebsd32_fexecve(struct thread *td, struct freebsd32_fexecve_args *uap) 472 { 473 struct image_args eargs; 474 struct vmspace *oldvmspace; 475 int error; 476 477 error = pre_execve(td, &oldvmspace); 478 if (error != 0) 479 return (error); 480 error = freebsd32_exec_copyin_args(&eargs, NULL, UIO_SYSSPACE, 481 uap->argv, uap->envv); 482 if (error == 0) { 483 eargs.fd = uap->fd; 484 error = kern_execve(td, &eargs, NULL, oldvmspace); 485 } 486 post_execve(td, error, oldvmspace); 487 AUDIT_SYSCALL_EXIT(error == EJUSTRETURN ? 0 : error, td); 488 return (error); 489 } 490 491 int 492 freebsd32_mknodat(struct thread *td, struct freebsd32_mknodat_args *uap) 493 { 494 495 return (kern_mknodat(td, uap->fd, uap->path, UIO_USERSPACE, 496 uap->mode, PAIR32TO64(dev_t, uap->dev))); 497 } 498 499 int 500 freebsd32_mprotect(struct thread *td, struct freebsd32_mprotect_args *uap) 501 { 502 int prot; 503 504 prot = uap->prot; 505 #if defined(__amd64__) 506 if (i386_read_exec && (prot & PROT_READ) != 0) 507 prot |= PROT_EXEC; 508 #endif 509 return (kern_mprotect(td, (uintptr_t)PTRIN(uap->addr), uap->len, 510 prot)); 511 } 512 513 int 514 freebsd32_mmap(struct thread *td, struct freebsd32_mmap_args *uap) 515 { 516 int prot; 517 518 prot = uap->prot; 519 #if defined(__amd64__) 520 if (i386_read_exec && (prot & PROT_READ)) 521 prot |= PROT_EXEC; 522 #endif 523 524 return (kern_mmap(td, &(struct mmap_req){ 525 .mr_hint = (uintptr_t)uap->addr, 526 .mr_len = uap->len, 527 .mr_prot = prot, 528 .mr_flags = uap->flags, 529 .mr_fd = uap->fd, 530 .mr_pos = PAIR32TO64(off_t, uap->pos), 531 })); 532 } 533 534 #ifdef COMPAT_FREEBSD6 535 int 536 freebsd6_freebsd32_mmap(struct thread *td, 537 struct freebsd6_freebsd32_mmap_args *uap) 538 { 539 int prot; 540 541 prot = uap->prot; 542 #if defined(__amd64__) 543 if (i386_read_exec && (prot & PROT_READ)) 544 prot |= PROT_EXEC; 545 #endif 546 547 return (kern_mmap(td, &(struct mmap_req){ 548 .mr_hint = (uintptr_t)uap->addr, 549 .mr_len = uap->len, 550 .mr_prot = prot, 551 .mr_flags = uap->flags, 552 .mr_fd = uap->fd, 553 .mr_pos = PAIR32TO64(off_t, uap->pos), 554 })); 555 } 556 #endif 557 558 #ifdef COMPAT_43 559 int 560 ofreebsd32_mmap(struct thread *td, struct ofreebsd32_mmap_args *uap) 561 { 562 return (kern_ommap(td, (uintptr_t)uap->addr, uap->len, uap->prot, 563 uap->flags, uap->fd, uap->pos)); 564 } 565 #endif 566 567 int 568 freebsd32_setitimer(struct thread *td, struct freebsd32_setitimer_args *uap) 569 { 570 struct itimerval itv, oitv, *itvp; 571 struct itimerval32 i32; 572 int error; 573 574 if (uap->itv != NULL) { 575 error = copyin(uap->itv, &i32, sizeof(i32)); 576 if (error) 577 return (error); 578 TV_CP(i32, itv, it_interval); 579 TV_CP(i32, itv, it_value); 580 itvp = &itv; 581 } else 582 itvp = NULL; 583 error = kern_setitimer(td, uap->which, itvp, &oitv); 584 if (error || uap->oitv == NULL) 585 return (error); 586 TV_CP(oitv, i32, it_interval); 587 TV_CP(oitv, i32, it_value); 588 return (copyout(&i32, uap->oitv, sizeof(i32))); 589 } 590 591 int 592 freebsd32_getitimer(struct thread *td, struct freebsd32_getitimer_args *uap) 593 { 594 struct itimerval itv; 595 struct itimerval32 i32; 596 int error; 597 598 error = kern_getitimer(td, uap->which, &itv); 599 if (error || uap->itv == NULL) 600 return (error); 601 TV_CP(itv, i32, it_interval); 602 TV_CP(itv, i32, it_value); 603 return (copyout(&i32, uap->itv, sizeof(i32))); 604 } 605 606 int 607 freebsd32_select(struct thread *td, struct freebsd32_select_args *uap) 608 { 609 struct timeval32 tv32; 610 struct timeval tv, *tvp; 611 int error; 612 613 if (uap->tv != NULL) { 614 error = copyin(uap->tv, &tv32, sizeof(tv32)); 615 if (error) 616 return (error); 617 CP(tv32, tv, tv_sec); 618 CP(tv32, tv, tv_usec); 619 tvp = &tv; 620 } else 621 tvp = NULL; 622 /* 623 * XXX Do pointers need PTRIN()? 624 */ 625 return (kern_select(td, uap->nd, uap->in, uap->ou, uap->ex, tvp, 626 sizeof(int32_t) * 8)); 627 } 628 629 int 630 freebsd32_pselect(struct thread *td, struct freebsd32_pselect_args *uap) 631 { 632 struct timespec32 ts32; 633 struct timespec ts; 634 struct timeval tv, *tvp; 635 sigset_t set, *uset; 636 int error; 637 638 if (uap->ts != NULL) { 639 error = copyin(uap->ts, &ts32, sizeof(ts32)); 640 if (error != 0) 641 return (error); 642 CP(ts32, ts, tv_sec); 643 CP(ts32, ts, tv_nsec); 644 TIMESPEC_TO_TIMEVAL(&tv, &ts); 645 tvp = &tv; 646 } else 647 tvp = NULL; 648 if (uap->sm != NULL) { 649 error = copyin(uap->sm, &set, sizeof(set)); 650 if (error != 0) 651 return (error); 652 uset = &set; 653 } else 654 uset = NULL; 655 /* 656 * XXX Do pointers need PTRIN()? 657 */ 658 error = kern_pselect(td, uap->nd, uap->in, uap->ou, uap->ex, tvp, 659 uset, sizeof(int32_t) * 8); 660 return (error); 661 } 662 663 /* 664 * Copy 'count' items into the destination list pointed to by uap->eventlist. 665 */ 666 static int 667 freebsd32_kevent_copyout(void *arg, struct kevent *kevp, int count) 668 { 669 struct freebsd32_kevent_args *uap; 670 struct kevent32 ks32[KQ_NEVENTS]; 671 uint64_t e; 672 int i, j, error; 673 674 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count)); 675 uap = (struct freebsd32_kevent_args *)arg; 676 677 for (i = 0; i < count; i++) { 678 CP(kevp[i], ks32[i], ident); 679 CP(kevp[i], ks32[i], filter); 680 CP(kevp[i], ks32[i], flags); 681 CP(kevp[i], ks32[i], fflags); 682 #if BYTE_ORDER == LITTLE_ENDIAN 683 ks32[i].data1 = kevp[i].data; 684 ks32[i].data2 = kevp[i].data >> 32; 685 #else 686 ks32[i].data1 = kevp[i].data >> 32; 687 ks32[i].data2 = kevp[i].data; 688 #endif 689 PTROUT_CP(kevp[i], ks32[i], udata); 690 for (j = 0; j < nitems(kevp->ext); j++) { 691 e = kevp[i].ext[j]; 692 #if BYTE_ORDER == LITTLE_ENDIAN 693 ks32[i].ext64[2 * j] = e; 694 ks32[i].ext64[2 * j + 1] = e >> 32; 695 #else 696 ks32[i].ext64[2 * j] = e >> 32; 697 ks32[i].ext64[2 * j + 1] = e; 698 #endif 699 } 700 } 701 error = copyout(ks32, uap->eventlist, count * sizeof *ks32); 702 if (error == 0) 703 uap->eventlist += count; 704 return (error); 705 } 706 707 /* 708 * Copy 'count' items from the list pointed to by uap->changelist. 709 */ 710 static int 711 freebsd32_kevent_copyin(void *arg, struct kevent *kevp, int count) 712 { 713 struct freebsd32_kevent_args *uap; 714 struct kevent32 ks32[KQ_NEVENTS]; 715 uint64_t e; 716 int i, j, error; 717 718 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count)); 719 uap = (struct freebsd32_kevent_args *)arg; 720 721 error = copyin(uap->changelist, ks32, count * sizeof *ks32); 722 if (error) 723 goto done; 724 uap->changelist += count; 725 726 for (i = 0; i < count; i++) { 727 CP(ks32[i], kevp[i], ident); 728 CP(ks32[i], kevp[i], filter); 729 CP(ks32[i], kevp[i], flags); 730 CP(ks32[i], kevp[i], fflags); 731 kevp[i].data = PAIR32TO64(uint64_t, ks32[i].data); 732 PTRIN_CP(ks32[i], kevp[i], udata); 733 for (j = 0; j < nitems(kevp->ext); j++) { 734 #if BYTE_ORDER == LITTLE_ENDIAN 735 e = ks32[i].ext64[2 * j + 1]; 736 e <<= 32; 737 e += ks32[i].ext64[2 * j]; 738 #else 739 e = ks32[i].ext64[2 * j]; 740 e <<= 32; 741 e += ks32[i].ext64[2 * j + 1]; 742 #endif 743 kevp[i].ext[j] = e; 744 } 745 } 746 done: 747 return (error); 748 } 749 750 int 751 freebsd32_kevent(struct thread *td, struct freebsd32_kevent_args *uap) 752 { 753 struct timespec32 ts32; 754 struct timespec ts, *tsp; 755 struct kevent_copyops k_ops = { 756 .arg = uap, 757 .k_copyout = freebsd32_kevent_copyout, 758 .k_copyin = freebsd32_kevent_copyin, 759 }; 760 #ifdef KTRACE 761 struct kevent32 *eventlist = uap->eventlist; 762 #endif 763 int error; 764 765 if (uap->timeout) { 766 error = copyin(uap->timeout, &ts32, sizeof(ts32)); 767 if (error) 768 return (error); 769 CP(ts32, ts, tv_sec); 770 CP(ts32, ts, tv_nsec); 771 tsp = &ts; 772 } else 773 tsp = NULL; 774 #ifdef KTRACE 775 if (KTRPOINT(td, KTR_STRUCT_ARRAY)) 776 ktrstructarray("kevent32", UIO_USERSPACE, uap->changelist, 777 uap->nchanges, sizeof(struct kevent32)); 778 #endif 779 error = kern_kevent(td, uap->fd, uap->nchanges, uap->nevents, 780 &k_ops, tsp); 781 #ifdef KTRACE 782 if (error == 0 && KTRPOINT(td, KTR_STRUCT_ARRAY)) 783 ktrstructarray("kevent32", UIO_USERSPACE, eventlist, 784 td->td_retval[0], sizeof(struct kevent32)); 785 #endif 786 return (error); 787 } 788 789 #ifdef COMPAT_FREEBSD11 790 static int 791 freebsd32_kevent11_copyout(void *arg, struct kevent *kevp, int count) 792 { 793 struct freebsd11_freebsd32_kevent_args *uap; 794 struct freebsd11_kevent32 ks32[KQ_NEVENTS]; 795 int i, error; 796 797 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count)); 798 uap = (struct freebsd11_freebsd32_kevent_args *)arg; 799 800 for (i = 0; i < count; i++) { 801 CP(kevp[i], ks32[i], ident); 802 CP(kevp[i], ks32[i], filter); 803 CP(kevp[i], ks32[i], flags); 804 CP(kevp[i], ks32[i], fflags); 805 CP(kevp[i], ks32[i], data); 806 PTROUT_CP(kevp[i], ks32[i], udata); 807 } 808 error = copyout(ks32, uap->eventlist, count * sizeof *ks32); 809 if (error == 0) 810 uap->eventlist += count; 811 return (error); 812 } 813 814 /* 815 * Copy 'count' items from the list pointed to by uap->changelist. 816 */ 817 static int 818 freebsd32_kevent11_copyin(void *arg, struct kevent *kevp, int count) 819 { 820 struct freebsd11_freebsd32_kevent_args *uap; 821 struct freebsd11_kevent32 ks32[KQ_NEVENTS]; 822 int i, j, error; 823 824 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count)); 825 uap = (struct freebsd11_freebsd32_kevent_args *)arg; 826 827 error = copyin(uap->changelist, ks32, count * sizeof *ks32); 828 if (error) 829 goto done; 830 uap->changelist += count; 831 832 for (i = 0; i < count; i++) { 833 CP(ks32[i], kevp[i], ident); 834 CP(ks32[i], kevp[i], filter); 835 CP(ks32[i], kevp[i], flags); 836 CP(ks32[i], kevp[i], fflags); 837 CP(ks32[i], kevp[i], data); 838 PTRIN_CP(ks32[i], kevp[i], udata); 839 for (j = 0; j < nitems(kevp->ext); j++) 840 kevp[i].ext[j] = 0; 841 } 842 done: 843 return (error); 844 } 845 846 int 847 freebsd11_freebsd32_kevent(struct thread *td, 848 struct freebsd11_freebsd32_kevent_args *uap) 849 { 850 struct timespec32 ts32; 851 struct timespec ts, *tsp; 852 struct kevent_copyops k_ops = { 853 .arg = uap, 854 .k_copyout = freebsd32_kevent11_copyout, 855 .k_copyin = freebsd32_kevent11_copyin, 856 }; 857 #ifdef KTRACE 858 struct freebsd11_kevent32 *eventlist = uap->eventlist; 859 #endif 860 int error; 861 862 if (uap->timeout) { 863 error = copyin(uap->timeout, &ts32, sizeof(ts32)); 864 if (error) 865 return (error); 866 CP(ts32, ts, tv_sec); 867 CP(ts32, ts, tv_nsec); 868 tsp = &ts; 869 } else 870 tsp = NULL; 871 #ifdef KTRACE 872 if (KTRPOINT(td, KTR_STRUCT_ARRAY)) 873 ktrstructarray("freebsd11_kevent32", UIO_USERSPACE, 874 uap->changelist, uap->nchanges, 875 sizeof(struct freebsd11_kevent32)); 876 #endif 877 error = kern_kevent(td, uap->fd, uap->nchanges, uap->nevents, 878 &k_ops, tsp); 879 #ifdef KTRACE 880 if (error == 0 && KTRPOINT(td, KTR_STRUCT_ARRAY)) 881 ktrstructarray("freebsd11_kevent32", UIO_USERSPACE, 882 eventlist, td->td_retval[0], 883 sizeof(struct freebsd11_kevent32)); 884 #endif 885 return (error); 886 } 887 #endif 888 889 int 890 freebsd32_gettimeofday(struct thread *td, 891 struct freebsd32_gettimeofday_args *uap) 892 { 893 struct timeval atv; 894 struct timeval32 atv32; 895 struct timezone rtz; 896 int error = 0; 897 898 if (uap->tp) { 899 microtime(&atv); 900 CP(atv, atv32, tv_sec); 901 CP(atv, atv32, tv_usec); 902 error = copyout(&atv32, uap->tp, sizeof (atv32)); 903 } 904 if (error == 0 && uap->tzp != NULL) { 905 rtz.tz_minuteswest = 0; 906 rtz.tz_dsttime = 0; 907 error = copyout(&rtz, uap->tzp, sizeof (rtz)); 908 } 909 return (error); 910 } 911 912 int 913 freebsd32_getrusage(struct thread *td, struct freebsd32_getrusage_args *uap) 914 { 915 struct rusage32 s32; 916 struct rusage s; 917 int error; 918 919 error = kern_getrusage(td, uap->who, &s); 920 if (error == 0) { 921 freebsd32_rusage_out(&s, &s32); 922 error = copyout(&s32, uap->rusage, sizeof(s32)); 923 } 924 return (error); 925 } 926 927 static void 928 ptrace_lwpinfo_to32(const struct ptrace_lwpinfo *pl, 929 struct ptrace_lwpinfo32 *pl32) 930 { 931 932 bzero(pl32, sizeof(*pl32)); 933 pl32->pl_lwpid = pl->pl_lwpid; 934 pl32->pl_event = pl->pl_event; 935 pl32->pl_flags = pl->pl_flags; 936 pl32->pl_sigmask = pl->pl_sigmask; 937 pl32->pl_siglist = pl->pl_siglist; 938 siginfo_to_siginfo32(&pl->pl_siginfo, &pl32->pl_siginfo); 939 strcpy(pl32->pl_tdname, pl->pl_tdname); 940 pl32->pl_child_pid = pl->pl_child_pid; 941 pl32->pl_syscall_code = pl->pl_syscall_code; 942 pl32->pl_syscall_narg = pl->pl_syscall_narg; 943 } 944 945 static void 946 ptrace_sc_ret_to32(const struct ptrace_sc_ret *psr, 947 struct ptrace_sc_ret32 *psr32) 948 { 949 950 bzero(psr32, sizeof(*psr32)); 951 psr32->sr_retval[0] = psr->sr_retval[0]; 952 psr32->sr_retval[1] = psr->sr_retval[1]; 953 psr32->sr_error = psr->sr_error; 954 } 955 956 int 957 freebsd32_ptrace(struct thread *td, struct freebsd32_ptrace_args *uap) 958 { 959 union { 960 struct ptrace_io_desc piod; 961 struct ptrace_lwpinfo pl; 962 struct ptrace_vm_entry pve; 963 struct ptrace_coredump pc; 964 struct dbreg32 dbreg; 965 struct fpreg32 fpreg; 966 struct reg32 reg; 967 register_t args[nitems(td->td_sa.args)]; 968 struct ptrace_sc_ret psr; 969 int ptevents; 970 } r; 971 union { 972 struct ptrace_io_desc32 piod; 973 struct ptrace_lwpinfo32 pl; 974 struct ptrace_vm_entry32 pve; 975 struct ptrace_coredump32 pc; 976 uint32_t args[nitems(td->td_sa.args)]; 977 struct ptrace_sc_ret32 psr; 978 } r32; 979 void *addr; 980 int data, error = 0, i; 981 982 AUDIT_ARG_PID(uap->pid); 983 AUDIT_ARG_CMD(uap->req); 984 AUDIT_ARG_VALUE(uap->data); 985 addr = &r; 986 data = uap->data; 987 switch (uap->req) { 988 case PT_GET_EVENT_MASK: 989 case PT_GET_SC_ARGS: 990 case PT_GET_SC_RET: 991 break; 992 case PT_LWPINFO: 993 if (uap->data > sizeof(r32.pl)) 994 return (EINVAL); 995 996 /* 997 * Pass size of native structure in 'data'. Truncate 998 * if necessary to avoid siginfo. 999 */ 1000 data = sizeof(r.pl); 1001 if (uap->data < offsetof(struct ptrace_lwpinfo32, pl_siginfo) + 1002 sizeof(struct siginfo32)) 1003 data = offsetof(struct ptrace_lwpinfo, pl_siginfo); 1004 break; 1005 case PT_GETREGS: 1006 bzero(&r.reg, sizeof(r.reg)); 1007 break; 1008 case PT_GETFPREGS: 1009 bzero(&r.fpreg, sizeof(r.fpreg)); 1010 break; 1011 case PT_GETDBREGS: 1012 bzero(&r.dbreg, sizeof(r.dbreg)); 1013 break; 1014 case PT_SETREGS: 1015 error = copyin(uap->addr, &r.reg, sizeof(r.reg)); 1016 break; 1017 case PT_SETFPREGS: 1018 error = copyin(uap->addr, &r.fpreg, sizeof(r.fpreg)); 1019 break; 1020 case PT_SETDBREGS: 1021 error = copyin(uap->addr, &r.dbreg, sizeof(r.dbreg)); 1022 break; 1023 case PT_SET_EVENT_MASK: 1024 if (uap->data != sizeof(r.ptevents)) 1025 error = EINVAL; 1026 else 1027 error = copyin(uap->addr, &r.ptevents, uap->data); 1028 break; 1029 case PT_IO: 1030 error = copyin(uap->addr, &r32.piod, sizeof(r32.piod)); 1031 if (error) 1032 break; 1033 CP(r32.piod, r.piod, piod_op); 1034 PTRIN_CP(r32.piod, r.piod, piod_offs); 1035 PTRIN_CP(r32.piod, r.piod, piod_addr); 1036 CP(r32.piod, r.piod, piod_len); 1037 break; 1038 case PT_VM_ENTRY: 1039 error = copyin(uap->addr, &r32.pve, sizeof(r32.pve)); 1040 if (error) 1041 break; 1042 1043 CP(r32.pve, r.pve, pve_entry); 1044 CP(r32.pve, r.pve, pve_timestamp); 1045 CP(r32.pve, r.pve, pve_start); 1046 CP(r32.pve, r.pve, pve_end); 1047 CP(r32.pve, r.pve, pve_offset); 1048 CP(r32.pve, r.pve, pve_prot); 1049 CP(r32.pve, r.pve, pve_pathlen); 1050 CP(r32.pve, r.pve, pve_fileid); 1051 CP(r32.pve, r.pve, pve_fsid); 1052 PTRIN_CP(r32.pve, r.pve, pve_path); 1053 break; 1054 case PT_COREDUMP: 1055 if (uap->data != sizeof(r32.pc)) 1056 error = EINVAL; 1057 else 1058 error = copyin(uap->addr, &r32.pc, uap->data); 1059 CP(r32.pc, r.pc, pc_fd); 1060 CP(r32.pc, r.pc, pc_flags); 1061 r.pc.pc_limit = PAIR32TO64(off_t, r32.pc.pc_limit); 1062 data = sizeof(r.pc); 1063 break; 1064 default: 1065 addr = uap->addr; 1066 break; 1067 } 1068 if (error) 1069 return (error); 1070 1071 error = kern_ptrace(td, uap->req, uap->pid, addr, data); 1072 if (error) 1073 return (error); 1074 1075 switch (uap->req) { 1076 case PT_VM_ENTRY: 1077 CP(r.pve, r32.pve, pve_entry); 1078 CP(r.pve, r32.pve, pve_timestamp); 1079 CP(r.pve, r32.pve, pve_start); 1080 CP(r.pve, r32.pve, pve_end); 1081 CP(r.pve, r32.pve, pve_offset); 1082 CP(r.pve, r32.pve, pve_prot); 1083 CP(r.pve, r32.pve, pve_pathlen); 1084 CP(r.pve, r32.pve, pve_fileid); 1085 CP(r.pve, r32.pve, pve_fsid); 1086 error = copyout(&r32.pve, uap->addr, sizeof(r32.pve)); 1087 break; 1088 case PT_IO: 1089 CP(r.piod, r32.piod, piod_len); 1090 error = copyout(&r32.piod, uap->addr, sizeof(r32.piod)); 1091 break; 1092 case PT_GETREGS: 1093 error = copyout(&r.reg, uap->addr, sizeof(r.reg)); 1094 break; 1095 case PT_GETFPREGS: 1096 error = copyout(&r.fpreg, uap->addr, sizeof(r.fpreg)); 1097 break; 1098 case PT_GETDBREGS: 1099 error = copyout(&r.dbreg, uap->addr, sizeof(r.dbreg)); 1100 break; 1101 case PT_GET_EVENT_MASK: 1102 /* NB: The size in uap->data is validated in kern_ptrace(). */ 1103 error = copyout(&r.ptevents, uap->addr, uap->data); 1104 break; 1105 case PT_LWPINFO: 1106 ptrace_lwpinfo_to32(&r.pl, &r32.pl); 1107 error = copyout(&r32.pl, uap->addr, uap->data); 1108 break; 1109 case PT_GET_SC_ARGS: 1110 for (i = 0; i < nitems(r.args); i++) 1111 r32.args[i] = (uint32_t)r.args[i]; 1112 error = copyout(r32.args, uap->addr, MIN(uap->data, 1113 sizeof(r32.args))); 1114 break; 1115 case PT_GET_SC_RET: 1116 ptrace_sc_ret_to32(&r.psr, &r32.psr); 1117 error = copyout(&r32.psr, uap->addr, MIN(uap->data, 1118 sizeof(r32.psr))); 1119 break; 1120 } 1121 1122 return (error); 1123 } 1124 1125 int 1126 freebsd32_copyinuio(struct iovec32 *iovp, u_int iovcnt, struct uio **uiop) 1127 { 1128 struct iovec32 iov32; 1129 struct iovec *iov; 1130 struct uio *uio; 1131 u_int iovlen; 1132 int error, i; 1133 1134 *uiop = NULL; 1135 if (iovcnt > UIO_MAXIOV) 1136 return (EINVAL); 1137 iovlen = iovcnt * sizeof(struct iovec); 1138 uio = malloc(iovlen + sizeof *uio, M_IOV, M_WAITOK); 1139 iov = (struct iovec *)(uio + 1); 1140 for (i = 0; i < iovcnt; i++) { 1141 error = copyin(&iovp[i], &iov32, sizeof(struct iovec32)); 1142 if (error) { 1143 free(uio, M_IOV); 1144 return (error); 1145 } 1146 iov[i].iov_base = PTRIN(iov32.iov_base); 1147 iov[i].iov_len = iov32.iov_len; 1148 } 1149 uio->uio_iov = iov; 1150 uio->uio_iovcnt = iovcnt; 1151 uio->uio_segflg = UIO_USERSPACE; 1152 uio->uio_offset = -1; 1153 uio->uio_resid = 0; 1154 for (i = 0; i < iovcnt; i++) { 1155 if (iov->iov_len > INT_MAX - uio->uio_resid) { 1156 free(uio, M_IOV); 1157 return (EINVAL); 1158 } 1159 uio->uio_resid += iov->iov_len; 1160 iov++; 1161 } 1162 *uiop = uio; 1163 return (0); 1164 } 1165 1166 int 1167 freebsd32_readv(struct thread *td, struct freebsd32_readv_args *uap) 1168 { 1169 struct uio *auio; 1170 int error; 1171 1172 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 1173 if (error) 1174 return (error); 1175 error = kern_readv(td, uap->fd, auio); 1176 free(auio, M_IOV); 1177 return (error); 1178 } 1179 1180 int 1181 freebsd32_writev(struct thread *td, struct freebsd32_writev_args *uap) 1182 { 1183 struct uio *auio; 1184 int error; 1185 1186 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 1187 if (error) 1188 return (error); 1189 error = kern_writev(td, uap->fd, auio); 1190 free(auio, M_IOV); 1191 return (error); 1192 } 1193 1194 int 1195 freebsd32_preadv(struct thread *td, struct freebsd32_preadv_args *uap) 1196 { 1197 struct uio *auio; 1198 int error; 1199 1200 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 1201 if (error) 1202 return (error); 1203 error = kern_preadv(td, uap->fd, auio, PAIR32TO64(off_t,uap->offset)); 1204 free(auio, M_IOV); 1205 return (error); 1206 } 1207 1208 int 1209 freebsd32_pwritev(struct thread *td, struct freebsd32_pwritev_args *uap) 1210 { 1211 struct uio *auio; 1212 int error; 1213 1214 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 1215 if (error) 1216 return (error); 1217 error = kern_pwritev(td, uap->fd, auio, PAIR32TO64(off_t,uap->offset)); 1218 free(auio, M_IOV); 1219 return (error); 1220 } 1221 1222 int 1223 freebsd32_copyiniov(struct iovec32 *iovp32, u_int iovcnt, struct iovec **iovp, 1224 int error) 1225 { 1226 struct iovec32 iov32; 1227 struct iovec *iov; 1228 u_int iovlen; 1229 int i; 1230 1231 *iovp = NULL; 1232 if (iovcnt > UIO_MAXIOV) 1233 return (error); 1234 iovlen = iovcnt * sizeof(struct iovec); 1235 iov = malloc(iovlen, M_IOV, M_WAITOK); 1236 for (i = 0; i < iovcnt; i++) { 1237 error = copyin(&iovp32[i], &iov32, sizeof(struct iovec32)); 1238 if (error) { 1239 free(iov, M_IOV); 1240 return (error); 1241 } 1242 iov[i].iov_base = PTRIN(iov32.iov_base); 1243 iov[i].iov_len = iov32.iov_len; 1244 } 1245 *iovp = iov; 1246 return (0); 1247 } 1248 1249 static int 1250 freebsd32_copyinmsghdr(const struct msghdr32 *msg32, struct msghdr *msg) 1251 { 1252 struct msghdr32 m32; 1253 int error; 1254 1255 error = copyin(msg32, &m32, sizeof(m32)); 1256 if (error) 1257 return (error); 1258 msg->msg_name = PTRIN(m32.msg_name); 1259 msg->msg_namelen = m32.msg_namelen; 1260 msg->msg_iov = PTRIN(m32.msg_iov); 1261 msg->msg_iovlen = m32.msg_iovlen; 1262 msg->msg_control = PTRIN(m32.msg_control); 1263 msg->msg_controllen = m32.msg_controllen; 1264 msg->msg_flags = m32.msg_flags; 1265 return (0); 1266 } 1267 1268 static int 1269 freebsd32_copyoutmsghdr(struct msghdr *msg, struct msghdr32 *msg32) 1270 { 1271 struct msghdr32 m32; 1272 int error; 1273 1274 m32.msg_name = PTROUT(msg->msg_name); 1275 m32.msg_namelen = msg->msg_namelen; 1276 m32.msg_iov = PTROUT(msg->msg_iov); 1277 m32.msg_iovlen = msg->msg_iovlen; 1278 m32.msg_control = PTROUT(msg->msg_control); 1279 m32.msg_controllen = msg->msg_controllen; 1280 m32.msg_flags = msg->msg_flags; 1281 error = copyout(&m32, msg32, sizeof(m32)); 1282 return (error); 1283 } 1284 1285 #ifndef __mips__ 1286 #define FREEBSD32_ALIGNBYTES (sizeof(int) - 1) 1287 #else 1288 #define FREEBSD32_ALIGNBYTES (sizeof(long) - 1) 1289 #endif 1290 #define FREEBSD32_ALIGN(p) \ 1291 (((u_long)(p) + FREEBSD32_ALIGNBYTES) & ~FREEBSD32_ALIGNBYTES) 1292 #define FREEBSD32_CMSG_SPACE(l) \ 1293 (FREEBSD32_ALIGN(sizeof(struct cmsghdr)) + FREEBSD32_ALIGN(l)) 1294 1295 #define FREEBSD32_CMSG_DATA(cmsg) ((unsigned char *)(cmsg) + \ 1296 FREEBSD32_ALIGN(sizeof(struct cmsghdr))) 1297 1298 static size_t 1299 freebsd32_cmsg_convert(const struct cmsghdr *cm, void *data, socklen_t datalen) 1300 { 1301 size_t copylen; 1302 union { 1303 struct timespec32 ts; 1304 struct timeval32 tv; 1305 struct bintime32 bt; 1306 } tmp32; 1307 1308 union { 1309 struct timespec ts; 1310 struct timeval tv; 1311 struct bintime bt; 1312 } *in; 1313 1314 in = data; 1315 copylen = 0; 1316 switch (cm->cmsg_level) { 1317 case SOL_SOCKET: 1318 switch (cm->cmsg_type) { 1319 case SCM_TIMESTAMP: 1320 TV_CP(*in, tmp32, tv); 1321 copylen = sizeof(tmp32.tv); 1322 break; 1323 1324 case SCM_BINTIME: 1325 BT_CP(*in, tmp32, bt); 1326 copylen = sizeof(tmp32.bt); 1327 break; 1328 1329 case SCM_REALTIME: 1330 case SCM_MONOTONIC: 1331 TS_CP(*in, tmp32, ts); 1332 copylen = sizeof(tmp32.ts); 1333 break; 1334 1335 default: 1336 break; 1337 } 1338 1339 default: 1340 break; 1341 } 1342 1343 if (copylen == 0) 1344 return (datalen); 1345 1346 KASSERT((datalen >= copylen), ("corrupted cmsghdr")); 1347 1348 bcopy(&tmp32, data, copylen); 1349 return (copylen); 1350 } 1351 1352 static int 1353 freebsd32_copy_msg_out(struct msghdr *msg, struct mbuf *control) 1354 { 1355 struct cmsghdr *cm; 1356 void *data; 1357 socklen_t clen, datalen, datalen_out, oldclen; 1358 int error; 1359 caddr_t ctlbuf; 1360 int len, maxlen, copylen; 1361 struct mbuf *m; 1362 error = 0; 1363 1364 len = msg->msg_controllen; 1365 maxlen = msg->msg_controllen; 1366 msg->msg_controllen = 0; 1367 1368 ctlbuf = msg->msg_control; 1369 for (m = control; m != NULL && len > 0; m = m->m_next) { 1370 cm = mtod(m, struct cmsghdr *); 1371 clen = m->m_len; 1372 while (cm != NULL) { 1373 if (sizeof(struct cmsghdr) > clen || 1374 cm->cmsg_len > clen) { 1375 error = EINVAL; 1376 break; 1377 } 1378 1379 data = CMSG_DATA(cm); 1380 datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data; 1381 datalen_out = freebsd32_cmsg_convert(cm, data, datalen); 1382 1383 /* 1384 * Copy out the message header. Preserve the native 1385 * message size in case we need to inspect the message 1386 * contents later. 1387 */ 1388 copylen = sizeof(struct cmsghdr); 1389 if (len < copylen) { 1390 msg->msg_flags |= MSG_CTRUNC; 1391 m_dispose_extcontrolm(m); 1392 goto exit; 1393 } 1394 oldclen = cm->cmsg_len; 1395 cm->cmsg_len = FREEBSD32_ALIGN(sizeof(struct cmsghdr)) + 1396 datalen_out; 1397 error = copyout(cm, ctlbuf, copylen); 1398 cm->cmsg_len = oldclen; 1399 if (error != 0) 1400 goto exit; 1401 1402 ctlbuf += FREEBSD32_ALIGN(copylen); 1403 len -= FREEBSD32_ALIGN(copylen); 1404 1405 copylen = datalen_out; 1406 if (len < copylen) { 1407 msg->msg_flags |= MSG_CTRUNC; 1408 m_dispose_extcontrolm(m); 1409 break; 1410 } 1411 1412 /* Copy out the message data. */ 1413 error = copyout(data, ctlbuf, copylen); 1414 if (error) 1415 goto exit; 1416 1417 ctlbuf += FREEBSD32_ALIGN(copylen); 1418 len -= FREEBSD32_ALIGN(copylen); 1419 1420 if (CMSG_SPACE(datalen) < clen) { 1421 clen -= CMSG_SPACE(datalen); 1422 cm = (struct cmsghdr *) 1423 ((caddr_t)cm + CMSG_SPACE(datalen)); 1424 } else { 1425 clen = 0; 1426 cm = NULL; 1427 } 1428 1429 msg->msg_controllen += 1430 FREEBSD32_CMSG_SPACE(datalen_out); 1431 } 1432 } 1433 if (len == 0 && m != NULL) { 1434 msg->msg_flags |= MSG_CTRUNC; 1435 m_dispose_extcontrolm(m); 1436 } 1437 1438 exit: 1439 return (error); 1440 } 1441 1442 int 1443 freebsd32_recvmsg(struct thread *td, struct freebsd32_recvmsg_args *uap) 1444 { 1445 struct msghdr msg; 1446 struct iovec *uiov, *iov; 1447 struct mbuf *control = NULL; 1448 struct mbuf **controlp; 1449 int error; 1450 1451 error = freebsd32_copyinmsghdr(uap->msg, &msg); 1452 if (error) 1453 return (error); 1454 error = freebsd32_copyiniov((void *)msg.msg_iov, msg.msg_iovlen, &iov, 1455 EMSGSIZE); 1456 if (error) 1457 return (error); 1458 msg.msg_flags = uap->flags; 1459 uiov = msg.msg_iov; 1460 msg.msg_iov = iov; 1461 1462 controlp = (msg.msg_control != NULL) ? &control : NULL; 1463 error = kern_recvit(td, uap->s, &msg, UIO_USERSPACE, controlp); 1464 if (error == 0) { 1465 msg.msg_iov = uiov; 1466 1467 if (control != NULL) 1468 error = freebsd32_copy_msg_out(&msg, control); 1469 else 1470 msg.msg_controllen = 0; 1471 1472 if (error == 0) 1473 error = freebsd32_copyoutmsghdr(&msg, uap->msg); 1474 } 1475 free(iov, M_IOV); 1476 1477 if (control != NULL) { 1478 if (error != 0) 1479 m_dispose_extcontrolm(control); 1480 m_freem(control); 1481 } 1482 1483 return (error); 1484 } 1485 1486 #ifdef COMPAT_43 1487 int 1488 ofreebsd32_recvmsg(struct thread *td, struct ofreebsd32_recvmsg_args *uap) 1489 { 1490 return (ENOSYS); 1491 } 1492 #endif 1493 1494 /* 1495 * Copy-in the array of control messages constructed using alignment 1496 * and padding suitable for a 32-bit environment and construct an 1497 * mbuf using alignment and padding suitable for a 64-bit kernel. 1498 * The alignment and padding are defined indirectly by CMSG_DATA(), 1499 * CMSG_SPACE() and CMSG_LEN(). 1500 */ 1501 static int 1502 freebsd32_copyin_control(struct mbuf **mp, caddr_t buf, u_int buflen) 1503 { 1504 struct cmsghdr *cm; 1505 struct mbuf *m; 1506 void *in, *in1, *md; 1507 u_int msglen, outlen; 1508 int error; 1509 1510 if (buflen > MCLBYTES) 1511 return (EINVAL); 1512 1513 in = malloc(buflen, M_TEMP, M_WAITOK); 1514 error = copyin(buf, in, buflen); 1515 if (error != 0) 1516 goto out; 1517 1518 /* 1519 * Make a pass over the input buffer to determine the amount of space 1520 * required for 64 bit-aligned copies of the control messages. 1521 */ 1522 in1 = in; 1523 outlen = 0; 1524 while (buflen > 0) { 1525 if (buflen < sizeof(*cm)) { 1526 error = EINVAL; 1527 break; 1528 } 1529 cm = (struct cmsghdr *)in1; 1530 if (cm->cmsg_len < FREEBSD32_ALIGN(sizeof(*cm))) { 1531 error = EINVAL; 1532 break; 1533 } 1534 msglen = FREEBSD32_ALIGN(cm->cmsg_len); 1535 if (msglen > buflen || msglen < cm->cmsg_len) { 1536 error = EINVAL; 1537 break; 1538 } 1539 buflen -= msglen; 1540 1541 in1 = (char *)in1 + msglen; 1542 outlen += CMSG_ALIGN(sizeof(*cm)) + 1543 CMSG_ALIGN(msglen - FREEBSD32_ALIGN(sizeof(*cm))); 1544 } 1545 if (error == 0 && outlen > MCLBYTES) { 1546 /* 1547 * XXXMJ This implies that the upper limit on 32-bit aligned 1548 * control messages is less than MCLBYTES, and so we are not 1549 * perfectly compatible. However, there is no platform 1550 * guarantee that mbuf clusters larger than MCLBYTES can be 1551 * allocated. 1552 */ 1553 error = EINVAL; 1554 } 1555 if (error != 0) 1556 goto out; 1557 1558 m = m_get2(outlen, M_WAITOK, MT_CONTROL, 0); 1559 m->m_len = outlen; 1560 md = mtod(m, void *); 1561 1562 /* 1563 * Make a second pass over input messages, copying them into the output 1564 * buffer. 1565 */ 1566 in1 = in; 1567 while (outlen > 0) { 1568 /* Copy the message header and align the length field. */ 1569 cm = md; 1570 memcpy(cm, in1, sizeof(*cm)); 1571 msglen = cm->cmsg_len - FREEBSD32_ALIGN(sizeof(*cm)); 1572 cm->cmsg_len = CMSG_ALIGN(sizeof(*cm)) + msglen; 1573 1574 /* Copy the message body. */ 1575 in1 = (char *)in1 + FREEBSD32_ALIGN(sizeof(*cm)); 1576 md = (char *)md + CMSG_ALIGN(sizeof(*cm)); 1577 memcpy(md, in1, msglen); 1578 in1 = (char *)in1 + FREEBSD32_ALIGN(msglen); 1579 md = (char *)md + CMSG_ALIGN(msglen); 1580 KASSERT(outlen >= CMSG_ALIGN(sizeof(*cm)) + CMSG_ALIGN(msglen), 1581 ("outlen %u underflow, msglen %u", outlen, msglen)); 1582 outlen -= CMSG_ALIGN(sizeof(*cm)) + CMSG_ALIGN(msglen); 1583 } 1584 1585 *mp = m; 1586 out: 1587 free(in, M_TEMP); 1588 return (error); 1589 } 1590 1591 int 1592 freebsd32_sendmsg(struct thread *td, struct freebsd32_sendmsg_args *uap) 1593 { 1594 struct msghdr msg; 1595 struct iovec *iov; 1596 struct mbuf *control = NULL; 1597 struct sockaddr *to = NULL; 1598 int error; 1599 1600 error = freebsd32_copyinmsghdr(uap->msg, &msg); 1601 if (error) 1602 return (error); 1603 error = freebsd32_copyiniov((void *)msg.msg_iov, msg.msg_iovlen, &iov, 1604 EMSGSIZE); 1605 if (error) 1606 return (error); 1607 msg.msg_iov = iov; 1608 if (msg.msg_name != NULL) { 1609 error = getsockaddr(&to, msg.msg_name, msg.msg_namelen); 1610 if (error) { 1611 to = NULL; 1612 goto out; 1613 } 1614 msg.msg_name = to; 1615 } 1616 1617 if (msg.msg_control) { 1618 if (msg.msg_controllen < sizeof(struct cmsghdr)) { 1619 error = EINVAL; 1620 goto out; 1621 } 1622 1623 error = freebsd32_copyin_control(&control, msg.msg_control, 1624 msg.msg_controllen); 1625 if (error) 1626 goto out; 1627 1628 msg.msg_control = NULL; 1629 msg.msg_controllen = 0; 1630 } 1631 1632 error = kern_sendit(td, uap->s, &msg, uap->flags, control, 1633 UIO_USERSPACE); 1634 1635 out: 1636 free(iov, M_IOV); 1637 if (to) 1638 free(to, M_SONAME); 1639 return (error); 1640 } 1641 1642 #ifdef COMPAT_43 1643 int 1644 ofreebsd32_sendmsg(struct thread *td, struct ofreebsd32_sendmsg_args *uap) 1645 { 1646 return (ENOSYS); 1647 } 1648 #endif 1649 1650 1651 int 1652 freebsd32_settimeofday(struct thread *td, 1653 struct freebsd32_settimeofday_args *uap) 1654 { 1655 struct timeval32 tv32; 1656 struct timeval tv, *tvp; 1657 struct timezone tz, *tzp; 1658 int error; 1659 1660 if (uap->tv) { 1661 error = copyin(uap->tv, &tv32, sizeof(tv32)); 1662 if (error) 1663 return (error); 1664 CP(tv32, tv, tv_sec); 1665 CP(tv32, tv, tv_usec); 1666 tvp = &tv; 1667 } else 1668 tvp = NULL; 1669 if (uap->tzp) { 1670 error = copyin(uap->tzp, &tz, sizeof(tz)); 1671 if (error) 1672 return (error); 1673 tzp = &tz; 1674 } else 1675 tzp = NULL; 1676 return (kern_settimeofday(td, tvp, tzp)); 1677 } 1678 1679 int 1680 freebsd32_utimes(struct thread *td, struct freebsd32_utimes_args *uap) 1681 { 1682 struct timeval32 s32[2]; 1683 struct timeval s[2], *sp; 1684 int error; 1685 1686 if (uap->tptr != NULL) { 1687 error = copyin(uap->tptr, s32, sizeof(s32)); 1688 if (error) 1689 return (error); 1690 CP(s32[0], s[0], tv_sec); 1691 CP(s32[0], s[0], tv_usec); 1692 CP(s32[1], s[1], tv_sec); 1693 CP(s32[1], s[1], tv_usec); 1694 sp = s; 1695 } else 1696 sp = NULL; 1697 return (kern_utimesat(td, AT_FDCWD, uap->path, UIO_USERSPACE, 1698 sp, UIO_SYSSPACE)); 1699 } 1700 1701 int 1702 freebsd32_lutimes(struct thread *td, struct freebsd32_lutimes_args *uap) 1703 { 1704 struct timeval32 s32[2]; 1705 struct timeval s[2], *sp; 1706 int error; 1707 1708 if (uap->tptr != NULL) { 1709 error = copyin(uap->tptr, s32, sizeof(s32)); 1710 if (error) 1711 return (error); 1712 CP(s32[0], s[0], tv_sec); 1713 CP(s32[0], s[0], tv_usec); 1714 CP(s32[1], s[1], tv_sec); 1715 CP(s32[1], s[1], tv_usec); 1716 sp = s; 1717 } else 1718 sp = NULL; 1719 return (kern_lutimes(td, uap->path, UIO_USERSPACE, sp, UIO_SYSSPACE)); 1720 } 1721 1722 int 1723 freebsd32_futimes(struct thread *td, struct freebsd32_futimes_args *uap) 1724 { 1725 struct timeval32 s32[2]; 1726 struct timeval s[2], *sp; 1727 int error; 1728 1729 if (uap->tptr != NULL) { 1730 error = copyin(uap->tptr, s32, sizeof(s32)); 1731 if (error) 1732 return (error); 1733 CP(s32[0], s[0], tv_sec); 1734 CP(s32[0], s[0], tv_usec); 1735 CP(s32[1], s[1], tv_sec); 1736 CP(s32[1], s[1], tv_usec); 1737 sp = s; 1738 } else 1739 sp = NULL; 1740 return (kern_futimes(td, uap->fd, sp, UIO_SYSSPACE)); 1741 } 1742 1743 int 1744 freebsd32_futimesat(struct thread *td, struct freebsd32_futimesat_args *uap) 1745 { 1746 struct timeval32 s32[2]; 1747 struct timeval s[2], *sp; 1748 int error; 1749 1750 if (uap->times != NULL) { 1751 error = copyin(uap->times, s32, sizeof(s32)); 1752 if (error) 1753 return (error); 1754 CP(s32[0], s[0], tv_sec); 1755 CP(s32[0], s[0], tv_usec); 1756 CP(s32[1], s[1], tv_sec); 1757 CP(s32[1], s[1], tv_usec); 1758 sp = s; 1759 } else 1760 sp = NULL; 1761 return (kern_utimesat(td, uap->fd, uap->path, UIO_USERSPACE, 1762 sp, UIO_SYSSPACE)); 1763 } 1764 1765 int 1766 freebsd32_futimens(struct thread *td, struct freebsd32_futimens_args *uap) 1767 { 1768 struct timespec32 ts32[2]; 1769 struct timespec ts[2], *tsp; 1770 int error; 1771 1772 if (uap->times != NULL) { 1773 error = copyin(uap->times, ts32, sizeof(ts32)); 1774 if (error) 1775 return (error); 1776 CP(ts32[0], ts[0], tv_sec); 1777 CP(ts32[0], ts[0], tv_nsec); 1778 CP(ts32[1], ts[1], tv_sec); 1779 CP(ts32[1], ts[1], tv_nsec); 1780 tsp = ts; 1781 } else 1782 tsp = NULL; 1783 return (kern_futimens(td, uap->fd, tsp, UIO_SYSSPACE)); 1784 } 1785 1786 int 1787 freebsd32_utimensat(struct thread *td, struct freebsd32_utimensat_args *uap) 1788 { 1789 struct timespec32 ts32[2]; 1790 struct timespec ts[2], *tsp; 1791 int error; 1792 1793 if (uap->times != NULL) { 1794 error = copyin(uap->times, ts32, sizeof(ts32)); 1795 if (error) 1796 return (error); 1797 CP(ts32[0], ts[0], tv_sec); 1798 CP(ts32[0], ts[0], tv_nsec); 1799 CP(ts32[1], ts[1], tv_sec); 1800 CP(ts32[1], ts[1], tv_nsec); 1801 tsp = ts; 1802 } else 1803 tsp = NULL; 1804 return (kern_utimensat(td, uap->fd, uap->path, UIO_USERSPACE, 1805 tsp, UIO_SYSSPACE, uap->flag)); 1806 } 1807 1808 int 1809 freebsd32_adjtime(struct thread *td, struct freebsd32_adjtime_args *uap) 1810 { 1811 struct timeval32 tv32; 1812 struct timeval delta, olddelta, *deltap; 1813 int error; 1814 1815 if (uap->delta) { 1816 error = copyin(uap->delta, &tv32, sizeof(tv32)); 1817 if (error) 1818 return (error); 1819 CP(tv32, delta, tv_sec); 1820 CP(tv32, delta, tv_usec); 1821 deltap = δ 1822 } else 1823 deltap = NULL; 1824 error = kern_adjtime(td, deltap, &olddelta); 1825 if (uap->olddelta && error == 0) { 1826 CP(olddelta, tv32, tv_sec); 1827 CP(olddelta, tv32, tv_usec); 1828 error = copyout(&tv32, uap->olddelta, sizeof(tv32)); 1829 } 1830 return (error); 1831 } 1832 1833 #ifdef COMPAT_FREEBSD4 1834 int 1835 freebsd4_freebsd32_statfs(struct thread *td, struct freebsd4_freebsd32_statfs_args *uap) 1836 { 1837 struct ostatfs32 s32; 1838 struct statfs *sp; 1839 int error; 1840 1841 sp = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK); 1842 error = kern_statfs(td, uap->path, UIO_USERSPACE, sp); 1843 if (error == 0) { 1844 copy_statfs(sp, &s32); 1845 error = copyout(&s32, uap->buf, sizeof(s32)); 1846 } 1847 free(sp, M_STATFS); 1848 return (error); 1849 } 1850 #endif 1851 1852 #ifdef COMPAT_FREEBSD4 1853 int 1854 freebsd4_freebsd32_fstatfs(struct thread *td, struct freebsd4_freebsd32_fstatfs_args *uap) 1855 { 1856 struct ostatfs32 s32; 1857 struct statfs *sp; 1858 int error; 1859 1860 sp = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK); 1861 error = kern_fstatfs(td, uap->fd, sp); 1862 if (error == 0) { 1863 copy_statfs(sp, &s32); 1864 error = copyout(&s32, uap->buf, sizeof(s32)); 1865 } 1866 free(sp, M_STATFS); 1867 return (error); 1868 } 1869 #endif 1870 1871 #ifdef COMPAT_FREEBSD4 1872 int 1873 freebsd4_freebsd32_fhstatfs(struct thread *td, struct freebsd4_freebsd32_fhstatfs_args *uap) 1874 { 1875 struct ostatfs32 s32; 1876 struct statfs *sp; 1877 fhandle_t fh; 1878 int error; 1879 1880 if ((error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t))) != 0) 1881 return (error); 1882 sp = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK); 1883 error = kern_fhstatfs(td, fh, sp); 1884 if (error == 0) { 1885 copy_statfs(sp, &s32); 1886 error = copyout(&s32, uap->buf, sizeof(s32)); 1887 } 1888 free(sp, M_STATFS); 1889 return (error); 1890 } 1891 #endif 1892 1893 int 1894 freebsd32_pread(struct thread *td, struct freebsd32_pread_args *uap) 1895 { 1896 1897 return (kern_pread(td, uap->fd, uap->buf, uap->nbyte, 1898 PAIR32TO64(off_t, uap->offset))); 1899 } 1900 1901 int 1902 freebsd32_pwrite(struct thread *td, struct freebsd32_pwrite_args *uap) 1903 { 1904 1905 return (kern_pwrite(td, uap->fd, uap->buf, uap->nbyte, 1906 PAIR32TO64(off_t, uap->offset))); 1907 } 1908 1909 #ifdef COMPAT_43 1910 int 1911 ofreebsd32_lseek(struct thread *td, struct ofreebsd32_lseek_args *uap) 1912 { 1913 1914 return (kern_lseek(td, uap->fd, uap->offset, uap->whence)); 1915 } 1916 #endif 1917 1918 int 1919 freebsd32_lseek(struct thread *td, struct freebsd32_lseek_args *uap) 1920 { 1921 int error; 1922 off_t pos; 1923 1924 error = kern_lseek(td, uap->fd, PAIR32TO64(off_t, uap->offset), 1925 uap->whence); 1926 /* Expand the quad return into two parts for eax and edx */ 1927 pos = td->td_uretoff.tdu_off; 1928 td->td_retval[RETVAL_LO] = pos & 0xffffffff; /* %eax */ 1929 td->td_retval[RETVAL_HI] = pos >> 32; /* %edx */ 1930 return error; 1931 } 1932 1933 int 1934 freebsd32_truncate(struct thread *td, struct freebsd32_truncate_args *uap) 1935 { 1936 1937 return (kern_truncate(td, uap->path, UIO_USERSPACE, 1938 PAIR32TO64(off_t, uap->length))); 1939 } 1940 1941 #ifdef COMPAT_43 1942 int 1943 ofreebsd32_truncate(struct thread *td, struct ofreebsd32_truncate_args *uap) 1944 { 1945 return (kern_truncate(td, uap->path, UIO_USERSPACE, uap->length)); 1946 } 1947 #endif 1948 1949 int 1950 freebsd32_ftruncate(struct thread *td, struct freebsd32_ftruncate_args *uap) 1951 { 1952 1953 return (kern_ftruncate(td, uap->fd, PAIR32TO64(off_t, uap->length))); 1954 } 1955 1956 #ifdef COMPAT_43 1957 int 1958 ofreebsd32_ftruncate(struct thread *td, struct ofreebsd32_ftruncate_args *uap) 1959 { 1960 return (kern_ftruncate(td, uap->fd, uap->length)); 1961 } 1962 1963 int 1964 ofreebsd32_getdirentries(struct thread *td, 1965 struct ofreebsd32_getdirentries_args *uap) 1966 { 1967 struct ogetdirentries_args ap; 1968 int error; 1969 long loff; 1970 int32_t loff_cut; 1971 1972 ap.fd = uap->fd; 1973 ap.buf = uap->buf; 1974 ap.count = uap->count; 1975 ap.basep = NULL; 1976 error = kern_ogetdirentries(td, &ap, &loff); 1977 if (error == 0) { 1978 loff_cut = loff; 1979 error = copyout(&loff_cut, uap->basep, sizeof(int32_t)); 1980 } 1981 return (error); 1982 } 1983 #endif 1984 1985 #if defined(COMPAT_FREEBSD11) 1986 int 1987 freebsd11_freebsd32_getdirentries(struct thread *td, 1988 struct freebsd11_freebsd32_getdirentries_args *uap) 1989 { 1990 long base; 1991 int32_t base32; 1992 int error; 1993 1994 error = freebsd11_kern_getdirentries(td, uap->fd, uap->buf, uap->count, 1995 &base, NULL); 1996 if (error) 1997 return (error); 1998 if (uap->basep != NULL) { 1999 base32 = base; 2000 error = copyout(&base32, uap->basep, sizeof(int32_t)); 2001 } 2002 return (error); 2003 } 2004 #endif /* COMPAT_FREEBSD11 */ 2005 2006 #ifdef COMPAT_FREEBSD6 2007 /* versions with the 'int pad' argument */ 2008 int 2009 freebsd6_freebsd32_pread(struct thread *td, struct freebsd6_freebsd32_pread_args *uap) 2010 { 2011 2012 return (kern_pread(td, uap->fd, uap->buf, uap->nbyte, 2013 PAIR32TO64(off_t, uap->offset))); 2014 } 2015 2016 int 2017 freebsd6_freebsd32_pwrite(struct thread *td, struct freebsd6_freebsd32_pwrite_args *uap) 2018 { 2019 2020 return (kern_pwrite(td, uap->fd, uap->buf, uap->nbyte, 2021 PAIR32TO64(off_t, uap->offset))); 2022 } 2023 2024 int 2025 freebsd6_freebsd32_lseek(struct thread *td, struct freebsd6_freebsd32_lseek_args *uap) 2026 { 2027 int error; 2028 off_t pos; 2029 2030 error = kern_lseek(td, uap->fd, PAIR32TO64(off_t, uap->offset), 2031 uap->whence); 2032 /* Expand the quad return into two parts for eax and edx */ 2033 pos = *(off_t *)(td->td_retval); 2034 td->td_retval[RETVAL_LO] = pos & 0xffffffff; /* %eax */ 2035 td->td_retval[RETVAL_HI] = pos >> 32; /* %edx */ 2036 return error; 2037 } 2038 2039 int 2040 freebsd6_freebsd32_truncate(struct thread *td, struct freebsd6_freebsd32_truncate_args *uap) 2041 { 2042 2043 return (kern_truncate(td, uap->path, UIO_USERSPACE, 2044 PAIR32TO64(off_t, uap->length))); 2045 } 2046 2047 int 2048 freebsd6_freebsd32_ftruncate(struct thread *td, struct freebsd6_freebsd32_ftruncate_args *uap) 2049 { 2050 2051 return (kern_ftruncate(td, uap->fd, PAIR32TO64(off_t, uap->length))); 2052 } 2053 #endif /* COMPAT_FREEBSD6 */ 2054 2055 struct sf_hdtr32 { 2056 uint32_t headers; 2057 int hdr_cnt; 2058 uint32_t trailers; 2059 int trl_cnt; 2060 }; 2061 2062 static int 2063 freebsd32_do_sendfile(struct thread *td, 2064 struct freebsd32_sendfile_args *uap, int compat) 2065 { 2066 struct sf_hdtr32 hdtr32; 2067 struct sf_hdtr hdtr; 2068 struct uio *hdr_uio, *trl_uio; 2069 struct file *fp; 2070 cap_rights_t rights; 2071 struct iovec32 *iov32; 2072 off_t offset, sbytes; 2073 int error; 2074 2075 offset = PAIR32TO64(off_t, uap->offset); 2076 if (offset < 0) 2077 return (EINVAL); 2078 2079 hdr_uio = trl_uio = NULL; 2080 2081 if (uap->hdtr != NULL) { 2082 error = copyin(uap->hdtr, &hdtr32, sizeof(hdtr32)); 2083 if (error) 2084 goto out; 2085 PTRIN_CP(hdtr32, hdtr, headers); 2086 CP(hdtr32, hdtr, hdr_cnt); 2087 PTRIN_CP(hdtr32, hdtr, trailers); 2088 CP(hdtr32, hdtr, trl_cnt); 2089 2090 if (hdtr.headers != NULL) { 2091 iov32 = PTRIN(hdtr32.headers); 2092 error = freebsd32_copyinuio(iov32, 2093 hdtr32.hdr_cnt, &hdr_uio); 2094 if (error) 2095 goto out; 2096 #ifdef COMPAT_FREEBSD4 2097 /* 2098 * In FreeBSD < 5.0 the nbytes to send also included 2099 * the header. If compat is specified subtract the 2100 * header size from nbytes. 2101 */ 2102 if (compat) { 2103 if (uap->nbytes > hdr_uio->uio_resid) 2104 uap->nbytes -= hdr_uio->uio_resid; 2105 else 2106 uap->nbytes = 0; 2107 } 2108 #endif 2109 } 2110 if (hdtr.trailers != NULL) { 2111 iov32 = PTRIN(hdtr32.trailers); 2112 error = freebsd32_copyinuio(iov32, 2113 hdtr32.trl_cnt, &trl_uio); 2114 if (error) 2115 goto out; 2116 } 2117 } 2118 2119 AUDIT_ARG_FD(uap->fd); 2120 2121 if ((error = fget_read(td, uap->fd, 2122 cap_rights_init_one(&rights, CAP_PREAD), &fp)) != 0) 2123 goto out; 2124 2125 error = fo_sendfile(fp, uap->s, hdr_uio, trl_uio, offset, 2126 uap->nbytes, &sbytes, uap->flags, td); 2127 fdrop(fp, td); 2128 2129 if (uap->sbytes != NULL) 2130 copyout(&sbytes, uap->sbytes, sizeof(off_t)); 2131 2132 out: 2133 if (hdr_uio) 2134 free(hdr_uio, M_IOV); 2135 if (trl_uio) 2136 free(trl_uio, M_IOV); 2137 return (error); 2138 } 2139 2140 #ifdef COMPAT_FREEBSD4 2141 int 2142 freebsd4_freebsd32_sendfile(struct thread *td, 2143 struct freebsd4_freebsd32_sendfile_args *uap) 2144 { 2145 return (freebsd32_do_sendfile(td, 2146 (struct freebsd32_sendfile_args *)uap, 1)); 2147 } 2148 #endif 2149 2150 int 2151 freebsd32_sendfile(struct thread *td, struct freebsd32_sendfile_args *uap) 2152 { 2153 2154 return (freebsd32_do_sendfile(td, uap, 0)); 2155 } 2156 2157 static void 2158 copy_stat(struct stat *in, struct stat32 *out) 2159 { 2160 2161 CP(*in, *out, st_dev); 2162 CP(*in, *out, st_ino); 2163 CP(*in, *out, st_mode); 2164 CP(*in, *out, st_nlink); 2165 CP(*in, *out, st_uid); 2166 CP(*in, *out, st_gid); 2167 CP(*in, *out, st_rdev); 2168 TS_CP(*in, *out, st_atim); 2169 TS_CP(*in, *out, st_mtim); 2170 TS_CP(*in, *out, st_ctim); 2171 CP(*in, *out, st_size); 2172 CP(*in, *out, st_blocks); 2173 CP(*in, *out, st_blksize); 2174 CP(*in, *out, st_flags); 2175 CP(*in, *out, st_gen); 2176 TS_CP(*in, *out, st_birthtim); 2177 out->st_padding0 = 0; 2178 out->st_padding1 = 0; 2179 #ifdef __STAT32_TIME_T_EXT 2180 out->st_atim_ext = 0; 2181 out->st_mtim_ext = 0; 2182 out->st_ctim_ext = 0; 2183 out->st_btim_ext = 0; 2184 #endif 2185 bzero(out->st_spare, sizeof(out->st_spare)); 2186 } 2187 2188 #ifdef COMPAT_43 2189 static void 2190 copy_ostat(struct stat *in, struct ostat32 *out) 2191 { 2192 2193 bzero(out, sizeof(*out)); 2194 CP(*in, *out, st_dev); 2195 CP(*in, *out, st_ino); 2196 CP(*in, *out, st_mode); 2197 CP(*in, *out, st_nlink); 2198 CP(*in, *out, st_uid); 2199 CP(*in, *out, st_gid); 2200 CP(*in, *out, st_rdev); 2201 out->st_size = MIN(in->st_size, INT32_MAX); 2202 TS_CP(*in, *out, st_atim); 2203 TS_CP(*in, *out, st_mtim); 2204 TS_CP(*in, *out, st_ctim); 2205 CP(*in, *out, st_blksize); 2206 CP(*in, *out, st_blocks); 2207 CP(*in, *out, st_flags); 2208 CP(*in, *out, st_gen); 2209 } 2210 #endif 2211 2212 #ifdef COMPAT_43 2213 int 2214 ofreebsd32_stat(struct thread *td, struct ofreebsd32_stat_args *uap) 2215 { 2216 struct stat sb; 2217 struct ostat32 sb32; 2218 int error; 2219 2220 error = kern_statat(td, 0, AT_FDCWD, uap->path, UIO_USERSPACE, 2221 &sb, NULL); 2222 if (error) 2223 return (error); 2224 copy_ostat(&sb, &sb32); 2225 error = copyout(&sb32, uap->ub, sizeof (sb32)); 2226 return (error); 2227 } 2228 #endif 2229 2230 int 2231 freebsd32_fstat(struct thread *td, struct freebsd32_fstat_args *uap) 2232 { 2233 struct stat ub; 2234 struct stat32 ub32; 2235 int error; 2236 2237 error = kern_fstat(td, uap->fd, &ub); 2238 if (error) 2239 return (error); 2240 copy_stat(&ub, &ub32); 2241 error = copyout(&ub32, uap->sb, sizeof(ub32)); 2242 return (error); 2243 } 2244 2245 #ifdef COMPAT_43 2246 int 2247 ofreebsd32_fstat(struct thread *td, struct ofreebsd32_fstat_args *uap) 2248 { 2249 struct stat ub; 2250 struct ostat32 ub32; 2251 int error; 2252 2253 error = kern_fstat(td, uap->fd, &ub); 2254 if (error) 2255 return (error); 2256 copy_ostat(&ub, &ub32); 2257 error = copyout(&ub32, uap->sb, sizeof(ub32)); 2258 return (error); 2259 } 2260 #endif 2261 2262 int 2263 freebsd32_fstatat(struct thread *td, struct freebsd32_fstatat_args *uap) 2264 { 2265 struct stat ub; 2266 struct stat32 ub32; 2267 int error; 2268 2269 error = kern_statat(td, uap->flag, uap->fd, uap->path, UIO_USERSPACE, 2270 &ub, NULL); 2271 if (error) 2272 return (error); 2273 copy_stat(&ub, &ub32); 2274 error = copyout(&ub32, uap->buf, sizeof(ub32)); 2275 return (error); 2276 } 2277 2278 #ifdef COMPAT_43 2279 int 2280 ofreebsd32_lstat(struct thread *td, struct ofreebsd32_lstat_args *uap) 2281 { 2282 struct stat sb; 2283 struct ostat32 sb32; 2284 int error; 2285 2286 error = kern_statat(td, AT_SYMLINK_NOFOLLOW, AT_FDCWD, uap->path, 2287 UIO_USERSPACE, &sb, NULL); 2288 if (error) 2289 return (error); 2290 copy_ostat(&sb, &sb32); 2291 error = copyout(&sb32, uap->ub, sizeof (sb32)); 2292 return (error); 2293 } 2294 #endif 2295 2296 int 2297 freebsd32_fhstat(struct thread *td, struct freebsd32_fhstat_args *uap) 2298 { 2299 struct stat sb; 2300 struct stat32 sb32; 2301 struct fhandle fh; 2302 int error; 2303 2304 error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t)); 2305 if (error != 0) 2306 return (error); 2307 error = kern_fhstat(td, fh, &sb); 2308 if (error != 0) 2309 return (error); 2310 copy_stat(&sb, &sb32); 2311 error = copyout(&sb32, uap->sb, sizeof (sb32)); 2312 return (error); 2313 } 2314 2315 #if defined(COMPAT_FREEBSD11) 2316 extern int ino64_trunc_error; 2317 2318 static int 2319 freebsd11_cvtstat32(struct stat *in, struct freebsd11_stat32 *out) 2320 { 2321 2322 CP(*in, *out, st_ino); 2323 if (in->st_ino != out->st_ino) { 2324 switch (ino64_trunc_error) { 2325 default: 2326 case 0: 2327 break; 2328 case 1: 2329 return (EOVERFLOW); 2330 case 2: 2331 out->st_ino = UINT32_MAX; 2332 break; 2333 } 2334 } 2335 CP(*in, *out, st_nlink); 2336 if (in->st_nlink != out->st_nlink) { 2337 switch (ino64_trunc_error) { 2338 default: 2339 case 0: 2340 break; 2341 case 1: 2342 return (EOVERFLOW); 2343 case 2: 2344 out->st_nlink = UINT16_MAX; 2345 break; 2346 } 2347 } 2348 out->st_dev = in->st_dev; 2349 if (out->st_dev != in->st_dev) { 2350 switch (ino64_trunc_error) { 2351 default: 2352 break; 2353 case 1: 2354 return (EOVERFLOW); 2355 } 2356 } 2357 CP(*in, *out, st_mode); 2358 CP(*in, *out, st_uid); 2359 CP(*in, *out, st_gid); 2360 out->st_rdev = in->st_rdev; 2361 if (out->st_rdev != in->st_rdev) { 2362 switch (ino64_trunc_error) { 2363 default: 2364 break; 2365 case 1: 2366 return (EOVERFLOW); 2367 } 2368 } 2369 TS_CP(*in, *out, st_atim); 2370 TS_CP(*in, *out, st_mtim); 2371 TS_CP(*in, *out, st_ctim); 2372 CP(*in, *out, st_size); 2373 CP(*in, *out, st_blocks); 2374 CP(*in, *out, st_blksize); 2375 CP(*in, *out, st_flags); 2376 CP(*in, *out, st_gen); 2377 TS_CP(*in, *out, st_birthtim); 2378 out->st_lspare = 0; 2379 bzero((char *)&out->st_birthtim + sizeof(out->st_birthtim), 2380 sizeof(*out) - offsetof(struct freebsd11_stat32, 2381 st_birthtim) - sizeof(out->st_birthtim)); 2382 return (0); 2383 } 2384 2385 int 2386 freebsd11_freebsd32_stat(struct thread *td, 2387 struct freebsd11_freebsd32_stat_args *uap) 2388 { 2389 struct stat sb; 2390 struct freebsd11_stat32 sb32; 2391 int error; 2392 2393 error = kern_statat(td, 0, AT_FDCWD, uap->path, UIO_USERSPACE, 2394 &sb, NULL); 2395 if (error != 0) 2396 return (error); 2397 error = freebsd11_cvtstat32(&sb, &sb32); 2398 if (error == 0) 2399 error = copyout(&sb32, uap->ub, sizeof (sb32)); 2400 return (error); 2401 } 2402 2403 int 2404 freebsd11_freebsd32_fstat(struct thread *td, 2405 struct freebsd11_freebsd32_fstat_args *uap) 2406 { 2407 struct stat sb; 2408 struct freebsd11_stat32 sb32; 2409 int error; 2410 2411 error = kern_fstat(td, uap->fd, &sb); 2412 if (error != 0) 2413 return (error); 2414 error = freebsd11_cvtstat32(&sb, &sb32); 2415 if (error == 0) 2416 error = copyout(&sb32, uap->sb, sizeof (sb32)); 2417 return (error); 2418 } 2419 2420 int 2421 freebsd11_freebsd32_fstatat(struct thread *td, 2422 struct freebsd11_freebsd32_fstatat_args *uap) 2423 { 2424 struct stat sb; 2425 struct freebsd11_stat32 sb32; 2426 int error; 2427 2428 error = kern_statat(td, uap->flag, uap->fd, uap->path, UIO_USERSPACE, 2429 &sb, NULL); 2430 if (error != 0) 2431 return (error); 2432 error = freebsd11_cvtstat32(&sb, &sb32); 2433 if (error == 0) 2434 error = copyout(&sb32, uap->buf, sizeof (sb32)); 2435 return (error); 2436 } 2437 2438 int 2439 freebsd11_freebsd32_lstat(struct thread *td, 2440 struct freebsd11_freebsd32_lstat_args *uap) 2441 { 2442 struct stat sb; 2443 struct freebsd11_stat32 sb32; 2444 int error; 2445 2446 error = kern_statat(td, AT_SYMLINK_NOFOLLOW, AT_FDCWD, uap->path, 2447 UIO_USERSPACE, &sb, NULL); 2448 if (error != 0) 2449 return (error); 2450 error = freebsd11_cvtstat32(&sb, &sb32); 2451 if (error == 0) 2452 error = copyout(&sb32, uap->ub, sizeof (sb32)); 2453 return (error); 2454 } 2455 2456 int 2457 freebsd11_freebsd32_fhstat(struct thread *td, 2458 struct freebsd11_freebsd32_fhstat_args *uap) 2459 { 2460 struct stat sb; 2461 struct freebsd11_stat32 sb32; 2462 struct fhandle fh; 2463 int error; 2464 2465 error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t)); 2466 if (error != 0) 2467 return (error); 2468 error = kern_fhstat(td, fh, &sb); 2469 if (error != 0) 2470 return (error); 2471 error = freebsd11_cvtstat32(&sb, &sb32); 2472 if (error == 0) 2473 error = copyout(&sb32, uap->sb, sizeof (sb32)); 2474 return (error); 2475 } 2476 #endif 2477 2478 int 2479 freebsd32___sysctl(struct thread *td, struct freebsd32___sysctl_args *uap) 2480 { 2481 int error, name[CTL_MAXNAME]; 2482 size_t j, oldlen; 2483 uint32_t tmp; 2484 2485 if (uap->namelen > CTL_MAXNAME || uap->namelen < 2) 2486 return (EINVAL); 2487 error = copyin(uap->name, name, uap->namelen * sizeof(int)); 2488 if (error) 2489 return (error); 2490 if (uap->oldlenp) { 2491 error = fueword32(uap->oldlenp, &tmp); 2492 oldlen = tmp; 2493 } else { 2494 oldlen = 0; 2495 } 2496 if (error != 0) 2497 return (EFAULT); 2498 error = userland_sysctl(td, name, uap->namelen, 2499 uap->old, &oldlen, 1, 2500 uap->new, uap->newlen, &j, SCTL_MASK32); 2501 if (error) 2502 return (error); 2503 if (uap->oldlenp) 2504 suword32(uap->oldlenp, j); 2505 return (0); 2506 } 2507 2508 int 2509 freebsd32___sysctlbyname(struct thread *td, 2510 struct freebsd32___sysctlbyname_args *uap) 2511 { 2512 size_t oldlen, rv; 2513 int error; 2514 uint32_t tmp; 2515 2516 if (uap->oldlenp != NULL) { 2517 error = fueword32(uap->oldlenp, &tmp); 2518 oldlen = tmp; 2519 } else { 2520 error = oldlen = 0; 2521 } 2522 if (error != 0) 2523 return (EFAULT); 2524 error = kern___sysctlbyname(td, uap->name, uap->namelen, uap->old, 2525 &oldlen, uap->new, uap->newlen, &rv, SCTL_MASK32, 1); 2526 if (error != 0) 2527 return (error); 2528 if (uap->oldlenp != NULL) 2529 error = suword32(uap->oldlenp, rv); 2530 2531 return (error); 2532 } 2533 2534 int 2535 freebsd32_jail(struct thread *td, struct freebsd32_jail_args *uap) 2536 { 2537 uint32_t version; 2538 int error; 2539 struct jail j; 2540 2541 error = copyin(uap->jail, &version, sizeof(uint32_t)); 2542 if (error) 2543 return (error); 2544 2545 switch (version) { 2546 case 0: 2547 { 2548 /* FreeBSD single IPv4 jails. */ 2549 struct jail32_v0 j32_v0; 2550 2551 bzero(&j, sizeof(struct jail)); 2552 error = copyin(uap->jail, &j32_v0, sizeof(struct jail32_v0)); 2553 if (error) 2554 return (error); 2555 CP(j32_v0, j, version); 2556 PTRIN_CP(j32_v0, j, path); 2557 PTRIN_CP(j32_v0, j, hostname); 2558 j.ip4s = htonl(j32_v0.ip_number); /* jail_v0 is host order */ 2559 break; 2560 } 2561 2562 case 1: 2563 /* 2564 * Version 1 was used by multi-IPv4 jail implementations 2565 * that never made it into the official kernel. 2566 */ 2567 return (EINVAL); 2568 2569 case 2: /* JAIL_API_VERSION */ 2570 { 2571 /* FreeBSD multi-IPv4/IPv6,noIP jails. */ 2572 struct jail32 j32; 2573 2574 error = copyin(uap->jail, &j32, sizeof(struct jail32)); 2575 if (error) 2576 return (error); 2577 CP(j32, j, version); 2578 PTRIN_CP(j32, j, path); 2579 PTRIN_CP(j32, j, hostname); 2580 PTRIN_CP(j32, j, jailname); 2581 CP(j32, j, ip4s); 2582 CP(j32, j, ip6s); 2583 PTRIN_CP(j32, j, ip4); 2584 PTRIN_CP(j32, j, ip6); 2585 break; 2586 } 2587 2588 default: 2589 /* Sci-Fi jails are not supported, sorry. */ 2590 return (EINVAL); 2591 } 2592 return (kern_jail(td, &j)); 2593 } 2594 2595 int 2596 freebsd32_jail_set(struct thread *td, struct freebsd32_jail_set_args *uap) 2597 { 2598 struct uio *auio; 2599 int error; 2600 2601 /* Check that we have an even number of iovecs. */ 2602 if (uap->iovcnt & 1) 2603 return (EINVAL); 2604 2605 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 2606 if (error) 2607 return (error); 2608 error = kern_jail_set(td, auio, uap->flags); 2609 free(auio, M_IOV); 2610 return (error); 2611 } 2612 2613 int 2614 freebsd32_jail_get(struct thread *td, struct freebsd32_jail_get_args *uap) 2615 { 2616 struct iovec32 iov32; 2617 struct uio *auio; 2618 int error, i; 2619 2620 /* Check that we have an even number of iovecs. */ 2621 if (uap->iovcnt & 1) 2622 return (EINVAL); 2623 2624 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 2625 if (error) 2626 return (error); 2627 error = kern_jail_get(td, auio, uap->flags); 2628 if (error == 0) 2629 for (i = 0; i < uap->iovcnt; i++) { 2630 PTROUT_CP(auio->uio_iov[i], iov32, iov_base); 2631 CP(auio->uio_iov[i], iov32, iov_len); 2632 error = copyout(&iov32, uap->iovp + i, sizeof(iov32)); 2633 if (error != 0) 2634 break; 2635 } 2636 free(auio, M_IOV); 2637 return (error); 2638 } 2639 2640 int 2641 freebsd32_sigaction(struct thread *td, struct freebsd32_sigaction_args *uap) 2642 { 2643 struct sigaction32 s32; 2644 struct sigaction sa, osa, *sap; 2645 int error; 2646 2647 if (uap->act) { 2648 error = copyin(uap->act, &s32, sizeof(s32)); 2649 if (error) 2650 return (error); 2651 sa.sa_handler = PTRIN(s32.sa_u); 2652 CP(s32, sa, sa_flags); 2653 CP(s32, sa, sa_mask); 2654 sap = &sa; 2655 } else 2656 sap = NULL; 2657 error = kern_sigaction(td, uap->sig, sap, &osa, 0); 2658 if (error == 0 && uap->oact != NULL) { 2659 s32.sa_u = PTROUT(osa.sa_handler); 2660 CP(osa, s32, sa_flags); 2661 CP(osa, s32, sa_mask); 2662 error = copyout(&s32, uap->oact, sizeof(s32)); 2663 } 2664 return (error); 2665 } 2666 2667 #ifdef COMPAT_FREEBSD4 2668 int 2669 freebsd4_freebsd32_sigaction(struct thread *td, 2670 struct freebsd4_freebsd32_sigaction_args *uap) 2671 { 2672 struct sigaction32 s32; 2673 struct sigaction sa, osa, *sap; 2674 int error; 2675 2676 if (uap->act) { 2677 error = copyin(uap->act, &s32, sizeof(s32)); 2678 if (error) 2679 return (error); 2680 sa.sa_handler = PTRIN(s32.sa_u); 2681 CP(s32, sa, sa_flags); 2682 CP(s32, sa, sa_mask); 2683 sap = &sa; 2684 } else 2685 sap = NULL; 2686 error = kern_sigaction(td, uap->sig, sap, &osa, KSA_FREEBSD4); 2687 if (error == 0 && uap->oact != NULL) { 2688 s32.sa_u = PTROUT(osa.sa_handler); 2689 CP(osa, s32, sa_flags); 2690 CP(osa, s32, sa_mask); 2691 error = copyout(&s32, uap->oact, sizeof(s32)); 2692 } 2693 return (error); 2694 } 2695 #endif 2696 2697 #ifdef COMPAT_43 2698 struct osigaction32 { 2699 u_int32_t sa_u; 2700 osigset_t sa_mask; 2701 int sa_flags; 2702 }; 2703 2704 #define ONSIG 32 2705 2706 int 2707 ofreebsd32_sigaction(struct thread *td, 2708 struct ofreebsd32_sigaction_args *uap) 2709 { 2710 struct osigaction32 s32; 2711 struct sigaction sa, osa, *sap; 2712 int error; 2713 2714 if (uap->signum <= 0 || uap->signum >= ONSIG) 2715 return (EINVAL); 2716 2717 if (uap->nsa) { 2718 error = copyin(uap->nsa, &s32, sizeof(s32)); 2719 if (error) 2720 return (error); 2721 sa.sa_handler = PTRIN(s32.sa_u); 2722 CP(s32, sa, sa_flags); 2723 OSIG2SIG(s32.sa_mask, sa.sa_mask); 2724 sap = &sa; 2725 } else 2726 sap = NULL; 2727 error = kern_sigaction(td, uap->signum, sap, &osa, KSA_OSIGSET); 2728 if (error == 0 && uap->osa != NULL) { 2729 s32.sa_u = PTROUT(osa.sa_handler); 2730 CP(osa, s32, sa_flags); 2731 SIG2OSIG(osa.sa_mask, s32.sa_mask); 2732 error = copyout(&s32, uap->osa, sizeof(s32)); 2733 } 2734 return (error); 2735 } 2736 2737 struct sigvec32 { 2738 u_int32_t sv_handler; 2739 int sv_mask; 2740 int sv_flags; 2741 }; 2742 2743 int 2744 ofreebsd32_sigvec(struct thread *td, 2745 struct ofreebsd32_sigvec_args *uap) 2746 { 2747 struct sigvec32 vec; 2748 struct sigaction sa, osa, *sap; 2749 int error; 2750 2751 if (uap->signum <= 0 || uap->signum >= ONSIG) 2752 return (EINVAL); 2753 2754 if (uap->nsv) { 2755 error = copyin(uap->nsv, &vec, sizeof(vec)); 2756 if (error) 2757 return (error); 2758 sa.sa_handler = PTRIN(vec.sv_handler); 2759 OSIG2SIG(vec.sv_mask, sa.sa_mask); 2760 sa.sa_flags = vec.sv_flags; 2761 sa.sa_flags ^= SA_RESTART; 2762 sap = &sa; 2763 } else 2764 sap = NULL; 2765 error = kern_sigaction(td, uap->signum, sap, &osa, KSA_OSIGSET); 2766 if (error == 0 && uap->osv != NULL) { 2767 vec.sv_handler = PTROUT(osa.sa_handler); 2768 SIG2OSIG(osa.sa_mask, vec.sv_mask); 2769 vec.sv_flags = osa.sa_flags; 2770 vec.sv_flags &= ~SA_NOCLDWAIT; 2771 vec.sv_flags ^= SA_RESTART; 2772 error = copyout(&vec, uap->osv, sizeof(vec)); 2773 } 2774 return (error); 2775 } 2776 2777 struct sigstack32 { 2778 u_int32_t ss_sp; 2779 int ss_onstack; 2780 }; 2781 2782 int 2783 ofreebsd32_sigstack(struct thread *td, 2784 struct ofreebsd32_sigstack_args *uap) 2785 { 2786 struct sigstack32 s32; 2787 struct sigstack nss, oss; 2788 int error = 0, unss; 2789 2790 if (uap->nss != NULL) { 2791 error = copyin(uap->nss, &s32, sizeof(s32)); 2792 if (error) 2793 return (error); 2794 nss.ss_sp = PTRIN(s32.ss_sp); 2795 CP(s32, nss, ss_onstack); 2796 unss = 1; 2797 } else { 2798 unss = 0; 2799 } 2800 oss.ss_sp = td->td_sigstk.ss_sp; 2801 oss.ss_onstack = sigonstack(cpu_getstack(td)); 2802 if (unss) { 2803 td->td_sigstk.ss_sp = nss.ss_sp; 2804 td->td_sigstk.ss_size = 0; 2805 td->td_sigstk.ss_flags |= (nss.ss_onstack & SS_ONSTACK); 2806 td->td_pflags |= TDP_ALTSTACK; 2807 } 2808 if (uap->oss != NULL) { 2809 s32.ss_sp = PTROUT(oss.ss_sp); 2810 CP(oss, s32, ss_onstack); 2811 error = copyout(&s32, uap->oss, sizeof(s32)); 2812 } 2813 return (error); 2814 } 2815 #endif 2816 2817 int 2818 freebsd32_nanosleep(struct thread *td, struct freebsd32_nanosleep_args *uap) 2819 { 2820 2821 return (freebsd32_user_clock_nanosleep(td, CLOCK_REALTIME, 2822 TIMER_RELTIME, uap->rqtp, uap->rmtp)); 2823 } 2824 2825 int 2826 freebsd32_clock_nanosleep(struct thread *td, 2827 struct freebsd32_clock_nanosleep_args *uap) 2828 { 2829 int error; 2830 2831 error = freebsd32_user_clock_nanosleep(td, uap->clock_id, uap->flags, 2832 uap->rqtp, uap->rmtp); 2833 return (kern_posix_error(td, error)); 2834 } 2835 2836 static int 2837 freebsd32_user_clock_nanosleep(struct thread *td, clockid_t clock_id, 2838 int flags, const struct timespec32 *ua_rqtp, struct timespec32 *ua_rmtp) 2839 { 2840 struct timespec32 rmt32, rqt32; 2841 struct timespec rmt, rqt; 2842 int error, error2; 2843 2844 error = copyin(ua_rqtp, &rqt32, sizeof(rqt32)); 2845 if (error) 2846 return (error); 2847 2848 CP(rqt32, rqt, tv_sec); 2849 CP(rqt32, rqt, tv_nsec); 2850 2851 error = kern_clock_nanosleep(td, clock_id, flags, &rqt, &rmt); 2852 if (error == EINTR && ua_rmtp != NULL && (flags & TIMER_ABSTIME) == 0) { 2853 CP(rmt, rmt32, tv_sec); 2854 CP(rmt, rmt32, tv_nsec); 2855 2856 error2 = copyout(&rmt32, ua_rmtp, sizeof(rmt32)); 2857 if (error2 != 0) 2858 error = error2; 2859 } 2860 return (error); 2861 } 2862 2863 int 2864 freebsd32_clock_gettime(struct thread *td, 2865 struct freebsd32_clock_gettime_args *uap) 2866 { 2867 struct timespec ats; 2868 struct timespec32 ats32; 2869 int error; 2870 2871 error = kern_clock_gettime(td, uap->clock_id, &ats); 2872 if (error == 0) { 2873 CP(ats, ats32, tv_sec); 2874 CP(ats, ats32, tv_nsec); 2875 error = copyout(&ats32, uap->tp, sizeof(ats32)); 2876 } 2877 return (error); 2878 } 2879 2880 int 2881 freebsd32_clock_settime(struct thread *td, 2882 struct freebsd32_clock_settime_args *uap) 2883 { 2884 struct timespec ats; 2885 struct timespec32 ats32; 2886 int error; 2887 2888 error = copyin(uap->tp, &ats32, sizeof(ats32)); 2889 if (error) 2890 return (error); 2891 CP(ats32, ats, tv_sec); 2892 CP(ats32, ats, tv_nsec); 2893 2894 return (kern_clock_settime(td, uap->clock_id, &ats)); 2895 } 2896 2897 int 2898 freebsd32_clock_getres(struct thread *td, 2899 struct freebsd32_clock_getres_args *uap) 2900 { 2901 struct timespec ts; 2902 struct timespec32 ts32; 2903 int error; 2904 2905 if (uap->tp == NULL) 2906 return (0); 2907 error = kern_clock_getres(td, uap->clock_id, &ts); 2908 if (error == 0) { 2909 CP(ts, ts32, tv_sec); 2910 CP(ts, ts32, tv_nsec); 2911 error = copyout(&ts32, uap->tp, sizeof(ts32)); 2912 } 2913 return (error); 2914 } 2915 2916 int freebsd32_ktimer_create(struct thread *td, 2917 struct freebsd32_ktimer_create_args *uap) 2918 { 2919 struct sigevent32 ev32; 2920 struct sigevent ev, *evp; 2921 int error, id; 2922 2923 if (uap->evp == NULL) { 2924 evp = NULL; 2925 } else { 2926 evp = &ev; 2927 error = copyin(uap->evp, &ev32, sizeof(ev32)); 2928 if (error != 0) 2929 return (error); 2930 error = convert_sigevent32(&ev32, &ev); 2931 if (error != 0) 2932 return (error); 2933 } 2934 error = kern_ktimer_create(td, uap->clock_id, evp, &id, -1); 2935 if (error == 0) { 2936 error = copyout(&id, uap->timerid, sizeof(int)); 2937 if (error != 0) 2938 kern_ktimer_delete(td, id); 2939 } 2940 return (error); 2941 } 2942 2943 int 2944 freebsd32_ktimer_settime(struct thread *td, 2945 struct freebsd32_ktimer_settime_args *uap) 2946 { 2947 struct itimerspec32 val32, oval32; 2948 struct itimerspec val, oval, *ovalp; 2949 int error; 2950 2951 error = copyin(uap->value, &val32, sizeof(val32)); 2952 if (error != 0) 2953 return (error); 2954 ITS_CP(val32, val); 2955 ovalp = uap->ovalue != NULL ? &oval : NULL; 2956 error = kern_ktimer_settime(td, uap->timerid, uap->flags, &val, ovalp); 2957 if (error == 0 && uap->ovalue != NULL) { 2958 ITS_CP(oval, oval32); 2959 error = copyout(&oval32, uap->ovalue, sizeof(oval32)); 2960 } 2961 return (error); 2962 } 2963 2964 int 2965 freebsd32_ktimer_gettime(struct thread *td, 2966 struct freebsd32_ktimer_gettime_args *uap) 2967 { 2968 struct itimerspec32 val32; 2969 struct itimerspec val; 2970 int error; 2971 2972 error = kern_ktimer_gettime(td, uap->timerid, &val); 2973 if (error == 0) { 2974 ITS_CP(val, val32); 2975 error = copyout(&val32, uap->value, sizeof(val32)); 2976 } 2977 return (error); 2978 } 2979 2980 int 2981 freebsd32_clock_getcpuclockid2(struct thread *td, 2982 struct freebsd32_clock_getcpuclockid2_args *uap) 2983 { 2984 clockid_t clk_id; 2985 int error; 2986 2987 error = kern_clock_getcpuclockid2(td, PAIR32TO64(id_t, uap->id), 2988 uap->which, &clk_id); 2989 if (error == 0) 2990 error = copyout(&clk_id, uap->clock_id, sizeof(clockid_t)); 2991 return (error); 2992 } 2993 2994 int 2995 freebsd32_thr_new(struct thread *td, 2996 struct freebsd32_thr_new_args *uap) 2997 { 2998 struct thr_param32 param32; 2999 struct thr_param param; 3000 int error; 3001 3002 if (uap->param_size < 0 || 3003 uap->param_size > sizeof(struct thr_param32)) 3004 return (EINVAL); 3005 bzero(¶m, sizeof(struct thr_param)); 3006 bzero(¶m32, sizeof(struct thr_param32)); 3007 error = copyin(uap->param, ¶m32, uap->param_size); 3008 if (error != 0) 3009 return (error); 3010 param.start_func = PTRIN(param32.start_func); 3011 param.arg = PTRIN(param32.arg); 3012 param.stack_base = PTRIN(param32.stack_base); 3013 param.stack_size = param32.stack_size; 3014 param.tls_base = PTRIN(param32.tls_base); 3015 param.tls_size = param32.tls_size; 3016 param.child_tid = PTRIN(param32.child_tid); 3017 param.parent_tid = PTRIN(param32.parent_tid); 3018 param.flags = param32.flags; 3019 param.rtp = PTRIN(param32.rtp); 3020 param.spare[0] = PTRIN(param32.spare[0]); 3021 param.spare[1] = PTRIN(param32.spare[1]); 3022 param.spare[2] = PTRIN(param32.spare[2]); 3023 3024 return (kern_thr_new(td, ¶m)); 3025 } 3026 3027 int 3028 freebsd32_thr_suspend(struct thread *td, struct freebsd32_thr_suspend_args *uap) 3029 { 3030 struct timespec32 ts32; 3031 struct timespec ts, *tsp; 3032 int error; 3033 3034 error = 0; 3035 tsp = NULL; 3036 if (uap->timeout != NULL) { 3037 error = copyin((const void *)uap->timeout, (void *)&ts32, 3038 sizeof(struct timespec32)); 3039 if (error != 0) 3040 return (error); 3041 ts.tv_sec = ts32.tv_sec; 3042 ts.tv_nsec = ts32.tv_nsec; 3043 tsp = &ts; 3044 } 3045 return (kern_thr_suspend(td, tsp)); 3046 } 3047 3048 void 3049 siginfo_to_siginfo32(const siginfo_t *src, struct siginfo32 *dst) 3050 { 3051 bzero(dst, sizeof(*dst)); 3052 dst->si_signo = src->si_signo; 3053 dst->si_errno = src->si_errno; 3054 dst->si_code = src->si_code; 3055 dst->si_pid = src->si_pid; 3056 dst->si_uid = src->si_uid; 3057 dst->si_status = src->si_status; 3058 dst->si_addr = (uintptr_t)src->si_addr; 3059 dst->si_value.sival_int = src->si_value.sival_int; 3060 dst->si_timerid = src->si_timerid; 3061 dst->si_overrun = src->si_overrun; 3062 } 3063 3064 #ifndef _FREEBSD32_SYSPROTO_H_ 3065 struct freebsd32_sigqueue_args { 3066 pid_t pid; 3067 int signum; 3068 /* union sigval32 */ int value; 3069 }; 3070 #endif 3071 int 3072 freebsd32_sigqueue(struct thread *td, struct freebsd32_sigqueue_args *uap) 3073 { 3074 union sigval sv; 3075 3076 /* 3077 * On 32-bit ABIs, sival_int and sival_ptr are the same. 3078 * On 64-bit little-endian ABIs, the low bits are the same. 3079 * In 64-bit big-endian ABIs, sival_int overlaps with 3080 * sival_ptr's HIGH bits. We choose to support sival_int 3081 * rather than sival_ptr in this case as it seems to be 3082 * more common. 3083 */ 3084 bzero(&sv, sizeof(sv)); 3085 sv.sival_int = (uint32_t)(uint64_t)uap->value; 3086 3087 return (kern_sigqueue(td, uap->pid, uap->signum, &sv)); 3088 } 3089 3090 int 3091 freebsd32_sigtimedwait(struct thread *td, struct freebsd32_sigtimedwait_args *uap) 3092 { 3093 struct timespec32 ts32; 3094 struct timespec ts; 3095 struct timespec *timeout; 3096 sigset_t set; 3097 ksiginfo_t ksi; 3098 struct siginfo32 si32; 3099 int error; 3100 3101 if (uap->timeout) { 3102 error = copyin(uap->timeout, &ts32, sizeof(ts32)); 3103 if (error) 3104 return (error); 3105 ts.tv_sec = ts32.tv_sec; 3106 ts.tv_nsec = ts32.tv_nsec; 3107 timeout = &ts; 3108 } else 3109 timeout = NULL; 3110 3111 error = copyin(uap->set, &set, sizeof(set)); 3112 if (error) 3113 return (error); 3114 3115 error = kern_sigtimedwait(td, set, &ksi, timeout); 3116 if (error) 3117 return (error); 3118 3119 if (uap->info) { 3120 siginfo_to_siginfo32(&ksi.ksi_info, &si32); 3121 error = copyout(&si32, uap->info, sizeof(struct siginfo32)); 3122 } 3123 3124 if (error == 0) 3125 td->td_retval[0] = ksi.ksi_signo; 3126 return (error); 3127 } 3128 3129 /* 3130 * MPSAFE 3131 */ 3132 int 3133 freebsd32_sigwaitinfo(struct thread *td, struct freebsd32_sigwaitinfo_args *uap) 3134 { 3135 ksiginfo_t ksi; 3136 struct siginfo32 si32; 3137 sigset_t set; 3138 int error; 3139 3140 error = copyin(uap->set, &set, sizeof(set)); 3141 if (error) 3142 return (error); 3143 3144 error = kern_sigtimedwait(td, set, &ksi, NULL); 3145 if (error) 3146 return (error); 3147 3148 if (uap->info) { 3149 siginfo_to_siginfo32(&ksi.ksi_info, &si32); 3150 error = copyout(&si32, uap->info, sizeof(struct siginfo32)); 3151 } 3152 if (error == 0) 3153 td->td_retval[0] = ksi.ksi_signo; 3154 return (error); 3155 } 3156 3157 int 3158 freebsd32_cpuset_setid(struct thread *td, 3159 struct freebsd32_cpuset_setid_args *uap) 3160 { 3161 3162 return (kern_cpuset_setid(td, uap->which, 3163 PAIR32TO64(id_t, uap->id), uap->setid)); 3164 } 3165 3166 int 3167 freebsd32_cpuset_getid(struct thread *td, 3168 struct freebsd32_cpuset_getid_args *uap) 3169 { 3170 3171 return (kern_cpuset_getid(td, uap->level, uap->which, 3172 PAIR32TO64(id_t, uap->id), uap->setid)); 3173 } 3174 3175 int 3176 freebsd32_cpuset_getaffinity(struct thread *td, 3177 struct freebsd32_cpuset_getaffinity_args *uap) 3178 { 3179 3180 return (kern_cpuset_getaffinity(td, uap->level, uap->which, 3181 PAIR32TO64(id_t,uap->id), uap->cpusetsize, uap->mask)); 3182 } 3183 3184 int 3185 freebsd32_cpuset_setaffinity(struct thread *td, 3186 struct freebsd32_cpuset_setaffinity_args *uap) 3187 { 3188 3189 return (kern_cpuset_setaffinity(td, uap->level, uap->which, 3190 PAIR32TO64(id_t,uap->id), uap->cpusetsize, uap->mask)); 3191 } 3192 3193 int 3194 freebsd32_cpuset_getdomain(struct thread *td, 3195 struct freebsd32_cpuset_getdomain_args *uap) 3196 { 3197 3198 return (kern_cpuset_getdomain(td, uap->level, uap->which, 3199 PAIR32TO64(id_t,uap->id), uap->domainsetsize, uap->mask, uap->policy)); 3200 } 3201 3202 int 3203 freebsd32_cpuset_setdomain(struct thread *td, 3204 struct freebsd32_cpuset_setdomain_args *uap) 3205 { 3206 3207 return (kern_cpuset_setdomain(td, uap->level, uap->which, 3208 PAIR32TO64(id_t,uap->id), uap->domainsetsize, uap->mask, uap->policy)); 3209 } 3210 3211 int 3212 freebsd32_nmount(struct thread *td, 3213 struct freebsd32_nmount_args /* { 3214 struct iovec *iovp; 3215 unsigned int iovcnt; 3216 int flags; 3217 } */ *uap) 3218 { 3219 struct uio *auio; 3220 uint64_t flags; 3221 int error; 3222 3223 /* 3224 * Mount flags are now 64-bits. On 32-bit archtectures only 3225 * 32-bits are passed in, but from here on everything handles 3226 * 64-bit flags correctly. 3227 */ 3228 flags = uap->flags; 3229 3230 AUDIT_ARG_FFLAGS(flags); 3231 3232 /* 3233 * Filter out MNT_ROOTFS. We do not want clients of nmount() in 3234 * userspace to set this flag, but we must filter it out if we want 3235 * MNT_UPDATE on the root file system to work. 3236 * MNT_ROOTFS should only be set by the kernel when mounting its 3237 * root file system. 3238 */ 3239 flags &= ~MNT_ROOTFS; 3240 3241 /* 3242 * check that we have an even number of iovec's 3243 * and that we have at least two options. 3244 */ 3245 if ((uap->iovcnt & 1) || (uap->iovcnt < 4)) 3246 return (EINVAL); 3247 3248 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 3249 if (error) 3250 return (error); 3251 error = vfs_donmount(td, flags, auio); 3252 3253 free(auio, M_IOV); 3254 return error; 3255 } 3256 3257 #if 0 3258 int 3259 freebsd32_xxx(struct thread *td, struct freebsd32_xxx_args *uap) 3260 { 3261 struct yyy32 *p32, s32; 3262 struct yyy *p = NULL, s; 3263 struct xxx_arg ap; 3264 int error; 3265 3266 if (uap->zzz) { 3267 error = copyin(uap->zzz, &s32, sizeof(s32)); 3268 if (error) 3269 return (error); 3270 /* translate in */ 3271 p = &s; 3272 } 3273 error = kern_xxx(td, p); 3274 if (error) 3275 return (error); 3276 if (uap->zzz) { 3277 /* translate out */ 3278 error = copyout(&s32, p32, sizeof(s32)); 3279 } 3280 return (error); 3281 } 3282 #endif 3283 3284 int 3285 syscall32_module_handler(struct module *mod, int what, void *arg) 3286 { 3287 3288 return (kern_syscall_module_handler(freebsd32_sysent, mod, what, arg)); 3289 } 3290 3291 int 3292 syscall32_helper_register(struct syscall_helper_data *sd, int flags) 3293 { 3294 3295 return (kern_syscall_helper_register(freebsd32_sysent, sd, flags)); 3296 } 3297 3298 int 3299 syscall32_helper_unregister(struct syscall_helper_data *sd) 3300 { 3301 3302 return (kern_syscall_helper_unregister(freebsd32_sysent, sd)); 3303 } 3304 3305 int 3306 freebsd32_copyout_strings(struct image_params *imgp, uintptr_t *stack_base) 3307 { 3308 int argc, envc, i; 3309 u_int32_t *vectp; 3310 char *stringp; 3311 uintptr_t destp, ustringp; 3312 struct freebsd32_ps_strings *arginfo; 3313 char canary[sizeof(long) * 8]; 3314 int32_t pagesizes32[MAXPAGESIZES]; 3315 size_t execpath_len; 3316 int error, szsigcode; 3317 3318 /* 3319 * Calculate string base and vector table pointers. 3320 * Also deal with signal trampoline code for this exec type. 3321 */ 3322 if (imgp->execpath != NULL && imgp->auxargs != NULL) 3323 execpath_len = strlen(imgp->execpath) + 1; 3324 else 3325 execpath_len = 0; 3326 arginfo = (struct freebsd32_ps_strings *)curproc->p_sysent-> 3327 sv_psstrings; 3328 imgp->ps_strings = arginfo; 3329 if (imgp->proc->p_sysent->sv_sigcode_base == 0) 3330 szsigcode = *(imgp->proc->p_sysent->sv_szsigcode); 3331 else 3332 szsigcode = 0; 3333 destp = (uintptr_t)arginfo; 3334 3335 /* 3336 * install sigcode 3337 */ 3338 if (szsigcode != 0) { 3339 destp -= szsigcode; 3340 destp = rounddown2(destp, sizeof(uint32_t)); 3341 error = copyout(imgp->proc->p_sysent->sv_sigcode, (void *)destp, 3342 szsigcode); 3343 if (error != 0) 3344 return (error); 3345 } 3346 3347 /* 3348 * Copy the image path for the rtld. 3349 */ 3350 if (execpath_len != 0) { 3351 destp -= execpath_len; 3352 imgp->execpathp = (void *)destp; 3353 error = copyout(imgp->execpath, imgp->execpathp, execpath_len); 3354 if (error != 0) 3355 return (error); 3356 } 3357 3358 /* 3359 * Prepare the canary for SSP. 3360 */ 3361 arc4rand(canary, sizeof(canary), 0); 3362 destp -= sizeof(canary); 3363 imgp->canary = (void *)destp; 3364 error = copyout(canary, imgp->canary, sizeof(canary)); 3365 if (error != 0) 3366 return (error); 3367 imgp->canarylen = sizeof(canary); 3368 3369 /* 3370 * Prepare the pagesizes array. 3371 */ 3372 for (i = 0; i < MAXPAGESIZES; i++) 3373 pagesizes32[i] = (uint32_t)pagesizes[i]; 3374 destp -= sizeof(pagesizes32); 3375 destp = rounddown2(destp, sizeof(uint32_t)); 3376 imgp->pagesizes = (void *)destp; 3377 error = copyout(pagesizes32, imgp->pagesizes, sizeof(pagesizes32)); 3378 if (error != 0) 3379 return (error); 3380 imgp->pagesizeslen = sizeof(pagesizes32); 3381 3382 /* 3383 * Allocate room for the argument and environment strings. 3384 */ 3385 destp -= ARG_MAX - imgp->args->stringspace; 3386 destp = rounddown2(destp, sizeof(uint32_t)); 3387 ustringp = destp; 3388 3389 exec_stackgap(imgp, &destp); 3390 3391 if (imgp->auxargs) { 3392 /* 3393 * Allocate room on the stack for the ELF auxargs 3394 * array. It has up to AT_COUNT entries. 3395 */ 3396 destp -= AT_COUNT * sizeof(Elf32_Auxinfo); 3397 destp = rounddown2(destp, sizeof(uint32_t)); 3398 } 3399 3400 vectp = (uint32_t *)destp; 3401 3402 /* 3403 * Allocate room for the argv[] and env vectors including the 3404 * terminating NULL pointers. 3405 */ 3406 vectp -= imgp->args->argc + 1 + imgp->args->envc + 1; 3407 3408 /* 3409 * vectp also becomes our initial stack base 3410 */ 3411 *stack_base = (uintptr_t)vectp; 3412 3413 stringp = imgp->args->begin_argv; 3414 argc = imgp->args->argc; 3415 envc = imgp->args->envc; 3416 /* 3417 * Copy out strings - arguments and environment. 3418 */ 3419 error = copyout(stringp, (void *)ustringp, 3420 ARG_MAX - imgp->args->stringspace); 3421 if (error != 0) 3422 return (error); 3423 3424 /* 3425 * Fill in "ps_strings" struct for ps, w, etc. 3426 */ 3427 imgp->argv = vectp; 3428 if (suword32(&arginfo->ps_argvstr, (u_int32_t)(intptr_t)vectp) != 0 || 3429 suword32(&arginfo->ps_nargvstr, argc) != 0) 3430 return (EFAULT); 3431 3432 /* 3433 * Fill in argument portion of vector table. 3434 */ 3435 for (; argc > 0; --argc) { 3436 if (suword32(vectp++, ustringp) != 0) 3437 return (EFAULT); 3438 while (*stringp++ != 0) 3439 ustringp++; 3440 ustringp++; 3441 } 3442 3443 /* a null vector table pointer separates the argp's from the envp's */ 3444 if (suword32(vectp++, 0) != 0) 3445 return (EFAULT); 3446 3447 imgp->envv = vectp; 3448 if (suword32(&arginfo->ps_envstr, (u_int32_t)(intptr_t)vectp) != 0 || 3449 suword32(&arginfo->ps_nenvstr, envc) != 0) 3450 return (EFAULT); 3451 3452 /* 3453 * Fill in environment portion of vector table. 3454 */ 3455 for (; envc > 0; --envc) { 3456 if (suword32(vectp++, ustringp) != 0) 3457 return (EFAULT); 3458 while (*stringp++ != 0) 3459 ustringp++; 3460 ustringp++; 3461 } 3462 3463 /* end of vector table is a null pointer */ 3464 if (suword32(vectp, 0) != 0) 3465 return (EFAULT); 3466 3467 if (imgp->auxargs) { 3468 vectp++; 3469 error = imgp->sysent->sv_copyout_auxargs(imgp, 3470 (uintptr_t)vectp); 3471 if (error != 0) 3472 return (error); 3473 } 3474 3475 return (0); 3476 } 3477 3478 int 3479 freebsd32_kldstat(struct thread *td, struct freebsd32_kldstat_args *uap) 3480 { 3481 struct kld_file_stat *stat; 3482 struct kld_file_stat32 *stat32; 3483 int error, version; 3484 3485 if ((error = copyin(&uap->stat->version, &version, sizeof(version))) 3486 != 0) 3487 return (error); 3488 if (version != sizeof(struct kld_file_stat_1_32) && 3489 version != sizeof(struct kld_file_stat32)) 3490 return (EINVAL); 3491 3492 stat = malloc(sizeof(*stat), M_TEMP, M_WAITOK | M_ZERO); 3493 stat32 = malloc(sizeof(*stat32), M_TEMP, M_WAITOK | M_ZERO); 3494 error = kern_kldstat(td, uap->fileid, stat); 3495 if (error == 0) { 3496 bcopy(&stat->name[0], &stat32->name[0], sizeof(stat->name)); 3497 CP(*stat, *stat32, refs); 3498 CP(*stat, *stat32, id); 3499 PTROUT_CP(*stat, *stat32, address); 3500 CP(*stat, *stat32, size); 3501 bcopy(&stat->pathname[0], &stat32->pathname[0], 3502 sizeof(stat->pathname)); 3503 stat32->version = version; 3504 error = copyout(stat32, uap->stat, version); 3505 } 3506 free(stat, M_TEMP); 3507 free(stat32, M_TEMP); 3508 return (error); 3509 } 3510 3511 int 3512 freebsd32_posix_fallocate(struct thread *td, 3513 struct freebsd32_posix_fallocate_args *uap) 3514 { 3515 int error; 3516 3517 error = kern_posix_fallocate(td, uap->fd, 3518 PAIR32TO64(off_t, uap->offset), PAIR32TO64(off_t, uap->len)); 3519 return (kern_posix_error(td, error)); 3520 } 3521 3522 int 3523 freebsd32_posix_fadvise(struct thread *td, 3524 struct freebsd32_posix_fadvise_args *uap) 3525 { 3526 int error; 3527 3528 error = kern_posix_fadvise(td, uap->fd, PAIR32TO64(off_t, uap->offset), 3529 PAIR32TO64(off_t, uap->len), uap->advice); 3530 return (kern_posix_error(td, error)); 3531 } 3532 3533 int 3534 convert_sigevent32(struct sigevent32 *sig32, struct sigevent *sig) 3535 { 3536 3537 CP(*sig32, *sig, sigev_notify); 3538 switch (sig->sigev_notify) { 3539 case SIGEV_NONE: 3540 break; 3541 case SIGEV_THREAD_ID: 3542 CP(*sig32, *sig, sigev_notify_thread_id); 3543 /* FALLTHROUGH */ 3544 case SIGEV_SIGNAL: 3545 CP(*sig32, *sig, sigev_signo); 3546 PTRIN_CP(*sig32, *sig, sigev_value.sival_ptr); 3547 break; 3548 case SIGEV_KEVENT: 3549 CP(*sig32, *sig, sigev_notify_kqueue); 3550 CP(*sig32, *sig, sigev_notify_kevent_flags); 3551 PTRIN_CP(*sig32, *sig, sigev_value.sival_ptr); 3552 break; 3553 default: 3554 return (EINVAL); 3555 } 3556 return (0); 3557 } 3558 3559 int 3560 freebsd32_procctl(struct thread *td, struct freebsd32_procctl_args *uap) 3561 { 3562 void *data; 3563 union { 3564 struct procctl_reaper_status rs; 3565 struct procctl_reaper_pids rp; 3566 struct procctl_reaper_kill rk; 3567 } x; 3568 union { 3569 struct procctl_reaper_pids32 rp; 3570 } x32; 3571 int error, error1, flags, signum; 3572 3573 if (uap->com >= PROC_PROCCTL_MD_MIN) 3574 return (cpu_procctl(td, uap->idtype, PAIR32TO64(id_t, uap->id), 3575 uap->com, PTRIN(uap->data))); 3576 3577 switch (uap->com) { 3578 case PROC_ASLR_CTL: 3579 case PROC_PROTMAX_CTL: 3580 case PROC_SPROTECT: 3581 case PROC_STACKGAP_CTL: 3582 case PROC_TRACE_CTL: 3583 case PROC_TRAPCAP_CTL: 3584 case PROC_NO_NEW_PRIVS_CTL: 3585 case PROC_WXMAP_CTL: 3586 error = copyin(PTRIN(uap->data), &flags, sizeof(flags)); 3587 if (error != 0) 3588 return (error); 3589 data = &flags; 3590 break; 3591 case PROC_REAP_ACQUIRE: 3592 case PROC_REAP_RELEASE: 3593 if (uap->data != NULL) 3594 return (EINVAL); 3595 data = NULL; 3596 break; 3597 case PROC_REAP_STATUS: 3598 data = &x.rs; 3599 break; 3600 case PROC_REAP_GETPIDS: 3601 error = copyin(uap->data, &x32.rp, sizeof(x32.rp)); 3602 if (error != 0) 3603 return (error); 3604 CP(x32.rp, x.rp, rp_count); 3605 PTRIN_CP(x32.rp, x.rp, rp_pids); 3606 data = &x.rp; 3607 break; 3608 case PROC_REAP_KILL: 3609 error = copyin(uap->data, &x.rk, sizeof(x.rk)); 3610 if (error != 0) 3611 return (error); 3612 data = &x.rk; 3613 break; 3614 case PROC_ASLR_STATUS: 3615 case PROC_PROTMAX_STATUS: 3616 case PROC_STACKGAP_STATUS: 3617 case PROC_TRACE_STATUS: 3618 case PROC_TRAPCAP_STATUS: 3619 case PROC_NO_NEW_PRIVS_STATUS: 3620 case PROC_WXMAP_STATUS: 3621 data = &flags; 3622 break; 3623 case PROC_PDEATHSIG_CTL: 3624 error = copyin(uap->data, &signum, sizeof(signum)); 3625 if (error != 0) 3626 return (error); 3627 data = &signum; 3628 break; 3629 case PROC_PDEATHSIG_STATUS: 3630 data = &signum; 3631 break; 3632 default: 3633 return (EINVAL); 3634 } 3635 error = kern_procctl(td, uap->idtype, PAIR32TO64(id_t, uap->id), 3636 uap->com, data); 3637 switch (uap->com) { 3638 case PROC_REAP_STATUS: 3639 if (error == 0) 3640 error = copyout(&x.rs, uap->data, sizeof(x.rs)); 3641 break; 3642 case PROC_REAP_KILL: 3643 error1 = copyout(&x.rk, uap->data, sizeof(x.rk)); 3644 if (error == 0) 3645 error = error1; 3646 break; 3647 case PROC_ASLR_STATUS: 3648 case PROC_PROTMAX_STATUS: 3649 case PROC_STACKGAP_STATUS: 3650 case PROC_TRACE_STATUS: 3651 case PROC_TRAPCAP_STATUS: 3652 case PROC_NO_NEW_PRIVS_STATUS: 3653 case PROC_WXMAP_STATUS: 3654 if (error == 0) 3655 error = copyout(&flags, uap->data, sizeof(flags)); 3656 break; 3657 case PROC_PDEATHSIG_STATUS: 3658 if (error == 0) 3659 error = copyout(&signum, uap->data, sizeof(signum)); 3660 break; 3661 } 3662 return (error); 3663 } 3664 3665 int 3666 freebsd32_fcntl(struct thread *td, struct freebsd32_fcntl_args *uap) 3667 { 3668 long tmp; 3669 3670 switch (uap->cmd) { 3671 /* 3672 * Do unsigned conversion for arg when operation 3673 * interprets it as flags or pointer. 3674 */ 3675 case F_SETLK_REMOTE: 3676 case F_SETLKW: 3677 case F_SETLK: 3678 case F_GETLK: 3679 case F_SETFD: 3680 case F_SETFL: 3681 case F_OGETLK: 3682 case F_OSETLK: 3683 case F_OSETLKW: 3684 tmp = (unsigned int)(uap->arg); 3685 break; 3686 default: 3687 tmp = uap->arg; 3688 break; 3689 } 3690 return (kern_fcntl_freebsd(td, uap->fd, uap->cmd, tmp)); 3691 } 3692 3693 int 3694 freebsd32_ppoll(struct thread *td, struct freebsd32_ppoll_args *uap) 3695 { 3696 struct timespec32 ts32; 3697 struct timespec ts, *tsp; 3698 sigset_t set, *ssp; 3699 int error; 3700 3701 if (uap->ts != NULL) { 3702 error = copyin(uap->ts, &ts32, sizeof(ts32)); 3703 if (error != 0) 3704 return (error); 3705 CP(ts32, ts, tv_sec); 3706 CP(ts32, ts, tv_nsec); 3707 tsp = &ts; 3708 } else 3709 tsp = NULL; 3710 if (uap->set != NULL) { 3711 error = copyin(uap->set, &set, sizeof(set)); 3712 if (error != 0) 3713 return (error); 3714 ssp = &set; 3715 } else 3716 ssp = NULL; 3717 3718 return (kern_poll(td, uap->fds, uap->nfds, tsp, ssp)); 3719 } 3720 3721 int 3722 freebsd32_sched_rr_get_interval(struct thread *td, 3723 struct freebsd32_sched_rr_get_interval_args *uap) 3724 { 3725 struct timespec ts; 3726 struct timespec32 ts32; 3727 int error; 3728 3729 error = kern_sched_rr_get_interval(td, uap->pid, &ts); 3730 if (error == 0) { 3731 CP(ts, ts32, tv_sec); 3732 CP(ts, ts32, tv_nsec); 3733 error = copyout(&ts32, uap->interval, sizeof(ts32)); 3734 } 3735 return (error); 3736 } 3737 3738 static void 3739 timex_to_32(struct timex32 *dst, struct timex *src) 3740 { 3741 CP(*src, *dst, modes); 3742 CP(*src, *dst, offset); 3743 CP(*src, *dst, freq); 3744 CP(*src, *dst, maxerror); 3745 CP(*src, *dst, esterror); 3746 CP(*src, *dst, status); 3747 CP(*src, *dst, constant); 3748 CP(*src, *dst, precision); 3749 CP(*src, *dst, tolerance); 3750 CP(*src, *dst, ppsfreq); 3751 CP(*src, *dst, jitter); 3752 CP(*src, *dst, shift); 3753 CP(*src, *dst, stabil); 3754 CP(*src, *dst, jitcnt); 3755 CP(*src, *dst, calcnt); 3756 CP(*src, *dst, errcnt); 3757 CP(*src, *dst, stbcnt); 3758 } 3759 3760 static void 3761 timex_from_32(struct timex *dst, struct timex32 *src) 3762 { 3763 CP(*src, *dst, modes); 3764 CP(*src, *dst, offset); 3765 CP(*src, *dst, freq); 3766 CP(*src, *dst, maxerror); 3767 CP(*src, *dst, esterror); 3768 CP(*src, *dst, status); 3769 CP(*src, *dst, constant); 3770 CP(*src, *dst, precision); 3771 CP(*src, *dst, tolerance); 3772 CP(*src, *dst, ppsfreq); 3773 CP(*src, *dst, jitter); 3774 CP(*src, *dst, shift); 3775 CP(*src, *dst, stabil); 3776 CP(*src, *dst, jitcnt); 3777 CP(*src, *dst, calcnt); 3778 CP(*src, *dst, errcnt); 3779 CP(*src, *dst, stbcnt); 3780 } 3781 3782 int 3783 freebsd32_ntp_adjtime(struct thread *td, struct freebsd32_ntp_adjtime_args *uap) 3784 { 3785 struct timex tx; 3786 struct timex32 tx32; 3787 int error, retval; 3788 3789 error = copyin(uap->tp, &tx32, sizeof(tx32)); 3790 if (error == 0) { 3791 timex_from_32(&tx, &tx32); 3792 error = kern_ntp_adjtime(td, &tx, &retval); 3793 if (error == 0) { 3794 timex_to_32(&tx32, &tx); 3795 error = copyout(&tx32, uap->tp, sizeof(tx32)); 3796 if (error == 0) 3797 td->td_retval[0] = retval; 3798 } 3799 } 3800 return (error); 3801 } 3802 3803 #ifdef FFCLOCK 3804 extern struct mtx ffclock_mtx; 3805 extern struct ffclock_estimate ffclock_estimate; 3806 extern int8_t ffclock_updated; 3807 3808 int 3809 freebsd32_ffclock_setestimate(struct thread *td, 3810 struct freebsd32_ffclock_setestimate_args *uap) 3811 { 3812 struct ffclock_estimate cest; 3813 struct ffclock_estimate32 cest32; 3814 int error; 3815 3816 /* Reuse of PRIV_CLOCK_SETTIME. */ 3817 if ((error = priv_check(td, PRIV_CLOCK_SETTIME)) != 0) 3818 return (error); 3819 3820 if ((error = copyin(uap->cest, &cest32, 3821 sizeof(struct ffclock_estimate32))) != 0) 3822 return (error); 3823 3824 CP(cest.update_time, cest32.update_time, sec); 3825 memcpy(&cest.update_time.frac, &cest32.update_time.frac, sizeof(uint64_t)); 3826 CP(cest, cest32, update_ffcount); 3827 CP(cest, cest32, leapsec_next); 3828 CP(cest, cest32, period); 3829 CP(cest, cest32, errb_abs); 3830 CP(cest, cest32, errb_rate); 3831 CP(cest, cest32, status); 3832 CP(cest, cest32, leapsec_total); 3833 CP(cest, cest32, leapsec); 3834 3835 mtx_lock(&ffclock_mtx); 3836 memcpy(&ffclock_estimate, &cest, sizeof(struct ffclock_estimate)); 3837 ffclock_updated++; 3838 mtx_unlock(&ffclock_mtx); 3839 return (error); 3840 } 3841 3842 int 3843 freebsd32_ffclock_getestimate(struct thread *td, 3844 struct freebsd32_ffclock_getestimate_args *uap) 3845 { 3846 struct ffclock_estimate cest; 3847 struct ffclock_estimate32 cest32; 3848 int error; 3849 3850 mtx_lock(&ffclock_mtx); 3851 memcpy(&cest, &ffclock_estimate, sizeof(struct ffclock_estimate)); 3852 mtx_unlock(&ffclock_mtx); 3853 3854 CP(cest32.update_time, cest.update_time, sec); 3855 memcpy(&cest32.update_time.frac, &cest.update_time.frac, sizeof(uint64_t)); 3856 CP(cest32, cest, update_ffcount); 3857 CP(cest32, cest, leapsec_next); 3858 CP(cest32, cest, period); 3859 CP(cest32, cest, errb_abs); 3860 CP(cest32, cest, errb_rate); 3861 CP(cest32, cest, status); 3862 CP(cest32, cest, leapsec_total); 3863 CP(cest32, cest, leapsec); 3864 3865 error = copyout(&cest32, uap->cest, sizeof(struct ffclock_estimate32)); 3866 return (error); 3867 } 3868 #else /* !FFCLOCK */ 3869 int 3870 freebsd32_ffclock_setestimate(struct thread *td, 3871 struct freebsd32_ffclock_setestimate_args *uap) 3872 { 3873 return (ENOSYS); 3874 } 3875 3876 int 3877 freebsd32_ffclock_getestimate(struct thread *td, 3878 struct freebsd32_ffclock_getestimate_args *uap) 3879 { 3880 return (ENOSYS); 3881 } 3882 #endif /* FFCLOCK */ 3883 3884 #ifdef COMPAT_43 3885 int 3886 ofreebsd32_sethostid(struct thread *td, struct ofreebsd32_sethostid_args *uap) 3887 { 3888 int name[] = { CTL_KERN, KERN_HOSTID }; 3889 long hostid; 3890 3891 hostid = uap->hostid; 3892 return (kernel_sysctl(td, name, nitems(name), NULL, NULL, &hostid, 3893 sizeof(hostid), NULL, 0)); 3894 } 3895 #endif 3896