1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2002 Doug Rabson 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include "opt_inet.h" 33 #include "opt_inet6.h" 34 #include "opt_ktrace.h" 35 36 #define __ELF_WORD_SIZE 32 37 38 #ifdef COMPAT_FREEBSD11 39 #define _WANT_FREEBSD11_KEVENT 40 #endif 41 42 #include <sys/param.h> 43 #include <sys/bus.h> 44 #include <sys/capsicum.h> 45 #include <sys/clock.h> 46 #include <sys/exec.h> 47 #include <sys/fcntl.h> 48 #include <sys/filedesc.h> 49 #include <sys/imgact.h> 50 #include <sys/jail.h> 51 #include <sys/kernel.h> 52 #include <sys/limits.h> 53 #include <sys/linker.h> 54 #include <sys/lock.h> 55 #include <sys/malloc.h> 56 #include <sys/file.h> /* Must come after sys/malloc.h */ 57 #include <sys/imgact.h> 58 #include <sys/mbuf.h> 59 #include <sys/mman.h> 60 #include <sys/module.h> 61 #include <sys/mount.h> 62 #include <sys/mutex.h> 63 #include <sys/namei.h> 64 #include <sys/proc.h> 65 #include <sys/procctl.h> 66 #include <sys/ptrace.h> 67 #include <sys/reboot.h> 68 #include <sys/resource.h> 69 #include <sys/resourcevar.h> 70 #include <sys/selinfo.h> 71 #include <sys/eventvar.h> /* Must come after sys/selinfo.h */ 72 #include <sys/pipe.h> /* Must come after sys/selinfo.h */ 73 #include <sys/signal.h> 74 #include <sys/signalvar.h> 75 #include <sys/socket.h> 76 #include <sys/socketvar.h> 77 #include <sys/stat.h> 78 #include <sys/syscall.h> 79 #include <sys/syscallsubr.h> 80 #include <sys/sysctl.h> 81 #include <sys/sysent.h> 82 #include <sys/sysproto.h> 83 #include <sys/systm.h> 84 #include <sys/thr.h> 85 #include <sys/timex.h> 86 #include <sys/unistd.h> 87 #include <sys/ucontext.h> 88 #include <sys/vnode.h> 89 #include <sys/wait.h> 90 #include <sys/ipc.h> 91 #include <sys/msg.h> 92 #include <sys/sem.h> 93 #include <sys/shm.h> 94 #ifdef KTRACE 95 #include <sys/ktrace.h> 96 #endif 97 98 #ifdef INET 99 #include <netinet/in.h> 100 #endif 101 102 #include <vm/vm.h> 103 #include <vm/vm_param.h> 104 #include <vm/pmap.h> 105 #include <vm/vm_map.h> 106 #include <vm/vm_object.h> 107 #include <vm/vm_extern.h> 108 109 #include <machine/cpu.h> 110 #include <machine/elf.h> 111 #ifdef __amd64__ 112 #include <machine/md_var.h> 113 #endif 114 115 #include <security/audit/audit.h> 116 117 #include <compat/freebsd32/freebsd32_util.h> 118 #include <compat/freebsd32/freebsd32.h> 119 #include <compat/freebsd32/freebsd32_ipc.h> 120 #include <compat/freebsd32/freebsd32_misc.h> 121 #include <compat/freebsd32/freebsd32_signal.h> 122 #include <compat/freebsd32/freebsd32_proto.h> 123 124 FEATURE(compat_freebsd_32bit, "Compatible with 32-bit FreeBSD"); 125 126 struct ptrace_io_desc32 { 127 int piod_op; 128 uint32_t piod_offs; 129 uint32_t piod_addr; 130 uint32_t piod_len; 131 }; 132 133 struct ptrace_sc_ret32 { 134 uint32_t sr_retval[2]; 135 int sr_error; 136 }; 137 138 struct ptrace_vm_entry32 { 139 int pve_entry; 140 int pve_timestamp; 141 uint32_t pve_start; 142 uint32_t pve_end; 143 uint32_t pve_offset; 144 u_int pve_prot; 145 u_int pve_pathlen; 146 int32_t pve_fileid; 147 u_int pve_fsid; 148 uint32_t pve_path; 149 }; 150 151 #ifdef __amd64__ 152 CTASSERT(sizeof(struct timeval32) == 8); 153 CTASSERT(sizeof(struct timespec32) == 8); 154 CTASSERT(sizeof(struct itimerval32) == 16); 155 CTASSERT(sizeof(struct bintime32) == 12); 156 #endif 157 CTASSERT(sizeof(struct statfs32) == 256); 158 #ifdef __amd64__ 159 CTASSERT(sizeof(struct rusage32) == 72); 160 #endif 161 CTASSERT(sizeof(struct sigaltstack32) == 12); 162 #ifdef __amd64__ 163 CTASSERT(sizeof(struct kevent32) == 56); 164 #else 165 CTASSERT(sizeof(struct kevent32) == 64); 166 #endif 167 CTASSERT(sizeof(struct iovec32) == 8); 168 CTASSERT(sizeof(struct msghdr32) == 28); 169 #ifdef __amd64__ 170 CTASSERT(sizeof(struct stat32) == 208); 171 CTASSERT(sizeof(struct freebsd11_stat32) == 96); 172 #endif 173 CTASSERT(sizeof(struct sigaction32) == 24); 174 175 static int freebsd32_kevent_copyout(void *arg, struct kevent *kevp, int count); 176 static int freebsd32_kevent_copyin(void *arg, struct kevent *kevp, int count); 177 static int freebsd32_user_clock_nanosleep(struct thread *td, clockid_t clock_id, 178 int flags, const struct timespec32 *ua_rqtp, struct timespec32 *ua_rmtp); 179 180 void 181 freebsd32_rusage_out(const struct rusage *s, struct rusage32 *s32) 182 { 183 184 TV_CP(*s, *s32, ru_utime); 185 TV_CP(*s, *s32, ru_stime); 186 CP(*s, *s32, ru_maxrss); 187 CP(*s, *s32, ru_ixrss); 188 CP(*s, *s32, ru_idrss); 189 CP(*s, *s32, ru_isrss); 190 CP(*s, *s32, ru_minflt); 191 CP(*s, *s32, ru_majflt); 192 CP(*s, *s32, ru_nswap); 193 CP(*s, *s32, ru_inblock); 194 CP(*s, *s32, ru_oublock); 195 CP(*s, *s32, ru_msgsnd); 196 CP(*s, *s32, ru_msgrcv); 197 CP(*s, *s32, ru_nsignals); 198 CP(*s, *s32, ru_nvcsw); 199 CP(*s, *s32, ru_nivcsw); 200 } 201 202 int 203 freebsd32_wait4(struct thread *td, struct freebsd32_wait4_args *uap) 204 { 205 int error, status; 206 struct rusage32 ru32; 207 struct rusage ru, *rup; 208 209 if (uap->rusage != NULL) 210 rup = &ru; 211 else 212 rup = NULL; 213 error = kern_wait(td, uap->pid, &status, uap->options, rup); 214 if (error) 215 return (error); 216 if (uap->status != NULL) 217 error = copyout(&status, uap->status, sizeof(status)); 218 if (uap->rusage != NULL && error == 0) { 219 freebsd32_rusage_out(&ru, &ru32); 220 error = copyout(&ru32, uap->rusage, sizeof(ru32)); 221 } 222 return (error); 223 } 224 225 int 226 freebsd32_wait6(struct thread *td, struct freebsd32_wait6_args *uap) 227 { 228 struct wrusage32 wru32; 229 struct __wrusage wru, *wrup; 230 struct siginfo32 si32; 231 struct __siginfo si, *sip; 232 int error, status; 233 234 if (uap->wrusage != NULL) 235 wrup = &wru; 236 else 237 wrup = NULL; 238 if (uap->info != NULL) { 239 sip = &si; 240 bzero(sip, sizeof(*sip)); 241 } else 242 sip = NULL; 243 error = kern_wait6(td, uap->idtype, PAIR32TO64(id_t, uap->id), 244 &status, uap->options, wrup, sip); 245 if (error != 0) 246 return (error); 247 if (uap->status != NULL) 248 error = copyout(&status, uap->status, sizeof(status)); 249 if (uap->wrusage != NULL && error == 0) { 250 freebsd32_rusage_out(&wru.wru_self, &wru32.wru_self); 251 freebsd32_rusage_out(&wru.wru_children, &wru32.wru_children); 252 error = copyout(&wru32, uap->wrusage, sizeof(wru32)); 253 } 254 if (uap->info != NULL && error == 0) { 255 siginfo_to_siginfo32 (&si, &si32); 256 error = copyout(&si32, uap->info, sizeof(si32)); 257 } 258 return (error); 259 } 260 261 #ifdef COMPAT_FREEBSD4 262 static void 263 copy_statfs(struct statfs *in, struct statfs32 *out) 264 { 265 266 statfs_scale_blocks(in, INT32_MAX); 267 bzero(out, sizeof(*out)); 268 CP(*in, *out, f_bsize); 269 out->f_iosize = MIN(in->f_iosize, INT32_MAX); 270 CP(*in, *out, f_blocks); 271 CP(*in, *out, f_bfree); 272 CP(*in, *out, f_bavail); 273 out->f_files = MIN(in->f_files, INT32_MAX); 274 out->f_ffree = MIN(in->f_ffree, INT32_MAX); 275 CP(*in, *out, f_fsid); 276 CP(*in, *out, f_owner); 277 CP(*in, *out, f_type); 278 CP(*in, *out, f_flags); 279 out->f_syncwrites = MIN(in->f_syncwrites, INT32_MAX); 280 out->f_asyncwrites = MIN(in->f_asyncwrites, INT32_MAX); 281 strlcpy(out->f_fstypename, 282 in->f_fstypename, MFSNAMELEN); 283 strlcpy(out->f_mntonname, 284 in->f_mntonname, min(MNAMELEN, FREEBSD4_MNAMELEN)); 285 out->f_syncreads = MIN(in->f_syncreads, INT32_MAX); 286 out->f_asyncreads = MIN(in->f_asyncreads, INT32_MAX); 287 strlcpy(out->f_mntfromname, 288 in->f_mntfromname, min(MNAMELEN, FREEBSD4_MNAMELEN)); 289 } 290 #endif 291 292 #ifdef COMPAT_FREEBSD4 293 int 294 freebsd4_freebsd32_getfsstat(struct thread *td, 295 struct freebsd4_freebsd32_getfsstat_args *uap) 296 { 297 struct statfs *buf, *sp; 298 struct statfs32 stat32; 299 size_t count, size, copycount; 300 int error; 301 302 count = uap->bufsize / sizeof(struct statfs32); 303 size = count * sizeof(struct statfs); 304 error = kern_getfsstat(td, &buf, size, &count, UIO_SYSSPACE, uap->mode); 305 if (size > 0) { 306 sp = buf; 307 copycount = count; 308 while (copycount > 0 && error == 0) { 309 copy_statfs(sp, &stat32); 310 error = copyout(&stat32, uap->buf, sizeof(stat32)); 311 sp++; 312 uap->buf++; 313 copycount--; 314 } 315 free(buf, M_STATFS); 316 } 317 if (error == 0) 318 td->td_retval[0] = count; 319 return (error); 320 } 321 #endif 322 323 #ifdef COMPAT_FREEBSD10 324 int 325 freebsd10_freebsd32_pipe(struct thread *td, 326 struct freebsd10_freebsd32_pipe_args *uap) { 327 return (freebsd10_pipe(td, (struct freebsd10_pipe_args*)uap)); 328 } 329 #endif 330 331 int 332 freebsd32_sigaltstack(struct thread *td, 333 struct freebsd32_sigaltstack_args *uap) 334 { 335 struct sigaltstack32 s32; 336 struct sigaltstack ss, oss, *ssp; 337 int error; 338 339 if (uap->ss != NULL) { 340 error = copyin(uap->ss, &s32, sizeof(s32)); 341 if (error) 342 return (error); 343 PTRIN_CP(s32, ss, ss_sp); 344 CP(s32, ss, ss_size); 345 CP(s32, ss, ss_flags); 346 ssp = &ss; 347 } else 348 ssp = NULL; 349 error = kern_sigaltstack(td, ssp, &oss); 350 if (error == 0 && uap->oss != NULL) { 351 PTROUT_CP(oss, s32, ss_sp); 352 CP(oss, s32, ss_size); 353 CP(oss, s32, ss_flags); 354 error = copyout(&s32, uap->oss, sizeof(s32)); 355 } 356 return (error); 357 } 358 359 /* 360 * Custom version of exec_copyin_args() so that we can translate 361 * the pointers. 362 */ 363 int 364 freebsd32_exec_copyin_args(struct image_args *args, const char *fname, 365 enum uio_seg segflg, u_int32_t *argv, u_int32_t *envv) 366 { 367 char *argp, *envp; 368 u_int32_t *p32, arg; 369 int error; 370 371 bzero(args, sizeof(*args)); 372 if (argv == NULL) 373 return (EFAULT); 374 375 /* 376 * Allocate demand-paged memory for the file name, argument, and 377 * environment strings. 378 */ 379 error = exec_alloc_args(args); 380 if (error != 0) 381 return (error); 382 383 /* 384 * Copy the file name. 385 */ 386 error = exec_args_add_fname(args, fname, segflg); 387 if (error != 0) 388 goto err_exit; 389 390 /* 391 * extract arguments first 392 */ 393 p32 = argv; 394 for (;;) { 395 error = copyin(p32++, &arg, sizeof(arg)); 396 if (error) 397 goto err_exit; 398 if (arg == 0) 399 break; 400 argp = PTRIN(arg); 401 error = exec_args_add_arg(args, argp, UIO_USERSPACE); 402 if (error != 0) 403 goto err_exit; 404 } 405 406 /* 407 * extract environment strings 408 */ 409 if (envv) { 410 p32 = envv; 411 for (;;) { 412 error = copyin(p32++, &arg, sizeof(arg)); 413 if (error) 414 goto err_exit; 415 if (arg == 0) 416 break; 417 envp = PTRIN(arg); 418 error = exec_args_add_env(args, envp, UIO_USERSPACE); 419 if (error != 0) 420 goto err_exit; 421 } 422 } 423 424 return (0); 425 426 err_exit: 427 exec_free_args(args); 428 return (error); 429 } 430 431 int 432 freebsd32_execve(struct thread *td, struct freebsd32_execve_args *uap) 433 { 434 struct image_args eargs; 435 struct vmspace *oldvmspace; 436 int error; 437 438 error = pre_execve(td, &oldvmspace); 439 if (error != 0) 440 return (error); 441 error = freebsd32_exec_copyin_args(&eargs, uap->fname, UIO_USERSPACE, 442 uap->argv, uap->envv); 443 if (error == 0) 444 error = kern_execve(td, &eargs, NULL, oldvmspace); 445 post_execve(td, error, oldvmspace); 446 AUDIT_SYSCALL_EXIT(error == EJUSTRETURN ? 0 : error, td); 447 return (error); 448 } 449 450 int 451 freebsd32_fexecve(struct thread *td, struct freebsd32_fexecve_args *uap) 452 { 453 struct image_args eargs; 454 struct vmspace *oldvmspace; 455 int error; 456 457 error = pre_execve(td, &oldvmspace); 458 if (error != 0) 459 return (error); 460 error = freebsd32_exec_copyin_args(&eargs, NULL, UIO_SYSSPACE, 461 uap->argv, uap->envv); 462 if (error == 0) { 463 eargs.fd = uap->fd; 464 error = kern_execve(td, &eargs, NULL, oldvmspace); 465 } 466 post_execve(td, error, oldvmspace); 467 AUDIT_SYSCALL_EXIT(error == EJUSTRETURN ? 0 : error, td); 468 return (error); 469 } 470 471 int 472 freebsd32_mknodat(struct thread *td, struct freebsd32_mknodat_args *uap) 473 { 474 475 return (kern_mknodat(td, uap->fd, uap->path, UIO_USERSPACE, 476 uap->mode, PAIR32TO64(dev_t, uap->dev))); 477 } 478 479 int 480 freebsd32_mprotect(struct thread *td, struct freebsd32_mprotect_args *uap) 481 { 482 int prot; 483 484 prot = uap->prot; 485 #if defined(__amd64__) 486 if (i386_read_exec && (prot & PROT_READ) != 0) 487 prot |= PROT_EXEC; 488 #endif 489 return (kern_mprotect(td, (uintptr_t)PTRIN(uap->addr), uap->len, 490 prot)); 491 } 492 493 int 494 freebsd32_mmap(struct thread *td, struct freebsd32_mmap_args *uap) 495 { 496 int prot; 497 498 prot = uap->prot; 499 #if defined(__amd64__) 500 if (i386_read_exec && (prot & PROT_READ)) 501 prot |= PROT_EXEC; 502 #endif 503 504 return (kern_mmap(td, &(struct mmap_req){ 505 .mr_hint = (uintptr_t)uap->addr, 506 .mr_len = uap->len, 507 .mr_prot = prot, 508 .mr_flags = uap->flags, 509 .mr_fd = uap->fd, 510 .mr_pos = PAIR32TO64(off_t, uap->pos), 511 })); 512 } 513 514 #ifdef COMPAT_FREEBSD6 515 int 516 freebsd6_freebsd32_mmap(struct thread *td, 517 struct freebsd6_freebsd32_mmap_args *uap) 518 { 519 int prot; 520 521 prot = uap->prot; 522 #if defined(__amd64__) 523 if (i386_read_exec && (prot & PROT_READ)) 524 prot |= PROT_EXEC; 525 #endif 526 527 return (kern_mmap(td, &(struct mmap_req){ 528 .mr_hint = (uintptr_t)uap->addr, 529 .mr_len = uap->len, 530 .mr_prot = prot, 531 .mr_flags = uap->flags, 532 .mr_fd = uap->fd, 533 .mr_pos = PAIR32TO64(off_t, uap->pos), 534 })); 535 } 536 #endif 537 538 int 539 freebsd32_setitimer(struct thread *td, struct freebsd32_setitimer_args *uap) 540 { 541 struct itimerval itv, oitv, *itvp; 542 struct itimerval32 i32; 543 int error; 544 545 if (uap->itv != NULL) { 546 error = copyin(uap->itv, &i32, sizeof(i32)); 547 if (error) 548 return (error); 549 TV_CP(i32, itv, it_interval); 550 TV_CP(i32, itv, it_value); 551 itvp = &itv; 552 } else 553 itvp = NULL; 554 error = kern_setitimer(td, uap->which, itvp, &oitv); 555 if (error || uap->oitv == NULL) 556 return (error); 557 TV_CP(oitv, i32, it_interval); 558 TV_CP(oitv, i32, it_value); 559 return (copyout(&i32, uap->oitv, sizeof(i32))); 560 } 561 562 int 563 freebsd32_getitimer(struct thread *td, struct freebsd32_getitimer_args *uap) 564 { 565 struct itimerval itv; 566 struct itimerval32 i32; 567 int error; 568 569 error = kern_getitimer(td, uap->which, &itv); 570 if (error || uap->itv == NULL) 571 return (error); 572 TV_CP(itv, i32, it_interval); 573 TV_CP(itv, i32, it_value); 574 return (copyout(&i32, uap->itv, sizeof(i32))); 575 } 576 577 int 578 freebsd32_select(struct thread *td, struct freebsd32_select_args *uap) 579 { 580 struct timeval32 tv32; 581 struct timeval tv, *tvp; 582 int error; 583 584 if (uap->tv != NULL) { 585 error = copyin(uap->tv, &tv32, sizeof(tv32)); 586 if (error) 587 return (error); 588 CP(tv32, tv, tv_sec); 589 CP(tv32, tv, tv_usec); 590 tvp = &tv; 591 } else 592 tvp = NULL; 593 /* 594 * XXX Do pointers need PTRIN()? 595 */ 596 return (kern_select(td, uap->nd, uap->in, uap->ou, uap->ex, tvp, 597 sizeof(int32_t) * 8)); 598 } 599 600 int 601 freebsd32_pselect(struct thread *td, struct freebsd32_pselect_args *uap) 602 { 603 struct timespec32 ts32; 604 struct timespec ts; 605 struct timeval tv, *tvp; 606 sigset_t set, *uset; 607 int error; 608 609 if (uap->ts != NULL) { 610 error = copyin(uap->ts, &ts32, sizeof(ts32)); 611 if (error != 0) 612 return (error); 613 CP(ts32, ts, tv_sec); 614 CP(ts32, ts, tv_nsec); 615 TIMESPEC_TO_TIMEVAL(&tv, &ts); 616 tvp = &tv; 617 } else 618 tvp = NULL; 619 if (uap->sm != NULL) { 620 error = copyin(uap->sm, &set, sizeof(set)); 621 if (error != 0) 622 return (error); 623 uset = &set; 624 } else 625 uset = NULL; 626 /* 627 * XXX Do pointers need PTRIN()? 628 */ 629 error = kern_pselect(td, uap->nd, uap->in, uap->ou, uap->ex, tvp, 630 uset, sizeof(int32_t) * 8); 631 return (error); 632 } 633 634 /* 635 * Copy 'count' items into the destination list pointed to by uap->eventlist. 636 */ 637 static int 638 freebsd32_kevent_copyout(void *arg, struct kevent *kevp, int count) 639 { 640 struct freebsd32_kevent_args *uap; 641 struct kevent32 ks32[KQ_NEVENTS]; 642 uint64_t e; 643 int i, j, error; 644 645 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count)); 646 uap = (struct freebsd32_kevent_args *)arg; 647 648 for (i = 0; i < count; i++) { 649 CP(kevp[i], ks32[i], ident); 650 CP(kevp[i], ks32[i], filter); 651 CP(kevp[i], ks32[i], flags); 652 CP(kevp[i], ks32[i], fflags); 653 #if BYTE_ORDER == LITTLE_ENDIAN 654 ks32[i].data1 = kevp[i].data; 655 ks32[i].data2 = kevp[i].data >> 32; 656 #else 657 ks32[i].data1 = kevp[i].data >> 32; 658 ks32[i].data2 = kevp[i].data; 659 #endif 660 PTROUT_CP(kevp[i], ks32[i], udata); 661 for (j = 0; j < nitems(kevp->ext); j++) { 662 e = kevp[i].ext[j]; 663 #if BYTE_ORDER == LITTLE_ENDIAN 664 ks32[i].ext64[2 * j] = e; 665 ks32[i].ext64[2 * j + 1] = e >> 32; 666 #else 667 ks32[i].ext64[2 * j] = e >> 32; 668 ks32[i].ext64[2 * j + 1] = e; 669 #endif 670 } 671 } 672 error = copyout(ks32, uap->eventlist, count * sizeof *ks32); 673 if (error == 0) 674 uap->eventlist += count; 675 return (error); 676 } 677 678 /* 679 * Copy 'count' items from the list pointed to by uap->changelist. 680 */ 681 static int 682 freebsd32_kevent_copyin(void *arg, struct kevent *kevp, int count) 683 { 684 struct freebsd32_kevent_args *uap; 685 struct kevent32 ks32[KQ_NEVENTS]; 686 uint64_t e; 687 int i, j, error; 688 689 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count)); 690 uap = (struct freebsd32_kevent_args *)arg; 691 692 error = copyin(uap->changelist, ks32, count * sizeof *ks32); 693 if (error) 694 goto done; 695 uap->changelist += count; 696 697 for (i = 0; i < count; i++) { 698 CP(ks32[i], kevp[i], ident); 699 CP(ks32[i], kevp[i], filter); 700 CP(ks32[i], kevp[i], flags); 701 CP(ks32[i], kevp[i], fflags); 702 kevp[i].data = PAIR32TO64(uint64_t, ks32[i].data); 703 PTRIN_CP(ks32[i], kevp[i], udata); 704 for (j = 0; j < nitems(kevp->ext); j++) { 705 #if BYTE_ORDER == LITTLE_ENDIAN 706 e = ks32[i].ext64[2 * j + 1]; 707 e <<= 32; 708 e += ks32[i].ext64[2 * j]; 709 #else 710 e = ks32[i].ext64[2 * j]; 711 e <<= 32; 712 e += ks32[i].ext64[2 * j + 1]; 713 #endif 714 kevp[i].ext[j] = e; 715 } 716 } 717 done: 718 return (error); 719 } 720 721 int 722 freebsd32_kevent(struct thread *td, struct freebsd32_kevent_args *uap) 723 { 724 struct timespec32 ts32; 725 struct timespec ts, *tsp; 726 struct kevent_copyops k_ops = { 727 .arg = uap, 728 .k_copyout = freebsd32_kevent_copyout, 729 .k_copyin = freebsd32_kevent_copyin, 730 }; 731 #ifdef KTRACE 732 struct kevent32 *eventlist = uap->eventlist; 733 #endif 734 int error; 735 736 if (uap->timeout) { 737 error = copyin(uap->timeout, &ts32, sizeof(ts32)); 738 if (error) 739 return (error); 740 CP(ts32, ts, tv_sec); 741 CP(ts32, ts, tv_nsec); 742 tsp = &ts; 743 } else 744 tsp = NULL; 745 #ifdef KTRACE 746 if (KTRPOINT(td, KTR_STRUCT_ARRAY)) 747 ktrstructarray("kevent32", UIO_USERSPACE, uap->changelist, 748 uap->nchanges, sizeof(struct kevent32)); 749 #endif 750 error = kern_kevent(td, uap->fd, uap->nchanges, uap->nevents, 751 &k_ops, tsp); 752 #ifdef KTRACE 753 if (error == 0 && KTRPOINT(td, KTR_STRUCT_ARRAY)) 754 ktrstructarray("kevent32", UIO_USERSPACE, eventlist, 755 td->td_retval[0], sizeof(struct kevent32)); 756 #endif 757 return (error); 758 } 759 760 #ifdef COMPAT_FREEBSD11 761 static int 762 freebsd32_kevent11_copyout(void *arg, struct kevent *kevp, int count) 763 { 764 struct freebsd11_freebsd32_kevent_args *uap; 765 struct kevent32_freebsd11 ks32[KQ_NEVENTS]; 766 int i, error; 767 768 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count)); 769 uap = (struct freebsd11_freebsd32_kevent_args *)arg; 770 771 for (i = 0; i < count; i++) { 772 CP(kevp[i], ks32[i], ident); 773 CP(kevp[i], ks32[i], filter); 774 CP(kevp[i], ks32[i], flags); 775 CP(kevp[i], ks32[i], fflags); 776 CP(kevp[i], ks32[i], data); 777 PTROUT_CP(kevp[i], ks32[i], udata); 778 } 779 error = copyout(ks32, uap->eventlist, count * sizeof *ks32); 780 if (error == 0) 781 uap->eventlist += count; 782 return (error); 783 } 784 785 /* 786 * Copy 'count' items from the list pointed to by uap->changelist. 787 */ 788 static int 789 freebsd32_kevent11_copyin(void *arg, struct kevent *kevp, int count) 790 { 791 struct freebsd11_freebsd32_kevent_args *uap; 792 struct kevent32_freebsd11 ks32[KQ_NEVENTS]; 793 int i, j, error; 794 795 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count)); 796 uap = (struct freebsd11_freebsd32_kevent_args *)arg; 797 798 error = copyin(uap->changelist, ks32, count * sizeof *ks32); 799 if (error) 800 goto done; 801 uap->changelist += count; 802 803 for (i = 0; i < count; i++) { 804 CP(ks32[i], kevp[i], ident); 805 CP(ks32[i], kevp[i], filter); 806 CP(ks32[i], kevp[i], flags); 807 CP(ks32[i], kevp[i], fflags); 808 CP(ks32[i], kevp[i], data); 809 PTRIN_CP(ks32[i], kevp[i], udata); 810 for (j = 0; j < nitems(kevp->ext); j++) 811 kevp[i].ext[j] = 0; 812 } 813 done: 814 return (error); 815 } 816 817 int 818 freebsd11_freebsd32_kevent(struct thread *td, 819 struct freebsd11_freebsd32_kevent_args *uap) 820 { 821 struct timespec32 ts32; 822 struct timespec ts, *tsp; 823 struct kevent_copyops k_ops = { 824 .arg = uap, 825 .k_copyout = freebsd32_kevent11_copyout, 826 .k_copyin = freebsd32_kevent11_copyin, 827 }; 828 #ifdef KTRACE 829 struct kevent32_freebsd11 *eventlist = uap->eventlist; 830 #endif 831 int error; 832 833 if (uap->timeout) { 834 error = copyin(uap->timeout, &ts32, sizeof(ts32)); 835 if (error) 836 return (error); 837 CP(ts32, ts, tv_sec); 838 CP(ts32, ts, tv_nsec); 839 tsp = &ts; 840 } else 841 tsp = NULL; 842 #ifdef KTRACE 843 if (KTRPOINT(td, KTR_STRUCT_ARRAY)) 844 ktrstructarray("kevent32_freebsd11", UIO_USERSPACE, 845 uap->changelist, uap->nchanges, 846 sizeof(struct kevent32_freebsd11)); 847 #endif 848 error = kern_kevent(td, uap->fd, uap->nchanges, uap->nevents, 849 &k_ops, tsp); 850 #ifdef KTRACE 851 if (error == 0 && KTRPOINT(td, KTR_STRUCT_ARRAY)) 852 ktrstructarray("kevent32_freebsd11", UIO_USERSPACE, 853 eventlist, td->td_retval[0], 854 sizeof(struct kevent32_freebsd11)); 855 #endif 856 return (error); 857 } 858 #endif 859 860 int 861 freebsd32_gettimeofday(struct thread *td, 862 struct freebsd32_gettimeofday_args *uap) 863 { 864 struct timeval atv; 865 struct timeval32 atv32; 866 struct timezone rtz; 867 int error = 0; 868 869 if (uap->tp) { 870 microtime(&atv); 871 CP(atv, atv32, tv_sec); 872 CP(atv, atv32, tv_usec); 873 error = copyout(&atv32, uap->tp, sizeof (atv32)); 874 } 875 if (error == 0 && uap->tzp != NULL) { 876 rtz.tz_minuteswest = 0; 877 rtz.tz_dsttime = 0; 878 error = copyout(&rtz, uap->tzp, sizeof (rtz)); 879 } 880 return (error); 881 } 882 883 int 884 freebsd32_getrusage(struct thread *td, struct freebsd32_getrusage_args *uap) 885 { 886 struct rusage32 s32; 887 struct rusage s; 888 int error; 889 890 error = kern_getrusage(td, uap->who, &s); 891 if (error == 0) { 892 freebsd32_rusage_out(&s, &s32); 893 error = copyout(&s32, uap->rusage, sizeof(s32)); 894 } 895 return (error); 896 } 897 898 static void 899 ptrace_lwpinfo_to32(const struct ptrace_lwpinfo *pl, 900 struct ptrace_lwpinfo32 *pl32) 901 { 902 903 bzero(pl32, sizeof(*pl32)); 904 pl32->pl_lwpid = pl->pl_lwpid; 905 pl32->pl_event = pl->pl_event; 906 pl32->pl_flags = pl->pl_flags; 907 pl32->pl_sigmask = pl->pl_sigmask; 908 pl32->pl_siglist = pl->pl_siglist; 909 siginfo_to_siginfo32(&pl->pl_siginfo, &pl32->pl_siginfo); 910 strcpy(pl32->pl_tdname, pl->pl_tdname); 911 pl32->pl_child_pid = pl->pl_child_pid; 912 pl32->pl_syscall_code = pl->pl_syscall_code; 913 pl32->pl_syscall_narg = pl->pl_syscall_narg; 914 } 915 916 static void 917 ptrace_sc_ret_to32(const struct ptrace_sc_ret *psr, 918 struct ptrace_sc_ret32 *psr32) 919 { 920 921 bzero(psr32, sizeof(*psr32)); 922 psr32->sr_retval[0] = psr->sr_retval[0]; 923 psr32->sr_retval[1] = psr->sr_retval[1]; 924 psr32->sr_error = psr->sr_error; 925 } 926 927 int 928 freebsd32_ptrace(struct thread *td, struct freebsd32_ptrace_args *uap) 929 { 930 union { 931 struct ptrace_io_desc piod; 932 struct ptrace_lwpinfo pl; 933 struct ptrace_vm_entry pve; 934 struct ptrace_coredump pc; 935 struct dbreg32 dbreg; 936 struct fpreg32 fpreg; 937 struct reg32 reg; 938 register_t args[nitems(td->td_sa.args)]; 939 struct ptrace_sc_ret psr; 940 int ptevents; 941 } r; 942 union { 943 struct ptrace_io_desc32 piod; 944 struct ptrace_lwpinfo32 pl; 945 struct ptrace_vm_entry32 pve; 946 struct ptrace_coredump32 pc; 947 uint32_t args[nitems(td->td_sa.args)]; 948 struct ptrace_sc_ret32 psr; 949 } r32; 950 void *addr; 951 int data, error = 0, i; 952 953 AUDIT_ARG_PID(uap->pid); 954 AUDIT_ARG_CMD(uap->req); 955 AUDIT_ARG_VALUE(uap->data); 956 addr = &r; 957 data = uap->data; 958 switch (uap->req) { 959 case PT_GET_EVENT_MASK: 960 case PT_GET_SC_ARGS: 961 case PT_GET_SC_RET: 962 break; 963 case PT_LWPINFO: 964 if (uap->data > sizeof(r32.pl)) 965 return (EINVAL); 966 967 /* 968 * Pass size of native structure in 'data'. Truncate 969 * if necessary to avoid siginfo. 970 */ 971 data = sizeof(r.pl); 972 if (uap->data < offsetof(struct ptrace_lwpinfo32, pl_siginfo) + 973 sizeof(struct siginfo32)) 974 data = offsetof(struct ptrace_lwpinfo, pl_siginfo); 975 break; 976 case PT_GETREGS: 977 bzero(&r.reg, sizeof(r.reg)); 978 break; 979 case PT_GETFPREGS: 980 bzero(&r.fpreg, sizeof(r.fpreg)); 981 break; 982 case PT_GETDBREGS: 983 bzero(&r.dbreg, sizeof(r.dbreg)); 984 break; 985 case PT_SETREGS: 986 error = copyin(uap->addr, &r.reg, sizeof(r.reg)); 987 break; 988 case PT_SETFPREGS: 989 error = copyin(uap->addr, &r.fpreg, sizeof(r.fpreg)); 990 break; 991 case PT_SETDBREGS: 992 error = copyin(uap->addr, &r.dbreg, sizeof(r.dbreg)); 993 break; 994 case PT_SET_EVENT_MASK: 995 if (uap->data != sizeof(r.ptevents)) 996 error = EINVAL; 997 else 998 error = copyin(uap->addr, &r.ptevents, uap->data); 999 break; 1000 case PT_IO: 1001 error = copyin(uap->addr, &r32.piod, sizeof(r32.piod)); 1002 if (error) 1003 break; 1004 CP(r32.piod, r.piod, piod_op); 1005 PTRIN_CP(r32.piod, r.piod, piod_offs); 1006 PTRIN_CP(r32.piod, r.piod, piod_addr); 1007 CP(r32.piod, r.piod, piod_len); 1008 break; 1009 case PT_VM_ENTRY: 1010 error = copyin(uap->addr, &r32.pve, sizeof(r32.pve)); 1011 if (error) 1012 break; 1013 1014 CP(r32.pve, r.pve, pve_entry); 1015 CP(r32.pve, r.pve, pve_timestamp); 1016 CP(r32.pve, r.pve, pve_start); 1017 CP(r32.pve, r.pve, pve_end); 1018 CP(r32.pve, r.pve, pve_offset); 1019 CP(r32.pve, r.pve, pve_prot); 1020 CP(r32.pve, r.pve, pve_pathlen); 1021 CP(r32.pve, r.pve, pve_fileid); 1022 CP(r32.pve, r.pve, pve_fsid); 1023 PTRIN_CP(r32.pve, r.pve, pve_path); 1024 break; 1025 case PT_COREDUMP: 1026 if (uap->data != sizeof(r32.pc)) 1027 error = EINVAL; 1028 else 1029 error = copyin(uap->addr, &r32.pc, uap->data); 1030 CP(r32.pc, r.pc, pc_fd); 1031 CP(r32.pc, r.pc, pc_flags); 1032 r.pc.pc_limit = PAIR32TO64(off_t, r32.pc.pc_limit); 1033 data = sizeof(r.pc); 1034 break; 1035 case PT_GET_SC_ARGS_ALL: 1036 error = EINVAL; 1037 break; 1038 default: 1039 addr = uap->addr; 1040 break; 1041 } 1042 if (error) 1043 return (error); 1044 1045 error = kern_ptrace(td, uap->req, uap->pid, addr, data); 1046 if (error) 1047 return (error); 1048 1049 switch (uap->req) { 1050 case PT_VM_ENTRY: 1051 CP(r.pve, r32.pve, pve_entry); 1052 CP(r.pve, r32.pve, pve_timestamp); 1053 CP(r.pve, r32.pve, pve_start); 1054 CP(r.pve, r32.pve, pve_end); 1055 CP(r.pve, r32.pve, pve_offset); 1056 CP(r.pve, r32.pve, pve_prot); 1057 CP(r.pve, r32.pve, pve_pathlen); 1058 CP(r.pve, r32.pve, pve_fileid); 1059 CP(r.pve, r32.pve, pve_fsid); 1060 error = copyout(&r32.pve, uap->addr, sizeof(r32.pve)); 1061 break; 1062 case PT_IO: 1063 CP(r.piod, r32.piod, piod_len); 1064 error = copyout(&r32.piod, uap->addr, sizeof(r32.piod)); 1065 break; 1066 case PT_GETREGS: 1067 error = copyout(&r.reg, uap->addr, sizeof(r.reg)); 1068 break; 1069 case PT_GETFPREGS: 1070 error = copyout(&r.fpreg, uap->addr, sizeof(r.fpreg)); 1071 break; 1072 case PT_GETDBREGS: 1073 error = copyout(&r.dbreg, uap->addr, sizeof(r.dbreg)); 1074 break; 1075 case PT_GET_EVENT_MASK: 1076 /* NB: The size in uap->data is validated in kern_ptrace(). */ 1077 error = copyout(&r.ptevents, uap->addr, uap->data); 1078 break; 1079 case PT_LWPINFO: 1080 ptrace_lwpinfo_to32(&r.pl, &r32.pl); 1081 error = copyout(&r32.pl, uap->addr, uap->data); 1082 break; 1083 case PT_GET_SC_ARGS: 1084 for (i = 0; i < nitems(r.args); i++) 1085 r32.args[i] = (uint32_t)r.args[i]; 1086 error = copyout(r32.args, uap->addr, MIN(uap->data, 1087 sizeof(r32.args))); 1088 break; 1089 case PT_GET_SC_RET: 1090 ptrace_sc_ret_to32(&r.psr, &r32.psr); 1091 error = copyout(&r32.psr, uap->addr, MIN(uap->data, 1092 sizeof(r32.psr))); 1093 break; 1094 } 1095 1096 return (error); 1097 } 1098 1099 int 1100 freebsd32_copyinuio(struct iovec32 *iovp, u_int iovcnt, struct uio **uiop) 1101 { 1102 struct iovec32 iov32; 1103 struct iovec *iov; 1104 struct uio *uio; 1105 u_int iovlen; 1106 int error, i; 1107 1108 *uiop = NULL; 1109 if (iovcnt > UIO_MAXIOV) 1110 return (EINVAL); 1111 iovlen = iovcnt * sizeof(struct iovec); 1112 uio = malloc(iovlen + sizeof *uio, M_IOV, M_WAITOK); 1113 iov = (struct iovec *)(uio + 1); 1114 for (i = 0; i < iovcnt; i++) { 1115 error = copyin(&iovp[i], &iov32, sizeof(struct iovec32)); 1116 if (error) { 1117 free(uio, M_IOV); 1118 return (error); 1119 } 1120 iov[i].iov_base = PTRIN(iov32.iov_base); 1121 iov[i].iov_len = iov32.iov_len; 1122 } 1123 uio->uio_iov = iov; 1124 uio->uio_iovcnt = iovcnt; 1125 uio->uio_segflg = UIO_USERSPACE; 1126 uio->uio_offset = -1; 1127 uio->uio_resid = 0; 1128 for (i = 0; i < iovcnt; i++) { 1129 if (iov->iov_len > INT_MAX - uio->uio_resid) { 1130 free(uio, M_IOV); 1131 return (EINVAL); 1132 } 1133 uio->uio_resid += iov->iov_len; 1134 iov++; 1135 } 1136 *uiop = uio; 1137 return (0); 1138 } 1139 1140 int 1141 freebsd32_readv(struct thread *td, struct freebsd32_readv_args *uap) 1142 { 1143 struct uio *auio; 1144 int error; 1145 1146 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 1147 if (error) 1148 return (error); 1149 error = kern_readv(td, uap->fd, auio); 1150 free(auio, M_IOV); 1151 return (error); 1152 } 1153 1154 int 1155 freebsd32_writev(struct thread *td, struct freebsd32_writev_args *uap) 1156 { 1157 struct uio *auio; 1158 int error; 1159 1160 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 1161 if (error) 1162 return (error); 1163 error = kern_writev(td, uap->fd, auio); 1164 free(auio, M_IOV); 1165 return (error); 1166 } 1167 1168 int 1169 freebsd32_preadv(struct thread *td, struct freebsd32_preadv_args *uap) 1170 { 1171 struct uio *auio; 1172 int error; 1173 1174 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 1175 if (error) 1176 return (error); 1177 error = kern_preadv(td, uap->fd, auio, PAIR32TO64(off_t,uap->offset)); 1178 free(auio, M_IOV); 1179 return (error); 1180 } 1181 1182 int 1183 freebsd32_pwritev(struct thread *td, struct freebsd32_pwritev_args *uap) 1184 { 1185 struct uio *auio; 1186 int error; 1187 1188 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 1189 if (error) 1190 return (error); 1191 error = kern_pwritev(td, uap->fd, auio, PAIR32TO64(off_t,uap->offset)); 1192 free(auio, M_IOV); 1193 return (error); 1194 } 1195 1196 int 1197 freebsd32_copyiniov(struct iovec32 *iovp32, u_int iovcnt, struct iovec **iovp, 1198 int error) 1199 { 1200 struct iovec32 iov32; 1201 struct iovec *iov; 1202 u_int iovlen; 1203 int i; 1204 1205 *iovp = NULL; 1206 if (iovcnt > UIO_MAXIOV) 1207 return (error); 1208 iovlen = iovcnt * sizeof(struct iovec); 1209 iov = malloc(iovlen, M_IOV, M_WAITOK); 1210 for (i = 0; i < iovcnt; i++) { 1211 error = copyin(&iovp32[i], &iov32, sizeof(struct iovec32)); 1212 if (error) { 1213 free(iov, M_IOV); 1214 return (error); 1215 } 1216 iov[i].iov_base = PTRIN(iov32.iov_base); 1217 iov[i].iov_len = iov32.iov_len; 1218 } 1219 *iovp = iov; 1220 return (0); 1221 } 1222 1223 static int 1224 freebsd32_copyinmsghdr(struct msghdr32 *msg32, struct msghdr *msg) 1225 { 1226 struct msghdr32 m32; 1227 int error; 1228 1229 error = copyin(msg32, &m32, sizeof(m32)); 1230 if (error) 1231 return (error); 1232 msg->msg_name = PTRIN(m32.msg_name); 1233 msg->msg_namelen = m32.msg_namelen; 1234 msg->msg_iov = PTRIN(m32.msg_iov); 1235 msg->msg_iovlen = m32.msg_iovlen; 1236 msg->msg_control = PTRIN(m32.msg_control); 1237 msg->msg_controllen = m32.msg_controllen; 1238 msg->msg_flags = m32.msg_flags; 1239 return (0); 1240 } 1241 1242 static int 1243 freebsd32_copyoutmsghdr(struct msghdr *msg, struct msghdr32 *msg32) 1244 { 1245 struct msghdr32 m32; 1246 int error; 1247 1248 m32.msg_name = PTROUT(msg->msg_name); 1249 m32.msg_namelen = msg->msg_namelen; 1250 m32.msg_iov = PTROUT(msg->msg_iov); 1251 m32.msg_iovlen = msg->msg_iovlen; 1252 m32.msg_control = PTROUT(msg->msg_control); 1253 m32.msg_controllen = msg->msg_controllen; 1254 m32.msg_flags = msg->msg_flags; 1255 error = copyout(&m32, msg32, sizeof(m32)); 1256 return (error); 1257 } 1258 1259 #ifndef __mips__ 1260 #define FREEBSD32_ALIGNBYTES (sizeof(int) - 1) 1261 #else 1262 #define FREEBSD32_ALIGNBYTES (sizeof(long) - 1) 1263 #endif 1264 #define FREEBSD32_ALIGN(p) \ 1265 (((u_long)(p) + FREEBSD32_ALIGNBYTES) & ~FREEBSD32_ALIGNBYTES) 1266 #define FREEBSD32_CMSG_SPACE(l) \ 1267 (FREEBSD32_ALIGN(sizeof(struct cmsghdr)) + FREEBSD32_ALIGN(l)) 1268 1269 #define FREEBSD32_CMSG_DATA(cmsg) ((unsigned char *)(cmsg) + \ 1270 FREEBSD32_ALIGN(sizeof(struct cmsghdr))) 1271 1272 static size_t 1273 freebsd32_cmsg_convert(const struct cmsghdr *cm, void *data, socklen_t datalen) 1274 { 1275 size_t copylen; 1276 union { 1277 struct timespec32 ts; 1278 struct timeval32 tv; 1279 struct bintime32 bt; 1280 } tmp32; 1281 1282 union { 1283 struct timespec ts; 1284 struct timeval tv; 1285 struct bintime bt; 1286 } *in; 1287 1288 in = data; 1289 copylen = 0; 1290 switch (cm->cmsg_level) { 1291 case SOL_SOCKET: 1292 switch (cm->cmsg_type) { 1293 case SCM_TIMESTAMP: 1294 TV_CP(*in, tmp32, tv); 1295 copylen = sizeof(tmp32.tv); 1296 break; 1297 1298 case SCM_BINTIME: 1299 BT_CP(*in, tmp32, bt); 1300 copylen = sizeof(tmp32.bt); 1301 break; 1302 1303 case SCM_REALTIME: 1304 case SCM_MONOTONIC: 1305 TS_CP(*in, tmp32, ts); 1306 copylen = sizeof(tmp32.ts); 1307 break; 1308 1309 default: 1310 break; 1311 } 1312 1313 default: 1314 break; 1315 } 1316 1317 if (copylen == 0) 1318 return (datalen); 1319 1320 KASSERT((datalen >= copylen), ("corrupted cmsghdr")); 1321 1322 bcopy(&tmp32, data, copylen); 1323 return (copylen); 1324 } 1325 1326 static int 1327 freebsd32_copy_msg_out(struct msghdr *msg, struct mbuf *control) 1328 { 1329 struct cmsghdr *cm; 1330 void *data; 1331 socklen_t clen, datalen, datalen_out, oldclen; 1332 int error; 1333 caddr_t ctlbuf; 1334 int len, maxlen, copylen; 1335 struct mbuf *m; 1336 error = 0; 1337 1338 len = msg->msg_controllen; 1339 maxlen = msg->msg_controllen; 1340 msg->msg_controllen = 0; 1341 1342 ctlbuf = msg->msg_control; 1343 for (m = control; m != NULL && len > 0; m = m->m_next) { 1344 cm = mtod(m, struct cmsghdr *); 1345 clen = m->m_len; 1346 while (cm != NULL) { 1347 if (sizeof(struct cmsghdr) > clen || 1348 cm->cmsg_len > clen) { 1349 error = EINVAL; 1350 break; 1351 } 1352 1353 data = CMSG_DATA(cm); 1354 datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data; 1355 datalen_out = freebsd32_cmsg_convert(cm, data, datalen); 1356 1357 /* 1358 * Copy out the message header. Preserve the native 1359 * message size in case we need to inspect the message 1360 * contents later. 1361 */ 1362 copylen = sizeof(struct cmsghdr); 1363 if (len < copylen) { 1364 msg->msg_flags |= MSG_CTRUNC; 1365 m_dispose_extcontrolm(m); 1366 goto exit; 1367 } 1368 oldclen = cm->cmsg_len; 1369 cm->cmsg_len = FREEBSD32_ALIGN(sizeof(struct cmsghdr)) + 1370 datalen_out; 1371 error = copyout(cm, ctlbuf, copylen); 1372 cm->cmsg_len = oldclen; 1373 if (error != 0) 1374 goto exit; 1375 1376 ctlbuf += FREEBSD32_ALIGN(copylen); 1377 len -= FREEBSD32_ALIGN(copylen); 1378 1379 copylen = datalen_out; 1380 if (len < copylen) { 1381 msg->msg_flags |= MSG_CTRUNC; 1382 m_dispose_extcontrolm(m); 1383 break; 1384 } 1385 1386 /* Copy out the message data. */ 1387 error = copyout(data, ctlbuf, copylen); 1388 if (error) 1389 goto exit; 1390 1391 ctlbuf += FREEBSD32_ALIGN(copylen); 1392 len -= FREEBSD32_ALIGN(copylen); 1393 1394 if (CMSG_SPACE(datalen) < clen) { 1395 clen -= CMSG_SPACE(datalen); 1396 cm = (struct cmsghdr *) 1397 ((caddr_t)cm + CMSG_SPACE(datalen)); 1398 } else { 1399 clen = 0; 1400 cm = NULL; 1401 } 1402 1403 msg->msg_controllen += 1404 FREEBSD32_CMSG_SPACE(datalen_out); 1405 } 1406 } 1407 if (len == 0 && m != NULL) { 1408 msg->msg_flags |= MSG_CTRUNC; 1409 m_dispose_extcontrolm(m); 1410 } 1411 1412 exit: 1413 return (error); 1414 } 1415 1416 int 1417 freebsd32_recvmsg(td, uap) 1418 struct thread *td; 1419 struct freebsd32_recvmsg_args /* { 1420 int s; 1421 struct msghdr32 *msg; 1422 int flags; 1423 } */ *uap; 1424 { 1425 struct msghdr msg; 1426 struct msghdr32 m32; 1427 struct iovec *uiov, *iov; 1428 struct mbuf *control = NULL; 1429 struct mbuf **controlp; 1430 1431 int error; 1432 error = copyin(uap->msg, &m32, sizeof(m32)); 1433 if (error) 1434 return (error); 1435 error = freebsd32_copyinmsghdr(uap->msg, &msg); 1436 if (error) 1437 return (error); 1438 error = freebsd32_copyiniov(PTRIN(m32.msg_iov), m32.msg_iovlen, &iov, 1439 EMSGSIZE); 1440 if (error) 1441 return (error); 1442 msg.msg_flags = uap->flags; 1443 uiov = msg.msg_iov; 1444 msg.msg_iov = iov; 1445 1446 controlp = (msg.msg_control != NULL) ? &control : NULL; 1447 error = kern_recvit(td, uap->s, &msg, UIO_USERSPACE, controlp); 1448 if (error == 0) { 1449 msg.msg_iov = uiov; 1450 1451 if (control != NULL) 1452 error = freebsd32_copy_msg_out(&msg, control); 1453 else 1454 msg.msg_controllen = 0; 1455 1456 if (error == 0) 1457 error = freebsd32_copyoutmsghdr(&msg, uap->msg); 1458 } 1459 free(iov, M_IOV); 1460 1461 if (control != NULL) { 1462 if (error != 0) 1463 m_dispose_extcontrolm(control); 1464 m_freem(control); 1465 } 1466 1467 return (error); 1468 } 1469 1470 /* 1471 * Copy-in the array of control messages constructed using alignment 1472 * and padding suitable for a 32-bit environment and construct an 1473 * mbuf using alignment and padding suitable for a 64-bit kernel. 1474 * The alignment and padding are defined indirectly by CMSG_DATA(), 1475 * CMSG_SPACE() and CMSG_LEN(). 1476 */ 1477 static int 1478 freebsd32_copyin_control(struct mbuf **mp, caddr_t buf, u_int buflen) 1479 { 1480 struct cmsghdr *cm; 1481 struct mbuf *m; 1482 void *in, *in1, *md; 1483 u_int msglen, outlen; 1484 int error; 1485 1486 if (buflen > MCLBYTES) 1487 return (EINVAL); 1488 1489 in = malloc(buflen, M_TEMP, M_WAITOK); 1490 error = copyin(buf, in, buflen); 1491 if (error != 0) 1492 goto out; 1493 1494 /* 1495 * Make a pass over the input buffer to determine the amount of space 1496 * required for 64 bit-aligned copies of the control messages. 1497 */ 1498 in1 = in; 1499 outlen = 0; 1500 while (buflen > 0) { 1501 if (buflen < sizeof(*cm)) { 1502 error = EINVAL; 1503 break; 1504 } 1505 cm = (struct cmsghdr *)in1; 1506 if (cm->cmsg_len < FREEBSD32_ALIGN(sizeof(*cm))) { 1507 error = EINVAL; 1508 break; 1509 } 1510 msglen = FREEBSD32_ALIGN(cm->cmsg_len); 1511 if (msglen > buflen || msglen < cm->cmsg_len) { 1512 error = EINVAL; 1513 break; 1514 } 1515 buflen -= msglen; 1516 1517 in1 = (char *)in1 + msglen; 1518 outlen += CMSG_ALIGN(sizeof(*cm)) + 1519 CMSG_ALIGN(msglen - FREEBSD32_ALIGN(sizeof(*cm))); 1520 } 1521 if (error == 0 && outlen > MCLBYTES) { 1522 /* 1523 * XXXMJ This implies that the upper limit on 32-bit aligned 1524 * control messages is less than MCLBYTES, and so we are not 1525 * perfectly compatible. However, there is no platform 1526 * guarantee that mbuf clusters larger than MCLBYTES can be 1527 * allocated. 1528 */ 1529 error = EINVAL; 1530 } 1531 if (error != 0) 1532 goto out; 1533 1534 m = m_get2(outlen, M_WAITOK, MT_CONTROL, 0); 1535 m->m_len = outlen; 1536 md = mtod(m, void *); 1537 1538 /* 1539 * Make a second pass over input messages, copying them into the output 1540 * buffer. 1541 */ 1542 in1 = in; 1543 while (outlen > 0) { 1544 /* Copy the message header and align the length field. */ 1545 cm = md; 1546 memcpy(cm, in1, sizeof(*cm)); 1547 msglen = cm->cmsg_len - FREEBSD32_ALIGN(sizeof(*cm)); 1548 cm->cmsg_len = CMSG_ALIGN(sizeof(*cm)) + msglen; 1549 1550 /* Copy the message body. */ 1551 in1 = (char *)in1 + FREEBSD32_ALIGN(sizeof(*cm)); 1552 md = (char *)md + CMSG_ALIGN(sizeof(*cm)); 1553 memcpy(md, in1, msglen); 1554 in1 = (char *)in1 + FREEBSD32_ALIGN(msglen); 1555 md = (char *)md + CMSG_ALIGN(msglen); 1556 KASSERT(outlen >= CMSG_ALIGN(sizeof(*cm)) + CMSG_ALIGN(msglen), 1557 ("outlen %u underflow, msglen %u", outlen, msglen)); 1558 outlen -= CMSG_ALIGN(sizeof(*cm)) + CMSG_ALIGN(msglen); 1559 } 1560 1561 *mp = m; 1562 out: 1563 free(in, M_TEMP); 1564 return (error); 1565 } 1566 1567 int 1568 freebsd32_sendmsg(struct thread *td, 1569 struct freebsd32_sendmsg_args *uap) 1570 { 1571 struct msghdr msg; 1572 struct msghdr32 m32; 1573 struct iovec *iov; 1574 struct mbuf *control = NULL; 1575 struct sockaddr *to = NULL; 1576 int error; 1577 1578 error = copyin(uap->msg, &m32, sizeof(m32)); 1579 if (error) 1580 return (error); 1581 error = freebsd32_copyinmsghdr(uap->msg, &msg); 1582 if (error) 1583 return (error); 1584 error = freebsd32_copyiniov(PTRIN(m32.msg_iov), m32.msg_iovlen, &iov, 1585 EMSGSIZE); 1586 if (error) 1587 return (error); 1588 msg.msg_iov = iov; 1589 if (msg.msg_name != NULL) { 1590 error = getsockaddr(&to, msg.msg_name, msg.msg_namelen); 1591 if (error) { 1592 to = NULL; 1593 goto out; 1594 } 1595 msg.msg_name = to; 1596 } 1597 1598 if (msg.msg_control) { 1599 if (msg.msg_controllen < sizeof(struct cmsghdr)) { 1600 error = EINVAL; 1601 goto out; 1602 } 1603 1604 error = freebsd32_copyin_control(&control, msg.msg_control, 1605 msg.msg_controllen); 1606 if (error) 1607 goto out; 1608 1609 msg.msg_control = NULL; 1610 msg.msg_controllen = 0; 1611 } 1612 1613 error = kern_sendit(td, uap->s, &msg, uap->flags, control, 1614 UIO_USERSPACE); 1615 1616 out: 1617 free(iov, M_IOV); 1618 if (to) 1619 free(to, M_SONAME); 1620 return (error); 1621 } 1622 1623 int 1624 freebsd32_recvfrom(struct thread *td, 1625 struct freebsd32_recvfrom_args *uap) 1626 { 1627 struct msghdr msg; 1628 struct iovec aiov; 1629 int error; 1630 1631 if (uap->fromlenaddr) { 1632 error = copyin(PTRIN(uap->fromlenaddr), &msg.msg_namelen, 1633 sizeof(msg.msg_namelen)); 1634 if (error) 1635 return (error); 1636 } else { 1637 msg.msg_namelen = 0; 1638 } 1639 1640 msg.msg_name = PTRIN(uap->from); 1641 msg.msg_iov = &aiov; 1642 msg.msg_iovlen = 1; 1643 aiov.iov_base = PTRIN(uap->buf); 1644 aiov.iov_len = uap->len; 1645 msg.msg_control = NULL; 1646 msg.msg_flags = uap->flags; 1647 error = kern_recvit(td, uap->s, &msg, UIO_USERSPACE, NULL); 1648 if (error == 0 && uap->fromlenaddr) 1649 error = copyout(&msg.msg_namelen, PTRIN(uap->fromlenaddr), 1650 sizeof (msg.msg_namelen)); 1651 return (error); 1652 } 1653 1654 int 1655 freebsd32_settimeofday(struct thread *td, 1656 struct freebsd32_settimeofday_args *uap) 1657 { 1658 struct timeval32 tv32; 1659 struct timeval tv, *tvp; 1660 struct timezone tz, *tzp; 1661 int error; 1662 1663 if (uap->tv) { 1664 error = copyin(uap->tv, &tv32, sizeof(tv32)); 1665 if (error) 1666 return (error); 1667 CP(tv32, tv, tv_sec); 1668 CP(tv32, tv, tv_usec); 1669 tvp = &tv; 1670 } else 1671 tvp = NULL; 1672 if (uap->tzp) { 1673 error = copyin(uap->tzp, &tz, sizeof(tz)); 1674 if (error) 1675 return (error); 1676 tzp = &tz; 1677 } else 1678 tzp = NULL; 1679 return (kern_settimeofday(td, tvp, tzp)); 1680 } 1681 1682 int 1683 freebsd32_utimes(struct thread *td, struct freebsd32_utimes_args *uap) 1684 { 1685 struct timeval32 s32[2]; 1686 struct timeval s[2], *sp; 1687 int error; 1688 1689 if (uap->tptr != NULL) { 1690 error = copyin(uap->tptr, s32, sizeof(s32)); 1691 if (error) 1692 return (error); 1693 CP(s32[0], s[0], tv_sec); 1694 CP(s32[0], s[0], tv_usec); 1695 CP(s32[1], s[1], tv_sec); 1696 CP(s32[1], s[1], tv_usec); 1697 sp = s; 1698 } else 1699 sp = NULL; 1700 return (kern_utimesat(td, AT_FDCWD, uap->path, UIO_USERSPACE, 1701 sp, UIO_SYSSPACE)); 1702 } 1703 1704 int 1705 freebsd32_lutimes(struct thread *td, struct freebsd32_lutimes_args *uap) 1706 { 1707 struct timeval32 s32[2]; 1708 struct timeval s[2], *sp; 1709 int error; 1710 1711 if (uap->tptr != NULL) { 1712 error = copyin(uap->tptr, s32, sizeof(s32)); 1713 if (error) 1714 return (error); 1715 CP(s32[0], s[0], tv_sec); 1716 CP(s32[0], s[0], tv_usec); 1717 CP(s32[1], s[1], tv_sec); 1718 CP(s32[1], s[1], tv_usec); 1719 sp = s; 1720 } else 1721 sp = NULL; 1722 return (kern_lutimes(td, uap->path, UIO_USERSPACE, sp, UIO_SYSSPACE)); 1723 } 1724 1725 int 1726 freebsd32_futimes(struct thread *td, struct freebsd32_futimes_args *uap) 1727 { 1728 struct timeval32 s32[2]; 1729 struct timeval s[2], *sp; 1730 int error; 1731 1732 if (uap->tptr != NULL) { 1733 error = copyin(uap->tptr, s32, sizeof(s32)); 1734 if (error) 1735 return (error); 1736 CP(s32[0], s[0], tv_sec); 1737 CP(s32[0], s[0], tv_usec); 1738 CP(s32[1], s[1], tv_sec); 1739 CP(s32[1], s[1], tv_usec); 1740 sp = s; 1741 } else 1742 sp = NULL; 1743 return (kern_futimes(td, uap->fd, sp, UIO_SYSSPACE)); 1744 } 1745 1746 int 1747 freebsd32_futimesat(struct thread *td, struct freebsd32_futimesat_args *uap) 1748 { 1749 struct timeval32 s32[2]; 1750 struct timeval s[2], *sp; 1751 int error; 1752 1753 if (uap->times != NULL) { 1754 error = copyin(uap->times, s32, sizeof(s32)); 1755 if (error) 1756 return (error); 1757 CP(s32[0], s[0], tv_sec); 1758 CP(s32[0], s[0], tv_usec); 1759 CP(s32[1], s[1], tv_sec); 1760 CP(s32[1], s[1], tv_usec); 1761 sp = s; 1762 } else 1763 sp = NULL; 1764 return (kern_utimesat(td, uap->fd, uap->path, UIO_USERSPACE, 1765 sp, UIO_SYSSPACE)); 1766 } 1767 1768 int 1769 freebsd32_futimens(struct thread *td, struct freebsd32_futimens_args *uap) 1770 { 1771 struct timespec32 ts32[2]; 1772 struct timespec ts[2], *tsp; 1773 int error; 1774 1775 if (uap->times != NULL) { 1776 error = copyin(uap->times, ts32, sizeof(ts32)); 1777 if (error) 1778 return (error); 1779 CP(ts32[0], ts[0], tv_sec); 1780 CP(ts32[0], ts[0], tv_nsec); 1781 CP(ts32[1], ts[1], tv_sec); 1782 CP(ts32[1], ts[1], tv_nsec); 1783 tsp = ts; 1784 } else 1785 tsp = NULL; 1786 return (kern_futimens(td, uap->fd, tsp, UIO_SYSSPACE)); 1787 } 1788 1789 int 1790 freebsd32_utimensat(struct thread *td, struct freebsd32_utimensat_args *uap) 1791 { 1792 struct timespec32 ts32[2]; 1793 struct timespec ts[2], *tsp; 1794 int error; 1795 1796 if (uap->times != NULL) { 1797 error = copyin(uap->times, ts32, sizeof(ts32)); 1798 if (error) 1799 return (error); 1800 CP(ts32[0], ts[0], tv_sec); 1801 CP(ts32[0], ts[0], tv_nsec); 1802 CP(ts32[1], ts[1], tv_sec); 1803 CP(ts32[1], ts[1], tv_nsec); 1804 tsp = ts; 1805 } else 1806 tsp = NULL; 1807 return (kern_utimensat(td, uap->fd, uap->path, UIO_USERSPACE, 1808 tsp, UIO_SYSSPACE, uap->flag)); 1809 } 1810 1811 int 1812 freebsd32_adjtime(struct thread *td, struct freebsd32_adjtime_args *uap) 1813 { 1814 struct timeval32 tv32; 1815 struct timeval delta, olddelta, *deltap; 1816 int error; 1817 1818 if (uap->delta) { 1819 error = copyin(uap->delta, &tv32, sizeof(tv32)); 1820 if (error) 1821 return (error); 1822 CP(tv32, delta, tv_sec); 1823 CP(tv32, delta, tv_usec); 1824 deltap = δ 1825 } else 1826 deltap = NULL; 1827 error = kern_adjtime(td, deltap, &olddelta); 1828 if (uap->olddelta && error == 0) { 1829 CP(olddelta, tv32, tv_sec); 1830 CP(olddelta, tv32, tv_usec); 1831 error = copyout(&tv32, uap->olddelta, sizeof(tv32)); 1832 } 1833 return (error); 1834 } 1835 1836 #ifdef COMPAT_FREEBSD4 1837 int 1838 freebsd4_freebsd32_statfs(struct thread *td, struct freebsd4_freebsd32_statfs_args *uap) 1839 { 1840 struct statfs32 s32; 1841 struct statfs *sp; 1842 int error; 1843 1844 sp = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK); 1845 error = kern_statfs(td, uap->path, UIO_USERSPACE, sp); 1846 if (error == 0) { 1847 copy_statfs(sp, &s32); 1848 error = copyout(&s32, uap->buf, sizeof(s32)); 1849 } 1850 free(sp, M_STATFS); 1851 return (error); 1852 } 1853 #endif 1854 1855 #ifdef COMPAT_FREEBSD4 1856 int 1857 freebsd4_freebsd32_fstatfs(struct thread *td, struct freebsd4_freebsd32_fstatfs_args *uap) 1858 { 1859 struct statfs32 s32; 1860 struct statfs *sp; 1861 int error; 1862 1863 sp = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK); 1864 error = kern_fstatfs(td, uap->fd, sp); 1865 if (error == 0) { 1866 copy_statfs(sp, &s32); 1867 error = copyout(&s32, uap->buf, sizeof(s32)); 1868 } 1869 free(sp, M_STATFS); 1870 return (error); 1871 } 1872 #endif 1873 1874 #ifdef COMPAT_FREEBSD4 1875 int 1876 freebsd4_freebsd32_fhstatfs(struct thread *td, struct freebsd4_freebsd32_fhstatfs_args *uap) 1877 { 1878 struct statfs32 s32; 1879 struct statfs *sp; 1880 fhandle_t fh; 1881 int error; 1882 1883 if ((error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t))) != 0) 1884 return (error); 1885 sp = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK); 1886 error = kern_fhstatfs(td, fh, sp); 1887 if (error == 0) { 1888 copy_statfs(sp, &s32); 1889 error = copyout(&s32, uap->buf, sizeof(s32)); 1890 } 1891 free(sp, M_STATFS); 1892 return (error); 1893 } 1894 #endif 1895 1896 int 1897 freebsd32_pread(struct thread *td, struct freebsd32_pread_args *uap) 1898 { 1899 1900 return (kern_pread(td, uap->fd, uap->buf, uap->nbyte, 1901 PAIR32TO64(off_t, uap->offset))); 1902 } 1903 1904 int 1905 freebsd32_pwrite(struct thread *td, struct freebsd32_pwrite_args *uap) 1906 { 1907 1908 return (kern_pwrite(td, uap->fd, uap->buf, uap->nbyte, 1909 PAIR32TO64(off_t, uap->offset))); 1910 } 1911 1912 #ifdef COMPAT_43 1913 int 1914 ofreebsd32_lseek(struct thread *td, struct ofreebsd32_lseek_args *uap) 1915 { 1916 1917 return (kern_lseek(td, uap->fd, uap->offset, uap->whence)); 1918 } 1919 #endif 1920 1921 int 1922 freebsd32_lseek(struct thread *td, struct freebsd32_lseek_args *uap) 1923 { 1924 int error; 1925 off_t pos; 1926 1927 error = kern_lseek(td, uap->fd, PAIR32TO64(off_t, uap->offset), 1928 uap->whence); 1929 /* Expand the quad return into two parts for eax and edx */ 1930 pos = td->td_uretoff.tdu_off; 1931 td->td_retval[RETVAL_LO] = pos & 0xffffffff; /* %eax */ 1932 td->td_retval[RETVAL_HI] = pos >> 32; /* %edx */ 1933 return error; 1934 } 1935 1936 int 1937 freebsd32_truncate(struct thread *td, struct freebsd32_truncate_args *uap) 1938 { 1939 1940 return (kern_truncate(td, uap->path, UIO_USERSPACE, 1941 PAIR32TO64(off_t, uap->length))); 1942 } 1943 1944 int 1945 freebsd32_ftruncate(struct thread *td, struct freebsd32_ftruncate_args *uap) 1946 { 1947 1948 return (kern_ftruncate(td, uap->fd, PAIR32TO64(off_t, uap->length))); 1949 } 1950 1951 #ifdef COMPAT_43 1952 int 1953 ofreebsd32_getdirentries(struct thread *td, 1954 struct ofreebsd32_getdirentries_args *uap) 1955 { 1956 struct ogetdirentries_args ap; 1957 int error; 1958 long loff; 1959 int32_t loff_cut; 1960 1961 ap.fd = uap->fd; 1962 ap.buf = uap->buf; 1963 ap.count = uap->count; 1964 ap.basep = NULL; 1965 error = kern_ogetdirentries(td, &ap, &loff); 1966 if (error == 0) { 1967 loff_cut = loff; 1968 error = copyout(&loff_cut, uap->basep, sizeof(int32_t)); 1969 } 1970 return (error); 1971 } 1972 #endif 1973 1974 #if defined(COMPAT_FREEBSD11) 1975 int 1976 freebsd11_freebsd32_getdirentries(struct thread *td, 1977 struct freebsd11_freebsd32_getdirentries_args *uap) 1978 { 1979 long base; 1980 int32_t base32; 1981 int error; 1982 1983 error = freebsd11_kern_getdirentries(td, uap->fd, uap->buf, uap->count, 1984 &base, NULL); 1985 if (error) 1986 return (error); 1987 if (uap->basep != NULL) { 1988 base32 = base; 1989 error = copyout(&base32, uap->basep, sizeof(int32_t)); 1990 } 1991 return (error); 1992 } 1993 1994 int 1995 freebsd11_freebsd32_getdents(struct thread *td, 1996 struct freebsd11_freebsd32_getdents_args *uap) 1997 { 1998 struct freebsd11_freebsd32_getdirentries_args ap; 1999 2000 ap.fd = uap->fd; 2001 ap.buf = uap->buf; 2002 ap.count = uap->count; 2003 ap.basep = NULL; 2004 return (freebsd11_freebsd32_getdirentries(td, &ap)); 2005 } 2006 #endif /* COMPAT_FREEBSD11 */ 2007 2008 #ifdef COMPAT_FREEBSD6 2009 /* versions with the 'int pad' argument */ 2010 int 2011 freebsd6_freebsd32_pread(struct thread *td, struct freebsd6_freebsd32_pread_args *uap) 2012 { 2013 2014 return (kern_pread(td, uap->fd, uap->buf, uap->nbyte, 2015 PAIR32TO64(off_t, uap->offset))); 2016 } 2017 2018 int 2019 freebsd6_freebsd32_pwrite(struct thread *td, struct freebsd6_freebsd32_pwrite_args *uap) 2020 { 2021 2022 return (kern_pwrite(td, uap->fd, uap->buf, uap->nbyte, 2023 PAIR32TO64(off_t, uap->offset))); 2024 } 2025 2026 int 2027 freebsd6_freebsd32_lseek(struct thread *td, struct freebsd6_freebsd32_lseek_args *uap) 2028 { 2029 int error; 2030 off_t pos; 2031 2032 error = kern_lseek(td, uap->fd, PAIR32TO64(off_t, uap->offset), 2033 uap->whence); 2034 /* Expand the quad return into two parts for eax and edx */ 2035 pos = *(off_t *)(td->td_retval); 2036 td->td_retval[RETVAL_LO] = pos & 0xffffffff; /* %eax */ 2037 td->td_retval[RETVAL_HI] = pos >> 32; /* %edx */ 2038 return error; 2039 } 2040 2041 int 2042 freebsd6_freebsd32_truncate(struct thread *td, struct freebsd6_freebsd32_truncate_args *uap) 2043 { 2044 2045 return (kern_truncate(td, uap->path, UIO_USERSPACE, 2046 PAIR32TO64(off_t, uap->length))); 2047 } 2048 2049 int 2050 freebsd6_freebsd32_ftruncate(struct thread *td, struct freebsd6_freebsd32_ftruncate_args *uap) 2051 { 2052 2053 return (kern_ftruncate(td, uap->fd, PAIR32TO64(off_t, uap->length))); 2054 } 2055 #endif /* COMPAT_FREEBSD6 */ 2056 2057 struct sf_hdtr32 { 2058 uint32_t headers; 2059 int hdr_cnt; 2060 uint32_t trailers; 2061 int trl_cnt; 2062 }; 2063 2064 static int 2065 freebsd32_do_sendfile(struct thread *td, 2066 struct freebsd32_sendfile_args *uap, int compat) 2067 { 2068 struct sf_hdtr32 hdtr32; 2069 struct sf_hdtr hdtr; 2070 struct uio *hdr_uio, *trl_uio; 2071 struct file *fp; 2072 cap_rights_t rights; 2073 struct iovec32 *iov32; 2074 off_t offset, sbytes; 2075 int error; 2076 2077 offset = PAIR32TO64(off_t, uap->offset); 2078 if (offset < 0) 2079 return (EINVAL); 2080 2081 hdr_uio = trl_uio = NULL; 2082 2083 if (uap->hdtr != NULL) { 2084 error = copyin(uap->hdtr, &hdtr32, sizeof(hdtr32)); 2085 if (error) 2086 goto out; 2087 PTRIN_CP(hdtr32, hdtr, headers); 2088 CP(hdtr32, hdtr, hdr_cnt); 2089 PTRIN_CP(hdtr32, hdtr, trailers); 2090 CP(hdtr32, hdtr, trl_cnt); 2091 2092 if (hdtr.headers != NULL) { 2093 iov32 = PTRIN(hdtr32.headers); 2094 error = freebsd32_copyinuio(iov32, 2095 hdtr32.hdr_cnt, &hdr_uio); 2096 if (error) 2097 goto out; 2098 #ifdef COMPAT_FREEBSD4 2099 /* 2100 * In FreeBSD < 5.0 the nbytes to send also included 2101 * the header. If compat is specified subtract the 2102 * header size from nbytes. 2103 */ 2104 if (compat) { 2105 if (uap->nbytes > hdr_uio->uio_resid) 2106 uap->nbytes -= hdr_uio->uio_resid; 2107 else 2108 uap->nbytes = 0; 2109 } 2110 #endif 2111 } 2112 if (hdtr.trailers != NULL) { 2113 iov32 = PTRIN(hdtr32.trailers); 2114 error = freebsd32_copyinuio(iov32, 2115 hdtr32.trl_cnt, &trl_uio); 2116 if (error) 2117 goto out; 2118 } 2119 } 2120 2121 AUDIT_ARG_FD(uap->fd); 2122 2123 if ((error = fget_read(td, uap->fd, 2124 cap_rights_init_one(&rights, CAP_PREAD), &fp)) != 0) 2125 goto out; 2126 2127 error = fo_sendfile(fp, uap->s, hdr_uio, trl_uio, offset, 2128 uap->nbytes, &sbytes, uap->flags, td); 2129 fdrop(fp, td); 2130 2131 if (uap->sbytes != NULL) 2132 copyout(&sbytes, uap->sbytes, sizeof(off_t)); 2133 2134 out: 2135 if (hdr_uio) 2136 free(hdr_uio, M_IOV); 2137 if (trl_uio) 2138 free(trl_uio, M_IOV); 2139 return (error); 2140 } 2141 2142 #ifdef COMPAT_FREEBSD4 2143 int 2144 freebsd4_freebsd32_sendfile(struct thread *td, 2145 struct freebsd4_freebsd32_sendfile_args *uap) 2146 { 2147 return (freebsd32_do_sendfile(td, 2148 (struct freebsd32_sendfile_args *)uap, 1)); 2149 } 2150 #endif 2151 2152 int 2153 freebsd32_sendfile(struct thread *td, struct freebsd32_sendfile_args *uap) 2154 { 2155 2156 return (freebsd32_do_sendfile(td, uap, 0)); 2157 } 2158 2159 static void 2160 copy_stat(struct stat *in, struct stat32 *out) 2161 { 2162 2163 CP(*in, *out, st_dev); 2164 CP(*in, *out, st_ino); 2165 CP(*in, *out, st_mode); 2166 CP(*in, *out, st_nlink); 2167 CP(*in, *out, st_uid); 2168 CP(*in, *out, st_gid); 2169 CP(*in, *out, st_rdev); 2170 TS_CP(*in, *out, st_atim); 2171 TS_CP(*in, *out, st_mtim); 2172 TS_CP(*in, *out, st_ctim); 2173 CP(*in, *out, st_size); 2174 CP(*in, *out, st_blocks); 2175 CP(*in, *out, st_blksize); 2176 CP(*in, *out, st_flags); 2177 CP(*in, *out, st_gen); 2178 TS_CP(*in, *out, st_birthtim); 2179 out->st_padding0 = 0; 2180 out->st_padding1 = 0; 2181 #ifdef __STAT32_TIME_T_EXT 2182 out->st_atim_ext = 0; 2183 out->st_mtim_ext = 0; 2184 out->st_ctim_ext = 0; 2185 out->st_btim_ext = 0; 2186 #endif 2187 bzero(out->st_spare, sizeof(out->st_spare)); 2188 } 2189 2190 #ifdef COMPAT_43 2191 static void 2192 copy_ostat(struct stat *in, struct ostat32 *out) 2193 { 2194 2195 bzero(out, sizeof(*out)); 2196 CP(*in, *out, st_dev); 2197 CP(*in, *out, st_ino); 2198 CP(*in, *out, st_mode); 2199 CP(*in, *out, st_nlink); 2200 CP(*in, *out, st_uid); 2201 CP(*in, *out, st_gid); 2202 CP(*in, *out, st_rdev); 2203 out->st_size = MIN(in->st_size, INT32_MAX); 2204 TS_CP(*in, *out, st_atim); 2205 TS_CP(*in, *out, st_mtim); 2206 TS_CP(*in, *out, st_ctim); 2207 CP(*in, *out, st_blksize); 2208 CP(*in, *out, st_blocks); 2209 CP(*in, *out, st_flags); 2210 CP(*in, *out, st_gen); 2211 } 2212 #endif 2213 2214 #ifdef COMPAT_43 2215 int 2216 ofreebsd32_stat(struct thread *td, struct ofreebsd32_stat_args *uap) 2217 { 2218 struct stat sb; 2219 struct ostat32 sb32; 2220 int error; 2221 2222 error = kern_statat(td, 0, AT_FDCWD, uap->path, UIO_USERSPACE, 2223 &sb, NULL); 2224 if (error) 2225 return (error); 2226 copy_ostat(&sb, &sb32); 2227 error = copyout(&sb32, uap->ub, sizeof (sb32)); 2228 return (error); 2229 } 2230 #endif 2231 2232 int 2233 freebsd32_fstat(struct thread *td, struct freebsd32_fstat_args *uap) 2234 { 2235 struct stat ub; 2236 struct stat32 ub32; 2237 int error; 2238 2239 error = kern_fstat(td, uap->fd, &ub); 2240 if (error) 2241 return (error); 2242 copy_stat(&ub, &ub32); 2243 error = copyout(&ub32, uap->ub, sizeof(ub32)); 2244 return (error); 2245 } 2246 2247 #ifdef COMPAT_43 2248 int 2249 ofreebsd32_fstat(struct thread *td, struct ofreebsd32_fstat_args *uap) 2250 { 2251 struct stat ub; 2252 struct ostat32 ub32; 2253 int error; 2254 2255 error = kern_fstat(td, uap->fd, &ub); 2256 if (error) 2257 return (error); 2258 copy_ostat(&ub, &ub32); 2259 error = copyout(&ub32, uap->ub, sizeof(ub32)); 2260 return (error); 2261 } 2262 #endif 2263 2264 int 2265 freebsd32_fstatat(struct thread *td, struct freebsd32_fstatat_args *uap) 2266 { 2267 struct stat ub; 2268 struct stat32 ub32; 2269 int error; 2270 2271 error = kern_statat(td, uap->flag, uap->fd, uap->path, UIO_USERSPACE, 2272 &ub, NULL); 2273 if (error) 2274 return (error); 2275 copy_stat(&ub, &ub32); 2276 error = copyout(&ub32, uap->buf, sizeof(ub32)); 2277 return (error); 2278 } 2279 2280 #ifdef COMPAT_43 2281 int 2282 ofreebsd32_lstat(struct thread *td, struct ofreebsd32_lstat_args *uap) 2283 { 2284 struct stat sb; 2285 struct ostat32 sb32; 2286 int error; 2287 2288 error = kern_statat(td, AT_SYMLINK_NOFOLLOW, AT_FDCWD, uap->path, 2289 UIO_USERSPACE, &sb, NULL); 2290 if (error) 2291 return (error); 2292 copy_ostat(&sb, &sb32); 2293 error = copyout(&sb32, uap->ub, sizeof (sb32)); 2294 return (error); 2295 } 2296 #endif 2297 2298 int 2299 freebsd32_fhstat(struct thread *td, struct freebsd32_fhstat_args *uap) 2300 { 2301 struct stat sb; 2302 struct stat32 sb32; 2303 struct fhandle fh; 2304 int error; 2305 2306 error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t)); 2307 if (error != 0) 2308 return (error); 2309 error = kern_fhstat(td, fh, &sb); 2310 if (error != 0) 2311 return (error); 2312 copy_stat(&sb, &sb32); 2313 error = copyout(&sb32, uap->sb, sizeof (sb32)); 2314 return (error); 2315 } 2316 2317 #if defined(COMPAT_FREEBSD11) 2318 extern int ino64_trunc_error; 2319 2320 static int 2321 freebsd11_cvtstat32(struct stat *in, struct freebsd11_stat32 *out) 2322 { 2323 2324 CP(*in, *out, st_ino); 2325 if (in->st_ino != out->st_ino) { 2326 switch (ino64_trunc_error) { 2327 default: 2328 case 0: 2329 break; 2330 case 1: 2331 return (EOVERFLOW); 2332 case 2: 2333 out->st_ino = UINT32_MAX; 2334 break; 2335 } 2336 } 2337 CP(*in, *out, st_nlink); 2338 if (in->st_nlink != out->st_nlink) { 2339 switch (ino64_trunc_error) { 2340 default: 2341 case 0: 2342 break; 2343 case 1: 2344 return (EOVERFLOW); 2345 case 2: 2346 out->st_nlink = UINT16_MAX; 2347 break; 2348 } 2349 } 2350 out->st_dev = in->st_dev; 2351 if (out->st_dev != in->st_dev) { 2352 switch (ino64_trunc_error) { 2353 default: 2354 break; 2355 case 1: 2356 return (EOVERFLOW); 2357 } 2358 } 2359 CP(*in, *out, st_mode); 2360 CP(*in, *out, st_uid); 2361 CP(*in, *out, st_gid); 2362 out->st_rdev = in->st_rdev; 2363 if (out->st_rdev != in->st_rdev) { 2364 switch (ino64_trunc_error) { 2365 default: 2366 break; 2367 case 1: 2368 return (EOVERFLOW); 2369 } 2370 } 2371 TS_CP(*in, *out, st_atim); 2372 TS_CP(*in, *out, st_mtim); 2373 TS_CP(*in, *out, st_ctim); 2374 CP(*in, *out, st_size); 2375 CP(*in, *out, st_blocks); 2376 CP(*in, *out, st_blksize); 2377 CP(*in, *out, st_flags); 2378 CP(*in, *out, st_gen); 2379 TS_CP(*in, *out, st_birthtim); 2380 out->st_lspare = 0; 2381 bzero((char *)&out->st_birthtim + sizeof(out->st_birthtim), 2382 sizeof(*out) - offsetof(struct freebsd11_stat32, 2383 st_birthtim) - sizeof(out->st_birthtim)); 2384 return (0); 2385 } 2386 2387 int 2388 freebsd11_freebsd32_stat(struct thread *td, 2389 struct freebsd11_freebsd32_stat_args *uap) 2390 { 2391 struct stat sb; 2392 struct freebsd11_stat32 sb32; 2393 int error; 2394 2395 error = kern_statat(td, 0, AT_FDCWD, uap->path, UIO_USERSPACE, 2396 &sb, NULL); 2397 if (error != 0) 2398 return (error); 2399 error = freebsd11_cvtstat32(&sb, &sb32); 2400 if (error == 0) 2401 error = copyout(&sb32, uap->ub, sizeof (sb32)); 2402 return (error); 2403 } 2404 2405 int 2406 freebsd11_freebsd32_fstat(struct thread *td, 2407 struct freebsd11_freebsd32_fstat_args *uap) 2408 { 2409 struct stat sb; 2410 struct freebsd11_stat32 sb32; 2411 int error; 2412 2413 error = kern_fstat(td, uap->fd, &sb); 2414 if (error != 0) 2415 return (error); 2416 error = freebsd11_cvtstat32(&sb, &sb32); 2417 if (error == 0) 2418 error = copyout(&sb32, uap->ub, sizeof (sb32)); 2419 return (error); 2420 } 2421 2422 int 2423 freebsd11_freebsd32_fstatat(struct thread *td, 2424 struct freebsd11_freebsd32_fstatat_args *uap) 2425 { 2426 struct stat sb; 2427 struct freebsd11_stat32 sb32; 2428 int error; 2429 2430 error = kern_statat(td, uap->flag, uap->fd, uap->path, UIO_USERSPACE, 2431 &sb, NULL); 2432 if (error != 0) 2433 return (error); 2434 error = freebsd11_cvtstat32(&sb, &sb32); 2435 if (error == 0) 2436 error = copyout(&sb32, uap->buf, sizeof (sb32)); 2437 return (error); 2438 } 2439 2440 int 2441 freebsd11_freebsd32_lstat(struct thread *td, 2442 struct freebsd11_freebsd32_lstat_args *uap) 2443 { 2444 struct stat sb; 2445 struct freebsd11_stat32 sb32; 2446 int error; 2447 2448 error = kern_statat(td, AT_SYMLINK_NOFOLLOW, AT_FDCWD, uap->path, 2449 UIO_USERSPACE, &sb, NULL); 2450 if (error != 0) 2451 return (error); 2452 error = freebsd11_cvtstat32(&sb, &sb32); 2453 if (error == 0) 2454 error = copyout(&sb32, uap->ub, sizeof (sb32)); 2455 return (error); 2456 } 2457 2458 int 2459 freebsd11_freebsd32_fhstat(struct thread *td, 2460 struct freebsd11_freebsd32_fhstat_args *uap) 2461 { 2462 struct stat sb; 2463 struct freebsd11_stat32 sb32; 2464 struct fhandle fh; 2465 int error; 2466 2467 error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t)); 2468 if (error != 0) 2469 return (error); 2470 error = kern_fhstat(td, fh, &sb); 2471 if (error != 0) 2472 return (error); 2473 error = freebsd11_cvtstat32(&sb, &sb32); 2474 if (error == 0) 2475 error = copyout(&sb32, uap->sb, sizeof (sb32)); 2476 return (error); 2477 } 2478 #endif 2479 2480 int 2481 freebsd32___sysctl(struct thread *td, struct freebsd32___sysctl_args *uap) 2482 { 2483 int error, name[CTL_MAXNAME]; 2484 size_t j, oldlen; 2485 uint32_t tmp; 2486 2487 if (uap->namelen > CTL_MAXNAME || uap->namelen < 2) 2488 return (EINVAL); 2489 error = copyin(uap->name, name, uap->namelen * sizeof(int)); 2490 if (error) 2491 return (error); 2492 if (uap->oldlenp) { 2493 error = fueword32(uap->oldlenp, &tmp); 2494 oldlen = tmp; 2495 } else { 2496 oldlen = 0; 2497 } 2498 if (error != 0) 2499 return (EFAULT); 2500 error = userland_sysctl(td, name, uap->namelen, 2501 uap->old, &oldlen, 1, 2502 uap->new, uap->newlen, &j, SCTL_MASK32); 2503 if (error) 2504 return (error); 2505 if (uap->oldlenp) 2506 suword32(uap->oldlenp, j); 2507 return (0); 2508 } 2509 2510 int 2511 freebsd32___sysctlbyname(struct thread *td, 2512 struct freebsd32___sysctlbyname_args *uap) 2513 { 2514 size_t oldlen, rv; 2515 int error; 2516 uint32_t tmp; 2517 2518 if (uap->oldlenp != NULL) { 2519 error = fueword32(uap->oldlenp, &tmp); 2520 oldlen = tmp; 2521 } else { 2522 error = oldlen = 0; 2523 } 2524 if (error != 0) 2525 return (EFAULT); 2526 error = kern___sysctlbyname(td, uap->name, uap->namelen, uap->old, 2527 &oldlen, uap->new, uap->newlen, &rv, SCTL_MASK32, 1); 2528 if (error != 0) 2529 return (error); 2530 if (uap->oldlenp != NULL) 2531 error = suword32(uap->oldlenp, rv); 2532 2533 return (error); 2534 } 2535 2536 int 2537 freebsd32_jail(struct thread *td, struct freebsd32_jail_args *uap) 2538 { 2539 uint32_t version; 2540 int error; 2541 struct jail j; 2542 2543 error = copyin(uap->jail, &version, sizeof(uint32_t)); 2544 if (error) 2545 return (error); 2546 2547 switch (version) { 2548 case 0: 2549 { 2550 /* FreeBSD single IPv4 jails. */ 2551 struct jail32_v0 j32_v0; 2552 2553 bzero(&j, sizeof(struct jail)); 2554 error = copyin(uap->jail, &j32_v0, sizeof(struct jail32_v0)); 2555 if (error) 2556 return (error); 2557 CP(j32_v0, j, version); 2558 PTRIN_CP(j32_v0, j, path); 2559 PTRIN_CP(j32_v0, j, hostname); 2560 j.ip4s = htonl(j32_v0.ip_number); /* jail_v0 is host order */ 2561 break; 2562 } 2563 2564 case 1: 2565 /* 2566 * Version 1 was used by multi-IPv4 jail implementations 2567 * that never made it into the official kernel. 2568 */ 2569 return (EINVAL); 2570 2571 case 2: /* JAIL_API_VERSION */ 2572 { 2573 /* FreeBSD multi-IPv4/IPv6,noIP jails. */ 2574 struct jail32 j32; 2575 2576 error = copyin(uap->jail, &j32, sizeof(struct jail32)); 2577 if (error) 2578 return (error); 2579 CP(j32, j, version); 2580 PTRIN_CP(j32, j, path); 2581 PTRIN_CP(j32, j, hostname); 2582 PTRIN_CP(j32, j, jailname); 2583 CP(j32, j, ip4s); 2584 CP(j32, j, ip6s); 2585 PTRIN_CP(j32, j, ip4); 2586 PTRIN_CP(j32, j, ip6); 2587 break; 2588 } 2589 2590 default: 2591 /* Sci-Fi jails are not supported, sorry. */ 2592 return (EINVAL); 2593 } 2594 return (kern_jail(td, &j)); 2595 } 2596 2597 int 2598 freebsd32_jail_set(struct thread *td, struct freebsd32_jail_set_args *uap) 2599 { 2600 struct uio *auio; 2601 int error; 2602 2603 /* Check that we have an even number of iovecs. */ 2604 if (uap->iovcnt & 1) 2605 return (EINVAL); 2606 2607 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 2608 if (error) 2609 return (error); 2610 error = kern_jail_set(td, auio, uap->flags); 2611 free(auio, M_IOV); 2612 return (error); 2613 } 2614 2615 int 2616 freebsd32_jail_get(struct thread *td, struct freebsd32_jail_get_args *uap) 2617 { 2618 struct iovec32 iov32; 2619 struct uio *auio; 2620 int error, i; 2621 2622 /* Check that we have an even number of iovecs. */ 2623 if (uap->iovcnt & 1) 2624 return (EINVAL); 2625 2626 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 2627 if (error) 2628 return (error); 2629 error = kern_jail_get(td, auio, uap->flags); 2630 if (error == 0) 2631 for (i = 0; i < uap->iovcnt; i++) { 2632 PTROUT_CP(auio->uio_iov[i], iov32, iov_base); 2633 CP(auio->uio_iov[i], iov32, iov_len); 2634 error = copyout(&iov32, uap->iovp + i, sizeof(iov32)); 2635 if (error != 0) 2636 break; 2637 } 2638 free(auio, M_IOV); 2639 return (error); 2640 } 2641 2642 int 2643 freebsd32_sigaction(struct thread *td, struct freebsd32_sigaction_args *uap) 2644 { 2645 struct sigaction32 s32; 2646 struct sigaction sa, osa, *sap; 2647 int error; 2648 2649 if (uap->act) { 2650 error = copyin(uap->act, &s32, sizeof(s32)); 2651 if (error) 2652 return (error); 2653 sa.sa_handler = PTRIN(s32.sa_u); 2654 CP(s32, sa, sa_flags); 2655 CP(s32, sa, sa_mask); 2656 sap = &sa; 2657 } else 2658 sap = NULL; 2659 error = kern_sigaction(td, uap->sig, sap, &osa, 0); 2660 if (error == 0 && uap->oact != NULL) { 2661 s32.sa_u = PTROUT(osa.sa_handler); 2662 CP(osa, s32, sa_flags); 2663 CP(osa, s32, sa_mask); 2664 error = copyout(&s32, uap->oact, sizeof(s32)); 2665 } 2666 return (error); 2667 } 2668 2669 #ifdef COMPAT_FREEBSD4 2670 int 2671 freebsd4_freebsd32_sigaction(struct thread *td, 2672 struct freebsd4_freebsd32_sigaction_args *uap) 2673 { 2674 struct sigaction32 s32; 2675 struct sigaction sa, osa, *sap; 2676 int error; 2677 2678 if (uap->act) { 2679 error = copyin(uap->act, &s32, sizeof(s32)); 2680 if (error) 2681 return (error); 2682 sa.sa_handler = PTRIN(s32.sa_u); 2683 CP(s32, sa, sa_flags); 2684 CP(s32, sa, sa_mask); 2685 sap = &sa; 2686 } else 2687 sap = NULL; 2688 error = kern_sigaction(td, uap->sig, sap, &osa, KSA_FREEBSD4); 2689 if (error == 0 && uap->oact != NULL) { 2690 s32.sa_u = PTROUT(osa.sa_handler); 2691 CP(osa, s32, sa_flags); 2692 CP(osa, s32, sa_mask); 2693 error = copyout(&s32, uap->oact, sizeof(s32)); 2694 } 2695 return (error); 2696 } 2697 #endif 2698 2699 #ifdef COMPAT_43 2700 struct osigaction32 { 2701 u_int32_t sa_u; 2702 osigset_t sa_mask; 2703 int sa_flags; 2704 }; 2705 2706 #define ONSIG 32 2707 2708 int 2709 ofreebsd32_sigaction(struct thread *td, 2710 struct ofreebsd32_sigaction_args *uap) 2711 { 2712 struct osigaction32 s32; 2713 struct sigaction sa, osa, *sap; 2714 int error; 2715 2716 if (uap->signum <= 0 || uap->signum >= ONSIG) 2717 return (EINVAL); 2718 2719 if (uap->nsa) { 2720 error = copyin(uap->nsa, &s32, sizeof(s32)); 2721 if (error) 2722 return (error); 2723 sa.sa_handler = PTRIN(s32.sa_u); 2724 CP(s32, sa, sa_flags); 2725 OSIG2SIG(s32.sa_mask, sa.sa_mask); 2726 sap = &sa; 2727 } else 2728 sap = NULL; 2729 error = kern_sigaction(td, uap->signum, sap, &osa, KSA_OSIGSET); 2730 if (error == 0 && uap->osa != NULL) { 2731 s32.sa_u = PTROUT(osa.sa_handler); 2732 CP(osa, s32, sa_flags); 2733 SIG2OSIG(osa.sa_mask, s32.sa_mask); 2734 error = copyout(&s32, uap->osa, sizeof(s32)); 2735 } 2736 return (error); 2737 } 2738 2739 int 2740 ofreebsd32_sigprocmask(struct thread *td, 2741 struct ofreebsd32_sigprocmask_args *uap) 2742 { 2743 sigset_t set, oset; 2744 int error; 2745 2746 OSIG2SIG(uap->mask, set); 2747 error = kern_sigprocmask(td, uap->how, &set, &oset, SIGPROCMASK_OLD); 2748 SIG2OSIG(oset, td->td_retval[0]); 2749 return (error); 2750 } 2751 2752 int 2753 ofreebsd32_sigpending(struct thread *td, 2754 struct ofreebsd32_sigpending_args *uap) 2755 { 2756 struct proc *p = td->td_proc; 2757 sigset_t siglist; 2758 2759 PROC_LOCK(p); 2760 siglist = p->p_siglist; 2761 SIGSETOR(siglist, td->td_siglist); 2762 PROC_UNLOCK(p); 2763 SIG2OSIG(siglist, td->td_retval[0]); 2764 return (0); 2765 } 2766 2767 struct sigvec32 { 2768 u_int32_t sv_handler; 2769 int sv_mask; 2770 int sv_flags; 2771 }; 2772 2773 int 2774 ofreebsd32_sigvec(struct thread *td, 2775 struct ofreebsd32_sigvec_args *uap) 2776 { 2777 struct sigvec32 vec; 2778 struct sigaction sa, osa, *sap; 2779 int error; 2780 2781 if (uap->signum <= 0 || uap->signum >= ONSIG) 2782 return (EINVAL); 2783 2784 if (uap->nsv) { 2785 error = copyin(uap->nsv, &vec, sizeof(vec)); 2786 if (error) 2787 return (error); 2788 sa.sa_handler = PTRIN(vec.sv_handler); 2789 OSIG2SIG(vec.sv_mask, sa.sa_mask); 2790 sa.sa_flags = vec.sv_flags; 2791 sa.sa_flags ^= SA_RESTART; 2792 sap = &sa; 2793 } else 2794 sap = NULL; 2795 error = kern_sigaction(td, uap->signum, sap, &osa, KSA_OSIGSET); 2796 if (error == 0 && uap->osv != NULL) { 2797 vec.sv_handler = PTROUT(osa.sa_handler); 2798 SIG2OSIG(osa.sa_mask, vec.sv_mask); 2799 vec.sv_flags = osa.sa_flags; 2800 vec.sv_flags &= ~SA_NOCLDWAIT; 2801 vec.sv_flags ^= SA_RESTART; 2802 error = copyout(&vec, uap->osv, sizeof(vec)); 2803 } 2804 return (error); 2805 } 2806 2807 int 2808 ofreebsd32_sigblock(struct thread *td, 2809 struct ofreebsd32_sigblock_args *uap) 2810 { 2811 sigset_t set, oset; 2812 2813 OSIG2SIG(uap->mask, set); 2814 kern_sigprocmask(td, SIG_BLOCK, &set, &oset, 0); 2815 SIG2OSIG(oset, td->td_retval[0]); 2816 return (0); 2817 } 2818 2819 int 2820 ofreebsd32_sigsetmask(struct thread *td, 2821 struct ofreebsd32_sigsetmask_args *uap) 2822 { 2823 sigset_t set, oset; 2824 2825 OSIG2SIG(uap->mask, set); 2826 kern_sigprocmask(td, SIG_SETMASK, &set, &oset, 0); 2827 SIG2OSIG(oset, td->td_retval[0]); 2828 return (0); 2829 } 2830 2831 int 2832 ofreebsd32_sigsuspend(struct thread *td, 2833 struct ofreebsd32_sigsuspend_args *uap) 2834 { 2835 sigset_t mask; 2836 2837 OSIG2SIG(uap->mask, mask); 2838 return (kern_sigsuspend(td, mask)); 2839 } 2840 2841 struct sigstack32 { 2842 u_int32_t ss_sp; 2843 int ss_onstack; 2844 }; 2845 2846 int 2847 ofreebsd32_sigstack(struct thread *td, 2848 struct ofreebsd32_sigstack_args *uap) 2849 { 2850 struct sigstack32 s32; 2851 struct sigstack nss, oss; 2852 int error = 0, unss; 2853 2854 if (uap->nss != NULL) { 2855 error = copyin(uap->nss, &s32, sizeof(s32)); 2856 if (error) 2857 return (error); 2858 nss.ss_sp = PTRIN(s32.ss_sp); 2859 CP(s32, nss, ss_onstack); 2860 unss = 1; 2861 } else { 2862 unss = 0; 2863 } 2864 oss.ss_sp = td->td_sigstk.ss_sp; 2865 oss.ss_onstack = sigonstack(cpu_getstack(td)); 2866 if (unss) { 2867 td->td_sigstk.ss_sp = nss.ss_sp; 2868 td->td_sigstk.ss_size = 0; 2869 td->td_sigstk.ss_flags |= (nss.ss_onstack & SS_ONSTACK); 2870 td->td_pflags |= TDP_ALTSTACK; 2871 } 2872 if (uap->oss != NULL) { 2873 s32.ss_sp = PTROUT(oss.ss_sp); 2874 CP(oss, s32, ss_onstack); 2875 error = copyout(&s32, uap->oss, sizeof(s32)); 2876 } 2877 return (error); 2878 } 2879 #endif 2880 2881 int 2882 freebsd32_nanosleep(struct thread *td, struct freebsd32_nanosleep_args *uap) 2883 { 2884 2885 return (freebsd32_user_clock_nanosleep(td, CLOCK_REALTIME, 2886 TIMER_RELTIME, uap->rqtp, uap->rmtp)); 2887 } 2888 2889 int 2890 freebsd32_clock_nanosleep(struct thread *td, 2891 struct freebsd32_clock_nanosleep_args *uap) 2892 { 2893 int error; 2894 2895 error = freebsd32_user_clock_nanosleep(td, uap->clock_id, uap->flags, 2896 uap->rqtp, uap->rmtp); 2897 return (kern_posix_error(td, error)); 2898 } 2899 2900 static int 2901 freebsd32_user_clock_nanosleep(struct thread *td, clockid_t clock_id, 2902 int flags, const struct timespec32 *ua_rqtp, struct timespec32 *ua_rmtp) 2903 { 2904 struct timespec32 rmt32, rqt32; 2905 struct timespec rmt, rqt; 2906 int error, error2; 2907 2908 error = copyin(ua_rqtp, &rqt32, sizeof(rqt32)); 2909 if (error) 2910 return (error); 2911 2912 CP(rqt32, rqt, tv_sec); 2913 CP(rqt32, rqt, tv_nsec); 2914 2915 error = kern_clock_nanosleep(td, clock_id, flags, &rqt, &rmt); 2916 if (error == EINTR && ua_rmtp != NULL && (flags & TIMER_ABSTIME) == 0) { 2917 CP(rmt, rmt32, tv_sec); 2918 CP(rmt, rmt32, tv_nsec); 2919 2920 error2 = copyout(&rmt32, ua_rmtp, sizeof(rmt32)); 2921 if (error2 != 0) 2922 error = error2; 2923 } 2924 return (error); 2925 } 2926 2927 int 2928 freebsd32_clock_gettime(struct thread *td, 2929 struct freebsd32_clock_gettime_args *uap) 2930 { 2931 struct timespec ats; 2932 struct timespec32 ats32; 2933 int error; 2934 2935 error = kern_clock_gettime(td, uap->clock_id, &ats); 2936 if (error == 0) { 2937 CP(ats, ats32, tv_sec); 2938 CP(ats, ats32, tv_nsec); 2939 error = copyout(&ats32, uap->tp, sizeof(ats32)); 2940 } 2941 return (error); 2942 } 2943 2944 int 2945 freebsd32_clock_settime(struct thread *td, 2946 struct freebsd32_clock_settime_args *uap) 2947 { 2948 struct timespec ats; 2949 struct timespec32 ats32; 2950 int error; 2951 2952 error = copyin(uap->tp, &ats32, sizeof(ats32)); 2953 if (error) 2954 return (error); 2955 CP(ats32, ats, tv_sec); 2956 CP(ats32, ats, tv_nsec); 2957 2958 return (kern_clock_settime(td, uap->clock_id, &ats)); 2959 } 2960 2961 int 2962 freebsd32_clock_getres(struct thread *td, 2963 struct freebsd32_clock_getres_args *uap) 2964 { 2965 struct timespec ts; 2966 struct timespec32 ts32; 2967 int error; 2968 2969 if (uap->tp == NULL) 2970 return (0); 2971 error = kern_clock_getres(td, uap->clock_id, &ts); 2972 if (error == 0) { 2973 CP(ts, ts32, tv_sec); 2974 CP(ts, ts32, tv_nsec); 2975 error = copyout(&ts32, uap->tp, sizeof(ts32)); 2976 } 2977 return (error); 2978 } 2979 2980 int freebsd32_ktimer_create(struct thread *td, 2981 struct freebsd32_ktimer_create_args *uap) 2982 { 2983 struct sigevent32 ev32; 2984 struct sigevent ev, *evp; 2985 int error, id; 2986 2987 if (uap->evp == NULL) { 2988 evp = NULL; 2989 } else { 2990 evp = &ev; 2991 error = copyin(uap->evp, &ev32, sizeof(ev32)); 2992 if (error != 0) 2993 return (error); 2994 error = convert_sigevent32(&ev32, &ev); 2995 if (error != 0) 2996 return (error); 2997 } 2998 error = kern_ktimer_create(td, uap->clock_id, evp, &id, -1); 2999 if (error == 0) { 3000 error = copyout(&id, uap->timerid, sizeof(int)); 3001 if (error != 0) 3002 kern_ktimer_delete(td, id); 3003 } 3004 return (error); 3005 } 3006 3007 int 3008 freebsd32_ktimer_settime(struct thread *td, 3009 struct freebsd32_ktimer_settime_args *uap) 3010 { 3011 struct itimerspec32 val32, oval32; 3012 struct itimerspec val, oval, *ovalp; 3013 int error; 3014 3015 error = copyin(uap->value, &val32, sizeof(val32)); 3016 if (error != 0) 3017 return (error); 3018 ITS_CP(val32, val); 3019 ovalp = uap->ovalue != NULL ? &oval : NULL; 3020 error = kern_ktimer_settime(td, uap->timerid, uap->flags, &val, ovalp); 3021 if (error == 0 && uap->ovalue != NULL) { 3022 ITS_CP(oval, oval32); 3023 error = copyout(&oval32, uap->ovalue, sizeof(oval32)); 3024 } 3025 return (error); 3026 } 3027 3028 int 3029 freebsd32_ktimer_gettime(struct thread *td, 3030 struct freebsd32_ktimer_gettime_args *uap) 3031 { 3032 struct itimerspec32 val32; 3033 struct itimerspec val; 3034 int error; 3035 3036 error = kern_ktimer_gettime(td, uap->timerid, &val); 3037 if (error == 0) { 3038 ITS_CP(val, val32); 3039 error = copyout(&val32, uap->value, sizeof(val32)); 3040 } 3041 return (error); 3042 } 3043 3044 int 3045 freebsd32_clock_getcpuclockid2(struct thread *td, 3046 struct freebsd32_clock_getcpuclockid2_args *uap) 3047 { 3048 clockid_t clk_id; 3049 int error; 3050 3051 error = kern_clock_getcpuclockid2(td, PAIR32TO64(id_t, uap->id), 3052 uap->which, &clk_id); 3053 if (error == 0) 3054 error = copyout(&clk_id, uap->clock_id, sizeof(clockid_t)); 3055 return (error); 3056 } 3057 3058 int 3059 freebsd32_thr_new(struct thread *td, 3060 struct freebsd32_thr_new_args *uap) 3061 { 3062 struct thr_param32 param32; 3063 struct thr_param param; 3064 int error; 3065 3066 if (uap->param_size < 0 || 3067 uap->param_size > sizeof(struct thr_param32)) 3068 return (EINVAL); 3069 bzero(¶m, sizeof(struct thr_param)); 3070 bzero(¶m32, sizeof(struct thr_param32)); 3071 error = copyin(uap->param, ¶m32, uap->param_size); 3072 if (error != 0) 3073 return (error); 3074 param.start_func = PTRIN(param32.start_func); 3075 param.arg = PTRIN(param32.arg); 3076 param.stack_base = PTRIN(param32.stack_base); 3077 param.stack_size = param32.stack_size; 3078 param.tls_base = PTRIN(param32.tls_base); 3079 param.tls_size = param32.tls_size; 3080 param.child_tid = PTRIN(param32.child_tid); 3081 param.parent_tid = PTRIN(param32.parent_tid); 3082 param.flags = param32.flags; 3083 param.rtp = PTRIN(param32.rtp); 3084 param.spare[0] = PTRIN(param32.spare[0]); 3085 param.spare[1] = PTRIN(param32.spare[1]); 3086 param.spare[2] = PTRIN(param32.spare[2]); 3087 3088 return (kern_thr_new(td, ¶m)); 3089 } 3090 3091 int 3092 freebsd32_thr_suspend(struct thread *td, struct freebsd32_thr_suspend_args *uap) 3093 { 3094 struct timespec32 ts32; 3095 struct timespec ts, *tsp; 3096 int error; 3097 3098 error = 0; 3099 tsp = NULL; 3100 if (uap->timeout != NULL) { 3101 error = copyin((const void *)uap->timeout, (void *)&ts32, 3102 sizeof(struct timespec32)); 3103 if (error != 0) 3104 return (error); 3105 ts.tv_sec = ts32.tv_sec; 3106 ts.tv_nsec = ts32.tv_nsec; 3107 tsp = &ts; 3108 } 3109 return (kern_thr_suspend(td, tsp)); 3110 } 3111 3112 void 3113 siginfo_to_siginfo32(const siginfo_t *src, struct siginfo32 *dst) 3114 { 3115 bzero(dst, sizeof(*dst)); 3116 dst->si_signo = src->si_signo; 3117 dst->si_errno = src->si_errno; 3118 dst->si_code = src->si_code; 3119 dst->si_pid = src->si_pid; 3120 dst->si_uid = src->si_uid; 3121 dst->si_status = src->si_status; 3122 dst->si_addr = (uintptr_t)src->si_addr; 3123 dst->si_value.sival_int = src->si_value.sival_int; 3124 dst->si_timerid = src->si_timerid; 3125 dst->si_overrun = src->si_overrun; 3126 } 3127 3128 #ifndef _FREEBSD32_SYSPROTO_H_ 3129 struct freebsd32_sigqueue_args { 3130 pid_t pid; 3131 int signum; 3132 /* union sigval32 */ int value; 3133 }; 3134 #endif 3135 int 3136 freebsd32_sigqueue(struct thread *td, struct freebsd32_sigqueue_args *uap) 3137 { 3138 union sigval sv; 3139 3140 /* 3141 * On 32-bit ABIs, sival_int and sival_ptr are the same. 3142 * On 64-bit little-endian ABIs, the low bits are the same. 3143 * In 64-bit big-endian ABIs, sival_int overlaps with 3144 * sival_ptr's HIGH bits. We choose to support sival_int 3145 * rather than sival_ptr in this case as it seems to be 3146 * more common. 3147 */ 3148 bzero(&sv, sizeof(sv)); 3149 sv.sival_int = uap->value; 3150 3151 return (kern_sigqueue(td, uap->pid, uap->signum, &sv)); 3152 } 3153 3154 int 3155 freebsd32_sigtimedwait(struct thread *td, struct freebsd32_sigtimedwait_args *uap) 3156 { 3157 struct timespec32 ts32; 3158 struct timespec ts; 3159 struct timespec *timeout; 3160 sigset_t set; 3161 ksiginfo_t ksi; 3162 struct siginfo32 si32; 3163 int error; 3164 3165 if (uap->timeout) { 3166 error = copyin(uap->timeout, &ts32, sizeof(ts32)); 3167 if (error) 3168 return (error); 3169 ts.tv_sec = ts32.tv_sec; 3170 ts.tv_nsec = ts32.tv_nsec; 3171 timeout = &ts; 3172 } else 3173 timeout = NULL; 3174 3175 error = copyin(uap->set, &set, sizeof(set)); 3176 if (error) 3177 return (error); 3178 3179 error = kern_sigtimedwait(td, set, &ksi, timeout); 3180 if (error) 3181 return (error); 3182 3183 if (uap->info) { 3184 siginfo_to_siginfo32(&ksi.ksi_info, &si32); 3185 error = copyout(&si32, uap->info, sizeof(struct siginfo32)); 3186 } 3187 3188 if (error == 0) 3189 td->td_retval[0] = ksi.ksi_signo; 3190 return (error); 3191 } 3192 3193 /* 3194 * MPSAFE 3195 */ 3196 int 3197 freebsd32_sigwaitinfo(struct thread *td, struct freebsd32_sigwaitinfo_args *uap) 3198 { 3199 ksiginfo_t ksi; 3200 struct siginfo32 si32; 3201 sigset_t set; 3202 int error; 3203 3204 error = copyin(uap->set, &set, sizeof(set)); 3205 if (error) 3206 return (error); 3207 3208 error = kern_sigtimedwait(td, set, &ksi, NULL); 3209 if (error) 3210 return (error); 3211 3212 if (uap->info) { 3213 siginfo_to_siginfo32(&ksi.ksi_info, &si32); 3214 error = copyout(&si32, uap->info, sizeof(struct siginfo32)); 3215 } 3216 if (error == 0) 3217 td->td_retval[0] = ksi.ksi_signo; 3218 return (error); 3219 } 3220 3221 int 3222 freebsd32_cpuset_setid(struct thread *td, 3223 struct freebsd32_cpuset_setid_args *uap) 3224 { 3225 3226 return (kern_cpuset_setid(td, uap->which, 3227 PAIR32TO64(id_t, uap->id), uap->setid)); 3228 } 3229 3230 int 3231 freebsd32_cpuset_getid(struct thread *td, 3232 struct freebsd32_cpuset_getid_args *uap) 3233 { 3234 3235 return (kern_cpuset_getid(td, uap->level, uap->which, 3236 PAIR32TO64(id_t, uap->id), uap->setid)); 3237 } 3238 3239 int 3240 freebsd32_cpuset_getaffinity(struct thread *td, 3241 struct freebsd32_cpuset_getaffinity_args *uap) 3242 { 3243 3244 return (kern_cpuset_getaffinity(td, uap->level, uap->which, 3245 PAIR32TO64(id_t,uap->id), uap->cpusetsize, uap->mask)); 3246 } 3247 3248 int 3249 freebsd32_cpuset_setaffinity(struct thread *td, 3250 struct freebsd32_cpuset_setaffinity_args *uap) 3251 { 3252 3253 return (kern_cpuset_setaffinity(td, uap->level, uap->which, 3254 PAIR32TO64(id_t,uap->id), uap->cpusetsize, uap->mask)); 3255 } 3256 3257 int 3258 freebsd32_cpuset_getdomain(struct thread *td, 3259 struct freebsd32_cpuset_getdomain_args *uap) 3260 { 3261 3262 return (kern_cpuset_getdomain(td, uap->level, uap->which, 3263 PAIR32TO64(id_t,uap->id), uap->domainsetsize, uap->mask, uap->policy)); 3264 } 3265 3266 int 3267 freebsd32_cpuset_setdomain(struct thread *td, 3268 struct freebsd32_cpuset_setdomain_args *uap) 3269 { 3270 3271 return (kern_cpuset_setdomain(td, uap->level, uap->which, 3272 PAIR32TO64(id_t,uap->id), uap->domainsetsize, uap->mask, uap->policy)); 3273 } 3274 3275 int 3276 freebsd32_nmount(struct thread *td, 3277 struct freebsd32_nmount_args /* { 3278 struct iovec *iovp; 3279 unsigned int iovcnt; 3280 int flags; 3281 } */ *uap) 3282 { 3283 struct uio *auio; 3284 uint64_t flags; 3285 int error; 3286 3287 /* 3288 * Mount flags are now 64-bits. On 32-bit archtectures only 3289 * 32-bits are passed in, but from here on everything handles 3290 * 64-bit flags correctly. 3291 */ 3292 flags = uap->flags; 3293 3294 AUDIT_ARG_FFLAGS(flags); 3295 3296 /* 3297 * Filter out MNT_ROOTFS. We do not want clients of nmount() in 3298 * userspace to set this flag, but we must filter it out if we want 3299 * MNT_UPDATE on the root file system to work. 3300 * MNT_ROOTFS should only be set by the kernel when mounting its 3301 * root file system. 3302 */ 3303 flags &= ~MNT_ROOTFS; 3304 3305 /* 3306 * check that we have an even number of iovec's 3307 * and that we have at least two options. 3308 */ 3309 if ((uap->iovcnt & 1) || (uap->iovcnt < 4)) 3310 return (EINVAL); 3311 3312 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 3313 if (error) 3314 return (error); 3315 error = vfs_donmount(td, flags, auio); 3316 3317 free(auio, M_IOV); 3318 return error; 3319 } 3320 3321 #if 0 3322 int 3323 freebsd32_xxx(struct thread *td, struct freebsd32_xxx_args *uap) 3324 { 3325 struct yyy32 *p32, s32; 3326 struct yyy *p = NULL, s; 3327 struct xxx_arg ap; 3328 int error; 3329 3330 if (uap->zzz) { 3331 error = copyin(uap->zzz, &s32, sizeof(s32)); 3332 if (error) 3333 return (error); 3334 /* translate in */ 3335 p = &s; 3336 } 3337 error = kern_xxx(td, p); 3338 if (error) 3339 return (error); 3340 if (uap->zzz) { 3341 /* translate out */ 3342 error = copyout(&s32, p32, sizeof(s32)); 3343 } 3344 return (error); 3345 } 3346 #endif 3347 3348 int 3349 syscall32_module_handler(struct module *mod, int what, void *arg) 3350 { 3351 3352 return (kern_syscall_module_handler(freebsd32_sysent, mod, what, arg)); 3353 } 3354 3355 int 3356 syscall32_helper_register(struct syscall_helper_data *sd, int flags) 3357 { 3358 3359 return (kern_syscall_helper_register(freebsd32_sysent, sd, flags)); 3360 } 3361 3362 int 3363 syscall32_helper_unregister(struct syscall_helper_data *sd) 3364 { 3365 3366 return (kern_syscall_helper_unregister(freebsd32_sysent, sd)); 3367 } 3368 3369 int 3370 freebsd32_copyout_strings(struct image_params *imgp, uintptr_t *stack_base) 3371 { 3372 int argc, envc, i; 3373 u_int32_t *vectp; 3374 char *stringp; 3375 uintptr_t destp, ustringp; 3376 struct freebsd32_ps_strings *arginfo; 3377 char canary[sizeof(long) * 8]; 3378 int32_t pagesizes32[MAXPAGESIZES]; 3379 size_t execpath_len; 3380 int error, szsigcode; 3381 3382 /* 3383 * Calculate string base and vector table pointers. 3384 * Also deal with signal trampoline code for this exec type. 3385 */ 3386 if (imgp->execpath != NULL && imgp->auxargs != NULL) 3387 execpath_len = strlen(imgp->execpath) + 1; 3388 else 3389 execpath_len = 0; 3390 arginfo = (struct freebsd32_ps_strings *)curproc->p_sysent-> 3391 sv_psstrings; 3392 imgp->ps_strings = arginfo; 3393 if (imgp->proc->p_sysent->sv_sigcode_base == 0) 3394 szsigcode = *(imgp->proc->p_sysent->sv_szsigcode); 3395 else 3396 szsigcode = 0; 3397 destp = (uintptr_t)arginfo; 3398 3399 /* 3400 * install sigcode 3401 */ 3402 if (szsigcode != 0) { 3403 destp -= szsigcode; 3404 destp = rounddown2(destp, sizeof(uint32_t)); 3405 error = copyout(imgp->proc->p_sysent->sv_sigcode, (void *)destp, 3406 szsigcode); 3407 if (error != 0) 3408 return (error); 3409 } 3410 3411 /* 3412 * Copy the image path for the rtld. 3413 */ 3414 if (execpath_len != 0) { 3415 destp -= execpath_len; 3416 imgp->execpathp = (void *)destp; 3417 error = copyout(imgp->execpath, imgp->execpathp, execpath_len); 3418 if (error != 0) 3419 return (error); 3420 } 3421 3422 /* 3423 * Prepare the canary for SSP. 3424 */ 3425 arc4rand(canary, sizeof(canary), 0); 3426 destp -= sizeof(canary); 3427 imgp->canary = (void *)destp; 3428 error = copyout(canary, imgp->canary, sizeof(canary)); 3429 if (error != 0) 3430 return (error); 3431 imgp->canarylen = sizeof(canary); 3432 3433 /* 3434 * Prepare the pagesizes array. 3435 */ 3436 for (i = 0; i < MAXPAGESIZES; i++) 3437 pagesizes32[i] = (uint32_t)pagesizes[i]; 3438 destp -= sizeof(pagesizes32); 3439 destp = rounddown2(destp, sizeof(uint32_t)); 3440 imgp->pagesizes = (void *)destp; 3441 error = copyout(pagesizes32, imgp->pagesizes, sizeof(pagesizes32)); 3442 if (error != 0) 3443 return (error); 3444 imgp->pagesizeslen = sizeof(pagesizes32); 3445 3446 /* 3447 * Allocate room for the argument and environment strings. 3448 */ 3449 destp -= ARG_MAX - imgp->args->stringspace; 3450 destp = rounddown2(destp, sizeof(uint32_t)); 3451 ustringp = destp; 3452 3453 exec_stackgap(imgp, &destp); 3454 3455 if (imgp->auxargs) { 3456 /* 3457 * Allocate room on the stack for the ELF auxargs 3458 * array. It has up to AT_COUNT entries. 3459 */ 3460 destp -= AT_COUNT * sizeof(Elf32_Auxinfo); 3461 destp = rounddown2(destp, sizeof(uint32_t)); 3462 } 3463 3464 vectp = (uint32_t *)destp; 3465 3466 /* 3467 * Allocate room for the argv[] and env vectors including the 3468 * terminating NULL pointers. 3469 */ 3470 vectp -= imgp->args->argc + 1 + imgp->args->envc + 1; 3471 3472 /* 3473 * vectp also becomes our initial stack base 3474 */ 3475 *stack_base = (uintptr_t)vectp; 3476 3477 stringp = imgp->args->begin_argv; 3478 argc = imgp->args->argc; 3479 envc = imgp->args->envc; 3480 /* 3481 * Copy out strings - arguments and environment. 3482 */ 3483 error = copyout(stringp, (void *)ustringp, 3484 ARG_MAX - imgp->args->stringspace); 3485 if (error != 0) 3486 return (error); 3487 3488 /* 3489 * Fill in "ps_strings" struct for ps, w, etc. 3490 */ 3491 imgp->argv = vectp; 3492 if (suword32(&arginfo->ps_argvstr, (u_int32_t)(intptr_t)vectp) != 0 || 3493 suword32(&arginfo->ps_nargvstr, argc) != 0) 3494 return (EFAULT); 3495 3496 /* 3497 * Fill in argument portion of vector table. 3498 */ 3499 for (; argc > 0; --argc) { 3500 if (suword32(vectp++, ustringp) != 0) 3501 return (EFAULT); 3502 while (*stringp++ != 0) 3503 ustringp++; 3504 ustringp++; 3505 } 3506 3507 /* a null vector table pointer separates the argp's from the envp's */ 3508 if (suword32(vectp++, 0) != 0) 3509 return (EFAULT); 3510 3511 imgp->envv = vectp; 3512 if (suword32(&arginfo->ps_envstr, (u_int32_t)(intptr_t)vectp) != 0 || 3513 suword32(&arginfo->ps_nenvstr, envc) != 0) 3514 return (EFAULT); 3515 3516 /* 3517 * Fill in environment portion of vector table. 3518 */ 3519 for (; envc > 0; --envc) { 3520 if (suword32(vectp++, ustringp) != 0) 3521 return (EFAULT); 3522 while (*stringp++ != 0) 3523 ustringp++; 3524 ustringp++; 3525 } 3526 3527 /* end of vector table is a null pointer */ 3528 if (suword32(vectp, 0) != 0) 3529 return (EFAULT); 3530 3531 if (imgp->auxargs) { 3532 vectp++; 3533 error = imgp->sysent->sv_copyout_auxargs(imgp, 3534 (uintptr_t)vectp); 3535 if (error != 0) 3536 return (error); 3537 } 3538 3539 return (0); 3540 } 3541 3542 int 3543 freebsd32_kldstat(struct thread *td, struct freebsd32_kldstat_args *uap) 3544 { 3545 struct kld_file_stat *stat; 3546 struct kld32_file_stat *stat32; 3547 int error, version; 3548 3549 if ((error = copyin(&uap->stat->version, &version, sizeof(version))) 3550 != 0) 3551 return (error); 3552 if (version != sizeof(struct kld32_file_stat_1) && 3553 version != sizeof(struct kld32_file_stat)) 3554 return (EINVAL); 3555 3556 stat = malloc(sizeof(*stat), M_TEMP, M_WAITOK | M_ZERO); 3557 stat32 = malloc(sizeof(*stat32), M_TEMP, M_WAITOK | M_ZERO); 3558 error = kern_kldstat(td, uap->fileid, stat); 3559 if (error == 0) { 3560 bcopy(&stat->name[0], &stat32->name[0], sizeof(stat->name)); 3561 CP(*stat, *stat32, refs); 3562 CP(*stat, *stat32, id); 3563 PTROUT_CP(*stat, *stat32, address); 3564 CP(*stat, *stat32, size); 3565 bcopy(&stat->pathname[0], &stat32->pathname[0], 3566 sizeof(stat->pathname)); 3567 stat32->version = version; 3568 error = copyout(stat32, uap->stat, version); 3569 } 3570 free(stat, M_TEMP); 3571 free(stat32, M_TEMP); 3572 return (error); 3573 } 3574 3575 int 3576 freebsd32_posix_fallocate(struct thread *td, 3577 struct freebsd32_posix_fallocate_args *uap) 3578 { 3579 int error; 3580 3581 error = kern_posix_fallocate(td, uap->fd, 3582 PAIR32TO64(off_t, uap->offset), PAIR32TO64(off_t, uap->len)); 3583 return (kern_posix_error(td, error)); 3584 } 3585 3586 int 3587 freebsd32_posix_fadvise(struct thread *td, 3588 struct freebsd32_posix_fadvise_args *uap) 3589 { 3590 int error; 3591 3592 error = kern_posix_fadvise(td, uap->fd, PAIR32TO64(off_t, uap->offset), 3593 PAIR32TO64(off_t, uap->len), uap->advice); 3594 return (kern_posix_error(td, error)); 3595 } 3596 3597 int 3598 convert_sigevent32(struct sigevent32 *sig32, struct sigevent *sig) 3599 { 3600 3601 CP(*sig32, *sig, sigev_notify); 3602 switch (sig->sigev_notify) { 3603 case SIGEV_NONE: 3604 break; 3605 case SIGEV_THREAD_ID: 3606 CP(*sig32, *sig, sigev_notify_thread_id); 3607 /* FALLTHROUGH */ 3608 case SIGEV_SIGNAL: 3609 CP(*sig32, *sig, sigev_signo); 3610 PTRIN_CP(*sig32, *sig, sigev_value.sival_ptr); 3611 break; 3612 case SIGEV_KEVENT: 3613 CP(*sig32, *sig, sigev_notify_kqueue); 3614 CP(*sig32, *sig, sigev_notify_kevent_flags); 3615 PTRIN_CP(*sig32, *sig, sigev_value.sival_ptr); 3616 break; 3617 default: 3618 return (EINVAL); 3619 } 3620 return (0); 3621 } 3622 3623 int 3624 freebsd32_procctl(struct thread *td, struct freebsd32_procctl_args *uap) 3625 { 3626 void *data; 3627 union { 3628 struct procctl_reaper_status rs; 3629 struct procctl_reaper_pids rp; 3630 struct procctl_reaper_kill rk; 3631 } x; 3632 union { 3633 struct procctl_reaper_pids32 rp; 3634 } x32; 3635 int error, error1, flags, signum; 3636 3637 if (uap->com >= PROC_PROCCTL_MD_MIN) 3638 return (cpu_procctl(td, uap->idtype, PAIR32TO64(id_t, uap->id), 3639 uap->com, PTRIN(uap->data))); 3640 3641 switch (uap->com) { 3642 case PROC_ASLR_CTL: 3643 case PROC_PROTMAX_CTL: 3644 case PROC_SPROTECT: 3645 case PROC_STACKGAP_CTL: 3646 case PROC_TRACE_CTL: 3647 case PROC_TRAPCAP_CTL: 3648 case PROC_NO_NEW_PRIVS_CTL: 3649 error = copyin(PTRIN(uap->data), &flags, sizeof(flags)); 3650 if (error != 0) 3651 return (error); 3652 data = &flags; 3653 break; 3654 case PROC_REAP_ACQUIRE: 3655 case PROC_REAP_RELEASE: 3656 if (uap->data != NULL) 3657 return (EINVAL); 3658 data = NULL; 3659 break; 3660 case PROC_REAP_STATUS: 3661 data = &x.rs; 3662 break; 3663 case PROC_REAP_GETPIDS: 3664 error = copyin(uap->data, &x32.rp, sizeof(x32.rp)); 3665 if (error != 0) 3666 return (error); 3667 CP(x32.rp, x.rp, rp_count); 3668 PTRIN_CP(x32.rp, x.rp, rp_pids); 3669 data = &x.rp; 3670 break; 3671 case PROC_REAP_KILL: 3672 error = copyin(uap->data, &x.rk, sizeof(x.rk)); 3673 if (error != 0) 3674 return (error); 3675 data = &x.rk; 3676 break; 3677 case PROC_ASLR_STATUS: 3678 case PROC_PROTMAX_STATUS: 3679 case PROC_STACKGAP_STATUS: 3680 case PROC_TRACE_STATUS: 3681 case PROC_TRAPCAP_STATUS: 3682 case PROC_NO_NEW_PRIVS_STATUS: 3683 data = &flags; 3684 break; 3685 case PROC_PDEATHSIG_CTL: 3686 error = copyin(uap->data, &signum, sizeof(signum)); 3687 if (error != 0) 3688 return (error); 3689 data = &signum; 3690 break; 3691 case PROC_PDEATHSIG_STATUS: 3692 data = &signum; 3693 break; 3694 default: 3695 return (EINVAL); 3696 } 3697 error = kern_procctl(td, uap->idtype, PAIR32TO64(id_t, uap->id), 3698 uap->com, data); 3699 switch (uap->com) { 3700 case PROC_REAP_STATUS: 3701 if (error == 0) 3702 error = copyout(&x.rs, uap->data, sizeof(x.rs)); 3703 break; 3704 case PROC_REAP_KILL: 3705 error1 = copyout(&x.rk, uap->data, sizeof(x.rk)); 3706 if (error == 0) 3707 error = error1; 3708 break; 3709 case PROC_ASLR_STATUS: 3710 case PROC_PROTMAX_STATUS: 3711 case PROC_STACKGAP_STATUS: 3712 case PROC_TRACE_STATUS: 3713 case PROC_TRAPCAP_STATUS: 3714 case PROC_NO_NEW_PRIVS_STATUS: 3715 if (error == 0) 3716 error = copyout(&flags, uap->data, sizeof(flags)); 3717 break; 3718 case PROC_PDEATHSIG_STATUS: 3719 if (error == 0) 3720 error = copyout(&signum, uap->data, sizeof(signum)); 3721 break; 3722 } 3723 return (error); 3724 } 3725 3726 int 3727 freebsd32_fcntl(struct thread *td, struct freebsd32_fcntl_args *uap) 3728 { 3729 long tmp; 3730 3731 switch (uap->cmd) { 3732 /* 3733 * Do unsigned conversion for arg when operation 3734 * interprets it as flags or pointer. 3735 */ 3736 case F_SETLK_REMOTE: 3737 case F_SETLKW: 3738 case F_SETLK: 3739 case F_GETLK: 3740 case F_SETFD: 3741 case F_SETFL: 3742 case F_OGETLK: 3743 case F_OSETLK: 3744 case F_OSETLKW: 3745 tmp = (unsigned int)(uap->arg); 3746 break; 3747 default: 3748 tmp = uap->arg; 3749 break; 3750 } 3751 return (kern_fcntl_freebsd(td, uap->fd, uap->cmd, tmp)); 3752 } 3753 3754 int 3755 freebsd32_ppoll(struct thread *td, struct freebsd32_ppoll_args *uap) 3756 { 3757 struct timespec32 ts32; 3758 struct timespec ts, *tsp; 3759 sigset_t set, *ssp; 3760 int error; 3761 3762 if (uap->ts != NULL) { 3763 error = copyin(uap->ts, &ts32, sizeof(ts32)); 3764 if (error != 0) 3765 return (error); 3766 CP(ts32, ts, tv_sec); 3767 CP(ts32, ts, tv_nsec); 3768 tsp = &ts; 3769 } else 3770 tsp = NULL; 3771 if (uap->set != NULL) { 3772 error = copyin(uap->set, &set, sizeof(set)); 3773 if (error != 0) 3774 return (error); 3775 ssp = &set; 3776 } else 3777 ssp = NULL; 3778 3779 return (kern_poll(td, uap->fds, uap->nfds, tsp, ssp)); 3780 } 3781 3782 int 3783 freebsd32_sched_rr_get_interval(struct thread *td, 3784 struct freebsd32_sched_rr_get_interval_args *uap) 3785 { 3786 struct timespec ts; 3787 struct timespec32 ts32; 3788 int error; 3789 3790 error = kern_sched_rr_get_interval(td, uap->pid, &ts); 3791 if (error == 0) { 3792 CP(ts, ts32, tv_sec); 3793 CP(ts, ts32, tv_nsec); 3794 error = copyout(&ts32, uap->interval, sizeof(ts32)); 3795 } 3796 return (error); 3797 } 3798 3799 static void 3800 timex_to_32(struct timex32 *dst, struct timex *src) 3801 { 3802 CP(*src, *dst, modes); 3803 CP(*src, *dst, offset); 3804 CP(*src, *dst, freq); 3805 CP(*src, *dst, maxerror); 3806 CP(*src, *dst, esterror); 3807 CP(*src, *dst, status); 3808 CP(*src, *dst, constant); 3809 CP(*src, *dst, precision); 3810 CP(*src, *dst, tolerance); 3811 CP(*src, *dst, ppsfreq); 3812 CP(*src, *dst, jitter); 3813 CP(*src, *dst, shift); 3814 CP(*src, *dst, stabil); 3815 CP(*src, *dst, jitcnt); 3816 CP(*src, *dst, calcnt); 3817 CP(*src, *dst, errcnt); 3818 CP(*src, *dst, stbcnt); 3819 } 3820 3821 static void 3822 timex_from_32(struct timex *dst, struct timex32 *src) 3823 { 3824 CP(*src, *dst, modes); 3825 CP(*src, *dst, offset); 3826 CP(*src, *dst, freq); 3827 CP(*src, *dst, maxerror); 3828 CP(*src, *dst, esterror); 3829 CP(*src, *dst, status); 3830 CP(*src, *dst, constant); 3831 CP(*src, *dst, precision); 3832 CP(*src, *dst, tolerance); 3833 CP(*src, *dst, ppsfreq); 3834 CP(*src, *dst, jitter); 3835 CP(*src, *dst, shift); 3836 CP(*src, *dst, stabil); 3837 CP(*src, *dst, jitcnt); 3838 CP(*src, *dst, calcnt); 3839 CP(*src, *dst, errcnt); 3840 CP(*src, *dst, stbcnt); 3841 } 3842 3843 int 3844 freebsd32_ntp_adjtime(struct thread *td, struct freebsd32_ntp_adjtime_args *uap) 3845 { 3846 struct timex tx; 3847 struct timex32 tx32; 3848 int error, retval; 3849 3850 error = copyin(uap->tp, &tx32, sizeof(tx32)); 3851 if (error == 0) { 3852 timex_from_32(&tx, &tx32); 3853 error = kern_ntp_adjtime(td, &tx, &retval); 3854 if (error == 0) { 3855 timex_to_32(&tx32, &tx); 3856 error = copyout(&tx32, uap->tp, sizeof(tx32)); 3857 if (error == 0) 3858 td->td_retval[0] = retval; 3859 } 3860 } 3861 return (error); 3862 } 3863 3864 int 3865 freebsd32_fspacectl(struct thread *td, struct freebsd32_fspacectl_args *uap) 3866 { 3867 struct spacectl_range rqsr, rmsr; 3868 struct spacectl_range32 rqsr32, rmsr32; 3869 int error, cerror; 3870 3871 error = copyin(uap->rqsr, &rqsr32, sizeof(rqsr32)); 3872 if (error != 0) 3873 return (error); 3874 rqsr.r_offset = PAIR32TO64(off_t, rqsr32.r_offset); 3875 rqsr.r_len = PAIR32TO64(off_t, rqsr32.r_len); 3876 3877 error = kern_fspacectl(td, uap->fd, uap->cmd, &rqsr, uap->flags, 3878 &rmsr); 3879 if (uap->rmsr != NULL) { 3880 #if BYTE_ORDER == LITTLE_ENDIAN 3881 rmsr32.r_offset1 = rmsr.r_offset; 3882 rmsr32.r_offset2 = rmsr.r_offset >> 32; 3883 rmsr32.r_len1 = rmsr.r_len; 3884 rmsr32.r_len2 = rmsr.r_len >> 32; 3885 #else 3886 rmsr32.r_offset1 = rmsr.r_offset >> 32; 3887 rmsr32.r_offset2 = rmsr.r_offset; 3888 rmsr32.r_len1 = rmsr.r_len >> 32; 3889 rmsr32.r_len2 = rmsr.r_len; 3890 #endif 3891 cerror = copyout(&rmsr32, uap->rmsr, sizeof(rmsr32)); 3892 if (error == 0) 3893 error = cerror; 3894 } 3895 return (error); 3896 } 3897