1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2002 Doug Rabson 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include "opt_ffclock.h" 33 #include "opt_inet.h" 34 #include "opt_inet6.h" 35 #include "opt_ktrace.h" 36 37 #define __ELF_WORD_SIZE 32 38 39 #ifdef COMPAT_FREEBSD11 40 #define _WANT_FREEBSD11_KEVENT 41 #endif 42 43 #include <sys/param.h> 44 #include <sys/bus.h> 45 #include <sys/capsicum.h> 46 #include <sys/clock.h> 47 #include <sys/exec.h> 48 #include <sys/fcntl.h> 49 #include <sys/filedesc.h> 50 #include <sys/imgact.h> 51 #include <sys/jail.h> 52 #include <sys/kernel.h> 53 #include <sys/limits.h> 54 #include <sys/linker.h> 55 #include <sys/lock.h> 56 #include <sys/malloc.h> 57 #include <sys/file.h> /* Must come after sys/malloc.h */ 58 #include <sys/imgact.h> 59 #include <sys/mbuf.h> 60 #include <sys/mman.h> 61 #include <sys/module.h> 62 #include <sys/mount.h> 63 #include <sys/mutex.h> 64 #include <sys/namei.h> 65 #include <sys/priv.h> 66 #include <sys/proc.h> 67 #include <sys/procctl.h> 68 #include <sys/ptrace.h> 69 #include <sys/reboot.h> 70 #include <sys/resource.h> 71 #include <sys/resourcevar.h> 72 #include <sys/selinfo.h> 73 #include <sys/eventvar.h> /* Must come after sys/selinfo.h */ 74 #include <sys/pipe.h> /* Must come after sys/selinfo.h */ 75 #include <sys/signal.h> 76 #include <sys/signalvar.h> 77 #include <sys/socket.h> 78 #include <sys/socketvar.h> 79 #include <sys/stat.h> 80 #include <sys/syscall.h> 81 #include <sys/syscallsubr.h> 82 #include <sys/sysctl.h> 83 #include <sys/sysent.h> 84 #include <sys/sysproto.h> 85 #include <sys/systm.h> 86 #include <sys/thr.h> 87 #include <sys/timex.h> 88 #include <sys/unistd.h> 89 #include <sys/ucontext.h> 90 #include <sys/vnode.h> 91 #include <sys/wait.h> 92 #include <sys/ipc.h> 93 #include <sys/msg.h> 94 #include <sys/sem.h> 95 #include <sys/shm.h> 96 #include <sys/timeffc.h> 97 #ifdef KTRACE 98 #include <sys/ktrace.h> 99 #endif 100 101 #ifdef INET 102 #include <netinet/in.h> 103 #endif 104 105 #include <vm/vm.h> 106 #include <vm/vm_param.h> 107 #include <vm/pmap.h> 108 #include <vm/vm_map.h> 109 #include <vm/vm_object.h> 110 #include <vm/vm_extern.h> 111 112 #include <machine/cpu.h> 113 #include <machine/elf.h> 114 #ifdef __amd64__ 115 #include <machine/md_var.h> 116 #endif 117 118 #include <security/audit/audit.h> 119 120 #include <compat/freebsd32/freebsd32_util.h> 121 #include <compat/freebsd32/freebsd32.h> 122 #include <compat/freebsd32/freebsd32_ipc.h> 123 #include <compat/freebsd32/freebsd32_misc.h> 124 #include <compat/freebsd32/freebsd32_signal.h> 125 #include <compat/freebsd32/freebsd32_proto.h> 126 127 FEATURE(compat_freebsd_32bit, "Compatible with 32-bit FreeBSD"); 128 129 struct ptrace_io_desc32 { 130 int piod_op; 131 uint32_t piod_offs; 132 uint32_t piod_addr; 133 uint32_t piod_len; 134 }; 135 136 struct ptrace_sc_ret32 { 137 uint32_t sr_retval[2]; 138 int sr_error; 139 }; 140 141 struct ptrace_vm_entry32 { 142 int pve_entry; 143 int pve_timestamp; 144 uint32_t pve_start; 145 uint32_t pve_end; 146 uint32_t pve_offset; 147 u_int pve_prot; 148 u_int pve_pathlen; 149 int32_t pve_fileid; 150 u_int pve_fsid; 151 uint32_t pve_path; 152 }; 153 154 #ifdef __amd64__ 155 CTASSERT(sizeof(struct timeval32) == 8); 156 CTASSERT(sizeof(struct timespec32) == 8); 157 CTASSERT(sizeof(struct itimerval32) == 16); 158 CTASSERT(sizeof(struct bintime32) == 12); 159 #else 160 CTASSERT(sizeof(struct timeval32) == 16); 161 CTASSERT(sizeof(struct timespec32) == 16); 162 CTASSERT(sizeof(struct itimerval32) == 32); 163 CTASSERT(sizeof(struct bintime32) == 16); 164 #endif 165 CTASSERT(sizeof(struct ostatfs32) == 256); 166 #ifdef __amd64__ 167 CTASSERT(sizeof(struct rusage32) == 72); 168 #else 169 CTASSERT(sizeof(struct rusage32) == 88); 170 #endif 171 CTASSERT(sizeof(struct sigaltstack32) == 12); 172 #ifdef __amd64__ 173 CTASSERT(sizeof(struct kevent32) == 56); 174 #else 175 CTASSERT(sizeof(struct kevent32) == 64); 176 #endif 177 CTASSERT(sizeof(struct iovec32) == 8); 178 CTASSERT(sizeof(struct msghdr32) == 28); 179 #ifdef __amd64__ 180 CTASSERT(sizeof(struct stat32) == 208); 181 CTASSERT(sizeof(struct freebsd11_stat32) == 96); 182 #else 183 CTASSERT(sizeof(struct stat32) == 224); 184 CTASSERT(sizeof(struct freebsd11_stat32) == 120); 185 #endif 186 CTASSERT(sizeof(struct sigaction32) == 24); 187 188 static int freebsd32_kevent_copyout(void *arg, struct kevent *kevp, int count); 189 static int freebsd32_kevent_copyin(void *arg, struct kevent *kevp, int count); 190 static int freebsd32_user_clock_nanosleep(struct thread *td, clockid_t clock_id, 191 int flags, const struct timespec32 *ua_rqtp, struct timespec32 *ua_rmtp); 192 193 void 194 freebsd32_rusage_out(const struct rusage *s, struct rusage32 *s32) 195 { 196 197 TV_CP(*s, *s32, ru_utime); 198 TV_CP(*s, *s32, ru_stime); 199 CP(*s, *s32, ru_maxrss); 200 CP(*s, *s32, ru_ixrss); 201 CP(*s, *s32, ru_idrss); 202 CP(*s, *s32, ru_isrss); 203 CP(*s, *s32, ru_minflt); 204 CP(*s, *s32, ru_majflt); 205 CP(*s, *s32, ru_nswap); 206 CP(*s, *s32, ru_inblock); 207 CP(*s, *s32, ru_oublock); 208 CP(*s, *s32, ru_msgsnd); 209 CP(*s, *s32, ru_msgrcv); 210 CP(*s, *s32, ru_nsignals); 211 CP(*s, *s32, ru_nvcsw); 212 CP(*s, *s32, ru_nivcsw); 213 } 214 215 int 216 freebsd32_wait4(struct thread *td, struct freebsd32_wait4_args *uap) 217 { 218 int error, status; 219 struct rusage32 ru32; 220 struct rusage ru, *rup; 221 222 if (uap->rusage != NULL) 223 rup = &ru; 224 else 225 rup = NULL; 226 error = kern_wait(td, uap->pid, &status, uap->options, rup); 227 if (error) 228 return (error); 229 if (uap->status != NULL) 230 error = copyout(&status, uap->status, sizeof(status)); 231 if (uap->rusage != NULL && error == 0) { 232 freebsd32_rusage_out(&ru, &ru32); 233 error = copyout(&ru32, uap->rusage, sizeof(ru32)); 234 } 235 return (error); 236 } 237 238 int 239 freebsd32_wait6(struct thread *td, struct freebsd32_wait6_args *uap) 240 { 241 struct __wrusage32 wru32; 242 struct __wrusage wru, *wrup; 243 struct siginfo32 si32; 244 struct __siginfo si, *sip; 245 int error, status; 246 247 if (uap->wrusage != NULL) 248 wrup = &wru; 249 else 250 wrup = NULL; 251 if (uap->info != NULL) { 252 sip = &si; 253 bzero(sip, sizeof(*sip)); 254 } else 255 sip = NULL; 256 error = kern_wait6(td, uap->idtype, PAIR32TO64(id_t, uap->id), 257 &status, uap->options, wrup, sip); 258 if (error != 0) 259 return (error); 260 if (uap->status != NULL) 261 error = copyout(&status, uap->status, sizeof(status)); 262 if (uap->wrusage != NULL && error == 0) { 263 freebsd32_rusage_out(&wru.wru_self, &wru32.wru_self); 264 freebsd32_rusage_out(&wru.wru_children, &wru32.wru_children); 265 error = copyout(&wru32, uap->wrusage, sizeof(wru32)); 266 } 267 if (uap->info != NULL && error == 0) { 268 siginfo_to_siginfo32 (&si, &si32); 269 error = copyout(&si32, uap->info, sizeof(si32)); 270 } 271 return (error); 272 } 273 274 #ifdef COMPAT_FREEBSD4 275 static void 276 copy_statfs(struct statfs *in, struct ostatfs32 *out) 277 { 278 279 statfs_scale_blocks(in, INT32_MAX); 280 bzero(out, sizeof(*out)); 281 CP(*in, *out, f_bsize); 282 out->f_iosize = MIN(in->f_iosize, INT32_MAX); 283 CP(*in, *out, f_blocks); 284 CP(*in, *out, f_bfree); 285 CP(*in, *out, f_bavail); 286 out->f_files = MIN(in->f_files, INT32_MAX); 287 out->f_ffree = MIN(in->f_ffree, INT32_MAX); 288 CP(*in, *out, f_fsid); 289 CP(*in, *out, f_owner); 290 CP(*in, *out, f_type); 291 CP(*in, *out, f_flags); 292 out->f_syncwrites = MIN(in->f_syncwrites, INT32_MAX); 293 out->f_asyncwrites = MIN(in->f_asyncwrites, INT32_MAX); 294 strlcpy(out->f_fstypename, 295 in->f_fstypename, MFSNAMELEN); 296 strlcpy(out->f_mntonname, 297 in->f_mntonname, min(MNAMELEN, FREEBSD4_OMNAMELEN)); 298 out->f_syncreads = MIN(in->f_syncreads, INT32_MAX); 299 out->f_asyncreads = MIN(in->f_asyncreads, INT32_MAX); 300 strlcpy(out->f_mntfromname, 301 in->f_mntfromname, min(MNAMELEN, FREEBSD4_OMNAMELEN)); 302 } 303 #endif 304 305 int 306 freebsd32_getfsstat(struct thread *td, struct freebsd32_getfsstat_args *uap) 307 { 308 size_t count; 309 int error; 310 311 if (uap->bufsize < 0 || uap->bufsize > SIZE_MAX) 312 return (EINVAL); 313 error = kern_getfsstat(td, &uap->buf, uap->bufsize, &count, 314 UIO_USERSPACE, uap->mode); 315 if (error == 0) 316 td->td_retval[0] = count; 317 return (error); 318 } 319 320 #ifdef COMPAT_FREEBSD4 321 int 322 freebsd4_freebsd32_getfsstat(struct thread *td, 323 struct freebsd4_freebsd32_getfsstat_args *uap) 324 { 325 struct statfs *buf, *sp; 326 struct ostatfs32 stat32; 327 size_t count, size, copycount; 328 int error; 329 330 count = uap->bufsize / sizeof(struct ostatfs32); 331 size = count * sizeof(struct statfs); 332 error = kern_getfsstat(td, &buf, size, &count, UIO_SYSSPACE, uap->mode); 333 if (size > 0) { 334 sp = buf; 335 copycount = count; 336 while (copycount > 0 && error == 0) { 337 copy_statfs(sp, &stat32); 338 error = copyout(&stat32, uap->buf, sizeof(stat32)); 339 sp++; 340 uap->buf++; 341 copycount--; 342 } 343 free(buf, M_STATFS); 344 } 345 if (error == 0) 346 td->td_retval[0] = count; 347 return (error); 348 } 349 #endif 350 351 #ifdef COMPAT_FREEBSD11 352 int 353 freebsd11_freebsd32_getfsstat(struct thread *td, 354 struct freebsd11_freebsd32_getfsstat_args *uap) 355 { 356 return(kern_freebsd11_getfsstat(td, uap->buf, uap->bufsize, 357 uap->mode)); 358 } 359 #endif 360 361 int 362 freebsd32_sigaltstack(struct thread *td, 363 struct freebsd32_sigaltstack_args *uap) 364 { 365 struct sigaltstack32 s32; 366 struct sigaltstack ss, oss, *ssp; 367 int error; 368 369 if (uap->ss != NULL) { 370 error = copyin(uap->ss, &s32, sizeof(s32)); 371 if (error) 372 return (error); 373 PTRIN_CP(s32, ss, ss_sp); 374 CP(s32, ss, ss_size); 375 CP(s32, ss, ss_flags); 376 ssp = &ss; 377 } else 378 ssp = NULL; 379 error = kern_sigaltstack(td, ssp, &oss); 380 if (error == 0 && uap->oss != NULL) { 381 PTROUT_CP(oss, s32, ss_sp); 382 CP(oss, s32, ss_size); 383 CP(oss, s32, ss_flags); 384 error = copyout(&s32, uap->oss, sizeof(s32)); 385 } 386 return (error); 387 } 388 389 /* 390 * Custom version of exec_copyin_args() so that we can translate 391 * the pointers. 392 */ 393 int 394 freebsd32_exec_copyin_args(struct image_args *args, const char *fname, 395 enum uio_seg segflg, uint32_t *argv, uint32_t *envv) 396 { 397 char *argp, *envp; 398 uint32_t *p32, arg; 399 int error; 400 401 bzero(args, sizeof(*args)); 402 if (argv == NULL) 403 return (EFAULT); 404 405 /* 406 * Allocate demand-paged memory for the file name, argument, and 407 * environment strings. 408 */ 409 error = exec_alloc_args(args); 410 if (error != 0) 411 return (error); 412 413 /* 414 * Copy the file name. 415 */ 416 error = exec_args_add_fname(args, fname, segflg); 417 if (error != 0) 418 goto err_exit; 419 420 /* 421 * extract arguments first 422 */ 423 p32 = argv; 424 for (;;) { 425 error = copyin(p32++, &arg, sizeof(arg)); 426 if (error) 427 goto err_exit; 428 if (arg == 0) 429 break; 430 argp = PTRIN(arg); 431 error = exec_args_add_arg(args, argp, UIO_USERSPACE); 432 if (error != 0) 433 goto err_exit; 434 } 435 436 /* 437 * extract environment strings 438 */ 439 if (envv) { 440 p32 = envv; 441 for (;;) { 442 error = copyin(p32++, &arg, sizeof(arg)); 443 if (error) 444 goto err_exit; 445 if (arg == 0) 446 break; 447 envp = PTRIN(arg); 448 error = exec_args_add_env(args, envp, UIO_USERSPACE); 449 if (error != 0) 450 goto err_exit; 451 } 452 } 453 454 return (0); 455 456 err_exit: 457 exec_free_args(args); 458 return (error); 459 } 460 461 int 462 freebsd32_execve(struct thread *td, struct freebsd32_execve_args *uap) 463 { 464 struct image_args eargs; 465 struct vmspace *oldvmspace; 466 int error; 467 468 error = pre_execve(td, &oldvmspace); 469 if (error != 0) 470 return (error); 471 error = freebsd32_exec_copyin_args(&eargs, uap->fname, UIO_USERSPACE, 472 uap->argv, uap->envv); 473 if (error == 0) 474 error = kern_execve(td, &eargs, NULL, oldvmspace); 475 post_execve(td, error, oldvmspace); 476 AUDIT_SYSCALL_EXIT(error == EJUSTRETURN ? 0 : error, td); 477 return (error); 478 } 479 480 int 481 freebsd32_fexecve(struct thread *td, struct freebsd32_fexecve_args *uap) 482 { 483 struct image_args eargs; 484 struct vmspace *oldvmspace; 485 int error; 486 487 error = pre_execve(td, &oldvmspace); 488 if (error != 0) 489 return (error); 490 error = freebsd32_exec_copyin_args(&eargs, NULL, UIO_SYSSPACE, 491 uap->argv, uap->envv); 492 if (error == 0) { 493 eargs.fd = uap->fd; 494 error = kern_execve(td, &eargs, NULL, oldvmspace); 495 } 496 post_execve(td, error, oldvmspace); 497 AUDIT_SYSCALL_EXIT(error == EJUSTRETURN ? 0 : error, td); 498 return (error); 499 } 500 501 int 502 freebsd32_mknodat(struct thread *td, struct freebsd32_mknodat_args *uap) 503 { 504 505 return (kern_mknodat(td, uap->fd, uap->path, UIO_USERSPACE, 506 uap->mode, PAIR32TO64(dev_t, uap->dev))); 507 } 508 509 int 510 freebsd32_mprotect(struct thread *td, struct freebsd32_mprotect_args *uap) 511 { 512 int prot; 513 514 prot = uap->prot; 515 #if defined(__amd64__) 516 if (i386_read_exec && (prot & PROT_READ) != 0) 517 prot |= PROT_EXEC; 518 #endif 519 return (kern_mprotect(td, (uintptr_t)PTRIN(uap->addr), uap->len, 520 prot)); 521 } 522 523 int 524 freebsd32_mmap(struct thread *td, struct freebsd32_mmap_args *uap) 525 { 526 int prot; 527 528 prot = uap->prot; 529 #if defined(__amd64__) 530 if (i386_read_exec && (prot & PROT_READ)) 531 prot |= PROT_EXEC; 532 #endif 533 534 return (kern_mmap(td, &(struct mmap_req){ 535 .mr_hint = (uintptr_t)uap->addr, 536 .mr_len = uap->len, 537 .mr_prot = prot, 538 .mr_flags = uap->flags, 539 .mr_fd = uap->fd, 540 .mr_pos = PAIR32TO64(off_t, uap->pos), 541 })); 542 } 543 544 #ifdef COMPAT_FREEBSD6 545 int 546 freebsd6_freebsd32_mmap(struct thread *td, 547 struct freebsd6_freebsd32_mmap_args *uap) 548 { 549 int prot; 550 551 prot = uap->prot; 552 #if defined(__amd64__) 553 if (i386_read_exec && (prot & PROT_READ)) 554 prot |= PROT_EXEC; 555 #endif 556 557 return (kern_mmap(td, &(struct mmap_req){ 558 .mr_hint = (uintptr_t)uap->addr, 559 .mr_len = uap->len, 560 .mr_prot = prot, 561 .mr_flags = uap->flags, 562 .mr_fd = uap->fd, 563 .mr_pos = PAIR32TO64(off_t, uap->pos), 564 })); 565 } 566 #endif 567 568 #ifdef COMPAT_43 569 int 570 ofreebsd32_mmap(struct thread *td, struct ofreebsd32_mmap_args *uap) 571 { 572 return (kern_ommap(td, (uintptr_t)uap->addr, uap->len, uap->prot, 573 uap->flags, uap->fd, uap->pos)); 574 } 575 #endif 576 577 int 578 freebsd32_setitimer(struct thread *td, struct freebsd32_setitimer_args *uap) 579 { 580 struct itimerval itv, oitv, *itvp; 581 struct itimerval32 i32; 582 int error; 583 584 if (uap->itv != NULL) { 585 error = copyin(uap->itv, &i32, sizeof(i32)); 586 if (error) 587 return (error); 588 TV_CP(i32, itv, it_interval); 589 TV_CP(i32, itv, it_value); 590 itvp = &itv; 591 } else 592 itvp = NULL; 593 error = kern_setitimer(td, uap->which, itvp, &oitv); 594 if (error || uap->oitv == NULL) 595 return (error); 596 TV_CP(oitv, i32, it_interval); 597 TV_CP(oitv, i32, it_value); 598 return (copyout(&i32, uap->oitv, sizeof(i32))); 599 } 600 601 int 602 freebsd32_getitimer(struct thread *td, struct freebsd32_getitimer_args *uap) 603 { 604 struct itimerval itv; 605 struct itimerval32 i32; 606 int error; 607 608 error = kern_getitimer(td, uap->which, &itv); 609 if (error || uap->itv == NULL) 610 return (error); 611 TV_CP(itv, i32, it_interval); 612 TV_CP(itv, i32, it_value); 613 return (copyout(&i32, uap->itv, sizeof(i32))); 614 } 615 616 int 617 freebsd32_select(struct thread *td, struct freebsd32_select_args *uap) 618 { 619 struct timeval32 tv32; 620 struct timeval tv, *tvp; 621 int error; 622 623 if (uap->tv != NULL) { 624 error = copyin(uap->tv, &tv32, sizeof(tv32)); 625 if (error) 626 return (error); 627 CP(tv32, tv, tv_sec); 628 CP(tv32, tv, tv_usec); 629 tvp = &tv; 630 } else 631 tvp = NULL; 632 /* 633 * XXX Do pointers need PTRIN()? 634 */ 635 return (kern_select(td, uap->nd, uap->in, uap->ou, uap->ex, tvp, 636 sizeof(int32_t) * 8)); 637 } 638 639 int 640 freebsd32_pselect(struct thread *td, struct freebsd32_pselect_args *uap) 641 { 642 struct timespec32 ts32; 643 struct timespec ts; 644 struct timeval tv, *tvp; 645 sigset_t set, *uset; 646 int error; 647 648 if (uap->ts != NULL) { 649 error = copyin(uap->ts, &ts32, sizeof(ts32)); 650 if (error != 0) 651 return (error); 652 CP(ts32, ts, tv_sec); 653 CP(ts32, ts, tv_nsec); 654 TIMESPEC_TO_TIMEVAL(&tv, &ts); 655 tvp = &tv; 656 } else 657 tvp = NULL; 658 if (uap->sm != NULL) { 659 error = copyin(uap->sm, &set, sizeof(set)); 660 if (error != 0) 661 return (error); 662 uset = &set; 663 } else 664 uset = NULL; 665 /* 666 * XXX Do pointers need PTRIN()? 667 */ 668 error = kern_pselect(td, uap->nd, uap->in, uap->ou, uap->ex, tvp, 669 uset, sizeof(int32_t) * 8); 670 return (error); 671 } 672 673 /* 674 * Copy 'count' items into the destination list pointed to by uap->eventlist. 675 */ 676 static int 677 freebsd32_kevent_copyout(void *arg, struct kevent *kevp, int count) 678 { 679 struct freebsd32_kevent_args *uap; 680 struct kevent32 ks32[KQ_NEVENTS]; 681 uint64_t e; 682 int i, j, error; 683 684 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count)); 685 uap = (struct freebsd32_kevent_args *)arg; 686 687 for (i = 0; i < count; i++) { 688 CP(kevp[i], ks32[i], ident); 689 CP(kevp[i], ks32[i], filter); 690 CP(kevp[i], ks32[i], flags); 691 CP(kevp[i], ks32[i], fflags); 692 #if BYTE_ORDER == LITTLE_ENDIAN 693 ks32[i].data1 = kevp[i].data; 694 ks32[i].data2 = kevp[i].data >> 32; 695 #else 696 ks32[i].data1 = kevp[i].data >> 32; 697 ks32[i].data2 = kevp[i].data; 698 #endif 699 PTROUT_CP(kevp[i], ks32[i], udata); 700 for (j = 0; j < nitems(kevp->ext); j++) { 701 e = kevp[i].ext[j]; 702 #if BYTE_ORDER == LITTLE_ENDIAN 703 ks32[i].ext64[2 * j] = e; 704 ks32[i].ext64[2 * j + 1] = e >> 32; 705 #else 706 ks32[i].ext64[2 * j] = e >> 32; 707 ks32[i].ext64[2 * j + 1] = e; 708 #endif 709 } 710 } 711 error = copyout(ks32, uap->eventlist, count * sizeof *ks32); 712 if (error == 0) 713 uap->eventlist += count; 714 return (error); 715 } 716 717 /* 718 * Copy 'count' items from the list pointed to by uap->changelist. 719 */ 720 static int 721 freebsd32_kevent_copyin(void *arg, struct kevent *kevp, int count) 722 { 723 struct freebsd32_kevent_args *uap; 724 struct kevent32 ks32[KQ_NEVENTS]; 725 uint64_t e; 726 int i, j, error; 727 728 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count)); 729 uap = (struct freebsd32_kevent_args *)arg; 730 731 error = copyin(uap->changelist, ks32, count * sizeof *ks32); 732 if (error) 733 goto done; 734 uap->changelist += count; 735 736 for (i = 0; i < count; i++) { 737 CP(ks32[i], kevp[i], ident); 738 CP(ks32[i], kevp[i], filter); 739 CP(ks32[i], kevp[i], flags); 740 CP(ks32[i], kevp[i], fflags); 741 kevp[i].data = PAIR32TO64(uint64_t, ks32[i].data); 742 PTRIN_CP(ks32[i], kevp[i], udata); 743 for (j = 0; j < nitems(kevp->ext); j++) { 744 #if BYTE_ORDER == LITTLE_ENDIAN 745 e = ks32[i].ext64[2 * j + 1]; 746 e <<= 32; 747 e += ks32[i].ext64[2 * j]; 748 #else 749 e = ks32[i].ext64[2 * j]; 750 e <<= 32; 751 e += ks32[i].ext64[2 * j + 1]; 752 #endif 753 kevp[i].ext[j] = e; 754 } 755 } 756 done: 757 return (error); 758 } 759 760 int 761 freebsd32_kevent(struct thread *td, struct freebsd32_kevent_args *uap) 762 { 763 struct timespec32 ts32; 764 struct timespec ts, *tsp; 765 struct kevent_copyops k_ops = { 766 .arg = uap, 767 .k_copyout = freebsd32_kevent_copyout, 768 .k_copyin = freebsd32_kevent_copyin, 769 }; 770 #ifdef KTRACE 771 struct kevent32 *eventlist = uap->eventlist; 772 #endif 773 int error; 774 775 if (uap->timeout) { 776 error = copyin(uap->timeout, &ts32, sizeof(ts32)); 777 if (error) 778 return (error); 779 CP(ts32, ts, tv_sec); 780 CP(ts32, ts, tv_nsec); 781 tsp = &ts; 782 } else 783 tsp = NULL; 784 #ifdef KTRACE 785 if (KTRPOINT(td, KTR_STRUCT_ARRAY)) 786 ktrstructarray("kevent32", UIO_USERSPACE, uap->changelist, 787 uap->nchanges, sizeof(struct kevent32)); 788 #endif 789 error = kern_kevent(td, uap->fd, uap->nchanges, uap->nevents, 790 &k_ops, tsp); 791 #ifdef KTRACE 792 if (error == 0 && KTRPOINT(td, KTR_STRUCT_ARRAY)) 793 ktrstructarray("kevent32", UIO_USERSPACE, eventlist, 794 td->td_retval[0], sizeof(struct kevent32)); 795 #endif 796 return (error); 797 } 798 799 #ifdef COMPAT_FREEBSD11 800 static int 801 freebsd32_kevent11_copyout(void *arg, struct kevent *kevp, int count) 802 { 803 struct freebsd11_freebsd32_kevent_args *uap; 804 struct freebsd11_kevent32 ks32[KQ_NEVENTS]; 805 int i, error; 806 807 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count)); 808 uap = (struct freebsd11_freebsd32_kevent_args *)arg; 809 810 for (i = 0; i < count; i++) { 811 CP(kevp[i], ks32[i], ident); 812 CP(kevp[i], ks32[i], filter); 813 CP(kevp[i], ks32[i], flags); 814 CP(kevp[i], ks32[i], fflags); 815 CP(kevp[i], ks32[i], data); 816 PTROUT_CP(kevp[i], ks32[i], udata); 817 } 818 error = copyout(ks32, uap->eventlist, count * sizeof *ks32); 819 if (error == 0) 820 uap->eventlist += count; 821 return (error); 822 } 823 824 /* 825 * Copy 'count' items from the list pointed to by uap->changelist. 826 */ 827 static int 828 freebsd32_kevent11_copyin(void *arg, struct kevent *kevp, int count) 829 { 830 struct freebsd11_freebsd32_kevent_args *uap; 831 struct freebsd11_kevent32 ks32[KQ_NEVENTS]; 832 int i, j, error; 833 834 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count)); 835 uap = (struct freebsd11_freebsd32_kevent_args *)arg; 836 837 error = copyin(uap->changelist, ks32, count * sizeof *ks32); 838 if (error) 839 goto done; 840 uap->changelist += count; 841 842 for (i = 0; i < count; i++) { 843 CP(ks32[i], kevp[i], ident); 844 CP(ks32[i], kevp[i], filter); 845 CP(ks32[i], kevp[i], flags); 846 CP(ks32[i], kevp[i], fflags); 847 CP(ks32[i], kevp[i], data); 848 PTRIN_CP(ks32[i], kevp[i], udata); 849 for (j = 0; j < nitems(kevp->ext); j++) 850 kevp[i].ext[j] = 0; 851 } 852 done: 853 return (error); 854 } 855 856 int 857 freebsd11_freebsd32_kevent(struct thread *td, 858 struct freebsd11_freebsd32_kevent_args *uap) 859 { 860 struct timespec32 ts32; 861 struct timespec ts, *tsp; 862 struct kevent_copyops k_ops = { 863 .arg = uap, 864 .k_copyout = freebsd32_kevent11_copyout, 865 .k_copyin = freebsd32_kevent11_copyin, 866 }; 867 #ifdef KTRACE 868 struct freebsd11_kevent32 *eventlist = uap->eventlist; 869 #endif 870 int error; 871 872 if (uap->timeout) { 873 error = copyin(uap->timeout, &ts32, sizeof(ts32)); 874 if (error) 875 return (error); 876 CP(ts32, ts, tv_sec); 877 CP(ts32, ts, tv_nsec); 878 tsp = &ts; 879 } else 880 tsp = NULL; 881 #ifdef KTRACE 882 if (KTRPOINT(td, KTR_STRUCT_ARRAY)) 883 ktrstructarray("freebsd11_kevent32", UIO_USERSPACE, 884 uap->changelist, uap->nchanges, 885 sizeof(struct freebsd11_kevent32)); 886 #endif 887 error = kern_kevent(td, uap->fd, uap->nchanges, uap->nevents, 888 &k_ops, tsp); 889 #ifdef KTRACE 890 if (error == 0 && KTRPOINT(td, KTR_STRUCT_ARRAY)) 891 ktrstructarray("freebsd11_kevent32", UIO_USERSPACE, 892 eventlist, td->td_retval[0], 893 sizeof(struct freebsd11_kevent32)); 894 #endif 895 return (error); 896 } 897 #endif 898 899 int 900 freebsd32_gettimeofday(struct thread *td, 901 struct freebsd32_gettimeofday_args *uap) 902 { 903 struct timeval atv; 904 struct timeval32 atv32; 905 struct timezone rtz; 906 int error = 0; 907 908 if (uap->tp) { 909 microtime(&atv); 910 CP(atv, atv32, tv_sec); 911 CP(atv, atv32, tv_usec); 912 error = copyout(&atv32, uap->tp, sizeof (atv32)); 913 } 914 if (error == 0 && uap->tzp != NULL) { 915 rtz.tz_minuteswest = 0; 916 rtz.tz_dsttime = 0; 917 error = copyout(&rtz, uap->tzp, sizeof (rtz)); 918 } 919 return (error); 920 } 921 922 int 923 freebsd32_getrusage(struct thread *td, struct freebsd32_getrusage_args *uap) 924 { 925 struct rusage32 s32; 926 struct rusage s; 927 int error; 928 929 error = kern_getrusage(td, uap->who, &s); 930 if (error == 0) { 931 freebsd32_rusage_out(&s, &s32); 932 error = copyout(&s32, uap->rusage, sizeof(s32)); 933 } 934 return (error); 935 } 936 937 static void 938 ptrace_lwpinfo_to32(const struct ptrace_lwpinfo *pl, 939 struct ptrace_lwpinfo32 *pl32) 940 { 941 942 bzero(pl32, sizeof(*pl32)); 943 pl32->pl_lwpid = pl->pl_lwpid; 944 pl32->pl_event = pl->pl_event; 945 pl32->pl_flags = pl->pl_flags; 946 pl32->pl_sigmask = pl->pl_sigmask; 947 pl32->pl_siglist = pl->pl_siglist; 948 siginfo_to_siginfo32(&pl->pl_siginfo, &pl32->pl_siginfo); 949 strcpy(pl32->pl_tdname, pl->pl_tdname); 950 pl32->pl_child_pid = pl->pl_child_pid; 951 pl32->pl_syscall_code = pl->pl_syscall_code; 952 pl32->pl_syscall_narg = pl->pl_syscall_narg; 953 } 954 955 static void 956 ptrace_sc_ret_to32(const struct ptrace_sc_ret *psr, 957 struct ptrace_sc_ret32 *psr32) 958 { 959 960 bzero(psr32, sizeof(*psr32)); 961 psr32->sr_retval[0] = psr->sr_retval[0]; 962 psr32->sr_retval[1] = psr->sr_retval[1]; 963 psr32->sr_error = psr->sr_error; 964 } 965 966 int 967 freebsd32_ptrace(struct thread *td, struct freebsd32_ptrace_args *uap) 968 { 969 union { 970 struct ptrace_io_desc piod; 971 struct ptrace_lwpinfo pl; 972 struct ptrace_vm_entry pve; 973 struct ptrace_coredump pc; 974 struct dbreg32 dbreg; 975 struct fpreg32 fpreg; 976 struct reg32 reg; 977 struct iovec vec; 978 register_t args[nitems(td->td_sa.args)]; 979 struct ptrace_sc_ret psr; 980 int ptevents; 981 } r; 982 union { 983 struct ptrace_io_desc32 piod; 984 struct ptrace_lwpinfo32 pl; 985 struct ptrace_vm_entry32 pve; 986 struct ptrace_coredump32 pc; 987 uint32_t args[nitems(td->td_sa.args)]; 988 struct ptrace_sc_ret32 psr; 989 struct iovec32 vec; 990 } r32; 991 void *addr; 992 int data, error, i; 993 994 if (!allow_ptrace) 995 return (ENOSYS); 996 error = 0; 997 998 AUDIT_ARG_PID(uap->pid); 999 AUDIT_ARG_CMD(uap->req); 1000 AUDIT_ARG_VALUE(uap->data); 1001 addr = &r; 1002 data = uap->data; 1003 switch (uap->req) { 1004 case PT_GET_EVENT_MASK: 1005 case PT_GET_SC_ARGS: 1006 case PT_GET_SC_RET: 1007 break; 1008 case PT_LWPINFO: 1009 if (uap->data > sizeof(r32.pl)) 1010 return (EINVAL); 1011 1012 /* 1013 * Pass size of native structure in 'data'. Truncate 1014 * if necessary to avoid siginfo. 1015 */ 1016 data = sizeof(r.pl); 1017 if (uap->data < offsetof(struct ptrace_lwpinfo32, pl_siginfo) + 1018 sizeof(struct siginfo32)) 1019 data = offsetof(struct ptrace_lwpinfo, pl_siginfo); 1020 break; 1021 case PT_GETREGS: 1022 bzero(&r.reg, sizeof(r.reg)); 1023 break; 1024 case PT_GETFPREGS: 1025 bzero(&r.fpreg, sizeof(r.fpreg)); 1026 break; 1027 case PT_GETDBREGS: 1028 bzero(&r.dbreg, sizeof(r.dbreg)); 1029 break; 1030 case PT_SETREGS: 1031 error = copyin(uap->addr, &r.reg, sizeof(r.reg)); 1032 break; 1033 case PT_SETFPREGS: 1034 error = copyin(uap->addr, &r.fpreg, sizeof(r.fpreg)); 1035 break; 1036 case PT_SETDBREGS: 1037 error = copyin(uap->addr, &r.dbreg, sizeof(r.dbreg)); 1038 break; 1039 case PT_GETREGSET: 1040 case PT_SETREGSET: 1041 error = copyin(uap->addr, &r32.vec, sizeof(r32.vec)); 1042 if (error != 0) 1043 break; 1044 1045 r.vec.iov_len = r32.vec.iov_len; 1046 r.vec.iov_base = PTRIN(r32.vec.iov_base); 1047 break; 1048 case PT_SET_EVENT_MASK: 1049 if (uap->data != sizeof(r.ptevents)) 1050 error = EINVAL; 1051 else 1052 error = copyin(uap->addr, &r.ptevents, uap->data); 1053 break; 1054 case PT_IO: 1055 error = copyin(uap->addr, &r32.piod, sizeof(r32.piod)); 1056 if (error) 1057 break; 1058 CP(r32.piod, r.piod, piod_op); 1059 PTRIN_CP(r32.piod, r.piod, piod_offs); 1060 PTRIN_CP(r32.piod, r.piod, piod_addr); 1061 CP(r32.piod, r.piod, piod_len); 1062 break; 1063 case PT_VM_ENTRY: 1064 error = copyin(uap->addr, &r32.pve, sizeof(r32.pve)); 1065 if (error) 1066 break; 1067 1068 CP(r32.pve, r.pve, pve_entry); 1069 CP(r32.pve, r.pve, pve_timestamp); 1070 CP(r32.pve, r.pve, pve_start); 1071 CP(r32.pve, r.pve, pve_end); 1072 CP(r32.pve, r.pve, pve_offset); 1073 CP(r32.pve, r.pve, pve_prot); 1074 CP(r32.pve, r.pve, pve_pathlen); 1075 CP(r32.pve, r.pve, pve_fileid); 1076 CP(r32.pve, r.pve, pve_fsid); 1077 PTRIN_CP(r32.pve, r.pve, pve_path); 1078 break; 1079 case PT_COREDUMP: 1080 if (uap->data != sizeof(r32.pc)) 1081 error = EINVAL; 1082 else 1083 error = copyin(uap->addr, &r32.pc, uap->data); 1084 CP(r32.pc, r.pc, pc_fd); 1085 CP(r32.pc, r.pc, pc_flags); 1086 r.pc.pc_limit = PAIR32TO64(off_t, r32.pc.pc_limit); 1087 data = sizeof(r.pc); 1088 break; 1089 default: 1090 addr = uap->addr; 1091 break; 1092 } 1093 if (error) 1094 return (error); 1095 1096 error = kern_ptrace(td, uap->req, uap->pid, addr, data); 1097 if (error) 1098 return (error); 1099 1100 switch (uap->req) { 1101 case PT_VM_ENTRY: 1102 CP(r.pve, r32.pve, pve_entry); 1103 CP(r.pve, r32.pve, pve_timestamp); 1104 CP(r.pve, r32.pve, pve_start); 1105 CP(r.pve, r32.pve, pve_end); 1106 CP(r.pve, r32.pve, pve_offset); 1107 CP(r.pve, r32.pve, pve_prot); 1108 CP(r.pve, r32.pve, pve_pathlen); 1109 CP(r.pve, r32.pve, pve_fileid); 1110 CP(r.pve, r32.pve, pve_fsid); 1111 error = copyout(&r32.pve, uap->addr, sizeof(r32.pve)); 1112 break; 1113 case PT_IO: 1114 CP(r.piod, r32.piod, piod_len); 1115 error = copyout(&r32.piod, uap->addr, sizeof(r32.piod)); 1116 break; 1117 case PT_GETREGS: 1118 error = copyout(&r.reg, uap->addr, sizeof(r.reg)); 1119 break; 1120 case PT_GETFPREGS: 1121 error = copyout(&r.fpreg, uap->addr, sizeof(r.fpreg)); 1122 break; 1123 case PT_GETDBREGS: 1124 error = copyout(&r.dbreg, uap->addr, sizeof(r.dbreg)); 1125 break; 1126 case PT_GETREGSET: 1127 r32.vec.iov_len = r.vec.iov_len; 1128 error = copyout(&r32.vec, uap->addr, sizeof(r32.vec)); 1129 break; 1130 case PT_GET_EVENT_MASK: 1131 /* NB: The size in uap->data is validated in kern_ptrace(). */ 1132 error = copyout(&r.ptevents, uap->addr, uap->data); 1133 break; 1134 case PT_LWPINFO: 1135 ptrace_lwpinfo_to32(&r.pl, &r32.pl); 1136 error = copyout(&r32.pl, uap->addr, uap->data); 1137 break; 1138 case PT_GET_SC_ARGS: 1139 for (i = 0; i < nitems(r.args); i++) 1140 r32.args[i] = (uint32_t)r.args[i]; 1141 error = copyout(r32.args, uap->addr, MIN(uap->data, 1142 sizeof(r32.args))); 1143 break; 1144 case PT_GET_SC_RET: 1145 ptrace_sc_ret_to32(&r.psr, &r32.psr); 1146 error = copyout(&r32.psr, uap->addr, MIN(uap->data, 1147 sizeof(r32.psr))); 1148 break; 1149 } 1150 1151 return (error); 1152 } 1153 1154 int 1155 freebsd32_copyinuio(struct iovec32 *iovp, u_int iovcnt, struct uio **uiop) 1156 { 1157 struct iovec32 iov32; 1158 struct iovec *iov; 1159 struct uio *uio; 1160 u_int iovlen; 1161 int error, i; 1162 1163 *uiop = NULL; 1164 if (iovcnt > UIO_MAXIOV) 1165 return (EINVAL); 1166 iovlen = iovcnt * sizeof(struct iovec); 1167 uio = malloc(iovlen + sizeof *uio, M_IOV, M_WAITOK); 1168 iov = (struct iovec *)(uio + 1); 1169 for (i = 0; i < iovcnt; i++) { 1170 error = copyin(&iovp[i], &iov32, sizeof(struct iovec32)); 1171 if (error) { 1172 free(uio, M_IOV); 1173 return (error); 1174 } 1175 iov[i].iov_base = PTRIN(iov32.iov_base); 1176 iov[i].iov_len = iov32.iov_len; 1177 } 1178 uio->uio_iov = iov; 1179 uio->uio_iovcnt = iovcnt; 1180 uio->uio_segflg = UIO_USERSPACE; 1181 uio->uio_offset = -1; 1182 uio->uio_resid = 0; 1183 for (i = 0; i < iovcnt; i++) { 1184 if (iov->iov_len > INT_MAX - uio->uio_resid) { 1185 free(uio, M_IOV); 1186 return (EINVAL); 1187 } 1188 uio->uio_resid += iov->iov_len; 1189 iov++; 1190 } 1191 *uiop = uio; 1192 return (0); 1193 } 1194 1195 int 1196 freebsd32_readv(struct thread *td, struct freebsd32_readv_args *uap) 1197 { 1198 struct uio *auio; 1199 int error; 1200 1201 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 1202 if (error) 1203 return (error); 1204 error = kern_readv(td, uap->fd, auio); 1205 free(auio, M_IOV); 1206 return (error); 1207 } 1208 1209 int 1210 freebsd32_writev(struct thread *td, struct freebsd32_writev_args *uap) 1211 { 1212 struct uio *auio; 1213 int error; 1214 1215 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 1216 if (error) 1217 return (error); 1218 error = kern_writev(td, uap->fd, auio); 1219 free(auio, M_IOV); 1220 return (error); 1221 } 1222 1223 int 1224 freebsd32_preadv(struct thread *td, struct freebsd32_preadv_args *uap) 1225 { 1226 struct uio *auio; 1227 int error; 1228 1229 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 1230 if (error) 1231 return (error); 1232 error = kern_preadv(td, uap->fd, auio, PAIR32TO64(off_t,uap->offset)); 1233 free(auio, M_IOV); 1234 return (error); 1235 } 1236 1237 int 1238 freebsd32_pwritev(struct thread *td, struct freebsd32_pwritev_args *uap) 1239 { 1240 struct uio *auio; 1241 int error; 1242 1243 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 1244 if (error) 1245 return (error); 1246 error = kern_pwritev(td, uap->fd, auio, PAIR32TO64(off_t,uap->offset)); 1247 free(auio, M_IOV); 1248 return (error); 1249 } 1250 1251 int 1252 freebsd32_copyiniov(struct iovec32 *iovp32, u_int iovcnt, struct iovec **iovp, 1253 int error) 1254 { 1255 struct iovec32 iov32; 1256 struct iovec *iov; 1257 u_int iovlen; 1258 int i; 1259 1260 *iovp = NULL; 1261 if (iovcnt > UIO_MAXIOV) 1262 return (error); 1263 iovlen = iovcnt * sizeof(struct iovec); 1264 iov = malloc(iovlen, M_IOV, M_WAITOK); 1265 for (i = 0; i < iovcnt; i++) { 1266 error = copyin(&iovp32[i], &iov32, sizeof(struct iovec32)); 1267 if (error) { 1268 free(iov, M_IOV); 1269 return (error); 1270 } 1271 iov[i].iov_base = PTRIN(iov32.iov_base); 1272 iov[i].iov_len = iov32.iov_len; 1273 } 1274 *iovp = iov; 1275 return (0); 1276 } 1277 1278 static int 1279 freebsd32_copyinmsghdr(const struct msghdr32 *msg32, struct msghdr *msg) 1280 { 1281 struct msghdr32 m32; 1282 int error; 1283 1284 error = copyin(msg32, &m32, sizeof(m32)); 1285 if (error) 1286 return (error); 1287 msg->msg_name = PTRIN(m32.msg_name); 1288 msg->msg_namelen = m32.msg_namelen; 1289 msg->msg_iov = PTRIN(m32.msg_iov); 1290 msg->msg_iovlen = m32.msg_iovlen; 1291 msg->msg_control = PTRIN(m32.msg_control); 1292 msg->msg_controllen = m32.msg_controllen; 1293 msg->msg_flags = m32.msg_flags; 1294 return (0); 1295 } 1296 1297 static int 1298 freebsd32_copyoutmsghdr(struct msghdr *msg, struct msghdr32 *msg32) 1299 { 1300 struct msghdr32 m32; 1301 int error; 1302 1303 m32.msg_name = PTROUT(msg->msg_name); 1304 m32.msg_namelen = msg->msg_namelen; 1305 m32.msg_iov = PTROUT(msg->msg_iov); 1306 m32.msg_iovlen = msg->msg_iovlen; 1307 m32.msg_control = PTROUT(msg->msg_control); 1308 m32.msg_controllen = msg->msg_controllen; 1309 m32.msg_flags = msg->msg_flags; 1310 error = copyout(&m32, msg32, sizeof(m32)); 1311 return (error); 1312 } 1313 1314 #ifndef __mips__ 1315 #define FREEBSD32_ALIGNBYTES (sizeof(int) - 1) 1316 #else 1317 #define FREEBSD32_ALIGNBYTES (sizeof(long) - 1) 1318 #endif 1319 #define FREEBSD32_ALIGN(p) \ 1320 (((u_long)(p) + FREEBSD32_ALIGNBYTES) & ~FREEBSD32_ALIGNBYTES) 1321 #define FREEBSD32_CMSG_SPACE(l) \ 1322 (FREEBSD32_ALIGN(sizeof(struct cmsghdr)) + FREEBSD32_ALIGN(l)) 1323 1324 #define FREEBSD32_CMSG_DATA(cmsg) ((unsigned char *)(cmsg) + \ 1325 FREEBSD32_ALIGN(sizeof(struct cmsghdr))) 1326 1327 static size_t 1328 freebsd32_cmsg_convert(const struct cmsghdr *cm, void *data, socklen_t datalen) 1329 { 1330 size_t copylen; 1331 union { 1332 struct timespec32 ts; 1333 struct timeval32 tv; 1334 struct bintime32 bt; 1335 } tmp32; 1336 1337 union { 1338 struct timespec ts; 1339 struct timeval tv; 1340 struct bintime bt; 1341 } *in; 1342 1343 in = data; 1344 copylen = 0; 1345 switch (cm->cmsg_level) { 1346 case SOL_SOCKET: 1347 switch (cm->cmsg_type) { 1348 case SCM_TIMESTAMP: 1349 TV_CP(*in, tmp32, tv); 1350 copylen = sizeof(tmp32.tv); 1351 break; 1352 1353 case SCM_BINTIME: 1354 BT_CP(*in, tmp32, bt); 1355 copylen = sizeof(tmp32.bt); 1356 break; 1357 1358 case SCM_REALTIME: 1359 case SCM_MONOTONIC: 1360 TS_CP(*in, tmp32, ts); 1361 copylen = sizeof(tmp32.ts); 1362 break; 1363 1364 default: 1365 break; 1366 } 1367 1368 default: 1369 break; 1370 } 1371 1372 if (copylen == 0) 1373 return (datalen); 1374 1375 KASSERT((datalen >= copylen), ("corrupted cmsghdr")); 1376 1377 bcopy(&tmp32, data, copylen); 1378 return (copylen); 1379 } 1380 1381 static int 1382 freebsd32_copy_msg_out(struct msghdr *msg, struct mbuf *control) 1383 { 1384 struct cmsghdr *cm; 1385 void *data; 1386 socklen_t clen, datalen, datalen_out, oldclen; 1387 int error; 1388 caddr_t ctlbuf; 1389 int len, copylen; 1390 struct mbuf *m; 1391 error = 0; 1392 1393 len = msg->msg_controllen; 1394 msg->msg_controllen = 0; 1395 1396 ctlbuf = msg->msg_control; 1397 for (m = control; m != NULL && len > 0; m = m->m_next) { 1398 cm = mtod(m, struct cmsghdr *); 1399 clen = m->m_len; 1400 while (cm != NULL) { 1401 if (sizeof(struct cmsghdr) > clen || 1402 cm->cmsg_len > clen) { 1403 error = EINVAL; 1404 break; 1405 } 1406 1407 data = CMSG_DATA(cm); 1408 datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data; 1409 datalen_out = freebsd32_cmsg_convert(cm, data, datalen); 1410 1411 /* 1412 * Copy out the message header. Preserve the native 1413 * message size in case we need to inspect the message 1414 * contents later. 1415 */ 1416 copylen = sizeof(struct cmsghdr); 1417 if (len < copylen) { 1418 msg->msg_flags |= MSG_CTRUNC; 1419 m_dispose_extcontrolm(m); 1420 goto exit; 1421 } 1422 oldclen = cm->cmsg_len; 1423 cm->cmsg_len = FREEBSD32_ALIGN(sizeof(struct cmsghdr)) + 1424 datalen_out; 1425 error = copyout(cm, ctlbuf, copylen); 1426 cm->cmsg_len = oldclen; 1427 if (error != 0) 1428 goto exit; 1429 1430 ctlbuf += FREEBSD32_ALIGN(copylen); 1431 len -= FREEBSD32_ALIGN(copylen); 1432 1433 copylen = datalen_out; 1434 if (len < copylen) { 1435 msg->msg_flags |= MSG_CTRUNC; 1436 m_dispose_extcontrolm(m); 1437 break; 1438 } 1439 1440 /* Copy out the message data. */ 1441 error = copyout(data, ctlbuf, copylen); 1442 if (error) 1443 goto exit; 1444 1445 ctlbuf += FREEBSD32_ALIGN(copylen); 1446 len -= FREEBSD32_ALIGN(copylen); 1447 1448 if (CMSG_SPACE(datalen) < clen) { 1449 clen -= CMSG_SPACE(datalen); 1450 cm = (struct cmsghdr *) 1451 ((caddr_t)cm + CMSG_SPACE(datalen)); 1452 } else { 1453 clen = 0; 1454 cm = NULL; 1455 } 1456 1457 msg->msg_controllen += 1458 FREEBSD32_CMSG_SPACE(datalen_out); 1459 } 1460 } 1461 if (len == 0 && m != NULL) { 1462 msg->msg_flags |= MSG_CTRUNC; 1463 m_dispose_extcontrolm(m); 1464 } 1465 1466 exit: 1467 return (error); 1468 } 1469 1470 int 1471 freebsd32_recvmsg(struct thread *td, struct freebsd32_recvmsg_args *uap) 1472 { 1473 struct msghdr msg; 1474 struct iovec *uiov, *iov; 1475 struct mbuf *control = NULL; 1476 struct mbuf **controlp; 1477 int error; 1478 1479 error = freebsd32_copyinmsghdr(uap->msg, &msg); 1480 if (error) 1481 return (error); 1482 error = freebsd32_copyiniov((void *)msg.msg_iov, msg.msg_iovlen, &iov, 1483 EMSGSIZE); 1484 if (error) 1485 return (error); 1486 msg.msg_flags = uap->flags; 1487 uiov = msg.msg_iov; 1488 msg.msg_iov = iov; 1489 1490 controlp = (msg.msg_control != NULL) ? &control : NULL; 1491 error = kern_recvit(td, uap->s, &msg, UIO_USERSPACE, controlp); 1492 if (error == 0) { 1493 msg.msg_iov = uiov; 1494 1495 if (control != NULL) 1496 error = freebsd32_copy_msg_out(&msg, control); 1497 else 1498 msg.msg_controllen = 0; 1499 1500 if (error == 0) 1501 error = freebsd32_copyoutmsghdr(&msg, uap->msg); 1502 } 1503 free(iov, M_IOV); 1504 1505 if (control != NULL) { 1506 if (error != 0) 1507 m_dispose_extcontrolm(control); 1508 m_freem(control); 1509 } 1510 1511 return (error); 1512 } 1513 1514 #ifdef COMPAT_43 1515 int 1516 ofreebsd32_recvmsg(struct thread *td, struct ofreebsd32_recvmsg_args *uap) 1517 { 1518 return (ENOSYS); 1519 } 1520 #endif 1521 1522 /* 1523 * Copy-in the array of control messages constructed using alignment 1524 * and padding suitable for a 32-bit environment and construct an 1525 * mbuf using alignment and padding suitable for a 64-bit kernel. 1526 * The alignment and padding are defined indirectly by CMSG_DATA(), 1527 * CMSG_SPACE() and CMSG_LEN(). 1528 */ 1529 static int 1530 freebsd32_copyin_control(struct mbuf **mp, caddr_t buf, u_int buflen) 1531 { 1532 struct cmsghdr *cm; 1533 struct mbuf *m; 1534 void *in, *in1, *md; 1535 u_int msglen, outlen; 1536 int error; 1537 1538 /* Enforce the size limit of the native implementation. */ 1539 if (buflen > MCLBYTES) 1540 return (EINVAL); 1541 1542 in = malloc(buflen, M_TEMP, M_WAITOK); 1543 error = copyin(buf, in, buflen); 1544 if (error != 0) 1545 goto out; 1546 1547 /* 1548 * Make a pass over the input buffer to determine the amount of space 1549 * required for 64 bit-aligned copies of the control messages. 1550 */ 1551 in1 = in; 1552 outlen = 0; 1553 while (buflen > 0) { 1554 if (buflen < sizeof(*cm)) { 1555 error = EINVAL; 1556 break; 1557 } 1558 cm = (struct cmsghdr *)in1; 1559 if (cm->cmsg_len < FREEBSD32_ALIGN(sizeof(*cm)) || 1560 cm->cmsg_len > buflen) { 1561 error = EINVAL; 1562 break; 1563 } 1564 msglen = FREEBSD32_ALIGN(cm->cmsg_len); 1565 if (msglen < cm->cmsg_len) { 1566 error = EINVAL; 1567 break; 1568 } 1569 /* The native ABI permits the final padding to be omitted. */ 1570 if (msglen > buflen) 1571 msglen = buflen; 1572 buflen -= msglen; 1573 1574 in1 = (char *)in1 + msglen; 1575 outlen += CMSG_ALIGN(sizeof(*cm)) + 1576 CMSG_ALIGN(msglen - FREEBSD32_ALIGN(sizeof(*cm))); 1577 } 1578 if (error != 0) 1579 goto out; 1580 1581 /* 1582 * Allocate up to MJUMPAGESIZE space for the re-aligned and 1583 * re-padded control messages. This allows a full MCLBYTES of 1584 * 32-bit sized and aligned messages to fit and avoids an ABI 1585 * mismatch with the native implementation. 1586 */ 1587 m = m_get2(outlen, M_WAITOK, MT_CONTROL, 0); 1588 if (m == NULL) { 1589 error = EINVAL; 1590 goto out; 1591 } 1592 m->m_len = outlen; 1593 md = mtod(m, void *); 1594 1595 /* 1596 * Make a second pass over input messages, copying them into the output 1597 * buffer. 1598 */ 1599 in1 = in; 1600 while (outlen > 0) { 1601 /* Copy the message header and align the length field. */ 1602 cm = md; 1603 memcpy(cm, in1, sizeof(*cm)); 1604 msglen = cm->cmsg_len - FREEBSD32_ALIGN(sizeof(*cm)); 1605 cm->cmsg_len = CMSG_ALIGN(sizeof(*cm)) + msglen; 1606 1607 /* Copy the message body. */ 1608 in1 = (char *)in1 + FREEBSD32_ALIGN(sizeof(*cm)); 1609 md = (char *)md + CMSG_ALIGN(sizeof(*cm)); 1610 memcpy(md, in1, msglen); 1611 in1 = (char *)in1 + FREEBSD32_ALIGN(msglen); 1612 md = (char *)md + CMSG_ALIGN(msglen); 1613 KASSERT(outlen >= CMSG_ALIGN(sizeof(*cm)) + CMSG_ALIGN(msglen), 1614 ("outlen %u underflow, msglen %u", outlen, msglen)); 1615 outlen -= CMSG_ALIGN(sizeof(*cm)) + CMSG_ALIGN(msglen); 1616 } 1617 1618 *mp = m; 1619 out: 1620 free(in, M_TEMP); 1621 return (error); 1622 } 1623 1624 int 1625 freebsd32_sendmsg(struct thread *td, struct freebsd32_sendmsg_args *uap) 1626 { 1627 struct msghdr msg; 1628 struct iovec *iov; 1629 struct mbuf *control = NULL; 1630 struct sockaddr *to = NULL; 1631 int error; 1632 1633 error = freebsd32_copyinmsghdr(uap->msg, &msg); 1634 if (error) 1635 return (error); 1636 error = freebsd32_copyiniov((void *)msg.msg_iov, msg.msg_iovlen, &iov, 1637 EMSGSIZE); 1638 if (error) 1639 return (error); 1640 msg.msg_iov = iov; 1641 if (msg.msg_name != NULL) { 1642 error = getsockaddr(&to, msg.msg_name, msg.msg_namelen); 1643 if (error) { 1644 to = NULL; 1645 goto out; 1646 } 1647 msg.msg_name = to; 1648 } 1649 1650 if (msg.msg_control) { 1651 if (msg.msg_controllen < sizeof(struct cmsghdr)) { 1652 error = EINVAL; 1653 goto out; 1654 } 1655 1656 error = freebsd32_copyin_control(&control, msg.msg_control, 1657 msg.msg_controllen); 1658 if (error) 1659 goto out; 1660 1661 msg.msg_control = NULL; 1662 msg.msg_controllen = 0; 1663 } 1664 1665 error = kern_sendit(td, uap->s, &msg, uap->flags, control, 1666 UIO_USERSPACE); 1667 1668 out: 1669 free(iov, M_IOV); 1670 if (to) 1671 free(to, M_SONAME); 1672 return (error); 1673 } 1674 1675 #ifdef COMPAT_43 1676 int 1677 ofreebsd32_sendmsg(struct thread *td, struct ofreebsd32_sendmsg_args *uap) 1678 { 1679 return (ENOSYS); 1680 } 1681 #endif 1682 1683 1684 int 1685 freebsd32_settimeofday(struct thread *td, 1686 struct freebsd32_settimeofday_args *uap) 1687 { 1688 struct timeval32 tv32; 1689 struct timeval tv, *tvp; 1690 struct timezone tz, *tzp; 1691 int error; 1692 1693 if (uap->tv) { 1694 error = copyin(uap->tv, &tv32, sizeof(tv32)); 1695 if (error) 1696 return (error); 1697 CP(tv32, tv, tv_sec); 1698 CP(tv32, tv, tv_usec); 1699 tvp = &tv; 1700 } else 1701 tvp = NULL; 1702 if (uap->tzp) { 1703 error = copyin(uap->tzp, &tz, sizeof(tz)); 1704 if (error) 1705 return (error); 1706 tzp = &tz; 1707 } else 1708 tzp = NULL; 1709 return (kern_settimeofday(td, tvp, tzp)); 1710 } 1711 1712 int 1713 freebsd32_utimes(struct thread *td, struct freebsd32_utimes_args *uap) 1714 { 1715 struct timeval32 s32[2]; 1716 struct timeval s[2], *sp; 1717 int error; 1718 1719 if (uap->tptr != NULL) { 1720 error = copyin(uap->tptr, s32, sizeof(s32)); 1721 if (error) 1722 return (error); 1723 CP(s32[0], s[0], tv_sec); 1724 CP(s32[0], s[0], tv_usec); 1725 CP(s32[1], s[1], tv_sec); 1726 CP(s32[1], s[1], tv_usec); 1727 sp = s; 1728 } else 1729 sp = NULL; 1730 return (kern_utimesat(td, AT_FDCWD, uap->path, UIO_USERSPACE, 1731 sp, UIO_SYSSPACE)); 1732 } 1733 1734 int 1735 freebsd32_lutimes(struct thread *td, struct freebsd32_lutimes_args *uap) 1736 { 1737 struct timeval32 s32[2]; 1738 struct timeval s[2], *sp; 1739 int error; 1740 1741 if (uap->tptr != NULL) { 1742 error = copyin(uap->tptr, s32, sizeof(s32)); 1743 if (error) 1744 return (error); 1745 CP(s32[0], s[0], tv_sec); 1746 CP(s32[0], s[0], tv_usec); 1747 CP(s32[1], s[1], tv_sec); 1748 CP(s32[1], s[1], tv_usec); 1749 sp = s; 1750 } else 1751 sp = NULL; 1752 return (kern_lutimes(td, uap->path, UIO_USERSPACE, sp, UIO_SYSSPACE)); 1753 } 1754 1755 int 1756 freebsd32_futimes(struct thread *td, struct freebsd32_futimes_args *uap) 1757 { 1758 struct timeval32 s32[2]; 1759 struct timeval s[2], *sp; 1760 int error; 1761 1762 if (uap->tptr != NULL) { 1763 error = copyin(uap->tptr, s32, sizeof(s32)); 1764 if (error) 1765 return (error); 1766 CP(s32[0], s[0], tv_sec); 1767 CP(s32[0], s[0], tv_usec); 1768 CP(s32[1], s[1], tv_sec); 1769 CP(s32[1], s[1], tv_usec); 1770 sp = s; 1771 } else 1772 sp = NULL; 1773 return (kern_futimes(td, uap->fd, sp, UIO_SYSSPACE)); 1774 } 1775 1776 int 1777 freebsd32_futimesat(struct thread *td, struct freebsd32_futimesat_args *uap) 1778 { 1779 struct timeval32 s32[2]; 1780 struct timeval s[2], *sp; 1781 int error; 1782 1783 if (uap->times != NULL) { 1784 error = copyin(uap->times, s32, sizeof(s32)); 1785 if (error) 1786 return (error); 1787 CP(s32[0], s[0], tv_sec); 1788 CP(s32[0], s[0], tv_usec); 1789 CP(s32[1], s[1], tv_sec); 1790 CP(s32[1], s[1], tv_usec); 1791 sp = s; 1792 } else 1793 sp = NULL; 1794 return (kern_utimesat(td, uap->fd, uap->path, UIO_USERSPACE, 1795 sp, UIO_SYSSPACE)); 1796 } 1797 1798 int 1799 freebsd32_futimens(struct thread *td, struct freebsd32_futimens_args *uap) 1800 { 1801 struct timespec32 ts32[2]; 1802 struct timespec ts[2], *tsp; 1803 int error; 1804 1805 if (uap->times != NULL) { 1806 error = copyin(uap->times, ts32, sizeof(ts32)); 1807 if (error) 1808 return (error); 1809 CP(ts32[0], ts[0], tv_sec); 1810 CP(ts32[0], ts[0], tv_nsec); 1811 CP(ts32[1], ts[1], tv_sec); 1812 CP(ts32[1], ts[1], tv_nsec); 1813 tsp = ts; 1814 } else 1815 tsp = NULL; 1816 return (kern_futimens(td, uap->fd, tsp, UIO_SYSSPACE)); 1817 } 1818 1819 int 1820 freebsd32_utimensat(struct thread *td, struct freebsd32_utimensat_args *uap) 1821 { 1822 struct timespec32 ts32[2]; 1823 struct timespec ts[2], *tsp; 1824 int error; 1825 1826 if (uap->times != NULL) { 1827 error = copyin(uap->times, ts32, sizeof(ts32)); 1828 if (error) 1829 return (error); 1830 CP(ts32[0], ts[0], tv_sec); 1831 CP(ts32[0], ts[0], tv_nsec); 1832 CP(ts32[1], ts[1], tv_sec); 1833 CP(ts32[1], ts[1], tv_nsec); 1834 tsp = ts; 1835 } else 1836 tsp = NULL; 1837 return (kern_utimensat(td, uap->fd, uap->path, UIO_USERSPACE, 1838 tsp, UIO_SYSSPACE, uap->flag)); 1839 } 1840 1841 int 1842 freebsd32_adjtime(struct thread *td, struct freebsd32_adjtime_args *uap) 1843 { 1844 struct timeval32 tv32; 1845 struct timeval delta, olddelta, *deltap; 1846 int error; 1847 1848 if (uap->delta) { 1849 error = copyin(uap->delta, &tv32, sizeof(tv32)); 1850 if (error) 1851 return (error); 1852 CP(tv32, delta, tv_sec); 1853 CP(tv32, delta, tv_usec); 1854 deltap = δ 1855 } else 1856 deltap = NULL; 1857 error = kern_adjtime(td, deltap, &olddelta); 1858 if (uap->olddelta && error == 0) { 1859 CP(olddelta, tv32, tv_sec); 1860 CP(olddelta, tv32, tv_usec); 1861 error = copyout(&tv32, uap->olddelta, sizeof(tv32)); 1862 } 1863 return (error); 1864 } 1865 1866 #ifdef COMPAT_FREEBSD4 1867 int 1868 freebsd4_freebsd32_statfs(struct thread *td, struct freebsd4_freebsd32_statfs_args *uap) 1869 { 1870 struct ostatfs32 s32; 1871 struct statfs *sp; 1872 int error; 1873 1874 sp = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK); 1875 error = kern_statfs(td, uap->path, UIO_USERSPACE, sp); 1876 if (error == 0) { 1877 copy_statfs(sp, &s32); 1878 error = copyout(&s32, uap->buf, sizeof(s32)); 1879 } 1880 free(sp, M_STATFS); 1881 return (error); 1882 } 1883 #endif 1884 1885 #ifdef COMPAT_FREEBSD4 1886 int 1887 freebsd4_freebsd32_fstatfs(struct thread *td, struct freebsd4_freebsd32_fstatfs_args *uap) 1888 { 1889 struct ostatfs32 s32; 1890 struct statfs *sp; 1891 int error; 1892 1893 sp = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK); 1894 error = kern_fstatfs(td, uap->fd, sp); 1895 if (error == 0) { 1896 copy_statfs(sp, &s32); 1897 error = copyout(&s32, uap->buf, sizeof(s32)); 1898 } 1899 free(sp, M_STATFS); 1900 return (error); 1901 } 1902 #endif 1903 1904 #ifdef COMPAT_FREEBSD4 1905 int 1906 freebsd4_freebsd32_fhstatfs(struct thread *td, struct freebsd4_freebsd32_fhstatfs_args *uap) 1907 { 1908 struct ostatfs32 s32; 1909 struct statfs *sp; 1910 fhandle_t fh; 1911 int error; 1912 1913 if ((error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t))) != 0) 1914 return (error); 1915 sp = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK); 1916 error = kern_fhstatfs(td, fh, sp); 1917 if (error == 0) { 1918 copy_statfs(sp, &s32); 1919 error = copyout(&s32, uap->buf, sizeof(s32)); 1920 } 1921 free(sp, M_STATFS); 1922 return (error); 1923 } 1924 #endif 1925 1926 int 1927 freebsd32_pread(struct thread *td, struct freebsd32_pread_args *uap) 1928 { 1929 1930 return (kern_pread(td, uap->fd, uap->buf, uap->nbyte, 1931 PAIR32TO64(off_t, uap->offset))); 1932 } 1933 1934 int 1935 freebsd32_pwrite(struct thread *td, struct freebsd32_pwrite_args *uap) 1936 { 1937 1938 return (kern_pwrite(td, uap->fd, uap->buf, uap->nbyte, 1939 PAIR32TO64(off_t, uap->offset))); 1940 } 1941 1942 #ifdef COMPAT_43 1943 int 1944 ofreebsd32_lseek(struct thread *td, struct ofreebsd32_lseek_args *uap) 1945 { 1946 1947 return (kern_lseek(td, uap->fd, uap->offset, uap->whence)); 1948 } 1949 #endif 1950 1951 int 1952 freebsd32_lseek(struct thread *td, struct freebsd32_lseek_args *uap) 1953 { 1954 int error; 1955 off_t pos; 1956 1957 error = kern_lseek(td, uap->fd, PAIR32TO64(off_t, uap->offset), 1958 uap->whence); 1959 /* Expand the quad return into two parts for eax and edx */ 1960 pos = td->td_uretoff.tdu_off; 1961 td->td_retval[RETVAL_LO] = pos & 0xffffffff; /* %eax */ 1962 td->td_retval[RETVAL_HI] = pos >> 32; /* %edx */ 1963 return error; 1964 } 1965 1966 int 1967 freebsd32_truncate(struct thread *td, struct freebsd32_truncate_args *uap) 1968 { 1969 1970 return (kern_truncate(td, uap->path, UIO_USERSPACE, 1971 PAIR32TO64(off_t, uap->length))); 1972 } 1973 1974 #ifdef COMPAT_43 1975 int 1976 ofreebsd32_truncate(struct thread *td, struct ofreebsd32_truncate_args *uap) 1977 { 1978 return (kern_truncate(td, uap->path, UIO_USERSPACE, uap->length)); 1979 } 1980 #endif 1981 1982 int 1983 freebsd32_ftruncate(struct thread *td, struct freebsd32_ftruncate_args *uap) 1984 { 1985 1986 return (kern_ftruncate(td, uap->fd, PAIR32TO64(off_t, uap->length))); 1987 } 1988 1989 #ifdef COMPAT_43 1990 int 1991 ofreebsd32_ftruncate(struct thread *td, struct ofreebsd32_ftruncate_args *uap) 1992 { 1993 return (kern_ftruncate(td, uap->fd, uap->length)); 1994 } 1995 1996 int 1997 ofreebsd32_getdirentries(struct thread *td, 1998 struct ofreebsd32_getdirentries_args *uap) 1999 { 2000 struct ogetdirentries_args ap; 2001 int error; 2002 long loff; 2003 int32_t loff_cut; 2004 2005 ap.fd = uap->fd; 2006 ap.buf = uap->buf; 2007 ap.count = uap->count; 2008 ap.basep = NULL; 2009 error = kern_ogetdirentries(td, &ap, &loff); 2010 if (error == 0) { 2011 loff_cut = loff; 2012 error = copyout(&loff_cut, uap->basep, sizeof(int32_t)); 2013 } 2014 return (error); 2015 } 2016 #endif 2017 2018 #if defined(COMPAT_FREEBSD11) 2019 int 2020 freebsd11_freebsd32_getdirentries(struct thread *td, 2021 struct freebsd11_freebsd32_getdirentries_args *uap) 2022 { 2023 long base; 2024 int32_t base32; 2025 int error; 2026 2027 error = freebsd11_kern_getdirentries(td, uap->fd, uap->buf, uap->count, 2028 &base, NULL); 2029 if (error) 2030 return (error); 2031 if (uap->basep != NULL) { 2032 base32 = base; 2033 error = copyout(&base32, uap->basep, sizeof(int32_t)); 2034 } 2035 return (error); 2036 } 2037 #endif /* COMPAT_FREEBSD11 */ 2038 2039 #ifdef COMPAT_FREEBSD6 2040 /* versions with the 'int pad' argument */ 2041 int 2042 freebsd6_freebsd32_pread(struct thread *td, struct freebsd6_freebsd32_pread_args *uap) 2043 { 2044 2045 return (kern_pread(td, uap->fd, uap->buf, uap->nbyte, 2046 PAIR32TO64(off_t, uap->offset))); 2047 } 2048 2049 int 2050 freebsd6_freebsd32_pwrite(struct thread *td, struct freebsd6_freebsd32_pwrite_args *uap) 2051 { 2052 2053 return (kern_pwrite(td, uap->fd, uap->buf, uap->nbyte, 2054 PAIR32TO64(off_t, uap->offset))); 2055 } 2056 2057 int 2058 freebsd6_freebsd32_lseek(struct thread *td, struct freebsd6_freebsd32_lseek_args *uap) 2059 { 2060 int error; 2061 off_t pos; 2062 2063 error = kern_lseek(td, uap->fd, PAIR32TO64(off_t, uap->offset), 2064 uap->whence); 2065 /* Expand the quad return into two parts for eax and edx */ 2066 pos = *(off_t *)(td->td_retval); 2067 td->td_retval[RETVAL_LO] = pos & 0xffffffff; /* %eax */ 2068 td->td_retval[RETVAL_HI] = pos >> 32; /* %edx */ 2069 return error; 2070 } 2071 2072 int 2073 freebsd6_freebsd32_truncate(struct thread *td, struct freebsd6_freebsd32_truncate_args *uap) 2074 { 2075 2076 return (kern_truncate(td, uap->path, UIO_USERSPACE, 2077 PAIR32TO64(off_t, uap->length))); 2078 } 2079 2080 int 2081 freebsd6_freebsd32_ftruncate(struct thread *td, struct freebsd6_freebsd32_ftruncate_args *uap) 2082 { 2083 2084 return (kern_ftruncate(td, uap->fd, PAIR32TO64(off_t, uap->length))); 2085 } 2086 #endif /* COMPAT_FREEBSD6 */ 2087 2088 struct sf_hdtr32 { 2089 uint32_t headers; 2090 int hdr_cnt; 2091 uint32_t trailers; 2092 int trl_cnt; 2093 }; 2094 2095 static int 2096 freebsd32_do_sendfile(struct thread *td, 2097 struct freebsd32_sendfile_args *uap, int compat) 2098 { 2099 struct sf_hdtr32 hdtr32; 2100 struct sf_hdtr hdtr; 2101 struct uio *hdr_uio, *trl_uio; 2102 struct file *fp; 2103 cap_rights_t rights; 2104 struct iovec32 *iov32; 2105 off_t offset, sbytes; 2106 int error; 2107 2108 offset = PAIR32TO64(off_t, uap->offset); 2109 if (offset < 0) 2110 return (EINVAL); 2111 2112 hdr_uio = trl_uio = NULL; 2113 2114 if (uap->hdtr != NULL) { 2115 error = copyin(uap->hdtr, &hdtr32, sizeof(hdtr32)); 2116 if (error) 2117 goto out; 2118 PTRIN_CP(hdtr32, hdtr, headers); 2119 CP(hdtr32, hdtr, hdr_cnt); 2120 PTRIN_CP(hdtr32, hdtr, trailers); 2121 CP(hdtr32, hdtr, trl_cnt); 2122 2123 if (hdtr.headers != NULL) { 2124 iov32 = PTRIN(hdtr32.headers); 2125 error = freebsd32_copyinuio(iov32, 2126 hdtr32.hdr_cnt, &hdr_uio); 2127 if (error) 2128 goto out; 2129 #ifdef COMPAT_FREEBSD4 2130 /* 2131 * In FreeBSD < 5.0 the nbytes to send also included 2132 * the header. If compat is specified subtract the 2133 * header size from nbytes. 2134 */ 2135 if (compat) { 2136 if (uap->nbytes > hdr_uio->uio_resid) 2137 uap->nbytes -= hdr_uio->uio_resid; 2138 else 2139 uap->nbytes = 0; 2140 } 2141 #endif 2142 } 2143 if (hdtr.trailers != NULL) { 2144 iov32 = PTRIN(hdtr32.trailers); 2145 error = freebsd32_copyinuio(iov32, 2146 hdtr32.trl_cnt, &trl_uio); 2147 if (error) 2148 goto out; 2149 } 2150 } 2151 2152 AUDIT_ARG_FD(uap->fd); 2153 2154 if ((error = fget_read(td, uap->fd, 2155 cap_rights_init_one(&rights, CAP_PREAD), &fp)) != 0) 2156 goto out; 2157 2158 error = fo_sendfile(fp, uap->s, hdr_uio, trl_uio, offset, 2159 uap->nbytes, &sbytes, uap->flags, td); 2160 fdrop(fp, td); 2161 2162 if (uap->sbytes != NULL) 2163 copyout(&sbytes, uap->sbytes, sizeof(off_t)); 2164 2165 out: 2166 if (hdr_uio) 2167 free(hdr_uio, M_IOV); 2168 if (trl_uio) 2169 free(trl_uio, M_IOV); 2170 return (error); 2171 } 2172 2173 #ifdef COMPAT_FREEBSD4 2174 int 2175 freebsd4_freebsd32_sendfile(struct thread *td, 2176 struct freebsd4_freebsd32_sendfile_args *uap) 2177 { 2178 return (freebsd32_do_sendfile(td, 2179 (struct freebsd32_sendfile_args *)uap, 1)); 2180 } 2181 #endif 2182 2183 int 2184 freebsd32_sendfile(struct thread *td, struct freebsd32_sendfile_args *uap) 2185 { 2186 2187 return (freebsd32_do_sendfile(td, uap, 0)); 2188 } 2189 2190 static void 2191 copy_stat(struct stat *in, struct stat32 *out) 2192 { 2193 2194 #ifndef __amd64__ 2195 /* 2196 * 32-bit architectures other than i386 have 64-bit time_t. This 2197 * results in struct timespec32 with 12 bytes for tv_sec and tv_nsec, 2198 * and 4 bytes of padding. Zero the padding holes in struct stat32. 2199 */ 2200 bzero(&out->st_atim, sizeof(out->st_atim)); 2201 bzero(&out->st_mtim, sizeof(out->st_mtim)); 2202 bzero(&out->st_ctim, sizeof(out->st_ctim)); 2203 bzero(&out->st_birthtim, sizeof(out->st_birthtim)); 2204 #endif 2205 CP(*in, *out, st_dev); 2206 CP(*in, *out, st_ino); 2207 CP(*in, *out, st_mode); 2208 CP(*in, *out, st_nlink); 2209 CP(*in, *out, st_uid); 2210 CP(*in, *out, st_gid); 2211 CP(*in, *out, st_rdev); 2212 TS_CP(*in, *out, st_atim); 2213 TS_CP(*in, *out, st_mtim); 2214 TS_CP(*in, *out, st_ctim); 2215 CP(*in, *out, st_size); 2216 CP(*in, *out, st_blocks); 2217 CP(*in, *out, st_blksize); 2218 CP(*in, *out, st_flags); 2219 CP(*in, *out, st_gen); 2220 TS_CP(*in, *out, st_birthtim); 2221 out->st_padding0 = 0; 2222 out->st_padding1 = 0; 2223 #ifdef __STAT32_TIME_T_EXT 2224 out->st_atim_ext = 0; 2225 out->st_mtim_ext = 0; 2226 out->st_ctim_ext = 0; 2227 out->st_btim_ext = 0; 2228 #endif 2229 bzero(out->st_spare, sizeof(out->st_spare)); 2230 } 2231 2232 #ifdef COMPAT_43 2233 static void 2234 copy_ostat(struct stat *in, struct ostat32 *out) 2235 { 2236 2237 bzero(out, sizeof(*out)); 2238 CP(*in, *out, st_dev); 2239 CP(*in, *out, st_ino); 2240 CP(*in, *out, st_mode); 2241 CP(*in, *out, st_nlink); 2242 CP(*in, *out, st_uid); 2243 CP(*in, *out, st_gid); 2244 CP(*in, *out, st_rdev); 2245 out->st_size = MIN(in->st_size, INT32_MAX); 2246 TS_CP(*in, *out, st_atim); 2247 TS_CP(*in, *out, st_mtim); 2248 TS_CP(*in, *out, st_ctim); 2249 CP(*in, *out, st_blksize); 2250 CP(*in, *out, st_blocks); 2251 CP(*in, *out, st_flags); 2252 CP(*in, *out, st_gen); 2253 } 2254 #endif 2255 2256 #ifdef COMPAT_43 2257 int 2258 ofreebsd32_stat(struct thread *td, struct ofreebsd32_stat_args *uap) 2259 { 2260 struct stat sb; 2261 struct ostat32 sb32; 2262 int error; 2263 2264 error = kern_statat(td, 0, AT_FDCWD, uap->path, UIO_USERSPACE, 2265 &sb, NULL); 2266 if (error) 2267 return (error); 2268 copy_ostat(&sb, &sb32); 2269 error = copyout(&sb32, uap->ub, sizeof (sb32)); 2270 return (error); 2271 } 2272 #endif 2273 2274 int 2275 freebsd32_fstat(struct thread *td, struct freebsd32_fstat_args *uap) 2276 { 2277 struct stat ub; 2278 struct stat32 ub32; 2279 int error; 2280 2281 error = kern_fstat(td, uap->fd, &ub); 2282 if (error) 2283 return (error); 2284 copy_stat(&ub, &ub32); 2285 error = copyout(&ub32, uap->sb, sizeof(ub32)); 2286 return (error); 2287 } 2288 2289 #ifdef COMPAT_43 2290 int 2291 ofreebsd32_fstat(struct thread *td, struct ofreebsd32_fstat_args *uap) 2292 { 2293 struct stat ub; 2294 struct ostat32 ub32; 2295 int error; 2296 2297 error = kern_fstat(td, uap->fd, &ub); 2298 if (error) 2299 return (error); 2300 copy_ostat(&ub, &ub32); 2301 error = copyout(&ub32, uap->sb, sizeof(ub32)); 2302 return (error); 2303 } 2304 #endif 2305 2306 int 2307 freebsd32_fstatat(struct thread *td, struct freebsd32_fstatat_args *uap) 2308 { 2309 struct stat ub; 2310 struct stat32 ub32; 2311 int error; 2312 2313 error = kern_statat(td, uap->flag, uap->fd, uap->path, UIO_USERSPACE, 2314 &ub, NULL); 2315 if (error) 2316 return (error); 2317 copy_stat(&ub, &ub32); 2318 error = copyout(&ub32, uap->buf, sizeof(ub32)); 2319 return (error); 2320 } 2321 2322 #ifdef COMPAT_43 2323 int 2324 ofreebsd32_lstat(struct thread *td, struct ofreebsd32_lstat_args *uap) 2325 { 2326 struct stat sb; 2327 struct ostat32 sb32; 2328 int error; 2329 2330 error = kern_statat(td, AT_SYMLINK_NOFOLLOW, AT_FDCWD, uap->path, 2331 UIO_USERSPACE, &sb, NULL); 2332 if (error) 2333 return (error); 2334 copy_ostat(&sb, &sb32); 2335 error = copyout(&sb32, uap->ub, sizeof (sb32)); 2336 return (error); 2337 } 2338 #endif 2339 2340 int 2341 freebsd32_fhstat(struct thread *td, struct freebsd32_fhstat_args *uap) 2342 { 2343 struct stat sb; 2344 struct stat32 sb32; 2345 struct fhandle fh; 2346 int error; 2347 2348 error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t)); 2349 if (error != 0) 2350 return (error); 2351 error = kern_fhstat(td, fh, &sb); 2352 if (error != 0) 2353 return (error); 2354 copy_stat(&sb, &sb32); 2355 error = copyout(&sb32, uap->sb, sizeof (sb32)); 2356 return (error); 2357 } 2358 2359 #if defined(COMPAT_FREEBSD11) 2360 extern int ino64_trunc_error; 2361 2362 static int 2363 freebsd11_cvtstat32(struct stat *in, struct freebsd11_stat32 *out) 2364 { 2365 2366 #ifndef __amd64__ 2367 /* 2368 * 32-bit architectures other than i386 have 64-bit time_t. This 2369 * results in struct timespec32 with 12 bytes for tv_sec and tv_nsec, 2370 * and 4 bytes of padding. Zero the padding holes in freebsd11_stat32. 2371 */ 2372 bzero(&out->st_atim, sizeof(out->st_atim)); 2373 bzero(&out->st_mtim, sizeof(out->st_mtim)); 2374 bzero(&out->st_ctim, sizeof(out->st_ctim)); 2375 bzero(&out->st_birthtim, sizeof(out->st_birthtim)); 2376 #endif 2377 2378 CP(*in, *out, st_ino); 2379 if (in->st_ino != out->st_ino) { 2380 switch (ino64_trunc_error) { 2381 default: 2382 case 0: 2383 break; 2384 case 1: 2385 return (EOVERFLOW); 2386 case 2: 2387 out->st_ino = UINT32_MAX; 2388 break; 2389 } 2390 } 2391 CP(*in, *out, st_nlink); 2392 if (in->st_nlink != out->st_nlink) { 2393 switch (ino64_trunc_error) { 2394 default: 2395 case 0: 2396 break; 2397 case 1: 2398 return (EOVERFLOW); 2399 case 2: 2400 out->st_nlink = UINT16_MAX; 2401 break; 2402 } 2403 } 2404 out->st_dev = in->st_dev; 2405 if (out->st_dev != in->st_dev) { 2406 switch (ino64_trunc_error) { 2407 default: 2408 break; 2409 case 1: 2410 return (EOVERFLOW); 2411 } 2412 } 2413 CP(*in, *out, st_mode); 2414 CP(*in, *out, st_uid); 2415 CP(*in, *out, st_gid); 2416 out->st_rdev = in->st_rdev; 2417 if (out->st_rdev != in->st_rdev) { 2418 switch (ino64_trunc_error) { 2419 default: 2420 break; 2421 case 1: 2422 return (EOVERFLOW); 2423 } 2424 } 2425 TS_CP(*in, *out, st_atim); 2426 TS_CP(*in, *out, st_mtim); 2427 TS_CP(*in, *out, st_ctim); 2428 CP(*in, *out, st_size); 2429 CP(*in, *out, st_blocks); 2430 CP(*in, *out, st_blksize); 2431 CP(*in, *out, st_flags); 2432 CP(*in, *out, st_gen); 2433 TS_CP(*in, *out, st_birthtim); 2434 out->st_lspare = 0; 2435 bzero((char *)&out->st_birthtim + sizeof(out->st_birthtim), 2436 sizeof(*out) - offsetof(struct freebsd11_stat32, 2437 st_birthtim) - sizeof(out->st_birthtim)); 2438 return (0); 2439 } 2440 2441 int 2442 freebsd11_freebsd32_stat(struct thread *td, 2443 struct freebsd11_freebsd32_stat_args *uap) 2444 { 2445 struct stat sb; 2446 struct freebsd11_stat32 sb32; 2447 int error; 2448 2449 error = kern_statat(td, 0, AT_FDCWD, uap->path, UIO_USERSPACE, 2450 &sb, NULL); 2451 if (error != 0) 2452 return (error); 2453 error = freebsd11_cvtstat32(&sb, &sb32); 2454 if (error == 0) 2455 error = copyout(&sb32, uap->ub, sizeof (sb32)); 2456 return (error); 2457 } 2458 2459 int 2460 freebsd11_freebsd32_fstat(struct thread *td, 2461 struct freebsd11_freebsd32_fstat_args *uap) 2462 { 2463 struct stat sb; 2464 struct freebsd11_stat32 sb32; 2465 int error; 2466 2467 error = kern_fstat(td, uap->fd, &sb); 2468 if (error != 0) 2469 return (error); 2470 error = freebsd11_cvtstat32(&sb, &sb32); 2471 if (error == 0) 2472 error = copyout(&sb32, uap->sb, sizeof (sb32)); 2473 return (error); 2474 } 2475 2476 int 2477 freebsd11_freebsd32_fstatat(struct thread *td, 2478 struct freebsd11_freebsd32_fstatat_args *uap) 2479 { 2480 struct stat sb; 2481 struct freebsd11_stat32 sb32; 2482 int error; 2483 2484 error = kern_statat(td, uap->flag, uap->fd, uap->path, UIO_USERSPACE, 2485 &sb, NULL); 2486 if (error != 0) 2487 return (error); 2488 error = freebsd11_cvtstat32(&sb, &sb32); 2489 if (error == 0) 2490 error = copyout(&sb32, uap->buf, sizeof (sb32)); 2491 return (error); 2492 } 2493 2494 int 2495 freebsd11_freebsd32_lstat(struct thread *td, 2496 struct freebsd11_freebsd32_lstat_args *uap) 2497 { 2498 struct stat sb; 2499 struct freebsd11_stat32 sb32; 2500 int error; 2501 2502 error = kern_statat(td, AT_SYMLINK_NOFOLLOW, AT_FDCWD, uap->path, 2503 UIO_USERSPACE, &sb, NULL); 2504 if (error != 0) 2505 return (error); 2506 error = freebsd11_cvtstat32(&sb, &sb32); 2507 if (error == 0) 2508 error = copyout(&sb32, uap->ub, sizeof (sb32)); 2509 return (error); 2510 } 2511 2512 int 2513 freebsd11_freebsd32_fhstat(struct thread *td, 2514 struct freebsd11_freebsd32_fhstat_args *uap) 2515 { 2516 struct stat sb; 2517 struct freebsd11_stat32 sb32; 2518 struct fhandle fh; 2519 int error; 2520 2521 error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t)); 2522 if (error != 0) 2523 return (error); 2524 error = kern_fhstat(td, fh, &sb); 2525 if (error != 0) 2526 return (error); 2527 error = freebsd11_cvtstat32(&sb, &sb32); 2528 if (error == 0) 2529 error = copyout(&sb32, uap->sb, sizeof (sb32)); 2530 return (error); 2531 } 2532 2533 static int 2534 freebsd11_cvtnstat32(struct stat *sb, struct nstat32 *nsb32) 2535 { 2536 struct nstat nsb; 2537 int error; 2538 2539 error = freebsd11_cvtnstat(sb, &nsb); 2540 if (error != 0) 2541 return (error); 2542 2543 bzero(nsb32, sizeof(*nsb32)); 2544 CP(nsb, *nsb32, st_dev); 2545 CP(nsb, *nsb32, st_ino); 2546 CP(nsb, *nsb32, st_mode); 2547 CP(nsb, *nsb32, st_nlink); 2548 CP(nsb, *nsb32, st_uid); 2549 CP(nsb, *nsb32, st_gid); 2550 CP(nsb, *nsb32, st_rdev); 2551 CP(nsb, *nsb32, st_atim.tv_sec); 2552 CP(nsb, *nsb32, st_atim.tv_nsec); 2553 CP(nsb, *nsb32, st_mtim.tv_sec); 2554 CP(nsb, *nsb32, st_mtim.tv_nsec); 2555 CP(nsb, *nsb32, st_ctim.tv_sec); 2556 CP(nsb, *nsb32, st_ctim.tv_nsec); 2557 CP(nsb, *nsb32, st_size); 2558 CP(nsb, *nsb32, st_blocks); 2559 CP(nsb, *nsb32, st_blksize); 2560 CP(nsb, *nsb32, st_flags); 2561 CP(nsb, *nsb32, st_gen); 2562 CP(nsb, *nsb32, st_birthtim.tv_sec); 2563 CP(nsb, *nsb32, st_birthtim.tv_nsec); 2564 return (0); 2565 } 2566 2567 int 2568 freebsd11_freebsd32_nstat(struct thread *td, 2569 struct freebsd11_freebsd32_nstat_args *uap) 2570 { 2571 struct stat sb; 2572 struct nstat32 nsb; 2573 int error; 2574 2575 error = kern_statat(td, 0, AT_FDCWD, uap->path, UIO_USERSPACE, 2576 &sb, NULL); 2577 if (error != 0) 2578 return (error); 2579 error = freebsd11_cvtnstat32(&sb, &nsb); 2580 if (error != 0) 2581 error = copyout(&nsb, uap->ub, sizeof (nsb)); 2582 return (error); 2583 } 2584 2585 int 2586 freebsd11_freebsd32_nlstat(struct thread *td, 2587 struct freebsd11_freebsd32_nlstat_args *uap) 2588 { 2589 struct stat sb; 2590 struct nstat32 nsb; 2591 int error; 2592 2593 error = kern_statat(td, AT_SYMLINK_NOFOLLOW, AT_FDCWD, uap->path, 2594 UIO_USERSPACE, &sb, NULL); 2595 if (error != 0) 2596 return (error); 2597 error = freebsd11_cvtnstat32(&sb, &nsb); 2598 if (error == 0) 2599 error = copyout(&nsb, uap->ub, sizeof (nsb)); 2600 return (error); 2601 } 2602 2603 int 2604 freebsd11_freebsd32_nfstat(struct thread *td, 2605 struct freebsd11_freebsd32_nfstat_args *uap) 2606 { 2607 struct nstat32 nub; 2608 struct stat ub; 2609 int error; 2610 2611 error = kern_fstat(td, uap->fd, &ub); 2612 if (error != 0) 2613 return (error); 2614 error = freebsd11_cvtnstat32(&ub, &nub); 2615 if (error == 0) 2616 error = copyout(&nub, uap->sb, sizeof(nub)); 2617 return (error); 2618 } 2619 #endif 2620 2621 int 2622 freebsd32___sysctl(struct thread *td, struct freebsd32___sysctl_args *uap) 2623 { 2624 int error, name[CTL_MAXNAME]; 2625 size_t j, oldlen; 2626 uint32_t tmp; 2627 2628 if (uap->namelen > CTL_MAXNAME || uap->namelen < 2) 2629 return (EINVAL); 2630 error = copyin(uap->name, name, uap->namelen * sizeof(int)); 2631 if (error) 2632 return (error); 2633 if (uap->oldlenp) { 2634 error = fueword32(uap->oldlenp, &tmp); 2635 oldlen = tmp; 2636 } else { 2637 oldlen = 0; 2638 } 2639 if (error != 0) 2640 return (EFAULT); 2641 error = userland_sysctl(td, name, uap->namelen, 2642 uap->old, &oldlen, 1, 2643 uap->new, uap->newlen, &j, SCTL_MASK32); 2644 if (error) 2645 return (error); 2646 if (uap->oldlenp) 2647 suword32(uap->oldlenp, j); 2648 return (0); 2649 } 2650 2651 int 2652 freebsd32___sysctlbyname(struct thread *td, 2653 struct freebsd32___sysctlbyname_args *uap) 2654 { 2655 size_t oldlen, rv; 2656 int error; 2657 uint32_t tmp; 2658 2659 if (uap->oldlenp != NULL) { 2660 error = fueword32(uap->oldlenp, &tmp); 2661 oldlen = tmp; 2662 } else { 2663 error = oldlen = 0; 2664 } 2665 if (error != 0) 2666 return (EFAULT); 2667 error = kern___sysctlbyname(td, uap->name, uap->namelen, uap->old, 2668 &oldlen, uap->new, uap->newlen, &rv, SCTL_MASK32, 1); 2669 if (error != 0) 2670 return (error); 2671 if (uap->oldlenp != NULL) 2672 error = suword32(uap->oldlenp, rv); 2673 2674 return (error); 2675 } 2676 2677 int 2678 freebsd32_jail(struct thread *td, struct freebsd32_jail_args *uap) 2679 { 2680 uint32_t version; 2681 int error; 2682 struct jail j; 2683 2684 error = copyin(uap->jail, &version, sizeof(uint32_t)); 2685 if (error) 2686 return (error); 2687 2688 switch (version) { 2689 case 0: 2690 { 2691 /* FreeBSD single IPv4 jails. */ 2692 struct jail32_v0 j32_v0; 2693 2694 bzero(&j, sizeof(struct jail)); 2695 error = copyin(uap->jail, &j32_v0, sizeof(struct jail32_v0)); 2696 if (error) 2697 return (error); 2698 CP(j32_v0, j, version); 2699 PTRIN_CP(j32_v0, j, path); 2700 PTRIN_CP(j32_v0, j, hostname); 2701 j.ip4s = htonl(j32_v0.ip_number); /* jail_v0 is host order */ 2702 break; 2703 } 2704 2705 case 1: 2706 /* 2707 * Version 1 was used by multi-IPv4 jail implementations 2708 * that never made it into the official kernel. 2709 */ 2710 return (EINVAL); 2711 2712 case 2: /* JAIL_API_VERSION */ 2713 { 2714 /* FreeBSD multi-IPv4/IPv6,noIP jails. */ 2715 struct jail32 j32; 2716 2717 error = copyin(uap->jail, &j32, sizeof(struct jail32)); 2718 if (error) 2719 return (error); 2720 CP(j32, j, version); 2721 PTRIN_CP(j32, j, path); 2722 PTRIN_CP(j32, j, hostname); 2723 PTRIN_CP(j32, j, jailname); 2724 CP(j32, j, ip4s); 2725 CP(j32, j, ip6s); 2726 PTRIN_CP(j32, j, ip4); 2727 PTRIN_CP(j32, j, ip6); 2728 break; 2729 } 2730 2731 default: 2732 /* Sci-Fi jails are not supported, sorry. */ 2733 return (EINVAL); 2734 } 2735 return (kern_jail(td, &j)); 2736 } 2737 2738 int 2739 freebsd32_jail_set(struct thread *td, struct freebsd32_jail_set_args *uap) 2740 { 2741 struct uio *auio; 2742 int error; 2743 2744 /* Check that we have an even number of iovecs. */ 2745 if (uap->iovcnt & 1) 2746 return (EINVAL); 2747 2748 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 2749 if (error) 2750 return (error); 2751 error = kern_jail_set(td, auio, uap->flags); 2752 free(auio, M_IOV); 2753 return (error); 2754 } 2755 2756 int 2757 freebsd32_jail_get(struct thread *td, struct freebsd32_jail_get_args *uap) 2758 { 2759 struct iovec32 iov32; 2760 struct uio *auio; 2761 int error, i; 2762 2763 /* Check that we have an even number of iovecs. */ 2764 if (uap->iovcnt & 1) 2765 return (EINVAL); 2766 2767 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 2768 if (error) 2769 return (error); 2770 error = kern_jail_get(td, auio, uap->flags); 2771 if (error == 0) 2772 for (i = 0; i < uap->iovcnt; i++) { 2773 PTROUT_CP(auio->uio_iov[i], iov32, iov_base); 2774 CP(auio->uio_iov[i], iov32, iov_len); 2775 error = copyout(&iov32, uap->iovp + i, sizeof(iov32)); 2776 if (error != 0) 2777 break; 2778 } 2779 free(auio, M_IOV); 2780 return (error); 2781 } 2782 2783 int 2784 freebsd32_sigaction(struct thread *td, struct freebsd32_sigaction_args *uap) 2785 { 2786 struct sigaction32 s32; 2787 struct sigaction sa, osa, *sap; 2788 int error; 2789 2790 if (uap->act) { 2791 error = copyin(uap->act, &s32, sizeof(s32)); 2792 if (error) 2793 return (error); 2794 sa.sa_handler = PTRIN(s32.sa_u); 2795 CP(s32, sa, sa_flags); 2796 CP(s32, sa, sa_mask); 2797 sap = &sa; 2798 } else 2799 sap = NULL; 2800 error = kern_sigaction(td, uap->sig, sap, &osa, 0); 2801 if (error == 0 && uap->oact != NULL) { 2802 s32.sa_u = PTROUT(osa.sa_handler); 2803 CP(osa, s32, sa_flags); 2804 CP(osa, s32, sa_mask); 2805 error = copyout(&s32, uap->oact, sizeof(s32)); 2806 } 2807 return (error); 2808 } 2809 2810 #ifdef COMPAT_FREEBSD4 2811 int 2812 freebsd4_freebsd32_sigaction(struct thread *td, 2813 struct freebsd4_freebsd32_sigaction_args *uap) 2814 { 2815 struct sigaction32 s32; 2816 struct sigaction sa, osa, *sap; 2817 int error; 2818 2819 if (uap->act) { 2820 error = copyin(uap->act, &s32, sizeof(s32)); 2821 if (error) 2822 return (error); 2823 sa.sa_handler = PTRIN(s32.sa_u); 2824 CP(s32, sa, sa_flags); 2825 CP(s32, sa, sa_mask); 2826 sap = &sa; 2827 } else 2828 sap = NULL; 2829 error = kern_sigaction(td, uap->sig, sap, &osa, KSA_FREEBSD4); 2830 if (error == 0 && uap->oact != NULL) { 2831 s32.sa_u = PTROUT(osa.sa_handler); 2832 CP(osa, s32, sa_flags); 2833 CP(osa, s32, sa_mask); 2834 error = copyout(&s32, uap->oact, sizeof(s32)); 2835 } 2836 return (error); 2837 } 2838 #endif 2839 2840 #ifdef COMPAT_43 2841 struct osigaction32 { 2842 uint32_t sa_u; 2843 osigset_t sa_mask; 2844 int sa_flags; 2845 }; 2846 2847 #define ONSIG 32 2848 2849 int 2850 ofreebsd32_sigaction(struct thread *td, 2851 struct ofreebsd32_sigaction_args *uap) 2852 { 2853 struct osigaction32 s32; 2854 struct sigaction sa, osa, *sap; 2855 int error; 2856 2857 if (uap->signum <= 0 || uap->signum >= ONSIG) 2858 return (EINVAL); 2859 2860 if (uap->nsa) { 2861 error = copyin(uap->nsa, &s32, sizeof(s32)); 2862 if (error) 2863 return (error); 2864 sa.sa_handler = PTRIN(s32.sa_u); 2865 CP(s32, sa, sa_flags); 2866 OSIG2SIG(s32.sa_mask, sa.sa_mask); 2867 sap = &sa; 2868 } else 2869 sap = NULL; 2870 error = kern_sigaction(td, uap->signum, sap, &osa, KSA_OSIGSET); 2871 if (error == 0 && uap->osa != NULL) { 2872 s32.sa_u = PTROUT(osa.sa_handler); 2873 CP(osa, s32, sa_flags); 2874 SIG2OSIG(osa.sa_mask, s32.sa_mask); 2875 error = copyout(&s32, uap->osa, sizeof(s32)); 2876 } 2877 return (error); 2878 } 2879 2880 struct sigvec32 { 2881 uint32_t sv_handler; 2882 int sv_mask; 2883 int sv_flags; 2884 }; 2885 2886 int 2887 ofreebsd32_sigvec(struct thread *td, 2888 struct ofreebsd32_sigvec_args *uap) 2889 { 2890 struct sigvec32 vec; 2891 struct sigaction sa, osa, *sap; 2892 int error; 2893 2894 if (uap->signum <= 0 || uap->signum >= ONSIG) 2895 return (EINVAL); 2896 2897 if (uap->nsv) { 2898 error = copyin(uap->nsv, &vec, sizeof(vec)); 2899 if (error) 2900 return (error); 2901 sa.sa_handler = PTRIN(vec.sv_handler); 2902 OSIG2SIG(vec.sv_mask, sa.sa_mask); 2903 sa.sa_flags = vec.sv_flags; 2904 sa.sa_flags ^= SA_RESTART; 2905 sap = &sa; 2906 } else 2907 sap = NULL; 2908 error = kern_sigaction(td, uap->signum, sap, &osa, KSA_OSIGSET); 2909 if (error == 0 && uap->osv != NULL) { 2910 vec.sv_handler = PTROUT(osa.sa_handler); 2911 SIG2OSIG(osa.sa_mask, vec.sv_mask); 2912 vec.sv_flags = osa.sa_flags; 2913 vec.sv_flags &= ~SA_NOCLDWAIT; 2914 vec.sv_flags ^= SA_RESTART; 2915 error = copyout(&vec, uap->osv, sizeof(vec)); 2916 } 2917 return (error); 2918 } 2919 2920 struct sigstack32 { 2921 uint32_t ss_sp; 2922 int ss_onstack; 2923 }; 2924 2925 int 2926 ofreebsd32_sigstack(struct thread *td, 2927 struct ofreebsd32_sigstack_args *uap) 2928 { 2929 struct sigstack32 s32; 2930 struct sigstack nss, oss; 2931 int error = 0, unss; 2932 2933 if (uap->nss != NULL) { 2934 error = copyin(uap->nss, &s32, sizeof(s32)); 2935 if (error) 2936 return (error); 2937 nss.ss_sp = PTRIN(s32.ss_sp); 2938 CP(s32, nss, ss_onstack); 2939 unss = 1; 2940 } else { 2941 unss = 0; 2942 } 2943 oss.ss_sp = td->td_sigstk.ss_sp; 2944 oss.ss_onstack = sigonstack(cpu_getstack(td)); 2945 if (unss) { 2946 td->td_sigstk.ss_sp = nss.ss_sp; 2947 td->td_sigstk.ss_size = 0; 2948 td->td_sigstk.ss_flags |= (nss.ss_onstack & SS_ONSTACK); 2949 td->td_pflags |= TDP_ALTSTACK; 2950 } 2951 if (uap->oss != NULL) { 2952 s32.ss_sp = PTROUT(oss.ss_sp); 2953 CP(oss, s32, ss_onstack); 2954 error = copyout(&s32, uap->oss, sizeof(s32)); 2955 } 2956 return (error); 2957 } 2958 #endif 2959 2960 int 2961 freebsd32_nanosleep(struct thread *td, struct freebsd32_nanosleep_args *uap) 2962 { 2963 2964 return (freebsd32_user_clock_nanosleep(td, CLOCK_REALTIME, 2965 TIMER_RELTIME, uap->rqtp, uap->rmtp)); 2966 } 2967 2968 int 2969 freebsd32_clock_nanosleep(struct thread *td, 2970 struct freebsd32_clock_nanosleep_args *uap) 2971 { 2972 int error; 2973 2974 error = freebsd32_user_clock_nanosleep(td, uap->clock_id, uap->flags, 2975 uap->rqtp, uap->rmtp); 2976 return (kern_posix_error(td, error)); 2977 } 2978 2979 static int 2980 freebsd32_user_clock_nanosleep(struct thread *td, clockid_t clock_id, 2981 int flags, const struct timespec32 *ua_rqtp, struct timespec32 *ua_rmtp) 2982 { 2983 struct timespec32 rmt32, rqt32; 2984 struct timespec rmt, rqt; 2985 int error, error2; 2986 2987 error = copyin(ua_rqtp, &rqt32, sizeof(rqt32)); 2988 if (error) 2989 return (error); 2990 2991 CP(rqt32, rqt, tv_sec); 2992 CP(rqt32, rqt, tv_nsec); 2993 2994 error = kern_clock_nanosleep(td, clock_id, flags, &rqt, &rmt); 2995 if (error == EINTR && ua_rmtp != NULL && (flags & TIMER_ABSTIME) == 0) { 2996 CP(rmt, rmt32, tv_sec); 2997 CP(rmt, rmt32, tv_nsec); 2998 2999 error2 = copyout(&rmt32, ua_rmtp, sizeof(rmt32)); 3000 if (error2 != 0) 3001 error = error2; 3002 } 3003 return (error); 3004 } 3005 3006 int 3007 freebsd32_clock_gettime(struct thread *td, 3008 struct freebsd32_clock_gettime_args *uap) 3009 { 3010 struct timespec ats; 3011 struct timespec32 ats32; 3012 int error; 3013 3014 error = kern_clock_gettime(td, uap->clock_id, &ats); 3015 if (error == 0) { 3016 CP(ats, ats32, tv_sec); 3017 CP(ats, ats32, tv_nsec); 3018 error = copyout(&ats32, uap->tp, sizeof(ats32)); 3019 } 3020 return (error); 3021 } 3022 3023 int 3024 freebsd32_clock_settime(struct thread *td, 3025 struct freebsd32_clock_settime_args *uap) 3026 { 3027 struct timespec ats; 3028 struct timespec32 ats32; 3029 int error; 3030 3031 error = copyin(uap->tp, &ats32, sizeof(ats32)); 3032 if (error) 3033 return (error); 3034 CP(ats32, ats, tv_sec); 3035 CP(ats32, ats, tv_nsec); 3036 3037 return (kern_clock_settime(td, uap->clock_id, &ats)); 3038 } 3039 3040 int 3041 freebsd32_clock_getres(struct thread *td, 3042 struct freebsd32_clock_getres_args *uap) 3043 { 3044 struct timespec ts; 3045 struct timespec32 ts32; 3046 int error; 3047 3048 if (uap->tp == NULL) 3049 return (0); 3050 error = kern_clock_getres(td, uap->clock_id, &ts); 3051 if (error == 0) { 3052 CP(ts, ts32, tv_sec); 3053 CP(ts, ts32, tv_nsec); 3054 error = copyout(&ts32, uap->tp, sizeof(ts32)); 3055 } 3056 return (error); 3057 } 3058 3059 int freebsd32_ktimer_create(struct thread *td, 3060 struct freebsd32_ktimer_create_args *uap) 3061 { 3062 struct sigevent32 ev32; 3063 struct sigevent ev, *evp; 3064 int error, id; 3065 3066 if (uap->evp == NULL) { 3067 evp = NULL; 3068 } else { 3069 evp = &ev; 3070 error = copyin(uap->evp, &ev32, sizeof(ev32)); 3071 if (error != 0) 3072 return (error); 3073 error = convert_sigevent32(&ev32, &ev); 3074 if (error != 0) 3075 return (error); 3076 } 3077 error = kern_ktimer_create(td, uap->clock_id, evp, &id, -1); 3078 if (error == 0) { 3079 error = copyout(&id, uap->timerid, sizeof(int)); 3080 if (error != 0) 3081 kern_ktimer_delete(td, id); 3082 } 3083 return (error); 3084 } 3085 3086 int 3087 freebsd32_ktimer_settime(struct thread *td, 3088 struct freebsd32_ktimer_settime_args *uap) 3089 { 3090 struct itimerspec32 val32, oval32; 3091 struct itimerspec val, oval, *ovalp; 3092 int error; 3093 3094 error = copyin(uap->value, &val32, sizeof(val32)); 3095 if (error != 0) 3096 return (error); 3097 ITS_CP(val32, val); 3098 ovalp = uap->ovalue != NULL ? &oval : NULL; 3099 error = kern_ktimer_settime(td, uap->timerid, uap->flags, &val, ovalp); 3100 if (error == 0 && uap->ovalue != NULL) { 3101 ITS_CP(oval, oval32); 3102 error = copyout(&oval32, uap->ovalue, sizeof(oval32)); 3103 } 3104 return (error); 3105 } 3106 3107 int 3108 freebsd32_ktimer_gettime(struct thread *td, 3109 struct freebsd32_ktimer_gettime_args *uap) 3110 { 3111 struct itimerspec32 val32; 3112 struct itimerspec val; 3113 int error; 3114 3115 error = kern_ktimer_gettime(td, uap->timerid, &val); 3116 if (error == 0) { 3117 ITS_CP(val, val32); 3118 error = copyout(&val32, uap->value, sizeof(val32)); 3119 } 3120 return (error); 3121 } 3122 3123 int 3124 freebsd32_clock_getcpuclockid2(struct thread *td, 3125 struct freebsd32_clock_getcpuclockid2_args *uap) 3126 { 3127 clockid_t clk_id; 3128 int error; 3129 3130 error = kern_clock_getcpuclockid2(td, PAIR32TO64(id_t, uap->id), 3131 uap->which, &clk_id); 3132 if (error == 0) 3133 error = copyout(&clk_id, uap->clock_id, sizeof(clockid_t)); 3134 return (error); 3135 } 3136 3137 int 3138 freebsd32_thr_new(struct thread *td, 3139 struct freebsd32_thr_new_args *uap) 3140 { 3141 struct thr_param32 param32; 3142 struct thr_param param; 3143 int error; 3144 3145 if (uap->param_size < 0 || 3146 uap->param_size > sizeof(struct thr_param32)) 3147 return (EINVAL); 3148 bzero(¶m, sizeof(struct thr_param)); 3149 bzero(¶m32, sizeof(struct thr_param32)); 3150 error = copyin(uap->param, ¶m32, uap->param_size); 3151 if (error != 0) 3152 return (error); 3153 param.start_func = PTRIN(param32.start_func); 3154 param.arg = PTRIN(param32.arg); 3155 param.stack_base = PTRIN(param32.stack_base); 3156 param.stack_size = param32.stack_size; 3157 param.tls_base = PTRIN(param32.tls_base); 3158 param.tls_size = param32.tls_size; 3159 param.child_tid = PTRIN(param32.child_tid); 3160 param.parent_tid = PTRIN(param32.parent_tid); 3161 param.flags = param32.flags; 3162 param.rtp = PTRIN(param32.rtp); 3163 param.spare[0] = PTRIN(param32.spare[0]); 3164 param.spare[1] = PTRIN(param32.spare[1]); 3165 param.spare[2] = PTRIN(param32.spare[2]); 3166 3167 return (kern_thr_new(td, ¶m)); 3168 } 3169 3170 int 3171 freebsd32_thr_suspend(struct thread *td, struct freebsd32_thr_suspend_args *uap) 3172 { 3173 struct timespec32 ts32; 3174 struct timespec ts, *tsp; 3175 int error; 3176 3177 error = 0; 3178 tsp = NULL; 3179 if (uap->timeout != NULL) { 3180 error = copyin((const void *)uap->timeout, (void *)&ts32, 3181 sizeof(struct timespec32)); 3182 if (error != 0) 3183 return (error); 3184 ts.tv_sec = ts32.tv_sec; 3185 ts.tv_nsec = ts32.tv_nsec; 3186 tsp = &ts; 3187 } 3188 return (kern_thr_suspend(td, tsp)); 3189 } 3190 3191 void 3192 siginfo_to_siginfo32(const siginfo_t *src, struct siginfo32 *dst) 3193 { 3194 bzero(dst, sizeof(*dst)); 3195 dst->si_signo = src->si_signo; 3196 dst->si_errno = src->si_errno; 3197 dst->si_code = src->si_code; 3198 dst->si_pid = src->si_pid; 3199 dst->si_uid = src->si_uid; 3200 dst->si_status = src->si_status; 3201 dst->si_addr = (uintptr_t)src->si_addr; 3202 dst->si_value.sival_int = src->si_value.sival_int; 3203 dst->si_timerid = src->si_timerid; 3204 dst->si_overrun = src->si_overrun; 3205 } 3206 3207 #ifndef _FREEBSD32_SYSPROTO_H_ 3208 struct freebsd32_sigqueue_args { 3209 pid_t pid; 3210 int signum; 3211 /* union sigval32 */ int value; 3212 }; 3213 #endif 3214 int 3215 freebsd32_sigqueue(struct thread *td, struct freebsd32_sigqueue_args *uap) 3216 { 3217 union sigval sv; 3218 3219 /* 3220 * On 32-bit ABIs, sival_int and sival_ptr are the same. 3221 * On 64-bit little-endian ABIs, the low bits are the same. 3222 * In 64-bit big-endian ABIs, sival_int overlaps with 3223 * sival_ptr's HIGH bits. We choose to support sival_int 3224 * rather than sival_ptr in this case as it seems to be 3225 * more common. 3226 */ 3227 bzero(&sv, sizeof(sv)); 3228 sv.sival_int = (uint32_t)(uint64_t)uap->value; 3229 3230 return (kern_sigqueue(td, uap->pid, uap->signum, &sv)); 3231 } 3232 3233 int 3234 freebsd32_sigtimedwait(struct thread *td, struct freebsd32_sigtimedwait_args *uap) 3235 { 3236 struct timespec32 ts32; 3237 struct timespec ts; 3238 struct timespec *timeout; 3239 sigset_t set; 3240 ksiginfo_t ksi; 3241 struct siginfo32 si32; 3242 int error; 3243 3244 if (uap->timeout) { 3245 error = copyin(uap->timeout, &ts32, sizeof(ts32)); 3246 if (error) 3247 return (error); 3248 ts.tv_sec = ts32.tv_sec; 3249 ts.tv_nsec = ts32.tv_nsec; 3250 timeout = &ts; 3251 } else 3252 timeout = NULL; 3253 3254 error = copyin(uap->set, &set, sizeof(set)); 3255 if (error) 3256 return (error); 3257 3258 error = kern_sigtimedwait(td, set, &ksi, timeout); 3259 if (error) 3260 return (error); 3261 3262 if (uap->info) { 3263 siginfo_to_siginfo32(&ksi.ksi_info, &si32); 3264 error = copyout(&si32, uap->info, sizeof(struct siginfo32)); 3265 } 3266 3267 if (error == 0) 3268 td->td_retval[0] = ksi.ksi_signo; 3269 return (error); 3270 } 3271 3272 /* 3273 * MPSAFE 3274 */ 3275 int 3276 freebsd32_sigwaitinfo(struct thread *td, struct freebsd32_sigwaitinfo_args *uap) 3277 { 3278 ksiginfo_t ksi; 3279 struct siginfo32 si32; 3280 sigset_t set; 3281 int error; 3282 3283 error = copyin(uap->set, &set, sizeof(set)); 3284 if (error) 3285 return (error); 3286 3287 error = kern_sigtimedwait(td, set, &ksi, NULL); 3288 if (error) 3289 return (error); 3290 3291 if (uap->info) { 3292 siginfo_to_siginfo32(&ksi.ksi_info, &si32); 3293 error = copyout(&si32, uap->info, sizeof(struct siginfo32)); 3294 } 3295 if (error == 0) 3296 td->td_retval[0] = ksi.ksi_signo; 3297 return (error); 3298 } 3299 3300 int 3301 freebsd32_cpuset_setid(struct thread *td, 3302 struct freebsd32_cpuset_setid_args *uap) 3303 { 3304 3305 return (kern_cpuset_setid(td, uap->which, 3306 PAIR32TO64(id_t, uap->id), uap->setid)); 3307 } 3308 3309 int 3310 freebsd32_cpuset_getid(struct thread *td, 3311 struct freebsd32_cpuset_getid_args *uap) 3312 { 3313 3314 return (kern_cpuset_getid(td, uap->level, uap->which, 3315 PAIR32TO64(id_t, uap->id), uap->setid)); 3316 } 3317 3318 static int 3319 copyin32_set(const void *u, void *k, size_t size) 3320 { 3321 #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 3322 int rv; 3323 struct bitset *kb = k; 3324 int *p; 3325 3326 rv = copyin(u, k, size); 3327 if (rv != 0) 3328 return (rv); 3329 3330 p = (int *)kb->__bits; 3331 /* Loop through swapping words. 3332 * `size' is in bytes, we need bits. */ 3333 for (int i = 0; i < __bitset_words(size * 8); i++) { 3334 int tmp = p[0]; 3335 p[0] = p[1]; 3336 p[1] = tmp; 3337 p += 2; 3338 } 3339 return (0); 3340 #else 3341 return (copyin(u, k, size)); 3342 #endif 3343 } 3344 3345 static int 3346 copyout32_set(const void *k, void *u, size_t size) 3347 { 3348 #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 3349 const struct bitset *kb = k; 3350 struct bitset *ub = u; 3351 const int *kp = (const int *)kb->__bits; 3352 int *up = (int *)ub->__bits; 3353 int rv; 3354 3355 for (int i = 0; i < __bitset_words(CPU_SETSIZE); i++) { 3356 /* `size' is in bytes, we need bits. */ 3357 for (int i = 0; i < __bitset_words(size * 8); i++) { 3358 rv = suword32(up, kp[1]); 3359 if (rv == 0) 3360 rv = suword32(up + 1, kp[0]); 3361 if (rv != 0) 3362 return (EFAULT); 3363 } 3364 } 3365 return (0); 3366 #else 3367 return (copyout(k, u, size)); 3368 #endif 3369 } 3370 3371 static const struct cpuset_copy_cb cpuset_copy32_cb = { 3372 .cpuset_copyin = copyin32_set, 3373 .cpuset_copyout = copyout32_set 3374 }; 3375 3376 int 3377 freebsd32_cpuset_getaffinity(struct thread *td, 3378 struct freebsd32_cpuset_getaffinity_args *uap) 3379 { 3380 3381 return (user_cpuset_getaffinity(td, uap->level, uap->which, 3382 PAIR32TO64(id_t,uap->id), uap->cpusetsize, uap->mask, 3383 &cpuset_copy32_cb)); 3384 } 3385 3386 int 3387 freebsd32_cpuset_setaffinity(struct thread *td, 3388 struct freebsd32_cpuset_setaffinity_args *uap) 3389 { 3390 3391 return (user_cpuset_setaffinity(td, uap->level, uap->which, 3392 PAIR32TO64(id_t,uap->id), uap->cpusetsize, uap->mask, 3393 &cpuset_copy32_cb)); 3394 } 3395 3396 int 3397 freebsd32_cpuset_getdomain(struct thread *td, 3398 struct freebsd32_cpuset_getdomain_args *uap) 3399 { 3400 3401 return (kern_cpuset_getdomain(td, uap->level, uap->which, 3402 PAIR32TO64(id_t,uap->id), uap->domainsetsize, uap->mask, uap->policy, 3403 &cpuset_copy32_cb)); 3404 } 3405 3406 int 3407 freebsd32_cpuset_setdomain(struct thread *td, 3408 struct freebsd32_cpuset_setdomain_args *uap) 3409 { 3410 3411 return (kern_cpuset_setdomain(td, uap->level, uap->which, 3412 PAIR32TO64(id_t,uap->id), uap->domainsetsize, uap->mask, uap->policy, 3413 &cpuset_copy32_cb)); 3414 } 3415 3416 int 3417 freebsd32_nmount(struct thread *td, 3418 struct freebsd32_nmount_args /* { 3419 struct iovec *iovp; 3420 unsigned int iovcnt; 3421 int flags; 3422 } */ *uap) 3423 { 3424 struct uio *auio; 3425 uint64_t flags; 3426 int error; 3427 3428 /* 3429 * Mount flags are now 64-bits. On 32-bit archtectures only 3430 * 32-bits are passed in, but from here on everything handles 3431 * 64-bit flags correctly. 3432 */ 3433 flags = uap->flags; 3434 3435 AUDIT_ARG_FFLAGS(flags); 3436 3437 /* 3438 * Filter out MNT_ROOTFS. We do not want clients of nmount() in 3439 * userspace to set this flag, but we must filter it out if we want 3440 * MNT_UPDATE on the root file system to work. 3441 * MNT_ROOTFS should only be set by the kernel when mounting its 3442 * root file system. 3443 */ 3444 flags &= ~MNT_ROOTFS; 3445 3446 /* 3447 * check that we have an even number of iovec's 3448 * and that we have at least two options. 3449 */ 3450 if ((uap->iovcnt & 1) || (uap->iovcnt < 4)) 3451 return (EINVAL); 3452 3453 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 3454 if (error) 3455 return (error); 3456 error = vfs_donmount(td, flags, auio); 3457 3458 free(auio, M_IOV); 3459 return error; 3460 } 3461 3462 #if 0 3463 int 3464 freebsd32_xxx(struct thread *td, struct freebsd32_xxx_args *uap) 3465 { 3466 struct yyy32 *p32, s32; 3467 struct yyy *p = NULL, s; 3468 struct xxx_arg ap; 3469 int error; 3470 3471 if (uap->zzz) { 3472 error = copyin(uap->zzz, &s32, sizeof(s32)); 3473 if (error) 3474 return (error); 3475 /* translate in */ 3476 p = &s; 3477 } 3478 error = kern_xxx(td, p); 3479 if (error) 3480 return (error); 3481 if (uap->zzz) { 3482 /* translate out */ 3483 error = copyout(&s32, p32, sizeof(s32)); 3484 } 3485 return (error); 3486 } 3487 #endif 3488 3489 int 3490 syscall32_module_handler(struct module *mod, int what, void *arg) 3491 { 3492 3493 return (kern_syscall_module_handler(freebsd32_sysent, mod, what, arg)); 3494 } 3495 3496 int 3497 syscall32_helper_register(struct syscall_helper_data *sd, int flags) 3498 { 3499 3500 return (kern_syscall_helper_register(freebsd32_sysent, sd, flags)); 3501 } 3502 3503 int 3504 syscall32_helper_unregister(struct syscall_helper_data *sd) 3505 { 3506 3507 return (kern_syscall_helper_unregister(freebsd32_sysent, sd)); 3508 } 3509 3510 int 3511 freebsd32_copyout_strings(struct image_params *imgp, uintptr_t *stack_base) 3512 { 3513 struct sysentvec *sysent; 3514 int argc, envc, i; 3515 uint32_t *vectp; 3516 char *stringp; 3517 uintptr_t destp, ustringp; 3518 struct freebsd32_ps_strings *arginfo; 3519 char canary[sizeof(long) * 8]; 3520 int32_t pagesizes32[MAXPAGESIZES]; 3521 size_t execpath_len; 3522 int error, szsigcode; 3523 3524 sysent = imgp->sysent; 3525 3526 arginfo = (struct freebsd32_ps_strings *)PROC_PS_STRINGS(imgp->proc); 3527 imgp->ps_strings = arginfo; 3528 destp = (uintptr_t)arginfo; 3529 3530 /* 3531 * Install sigcode. 3532 */ 3533 if (!PROC_HAS_SHP(imgp->proc)) { 3534 szsigcode = *sysent->sv_szsigcode; 3535 destp -= szsigcode; 3536 destp = rounddown2(destp, sizeof(uint32_t)); 3537 error = copyout(sysent->sv_sigcode, (void *)destp, 3538 szsigcode); 3539 if (error != 0) 3540 return (error); 3541 } 3542 3543 /* 3544 * Copy the image path for the rtld. 3545 */ 3546 if (imgp->execpath != NULL && imgp->auxargs != NULL) { 3547 execpath_len = strlen(imgp->execpath) + 1; 3548 destp -= execpath_len; 3549 imgp->execpathp = (void *)destp; 3550 error = copyout(imgp->execpath, imgp->execpathp, execpath_len); 3551 if (error != 0) 3552 return (error); 3553 } 3554 3555 /* 3556 * Prepare the canary for SSP. 3557 */ 3558 arc4rand(canary, sizeof(canary), 0); 3559 destp -= sizeof(canary); 3560 imgp->canary = (void *)destp; 3561 error = copyout(canary, imgp->canary, sizeof(canary)); 3562 if (error != 0) 3563 return (error); 3564 imgp->canarylen = sizeof(canary); 3565 3566 /* 3567 * Prepare the pagesizes array. 3568 */ 3569 for (i = 0; i < MAXPAGESIZES; i++) 3570 pagesizes32[i] = (uint32_t)pagesizes[i]; 3571 destp -= sizeof(pagesizes32); 3572 destp = rounddown2(destp, sizeof(uint32_t)); 3573 imgp->pagesizes = (void *)destp; 3574 error = copyout(pagesizes32, imgp->pagesizes, sizeof(pagesizes32)); 3575 if (error != 0) 3576 return (error); 3577 imgp->pagesizeslen = sizeof(pagesizes32); 3578 3579 /* 3580 * Allocate room for the argument and environment strings. 3581 */ 3582 destp -= ARG_MAX - imgp->args->stringspace; 3583 destp = rounddown2(destp, sizeof(uint32_t)); 3584 ustringp = destp; 3585 3586 if (imgp->auxargs) { 3587 /* 3588 * Allocate room on the stack for the ELF auxargs 3589 * array. It has up to AT_COUNT entries. 3590 */ 3591 destp -= AT_COUNT * sizeof(Elf32_Auxinfo); 3592 destp = rounddown2(destp, sizeof(uint32_t)); 3593 } 3594 3595 vectp = (uint32_t *)destp; 3596 3597 /* 3598 * Allocate room for the argv[] and env vectors including the 3599 * terminating NULL pointers. 3600 */ 3601 vectp -= imgp->args->argc + 1 + imgp->args->envc + 1; 3602 3603 /* 3604 * vectp also becomes our initial stack base 3605 */ 3606 *stack_base = (uintptr_t)vectp; 3607 3608 stringp = imgp->args->begin_argv; 3609 argc = imgp->args->argc; 3610 envc = imgp->args->envc; 3611 /* 3612 * Copy out strings - arguments and environment. 3613 */ 3614 error = copyout(stringp, (void *)ustringp, 3615 ARG_MAX - imgp->args->stringspace); 3616 if (error != 0) 3617 return (error); 3618 3619 /* 3620 * Fill in "ps_strings" struct for ps, w, etc. 3621 */ 3622 imgp->argv = vectp; 3623 if (suword32(&arginfo->ps_argvstr, (uint32_t)(intptr_t)vectp) != 0 || 3624 suword32(&arginfo->ps_nargvstr, argc) != 0) 3625 return (EFAULT); 3626 3627 /* 3628 * Fill in argument portion of vector table. 3629 */ 3630 for (; argc > 0; --argc) { 3631 if (suword32(vectp++, ustringp) != 0) 3632 return (EFAULT); 3633 while (*stringp++ != 0) 3634 ustringp++; 3635 ustringp++; 3636 } 3637 3638 /* a null vector table pointer separates the argp's from the envp's */ 3639 if (suword32(vectp++, 0) != 0) 3640 return (EFAULT); 3641 3642 imgp->envv = vectp; 3643 if (suword32(&arginfo->ps_envstr, (uint32_t)(intptr_t)vectp) != 0 || 3644 suword32(&arginfo->ps_nenvstr, envc) != 0) 3645 return (EFAULT); 3646 3647 /* 3648 * Fill in environment portion of vector table. 3649 */ 3650 for (; envc > 0; --envc) { 3651 if (suword32(vectp++, ustringp) != 0) 3652 return (EFAULT); 3653 while (*stringp++ != 0) 3654 ustringp++; 3655 ustringp++; 3656 } 3657 3658 /* end of vector table is a null pointer */ 3659 if (suword32(vectp, 0) != 0) 3660 return (EFAULT); 3661 3662 if (imgp->auxargs) { 3663 vectp++; 3664 error = imgp->sysent->sv_copyout_auxargs(imgp, 3665 (uintptr_t)vectp); 3666 if (error != 0) 3667 return (error); 3668 } 3669 3670 return (0); 3671 } 3672 3673 int 3674 freebsd32_kldstat(struct thread *td, struct freebsd32_kldstat_args *uap) 3675 { 3676 struct kld_file_stat *stat; 3677 struct kld_file_stat32 *stat32; 3678 int error, version; 3679 3680 if ((error = copyin(&uap->stat->version, &version, sizeof(version))) 3681 != 0) 3682 return (error); 3683 if (version != sizeof(struct kld_file_stat_1_32) && 3684 version != sizeof(struct kld_file_stat32)) 3685 return (EINVAL); 3686 3687 stat = malloc(sizeof(*stat), M_TEMP, M_WAITOK | M_ZERO); 3688 stat32 = malloc(sizeof(*stat32), M_TEMP, M_WAITOK | M_ZERO); 3689 error = kern_kldstat(td, uap->fileid, stat); 3690 if (error == 0) { 3691 bcopy(&stat->name[0], &stat32->name[0], sizeof(stat->name)); 3692 CP(*stat, *stat32, refs); 3693 CP(*stat, *stat32, id); 3694 PTROUT_CP(*stat, *stat32, address); 3695 CP(*stat, *stat32, size); 3696 bcopy(&stat->pathname[0], &stat32->pathname[0], 3697 sizeof(stat->pathname)); 3698 stat32->version = version; 3699 error = copyout(stat32, uap->stat, version); 3700 } 3701 free(stat, M_TEMP); 3702 free(stat32, M_TEMP); 3703 return (error); 3704 } 3705 3706 int 3707 freebsd32_posix_fallocate(struct thread *td, 3708 struct freebsd32_posix_fallocate_args *uap) 3709 { 3710 int error; 3711 3712 error = kern_posix_fallocate(td, uap->fd, 3713 PAIR32TO64(off_t, uap->offset), PAIR32TO64(off_t, uap->len)); 3714 return (kern_posix_error(td, error)); 3715 } 3716 3717 int 3718 freebsd32_posix_fadvise(struct thread *td, 3719 struct freebsd32_posix_fadvise_args *uap) 3720 { 3721 int error; 3722 3723 error = kern_posix_fadvise(td, uap->fd, PAIR32TO64(off_t, uap->offset), 3724 PAIR32TO64(off_t, uap->len), uap->advice); 3725 return (kern_posix_error(td, error)); 3726 } 3727 3728 int 3729 convert_sigevent32(struct sigevent32 *sig32, struct sigevent *sig) 3730 { 3731 3732 CP(*sig32, *sig, sigev_notify); 3733 switch (sig->sigev_notify) { 3734 case SIGEV_NONE: 3735 break; 3736 case SIGEV_THREAD_ID: 3737 CP(*sig32, *sig, sigev_notify_thread_id); 3738 /* FALLTHROUGH */ 3739 case SIGEV_SIGNAL: 3740 CP(*sig32, *sig, sigev_signo); 3741 PTRIN_CP(*sig32, *sig, sigev_value.sival_ptr); 3742 break; 3743 case SIGEV_KEVENT: 3744 CP(*sig32, *sig, sigev_notify_kqueue); 3745 CP(*sig32, *sig, sigev_notify_kevent_flags); 3746 PTRIN_CP(*sig32, *sig, sigev_value.sival_ptr); 3747 break; 3748 default: 3749 return (EINVAL); 3750 } 3751 return (0); 3752 } 3753 3754 int 3755 freebsd32_procctl(struct thread *td, struct freebsd32_procctl_args *uap) 3756 { 3757 void *data; 3758 union { 3759 struct procctl_reaper_status rs; 3760 struct procctl_reaper_pids rp; 3761 struct procctl_reaper_kill rk; 3762 } x; 3763 union { 3764 struct procctl_reaper_pids32 rp; 3765 } x32; 3766 int error, error1, flags, signum; 3767 3768 if (uap->com >= PROC_PROCCTL_MD_MIN) 3769 return (cpu_procctl(td, uap->idtype, PAIR32TO64(id_t, uap->id), 3770 uap->com, PTRIN(uap->data))); 3771 3772 switch (uap->com) { 3773 case PROC_ASLR_CTL: 3774 case PROC_PROTMAX_CTL: 3775 case PROC_SPROTECT: 3776 case PROC_STACKGAP_CTL: 3777 case PROC_TRACE_CTL: 3778 case PROC_TRAPCAP_CTL: 3779 case PROC_NO_NEW_PRIVS_CTL: 3780 case PROC_WXMAP_CTL: 3781 error = copyin(PTRIN(uap->data), &flags, sizeof(flags)); 3782 if (error != 0) 3783 return (error); 3784 data = &flags; 3785 break; 3786 case PROC_REAP_ACQUIRE: 3787 case PROC_REAP_RELEASE: 3788 if (uap->data != NULL) 3789 return (EINVAL); 3790 data = NULL; 3791 break; 3792 case PROC_REAP_STATUS: 3793 data = &x.rs; 3794 break; 3795 case PROC_REAP_GETPIDS: 3796 error = copyin(uap->data, &x32.rp, sizeof(x32.rp)); 3797 if (error != 0) 3798 return (error); 3799 CP(x32.rp, x.rp, rp_count); 3800 PTRIN_CP(x32.rp, x.rp, rp_pids); 3801 data = &x.rp; 3802 break; 3803 case PROC_REAP_KILL: 3804 error = copyin(uap->data, &x.rk, sizeof(x.rk)); 3805 if (error != 0) 3806 return (error); 3807 data = &x.rk; 3808 break; 3809 case PROC_ASLR_STATUS: 3810 case PROC_PROTMAX_STATUS: 3811 case PROC_STACKGAP_STATUS: 3812 case PROC_TRACE_STATUS: 3813 case PROC_TRAPCAP_STATUS: 3814 case PROC_NO_NEW_PRIVS_STATUS: 3815 case PROC_WXMAP_STATUS: 3816 data = &flags; 3817 break; 3818 case PROC_PDEATHSIG_CTL: 3819 error = copyin(uap->data, &signum, sizeof(signum)); 3820 if (error != 0) 3821 return (error); 3822 data = &signum; 3823 break; 3824 case PROC_PDEATHSIG_STATUS: 3825 data = &signum; 3826 break; 3827 default: 3828 return (EINVAL); 3829 } 3830 error = kern_procctl(td, uap->idtype, PAIR32TO64(id_t, uap->id), 3831 uap->com, data); 3832 switch (uap->com) { 3833 case PROC_REAP_STATUS: 3834 if (error == 0) 3835 error = copyout(&x.rs, uap->data, sizeof(x.rs)); 3836 break; 3837 case PROC_REAP_KILL: 3838 error1 = copyout(&x.rk, uap->data, sizeof(x.rk)); 3839 if (error == 0) 3840 error = error1; 3841 break; 3842 case PROC_ASLR_STATUS: 3843 case PROC_PROTMAX_STATUS: 3844 case PROC_STACKGAP_STATUS: 3845 case PROC_TRACE_STATUS: 3846 case PROC_TRAPCAP_STATUS: 3847 case PROC_NO_NEW_PRIVS_STATUS: 3848 case PROC_WXMAP_STATUS: 3849 if (error == 0) 3850 error = copyout(&flags, uap->data, sizeof(flags)); 3851 break; 3852 case PROC_PDEATHSIG_STATUS: 3853 if (error == 0) 3854 error = copyout(&signum, uap->data, sizeof(signum)); 3855 break; 3856 } 3857 return (error); 3858 } 3859 3860 int 3861 freebsd32_fcntl(struct thread *td, struct freebsd32_fcntl_args *uap) 3862 { 3863 long tmp; 3864 3865 switch (uap->cmd) { 3866 /* 3867 * Do unsigned conversion for arg when operation 3868 * interprets it as flags or pointer. 3869 */ 3870 case F_SETLK_REMOTE: 3871 case F_SETLKW: 3872 case F_SETLK: 3873 case F_GETLK: 3874 case F_SETFD: 3875 case F_SETFL: 3876 case F_OGETLK: 3877 case F_OSETLK: 3878 case F_OSETLKW: 3879 case F_KINFO: 3880 tmp = (unsigned int)(uap->arg); 3881 break; 3882 default: 3883 tmp = uap->arg; 3884 break; 3885 } 3886 return (kern_fcntl_freebsd(td, uap->fd, uap->cmd, tmp)); 3887 } 3888 3889 int 3890 freebsd32_ppoll(struct thread *td, struct freebsd32_ppoll_args *uap) 3891 { 3892 struct timespec32 ts32; 3893 struct timespec ts, *tsp; 3894 sigset_t set, *ssp; 3895 int error; 3896 3897 if (uap->ts != NULL) { 3898 error = copyin(uap->ts, &ts32, sizeof(ts32)); 3899 if (error != 0) 3900 return (error); 3901 CP(ts32, ts, tv_sec); 3902 CP(ts32, ts, tv_nsec); 3903 tsp = &ts; 3904 } else 3905 tsp = NULL; 3906 if (uap->set != NULL) { 3907 error = copyin(uap->set, &set, sizeof(set)); 3908 if (error != 0) 3909 return (error); 3910 ssp = &set; 3911 } else 3912 ssp = NULL; 3913 3914 return (kern_poll(td, uap->fds, uap->nfds, tsp, ssp)); 3915 } 3916 3917 int 3918 freebsd32_sched_rr_get_interval(struct thread *td, 3919 struct freebsd32_sched_rr_get_interval_args *uap) 3920 { 3921 struct timespec ts; 3922 struct timespec32 ts32; 3923 int error; 3924 3925 error = kern_sched_rr_get_interval(td, uap->pid, &ts); 3926 if (error == 0) { 3927 CP(ts, ts32, tv_sec); 3928 CP(ts, ts32, tv_nsec); 3929 error = copyout(&ts32, uap->interval, sizeof(ts32)); 3930 } 3931 return (error); 3932 } 3933 3934 static void 3935 timex_to_32(struct timex32 *dst, struct timex *src) 3936 { 3937 CP(*src, *dst, modes); 3938 CP(*src, *dst, offset); 3939 CP(*src, *dst, freq); 3940 CP(*src, *dst, maxerror); 3941 CP(*src, *dst, esterror); 3942 CP(*src, *dst, status); 3943 CP(*src, *dst, constant); 3944 CP(*src, *dst, precision); 3945 CP(*src, *dst, tolerance); 3946 CP(*src, *dst, ppsfreq); 3947 CP(*src, *dst, jitter); 3948 CP(*src, *dst, shift); 3949 CP(*src, *dst, stabil); 3950 CP(*src, *dst, jitcnt); 3951 CP(*src, *dst, calcnt); 3952 CP(*src, *dst, errcnt); 3953 CP(*src, *dst, stbcnt); 3954 } 3955 3956 static void 3957 timex_from_32(struct timex *dst, struct timex32 *src) 3958 { 3959 CP(*src, *dst, modes); 3960 CP(*src, *dst, offset); 3961 CP(*src, *dst, freq); 3962 CP(*src, *dst, maxerror); 3963 CP(*src, *dst, esterror); 3964 CP(*src, *dst, status); 3965 CP(*src, *dst, constant); 3966 CP(*src, *dst, precision); 3967 CP(*src, *dst, tolerance); 3968 CP(*src, *dst, ppsfreq); 3969 CP(*src, *dst, jitter); 3970 CP(*src, *dst, shift); 3971 CP(*src, *dst, stabil); 3972 CP(*src, *dst, jitcnt); 3973 CP(*src, *dst, calcnt); 3974 CP(*src, *dst, errcnt); 3975 CP(*src, *dst, stbcnt); 3976 } 3977 3978 int 3979 freebsd32_ntp_adjtime(struct thread *td, struct freebsd32_ntp_adjtime_args *uap) 3980 { 3981 struct timex tx; 3982 struct timex32 tx32; 3983 int error, retval; 3984 3985 error = copyin(uap->tp, &tx32, sizeof(tx32)); 3986 if (error == 0) { 3987 timex_from_32(&tx, &tx32); 3988 error = kern_ntp_adjtime(td, &tx, &retval); 3989 if (error == 0) { 3990 timex_to_32(&tx32, &tx); 3991 error = copyout(&tx32, uap->tp, sizeof(tx32)); 3992 if (error == 0) 3993 td->td_retval[0] = retval; 3994 } 3995 } 3996 return (error); 3997 } 3998 3999 #ifdef FFCLOCK 4000 extern struct mtx ffclock_mtx; 4001 extern struct ffclock_estimate ffclock_estimate; 4002 extern int8_t ffclock_updated; 4003 4004 int 4005 freebsd32_ffclock_setestimate(struct thread *td, 4006 struct freebsd32_ffclock_setestimate_args *uap) 4007 { 4008 struct ffclock_estimate cest; 4009 struct ffclock_estimate32 cest32; 4010 int error; 4011 4012 /* Reuse of PRIV_CLOCK_SETTIME. */ 4013 if ((error = priv_check(td, PRIV_CLOCK_SETTIME)) != 0) 4014 return (error); 4015 4016 if ((error = copyin(uap->cest, &cest32, 4017 sizeof(struct ffclock_estimate32))) != 0) 4018 return (error); 4019 4020 CP(cest.update_time, cest32.update_time, sec); 4021 memcpy(&cest.update_time.frac, &cest32.update_time.frac, sizeof(uint64_t)); 4022 CP(cest, cest32, update_ffcount); 4023 CP(cest, cest32, leapsec_next); 4024 CP(cest, cest32, period); 4025 CP(cest, cest32, errb_abs); 4026 CP(cest, cest32, errb_rate); 4027 CP(cest, cest32, status); 4028 CP(cest, cest32, leapsec_total); 4029 CP(cest, cest32, leapsec); 4030 4031 mtx_lock(&ffclock_mtx); 4032 memcpy(&ffclock_estimate, &cest, sizeof(struct ffclock_estimate)); 4033 ffclock_updated++; 4034 mtx_unlock(&ffclock_mtx); 4035 return (error); 4036 } 4037 4038 int 4039 freebsd32_ffclock_getestimate(struct thread *td, 4040 struct freebsd32_ffclock_getestimate_args *uap) 4041 { 4042 struct ffclock_estimate cest; 4043 struct ffclock_estimate32 cest32; 4044 int error; 4045 4046 mtx_lock(&ffclock_mtx); 4047 memcpy(&cest, &ffclock_estimate, sizeof(struct ffclock_estimate)); 4048 mtx_unlock(&ffclock_mtx); 4049 4050 CP(cest32.update_time, cest.update_time, sec); 4051 memcpy(&cest32.update_time.frac, &cest.update_time.frac, sizeof(uint64_t)); 4052 CP(cest32, cest, update_ffcount); 4053 CP(cest32, cest, leapsec_next); 4054 CP(cest32, cest, period); 4055 CP(cest32, cest, errb_abs); 4056 CP(cest32, cest, errb_rate); 4057 CP(cest32, cest, status); 4058 CP(cest32, cest, leapsec_total); 4059 CP(cest32, cest, leapsec); 4060 4061 error = copyout(&cest32, uap->cest, sizeof(struct ffclock_estimate32)); 4062 return (error); 4063 } 4064 #else /* !FFCLOCK */ 4065 int 4066 freebsd32_ffclock_setestimate(struct thread *td, 4067 struct freebsd32_ffclock_setestimate_args *uap) 4068 { 4069 return (ENOSYS); 4070 } 4071 4072 int 4073 freebsd32_ffclock_getestimate(struct thread *td, 4074 struct freebsd32_ffclock_getestimate_args *uap) 4075 { 4076 return (ENOSYS); 4077 } 4078 #endif /* FFCLOCK */ 4079 4080 #ifdef COMPAT_43 4081 int 4082 ofreebsd32_sethostid(struct thread *td, struct ofreebsd32_sethostid_args *uap) 4083 { 4084 int name[] = { CTL_KERN, KERN_HOSTID }; 4085 long hostid; 4086 4087 hostid = uap->hostid; 4088 return (kernel_sysctl(td, name, nitems(name), NULL, NULL, &hostid, 4089 sizeof(hostid), NULL, 0)); 4090 } 4091 #endif 4092