1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2002 Doug Rabson 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include "opt_inet.h" 33 #include "opt_inet6.h" 34 #include "opt_ktrace.h" 35 36 #define __ELF_WORD_SIZE 32 37 38 #ifdef COMPAT_FREEBSD11 39 #define _WANT_FREEBSD11_KEVENT 40 #endif 41 42 #include <sys/param.h> 43 #include <sys/bus.h> 44 #include <sys/capsicum.h> 45 #include <sys/clock.h> 46 #include <sys/exec.h> 47 #include <sys/fcntl.h> 48 #include <sys/filedesc.h> 49 #include <sys/imgact.h> 50 #include <sys/jail.h> 51 #include <sys/kernel.h> 52 #include <sys/limits.h> 53 #include <sys/linker.h> 54 #include <sys/lock.h> 55 #include <sys/malloc.h> 56 #include <sys/file.h> /* Must come after sys/malloc.h */ 57 #include <sys/imgact.h> 58 #include <sys/mbuf.h> 59 #include <sys/mman.h> 60 #include <sys/module.h> 61 #include <sys/mount.h> 62 #include <sys/mutex.h> 63 #include <sys/namei.h> 64 #include <sys/proc.h> 65 #include <sys/procctl.h> 66 #include <sys/reboot.h> 67 #include <sys/resource.h> 68 #include <sys/resourcevar.h> 69 #include <sys/selinfo.h> 70 #include <sys/eventvar.h> /* Must come after sys/selinfo.h */ 71 #include <sys/pipe.h> /* Must come after sys/selinfo.h */ 72 #include <sys/signal.h> 73 #include <sys/signalvar.h> 74 #include <sys/socket.h> 75 #include <sys/socketvar.h> 76 #include <sys/stat.h> 77 #include <sys/syscall.h> 78 #include <sys/syscallsubr.h> 79 #include <sys/sysctl.h> 80 #include <sys/sysent.h> 81 #include <sys/sysproto.h> 82 #include <sys/systm.h> 83 #include <sys/thr.h> 84 #include <sys/unistd.h> 85 #include <sys/ucontext.h> 86 #include <sys/vnode.h> 87 #include <sys/wait.h> 88 #include <sys/ipc.h> 89 #include <sys/msg.h> 90 #include <sys/sem.h> 91 #include <sys/shm.h> 92 #ifdef KTRACE 93 #include <sys/ktrace.h> 94 #endif 95 96 #ifdef INET 97 #include <netinet/in.h> 98 #endif 99 100 #include <vm/vm.h> 101 #include <vm/vm_param.h> 102 #include <vm/pmap.h> 103 #include <vm/vm_map.h> 104 #include <vm/vm_object.h> 105 #include <vm/vm_extern.h> 106 107 #include <machine/cpu.h> 108 #include <machine/elf.h> 109 110 #include <security/audit/audit.h> 111 112 #include <compat/freebsd32/freebsd32_util.h> 113 #include <compat/freebsd32/freebsd32.h> 114 #include <compat/freebsd32/freebsd32_ipc.h> 115 #include <compat/freebsd32/freebsd32_misc.h> 116 #include <compat/freebsd32/freebsd32_signal.h> 117 #include <compat/freebsd32/freebsd32_proto.h> 118 119 FEATURE(compat_freebsd_32bit, "Compatible with 32-bit FreeBSD"); 120 121 #ifdef __amd64__ 122 CTASSERT(sizeof(struct timeval32) == 8); 123 CTASSERT(sizeof(struct timespec32) == 8); 124 CTASSERT(sizeof(struct itimerval32) == 16); 125 CTASSERT(sizeof(struct bintime32) == 12); 126 #endif 127 CTASSERT(sizeof(struct statfs32) == 256); 128 #ifdef __amd64__ 129 CTASSERT(sizeof(struct rusage32) == 72); 130 #endif 131 CTASSERT(sizeof(struct sigaltstack32) == 12); 132 #ifdef __amd64__ 133 CTASSERT(sizeof(struct kevent32) == 56); 134 #else 135 CTASSERT(sizeof(struct kevent32) == 64); 136 #endif 137 CTASSERT(sizeof(struct iovec32) == 8); 138 CTASSERT(sizeof(struct msghdr32) == 28); 139 #ifdef __amd64__ 140 CTASSERT(sizeof(struct stat32) == 208); 141 CTASSERT(sizeof(struct freebsd11_stat32) == 96); 142 #endif 143 CTASSERT(sizeof(struct sigaction32) == 24); 144 145 static int freebsd32_kevent_copyout(void *arg, struct kevent *kevp, int count); 146 static int freebsd32_kevent_copyin(void *arg, struct kevent *kevp, int count); 147 static int freebsd32_user_clock_nanosleep(struct thread *td, clockid_t clock_id, 148 int flags, const struct timespec32 *ua_rqtp, struct timespec32 *ua_rmtp); 149 150 void 151 freebsd32_rusage_out(const struct rusage *s, struct rusage32 *s32) 152 { 153 154 TV_CP(*s, *s32, ru_utime); 155 TV_CP(*s, *s32, ru_stime); 156 CP(*s, *s32, ru_maxrss); 157 CP(*s, *s32, ru_ixrss); 158 CP(*s, *s32, ru_idrss); 159 CP(*s, *s32, ru_isrss); 160 CP(*s, *s32, ru_minflt); 161 CP(*s, *s32, ru_majflt); 162 CP(*s, *s32, ru_nswap); 163 CP(*s, *s32, ru_inblock); 164 CP(*s, *s32, ru_oublock); 165 CP(*s, *s32, ru_msgsnd); 166 CP(*s, *s32, ru_msgrcv); 167 CP(*s, *s32, ru_nsignals); 168 CP(*s, *s32, ru_nvcsw); 169 CP(*s, *s32, ru_nivcsw); 170 } 171 172 int 173 freebsd32_wait4(struct thread *td, struct freebsd32_wait4_args *uap) 174 { 175 int error, status; 176 struct rusage32 ru32; 177 struct rusage ru, *rup; 178 179 if (uap->rusage != NULL) 180 rup = &ru; 181 else 182 rup = NULL; 183 error = kern_wait(td, uap->pid, &status, uap->options, rup); 184 if (error) 185 return (error); 186 if (uap->status != NULL) 187 error = copyout(&status, uap->status, sizeof(status)); 188 if (uap->rusage != NULL && error == 0) { 189 freebsd32_rusage_out(&ru, &ru32); 190 error = copyout(&ru32, uap->rusage, sizeof(ru32)); 191 } 192 return (error); 193 } 194 195 int 196 freebsd32_wait6(struct thread *td, struct freebsd32_wait6_args *uap) 197 { 198 struct wrusage32 wru32; 199 struct __wrusage wru, *wrup; 200 struct siginfo32 si32; 201 struct __siginfo si, *sip; 202 int error, status; 203 204 if (uap->wrusage != NULL) 205 wrup = &wru; 206 else 207 wrup = NULL; 208 if (uap->info != NULL) { 209 sip = &si; 210 bzero(sip, sizeof(*sip)); 211 } else 212 sip = NULL; 213 error = kern_wait6(td, uap->idtype, PAIR32TO64(id_t, uap->id), 214 &status, uap->options, wrup, sip); 215 if (error != 0) 216 return (error); 217 if (uap->status != NULL) 218 error = copyout(&status, uap->status, sizeof(status)); 219 if (uap->wrusage != NULL && error == 0) { 220 freebsd32_rusage_out(&wru.wru_self, &wru32.wru_self); 221 freebsd32_rusage_out(&wru.wru_children, &wru32.wru_children); 222 error = copyout(&wru32, uap->wrusage, sizeof(wru32)); 223 } 224 if (uap->info != NULL && error == 0) { 225 siginfo_to_siginfo32 (&si, &si32); 226 error = copyout(&si32, uap->info, sizeof(si32)); 227 } 228 return (error); 229 } 230 231 #ifdef COMPAT_FREEBSD4 232 static void 233 copy_statfs(struct statfs *in, struct statfs32 *out) 234 { 235 236 statfs_scale_blocks(in, INT32_MAX); 237 bzero(out, sizeof(*out)); 238 CP(*in, *out, f_bsize); 239 out->f_iosize = MIN(in->f_iosize, INT32_MAX); 240 CP(*in, *out, f_blocks); 241 CP(*in, *out, f_bfree); 242 CP(*in, *out, f_bavail); 243 out->f_files = MIN(in->f_files, INT32_MAX); 244 out->f_ffree = MIN(in->f_ffree, INT32_MAX); 245 CP(*in, *out, f_fsid); 246 CP(*in, *out, f_owner); 247 CP(*in, *out, f_type); 248 CP(*in, *out, f_flags); 249 out->f_syncwrites = MIN(in->f_syncwrites, INT32_MAX); 250 out->f_asyncwrites = MIN(in->f_asyncwrites, INT32_MAX); 251 strlcpy(out->f_fstypename, 252 in->f_fstypename, MFSNAMELEN); 253 strlcpy(out->f_mntonname, 254 in->f_mntonname, min(MNAMELEN, FREEBSD4_MNAMELEN)); 255 out->f_syncreads = MIN(in->f_syncreads, INT32_MAX); 256 out->f_asyncreads = MIN(in->f_asyncreads, INT32_MAX); 257 strlcpy(out->f_mntfromname, 258 in->f_mntfromname, min(MNAMELEN, FREEBSD4_MNAMELEN)); 259 } 260 #endif 261 262 #ifdef COMPAT_FREEBSD4 263 int 264 freebsd4_freebsd32_getfsstat(struct thread *td, 265 struct freebsd4_freebsd32_getfsstat_args *uap) 266 { 267 struct statfs *buf, *sp; 268 struct statfs32 stat32; 269 size_t count, size, copycount; 270 int error; 271 272 count = uap->bufsize / sizeof(struct statfs32); 273 size = count * sizeof(struct statfs); 274 error = kern_getfsstat(td, &buf, size, &count, UIO_SYSSPACE, uap->mode); 275 if (size > 0) { 276 sp = buf; 277 copycount = count; 278 while (copycount > 0 && error == 0) { 279 copy_statfs(sp, &stat32); 280 error = copyout(&stat32, uap->buf, sizeof(stat32)); 281 sp++; 282 uap->buf++; 283 copycount--; 284 } 285 free(buf, M_STATFS); 286 } 287 if (error == 0) 288 td->td_retval[0] = count; 289 return (error); 290 } 291 #endif 292 293 #ifdef COMPAT_FREEBSD10 294 int 295 freebsd10_freebsd32_pipe(struct thread *td, 296 struct freebsd10_freebsd32_pipe_args *uap) { 297 298 return (freebsd10_pipe(td, (struct freebsd10_pipe_args*)uap)); 299 } 300 #endif 301 302 int 303 freebsd32_sigaltstack(struct thread *td, 304 struct freebsd32_sigaltstack_args *uap) 305 { 306 struct sigaltstack32 s32; 307 struct sigaltstack ss, oss, *ssp; 308 int error; 309 310 if (uap->ss != NULL) { 311 error = copyin(uap->ss, &s32, sizeof(s32)); 312 if (error) 313 return (error); 314 PTRIN_CP(s32, ss, ss_sp); 315 CP(s32, ss, ss_size); 316 CP(s32, ss, ss_flags); 317 ssp = &ss; 318 } else 319 ssp = NULL; 320 error = kern_sigaltstack(td, ssp, &oss); 321 if (error == 0 && uap->oss != NULL) { 322 PTROUT_CP(oss, s32, ss_sp); 323 CP(oss, s32, ss_size); 324 CP(oss, s32, ss_flags); 325 error = copyout(&s32, uap->oss, sizeof(s32)); 326 } 327 return (error); 328 } 329 330 /* 331 * Custom version of exec_copyin_args() so that we can translate 332 * the pointers. 333 */ 334 int 335 freebsd32_exec_copyin_args(struct image_args *args, const char *fname, 336 enum uio_seg segflg, u_int32_t *argv, u_int32_t *envv) 337 { 338 char *argp, *envp; 339 u_int32_t *p32, arg; 340 size_t length; 341 int error; 342 343 bzero(args, sizeof(*args)); 344 if (argv == NULL) 345 return (EFAULT); 346 347 /* 348 * Allocate demand-paged memory for the file name, argument, and 349 * environment strings. 350 */ 351 error = exec_alloc_args(args); 352 if (error != 0) 353 return (error); 354 355 /* 356 * Copy the file name. 357 */ 358 if (fname != NULL) { 359 args->fname = args->buf; 360 error = (segflg == UIO_SYSSPACE) ? 361 copystr(fname, args->fname, PATH_MAX, &length) : 362 copyinstr(fname, args->fname, PATH_MAX, &length); 363 if (error != 0) 364 goto err_exit; 365 } else 366 length = 0; 367 368 args->begin_argv = args->buf + length; 369 args->endp = args->begin_argv; 370 args->stringspace = ARG_MAX; 371 372 /* 373 * extract arguments first 374 */ 375 p32 = argv; 376 for (;;) { 377 error = copyin(p32++, &arg, sizeof(arg)); 378 if (error) 379 goto err_exit; 380 if (arg == 0) 381 break; 382 argp = PTRIN(arg); 383 error = copyinstr(argp, args->endp, args->stringspace, &length); 384 if (error) { 385 if (error == ENAMETOOLONG) 386 error = E2BIG; 387 goto err_exit; 388 } 389 args->stringspace -= length; 390 args->endp += length; 391 args->argc++; 392 } 393 394 args->begin_envv = args->endp; 395 396 /* 397 * extract environment strings 398 */ 399 if (envv) { 400 p32 = envv; 401 for (;;) { 402 error = copyin(p32++, &arg, sizeof(arg)); 403 if (error) 404 goto err_exit; 405 if (arg == 0) 406 break; 407 envp = PTRIN(arg); 408 error = copyinstr(envp, args->endp, args->stringspace, 409 &length); 410 if (error) { 411 if (error == ENAMETOOLONG) 412 error = E2BIG; 413 goto err_exit; 414 } 415 args->stringspace -= length; 416 args->endp += length; 417 args->envc++; 418 } 419 } 420 421 return (0); 422 423 err_exit: 424 exec_free_args(args); 425 return (error); 426 } 427 428 int 429 freebsd32_execve(struct thread *td, struct freebsd32_execve_args *uap) 430 { 431 struct image_args eargs; 432 struct vmspace *oldvmspace; 433 int error; 434 435 error = pre_execve(td, &oldvmspace); 436 if (error != 0) 437 return (error); 438 error = freebsd32_exec_copyin_args(&eargs, uap->fname, UIO_USERSPACE, 439 uap->argv, uap->envv); 440 if (error == 0) 441 error = kern_execve(td, &eargs, NULL); 442 post_execve(td, error, oldvmspace); 443 return (error); 444 } 445 446 int 447 freebsd32_fexecve(struct thread *td, struct freebsd32_fexecve_args *uap) 448 { 449 struct image_args eargs; 450 struct vmspace *oldvmspace; 451 int error; 452 453 error = pre_execve(td, &oldvmspace); 454 if (error != 0) 455 return (error); 456 error = freebsd32_exec_copyin_args(&eargs, NULL, UIO_SYSSPACE, 457 uap->argv, uap->envv); 458 if (error == 0) { 459 eargs.fd = uap->fd; 460 error = kern_execve(td, &eargs, NULL); 461 } 462 post_execve(td, error, oldvmspace); 463 return (error); 464 } 465 466 467 int 468 freebsd32_mknodat(struct thread *td, struct freebsd32_mknodat_args *uap) 469 { 470 471 return (kern_mknodat(td, uap->fd, uap->path, UIO_USERSPACE, 472 uap->mode, PAIR32TO64(dev_t, uap->dev))); 473 } 474 475 int 476 freebsd32_mprotect(struct thread *td, struct freebsd32_mprotect_args *uap) 477 { 478 int prot; 479 480 prot = uap->prot; 481 #if defined(__amd64__) 482 if (i386_read_exec && (prot & PROT_READ) != 0) 483 prot |= PROT_EXEC; 484 #endif 485 return (kern_mprotect(td, (uintptr_t)PTRIN(uap->addr), uap->len, 486 prot)); 487 } 488 489 int 490 freebsd32_mmap(struct thread *td, struct freebsd32_mmap_args *uap) 491 { 492 int prot; 493 494 prot = uap->prot; 495 #if defined(__amd64__) 496 if (i386_read_exec && (prot & PROT_READ)) 497 prot |= PROT_EXEC; 498 #endif 499 500 return (kern_mmap(td, (uintptr_t)uap->addr, uap->len, prot, 501 uap->flags, uap->fd, PAIR32TO64(off_t, uap->pos))); 502 } 503 504 #ifdef COMPAT_FREEBSD6 505 int 506 freebsd6_freebsd32_mmap(struct thread *td, 507 struct freebsd6_freebsd32_mmap_args *uap) 508 { 509 int prot; 510 511 prot = uap->prot; 512 #if defined(__amd64__) 513 if (i386_read_exec && (prot & PROT_READ)) 514 prot |= PROT_EXEC; 515 #endif 516 517 return (kern_mmap(td, (uintptr_t)uap->addr, uap->len, prot, 518 uap->flags, uap->fd, PAIR32TO64(off_t, uap->pos))); 519 } 520 #endif 521 522 int 523 freebsd32_setitimer(struct thread *td, struct freebsd32_setitimer_args *uap) 524 { 525 struct itimerval itv, oitv, *itvp; 526 struct itimerval32 i32; 527 int error; 528 529 if (uap->itv != NULL) { 530 error = copyin(uap->itv, &i32, sizeof(i32)); 531 if (error) 532 return (error); 533 TV_CP(i32, itv, it_interval); 534 TV_CP(i32, itv, it_value); 535 itvp = &itv; 536 } else 537 itvp = NULL; 538 error = kern_setitimer(td, uap->which, itvp, &oitv); 539 if (error || uap->oitv == NULL) 540 return (error); 541 TV_CP(oitv, i32, it_interval); 542 TV_CP(oitv, i32, it_value); 543 return (copyout(&i32, uap->oitv, sizeof(i32))); 544 } 545 546 int 547 freebsd32_getitimer(struct thread *td, struct freebsd32_getitimer_args *uap) 548 { 549 struct itimerval itv; 550 struct itimerval32 i32; 551 int error; 552 553 error = kern_getitimer(td, uap->which, &itv); 554 if (error || uap->itv == NULL) 555 return (error); 556 TV_CP(itv, i32, it_interval); 557 TV_CP(itv, i32, it_value); 558 return (copyout(&i32, uap->itv, sizeof(i32))); 559 } 560 561 int 562 freebsd32_select(struct thread *td, struct freebsd32_select_args *uap) 563 { 564 struct timeval32 tv32; 565 struct timeval tv, *tvp; 566 int error; 567 568 if (uap->tv != NULL) { 569 error = copyin(uap->tv, &tv32, sizeof(tv32)); 570 if (error) 571 return (error); 572 CP(tv32, tv, tv_sec); 573 CP(tv32, tv, tv_usec); 574 tvp = &tv; 575 } else 576 tvp = NULL; 577 /* 578 * XXX Do pointers need PTRIN()? 579 */ 580 return (kern_select(td, uap->nd, uap->in, uap->ou, uap->ex, tvp, 581 sizeof(int32_t) * 8)); 582 } 583 584 int 585 freebsd32_pselect(struct thread *td, struct freebsd32_pselect_args *uap) 586 { 587 struct timespec32 ts32; 588 struct timespec ts; 589 struct timeval tv, *tvp; 590 sigset_t set, *uset; 591 int error; 592 593 if (uap->ts != NULL) { 594 error = copyin(uap->ts, &ts32, sizeof(ts32)); 595 if (error != 0) 596 return (error); 597 CP(ts32, ts, tv_sec); 598 CP(ts32, ts, tv_nsec); 599 TIMESPEC_TO_TIMEVAL(&tv, &ts); 600 tvp = &tv; 601 } else 602 tvp = NULL; 603 if (uap->sm != NULL) { 604 error = copyin(uap->sm, &set, sizeof(set)); 605 if (error != 0) 606 return (error); 607 uset = &set; 608 } else 609 uset = NULL; 610 /* 611 * XXX Do pointers need PTRIN()? 612 */ 613 error = kern_pselect(td, uap->nd, uap->in, uap->ou, uap->ex, tvp, 614 uset, sizeof(int32_t) * 8); 615 return (error); 616 } 617 618 /* 619 * Copy 'count' items into the destination list pointed to by uap->eventlist. 620 */ 621 static int 622 freebsd32_kevent_copyout(void *arg, struct kevent *kevp, int count) 623 { 624 struct freebsd32_kevent_args *uap; 625 struct kevent32 ks32[KQ_NEVENTS]; 626 uint64_t e; 627 int i, j, error; 628 629 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count)); 630 uap = (struct freebsd32_kevent_args *)arg; 631 632 for (i = 0; i < count; i++) { 633 CP(kevp[i], ks32[i], ident); 634 CP(kevp[i], ks32[i], filter); 635 CP(kevp[i], ks32[i], flags); 636 CP(kevp[i], ks32[i], fflags); 637 #if BYTE_ORDER == LITTLE_ENDIAN 638 ks32[i].data1 = kevp[i].data; 639 ks32[i].data2 = kevp[i].data >> 32; 640 #else 641 ks32[i].data1 = kevp[i].data >> 32; 642 ks32[i].data2 = kevp[i].data; 643 #endif 644 PTROUT_CP(kevp[i], ks32[i], udata); 645 for (j = 0; j < nitems(kevp->ext); j++) { 646 e = kevp[i].ext[j]; 647 #if BYTE_ORDER == LITTLE_ENDIAN 648 ks32[i].ext64[2 * j] = e; 649 ks32[i].ext64[2 * j + 1] = e >> 32; 650 #else 651 ks32[i].ext64[2 * j] = e >> 32; 652 ks32[i].ext64[2 * j + 1] = e; 653 #endif 654 } 655 } 656 error = copyout(ks32, uap->eventlist, count * sizeof *ks32); 657 if (error == 0) 658 uap->eventlist += count; 659 return (error); 660 } 661 662 /* 663 * Copy 'count' items from the list pointed to by uap->changelist. 664 */ 665 static int 666 freebsd32_kevent_copyin(void *arg, struct kevent *kevp, int count) 667 { 668 struct freebsd32_kevent_args *uap; 669 struct kevent32 ks32[KQ_NEVENTS]; 670 uint64_t e; 671 int i, j, error; 672 673 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count)); 674 uap = (struct freebsd32_kevent_args *)arg; 675 676 error = copyin(uap->changelist, ks32, count * sizeof *ks32); 677 if (error) 678 goto done; 679 uap->changelist += count; 680 681 for (i = 0; i < count; i++) { 682 CP(ks32[i], kevp[i], ident); 683 CP(ks32[i], kevp[i], filter); 684 CP(ks32[i], kevp[i], flags); 685 CP(ks32[i], kevp[i], fflags); 686 kevp[i].data = PAIR32TO64(uint64_t, ks32[i].data); 687 PTRIN_CP(ks32[i], kevp[i], udata); 688 for (j = 0; j < nitems(kevp->ext); j++) { 689 #if BYTE_ORDER == LITTLE_ENDIAN 690 e = ks32[i].ext64[2 * j + 1]; 691 e <<= 32; 692 e += ks32[i].ext64[2 * j]; 693 #else 694 e = ks32[i].ext64[2 * j]; 695 e <<= 32; 696 e += ks32[i].ext64[2 * j + 1]; 697 #endif 698 kevp[i].ext[j] = e; 699 } 700 } 701 done: 702 return (error); 703 } 704 705 int 706 freebsd32_kevent(struct thread *td, struct freebsd32_kevent_args *uap) 707 { 708 struct timespec32 ts32; 709 struct timespec ts, *tsp; 710 struct kevent_copyops k_ops = { 711 .arg = uap, 712 .k_copyout = freebsd32_kevent_copyout, 713 .k_copyin = freebsd32_kevent_copyin, 714 }; 715 #ifdef KTRACE 716 struct kevent32 *eventlist = uap->eventlist; 717 #endif 718 int error; 719 720 if (uap->timeout) { 721 error = copyin(uap->timeout, &ts32, sizeof(ts32)); 722 if (error) 723 return (error); 724 CP(ts32, ts, tv_sec); 725 CP(ts32, ts, tv_nsec); 726 tsp = &ts; 727 } else 728 tsp = NULL; 729 #ifdef KTRACE 730 if (KTRPOINT(td, KTR_STRUCT_ARRAY)) 731 ktrstructarray("kevent32", UIO_USERSPACE, uap->changelist, 732 uap->nchanges, sizeof(struct kevent32)); 733 #endif 734 error = kern_kevent(td, uap->fd, uap->nchanges, uap->nevents, 735 &k_ops, tsp); 736 #ifdef KTRACE 737 if (error == 0 && KTRPOINT(td, KTR_STRUCT_ARRAY)) 738 ktrstructarray("kevent32", UIO_USERSPACE, eventlist, 739 td->td_retval[0], sizeof(struct kevent32)); 740 #endif 741 return (error); 742 } 743 744 #ifdef COMPAT_FREEBSD11 745 static int 746 freebsd32_kevent11_copyout(void *arg, struct kevent *kevp, int count) 747 { 748 struct freebsd11_freebsd32_kevent_args *uap; 749 struct kevent32_freebsd11 ks32[KQ_NEVENTS]; 750 int i, error; 751 752 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count)); 753 uap = (struct freebsd11_freebsd32_kevent_args *)arg; 754 755 for (i = 0; i < count; i++) { 756 CP(kevp[i], ks32[i], ident); 757 CP(kevp[i], ks32[i], filter); 758 CP(kevp[i], ks32[i], flags); 759 CP(kevp[i], ks32[i], fflags); 760 CP(kevp[i], ks32[i], data); 761 PTROUT_CP(kevp[i], ks32[i], udata); 762 } 763 error = copyout(ks32, uap->eventlist, count * sizeof *ks32); 764 if (error == 0) 765 uap->eventlist += count; 766 return (error); 767 } 768 769 /* 770 * Copy 'count' items from the list pointed to by uap->changelist. 771 */ 772 static int 773 freebsd32_kevent11_copyin(void *arg, struct kevent *kevp, int count) 774 { 775 struct freebsd11_freebsd32_kevent_args *uap; 776 struct kevent32_freebsd11 ks32[KQ_NEVENTS]; 777 int i, j, error; 778 779 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count)); 780 uap = (struct freebsd11_freebsd32_kevent_args *)arg; 781 782 error = copyin(uap->changelist, ks32, count * sizeof *ks32); 783 if (error) 784 goto done; 785 uap->changelist += count; 786 787 for (i = 0; i < count; i++) { 788 CP(ks32[i], kevp[i], ident); 789 CP(ks32[i], kevp[i], filter); 790 CP(ks32[i], kevp[i], flags); 791 CP(ks32[i], kevp[i], fflags); 792 CP(ks32[i], kevp[i], data); 793 PTRIN_CP(ks32[i], kevp[i], udata); 794 for (j = 0; j < nitems(kevp->ext); j++) 795 kevp[i].ext[j] = 0; 796 } 797 done: 798 return (error); 799 } 800 801 int 802 freebsd11_freebsd32_kevent(struct thread *td, 803 struct freebsd11_freebsd32_kevent_args *uap) 804 { 805 struct timespec32 ts32; 806 struct timespec ts, *tsp; 807 struct kevent_copyops k_ops = { 808 .arg = uap, 809 .k_copyout = freebsd32_kevent11_copyout, 810 .k_copyin = freebsd32_kevent11_copyin, 811 }; 812 #ifdef KTRACE 813 struct kevent32_freebsd11 *eventlist = uap->eventlist; 814 #endif 815 int error; 816 817 if (uap->timeout) { 818 error = copyin(uap->timeout, &ts32, sizeof(ts32)); 819 if (error) 820 return (error); 821 CP(ts32, ts, tv_sec); 822 CP(ts32, ts, tv_nsec); 823 tsp = &ts; 824 } else 825 tsp = NULL; 826 #ifdef KTRACE 827 if (KTRPOINT(td, KTR_STRUCT_ARRAY)) 828 ktrstructarray("kevent32_freebsd11", UIO_USERSPACE, 829 uap->changelist, uap->nchanges, 830 sizeof(struct kevent32_freebsd11)); 831 #endif 832 error = kern_kevent(td, uap->fd, uap->nchanges, uap->nevents, 833 &k_ops, tsp); 834 #ifdef KTRACE 835 if (error == 0 && KTRPOINT(td, KTR_STRUCT_ARRAY)) 836 ktrstructarray("kevent32_freebsd11", UIO_USERSPACE, 837 eventlist, td->td_retval[0], 838 sizeof(struct kevent32_freebsd11)); 839 #endif 840 return (error); 841 } 842 #endif 843 844 int 845 freebsd32_gettimeofday(struct thread *td, 846 struct freebsd32_gettimeofday_args *uap) 847 { 848 struct timeval atv; 849 struct timeval32 atv32; 850 struct timezone rtz; 851 int error = 0; 852 853 if (uap->tp) { 854 microtime(&atv); 855 CP(atv, atv32, tv_sec); 856 CP(atv, atv32, tv_usec); 857 error = copyout(&atv32, uap->tp, sizeof (atv32)); 858 } 859 if (error == 0 && uap->tzp != NULL) { 860 rtz.tz_minuteswest = tz_minuteswest; 861 rtz.tz_dsttime = tz_dsttime; 862 error = copyout(&rtz, uap->tzp, sizeof (rtz)); 863 } 864 return (error); 865 } 866 867 int 868 freebsd32_getrusage(struct thread *td, struct freebsd32_getrusage_args *uap) 869 { 870 struct rusage32 s32; 871 struct rusage s; 872 int error; 873 874 error = kern_getrusage(td, uap->who, &s); 875 if (error == 0) { 876 freebsd32_rusage_out(&s, &s32); 877 error = copyout(&s32, uap->rusage, sizeof(s32)); 878 } 879 return (error); 880 } 881 882 static int 883 freebsd32_copyinuio(struct iovec32 *iovp, u_int iovcnt, struct uio **uiop) 884 { 885 struct iovec32 iov32; 886 struct iovec *iov; 887 struct uio *uio; 888 u_int iovlen; 889 int error, i; 890 891 *uiop = NULL; 892 if (iovcnt > UIO_MAXIOV) 893 return (EINVAL); 894 iovlen = iovcnt * sizeof(struct iovec); 895 uio = malloc(iovlen + sizeof *uio, M_IOV, M_WAITOK); 896 iov = (struct iovec *)(uio + 1); 897 for (i = 0; i < iovcnt; i++) { 898 error = copyin(&iovp[i], &iov32, sizeof(struct iovec32)); 899 if (error) { 900 free(uio, M_IOV); 901 return (error); 902 } 903 iov[i].iov_base = PTRIN(iov32.iov_base); 904 iov[i].iov_len = iov32.iov_len; 905 } 906 uio->uio_iov = iov; 907 uio->uio_iovcnt = iovcnt; 908 uio->uio_segflg = UIO_USERSPACE; 909 uio->uio_offset = -1; 910 uio->uio_resid = 0; 911 for (i = 0; i < iovcnt; i++) { 912 if (iov->iov_len > INT_MAX - uio->uio_resid) { 913 free(uio, M_IOV); 914 return (EINVAL); 915 } 916 uio->uio_resid += iov->iov_len; 917 iov++; 918 } 919 *uiop = uio; 920 return (0); 921 } 922 923 int 924 freebsd32_readv(struct thread *td, struct freebsd32_readv_args *uap) 925 { 926 struct uio *auio; 927 int error; 928 929 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 930 if (error) 931 return (error); 932 error = kern_readv(td, uap->fd, auio); 933 free(auio, M_IOV); 934 return (error); 935 } 936 937 int 938 freebsd32_writev(struct thread *td, struct freebsd32_writev_args *uap) 939 { 940 struct uio *auio; 941 int error; 942 943 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 944 if (error) 945 return (error); 946 error = kern_writev(td, uap->fd, auio); 947 free(auio, M_IOV); 948 return (error); 949 } 950 951 int 952 freebsd32_preadv(struct thread *td, struct freebsd32_preadv_args *uap) 953 { 954 struct uio *auio; 955 int error; 956 957 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 958 if (error) 959 return (error); 960 error = kern_preadv(td, uap->fd, auio, PAIR32TO64(off_t,uap->offset)); 961 free(auio, M_IOV); 962 return (error); 963 } 964 965 int 966 freebsd32_pwritev(struct thread *td, struct freebsd32_pwritev_args *uap) 967 { 968 struct uio *auio; 969 int error; 970 971 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 972 if (error) 973 return (error); 974 error = kern_pwritev(td, uap->fd, auio, PAIR32TO64(off_t,uap->offset)); 975 free(auio, M_IOV); 976 return (error); 977 } 978 979 int 980 freebsd32_copyiniov(struct iovec32 *iovp32, u_int iovcnt, struct iovec **iovp, 981 int error) 982 { 983 struct iovec32 iov32; 984 struct iovec *iov; 985 u_int iovlen; 986 int i; 987 988 *iovp = NULL; 989 if (iovcnt > UIO_MAXIOV) 990 return (error); 991 iovlen = iovcnt * sizeof(struct iovec); 992 iov = malloc(iovlen, M_IOV, M_WAITOK); 993 for (i = 0; i < iovcnt; i++) { 994 error = copyin(&iovp32[i], &iov32, sizeof(struct iovec32)); 995 if (error) { 996 free(iov, M_IOV); 997 return (error); 998 } 999 iov[i].iov_base = PTRIN(iov32.iov_base); 1000 iov[i].iov_len = iov32.iov_len; 1001 } 1002 *iovp = iov; 1003 return (0); 1004 } 1005 1006 static int 1007 freebsd32_copyinmsghdr(struct msghdr32 *msg32, struct msghdr *msg) 1008 { 1009 struct msghdr32 m32; 1010 int error; 1011 1012 error = copyin(msg32, &m32, sizeof(m32)); 1013 if (error) 1014 return (error); 1015 msg->msg_name = PTRIN(m32.msg_name); 1016 msg->msg_namelen = m32.msg_namelen; 1017 msg->msg_iov = PTRIN(m32.msg_iov); 1018 msg->msg_iovlen = m32.msg_iovlen; 1019 msg->msg_control = PTRIN(m32.msg_control); 1020 msg->msg_controllen = m32.msg_controllen; 1021 msg->msg_flags = m32.msg_flags; 1022 return (0); 1023 } 1024 1025 static int 1026 freebsd32_copyoutmsghdr(struct msghdr *msg, struct msghdr32 *msg32) 1027 { 1028 struct msghdr32 m32; 1029 int error; 1030 1031 m32.msg_name = PTROUT(msg->msg_name); 1032 m32.msg_namelen = msg->msg_namelen; 1033 m32.msg_iov = PTROUT(msg->msg_iov); 1034 m32.msg_iovlen = msg->msg_iovlen; 1035 m32.msg_control = PTROUT(msg->msg_control); 1036 m32.msg_controllen = msg->msg_controllen; 1037 m32.msg_flags = msg->msg_flags; 1038 error = copyout(&m32, msg32, sizeof(m32)); 1039 return (error); 1040 } 1041 1042 #ifndef __mips__ 1043 #define FREEBSD32_ALIGNBYTES (sizeof(int) - 1) 1044 #else 1045 #define FREEBSD32_ALIGNBYTES (sizeof(long) - 1) 1046 #endif 1047 #define FREEBSD32_ALIGN(p) \ 1048 (((u_long)(p) + FREEBSD32_ALIGNBYTES) & ~FREEBSD32_ALIGNBYTES) 1049 #define FREEBSD32_CMSG_SPACE(l) \ 1050 (FREEBSD32_ALIGN(sizeof(struct cmsghdr)) + FREEBSD32_ALIGN(l)) 1051 1052 #define FREEBSD32_CMSG_DATA(cmsg) ((unsigned char *)(cmsg) + \ 1053 FREEBSD32_ALIGN(sizeof(struct cmsghdr))) 1054 1055 static size_t 1056 freebsd32_cmsg_convert(const struct cmsghdr *cm, void *data, socklen_t datalen) 1057 { 1058 size_t copylen; 1059 union { 1060 struct timespec32 ts; 1061 struct timeval32 tv; 1062 struct bintime32 bt; 1063 } tmp32; 1064 1065 union { 1066 struct timespec ts; 1067 struct timeval tv; 1068 struct bintime bt; 1069 } *in; 1070 1071 in = data; 1072 copylen = 0; 1073 switch (cm->cmsg_level) { 1074 case SOL_SOCKET: 1075 switch (cm->cmsg_type) { 1076 case SCM_TIMESTAMP: 1077 TV_CP(*in, tmp32, tv); 1078 copylen = sizeof(tmp32.tv); 1079 break; 1080 1081 case SCM_BINTIME: 1082 BT_CP(*in, tmp32, bt); 1083 copylen = sizeof(tmp32.bt); 1084 break; 1085 1086 case SCM_REALTIME: 1087 case SCM_MONOTONIC: 1088 TS_CP(*in, tmp32, ts); 1089 copylen = sizeof(tmp32.ts); 1090 break; 1091 1092 default: 1093 break; 1094 } 1095 1096 default: 1097 break; 1098 } 1099 1100 if (copylen == 0) 1101 return (datalen); 1102 1103 KASSERT((datalen >= copylen), ("corrupted cmsghdr")); 1104 1105 bcopy(&tmp32, data, copylen); 1106 return (copylen); 1107 } 1108 1109 static int 1110 freebsd32_copy_msg_out(struct msghdr *msg, struct mbuf *control) 1111 { 1112 struct cmsghdr *cm; 1113 void *data; 1114 socklen_t clen, datalen, datalen_out, oldclen; 1115 int error; 1116 caddr_t ctlbuf; 1117 int len, maxlen, copylen; 1118 struct mbuf *m; 1119 error = 0; 1120 1121 len = msg->msg_controllen; 1122 maxlen = msg->msg_controllen; 1123 msg->msg_controllen = 0; 1124 1125 ctlbuf = msg->msg_control; 1126 for (m = control; m != NULL && len > 0; m = m->m_next) { 1127 cm = mtod(m, struct cmsghdr *); 1128 clen = m->m_len; 1129 while (cm != NULL) { 1130 if (sizeof(struct cmsghdr) > clen || 1131 cm->cmsg_len > clen) { 1132 error = EINVAL; 1133 break; 1134 } 1135 1136 data = CMSG_DATA(cm); 1137 datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data; 1138 datalen_out = freebsd32_cmsg_convert(cm, data, datalen); 1139 1140 /* 1141 * Copy out the message header. Preserve the native 1142 * message size in case we need to inspect the message 1143 * contents later. 1144 */ 1145 copylen = sizeof(struct cmsghdr); 1146 if (len < copylen) { 1147 msg->msg_flags |= MSG_CTRUNC; 1148 m_dispose_extcontrolm(m); 1149 goto exit; 1150 } 1151 oldclen = cm->cmsg_len; 1152 cm->cmsg_len = FREEBSD32_ALIGN(sizeof(struct cmsghdr)) + 1153 datalen_out; 1154 error = copyout(cm, ctlbuf, copylen); 1155 cm->cmsg_len = oldclen; 1156 if (error != 0) 1157 goto exit; 1158 1159 ctlbuf += FREEBSD32_ALIGN(copylen); 1160 len -= FREEBSD32_ALIGN(copylen); 1161 1162 copylen = datalen_out; 1163 if (len < copylen) { 1164 msg->msg_flags |= MSG_CTRUNC; 1165 m_dispose_extcontrolm(m); 1166 break; 1167 } 1168 1169 /* Copy out the message data. */ 1170 error = copyout(data, ctlbuf, copylen); 1171 if (error) 1172 goto exit; 1173 1174 ctlbuf += FREEBSD32_ALIGN(copylen); 1175 len -= FREEBSD32_ALIGN(copylen); 1176 1177 if (CMSG_SPACE(datalen) < clen) { 1178 clen -= CMSG_SPACE(datalen); 1179 cm = (struct cmsghdr *) 1180 ((caddr_t)cm + CMSG_SPACE(datalen)); 1181 } else { 1182 clen = 0; 1183 cm = NULL; 1184 } 1185 1186 msg->msg_controllen += FREEBSD32_ALIGN(sizeof(*cm)) + 1187 datalen_out; 1188 } 1189 } 1190 if (len == 0 && m != NULL) { 1191 msg->msg_flags |= MSG_CTRUNC; 1192 m_dispose_extcontrolm(m); 1193 } 1194 1195 exit: 1196 return (error); 1197 } 1198 1199 int 1200 freebsd32_recvmsg(td, uap) 1201 struct thread *td; 1202 struct freebsd32_recvmsg_args /* { 1203 int s; 1204 struct msghdr32 *msg; 1205 int flags; 1206 } */ *uap; 1207 { 1208 struct msghdr msg; 1209 struct msghdr32 m32; 1210 struct iovec *uiov, *iov; 1211 struct mbuf *control = NULL; 1212 struct mbuf **controlp; 1213 1214 int error; 1215 error = copyin(uap->msg, &m32, sizeof(m32)); 1216 if (error) 1217 return (error); 1218 error = freebsd32_copyinmsghdr(uap->msg, &msg); 1219 if (error) 1220 return (error); 1221 error = freebsd32_copyiniov(PTRIN(m32.msg_iov), m32.msg_iovlen, &iov, 1222 EMSGSIZE); 1223 if (error) 1224 return (error); 1225 msg.msg_flags = uap->flags; 1226 uiov = msg.msg_iov; 1227 msg.msg_iov = iov; 1228 1229 controlp = (msg.msg_control != NULL) ? &control : NULL; 1230 error = kern_recvit(td, uap->s, &msg, UIO_USERSPACE, controlp); 1231 if (error == 0) { 1232 msg.msg_iov = uiov; 1233 1234 if (control != NULL) 1235 error = freebsd32_copy_msg_out(&msg, control); 1236 else 1237 msg.msg_controllen = 0; 1238 1239 if (error == 0) 1240 error = freebsd32_copyoutmsghdr(&msg, uap->msg); 1241 } 1242 free(iov, M_IOV); 1243 1244 if (control != NULL) { 1245 if (error != 0) 1246 m_dispose_extcontrolm(control); 1247 m_freem(control); 1248 } 1249 1250 return (error); 1251 } 1252 1253 /* 1254 * Copy-in the array of control messages constructed using alignment 1255 * and padding suitable for a 32-bit environment and construct an 1256 * mbuf using alignment and padding suitable for a 64-bit kernel. 1257 * The alignment and padding are defined indirectly by CMSG_DATA(), 1258 * CMSG_SPACE() and CMSG_LEN(). 1259 */ 1260 static int 1261 freebsd32_copyin_control(struct mbuf **mp, caddr_t buf, u_int buflen) 1262 { 1263 struct mbuf *m; 1264 void *md; 1265 u_int idx, len, msglen; 1266 int error; 1267 1268 buflen = FREEBSD32_ALIGN(buflen); 1269 1270 if (buflen > MCLBYTES) 1271 return (EINVAL); 1272 1273 /* 1274 * Iterate over the buffer and get the length of each message 1275 * in there. This has 32-bit alignment and padding. Use it to 1276 * determine the length of these messages when using 64-bit 1277 * alignment and padding. 1278 */ 1279 idx = 0; 1280 len = 0; 1281 while (idx < buflen) { 1282 error = copyin(buf + idx, &msglen, sizeof(msglen)); 1283 if (error) 1284 return (error); 1285 if (msglen < sizeof(struct cmsghdr)) 1286 return (EINVAL); 1287 msglen = FREEBSD32_ALIGN(msglen); 1288 if (idx + msglen > buflen) 1289 return (EINVAL); 1290 idx += msglen; 1291 msglen += CMSG_ALIGN(sizeof(struct cmsghdr)) - 1292 FREEBSD32_ALIGN(sizeof(struct cmsghdr)); 1293 len += CMSG_ALIGN(msglen); 1294 } 1295 1296 if (len > MCLBYTES) 1297 return (EINVAL); 1298 1299 m = m_get(M_WAITOK, MT_CONTROL); 1300 if (len > MLEN) 1301 MCLGET(m, M_WAITOK); 1302 m->m_len = len; 1303 1304 md = mtod(m, void *); 1305 while (buflen > 0) { 1306 error = copyin(buf, md, sizeof(struct cmsghdr)); 1307 if (error) 1308 break; 1309 msglen = *(u_int *)md; 1310 msglen = FREEBSD32_ALIGN(msglen); 1311 1312 /* Modify the message length to account for alignment. */ 1313 *(u_int *)md = msglen + CMSG_ALIGN(sizeof(struct cmsghdr)) - 1314 FREEBSD32_ALIGN(sizeof(struct cmsghdr)); 1315 1316 md = (char *)md + CMSG_ALIGN(sizeof(struct cmsghdr)); 1317 buf += FREEBSD32_ALIGN(sizeof(struct cmsghdr)); 1318 buflen -= FREEBSD32_ALIGN(sizeof(struct cmsghdr)); 1319 1320 msglen -= FREEBSD32_ALIGN(sizeof(struct cmsghdr)); 1321 if (msglen > 0) { 1322 error = copyin(buf, md, msglen); 1323 if (error) 1324 break; 1325 md = (char *)md + CMSG_ALIGN(msglen); 1326 buf += msglen; 1327 buflen -= msglen; 1328 } 1329 } 1330 1331 if (error) 1332 m_free(m); 1333 else 1334 *mp = m; 1335 return (error); 1336 } 1337 1338 int 1339 freebsd32_sendmsg(struct thread *td, 1340 struct freebsd32_sendmsg_args *uap) 1341 { 1342 struct msghdr msg; 1343 struct msghdr32 m32; 1344 struct iovec *iov; 1345 struct mbuf *control = NULL; 1346 struct sockaddr *to = NULL; 1347 int error; 1348 1349 error = copyin(uap->msg, &m32, sizeof(m32)); 1350 if (error) 1351 return (error); 1352 error = freebsd32_copyinmsghdr(uap->msg, &msg); 1353 if (error) 1354 return (error); 1355 error = freebsd32_copyiniov(PTRIN(m32.msg_iov), m32.msg_iovlen, &iov, 1356 EMSGSIZE); 1357 if (error) 1358 return (error); 1359 msg.msg_iov = iov; 1360 if (msg.msg_name != NULL) { 1361 error = getsockaddr(&to, msg.msg_name, msg.msg_namelen); 1362 if (error) { 1363 to = NULL; 1364 goto out; 1365 } 1366 msg.msg_name = to; 1367 } 1368 1369 if (msg.msg_control) { 1370 if (msg.msg_controllen < sizeof(struct cmsghdr)) { 1371 error = EINVAL; 1372 goto out; 1373 } 1374 1375 error = freebsd32_copyin_control(&control, msg.msg_control, 1376 msg.msg_controllen); 1377 if (error) 1378 goto out; 1379 1380 msg.msg_control = NULL; 1381 msg.msg_controllen = 0; 1382 } 1383 1384 error = kern_sendit(td, uap->s, &msg, uap->flags, control, 1385 UIO_USERSPACE); 1386 1387 out: 1388 free(iov, M_IOV); 1389 if (to) 1390 free(to, M_SONAME); 1391 return (error); 1392 } 1393 1394 int 1395 freebsd32_recvfrom(struct thread *td, 1396 struct freebsd32_recvfrom_args *uap) 1397 { 1398 struct msghdr msg; 1399 struct iovec aiov; 1400 int error; 1401 1402 if (uap->fromlenaddr) { 1403 error = copyin(PTRIN(uap->fromlenaddr), &msg.msg_namelen, 1404 sizeof(msg.msg_namelen)); 1405 if (error) 1406 return (error); 1407 } else { 1408 msg.msg_namelen = 0; 1409 } 1410 1411 msg.msg_name = PTRIN(uap->from); 1412 msg.msg_iov = &aiov; 1413 msg.msg_iovlen = 1; 1414 aiov.iov_base = PTRIN(uap->buf); 1415 aiov.iov_len = uap->len; 1416 msg.msg_control = NULL; 1417 msg.msg_flags = uap->flags; 1418 error = kern_recvit(td, uap->s, &msg, UIO_USERSPACE, NULL); 1419 if (error == 0 && uap->fromlenaddr) 1420 error = copyout(&msg.msg_namelen, PTRIN(uap->fromlenaddr), 1421 sizeof (msg.msg_namelen)); 1422 return (error); 1423 } 1424 1425 int 1426 freebsd32_settimeofday(struct thread *td, 1427 struct freebsd32_settimeofday_args *uap) 1428 { 1429 struct timeval32 tv32; 1430 struct timeval tv, *tvp; 1431 struct timezone tz, *tzp; 1432 int error; 1433 1434 if (uap->tv) { 1435 error = copyin(uap->tv, &tv32, sizeof(tv32)); 1436 if (error) 1437 return (error); 1438 CP(tv32, tv, tv_sec); 1439 CP(tv32, tv, tv_usec); 1440 tvp = &tv; 1441 } else 1442 tvp = NULL; 1443 if (uap->tzp) { 1444 error = copyin(uap->tzp, &tz, sizeof(tz)); 1445 if (error) 1446 return (error); 1447 tzp = &tz; 1448 } else 1449 tzp = NULL; 1450 return (kern_settimeofday(td, tvp, tzp)); 1451 } 1452 1453 int 1454 freebsd32_utimes(struct thread *td, struct freebsd32_utimes_args *uap) 1455 { 1456 struct timeval32 s32[2]; 1457 struct timeval s[2], *sp; 1458 int error; 1459 1460 if (uap->tptr != NULL) { 1461 error = copyin(uap->tptr, s32, sizeof(s32)); 1462 if (error) 1463 return (error); 1464 CP(s32[0], s[0], tv_sec); 1465 CP(s32[0], s[0], tv_usec); 1466 CP(s32[1], s[1], tv_sec); 1467 CP(s32[1], s[1], tv_usec); 1468 sp = s; 1469 } else 1470 sp = NULL; 1471 return (kern_utimesat(td, AT_FDCWD, uap->path, UIO_USERSPACE, 1472 sp, UIO_SYSSPACE)); 1473 } 1474 1475 int 1476 freebsd32_lutimes(struct thread *td, struct freebsd32_lutimes_args *uap) 1477 { 1478 struct timeval32 s32[2]; 1479 struct timeval s[2], *sp; 1480 int error; 1481 1482 if (uap->tptr != NULL) { 1483 error = copyin(uap->tptr, s32, sizeof(s32)); 1484 if (error) 1485 return (error); 1486 CP(s32[0], s[0], tv_sec); 1487 CP(s32[0], s[0], tv_usec); 1488 CP(s32[1], s[1], tv_sec); 1489 CP(s32[1], s[1], tv_usec); 1490 sp = s; 1491 } else 1492 sp = NULL; 1493 return (kern_lutimes(td, uap->path, UIO_USERSPACE, sp, UIO_SYSSPACE)); 1494 } 1495 1496 int 1497 freebsd32_futimes(struct thread *td, struct freebsd32_futimes_args *uap) 1498 { 1499 struct timeval32 s32[2]; 1500 struct timeval s[2], *sp; 1501 int error; 1502 1503 if (uap->tptr != NULL) { 1504 error = copyin(uap->tptr, s32, sizeof(s32)); 1505 if (error) 1506 return (error); 1507 CP(s32[0], s[0], tv_sec); 1508 CP(s32[0], s[0], tv_usec); 1509 CP(s32[1], s[1], tv_sec); 1510 CP(s32[1], s[1], tv_usec); 1511 sp = s; 1512 } else 1513 sp = NULL; 1514 return (kern_futimes(td, uap->fd, sp, UIO_SYSSPACE)); 1515 } 1516 1517 int 1518 freebsd32_futimesat(struct thread *td, struct freebsd32_futimesat_args *uap) 1519 { 1520 struct timeval32 s32[2]; 1521 struct timeval s[2], *sp; 1522 int error; 1523 1524 if (uap->times != NULL) { 1525 error = copyin(uap->times, s32, sizeof(s32)); 1526 if (error) 1527 return (error); 1528 CP(s32[0], s[0], tv_sec); 1529 CP(s32[0], s[0], tv_usec); 1530 CP(s32[1], s[1], tv_sec); 1531 CP(s32[1], s[1], tv_usec); 1532 sp = s; 1533 } else 1534 sp = NULL; 1535 return (kern_utimesat(td, uap->fd, uap->path, UIO_USERSPACE, 1536 sp, UIO_SYSSPACE)); 1537 } 1538 1539 int 1540 freebsd32_futimens(struct thread *td, struct freebsd32_futimens_args *uap) 1541 { 1542 struct timespec32 ts32[2]; 1543 struct timespec ts[2], *tsp; 1544 int error; 1545 1546 if (uap->times != NULL) { 1547 error = copyin(uap->times, ts32, sizeof(ts32)); 1548 if (error) 1549 return (error); 1550 CP(ts32[0], ts[0], tv_sec); 1551 CP(ts32[0], ts[0], tv_nsec); 1552 CP(ts32[1], ts[1], tv_sec); 1553 CP(ts32[1], ts[1], tv_nsec); 1554 tsp = ts; 1555 } else 1556 tsp = NULL; 1557 return (kern_futimens(td, uap->fd, tsp, UIO_SYSSPACE)); 1558 } 1559 1560 int 1561 freebsd32_utimensat(struct thread *td, struct freebsd32_utimensat_args *uap) 1562 { 1563 struct timespec32 ts32[2]; 1564 struct timespec ts[2], *tsp; 1565 int error; 1566 1567 if (uap->times != NULL) { 1568 error = copyin(uap->times, ts32, sizeof(ts32)); 1569 if (error) 1570 return (error); 1571 CP(ts32[0], ts[0], tv_sec); 1572 CP(ts32[0], ts[0], tv_nsec); 1573 CP(ts32[1], ts[1], tv_sec); 1574 CP(ts32[1], ts[1], tv_nsec); 1575 tsp = ts; 1576 } else 1577 tsp = NULL; 1578 return (kern_utimensat(td, uap->fd, uap->path, UIO_USERSPACE, 1579 tsp, UIO_SYSSPACE, uap->flag)); 1580 } 1581 1582 int 1583 freebsd32_adjtime(struct thread *td, struct freebsd32_adjtime_args *uap) 1584 { 1585 struct timeval32 tv32; 1586 struct timeval delta, olddelta, *deltap; 1587 int error; 1588 1589 if (uap->delta) { 1590 error = copyin(uap->delta, &tv32, sizeof(tv32)); 1591 if (error) 1592 return (error); 1593 CP(tv32, delta, tv_sec); 1594 CP(tv32, delta, tv_usec); 1595 deltap = δ 1596 } else 1597 deltap = NULL; 1598 error = kern_adjtime(td, deltap, &olddelta); 1599 if (uap->olddelta && error == 0) { 1600 CP(olddelta, tv32, tv_sec); 1601 CP(olddelta, tv32, tv_usec); 1602 error = copyout(&tv32, uap->olddelta, sizeof(tv32)); 1603 } 1604 return (error); 1605 } 1606 1607 #ifdef COMPAT_FREEBSD4 1608 int 1609 freebsd4_freebsd32_statfs(struct thread *td, struct freebsd4_freebsd32_statfs_args *uap) 1610 { 1611 struct statfs32 s32; 1612 struct statfs *sp; 1613 int error; 1614 1615 sp = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK); 1616 error = kern_statfs(td, uap->path, UIO_USERSPACE, sp); 1617 if (error == 0) { 1618 copy_statfs(sp, &s32); 1619 error = copyout(&s32, uap->buf, sizeof(s32)); 1620 } 1621 free(sp, M_STATFS); 1622 return (error); 1623 } 1624 #endif 1625 1626 #ifdef COMPAT_FREEBSD4 1627 int 1628 freebsd4_freebsd32_fstatfs(struct thread *td, struct freebsd4_freebsd32_fstatfs_args *uap) 1629 { 1630 struct statfs32 s32; 1631 struct statfs *sp; 1632 int error; 1633 1634 sp = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK); 1635 error = kern_fstatfs(td, uap->fd, sp); 1636 if (error == 0) { 1637 copy_statfs(sp, &s32); 1638 error = copyout(&s32, uap->buf, sizeof(s32)); 1639 } 1640 free(sp, M_STATFS); 1641 return (error); 1642 } 1643 #endif 1644 1645 #ifdef COMPAT_FREEBSD4 1646 int 1647 freebsd4_freebsd32_fhstatfs(struct thread *td, struct freebsd4_freebsd32_fhstatfs_args *uap) 1648 { 1649 struct statfs32 s32; 1650 struct statfs *sp; 1651 fhandle_t fh; 1652 int error; 1653 1654 if ((error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t))) != 0) 1655 return (error); 1656 sp = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK); 1657 error = kern_fhstatfs(td, fh, sp); 1658 if (error == 0) { 1659 copy_statfs(sp, &s32); 1660 error = copyout(&s32, uap->buf, sizeof(s32)); 1661 } 1662 free(sp, M_STATFS); 1663 return (error); 1664 } 1665 #endif 1666 1667 int 1668 freebsd32_pread(struct thread *td, struct freebsd32_pread_args *uap) 1669 { 1670 1671 return (kern_pread(td, uap->fd, uap->buf, uap->nbyte, 1672 PAIR32TO64(off_t, uap->offset))); 1673 } 1674 1675 int 1676 freebsd32_pwrite(struct thread *td, struct freebsd32_pwrite_args *uap) 1677 { 1678 1679 return (kern_pwrite(td, uap->fd, uap->buf, uap->nbyte, 1680 PAIR32TO64(off_t, uap->offset))); 1681 } 1682 1683 #ifdef COMPAT_43 1684 int 1685 ofreebsd32_lseek(struct thread *td, struct ofreebsd32_lseek_args *uap) 1686 { 1687 1688 return (kern_lseek(td, uap->fd, uap->offset, uap->whence)); 1689 } 1690 #endif 1691 1692 int 1693 freebsd32_lseek(struct thread *td, struct freebsd32_lseek_args *uap) 1694 { 1695 int error; 1696 off_t pos; 1697 1698 error = kern_lseek(td, uap->fd, PAIR32TO64(off_t, uap->offset), 1699 uap->whence); 1700 /* Expand the quad return into two parts for eax and edx */ 1701 pos = td->td_uretoff.tdu_off; 1702 td->td_retval[RETVAL_LO] = pos & 0xffffffff; /* %eax */ 1703 td->td_retval[RETVAL_HI] = pos >> 32; /* %edx */ 1704 return error; 1705 } 1706 1707 int 1708 freebsd32_truncate(struct thread *td, struct freebsd32_truncate_args *uap) 1709 { 1710 1711 return (kern_truncate(td, uap->path, UIO_USERSPACE, 1712 PAIR32TO64(off_t, uap->length))); 1713 } 1714 1715 int 1716 freebsd32_ftruncate(struct thread *td, struct freebsd32_ftruncate_args *uap) 1717 { 1718 1719 return (kern_ftruncate(td, uap->fd, PAIR32TO64(off_t, uap->length))); 1720 } 1721 1722 #ifdef COMPAT_43 1723 int 1724 ofreebsd32_getdirentries(struct thread *td, 1725 struct ofreebsd32_getdirentries_args *uap) 1726 { 1727 struct ogetdirentries_args ap; 1728 int error; 1729 long loff; 1730 int32_t loff_cut; 1731 1732 ap.fd = uap->fd; 1733 ap.buf = uap->buf; 1734 ap.count = uap->count; 1735 ap.basep = NULL; 1736 error = kern_ogetdirentries(td, &ap, &loff); 1737 if (error == 0) { 1738 loff_cut = loff; 1739 error = copyout(&loff_cut, uap->basep, sizeof(int32_t)); 1740 } 1741 return (error); 1742 } 1743 #endif 1744 1745 #if defined(COMPAT_FREEBSD11) 1746 int 1747 freebsd11_freebsd32_getdirentries(struct thread *td, 1748 struct freebsd11_freebsd32_getdirentries_args *uap) 1749 { 1750 long base; 1751 int32_t base32; 1752 int error; 1753 1754 error = freebsd11_kern_getdirentries(td, uap->fd, uap->buf, uap->count, 1755 &base, NULL); 1756 if (error) 1757 return (error); 1758 if (uap->basep != NULL) { 1759 base32 = base; 1760 error = copyout(&base32, uap->basep, sizeof(int32_t)); 1761 } 1762 return (error); 1763 } 1764 1765 int 1766 freebsd11_freebsd32_getdents(struct thread *td, 1767 struct freebsd11_freebsd32_getdents_args *uap) 1768 { 1769 struct freebsd11_freebsd32_getdirentries_args ap; 1770 1771 ap.fd = uap->fd; 1772 ap.buf = uap->buf; 1773 ap.count = uap->count; 1774 ap.basep = NULL; 1775 return (freebsd11_freebsd32_getdirentries(td, &ap)); 1776 } 1777 #endif /* COMPAT_FREEBSD11 */ 1778 1779 #ifdef COMPAT_FREEBSD6 1780 /* versions with the 'int pad' argument */ 1781 int 1782 freebsd6_freebsd32_pread(struct thread *td, struct freebsd6_freebsd32_pread_args *uap) 1783 { 1784 1785 return (kern_pread(td, uap->fd, uap->buf, uap->nbyte, 1786 PAIR32TO64(off_t, uap->offset))); 1787 } 1788 1789 int 1790 freebsd6_freebsd32_pwrite(struct thread *td, struct freebsd6_freebsd32_pwrite_args *uap) 1791 { 1792 1793 return (kern_pwrite(td, uap->fd, uap->buf, uap->nbyte, 1794 PAIR32TO64(off_t, uap->offset))); 1795 } 1796 1797 int 1798 freebsd6_freebsd32_lseek(struct thread *td, struct freebsd6_freebsd32_lseek_args *uap) 1799 { 1800 int error; 1801 off_t pos; 1802 1803 error = kern_lseek(td, uap->fd, PAIR32TO64(off_t, uap->offset), 1804 uap->whence); 1805 /* Expand the quad return into two parts for eax and edx */ 1806 pos = *(off_t *)(td->td_retval); 1807 td->td_retval[RETVAL_LO] = pos & 0xffffffff; /* %eax */ 1808 td->td_retval[RETVAL_HI] = pos >> 32; /* %edx */ 1809 return error; 1810 } 1811 1812 int 1813 freebsd6_freebsd32_truncate(struct thread *td, struct freebsd6_freebsd32_truncate_args *uap) 1814 { 1815 1816 return (kern_truncate(td, uap->path, UIO_USERSPACE, 1817 PAIR32TO64(off_t, uap->length))); 1818 } 1819 1820 int 1821 freebsd6_freebsd32_ftruncate(struct thread *td, struct freebsd6_freebsd32_ftruncate_args *uap) 1822 { 1823 1824 return (kern_ftruncate(td, uap->fd, PAIR32TO64(off_t, uap->length))); 1825 } 1826 #endif /* COMPAT_FREEBSD6 */ 1827 1828 struct sf_hdtr32 { 1829 uint32_t headers; 1830 int hdr_cnt; 1831 uint32_t trailers; 1832 int trl_cnt; 1833 }; 1834 1835 static int 1836 freebsd32_do_sendfile(struct thread *td, 1837 struct freebsd32_sendfile_args *uap, int compat) 1838 { 1839 struct sf_hdtr32 hdtr32; 1840 struct sf_hdtr hdtr; 1841 struct uio *hdr_uio, *trl_uio; 1842 struct file *fp; 1843 cap_rights_t rights; 1844 struct iovec32 *iov32; 1845 off_t offset, sbytes; 1846 int error; 1847 1848 offset = PAIR32TO64(off_t, uap->offset); 1849 if (offset < 0) 1850 return (EINVAL); 1851 1852 hdr_uio = trl_uio = NULL; 1853 1854 if (uap->hdtr != NULL) { 1855 error = copyin(uap->hdtr, &hdtr32, sizeof(hdtr32)); 1856 if (error) 1857 goto out; 1858 PTRIN_CP(hdtr32, hdtr, headers); 1859 CP(hdtr32, hdtr, hdr_cnt); 1860 PTRIN_CP(hdtr32, hdtr, trailers); 1861 CP(hdtr32, hdtr, trl_cnt); 1862 1863 if (hdtr.headers != NULL) { 1864 iov32 = PTRIN(hdtr32.headers); 1865 error = freebsd32_copyinuio(iov32, 1866 hdtr32.hdr_cnt, &hdr_uio); 1867 if (error) 1868 goto out; 1869 #ifdef COMPAT_FREEBSD4 1870 /* 1871 * In FreeBSD < 5.0 the nbytes to send also included 1872 * the header. If compat is specified subtract the 1873 * header size from nbytes. 1874 */ 1875 if (compat) { 1876 if (uap->nbytes > hdr_uio->uio_resid) 1877 uap->nbytes -= hdr_uio->uio_resid; 1878 else 1879 uap->nbytes = 0; 1880 } 1881 #endif 1882 } 1883 if (hdtr.trailers != NULL) { 1884 iov32 = PTRIN(hdtr32.trailers); 1885 error = freebsd32_copyinuio(iov32, 1886 hdtr32.trl_cnt, &trl_uio); 1887 if (error) 1888 goto out; 1889 } 1890 } 1891 1892 AUDIT_ARG_FD(uap->fd); 1893 1894 if ((error = fget_read(td, uap->fd, 1895 cap_rights_init(&rights, CAP_PREAD), &fp)) != 0) 1896 goto out; 1897 1898 error = fo_sendfile(fp, uap->s, hdr_uio, trl_uio, offset, 1899 uap->nbytes, &sbytes, uap->flags, td); 1900 fdrop(fp, td); 1901 1902 if (uap->sbytes != NULL) 1903 copyout(&sbytes, uap->sbytes, sizeof(off_t)); 1904 1905 out: 1906 if (hdr_uio) 1907 free(hdr_uio, M_IOV); 1908 if (trl_uio) 1909 free(trl_uio, M_IOV); 1910 return (error); 1911 } 1912 1913 #ifdef COMPAT_FREEBSD4 1914 int 1915 freebsd4_freebsd32_sendfile(struct thread *td, 1916 struct freebsd4_freebsd32_sendfile_args *uap) 1917 { 1918 return (freebsd32_do_sendfile(td, 1919 (struct freebsd32_sendfile_args *)uap, 1)); 1920 } 1921 #endif 1922 1923 int 1924 freebsd32_sendfile(struct thread *td, struct freebsd32_sendfile_args *uap) 1925 { 1926 1927 return (freebsd32_do_sendfile(td, uap, 0)); 1928 } 1929 1930 static void 1931 copy_stat(struct stat *in, struct stat32 *out) 1932 { 1933 1934 CP(*in, *out, st_dev); 1935 CP(*in, *out, st_ino); 1936 CP(*in, *out, st_mode); 1937 CP(*in, *out, st_nlink); 1938 CP(*in, *out, st_uid); 1939 CP(*in, *out, st_gid); 1940 CP(*in, *out, st_rdev); 1941 TS_CP(*in, *out, st_atim); 1942 TS_CP(*in, *out, st_mtim); 1943 TS_CP(*in, *out, st_ctim); 1944 CP(*in, *out, st_size); 1945 CP(*in, *out, st_blocks); 1946 CP(*in, *out, st_blksize); 1947 CP(*in, *out, st_flags); 1948 CP(*in, *out, st_gen); 1949 TS_CP(*in, *out, st_birthtim); 1950 out->st_padding0 = 0; 1951 out->st_padding1 = 0; 1952 #ifdef __STAT32_TIME_T_EXT 1953 out->st_atim_ext = 0; 1954 out->st_mtim_ext = 0; 1955 out->st_ctim_ext = 0; 1956 out->st_btim_ext = 0; 1957 #endif 1958 bzero(out->st_spare, sizeof(out->st_spare)); 1959 } 1960 1961 #ifdef COMPAT_43 1962 static void 1963 copy_ostat(struct stat *in, struct ostat32 *out) 1964 { 1965 1966 bzero(out, sizeof(*out)); 1967 CP(*in, *out, st_dev); 1968 CP(*in, *out, st_ino); 1969 CP(*in, *out, st_mode); 1970 CP(*in, *out, st_nlink); 1971 CP(*in, *out, st_uid); 1972 CP(*in, *out, st_gid); 1973 CP(*in, *out, st_rdev); 1974 out->st_size = MIN(in->st_size, INT32_MAX); 1975 TS_CP(*in, *out, st_atim); 1976 TS_CP(*in, *out, st_mtim); 1977 TS_CP(*in, *out, st_ctim); 1978 CP(*in, *out, st_blksize); 1979 CP(*in, *out, st_blocks); 1980 CP(*in, *out, st_flags); 1981 CP(*in, *out, st_gen); 1982 } 1983 #endif 1984 1985 #ifdef COMPAT_43 1986 int 1987 ofreebsd32_stat(struct thread *td, struct ofreebsd32_stat_args *uap) 1988 { 1989 struct stat sb; 1990 struct ostat32 sb32; 1991 int error; 1992 1993 error = kern_statat(td, 0, AT_FDCWD, uap->path, UIO_USERSPACE, 1994 &sb, NULL); 1995 if (error) 1996 return (error); 1997 copy_ostat(&sb, &sb32); 1998 error = copyout(&sb32, uap->ub, sizeof (sb32)); 1999 return (error); 2000 } 2001 #endif 2002 2003 int 2004 freebsd32_fstat(struct thread *td, struct freebsd32_fstat_args *uap) 2005 { 2006 struct stat ub; 2007 struct stat32 ub32; 2008 int error; 2009 2010 error = kern_fstat(td, uap->fd, &ub); 2011 if (error) 2012 return (error); 2013 copy_stat(&ub, &ub32); 2014 error = copyout(&ub32, uap->ub, sizeof(ub32)); 2015 return (error); 2016 } 2017 2018 #ifdef COMPAT_43 2019 int 2020 ofreebsd32_fstat(struct thread *td, struct ofreebsd32_fstat_args *uap) 2021 { 2022 struct stat ub; 2023 struct ostat32 ub32; 2024 int error; 2025 2026 error = kern_fstat(td, uap->fd, &ub); 2027 if (error) 2028 return (error); 2029 copy_ostat(&ub, &ub32); 2030 error = copyout(&ub32, uap->ub, sizeof(ub32)); 2031 return (error); 2032 } 2033 #endif 2034 2035 int 2036 freebsd32_fstatat(struct thread *td, struct freebsd32_fstatat_args *uap) 2037 { 2038 struct stat ub; 2039 struct stat32 ub32; 2040 int error; 2041 2042 error = kern_statat(td, uap->flag, uap->fd, uap->path, UIO_USERSPACE, 2043 &ub, NULL); 2044 if (error) 2045 return (error); 2046 copy_stat(&ub, &ub32); 2047 error = copyout(&ub32, uap->buf, sizeof(ub32)); 2048 return (error); 2049 } 2050 2051 #ifdef COMPAT_43 2052 int 2053 ofreebsd32_lstat(struct thread *td, struct ofreebsd32_lstat_args *uap) 2054 { 2055 struct stat sb; 2056 struct ostat32 sb32; 2057 int error; 2058 2059 error = kern_statat(td, AT_SYMLINK_NOFOLLOW, AT_FDCWD, uap->path, 2060 UIO_USERSPACE, &sb, NULL); 2061 if (error) 2062 return (error); 2063 copy_ostat(&sb, &sb32); 2064 error = copyout(&sb32, uap->ub, sizeof (sb32)); 2065 return (error); 2066 } 2067 #endif 2068 2069 int 2070 freebsd32_fhstat(struct thread *td, struct freebsd32_fhstat_args *uap) 2071 { 2072 struct stat sb; 2073 struct stat32 sb32; 2074 struct fhandle fh; 2075 int error; 2076 2077 error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t)); 2078 if (error != 0) 2079 return (error); 2080 error = kern_fhstat(td, fh, &sb); 2081 if (error != 0) 2082 return (error); 2083 copy_stat(&sb, &sb32); 2084 error = copyout(&sb32, uap->sb, sizeof (sb32)); 2085 return (error); 2086 } 2087 2088 #if defined(COMPAT_FREEBSD11) 2089 extern int ino64_trunc_error; 2090 2091 static int 2092 freebsd11_cvtstat32(struct stat *in, struct freebsd11_stat32 *out) 2093 { 2094 2095 CP(*in, *out, st_ino); 2096 if (in->st_ino != out->st_ino) { 2097 switch (ino64_trunc_error) { 2098 default: 2099 case 0: 2100 break; 2101 case 1: 2102 return (EOVERFLOW); 2103 case 2: 2104 out->st_ino = UINT32_MAX; 2105 break; 2106 } 2107 } 2108 CP(*in, *out, st_nlink); 2109 if (in->st_nlink != out->st_nlink) { 2110 switch (ino64_trunc_error) { 2111 default: 2112 case 0: 2113 break; 2114 case 1: 2115 return (EOVERFLOW); 2116 case 2: 2117 out->st_nlink = UINT16_MAX; 2118 break; 2119 } 2120 } 2121 out->st_dev = in->st_dev; 2122 if (out->st_dev != in->st_dev) { 2123 switch (ino64_trunc_error) { 2124 default: 2125 break; 2126 case 1: 2127 return (EOVERFLOW); 2128 } 2129 } 2130 CP(*in, *out, st_mode); 2131 CP(*in, *out, st_uid); 2132 CP(*in, *out, st_gid); 2133 out->st_rdev = in->st_rdev; 2134 if (out->st_rdev != in->st_rdev) { 2135 switch (ino64_trunc_error) { 2136 default: 2137 break; 2138 case 1: 2139 return (EOVERFLOW); 2140 } 2141 } 2142 TS_CP(*in, *out, st_atim); 2143 TS_CP(*in, *out, st_mtim); 2144 TS_CP(*in, *out, st_ctim); 2145 CP(*in, *out, st_size); 2146 CP(*in, *out, st_blocks); 2147 CP(*in, *out, st_blksize); 2148 CP(*in, *out, st_flags); 2149 CP(*in, *out, st_gen); 2150 TS_CP(*in, *out, st_birthtim); 2151 out->st_lspare = 0; 2152 bzero((char *)&out->st_birthtim + sizeof(out->st_birthtim), 2153 sizeof(*out) - offsetof(struct freebsd11_stat32, 2154 st_birthtim) - sizeof(out->st_birthtim)); 2155 return (0); 2156 } 2157 2158 int 2159 freebsd11_freebsd32_stat(struct thread *td, 2160 struct freebsd11_freebsd32_stat_args *uap) 2161 { 2162 struct stat sb; 2163 struct freebsd11_stat32 sb32; 2164 int error; 2165 2166 error = kern_statat(td, 0, AT_FDCWD, uap->path, UIO_USERSPACE, 2167 &sb, NULL); 2168 if (error != 0) 2169 return (error); 2170 error = freebsd11_cvtstat32(&sb, &sb32); 2171 if (error == 0) 2172 error = copyout(&sb32, uap->ub, sizeof (sb32)); 2173 return (error); 2174 } 2175 2176 int 2177 freebsd11_freebsd32_fstat(struct thread *td, 2178 struct freebsd11_freebsd32_fstat_args *uap) 2179 { 2180 struct stat sb; 2181 struct freebsd11_stat32 sb32; 2182 int error; 2183 2184 error = kern_fstat(td, uap->fd, &sb); 2185 if (error != 0) 2186 return (error); 2187 error = freebsd11_cvtstat32(&sb, &sb32); 2188 if (error == 0) 2189 error = copyout(&sb32, uap->ub, sizeof (sb32)); 2190 return (error); 2191 } 2192 2193 int 2194 freebsd11_freebsd32_fstatat(struct thread *td, 2195 struct freebsd11_freebsd32_fstatat_args *uap) 2196 { 2197 struct stat sb; 2198 struct freebsd11_stat32 sb32; 2199 int error; 2200 2201 error = kern_statat(td, uap->flag, uap->fd, uap->path, UIO_USERSPACE, 2202 &sb, NULL); 2203 if (error != 0) 2204 return (error); 2205 error = freebsd11_cvtstat32(&sb, &sb32); 2206 if (error == 0) 2207 error = copyout(&sb32, uap->buf, sizeof (sb32)); 2208 return (error); 2209 } 2210 2211 int 2212 freebsd11_freebsd32_lstat(struct thread *td, 2213 struct freebsd11_freebsd32_lstat_args *uap) 2214 { 2215 struct stat sb; 2216 struct freebsd11_stat32 sb32; 2217 int error; 2218 2219 error = kern_statat(td, AT_SYMLINK_NOFOLLOW, AT_FDCWD, uap->path, 2220 UIO_USERSPACE, &sb, NULL); 2221 if (error != 0) 2222 return (error); 2223 error = freebsd11_cvtstat32(&sb, &sb32); 2224 if (error == 0) 2225 error = copyout(&sb32, uap->ub, sizeof (sb32)); 2226 return (error); 2227 } 2228 2229 int 2230 freebsd11_freebsd32_fhstat(struct thread *td, 2231 struct freebsd11_freebsd32_fhstat_args *uap) 2232 { 2233 struct stat sb; 2234 struct freebsd11_stat32 sb32; 2235 struct fhandle fh; 2236 int error; 2237 2238 error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t)); 2239 if (error != 0) 2240 return (error); 2241 error = kern_fhstat(td, fh, &sb); 2242 if (error != 0) 2243 return (error); 2244 error = freebsd11_cvtstat32(&sb, &sb32); 2245 if (error == 0) 2246 error = copyout(&sb32, uap->sb, sizeof (sb32)); 2247 return (error); 2248 } 2249 #endif 2250 2251 int 2252 freebsd32___sysctl(struct thread *td, struct freebsd32___sysctl_args *uap) 2253 { 2254 int error, name[CTL_MAXNAME]; 2255 size_t j, oldlen; 2256 uint32_t tmp; 2257 2258 if (uap->namelen > CTL_MAXNAME || uap->namelen < 2) 2259 return (EINVAL); 2260 error = copyin(uap->name, name, uap->namelen * sizeof(int)); 2261 if (error) 2262 return (error); 2263 if (uap->oldlenp) { 2264 error = fueword32(uap->oldlenp, &tmp); 2265 oldlen = tmp; 2266 } else { 2267 oldlen = 0; 2268 } 2269 if (error != 0) 2270 return (EFAULT); 2271 error = userland_sysctl(td, name, uap->namelen, 2272 uap->old, &oldlen, 1, 2273 uap->new, uap->newlen, &j, SCTL_MASK32); 2274 if (error) 2275 return (error); 2276 if (uap->oldlenp) 2277 suword32(uap->oldlenp, j); 2278 return (0); 2279 } 2280 2281 int 2282 freebsd32_jail(struct thread *td, struct freebsd32_jail_args *uap) 2283 { 2284 uint32_t version; 2285 int error; 2286 struct jail j; 2287 2288 error = copyin(uap->jail, &version, sizeof(uint32_t)); 2289 if (error) 2290 return (error); 2291 2292 switch (version) { 2293 case 0: 2294 { 2295 /* FreeBSD single IPv4 jails. */ 2296 struct jail32_v0 j32_v0; 2297 2298 bzero(&j, sizeof(struct jail)); 2299 error = copyin(uap->jail, &j32_v0, sizeof(struct jail32_v0)); 2300 if (error) 2301 return (error); 2302 CP(j32_v0, j, version); 2303 PTRIN_CP(j32_v0, j, path); 2304 PTRIN_CP(j32_v0, j, hostname); 2305 j.ip4s = htonl(j32_v0.ip_number); /* jail_v0 is host order */ 2306 break; 2307 } 2308 2309 case 1: 2310 /* 2311 * Version 1 was used by multi-IPv4 jail implementations 2312 * that never made it into the official kernel. 2313 */ 2314 return (EINVAL); 2315 2316 case 2: /* JAIL_API_VERSION */ 2317 { 2318 /* FreeBSD multi-IPv4/IPv6,noIP jails. */ 2319 struct jail32 j32; 2320 2321 error = copyin(uap->jail, &j32, sizeof(struct jail32)); 2322 if (error) 2323 return (error); 2324 CP(j32, j, version); 2325 PTRIN_CP(j32, j, path); 2326 PTRIN_CP(j32, j, hostname); 2327 PTRIN_CP(j32, j, jailname); 2328 CP(j32, j, ip4s); 2329 CP(j32, j, ip6s); 2330 PTRIN_CP(j32, j, ip4); 2331 PTRIN_CP(j32, j, ip6); 2332 break; 2333 } 2334 2335 default: 2336 /* Sci-Fi jails are not supported, sorry. */ 2337 return (EINVAL); 2338 } 2339 return (kern_jail(td, &j)); 2340 } 2341 2342 int 2343 freebsd32_jail_set(struct thread *td, struct freebsd32_jail_set_args *uap) 2344 { 2345 struct uio *auio; 2346 int error; 2347 2348 /* Check that we have an even number of iovecs. */ 2349 if (uap->iovcnt & 1) 2350 return (EINVAL); 2351 2352 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 2353 if (error) 2354 return (error); 2355 error = kern_jail_set(td, auio, uap->flags); 2356 free(auio, M_IOV); 2357 return (error); 2358 } 2359 2360 int 2361 freebsd32_jail_get(struct thread *td, struct freebsd32_jail_get_args *uap) 2362 { 2363 struct iovec32 iov32; 2364 struct uio *auio; 2365 int error, i; 2366 2367 /* Check that we have an even number of iovecs. */ 2368 if (uap->iovcnt & 1) 2369 return (EINVAL); 2370 2371 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 2372 if (error) 2373 return (error); 2374 error = kern_jail_get(td, auio, uap->flags); 2375 if (error == 0) 2376 for (i = 0; i < uap->iovcnt; i++) { 2377 PTROUT_CP(auio->uio_iov[i], iov32, iov_base); 2378 CP(auio->uio_iov[i], iov32, iov_len); 2379 error = copyout(&iov32, uap->iovp + i, sizeof(iov32)); 2380 if (error != 0) 2381 break; 2382 } 2383 free(auio, M_IOV); 2384 return (error); 2385 } 2386 2387 int 2388 freebsd32_sigaction(struct thread *td, struct freebsd32_sigaction_args *uap) 2389 { 2390 struct sigaction32 s32; 2391 struct sigaction sa, osa, *sap; 2392 int error; 2393 2394 if (uap->act) { 2395 error = copyin(uap->act, &s32, sizeof(s32)); 2396 if (error) 2397 return (error); 2398 sa.sa_handler = PTRIN(s32.sa_u); 2399 CP(s32, sa, sa_flags); 2400 CP(s32, sa, sa_mask); 2401 sap = &sa; 2402 } else 2403 sap = NULL; 2404 error = kern_sigaction(td, uap->sig, sap, &osa, 0); 2405 if (error == 0 && uap->oact != NULL) { 2406 s32.sa_u = PTROUT(osa.sa_handler); 2407 CP(osa, s32, sa_flags); 2408 CP(osa, s32, sa_mask); 2409 error = copyout(&s32, uap->oact, sizeof(s32)); 2410 } 2411 return (error); 2412 } 2413 2414 #ifdef COMPAT_FREEBSD4 2415 int 2416 freebsd4_freebsd32_sigaction(struct thread *td, 2417 struct freebsd4_freebsd32_sigaction_args *uap) 2418 { 2419 struct sigaction32 s32; 2420 struct sigaction sa, osa, *sap; 2421 int error; 2422 2423 if (uap->act) { 2424 error = copyin(uap->act, &s32, sizeof(s32)); 2425 if (error) 2426 return (error); 2427 sa.sa_handler = PTRIN(s32.sa_u); 2428 CP(s32, sa, sa_flags); 2429 CP(s32, sa, sa_mask); 2430 sap = &sa; 2431 } else 2432 sap = NULL; 2433 error = kern_sigaction(td, uap->sig, sap, &osa, KSA_FREEBSD4); 2434 if (error == 0 && uap->oact != NULL) { 2435 s32.sa_u = PTROUT(osa.sa_handler); 2436 CP(osa, s32, sa_flags); 2437 CP(osa, s32, sa_mask); 2438 error = copyout(&s32, uap->oact, sizeof(s32)); 2439 } 2440 return (error); 2441 } 2442 #endif 2443 2444 #ifdef COMPAT_43 2445 struct osigaction32 { 2446 u_int32_t sa_u; 2447 osigset_t sa_mask; 2448 int sa_flags; 2449 }; 2450 2451 #define ONSIG 32 2452 2453 int 2454 ofreebsd32_sigaction(struct thread *td, 2455 struct ofreebsd32_sigaction_args *uap) 2456 { 2457 struct osigaction32 s32; 2458 struct sigaction sa, osa, *sap; 2459 int error; 2460 2461 if (uap->signum <= 0 || uap->signum >= ONSIG) 2462 return (EINVAL); 2463 2464 if (uap->nsa) { 2465 error = copyin(uap->nsa, &s32, sizeof(s32)); 2466 if (error) 2467 return (error); 2468 sa.sa_handler = PTRIN(s32.sa_u); 2469 CP(s32, sa, sa_flags); 2470 OSIG2SIG(s32.sa_mask, sa.sa_mask); 2471 sap = &sa; 2472 } else 2473 sap = NULL; 2474 error = kern_sigaction(td, uap->signum, sap, &osa, KSA_OSIGSET); 2475 if (error == 0 && uap->osa != NULL) { 2476 s32.sa_u = PTROUT(osa.sa_handler); 2477 CP(osa, s32, sa_flags); 2478 SIG2OSIG(osa.sa_mask, s32.sa_mask); 2479 error = copyout(&s32, uap->osa, sizeof(s32)); 2480 } 2481 return (error); 2482 } 2483 2484 int 2485 ofreebsd32_sigprocmask(struct thread *td, 2486 struct ofreebsd32_sigprocmask_args *uap) 2487 { 2488 sigset_t set, oset; 2489 int error; 2490 2491 OSIG2SIG(uap->mask, set); 2492 error = kern_sigprocmask(td, uap->how, &set, &oset, SIGPROCMASK_OLD); 2493 SIG2OSIG(oset, td->td_retval[0]); 2494 return (error); 2495 } 2496 2497 int 2498 ofreebsd32_sigpending(struct thread *td, 2499 struct ofreebsd32_sigpending_args *uap) 2500 { 2501 struct proc *p = td->td_proc; 2502 sigset_t siglist; 2503 2504 PROC_LOCK(p); 2505 siglist = p->p_siglist; 2506 SIGSETOR(siglist, td->td_siglist); 2507 PROC_UNLOCK(p); 2508 SIG2OSIG(siglist, td->td_retval[0]); 2509 return (0); 2510 } 2511 2512 struct sigvec32 { 2513 u_int32_t sv_handler; 2514 int sv_mask; 2515 int sv_flags; 2516 }; 2517 2518 int 2519 ofreebsd32_sigvec(struct thread *td, 2520 struct ofreebsd32_sigvec_args *uap) 2521 { 2522 struct sigvec32 vec; 2523 struct sigaction sa, osa, *sap; 2524 int error; 2525 2526 if (uap->signum <= 0 || uap->signum >= ONSIG) 2527 return (EINVAL); 2528 2529 if (uap->nsv) { 2530 error = copyin(uap->nsv, &vec, sizeof(vec)); 2531 if (error) 2532 return (error); 2533 sa.sa_handler = PTRIN(vec.sv_handler); 2534 OSIG2SIG(vec.sv_mask, sa.sa_mask); 2535 sa.sa_flags = vec.sv_flags; 2536 sa.sa_flags ^= SA_RESTART; 2537 sap = &sa; 2538 } else 2539 sap = NULL; 2540 error = kern_sigaction(td, uap->signum, sap, &osa, KSA_OSIGSET); 2541 if (error == 0 && uap->osv != NULL) { 2542 vec.sv_handler = PTROUT(osa.sa_handler); 2543 SIG2OSIG(osa.sa_mask, vec.sv_mask); 2544 vec.sv_flags = osa.sa_flags; 2545 vec.sv_flags &= ~SA_NOCLDWAIT; 2546 vec.sv_flags ^= SA_RESTART; 2547 error = copyout(&vec, uap->osv, sizeof(vec)); 2548 } 2549 return (error); 2550 } 2551 2552 int 2553 ofreebsd32_sigblock(struct thread *td, 2554 struct ofreebsd32_sigblock_args *uap) 2555 { 2556 sigset_t set, oset; 2557 2558 OSIG2SIG(uap->mask, set); 2559 kern_sigprocmask(td, SIG_BLOCK, &set, &oset, 0); 2560 SIG2OSIG(oset, td->td_retval[0]); 2561 return (0); 2562 } 2563 2564 int 2565 ofreebsd32_sigsetmask(struct thread *td, 2566 struct ofreebsd32_sigsetmask_args *uap) 2567 { 2568 sigset_t set, oset; 2569 2570 OSIG2SIG(uap->mask, set); 2571 kern_sigprocmask(td, SIG_SETMASK, &set, &oset, 0); 2572 SIG2OSIG(oset, td->td_retval[0]); 2573 return (0); 2574 } 2575 2576 int 2577 ofreebsd32_sigsuspend(struct thread *td, 2578 struct ofreebsd32_sigsuspend_args *uap) 2579 { 2580 sigset_t mask; 2581 2582 OSIG2SIG(uap->mask, mask); 2583 return (kern_sigsuspend(td, mask)); 2584 } 2585 2586 struct sigstack32 { 2587 u_int32_t ss_sp; 2588 int ss_onstack; 2589 }; 2590 2591 int 2592 ofreebsd32_sigstack(struct thread *td, 2593 struct ofreebsd32_sigstack_args *uap) 2594 { 2595 struct sigstack32 s32; 2596 struct sigstack nss, oss; 2597 int error = 0, unss; 2598 2599 if (uap->nss != NULL) { 2600 error = copyin(uap->nss, &s32, sizeof(s32)); 2601 if (error) 2602 return (error); 2603 nss.ss_sp = PTRIN(s32.ss_sp); 2604 CP(s32, nss, ss_onstack); 2605 unss = 1; 2606 } else { 2607 unss = 0; 2608 } 2609 oss.ss_sp = td->td_sigstk.ss_sp; 2610 oss.ss_onstack = sigonstack(cpu_getstack(td)); 2611 if (unss) { 2612 td->td_sigstk.ss_sp = nss.ss_sp; 2613 td->td_sigstk.ss_size = 0; 2614 td->td_sigstk.ss_flags |= (nss.ss_onstack & SS_ONSTACK); 2615 td->td_pflags |= TDP_ALTSTACK; 2616 } 2617 if (uap->oss != NULL) { 2618 s32.ss_sp = PTROUT(oss.ss_sp); 2619 CP(oss, s32, ss_onstack); 2620 error = copyout(&s32, uap->oss, sizeof(s32)); 2621 } 2622 return (error); 2623 } 2624 #endif 2625 2626 int 2627 freebsd32_nanosleep(struct thread *td, struct freebsd32_nanosleep_args *uap) 2628 { 2629 2630 return (freebsd32_user_clock_nanosleep(td, CLOCK_REALTIME, 2631 TIMER_RELTIME, uap->rqtp, uap->rmtp)); 2632 } 2633 2634 int 2635 freebsd32_clock_nanosleep(struct thread *td, 2636 struct freebsd32_clock_nanosleep_args *uap) 2637 { 2638 int error; 2639 2640 error = freebsd32_user_clock_nanosleep(td, uap->clock_id, uap->flags, 2641 uap->rqtp, uap->rmtp); 2642 return (kern_posix_error(td, error)); 2643 } 2644 2645 static int 2646 freebsd32_user_clock_nanosleep(struct thread *td, clockid_t clock_id, 2647 int flags, const struct timespec32 *ua_rqtp, struct timespec32 *ua_rmtp) 2648 { 2649 struct timespec32 rmt32, rqt32; 2650 struct timespec rmt, rqt; 2651 int error; 2652 2653 error = copyin(ua_rqtp, &rqt32, sizeof(rqt32)); 2654 if (error) 2655 return (error); 2656 2657 CP(rqt32, rqt, tv_sec); 2658 CP(rqt32, rqt, tv_nsec); 2659 2660 if (ua_rmtp != NULL && (flags & TIMER_ABSTIME) == 0 && 2661 !useracc(ua_rmtp, sizeof(rmt32), VM_PROT_WRITE)) 2662 return (EFAULT); 2663 error = kern_clock_nanosleep(td, clock_id, flags, &rqt, &rmt); 2664 if (error == EINTR && ua_rmtp != NULL && (flags & TIMER_ABSTIME) == 0) { 2665 int error2; 2666 2667 CP(rmt, rmt32, tv_sec); 2668 CP(rmt, rmt32, tv_nsec); 2669 2670 error2 = copyout(&rmt32, ua_rmtp, sizeof(rmt32)); 2671 if (error2) 2672 error = error2; 2673 } 2674 return (error); 2675 } 2676 2677 int 2678 freebsd32_clock_gettime(struct thread *td, 2679 struct freebsd32_clock_gettime_args *uap) 2680 { 2681 struct timespec ats; 2682 struct timespec32 ats32; 2683 int error; 2684 2685 error = kern_clock_gettime(td, uap->clock_id, &ats); 2686 if (error == 0) { 2687 CP(ats, ats32, tv_sec); 2688 CP(ats, ats32, tv_nsec); 2689 error = copyout(&ats32, uap->tp, sizeof(ats32)); 2690 } 2691 return (error); 2692 } 2693 2694 int 2695 freebsd32_clock_settime(struct thread *td, 2696 struct freebsd32_clock_settime_args *uap) 2697 { 2698 struct timespec ats; 2699 struct timespec32 ats32; 2700 int error; 2701 2702 error = copyin(uap->tp, &ats32, sizeof(ats32)); 2703 if (error) 2704 return (error); 2705 CP(ats32, ats, tv_sec); 2706 CP(ats32, ats, tv_nsec); 2707 2708 return (kern_clock_settime(td, uap->clock_id, &ats)); 2709 } 2710 2711 int 2712 freebsd32_clock_getres(struct thread *td, 2713 struct freebsd32_clock_getres_args *uap) 2714 { 2715 struct timespec ts; 2716 struct timespec32 ts32; 2717 int error; 2718 2719 if (uap->tp == NULL) 2720 return (0); 2721 error = kern_clock_getres(td, uap->clock_id, &ts); 2722 if (error == 0) { 2723 CP(ts, ts32, tv_sec); 2724 CP(ts, ts32, tv_nsec); 2725 error = copyout(&ts32, uap->tp, sizeof(ts32)); 2726 } 2727 return (error); 2728 } 2729 2730 int freebsd32_ktimer_create(struct thread *td, 2731 struct freebsd32_ktimer_create_args *uap) 2732 { 2733 struct sigevent32 ev32; 2734 struct sigevent ev, *evp; 2735 int error, id; 2736 2737 if (uap->evp == NULL) { 2738 evp = NULL; 2739 } else { 2740 evp = &ev; 2741 error = copyin(uap->evp, &ev32, sizeof(ev32)); 2742 if (error != 0) 2743 return (error); 2744 error = convert_sigevent32(&ev32, &ev); 2745 if (error != 0) 2746 return (error); 2747 } 2748 error = kern_ktimer_create(td, uap->clock_id, evp, &id, -1); 2749 if (error == 0) { 2750 error = copyout(&id, uap->timerid, sizeof(int)); 2751 if (error != 0) 2752 kern_ktimer_delete(td, id); 2753 } 2754 return (error); 2755 } 2756 2757 int 2758 freebsd32_ktimer_settime(struct thread *td, 2759 struct freebsd32_ktimer_settime_args *uap) 2760 { 2761 struct itimerspec32 val32, oval32; 2762 struct itimerspec val, oval, *ovalp; 2763 int error; 2764 2765 error = copyin(uap->value, &val32, sizeof(val32)); 2766 if (error != 0) 2767 return (error); 2768 ITS_CP(val32, val); 2769 ovalp = uap->ovalue != NULL ? &oval : NULL; 2770 error = kern_ktimer_settime(td, uap->timerid, uap->flags, &val, ovalp); 2771 if (error == 0 && uap->ovalue != NULL) { 2772 ITS_CP(oval, oval32); 2773 error = copyout(&oval32, uap->ovalue, sizeof(oval32)); 2774 } 2775 return (error); 2776 } 2777 2778 int 2779 freebsd32_ktimer_gettime(struct thread *td, 2780 struct freebsd32_ktimer_gettime_args *uap) 2781 { 2782 struct itimerspec32 val32; 2783 struct itimerspec val; 2784 int error; 2785 2786 error = kern_ktimer_gettime(td, uap->timerid, &val); 2787 if (error == 0) { 2788 ITS_CP(val, val32); 2789 error = copyout(&val32, uap->value, sizeof(val32)); 2790 } 2791 return (error); 2792 } 2793 2794 int 2795 freebsd32_clock_getcpuclockid2(struct thread *td, 2796 struct freebsd32_clock_getcpuclockid2_args *uap) 2797 { 2798 clockid_t clk_id; 2799 int error; 2800 2801 error = kern_clock_getcpuclockid2(td, PAIR32TO64(id_t, uap->id), 2802 uap->which, &clk_id); 2803 if (error == 0) 2804 error = copyout(&clk_id, uap->clock_id, sizeof(clockid_t)); 2805 return (error); 2806 } 2807 2808 int 2809 freebsd32_thr_new(struct thread *td, 2810 struct freebsd32_thr_new_args *uap) 2811 { 2812 struct thr_param32 param32; 2813 struct thr_param param; 2814 int error; 2815 2816 if (uap->param_size < 0 || 2817 uap->param_size > sizeof(struct thr_param32)) 2818 return (EINVAL); 2819 bzero(¶m, sizeof(struct thr_param)); 2820 bzero(¶m32, sizeof(struct thr_param32)); 2821 error = copyin(uap->param, ¶m32, uap->param_size); 2822 if (error != 0) 2823 return (error); 2824 param.start_func = PTRIN(param32.start_func); 2825 param.arg = PTRIN(param32.arg); 2826 param.stack_base = PTRIN(param32.stack_base); 2827 param.stack_size = param32.stack_size; 2828 param.tls_base = PTRIN(param32.tls_base); 2829 param.tls_size = param32.tls_size; 2830 param.child_tid = PTRIN(param32.child_tid); 2831 param.parent_tid = PTRIN(param32.parent_tid); 2832 param.flags = param32.flags; 2833 param.rtp = PTRIN(param32.rtp); 2834 param.spare[0] = PTRIN(param32.spare[0]); 2835 param.spare[1] = PTRIN(param32.spare[1]); 2836 param.spare[2] = PTRIN(param32.spare[2]); 2837 2838 return (kern_thr_new(td, ¶m)); 2839 } 2840 2841 int 2842 freebsd32_thr_suspend(struct thread *td, struct freebsd32_thr_suspend_args *uap) 2843 { 2844 struct timespec32 ts32; 2845 struct timespec ts, *tsp; 2846 int error; 2847 2848 error = 0; 2849 tsp = NULL; 2850 if (uap->timeout != NULL) { 2851 error = copyin((const void *)uap->timeout, (void *)&ts32, 2852 sizeof(struct timespec32)); 2853 if (error != 0) 2854 return (error); 2855 ts.tv_sec = ts32.tv_sec; 2856 ts.tv_nsec = ts32.tv_nsec; 2857 tsp = &ts; 2858 } 2859 return (kern_thr_suspend(td, tsp)); 2860 } 2861 2862 void 2863 siginfo_to_siginfo32(const siginfo_t *src, struct siginfo32 *dst) 2864 { 2865 bzero(dst, sizeof(*dst)); 2866 dst->si_signo = src->si_signo; 2867 dst->si_errno = src->si_errno; 2868 dst->si_code = src->si_code; 2869 dst->si_pid = src->si_pid; 2870 dst->si_uid = src->si_uid; 2871 dst->si_status = src->si_status; 2872 dst->si_addr = (uintptr_t)src->si_addr; 2873 dst->si_value.sival_int = src->si_value.sival_int; 2874 dst->si_timerid = src->si_timerid; 2875 dst->si_overrun = src->si_overrun; 2876 } 2877 2878 #ifndef _FREEBSD32_SYSPROTO_H_ 2879 struct freebsd32_sigqueue_args { 2880 pid_t pid; 2881 int signum; 2882 /* union sigval32 */ int value; 2883 }; 2884 #endif 2885 int 2886 freebsd32_sigqueue(struct thread *td, struct freebsd32_sigqueue_args *uap) 2887 { 2888 union sigval sv; 2889 2890 /* 2891 * On 32-bit ABIs, sival_int and sival_ptr are the same. 2892 * On 64-bit little-endian ABIs, the low bits are the same. 2893 * In 64-bit big-endian ABIs, sival_int overlaps with 2894 * sival_ptr's HIGH bits. We choose to support sival_int 2895 * rather than sival_ptr in this case as it seems to be 2896 * more common. 2897 */ 2898 bzero(&sv, sizeof(sv)); 2899 sv.sival_int = uap->value; 2900 2901 return (kern_sigqueue(td, uap->pid, uap->signum, &sv)); 2902 } 2903 2904 int 2905 freebsd32_sigtimedwait(struct thread *td, struct freebsd32_sigtimedwait_args *uap) 2906 { 2907 struct timespec32 ts32; 2908 struct timespec ts; 2909 struct timespec *timeout; 2910 sigset_t set; 2911 ksiginfo_t ksi; 2912 struct siginfo32 si32; 2913 int error; 2914 2915 if (uap->timeout) { 2916 error = copyin(uap->timeout, &ts32, sizeof(ts32)); 2917 if (error) 2918 return (error); 2919 ts.tv_sec = ts32.tv_sec; 2920 ts.tv_nsec = ts32.tv_nsec; 2921 timeout = &ts; 2922 } else 2923 timeout = NULL; 2924 2925 error = copyin(uap->set, &set, sizeof(set)); 2926 if (error) 2927 return (error); 2928 2929 error = kern_sigtimedwait(td, set, &ksi, timeout); 2930 if (error) 2931 return (error); 2932 2933 if (uap->info) { 2934 siginfo_to_siginfo32(&ksi.ksi_info, &si32); 2935 error = copyout(&si32, uap->info, sizeof(struct siginfo32)); 2936 } 2937 2938 if (error == 0) 2939 td->td_retval[0] = ksi.ksi_signo; 2940 return (error); 2941 } 2942 2943 /* 2944 * MPSAFE 2945 */ 2946 int 2947 freebsd32_sigwaitinfo(struct thread *td, struct freebsd32_sigwaitinfo_args *uap) 2948 { 2949 ksiginfo_t ksi; 2950 struct siginfo32 si32; 2951 sigset_t set; 2952 int error; 2953 2954 error = copyin(uap->set, &set, sizeof(set)); 2955 if (error) 2956 return (error); 2957 2958 error = kern_sigtimedwait(td, set, &ksi, NULL); 2959 if (error) 2960 return (error); 2961 2962 if (uap->info) { 2963 siginfo_to_siginfo32(&ksi.ksi_info, &si32); 2964 error = copyout(&si32, uap->info, sizeof(struct siginfo32)); 2965 } 2966 if (error == 0) 2967 td->td_retval[0] = ksi.ksi_signo; 2968 return (error); 2969 } 2970 2971 int 2972 freebsd32_cpuset_setid(struct thread *td, 2973 struct freebsd32_cpuset_setid_args *uap) 2974 { 2975 2976 return (kern_cpuset_setid(td, uap->which, 2977 PAIR32TO64(id_t, uap->id), uap->setid)); 2978 } 2979 2980 int 2981 freebsd32_cpuset_getid(struct thread *td, 2982 struct freebsd32_cpuset_getid_args *uap) 2983 { 2984 2985 return (kern_cpuset_getid(td, uap->level, uap->which, 2986 PAIR32TO64(id_t, uap->id), uap->setid)); 2987 } 2988 2989 int 2990 freebsd32_cpuset_getaffinity(struct thread *td, 2991 struct freebsd32_cpuset_getaffinity_args *uap) 2992 { 2993 2994 return (kern_cpuset_getaffinity(td, uap->level, uap->which, 2995 PAIR32TO64(id_t,uap->id), uap->cpusetsize, uap->mask)); 2996 } 2997 2998 int 2999 freebsd32_cpuset_setaffinity(struct thread *td, 3000 struct freebsd32_cpuset_setaffinity_args *uap) 3001 { 3002 3003 return (kern_cpuset_setaffinity(td, uap->level, uap->which, 3004 PAIR32TO64(id_t,uap->id), uap->cpusetsize, uap->mask)); 3005 } 3006 3007 int 3008 freebsd32_cpuset_getdomain(struct thread *td, 3009 struct freebsd32_cpuset_getdomain_args *uap) 3010 { 3011 3012 return (kern_cpuset_getdomain(td, uap->level, uap->which, 3013 PAIR32TO64(id_t,uap->id), uap->domainsetsize, uap->mask, uap->policy)); 3014 } 3015 3016 int 3017 freebsd32_cpuset_setdomain(struct thread *td, 3018 struct freebsd32_cpuset_setdomain_args *uap) 3019 { 3020 3021 return (kern_cpuset_setdomain(td, uap->level, uap->which, 3022 PAIR32TO64(id_t,uap->id), uap->domainsetsize, uap->mask, uap->policy)); 3023 } 3024 3025 int 3026 freebsd32_nmount(struct thread *td, 3027 struct freebsd32_nmount_args /* { 3028 struct iovec *iovp; 3029 unsigned int iovcnt; 3030 int flags; 3031 } */ *uap) 3032 { 3033 struct uio *auio; 3034 uint64_t flags; 3035 int error; 3036 3037 /* 3038 * Mount flags are now 64-bits. On 32-bit archtectures only 3039 * 32-bits are passed in, but from here on everything handles 3040 * 64-bit flags correctly. 3041 */ 3042 flags = uap->flags; 3043 3044 AUDIT_ARG_FFLAGS(flags); 3045 3046 /* 3047 * Filter out MNT_ROOTFS. We do not want clients of nmount() in 3048 * userspace to set this flag, but we must filter it out if we want 3049 * MNT_UPDATE on the root file system to work. 3050 * MNT_ROOTFS should only be set by the kernel when mounting its 3051 * root file system. 3052 */ 3053 flags &= ~MNT_ROOTFS; 3054 3055 /* 3056 * check that we have an even number of iovec's 3057 * and that we have at least two options. 3058 */ 3059 if ((uap->iovcnt & 1) || (uap->iovcnt < 4)) 3060 return (EINVAL); 3061 3062 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 3063 if (error) 3064 return (error); 3065 error = vfs_donmount(td, flags, auio); 3066 3067 free(auio, M_IOV); 3068 return error; 3069 } 3070 3071 #if 0 3072 int 3073 freebsd32_xxx(struct thread *td, struct freebsd32_xxx_args *uap) 3074 { 3075 struct yyy32 *p32, s32; 3076 struct yyy *p = NULL, s; 3077 struct xxx_arg ap; 3078 int error; 3079 3080 if (uap->zzz) { 3081 error = copyin(uap->zzz, &s32, sizeof(s32)); 3082 if (error) 3083 return (error); 3084 /* translate in */ 3085 p = &s; 3086 } 3087 error = kern_xxx(td, p); 3088 if (error) 3089 return (error); 3090 if (uap->zzz) { 3091 /* translate out */ 3092 error = copyout(&s32, p32, sizeof(s32)); 3093 } 3094 return (error); 3095 } 3096 #endif 3097 3098 int 3099 syscall32_module_handler(struct module *mod, int what, void *arg) 3100 { 3101 3102 return (kern_syscall_module_handler(freebsd32_sysent, mod, what, arg)); 3103 } 3104 3105 int 3106 syscall32_helper_register(struct syscall_helper_data *sd, int flags) 3107 { 3108 3109 return (kern_syscall_helper_register(freebsd32_sysent, sd, flags)); 3110 } 3111 3112 int 3113 syscall32_helper_unregister(struct syscall_helper_data *sd) 3114 { 3115 3116 return (kern_syscall_helper_unregister(freebsd32_sysent, sd)); 3117 } 3118 3119 register_t * 3120 freebsd32_copyout_strings(struct image_params *imgp) 3121 { 3122 int argc, envc, i; 3123 u_int32_t *vectp; 3124 char *stringp; 3125 uintptr_t destp; 3126 u_int32_t *stack_base; 3127 struct freebsd32_ps_strings *arginfo; 3128 char canary[sizeof(long) * 8]; 3129 int32_t pagesizes32[MAXPAGESIZES]; 3130 size_t execpath_len; 3131 int szsigcode; 3132 3133 /* 3134 * Calculate string base and vector table pointers. 3135 * Also deal with signal trampoline code for this exec type. 3136 */ 3137 if (imgp->execpath != NULL && imgp->auxargs != NULL) 3138 execpath_len = strlen(imgp->execpath) + 1; 3139 else 3140 execpath_len = 0; 3141 arginfo = (struct freebsd32_ps_strings *)curproc->p_sysent-> 3142 sv_psstrings; 3143 if (imgp->proc->p_sysent->sv_sigcode_base == 0) 3144 szsigcode = *(imgp->proc->p_sysent->sv_szsigcode); 3145 else 3146 szsigcode = 0; 3147 destp = (uintptr_t)arginfo; 3148 3149 /* 3150 * install sigcode 3151 */ 3152 if (szsigcode != 0) { 3153 destp -= szsigcode; 3154 destp = rounddown2(destp, sizeof(uint32_t)); 3155 copyout(imgp->proc->p_sysent->sv_sigcode, (void *)destp, 3156 szsigcode); 3157 } 3158 3159 /* 3160 * Copy the image path for the rtld. 3161 */ 3162 if (execpath_len != 0) { 3163 destp -= execpath_len; 3164 imgp->execpathp = destp; 3165 copyout(imgp->execpath, (void *)destp, execpath_len); 3166 } 3167 3168 /* 3169 * Prepare the canary for SSP. 3170 */ 3171 arc4rand(canary, sizeof(canary), 0); 3172 destp -= sizeof(canary); 3173 imgp->canary = destp; 3174 copyout(canary, (void *)destp, sizeof(canary)); 3175 imgp->canarylen = sizeof(canary); 3176 3177 /* 3178 * Prepare the pagesizes array. 3179 */ 3180 for (i = 0; i < MAXPAGESIZES; i++) 3181 pagesizes32[i] = (uint32_t)pagesizes[i]; 3182 destp -= sizeof(pagesizes32); 3183 destp = rounddown2(destp, sizeof(uint32_t)); 3184 imgp->pagesizes = destp; 3185 copyout(pagesizes32, (void *)destp, sizeof(pagesizes32)); 3186 imgp->pagesizeslen = sizeof(pagesizes32); 3187 3188 destp -= ARG_MAX - imgp->args->stringspace; 3189 destp = rounddown2(destp, sizeof(uint32_t)); 3190 3191 vectp = (uint32_t *)destp; 3192 if (imgp->auxargs) { 3193 /* 3194 * Allocate room on the stack for the ELF auxargs 3195 * array. It has up to AT_COUNT entries. 3196 */ 3197 vectp -= howmany(AT_COUNT * sizeof(Elf32_Auxinfo), 3198 sizeof(*vectp)); 3199 } 3200 3201 /* 3202 * Allocate room for the argv[] and env vectors including the 3203 * terminating NULL pointers. 3204 */ 3205 vectp -= imgp->args->argc + 1 + imgp->args->envc + 1; 3206 3207 /* 3208 * vectp also becomes our initial stack base 3209 */ 3210 stack_base = vectp; 3211 3212 stringp = imgp->args->begin_argv; 3213 argc = imgp->args->argc; 3214 envc = imgp->args->envc; 3215 /* 3216 * Copy out strings - arguments and environment. 3217 */ 3218 copyout(stringp, (void *)destp, ARG_MAX - imgp->args->stringspace); 3219 3220 /* 3221 * Fill in "ps_strings" struct for ps, w, etc. 3222 */ 3223 suword32(&arginfo->ps_argvstr, (u_int32_t)(intptr_t)vectp); 3224 suword32(&arginfo->ps_nargvstr, argc); 3225 3226 /* 3227 * Fill in argument portion of vector table. 3228 */ 3229 for (; argc > 0; --argc) { 3230 suword32(vectp++, (u_int32_t)(intptr_t)destp); 3231 while (*stringp++ != 0) 3232 destp++; 3233 destp++; 3234 } 3235 3236 /* a null vector table pointer separates the argp's from the envp's */ 3237 suword32(vectp++, 0); 3238 3239 suword32(&arginfo->ps_envstr, (u_int32_t)(intptr_t)vectp); 3240 suword32(&arginfo->ps_nenvstr, envc); 3241 3242 /* 3243 * Fill in environment portion of vector table. 3244 */ 3245 for (; envc > 0; --envc) { 3246 suword32(vectp++, (u_int32_t)(intptr_t)destp); 3247 while (*stringp++ != 0) 3248 destp++; 3249 destp++; 3250 } 3251 3252 /* end of vector table is a null pointer */ 3253 suword32(vectp, 0); 3254 3255 return ((register_t *)stack_base); 3256 } 3257 3258 int 3259 freebsd32_kldstat(struct thread *td, struct freebsd32_kldstat_args *uap) 3260 { 3261 struct kld_file_stat *stat; 3262 struct kld32_file_stat *stat32; 3263 int error, version; 3264 3265 if ((error = copyin(&uap->stat->version, &version, sizeof(version))) 3266 != 0) 3267 return (error); 3268 if (version != sizeof(struct kld32_file_stat_1) && 3269 version != sizeof(struct kld32_file_stat)) 3270 return (EINVAL); 3271 3272 stat = malloc(sizeof(*stat), M_TEMP, M_WAITOK | M_ZERO); 3273 stat32 = malloc(sizeof(*stat32), M_TEMP, M_WAITOK | M_ZERO); 3274 error = kern_kldstat(td, uap->fileid, stat); 3275 if (error == 0) { 3276 bcopy(&stat->name[0], &stat32->name[0], sizeof(stat->name)); 3277 CP(*stat, *stat32, refs); 3278 CP(*stat, *stat32, id); 3279 PTROUT_CP(*stat, *stat32, address); 3280 CP(*stat, *stat32, size); 3281 bcopy(&stat->pathname[0], &stat32->pathname[0], 3282 sizeof(stat->pathname)); 3283 stat32->version = version; 3284 error = copyout(stat32, uap->stat, version); 3285 } 3286 free(stat, M_TEMP); 3287 free(stat32, M_TEMP); 3288 return (error); 3289 } 3290 3291 int 3292 freebsd32_posix_fallocate(struct thread *td, 3293 struct freebsd32_posix_fallocate_args *uap) 3294 { 3295 int error; 3296 3297 error = kern_posix_fallocate(td, uap->fd, 3298 PAIR32TO64(off_t, uap->offset), PAIR32TO64(off_t, uap->len)); 3299 return (kern_posix_error(td, error)); 3300 } 3301 3302 int 3303 freebsd32_posix_fadvise(struct thread *td, 3304 struct freebsd32_posix_fadvise_args *uap) 3305 { 3306 int error; 3307 3308 error = kern_posix_fadvise(td, uap->fd, PAIR32TO64(off_t, uap->offset), 3309 PAIR32TO64(off_t, uap->len), uap->advice); 3310 return (kern_posix_error(td, error)); 3311 } 3312 3313 int 3314 convert_sigevent32(struct sigevent32 *sig32, struct sigevent *sig) 3315 { 3316 3317 CP(*sig32, *sig, sigev_notify); 3318 switch (sig->sigev_notify) { 3319 case SIGEV_NONE: 3320 break; 3321 case SIGEV_THREAD_ID: 3322 CP(*sig32, *sig, sigev_notify_thread_id); 3323 /* FALLTHROUGH */ 3324 case SIGEV_SIGNAL: 3325 CP(*sig32, *sig, sigev_signo); 3326 PTRIN_CP(*sig32, *sig, sigev_value.sival_ptr); 3327 break; 3328 case SIGEV_KEVENT: 3329 CP(*sig32, *sig, sigev_notify_kqueue); 3330 CP(*sig32, *sig, sigev_notify_kevent_flags); 3331 PTRIN_CP(*sig32, *sig, sigev_value.sival_ptr); 3332 break; 3333 default: 3334 return (EINVAL); 3335 } 3336 return (0); 3337 } 3338 3339 int 3340 freebsd32_procctl(struct thread *td, struct freebsd32_procctl_args *uap) 3341 { 3342 void *data; 3343 union { 3344 struct procctl_reaper_status rs; 3345 struct procctl_reaper_pids rp; 3346 struct procctl_reaper_kill rk; 3347 } x; 3348 union { 3349 struct procctl_reaper_pids32 rp; 3350 } x32; 3351 int error, error1, flags, signum; 3352 3353 switch (uap->com) { 3354 case PROC_SPROTECT: 3355 case PROC_TRACE_CTL: 3356 case PROC_TRAPCAP_CTL: 3357 error = copyin(PTRIN(uap->data), &flags, sizeof(flags)); 3358 if (error != 0) 3359 return (error); 3360 data = &flags; 3361 break; 3362 case PROC_REAP_ACQUIRE: 3363 case PROC_REAP_RELEASE: 3364 if (uap->data != NULL) 3365 return (EINVAL); 3366 data = NULL; 3367 break; 3368 case PROC_REAP_STATUS: 3369 data = &x.rs; 3370 break; 3371 case PROC_REAP_GETPIDS: 3372 error = copyin(uap->data, &x32.rp, sizeof(x32.rp)); 3373 if (error != 0) 3374 return (error); 3375 CP(x32.rp, x.rp, rp_count); 3376 PTRIN_CP(x32.rp, x.rp, rp_pids); 3377 data = &x.rp; 3378 break; 3379 case PROC_REAP_KILL: 3380 error = copyin(uap->data, &x.rk, sizeof(x.rk)); 3381 if (error != 0) 3382 return (error); 3383 data = &x.rk; 3384 break; 3385 case PROC_TRACE_STATUS: 3386 case PROC_TRAPCAP_STATUS: 3387 data = &flags; 3388 break; 3389 case PROC_PDEATHSIG_CTL: 3390 error = copyin(uap->data, &signum, sizeof(signum)); 3391 if (error != 0) 3392 return (error); 3393 data = &signum; 3394 break; 3395 case PROC_PDEATHSIG_STATUS: 3396 data = &signum; 3397 break; 3398 default: 3399 return (EINVAL); 3400 } 3401 error = kern_procctl(td, uap->idtype, PAIR32TO64(id_t, uap->id), 3402 uap->com, data); 3403 switch (uap->com) { 3404 case PROC_REAP_STATUS: 3405 if (error == 0) 3406 error = copyout(&x.rs, uap->data, sizeof(x.rs)); 3407 break; 3408 case PROC_REAP_KILL: 3409 error1 = copyout(&x.rk, uap->data, sizeof(x.rk)); 3410 if (error == 0) 3411 error = error1; 3412 break; 3413 case PROC_TRACE_STATUS: 3414 case PROC_TRAPCAP_STATUS: 3415 if (error == 0) 3416 error = copyout(&flags, uap->data, sizeof(flags)); 3417 break; 3418 case PROC_PDEATHSIG_STATUS: 3419 if (error == 0) 3420 error = copyout(&signum, uap->data, sizeof(signum)); 3421 break; 3422 } 3423 return (error); 3424 } 3425 3426 int 3427 freebsd32_fcntl(struct thread *td, struct freebsd32_fcntl_args *uap) 3428 { 3429 long tmp; 3430 3431 switch (uap->cmd) { 3432 /* 3433 * Do unsigned conversion for arg when operation 3434 * interprets it as flags or pointer. 3435 */ 3436 case F_SETLK_REMOTE: 3437 case F_SETLKW: 3438 case F_SETLK: 3439 case F_GETLK: 3440 case F_SETFD: 3441 case F_SETFL: 3442 case F_OGETLK: 3443 case F_OSETLK: 3444 case F_OSETLKW: 3445 tmp = (unsigned int)(uap->arg); 3446 break; 3447 default: 3448 tmp = uap->arg; 3449 break; 3450 } 3451 return (kern_fcntl_freebsd(td, uap->fd, uap->cmd, tmp)); 3452 } 3453 3454 int 3455 freebsd32_ppoll(struct thread *td, struct freebsd32_ppoll_args *uap) 3456 { 3457 struct timespec32 ts32; 3458 struct timespec ts, *tsp; 3459 sigset_t set, *ssp; 3460 int error; 3461 3462 if (uap->ts != NULL) { 3463 error = copyin(uap->ts, &ts32, sizeof(ts32)); 3464 if (error != 0) 3465 return (error); 3466 CP(ts32, ts, tv_sec); 3467 CP(ts32, ts, tv_nsec); 3468 tsp = &ts; 3469 } else 3470 tsp = NULL; 3471 if (uap->set != NULL) { 3472 error = copyin(uap->set, &set, sizeof(set)); 3473 if (error != 0) 3474 return (error); 3475 ssp = &set; 3476 } else 3477 ssp = NULL; 3478 3479 return (kern_poll(td, uap->fds, uap->nfds, tsp, ssp)); 3480 } 3481 3482 int 3483 freebsd32_sched_rr_get_interval(struct thread *td, 3484 struct freebsd32_sched_rr_get_interval_args *uap) 3485 { 3486 struct timespec ts; 3487 struct timespec32 ts32; 3488 int error; 3489 3490 error = kern_sched_rr_get_interval(td, uap->pid, &ts); 3491 if (error == 0) { 3492 CP(ts, ts32, tv_sec); 3493 CP(ts, ts32, tv_nsec); 3494 error = copyout(&ts32, uap->interval, sizeof(ts32)); 3495 } 3496 return (error); 3497 } 3498