xref: /freebsd/sys/compat/freebsd32/freebsd32_misc.c (revision 53120fbb68952b7d620c2c0e1cf05c5017fc1b27)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2002 Doug Rabson
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 #include "opt_ffclock.h"
31 #include "opt_inet.h"
32 #include "opt_inet6.h"
33 #include "opt_ktrace.h"
34 
35 #define __ELF_WORD_SIZE 32
36 
37 #ifdef COMPAT_FREEBSD11
38 #define	_WANT_FREEBSD11_KEVENT
39 #endif
40 
41 #include <sys/param.h>
42 #include <sys/bus.h>
43 #include <sys/capsicum.h>
44 #include <sys/clock.h>
45 #include <sys/exec.h>
46 #include <sys/fcntl.h>
47 #include <sys/filedesc.h>
48 #include <sys/imgact.h>
49 #include <sys/jail.h>
50 #include <sys/kernel.h>
51 #include <sys/limits.h>
52 #include <sys/linker.h>
53 #include <sys/lock.h>
54 #include <sys/malloc.h>
55 #include <sys/file.h>		/* Must come after sys/malloc.h */
56 #include <sys/imgact.h>
57 #include <sys/mbuf.h>
58 #include <sys/mman.h>
59 #include <sys/module.h>
60 #include <sys/mount.h>
61 #include <sys/mutex.h>
62 #include <sys/namei.h>
63 #include <sys/priv.h>
64 #include <sys/proc.h>
65 #include <sys/procctl.h>
66 #include <sys/ptrace.h>
67 #include <sys/reboot.h>
68 #include <sys/resource.h>
69 #include <sys/resourcevar.h>
70 #include <sys/selinfo.h>
71 #include <sys/eventvar.h>	/* Must come after sys/selinfo.h */
72 #include <sys/pipe.h>		/* Must come after sys/selinfo.h */
73 #include <sys/signal.h>
74 #include <sys/signalvar.h>
75 #include <sys/socket.h>
76 #include <sys/socketvar.h>
77 #include <sys/stat.h>
78 #include <sys/syscall.h>
79 #include <sys/syscallsubr.h>
80 #include <sys/sysctl.h>
81 #include <sys/sysent.h>
82 #include <sys/sysproto.h>
83 #include <sys/systm.h>
84 #include <sys/thr.h>
85 #include <sys/timerfd.h>
86 #include <sys/timex.h>
87 #include <sys/unistd.h>
88 #include <sys/ucontext.h>
89 #include <sys/vnode.h>
90 #include <sys/wait.h>
91 #include <sys/ipc.h>
92 #include <sys/msg.h>
93 #include <sys/sem.h>
94 #include <sys/shm.h>
95 #include <sys/timeffc.h>
96 #ifdef KTRACE
97 #include <sys/ktrace.h>
98 #endif
99 
100 #ifdef INET
101 #include <netinet/in.h>
102 #endif
103 
104 #include <vm/vm.h>
105 #include <vm/vm_param.h>
106 #include <vm/pmap.h>
107 #include <vm/vm_map.h>
108 #include <vm/vm_object.h>
109 #include <vm/vm_extern.h>
110 
111 #include <machine/cpu.h>
112 #include <machine/elf.h>
113 #ifdef __amd64__
114 #include <machine/md_var.h>
115 #endif
116 
117 #include <security/audit/audit.h>
118 
119 #include <compat/freebsd32/freebsd32_util.h>
120 #include <compat/freebsd32/freebsd32.h>
121 #include <compat/freebsd32/freebsd32_ipc.h>
122 #include <compat/freebsd32/freebsd32_misc.h>
123 #include <compat/freebsd32/freebsd32_signal.h>
124 #include <compat/freebsd32/freebsd32_proto.h>
125 
126 int compat_freebsd_32bit = 1;
127 
128 static void
129 register_compat32_feature(void *arg)
130 {
131 	if (!compat_freebsd_32bit)
132 		return;
133 
134 	FEATURE_ADD("compat_freebsd32", "Compatible with 32-bit FreeBSD");
135 	FEATURE_ADD("compat_freebsd_32bit",
136 	    "Compatible with 32-bit FreeBSD (legacy feature name)");
137 }
138 SYSINIT(freebsd32, SI_SUB_EXEC, SI_ORDER_ANY, register_compat32_feature,
139     NULL);
140 
141 struct ptrace_io_desc32 {
142 	int		piod_op;
143 	uint32_t	piod_offs;
144 	uint32_t	piod_addr;
145 	uint32_t	piod_len;
146 };
147 
148 struct ptrace_vm_entry32 {
149 	int		pve_entry;
150 	int		pve_timestamp;
151 	uint32_t	pve_start;
152 	uint32_t	pve_end;
153 	uint32_t	pve_offset;
154 	u_int		pve_prot;
155 	u_int		pve_pathlen;
156 	int32_t		pve_fileid;
157 	u_int		pve_fsid;
158 	uint32_t	pve_path;
159 };
160 
161 #ifdef __amd64__
162 CTASSERT(sizeof(struct timeval32) == 8);
163 CTASSERT(sizeof(struct timespec32) == 8);
164 CTASSERT(sizeof(struct itimerval32) == 16);
165 CTASSERT(sizeof(struct bintime32) == 12);
166 #else
167 CTASSERT(sizeof(struct timeval32) == 16);
168 CTASSERT(sizeof(struct timespec32) == 16);
169 CTASSERT(sizeof(struct itimerval32) == 32);
170 CTASSERT(sizeof(struct bintime32) == 16);
171 #endif
172 CTASSERT(sizeof(struct ostatfs32) == 256);
173 #ifdef __amd64__
174 CTASSERT(sizeof(struct rusage32) == 72);
175 #else
176 CTASSERT(sizeof(struct rusage32) == 88);
177 #endif
178 CTASSERT(sizeof(struct sigaltstack32) == 12);
179 #ifdef __amd64__
180 CTASSERT(sizeof(struct kevent32) == 56);
181 #else
182 CTASSERT(sizeof(struct kevent32) == 64);
183 #endif
184 CTASSERT(sizeof(struct iovec32) == 8);
185 CTASSERT(sizeof(struct msghdr32) == 28);
186 #ifdef __amd64__
187 CTASSERT(sizeof(struct stat32) == 208);
188 CTASSERT(sizeof(struct freebsd11_stat32) == 96);
189 #else
190 CTASSERT(sizeof(struct stat32) == 224);
191 CTASSERT(sizeof(struct freebsd11_stat32) == 120);
192 #endif
193 CTASSERT(sizeof(struct sigaction32) == 24);
194 
195 static int freebsd32_kevent_copyout(void *arg, struct kevent *kevp, int count);
196 static int freebsd32_kevent_copyin(void *arg, struct kevent *kevp, int count);
197 static int freebsd32_user_clock_nanosleep(struct thread *td, clockid_t clock_id,
198     int flags, const struct timespec32 *ua_rqtp, struct timespec32 *ua_rmtp);
199 
200 void
201 freebsd32_rusage_out(const struct rusage *s, struct rusage32 *s32)
202 {
203 
204 	TV_CP(*s, *s32, ru_utime);
205 	TV_CP(*s, *s32, ru_stime);
206 	CP(*s, *s32, ru_maxrss);
207 	CP(*s, *s32, ru_ixrss);
208 	CP(*s, *s32, ru_idrss);
209 	CP(*s, *s32, ru_isrss);
210 	CP(*s, *s32, ru_minflt);
211 	CP(*s, *s32, ru_majflt);
212 	CP(*s, *s32, ru_nswap);
213 	CP(*s, *s32, ru_inblock);
214 	CP(*s, *s32, ru_oublock);
215 	CP(*s, *s32, ru_msgsnd);
216 	CP(*s, *s32, ru_msgrcv);
217 	CP(*s, *s32, ru_nsignals);
218 	CP(*s, *s32, ru_nvcsw);
219 	CP(*s, *s32, ru_nivcsw);
220 }
221 
222 int
223 freebsd32_wait4(struct thread *td, struct freebsd32_wait4_args *uap)
224 {
225 	int error, status;
226 	struct rusage32 ru32;
227 	struct rusage ru, *rup;
228 
229 	if (uap->rusage != NULL)
230 		rup = &ru;
231 	else
232 		rup = NULL;
233 	error = kern_wait(td, uap->pid, &status, uap->options, rup);
234 	if (error)
235 		return (error);
236 	if (uap->status != NULL)
237 		error = copyout(&status, uap->status, sizeof(status));
238 	if (uap->rusage != NULL && error == 0) {
239 		freebsd32_rusage_out(&ru, &ru32);
240 		error = copyout(&ru32, uap->rusage, sizeof(ru32));
241 	}
242 	return (error);
243 }
244 
245 int
246 freebsd32_wait6(struct thread *td, struct freebsd32_wait6_args *uap)
247 {
248 	struct __wrusage32 wru32;
249 	struct __wrusage wru, *wrup;
250 	struct __siginfo32 si32;
251 	struct __siginfo si, *sip;
252 	int error, status;
253 
254 	if (uap->wrusage != NULL)
255 		wrup = &wru;
256 	else
257 		wrup = NULL;
258 	if (uap->info != NULL) {
259 		sip = &si;
260 		bzero(sip, sizeof(*sip));
261 	} else
262 		sip = NULL;
263 	error = kern_wait6(td, uap->idtype, PAIR32TO64(id_t, uap->id),
264 	    &status, uap->options, wrup, sip);
265 	if (error != 0)
266 		return (error);
267 	if (uap->status != NULL)
268 		error = copyout(&status, uap->status, sizeof(status));
269 	if (uap->wrusage != NULL && error == 0) {
270 		freebsd32_rusage_out(&wru.wru_self, &wru32.wru_self);
271 		freebsd32_rusage_out(&wru.wru_children, &wru32.wru_children);
272 		error = copyout(&wru32, uap->wrusage, sizeof(wru32));
273 	}
274 	if (uap->info != NULL && error == 0) {
275 		siginfo_to_siginfo32 (&si, &si32);
276 		error = copyout(&si32, uap->info, sizeof(si32));
277 	}
278 	return (error);
279 }
280 
281 #ifdef COMPAT_FREEBSD4
282 static void
283 copy_statfs(struct statfs *in, struct ostatfs32 *out)
284 {
285 
286 	statfs_scale_blocks(in, INT32_MAX);
287 	bzero(out, sizeof(*out));
288 	CP(*in, *out, f_bsize);
289 	out->f_iosize = MIN(in->f_iosize, INT32_MAX);
290 	CP(*in, *out, f_blocks);
291 	CP(*in, *out, f_bfree);
292 	CP(*in, *out, f_bavail);
293 	out->f_files = MIN(in->f_files, INT32_MAX);
294 	out->f_ffree = MIN(in->f_ffree, INT32_MAX);
295 	CP(*in, *out, f_fsid);
296 	CP(*in, *out, f_owner);
297 	CP(*in, *out, f_type);
298 	CP(*in, *out, f_flags);
299 	out->f_syncwrites = MIN(in->f_syncwrites, INT32_MAX);
300 	out->f_asyncwrites = MIN(in->f_asyncwrites, INT32_MAX);
301 	strlcpy(out->f_fstypename,
302 	      in->f_fstypename, MFSNAMELEN);
303 	strlcpy(out->f_mntonname,
304 	      in->f_mntonname, min(MNAMELEN, FREEBSD4_OMNAMELEN));
305 	out->f_syncreads = MIN(in->f_syncreads, INT32_MAX);
306 	out->f_asyncreads = MIN(in->f_asyncreads, INT32_MAX);
307 	strlcpy(out->f_mntfromname,
308 	      in->f_mntfromname, min(MNAMELEN, FREEBSD4_OMNAMELEN));
309 }
310 #endif
311 
312 int
313 freebsd32_getfsstat(struct thread *td, struct freebsd32_getfsstat_args *uap)
314 {
315 	size_t count;
316 	int error;
317 
318 	if (uap->bufsize < 0 || uap->bufsize > SIZE_MAX)
319 		return (EINVAL);
320 	error = kern_getfsstat(td, &uap->buf, uap->bufsize, &count,
321 	    UIO_USERSPACE, uap->mode);
322 	if (error == 0)
323 		td->td_retval[0] = count;
324 	return (error);
325 }
326 
327 #ifdef COMPAT_FREEBSD4
328 int
329 freebsd4_freebsd32_getfsstat(struct thread *td,
330     struct freebsd4_freebsd32_getfsstat_args *uap)
331 {
332 	struct statfs *buf, *sp;
333 	struct ostatfs32 stat32;
334 	size_t count, size, copycount;
335 	int error;
336 
337 	count = uap->bufsize / sizeof(struct ostatfs32);
338 	size = count * sizeof(struct statfs);
339 	error = kern_getfsstat(td, &buf, size, &count, UIO_SYSSPACE, uap->mode);
340 	if (size > 0) {
341 		sp = buf;
342 		copycount = count;
343 		while (copycount > 0 && error == 0) {
344 			copy_statfs(sp, &stat32);
345 			error = copyout(&stat32, uap->buf, sizeof(stat32));
346 			sp++;
347 			uap->buf++;
348 			copycount--;
349 		}
350 		free(buf, M_STATFS);
351 	}
352 	if (error == 0)
353 		td->td_retval[0] = count;
354 	return (error);
355 }
356 #endif
357 
358 #ifdef COMPAT_FREEBSD11
359 int
360 freebsd11_freebsd32_getfsstat(struct thread *td,
361     struct freebsd11_freebsd32_getfsstat_args *uap)
362 {
363 	return(kern_freebsd11_getfsstat(td, uap->buf, uap->bufsize,
364 	    uap->mode));
365 }
366 #endif
367 
368 int
369 freebsd32_sigaltstack(struct thread *td,
370 		      struct freebsd32_sigaltstack_args *uap)
371 {
372 	struct sigaltstack32 s32;
373 	struct sigaltstack ss, oss, *ssp;
374 	int error;
375 
376 	if (uap->ss != NULL) {
377 		error = copyin(uap->ss, &s32, sizeof(s32));
378 		if (error)
379 			return (error);
380 		PTRIN_CP(s32, ss, ss_sp);
381 		CP(s32, ss, ss_size);
382 		CP(s32, ss, ss_flags);
383 		ssp = &ss;
384 	} else
385 		ssp = NULL;
386 	error = kern_sigaltstack(td, ssp, &oss);
387 	if (error == 0 && uap->oss != NULL) {
388 		PTROUT_CP(oss, s32, ss_sp);
389 		CP(oss, s32, ss_size);
390 		CP(oss, s32, ss_flags);
391 		error = copyout(&s32, uap->oss, sizeof(s32));
392 	}
393 	return (error);
394 }
395 
396 /*
397  * Custom version of exec_copyin_args() so that we can translate
398  * the pointers.
399  */
400 int
401 freebsd32_exec_copyin_args(struct image_args *args, const char *fname,
402     enum uio_seg segflg, uint32_t *argv, uint32_t *envv)
403 {
404 	char *argp, *envp;
405 	uint32_t *p32, arg;
406 	int error;
407 
408 	bzero(args, sizeof(*args));
409 	if (argv == NULL)
410 		return (EFAULT);
411 
412 	/*
413 	 * Allocate demand-paged memory for the file name, argument, and
414 	 * environment strings.
415 	 */
416 	error = exec_alloc_args(args);
417 	if (error != 0)
418 		return (error);
419 
420 	/*
421 	 * Copy the file name.
422 	 */
423 	error = exec_args_add_fname(args, fname, segflg);
424 	if (error != 0)
425 		goto err_exit;
426 
427 	/*
428 	 * extract arguments first
429 	 */
430 	p32 = argv;
431 	for (;;) {
432 		error = copyin(p32++, &arg, sizeof(arg));
433 		if (error)
434 			goto err_exit;
435 		if (arg == 0)
436 			break;
437 		argp = PTRIN(arg);
438 		error = exec_args_add_arg(args, argp, UIO_USERSPACE);
439 		if (error != 0)
440 			goto err_exit;
441 	}
442 
443 	/*
444 	 * extract environment strings
445 	 */
446 	if (envv) {
447 		p32 = envv;
448 		for (;;) {
449 			error = copyin(p32++, &arg, sizeof(arg));
450 			if (error)
451 				goto err_exit;
452 			if (arg == 0)
453 				break;
454 			envp = PTRIN(arg);
455 			error = exec_args_add_env(args, envp, UIO_USERSPACE);
456 			if (error != 0)
457 				goto err_exit;
458 		}
459 	}
460 
461 	return (0);
462 
463 err_exit:
464 	exec_free_args(args);
465 	return (error);
466 }
467 
468 int
469 freebsd32_execve(struct thread *td, struct freebsd32_execve_args *uap)
470 {
471 	struct image_args eargs;
472 	struct vmspace *oldvmspace;
473 	int error;
474 
475 	error = pre_execve(td, &oldvmspace);
476 	if (error != 0)
477 		return (error);
478 	error = freebsd32_exec_copyin_args(&eargs, uap->fname, UIO_USERSPACE,
479 	    uap->argv, uap->envv);
480 	if (error == 0)
481 		error = kern_execve(td, &eargs, NULL, oldvmspace);
482 	post_execve(td, error, oldvmspace);
483 	AUDIT_SYSCALL_EXIT(error == EJUSTRETURN ? 0 : error, td);
484 	return (error);
485 }
486 
487 int
488 freebsd32_fexecve(struct thread *td, struct freebsd32_fexecve_args *uap)
489 {
490 	struct image_args eargs;
491 	struct vmspace *oldvmspace;
492 	int error;
493 
494 	error = pre_execve(td, &oldvmspace);
495 	if (error != 0)
496 		return (error);
497 	error = freebsd32_exec_copyin_args(&eargs, NULL, UIO_SYSSPACE,
498 	    uap->argv, uap->envv);
499 	if (error == 0) {
500 		eargs.fd = uap->fd;
501 		error = kern_execve(td, &eargs, NULL, oldvmspace);
502 	}
503 	post_execve(td, error, oldvmspace);
504 	AUDIT_SYSCALL_EXIT(error == EJUSTRETURN ? 0 : error, td);
505 	return (error);
506 }
507 
508 int
509 freebsd32_mknodat(struct thread *td, struct freebsd32_mknodat_args *uap)
510 {
511 
512 	return (kern_mknodat(td, uap->fd, uap->path, UIO_USERSPACE,
513 	    uap->mode, PAIR32TO64(dev_t, uap->dev)));
514 }
515 
516 int
517 freebsd32_mprotect(struct thread *td, struct freebsd32_mprotect_args *uap)
518 {
519 	int prot;
520 
521 	prot = uap->prot;
522 #if defined(__amd64__)
523 	if (i386_read_exec && (prot & PROT_READ) != 0)
524 		prot |= PROT_EXEC;
525 #endif
526 	return (kern_mprotect(td, (uintptr_t)PTRIN(uap->addr), uap->len,
527 	    prot, 0));
528 }
529 
530 int
531 freebsd32_mmap(struct thread *td, struct freebsd32_mmap_args *uap)
532 {
533 	int prot;
534 
535 	prot = uap->prot;
536 #if defined(__amd64__)
537 	if (i386_read_exec && (prot & PROT_READ))
538 		prot |= PROT_EXEC;
539 #endif
540 
541 	return (kern_mmap(td, &(struct mmap_req){
542 		.mr_hint = (uintptr_t)uap->addr,
543 		.mr_len = uap->len,
544 		.mr_prot = prot,
545 		.mr_flags = uap->flags,
546 		.mr_fd = uap->fd,
547 		.mr_pos = PAIR32TO64(off_t, uap->pos),
548 	    }));
549 }
550 
551 #ifdef COMPAT_FREEBSD6
552 int
553 freebsd6_freebsd32_mmap(struct thread *td,
554     struct freebsd6_freebsd32_mmap_args *uap)
555 {
556 	int prot;
557 
558 	prot = uap->prot;
559 #if defined(__amd64__)
560 	if (i386_read_exec && (prot & PROT_READ))
561 		prot |= PROT_EXEC;
562 #endif
563 
564 	return (kern_mmap(td, &(struct mmap_req){
565 		.mr_hint = (uintptr_t)uap->addr,
566 		.mr_len = uap->len,
567 		.mr_prot = prot,
568 		.mr_flags = uap->flags,
569 		.mr_fd = uap->fd,
570 		.mr_pos = PAIR32TO64(off_t, uap->pos),
571 	    }));
572 }
573 #endif
574 
575 #ifdef COMPAT_43
576 int
577 ofreebsd32_mmap(struct thread *td, struct ofreebsd32_mmap_args *uap)
578 {
579 	return (kern_ommap(td, (uintptr_t)uap->addr, uap->len, uap->prot,
580 	    uap->flags, uap->fd, uap->pos));
581 }
582 #endif
583 
584 int
585 freebsd32_setitimer(struct thread *td, struct freebsd32_setitimer_args *uap)
586 {
587 	struct itimerval itv, oitv, *itvp;
588 	struct itimerval32 i32;
589 	int error;
590 
591 	if (uap->itv != NULL) {
592 		error = copyin(uap->itv, &i32, sizeof(i32));
593 		if (error)
594 			return (error);
595 		TV_CP(i32, itv, it_interval);
596 		TV_CP(i32, itv, it_value);
597 		itvp = &itv;
598 	} else
599 		itvp = NULL;
600 	error = kern_setitimer(td, uap->which, itvp, &oitv);
601 	if (error || uap->oitv == NULL)
602 		return (error);
603 	TV_CP(oitv, i32, it_interval);
604 	TV_CP(oitv, i32, it_value);
605 	return (copyout(&i32, uap->oitv, sizeof(i32)));
606 }
607 
608 int
609 freebsd32_getitimer(struct thread *td, struct freebsd32_getitimer_args *uap)
610 {
611 	struct itimerval itv;
612 	struct itimerval32 i32;
613 	int error;
614 
615 	error = kern_getitimer(td, uap->which, &itv);
616 	if (error || uap->itv == NULL)
617 		return (error);
618 	TV_CP(itv, i32, it_interval);
619 	TV_CP(itv, i32, it_value);
620 	return (copyout(&i32, uap->itv, sizeof(i32)));
621 }
622 
623 int
624 freebsd32_select(struct thread *td, struct freebsd32_select_args *uap)
625 {
626 	struct timeval32 tv32;
627 	struct timeval tv, *tvp;
628 	int error;
629 
630 	if (uap->tv != NULL) {
631 		error = copyin(uap->tv, &tv32, sizeof(tv32));
632 		if (error)
633 			return (error);
634 		CP(tv32, tv, tv_sec);
635 		CP(tv32, tv, tv_usec);
636 		tvp = &tv;
637 	} else
638 		tvp = NULL;
639 	/*
640 	 * XXX Do pointers need PTRIN()?
641 	 */
642 	return (kern_select(td, uap->nd, uap->in, uap->ou, uap->ex, tvp,
643 	    sizeof(int32_t) * 8));
644 }
645 
646 int
647 freebsd32_pselect(struct thread *td, struct freebsd32_pselect_args *uap)
648 {
649 	struct timespec32 ts32;
650 	struct timespec ts;
651 	struct timeval tv, *tvp;
652 	sigset_t set, *uset;
653 	int error;
654 
655 	if (uap->ts != NULL) {
656 		error = copyin(uap->ts, &ts32, sizeof(ts32));
657 		if (error != 0)
658 			return (error);
659 		CP(ts32, ts, tv_sec);
660 		CP(ts32, ts, tv_nsec);
661 		TIMESPEC_TO_TIMEVAL(&tv, &ts);
662 		tvp = &tv;
663 	} else
664 		tvp = NULL;
665 	if (uap->sm != NULL) {
666 		error = copyin(uap->sm, &set, sizeof(set));
667 		if (error != 0)
668 			return (error);
669 		uset = &set;
670 	} else
671 		uset = NULL;
672 	/*
673 	 * XXX Do pointers need PTRIN()?
674 	 */
675 	error = kern_pselect(td, uap->nd, uap->in, uap->ou, uap->ex, tvp,
676 	    uset, sizeof(int32_t) * 8);
677 	return (error);
678 }
679 
680 /*
681  * Copy 'count' items into the destination list pointed to by uap->eventlist.
682  */
683 static int
684 freebsd32_kevent_copyout(void *arg, struct kevent *kevp, int count)
685 {
686 	struct freebsd32_kevent_args *uap;
687 	struct kevent32	ks32[KQ_NEVENTS];
688 	uint64_t e;
689 	int i, j, error;
690 
691 	KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
692 	uap = (struct freebsd32_kevent_args *)arg;
693 
694 	for (i = 0; i < count; i++) {
695 		CP(kevp[i], ks32[i], ident);
696 		CP(kevp[i], ks32[i], filter);
697 		CP(kevp[i], ks32[i], flags);
698 		CP(kevp[i], ks32[i], fflags);
699 #if BYTE_ORDER == LITTLE_ENDIAN
700 		ks32[i].data1 = kevp[i].data;
701 		ks32[i].data2 = kevp[i].data >> 32;
702 #else
703 		ks32[i].data1 = kevp[i].data >> 32;
704 		ks32[i].data2 = kevp[i].data;
705 #endif
706 		PTROUT_CP(kevp[i], ks32[i], udata);
707 		for (j = 0; j < nitems(kevp->ext); j++) {
708 			e = kevp[i].ext[j];
709 #if BYTE_ORDER == LITTLE_ENDIAN
710 			ks32[i].ext64[2 * j] = e;
711 			ks32[i].ext64[2 * j + 1] = e >> 32;
712 #else
713 			ks32[i].ext64[2 * j] = e >> 32;
714 			ks32[i].ext64[2 * j + 1] = e;
715 #endif
716 		}
717 	}
718 	error = copyout(ks32, uap->eventlist, count * sizeof *ks32);
719 	if (error == 0)
720 		uap->eventlist += count;
721 	return (error);
722 }
723 
724 /*
725  * Copy 'count' items from the list pointed to by uap->changelist.
726  */
727 static int
728 freebsd32_kevent_copyin(void *arg, struct kevent *kevp, int count)
729 {
730 	struct freebsd32_kevent_args *uap;
731 	struct kevent32	ks32[KQ_NEVENTS];
732 	uint64_t e;
733 	int i, j, error;
734 
735 	KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
736 	uap = (struct freebsd32_kevent_args *)arg;
737 
738 	error = copyin(uap->changelist, ks32, count * sizeof *ks32);
739 	if (error)
740 		goto done;
741 	uap->changelist += count;
742 
743 	for (i = 0; i < count; i++) {
744 		CP(ks32[i], kevp[i], ident);
745 		CP(ks32[i], kevp[i], filter);
746 		CP(ks32[i], kevp[i], flags);
747 		CP(ks32[i], kevp[i], fflags);
748 		kevp[i].data = PAIR32TO64(uint64_t, ks32[i].data);
749 		PTRIN_CP(ks32[i], kevp[i], udata);
750 		for (j = 0; j < nitems(kevp->ext); j++) {
751 #if BYTE_ORDER == LITTLE_ENDIAN
752 			e = ks32[i].ext64[2 * j + 1];
753 			e <<= 32;
754 			e += ks32[i].ext64[2 * j];
755 #else
756 			e = ks32[i].ext64[2 * j];
757 			e <<= 32;
758 			e += ks32[i].ext64[2 * j + 1];
759 #endif
760 			kevp[i].ext[j] = e;
761 		}
762 	}
763 done:
764 	return (error);
765 }
766 
767 int
768 freebsd32_kevent(struct thread *td, struct freebsd32_kevent_args *uap)
769 {
770 	struct timespec32 ts32;
771 	struct timespec ts, *tsp;
772 	struct kevent_copyops k_ops = {
773 		.arg = uap,
774 		.k_copyout = freebsd32_kevent_copyout,
775 		.k_copyin = freebsd32_kevent_copyin,
776 	};
777 #ifdef KTRACE
778 	struct kevent32 *eventlist = uap->eventlist;
779 #endif
780 	int error;
781 
782 	if (uap->timeout) {
783 		error = copyin(uap->timeout, &ts32, sizeof(ts32));
784 		if (error)
785 			return (error);
786 		CP(ts32, ts, tv_sec);
787 		CP(ts32, ts, tv_nsec);
788 		tsp = &ts;
789 	} else
790 		tsp = NULL;
791 #ifdef KTRACE
792 	if (KTRPOINT(td, KTR_STRUCT_ARRAY))
793 		ktrstructarray("kevent32", UIO_USERSPACE, uap->changelist,
794 		    uap->nchanges, sizeof(struct kevent32));
795 #endif
796 	error = kern_kevent(td, uap->fd, uap->nchanges, uap->nevents,
797 	    &k_ops, tsp);
798 #ifdef KTRACE
799 	if (error == 0 && KTRPOINT(td, KTR_STRUCT_ARRAY))
800 		ktrstructarray("kevent32", UIO_USERSPACE, eventlist,
801 		    td->td_retval[0], sizeof(struct kevent32));
802 #endif
803 	return (error);
804 }
805 
806 #ifdef COMPAT_FREEBSD11
807 static int
808 freebsd32_kevent11_copyout(void *arg, struct kevent *kevp, int count)
809 {
810 	struct freebsd11_freebsd32_kevent_args *uap;
811 	struct freebsd11_kevent32 ks32[KQ_NEVENTS];
812 	int i, error;
813 
814 	KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
815 	uap = (struct freebsd11_freebsd32_kevent_args *)arg;
816 
817 	for (i = 0; i < count; i++) {
818 		CP(kevp[i], ks32[i], ident);
819 		CP(kevp[i], ks32[i], filter);
820 		CP(kevp[i], ks32[i], flags);
821 		CP(kevp[i], ks32[i], fflags);
822 		CP(kevp[i], ks32[i], data);
823 		PTROUT_CP(kevp[i], ks32[i], udata);
824 	}
825 	error = copyout(ks32, uap->eventlist, count * sizeof *ks32);
826 	if (error == 0)
827 		uap->eventlist += count;
828 	return (error);
829 }
830 
831 /*
832  * Copy 'count' items from the list pointed to by uap->changelist.
833  */
834 static int
835 freebsd32_kevent11_copyin(void *arg, struct kevent *kevp, int count)
836 {
837 	struct freebsd11_freebsd32_kevent_args *uap;
838 	struct freebsd11_kevent32 ks32[KQ_NEVENTS];
839 	int i, j, error;
840 
841 	KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
842 	uap = (struct freebsd11_freebsd32_kevent_args *)arg;
843 
844 	error = copyin(uap->changelist, ks32, count * sizeof *ks32);
845 	if (error)
846 		goto done;
847 	uap->changelist += count;
848 
849 	for (i = 0; i < count; i++) {
850 		CP(ks32[i], kevp[i], ident);
851 		CP(ks32[i], kevp[i], filter);
852 		CP(ks32[i], kevp[i], flags);
853 		CP(ks32[i], kevp[i], fflags);
854 		CP(ks32[i], kevp[i], data);
855 		PTRIN_CP(ks32[i], kevp[i], udata);
856 		for (j = 0; j < nitems(kevp->ext); j++)
857 			kevp[i].ext[j] = 0;
858 	}
859 done:
860 	return (error);
861 }
862 
863 int
864 freebsd11_freebsd32_kevent(struct thread *td,
865     struct freebsd11_freebsd32_kevent_args *uap)
866 {
867 	struct timespec32 ts32;
868 	struct timespec ts, *tsp;
869 	struct kevent_copyops k_ops = {
870 		.arg = uap,
871 		.k_copyout = freebsd32_kevent11_copyout,
872 		.k_copyin = freebsd32_kevent11_copyin,
873 	};
874 #ifdef KTRACE
875 	struct freebsd11_kevent32 *eventlist = uap->eventlist;
876 #endif
877 	int error;
878 
879 	if (uap->timeout) {
880 		error = copyin(uap->timeout, &ts32, sizeof(ts32));
881 		if (error)
882 			return (error);
883 		CP(ts32, ts, tv_sec);
884 		CP(ts32, ts, tv_nsec);
885 		tsp = &ts;
886 	} else
887 		tsp = NULL;
888 #ifdef KTRACE
889 	if (KTRPOINT(td, KTR_STRUCT_ARRAY))
890 		ktrstructarray("freebsd11_kevent32", UIO_USERSPACE,
891 		    uap->changelist, uap->nchanges,
892 		    sizeof(struct freebsd11_kevent32));
893 #endif
894 	error = kern_kevent(td, uap->fd, uap->nchanges, uap->nevents,
895 	    &k_ops, tsp);
896 #ifdef KTRACE
897 	if (error == 0 && KTRPOINT(td, KTR_STRUCT_ARRAY))
898 		ktrstructarray("freebsd11_kevent32", UIO_USERSPACE,
899 		    eventlist, td->td_retval[0],
900 		    sizeof(struct freebsd11_kevent32));
901 #endif
902 	return (error);
903 }
904 #endif
905 
906 int
907 freebsd32_gettimeofday(struct thread *td,
908 		       struct freebsd32_gettimeofday_args *uap)
909 {
910 	struct timeval atv;
911 	struct timeval32 atv32;
912 	struct timezone rtz;
913 	int error = 0;
914 
915 	if (uap->tp) {
916 		microtime(&atv);
917 		CP(atv, atv32, tv_sec);
918 		CP(atv, atv32, tv_usec);
919 		error = copyout(&atv32, uap->tp, sizeof (atv32));
920 	}
921 	if (error == 0 && uap->tzp != NULL) {
922 		rtz.tz_minuteswest = 0;
923 		rtz.tz_dsttime = 0;
924 		error = copyout(&rtz, uap->tzp, sizeof (rtz));
925 	}
926 	return (error);
927 }
928 
929 int
930 freebsd32_getrusage(struct thread *td, struct freebsd32_getrusage_args *uap)
931 {
932 	struct rusage32 s32;
933 	struct rusage s;
934 	int error;
935 
936 	error = kern_getrusage(td, uap->who, &s);
937 	if (error == 0) {
938 		freebsd32_rusage_out(&s, &s32);
939 		error = copyout(&s32, uap->rusage, sizeof(s32));
940 	}
941 	return (error);
942 }
943 
944 static void
945 ptrace_lwpinfo_to32(const struct ptrace_lwpinfo *pl,
946     struct ptrace_lwpinfo32 *pl32)
947 {
948 
949 	bzero(pl32, sizeof(*pl32));
950 	pl32->pl_lwpid = pl->pl_lwpid;
951 	pl32->pl_event = pl->pl_event;
952 	pl32->pl_flags = pl->pl_flags;
953 	pl32->pl_sigmask = pl->pl_sigmask;
954 	pl32->pl_siglist = pl->pl_siglist;
955 	siginfo_to_siginfo32(&pl->pl_siginfo, &pl32->pl_siginfo);
956 	strcpy(pl32->pl_tdname, pl->pl_tdname);
957 	pl32->pl_child_pid = pl->pl_child_pid;
958 	pl32->pl_syscall_code = pl->pl_syscall_code;
959 	pl32->pl_syscall_narg = pl->pl_syscall_narg;
960 }
961 
962 static void
963 ptrace_sc_ret_to32(const struct ptrace_sc_ret *psr,
964     struct ptrace_sc_ret32 *psr32)
965 {
966 
967 	bzero(psr32, sizeof(*psr32));
968 	psr32->sr_retval[0] = psr->sr_retval[0];
969 	psr32->sr_retval[1] = psr->sr_retval[1];
970 	psr32->sr_error = psr->sr_error;
971 }
972 
973 int
974 freebsd32_ptrace(struct thread *td, struct freebsd32_ptrace_args *uap)
975 {
976 	union {
977 		struct ptrace_io_desc piod;
978 		struct ptrace_lwpinfo pl;
979 		struct ptrace_vm_entry pve;
980 		struct ptrace_coredump pc;
981 		struct ptrace_sc_remote sr;
982 		struct dbreg32 dbreg;
983 		struct fpreg32 fpreg;
984 		struct reg32 reg;
985 		struct iovec vec;
986 		register_t args[nitems(td->td_sa.args)];
987 		struct ptrace_sc_ret psr;
988 		int ptevents;
989 	} r;
990 	union {
991 		struct ptrace_io_desc32 piod;
992 		struct ptrace_lwpinfo32 pl;
993 		struct ptrace_vm_entry32 pve;
994 		struct ptrace_coredump32 pc;
995 		struct ptrace_sc_remote32 sr;
996 		uint32_t args[nitems(td->td_sa.args)];
997 		struct ptrace_sc_ret32 psr;
998 		struct iovec32 vec;
999 	} r32;
1000 	syscallarg_t pscr_args[nitems(td->td_sa.args)];
1001 	u_int pscr_args32[nitems(td->td_sa.args)];
1002 	void *addr;
1003 	int data, error, i;
1004 
1005 	if (!allow_ptrace)
1006 		return (ENOSYS);
1007 	error = 0;
1008 
1009 	AUDIT_ARG_PID(uap->pid);
1010 	AUDIT_ARG_CMD(uap->req);
1011 	AUDIT_ARG_VALUE(uap->data);
1012 	addr = &r;
1013 	data = uap->data;
1014 	switch (uap->req) {
1015 	case PT_GET_EVENT_MASK:
1016 	case PT_GET_SC_ARGS:
1017 	case PT_GET_SC_RET:
1018 		break;
1019 	case PT_LWPINFO:
1020 		if (uap->data > sizeof(r32.pl))
1021 			return (EINVAL);
1022 
1023 		/*
1024 		 * Pass size of native structure in 'data'.  Truncate
1025 		 * if necessary to avoid siginfo.
1026 		 */
1027 		data = sizeof(r.pl);
1028 		if (uap->data < offsetof(struct ptrace_lwpinfo32, pl_siginfo) +
1029 		    sizeof(struct __siginfo32))
1030 			data = offsetof(struct ptrace_lwpinfo, pl_siginfo);
1031 		break;
1032 	case PT_GETREGS:
1033 		bzero(&r.reg, sizeof(r.reg));
1034 		break;
1035 	case PT_GETFPREGS:
1036 		bzero(&r.fpreg, sizeof(r.fpreg));
1037 		break;
1038 	case PT_GETDBREGS:
1039 		bzero(&r.dbreg, sizeof(r.dbreg));
1040 		break;
1041 	case PT_SETREGS:
1042 		error = copyin(uap->addr, &r.reg, sizeof(r.reg));
1043 		break;
1044 	case PT_SETFPREGS:
1045 		error = copyin(uap->addr, &r.fpreg, sizeof(r.fpreg));
1046 		break;
1047 	case PT_SETDBREGS:
1048 		error = copyin(uap->addr, &r.dbreg, sizeof(r.dbreg));
1049 		break;
1050 	case PT_GETREGSET:
1051 	case PT_SETREGSET:
1052 		error = copyin(uap->addr, &r32.vec, sizeof(r32.vec));
1053 		if (error != 0)
1054 			break;
1055 
1056 		r.vec.iov_len = r32.vec.iov_len;
1057 		r.vec.iov_base = PTRIN(r32.vec.iov_base);
1058 		break;
1059 	case PT_SET_EVENT_MASK:
1060 		if (uap->data != sizeof(r.ptevents))
1061 			error = EINVAL;
1062 		else
1063 			error = copyin(uap->addr, &r.ptevents, uap->data);
1064 		break;
1065 	case PT_IO:
1066 		error = copyin(uap->addr, &r32.piod, sizeof(r32.piod));
1067 		if (error)
1068 			break;
1069 		CP(r32.piod, r.piod, piod_op);
1070 		PTRIN_CP(r32.piod, r.piod, piod_offs);
1071 		PTRIN_CP(r32.piod, r.piod, piod_addr);
1072 		CP(r32.piod, r.piod, piod_len);
1073 		break;
1074 	case PT_VM_ENTRY:
1075 		error = copyin(uap->addr, &r32.pve, sizeof(r32.pve));
1076 		if (error)
1077 			break;
1078 
1079 		CP(r32.pve, r.pve, pve_entry);
1080 		CP(r32.pve, r.pve, pve_timestamp);
1081 		CP(r32.pve, r.pve, pve_start);
1082 		CP(r32.pve, r.pve, pve_end);
1083 		CP(r32.pve, r.pve, pve_offset);
1084 		CP(r32.pve, r.pve, pve_prot);
1085 		CP(r32.pve, r.pve, pve_pathlen);
1086 		CP(r32.pve, r.pve, pve_fileid);
1087 		CP(r32.pve, r.pve, pve_fsid);
1088 		PTRIN_CP(r32.pve, r.pve, pve_path);
1089 		break;
1090 	case PT_COREDUMP:
1091 		if (uap->data != sizeof(r32.pc))
1092 			error = EINVAL;
1093 		else
1094 			error = copyin(uap->addr, &r32.pc, uap->data);
1095 		CP(r32.pc, r.pc, pc_fd);
1096 		CP(r32.pc, r.pc, pc_flags);
1097 		r.pc.pc_limit = PAIR32TO64(off_t, r32.pc.pc_limit);
1098 		data = sizeof(r.pc);
1099 		break;
1100 	case PT_SC_REMOTE:
1101 		if (uap->data != sizeof(r32.sr)) {
1102 			error = EINVAL;
1103 			break;
1104 		}
1105 		error = copyin(uap->addr, &r32.sr, uap->data);
1106 		if (error != 0)
1107 			break;
1108 		CP(r32.sr, r.sr, pscr_syscall);
1109 		CP(r32.sr, r.sr, pscr_nargs);
1110 		if (r.sr.pscr_nargs > nitems(td->td_sa.args)) {
1111 			error = EINVAL;
1112 			break;
1113 		}
1114 		error = copyin(PTRIN(r32.sr.pscr_args), pscr_args32,
1115 		    sizeof(u_int) * r32.sr.pscr_nargs);
1116 		if (error != 0)
1117 			break;
1118 		for (i = 0; i < r32.sr.pscr_nargs; i++)
1119 			pscr_args[i] = pscr_args32[i];
1120 		r.sr.pscr_args = pscr_args;
1121 		break;
1122 	default:
1123 		addr = uap->addr;
1124 		break;
1125 	}
1126 	if (error)
1127 		return (error);
1128 
1129 	error = kern_ptrace(td, uap->req, uap->pid, addr, data);
1130 	if (error)
1131 		return (error);
1132 
1133 	switch (uap->req) {
1134 	case PT_VM_ENTRY:
1135 		CP(r.pve, r32.pve, pve_entry);
1136 		CP(r.pve, r32.pve, pve_timestamp);
1137 		CP(r.pve, r32.pve, pve_start);
1138 		CP(r.pve, r32.pve, pve_end);
1139 		CP(r.pve, r32.pve, pve_offset);
1140 		CP(r.pve, r32.pve, pve_prot);
1141 		CP(r.pve, r32.pve, pve_pathlen);
1142 		CP(r.pve, r32.pve, pve_fileid);
1143 		CP(r.pve, r32.pve, pve_fsid);
1144 		error = copyout(&r32.pve, uap->addr, sizeof(r32.pve));
1145 		break;
1146 	case PT_IO:
1147 		CP(r.piod, r32.piod, piod_len);
1148 		error = copyout(&r32.piod, uap->addr, sizeof(r32.piod));
1149 		break;
1150 	case PT_GETREGS:
1151 		error = copyout(&r.reg, uap->addr, sizeof(r.reg));
1152 		break;
1153 	case PT_GETFPREGS:
1154 		error = copyout(&r.fpreg, uap->addr, sizeof(r.fpreg));
1155 		break;
1156 	case PT_GETDBREGS:
1157 		error = copyout(&r.dbreg, uap->addr, sizeof(r.dbreg));
1158 		break;
1159 	case PT_GETREGSET:
1160 		r32.vec.iov_len = r.vec.iov_len;
1161 		error = copyout(&r32.vec, uap->addr, sizeof(r32.vec));
1162 		break;
1163 	case PT_GET_EVENT_MASK:
1164 		/* NB: The size in uap->data is validated in kern_ptrace(). */
1165 		error = copyout(&r.ptevents, uap->addr, uap->data);
1166 		break;
1167 	case PT_LWPINFO:
1168 		ptrace_lwpinfo_to32(&r.pl, &r32.pl);
1169 		error = copyout(&r32.pl, uap->addr, uap->data);
1170 		break;
1171 	case PT_GET_SC_ARGS:
1172 		for (i = 0; i < nitems(r.args); i++)
1173 			r32.args[i] = (uint32_t)r.args[i];
1174 		error = copyout(r32.args, uap->addr, MIN(uap->data,
1175 		    sizeof(r32.args)));
1176 		break;
1177 	case PT_GET_SC_RET:
1178 		ptrace_sc_ret_to32(&r.psr, &r32.psr);
1179 		error = copyout(&r32.psr, uap->addr, MIN(uap->data,
1180 		    sizeof(r32.psr)));
1181 		break;
1182 	case PT_SC_REMOTE:
1183 		ptrace_sc_ret_to32(&r.sr.pscr_ret, &r32.sr.pscr_ret);
1184 		error = copyout(&r32.sr.pscr_ret, uap->addr +
1185 		    offsetof(struct ptrace_sc_remote32, pscr_ret),
1186 		    sizeof(r32.psr));
1187 		break;
1188 	}
1189 
1190 	return (error);
1191 }
1192 
1193 int
1194 freebsd32_copyinuio(const struct iovec32 *iovp, u_int iovcnt, struct uio **uiop)
1195 {
1196 	struct iovec32 iov32;
1197 	struct iovec *iov;
1198 	struct uio *uio;
1199 	int error, i;
1200 
1201 	*uiop = NULL;
1202 	if (iovcnt > UIO_MAXIOV)
1203 		return (EINVAL);
1204 	uio = allocuio(iovcnt);
1205 	iov = uio->uio_iov;
1206 	for (i = 0; i < iovcnt; i++) {
1207 		error = copyin(&iovp[i], &iov32, sizeof(struct iovec32));
1208 		if (error) {
1209 			freeuio(uio);
1210 			return (error);
1211 		}
1212 		iov[i].iov_base = PTRIN(iov32.iov_base);
1213 		iov[i].iov_len = iov32.iov_len;
1214 	}
1215 	uio->uio_iovcnt = iovcnt;
1216 	uio->uio_segflg = UIO_USERSPACE;
1217 	uio->uio_offset = -1;
1218 	uio->uio_resid = 0;
1219 	for (i = 0; i < iovcnt; i++) {
1220 		if (iov->iov_len > INT_MAX - uio->uio_resid) {
1221 			freeuio(uio);
1222 			return (EINVAL);
1223 		}
1224 		uio->uio_resid += iov->iov_len;
1225 		iov++;
1226 	}
1227 	*uiop = uio;
1228 	return (0);
1229 }
1230 
1231 int
1232 freebsd32_readv(struct thread *td, struct freebsd32_readv_args *uap)
1233 {
1234 	struct uio *auio;
1235 	int error;
1236 
1237 	error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio);
1238 	if (error)
1239 		return (error);
1240 	error = kern_readv(td, uap->fd, auio);
1241 	freeuio(auio);
1242 	return (error);
1243 }
1244 
1245 int
1246 freebsd32_writev(struct thread *td, struct freebsd32_writev_args *uap)
1247 {
1248 	struct uio *auio;
1249 	int error;
1250 
1251 	error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio);
1252 	if (error)
1253 		return (error);
1254 	error = kern_writev(td, uap->fd, auio);
1255 	freeuio(auio);
1256 	return (error);
1257 }
1258 
1259 int
1260 freebsd32_preadv(struct thread *td, struct freebsd32_preadv_args *uap)
1261 {
1262 	struct uio *auio;
1263 	int error;
1264 
1265 	error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio);
1266 	if (error)
1267 		return (error);
1268 	error = kern_preadv(td, uap->fd, auio, PAIR32TO64(off_t,uap->offset));
1269 	freeuio(auio);
1270 	return (error);
1271 }
1272 
1273 int
1274 freebsd32_pwritev(struct thread *td, struct freebsd32_pwritev_args *uap)
1275 {
1276 	struct uio *auio;
1277 	int error;
1278 
1279 	error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio);
1280 	if (error)
1281 		return (error);
1282 	error = kern_pwritev(td, uap->fd, auio, PAIR32TO64(off_t,uap->offset));
1283 	freeuio(auio);
1284 	return (error);
1285 }
1286 
1287 int
1288 freebsd32_copyiniov(struct iovec32 *iovp32, u_int iovcnt, struct iovec **iovp,
1289     int error)
1290 {
1291 	struct iovec32 iov32;
1292 	struct iovec *iov;
1293 	u_int iovlen;
1294 	int i;
1295 
1296 	*iovp = NULL;
1297 	if (iovcnt > UIO_MAXIOV)
1298 		return (error);
1299 	iovlen = iovcnt * sizeof(struct iovec);
1300 	iov = malloc(iovlen, M_IOV, M_WAITOK);
1301 	for (i = 0; i < iovcnt; i++) {
1302 		error = copyin(&iovp32[i], &iov32, sizeof(struct iovec32));
1303 		if (error) {
1304 			free(iov, M_IOV);
1305 			return (error);
1306 		}
1307 		iov[i].iov_base = PTRIN(iov32.iov_base);
1308 		iov[i].iov_len = iov32.iov_len;
1309 	}
1310 	*iovp = iov;
1311 	return (0);
1312 }
1313 
1314 static int
1315 freebsd32_copyinmsghdr(const struct msghdr32 *msg32, struct msghdr *msg)
1316 {
1317 	struct msghdr32 m32;
1318 	int error;
1319 
1320 	error = copyin(msg32, &m32, sizeof(m32));
1321 	if (error)
1322 		return (error);
1323 	msg->msg_name = PTRIN(m32.msg_name);
1324 	msg->msg_namelen = m32.msg_namelen;
1325 	msg->msg_iov = PTRIN(m32.msg_iov);
1326 	msg->msg_iovlen = m32.msg_iovlen;
1327 	msg->msg_control = PTRIN(m32.msg_control);
1328 	msg->msg_controllen = m32.msg_controllen;
1329 	msg->msg_flags = m32.msg_flags;
1330 	return (0);
1331 }
1332 
1333 static int
1334 freebsd32_copyoutmsghdr(struct msghdr *msg, struct msghdr32 *msg32)
1335 {
1336 	struct msghdr32 m32;
1337 	int error;
1338 
1339 	m32.msg_name = PTROUT(msg->msg_name);
1340 	m32.msg_namelen = msg->msg_namelen;
1341 	m32.msg_iov = PTROUT(msg->msg_iov);
1342 	m32.msg_iovlen = msg->msg_iovlen;
1343 	m32.msg_control = PTROUT(msg->msg_control);
1344 	m32.msg_controllen = msg->msg_controllen;
1345 	m32.msg_flags = msg->msg_flags;
1346 	error = copyout(&m32, msg32, sizeof(m32));
1347 	return (error);
1348 }
1349 
1350 #define FREEBSD32_ALIGNBYTES	(sizeof(int) - 1)
1351 #define FREEBSD32_ALIGN(p)	\
1352 	(((u_long)(p) + FREEBSD32_ALIGNBYTES) & ~FREEBSD32_ALIGNBYTES)
1353 #define	FREEBSD32_CMSG_SPACE(l)	\
1354 	(FREEBSD32_ALIGN(sizeof(struct cmsghdr)) + FREEBSD32_ALIGN(l))
1355 
1356 #define	FREEBSD32_CMSG_DATA(cmsg)	((unsigned char *)(cmsg) + \
1357 				 FREEBSD32_ALIGN(sizeof(struct cmsghdr)))
1358 
1359 static size_t
1360 freebsd32_cmsg_convert(const struct cmsghdr *cm, void *data, socklen_t datalen)
1361 {
1362 	size_t copylen;
1363 	union {
1364 		struct timespec32 ts;
1365 		struct timeval32 tv;
1366 		struct bintime32 bt;
1367 	} tmp32;
1368 
1369 	union {
1370 		struct timespec ts;
1371 		struct timeval tv;
1372 		struct bintime bt;
1373 	} *in;
1374 
1375 	in = data;
1376 	copylen = 0;
1377 	switch (cm->cmsg_level) {
1378 	case SOL_SOCKET:
1379 		switch (cm->cmsg_type) {
1380 		case SCM_TIMESTAMP:
1381 			TV_CP(*in, tmp32, tv);
1382 			copylen = sizeof(tmp32.tv);
1383 			break;
1384 
1385 		case SCM_BINTIME:
1386 			BT_CP(*in, tmp32, bt);
1387 			copylen = sizeof(tmp32.bt);
1388 			break;
1389 
1390 		case SCM_REALTIME:
1391 		case SCM_MONOTONIC:
1392 			TS_CP(*in, tmp32, ts);
1393 			copylen = sizeof(tmp32.ts);
1394 			break;
1395 
1396 		default:
1397 			break;
1398 		}
1399 
1400 	default:
1401 		break;
1402 	}
1403 
1404 	if (copylen == 0)
1405 		return (datalen);
1406 
1407 	KASSERT((datalen >= copylen), ("corrupted cmsghdr"));
1408 
1409 	bcopy(&tmp32, data, copylen);
1410 	return (copylen);
1411 }
1412 
1413 static int
1414 freebsd32_copy_msg_out(struct msghdr *msg, struct mbuf *control)
1415 {
1416 	struct cmsghdr *cm;
1417 	void *data;
1418 	socklen_t clen, datalen, datalen_out, oldclen;
1419 	int error;
1420 	caddr_t ctlbuf;
1421 	int len, copylen;
1422 	struct mbuf *m;
1423 	error = 0;
1424 
1425 	len    = msg->msg_controllen;
1426 	msg->msg_controllen = 0;
1427 
1428 	ctlbuf = msg->msg_control;
1429 	for (m = control; m != NULL && len > 0; m = m->m_next) {
1430 		cm = mtod(m, struct cmsghdr *);
1431 		clen = m->m_len;
1432 		while (cm != NULL) {
1433 			if (sizeof(struct cmsghdr) > clen ||
1434 			    cm->cmsg_len > clen) {
1435 				error = EINVAL;
1436 				break;
1437 			}
1438 
1439 			data   = CMSG_DATA(cm);
1440 			datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data;
1441 			datalen_out = freebsd32_cmsg_convert(cm, data, datalen);
1442 
1443 			/*
1444 			 * Copy out the message header.  Preserve the native
1445 			 * message size in case we need to inspect the message
1446 			 * contents later.
1447 			 */
1448 			copylen = sizeof(struct cmsghdr);
1449 			if (len < copylen) {
1450 				msg->msg_flags |= MSG_CTRUNC;
1451 				m_dispose_extcontrolm(m);
1452 				goto exit;
1453 			}
1454 			oldclen = cm->cmsg_len;
1455 			cm->cmsg_len = FREEBSD32_ALIGN(sizeof(struct cmsghdr)) +
1456 			    datalen_out;
1457 			error = copyout(cm, ctlbuf, copylen);
1458 			cm->cmsg_len = oldclen;
1459 			if (error != 0)
1460 				goto exit;
1461 
1462 			ctlbuf += FREEBSD32_ALIGN(copylen);
1463 			len    -= FREEBSD32_ALIGN(copylen);
1464 
1465 			copylen = datalen_out;
1466 			if (len < copylen) {
1467 				msg->msg_flags |= MSG_CTRUNC;
1468 				m_dispose_extcontrolm(m);
1469 				break;
1470 			}
1471 
1472 			/* Copy out the message data. */
1473 			error = copyout(data, ctlbuf, copylen);
1474 			if (error)
1475 				goto exit;
1476 
1477 			ctlbuf += FREEBSD32_ALIGN(copylen);
1478 			len    -= FREEBSD32_ALIGN(copylen);
1479 
1480 			if (CMSG_SPACE(datalen) < clen) {
1481 				clen -= CMSG_SPACE(datalen);
1482 				cm = (struct cmsghdr *)
1483 				    ((caddr_t)cm + CMSG_SPACE(datalen));
1484 			} else {
1485 				clen = 0;
1486 				cm = NULL;
1487 			}
1488 
1489 			msg->msg_controllen +=
1490 			    FREEBSD32_CMSG_SPACE(datalen_out);
1491 		}
1492 	}
1493 	if (len == 0 && m != NULL) {
1494 		msg->msg_flags |= MSG_CTRUNC;
1495 		m_dispose_extcontrolm(m);
1496 	}
1497 
1498 exit:
1499 	return (error);
1500 }
1501 
1502 int
1503 freebsd32_recvmsg(struct thread *td, struct freebsd32_recvmsg_args *uap)
1504 {
1505 	struct msghdr msg;
1506 	struct iovec *uiov, *iov;
1507 	struct mbuf *control = NULL;
1508 	struct mbuf **controlp;
1509 	int error;
1510 
1511 	error = freebsd32_copyinmsghdr(uap->msg, &msg);
1512 	if (error)
1513 		return (error);
1514 	error = freebsd32_copyiniov((void *)msg.msg_iov, msg.msg_iovlen, &iov,
1515 	    EMSGSIZE);
1516 	if (error)
1517 		return (error);
1518 	msg.msg_flags = uap->flags;
1519 	uiov = msg.msg_iov;
1520 	msg.msg_iov = iov;
1521 
1522 	controlp = (msg.msg_control != NULL) ?  &control : NULL;
1523 	error = kern_recvit(td, uap->s, &msg, UIO_USERSPACE, controlp);
1524 	if (error == 0) {
1525 		msg.msg_iov = uiov;
1526 
1527 		if (control != NULL)
1528 			error = freebsd32_copy_msg_out(&msg, control);
1529 		else
1530 			msg.msg_controllen = 0;
1531 
1532 		if (error == 0)
1533 			error = freebsd32_copyoutmsghdr(&msg, uap->msg);
1534 	}
1535 	free(iov, M_IOV);
1536 
1537 	if (control != NULL) {
1538 		if (error != 0)
1539 			m_dispose_extcontrolm(control);
1540 		m_freem(control);
1541 	}
1542 
1543 	return (error);
1544 }
1545 
1546 #ifdef COMPAT_43
1547 int
1548 ofreebsd32_recvmsg(struct thread *td, struct ofreebsd32_recvmsg_args *uap)
1549 {
1550 	return (ENOSYS);
1551 }
1552 #endif
1553 
1554 /*
1555  * Copy-in the array of control messages constructed using alignment
1556  * and padding suitable for a 32-bit environment and construct an
1557  * mbuf using alignment and padding suitable for a 64-bit kernel.
1558  * The alignment and padding are defined indirectly by CMSG_DATA(),
1559  * CMSG_SPACE() and CMSG_LEN().
1560  */
1561 static int
1562 freebsd32_copyin_control(struct mbuf **mp, caddr_t buf, u_int buflen)
1563 {
1564 	struct cmsghdr *cm;
1565 	struct mbuf *m;
1566 	void *in, *in1, *md;
1567 	u_int msglen, outlen;
1568 	int error;
1569 
1570 	/* Enforce the size limit of the native implementation. */
1571 	if (buflen > MCLBYTES)
1572 		return (EINVAL);
1573 
1574 	in = malloc(buflen, M_TEMP, M_WAITOK);
1575 	error = copyin(buf, in, buflen);
1576 	if (error != 0)
1577 		goto out;
1578 
1579 	/*
1580 	 * Make a pass over the input buffer to determine the amount of space
1581 	 * required for 64 bit-aligned copies of the control messages.
1582 	 */
1583 	in1 = in;
1584 	outlen = 0;
1585 	while (buflen > 0) {
1586 		if (buflen < sizeof(*cm)) {
1587 			error = EINVAL;
1588 			break;
1589 		}
1590 		cm = (struct cmsghdr *)in1;
1591 		if (cm->cmsg_len < FREEBSD32_ALIGN(sizeof(*cm)) ||
1592 		    cm->cmsg_len > buflen) {
1593 			error = EINVAL;
1594 			break;
1595 		}
1596 		msglen = FREEBSD32_ALIGN(cm->cmsg_len);
1597 		if (msglen < cm->cmsg_len) {
1598 			error = EINVAL;
1599 			break;
1600 		}
1601 		/* The native ABI permits the final padding to be omitted. */
1602 		if (msglen > buflen)
1603 			msglen = buflen;
1604 		buflen -= msglen;
1605 
1606 		in1 = (char *)in1 + msglen;
1607 		outlen += CMSG_ALIGN(sizeof(*cm)) +
1608 		    CMSG_ALIGN(msglen - FREEBSD32_ALIGN(sizeof(*cm)));
1609 	}
1610 	if (error != 0)
1611 		goto out;
1612 
1613 	/*
1614 	 * Allocate up to MJUMPAGESIZE space for the re-aligned and
1615 	 * re-padded control messages.  This allows a full MCLBYTES of
1616 	 * 32-bit sized and aligned messages to fit and avoids an ABI
1617 	 * mismatch with the native implementation.
1618 	 */
1619 	m = m_get2(outlen, M_WAITOK, MT_CONTROL, 0);
1620 	if (m == NULL) {
1621 		error = EINVAL;
1622 		goto out;
1623 	}
1624 	m->m_len = outlen;
1625 	md = mtod(m, void *);
1626 
1627 	/*
1628 	 * Make a second pass over input messages, copying them into the output
1629 	 * buffer.
1630 	 */
1631 	in1 = in;
1632 	while (outlen > 0) {
1633 		/* Copy the message header and align the length field. */
1634 		cm = md;
1635 		memcpy(cm, in1, sizeof(*cm));
1636 		msglen = cm->cmsg_len - FREEBSD32_ALIGN(sizeof(*cm));
1637 		cm->cmsg_len = CMSG_ALIGN(sizeof(*cm)) + msglen;
1638 
1639 		/* Copy the message body. */
1640 		in1 = (char *)in1 + FREEBSD32_ALIGN(sizeof(*cm));
1641 		md = (char *)md + CMSG_ALIGN(sizeof(*cm));
1642 		memcpy(md, in1, msglen);
1643 		in1 = (char *)in1 + FREEBSD32_ALIGN(msglen);
1644 		md = (char *)md + CMSG_ALIGN(msglen);
1645 		KASSERT(outlen >= CMSG_ALIGN(sizeof(*cm)) + CMSG_ALIGN(msglen),
1646 		    ("outlen %u underflow, msglen %u", outlen, msglen));
1647 		outlen -= CMSG_ALIGN(sizeof(*cm)) + CMSG_ALIGN(msglen);
1648 	}
1649 
1650 	*mp = m;
1651 out:
1652 	free(in, M_TEMP);
1653 	return (error);
1654 }
1655 
1656 int
1657 freebsd32_sendmsg(struct thread *td, struct freebsd32_sendmsg_args *uap)
1658 {
1659 	struct msghdr msg;
1660 	struct iovec *iov;
1661 	struct mbuf *control = NULL;
1662 	struct sockaddr *to = NULL;
1663 	int error;
1664 
1665 	error = freebsd32_copyinmsghdr(uap->msg, &msg);
1666 	if (error)
1667 		return (error);
1668 	error = freebsd32_copyiniov((void *)msg.msg_iov, msg.msg_iovlen, &iov,
1669 	    EMSGSIZE);
1670 	if (error)
1671 		return (error);
1672 	msg.msg_iov = iov;
1673 	if (msg.msg_name != NULL) {
1674 		error = getsockaddr(&to, msg.msg_name, msg.msg_namelen);
1675 		if (error) {
1676 			to = NULL;
1677 			goto out;
1678 		}
1679 		msg.msg_name = to;
1680 	}
1681 
1682 	if (msg.msg_control) {
1683 		if (msg.msg_controllen < sizeof(struct cmsghdr)) {
1684 			error = EINVAL;
1685 			goto out;
1686 		}
1687 
1688 		error = freebsd32_copyin_control(&control, msg.msg_control,
1689 		    msg.msg_controllen);
1690 		if (error)
1691 			goto out;
1692 
1693 		msg.msg_control = NULL;
1694 		msg.msg_controllen = 0;
1695 	}
1696 
1697 	error = kern_sendit(td, uap->s, &msg, uap->flags, control,
1698 	    UIO_USERSPACE);
1699 
1700 out:
1701 	free(iov, M_IOV);
1702 	if (to)
1703 		free(to, M_SONAME);
1704 	return (error);
1705 }
1706 
1707 #ifdef COMPAT_43
1708 int
1709 ofreebsd32_sendmsg(struct thread *td, struct ofreebsd32_sendmsg_args *uap)
1710 {
1711 	return (ENOSYS);
1712 }
1713 #endif
1714 
1715 
1716 int
1717 freebsd32_settimeofday(struct thread *td,
1718 		       struct freebsd32_settimeofday_args *uap)
1719 {
1720 	struct timeval32 tv32;
1721 	struct timeval tv, *tvp;
1722 	struct timezone tz, *tzp;
1723 	int error;
1724 
1725 	if (uap->tv) {
1726 		error = copyin(uap->tv, &tv32, sizeof(tv32));
1727 		if (error)
1728 			return (error);
1729 		CP(tv32, tv, tv_sec);
1730 		CP(tv32, tv, tv_usec);
1731 		tvp = &tv;
1732 	} else
1733 		tvp = NULL;
1734 	if (uap->tzp) {
1735 		error = copyin(uap->tzp, &tz, sizeof(tz));
1736 		if (error)
1737 			return (error);
1738 		tzp = &tz;
1739 	} else
1740 		tzp = NULL;
1741 	return (kern_settimeofday(td, tvp, tzp));
1742 }
1743 
1744 int
1745 freebsd32_utimes(struct thread *td, struct freebsd32_utimes_args *uap)
1746 {
1747 	struct timeval32 s32[2];
1748 	struct timeval s[2], *sp;
1749 	int error;
1750 
1751 	if (uap->tptr != NULL) {
1752 		error = copyin(uap->tptr, s32, sizeof(s32));
1753 		if (error)
1754 			return (error);
1755 		CP(s32[0], s[0], tv_sec);
1756 		CP(s32[0], s[0], tv_usec);
1757 		CP(s32[1], s[1], tv_sec);
1758 		CP(s32[1], s[1], tv_usec);
1759 		sp = s;
1760 	} else
1761 		sp = NULL;
1762 	return (kern_utimesat(td, AT_FDCWD, uap->path, UIO_USERSPACE,
1763 	    sp, UIO_SYSSPACE));
1764 }
1765 
1766 int
1767 freebsd32_lutimes(struct thread *td, struct freebsd32_lutimes_args *uap)
1768 {
1769 	struct timeval32 s32[2];
1770 	struct timeval s[2], *sp;
1771 	int error;
1772 
1773 	if (uap->tptr != NULL) {
1774 		error = copyin(uap->tptr, s32, sizeof(s32));
1775 		if (error)
1776 			return (error);
1777 		CP(s32[0], s[0], tv_sec);
1778 		CP(s32[0], s[0], tv_usec);
1779 		CP(s32[1], s[1], tv_sec);
1780 		CP(s32[1], s[1], tv_usec);
1781 		sp = s;
1782 	} else
1783 		sp = NULL;
1784 	return (kern_lutimes(td, uap->path, UIO_USERSPACE, sp, UIO_SYSSPACE));
1785 }
1786 
1787 int
1788 freebsd32_futimes(struct thread *td, struct freebsd32_futimes_args *uap)
1789 {
1790 	struct timeval32 s32[2];
1791 	struct timeval s[2], *sp;
1792 	int error;
1793 
1794 	if (uap->tptr != NULL) {
1795 		error = copyin(uap->tptr, s32, sizeof(s32));
1796 		if (error)
1797 			return (error);
1798 		CP(s32[0], s[0], tv_sec);
1799 		CP(s32[0], s[0], tv_usec);
1800 		CP(s32[1], s[1], tv_sec);
1801 		CP(s32[1], s[1], tv_usec);
1802 		sp = s;
1803 	} else
1804 		sp = NULL;
1805 	return (kern_futimes(td, uap->fd, sp, UIO_SYSSPACE));
1806 }
1807 
1808 int
1809 freebsd32_futimesat(struct thread *td, struct freebsd32_futimesat_args *uap)
1810 {
1811 	struct timeval32 s32[2];
1812 	struct timeval s[2], *sp;
1813 	int error;
1814 
1815 	if (uap->times != NULL) {
1816 		error = copyin(uap->times, s32, sizeof(s32));
1817 		if (error)
1818 			return (error);
1819 		CP(s32[0], s[0], tv_sec);
1820 		CP(s32[0], s[0], tv_usec);
1821 		CP(s32[1], s[1], tv_sec);
1822 		CP(s32[1], s[1], tv_usec);
1823 		sp = s;
1824 	} else
1825 		sp = NULL;
1826 	return (kern_utimesat(td, uap->fd, uap->path, UIO_USERSPACE,
1827 		sp, UIO_SYSSPACE));
1828 }
1829 
1830 int
1831 freebsd32_futimens(struct thread *td, struct freebsd32_futimens_args *uap)
1832 {
1833 	struct timespec32 ts32[2];
1834 	struct timespec ts[2], *tsp;
1835 	int error;
1836 
1837 	if (uap->times != NULL) {
1838 		error = copyin(uap->times, ts32, sizeof(ts32));
1839 		if (error)
1840 			return (error);
1841 		CP(ts32[0], ts[0], tv_sec);
1842 		CP(ts32[0], ts[0], tv_nsec);
1843 		CP(ts32[1], ts[1], tv_sec);
1844 		CP(ts32[1], ts[1], tv_nsec);
1845 		tsp = ts;
1846 	} else
1847 		tsp = NULL;
1848 	return (kern_futimens(td, uap->fd, tsp, UIO_SYSSPACE));
1849 }
1850 
1851 int
1852 freebsd32_utimensat(struct thread *td, struct freebsd32_utimensat_args *uap)
1853 {
1854 	struct timespec32 ts32[2];
1855 	struct timespec ts[2], *tsp;
1856 	int error;
1857 
1858 	if (uap->times != NULL) {
1859 		error = copyin(uap->times, ts32, sizeof(ts32));
1860 		if (error)
1861 			return (error);
1862 		CP(ts32[0], ts[0], tv_sec);
1863 		CP(ts32[0], ts[0], tv_nsec);
1864 		CP(ts32[1], ts[1], tv_sec);
1865 		CP(ts32[1], ts[1], tv_nsec);
1866 		tsp = ts;
1867 	} else
1868 		tsp = NULL;
1869 	return (kern_utimensat(td, uap->fd, uap->path, UIO_USERSPACE,
1870 	    tsp, UIO_SYSSPACE, uap->flag));
1871 }
1872 
1873 int
1874 freebsd32_adjtime(struct thread *td, struct freebsd32_adjtime_args *uap)
1875 {
1876 	struct timeval32 tv32;
1877 	struct timeval delta, olddelta, *deltap;
1878 	int error;
1879 
1880 	if (uap->delta) {
1881 		error = copyin(uap->delta, &tv32, sizeof(tv32));
1882 		if (error)
1883 			return (error);
1884 		CP(tv32, delta, tv_sec);
1885 		CP(tv32, delta, tv_usec);
1886 		deltap = &delta;
1887 	} else
1888 		deltap = NULL;
1889 	error = kern_adjtime(td, deltap, &olddelta);
1890 	if (uap->olddelta && error == 0) {
1891 		CP(olddelta, tv32, tv_sec);
1892 		CP(olddelta, tv32, tv_usec);
1893 		error = copyout(&tv32, uap->olddelta, sizeof(tv32));
1894 	}
1895 	return (error);
1896 }
1897 
1898 #ifdef COMPAT_FREEBSD4
1899 int
1900 freebsd4_freebsd32_statfs(struct thread *td, struct freebsd4_freebsd32_statfs_args *uap)
1901 {
1902 	struct ostatfs32 s32;
1903 	struct statfs *sp;
1904 	int error;
1905 
1906 	sp = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK);
1907 	error = kern_statfs(td, uap->path, UIO_USERSPACE, sp);
1908 	if (error == 0) {
1909 		copy_statfs(sp, &s32);
1910 		error = copyout(&s32, uap->buf, sizeof(s32));
1911 	}
1912 	free(sp, M_STATFS);
1913 	return (error);
1914 }
1915 #endif
1916 
1917 #ifdef COMPAT_FREEBSD4
1918 int
1919 freebsd4_freebsd32_fstatfs(struct thread *td, struct freebsd4_freebsd32_fstatfs_args *uap)
1920 {
1921 	struct ostatfs32 s32;
1922 	struct statfs *sp;
1923 	int error;
1924 
1925 	sp = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK);
1926 	error = kern_fstatfs(td, uap->fd, sp);
1927 	if (error == 0) {
1928 		copy_statfs(sp, &s32);
1929 		error = copyout(&s32, uap->buf, sizeof(s32));
1930 	}
1931 	free(sp, M_STATFS);
1932 	return (error);
1933 }
1934 #endif
1935 
1936 #ifdef COMPAT_FREEBSD4
1937 int
1938 freebsd4_freebsd32_fhstatfs(struct thread *td, struct freebsd4_freebsd32_fhstatfs_args *uap)
1939 {
1940 	struct ostatfs32 s32;
1941 	struct statfs *sp;
1942 	fhandle_t fh;
1943 	int error;
1944 
1945 	if ((error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t))) != 0)
1946 		return (error);
1947 	sp = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK);
1948 	error = kern_fhstatfs(td, fh, sp);
1949 	if (error == 0) {
1950 		copy_statfs(sp, &s32);
1951 		error = copyout(&s32, uap->buf, sizeof(s32));
1952 	}
1953 	free(sp, M_STATFS);
1954 	return (error);
1955 }
1956 #endif
1957 
1958 int
1959 freebsd32_pread(struct thread *td, struct freebsd32_pread_args *uap)
1960 {
1961 
1962 	return (kern_pread(td, uap->fd, uap->buf, uap->nbyte,
1963 	    PAIR32TO64(off_t, uap->offset)));
1964 }
1965 
1966 int
1967 freebsd32_pwrite(struct thread *td, struct freebsd32_pwrite_args *uap)
1968 {
1969 
1970 	return (kern_pwrite(td, uap->fd, uap->buf, uap->nbyte,
1971 	    PAIR32TO64(off_t, uap->offset)));
1972 }
1973 
1974 #ifdef COMPAT_43
1975 int
1976 ofreebsd32_lseek(struct thread *td, struct ofreebsd32_lseek_args *uap)
1977 {
1978 
1979 	return (kern_lseek(td, uap->fd, uap->offset, uap->whence));
1980 }
1981 #endif
1982 
1983 int
1984 freebsd32_lseek(struct thread *td, struct freebsd32_lseek_args *uap)
1985 {
1986 	int error;
1987 	off_t pos;
1988 
1989 	error = kern_lseek(td, uap->fd, PAIR32TO64(off_t, uap->offset),
1990 	    uap->whence);
1991 	/* Expand the quad return into two parts for eax and edx */
1992 	pos = td->td_uretoff.tdu_off;
1993 	td->td_retval[RETVAL_LO] = pos & 0xffffffff;	/* %eax */
1994 	td->td_retval[RETVAL_HI] = pos >> 32;		/* %edx */
1995 	return error;
1996 }
1997 
1998 int
1999 freebsd32_truncate(struct thread *td, struct freebsd32_truncate_args *uap)
2000 {
2001 
2002 	return (kern_truncate(td, uap->path, UIO_USERSPACE,
2003 	    PAIR32TO64(off_t, uap->length)));
2004 }
2005 
2006 #ifdef COMPAT_43
2007 int
2008 ofreebsd32_truncate(struct thread *td, struct ofreebsd32_truncate_args *uap)
2009 {
2010 	return (kern_truncate(td, uap->path, UIO_USERSPACE, uap->length));
2011 }
2012 #endif
2013 
2014 int
2015 freebsd32_ftruncate(struct thread *td, struct freebsd32_ftruncate_args *uap)
2016 {
2017 
2018 	return (kern_ftruncate(td, uap->fd, PAIR32TO64(off_t, uap->length)));
2019 }
2020 
2021 #ifdef COMPAT_43
2022 int
2023 ofreebsd32_ftruncate(struct thread *td, struct ofreebsd32_ftruncate_args *uap)
2024 {
2025 	return (kern_ftruncate(td, uap->fd, uap->length));
2026 }
2027 
2028 int
2029 ofreebsd32_getdirentries(struct thread *td,
2030     struct ofreebsd32_getdirentries_args *uap)
2031 {
2032 	struct ogetdirentries_args ap;
2033 	int error;
2034 	long loff;
2035 	int32_t loff_cut;
2036 
2037 	ap.fd = uap->fd;
2038 	ap.buf = uap->buf;
2039 	ap.count = uap->count;
2040 	ap.basep = NULL;
2041 	error = kern_ogetdirentries(td, &ap, &loff);
2042 	if (error == 0) {
2043 		loff_cut = loff;
2044 		error = copyout(&loff_cut, uap->basep, sizeof(int32_t));
2045 	}
2046 	return (error);
2047 }
2048 #endif
2049 
2050 #if defined(COMPAT_FREEBSD11)
2051 int
2052 freebsd11_freebsd32_getdirentries(struct thread *td,
2053     struct freebsd11_freebsd32_getdirentries_args *uap)
2054 {
2055 	long base;
2056 	int32_t base32;
2057 	int error;
2058 
2059 	error = freebsd11_kern_getdirentries(td, uap->fd, uap->buf, uap->count,
2060 	    &base, NULL);
2061 	if (error)
2062 		return (error);
2063 	if (uap->basep != NULL) {
2064 		base32 = base;
2065 		error = copyout(&base32, uap->basep, sizeof(int32_t));
2066 	}
2067 	return (error);
2068 }
2069 #endif /* COMPAT_FREEBSD11 */
2070 
2071 #ifdef COMPAT_FREEBSD6
2072 /* versions with the 'int pad' argument */
2073 int
2074 freebsd6_freebsd32_pread(struct thread *td, struct freebsd6_freebsd32_pread_args *uap)
2075 {
2076 
2077 	return (kern_pread(td, uap->fd, uap->buf, uap->nbyte,
2078 	    PAIR32TO64(off_t, uap->offset)));
2079 }
2080 
2081 int
2082 freebsd6_freebsd32_pwrite(struct thread *td, struct freebsd6_freebsd32_pwrite_args *uap)
2083 {
2084 
2085 	return (kern_pwrite(td, uap->fd, uap->buf, uap->nbyte,
2086 	    PAIR32TO64(off_t, uap->offset)));
2087 }
2088 
2089 int
2090 freebsd6_freebsd32_lseek(struct thread *td, struct freebsd6_freebsd32_lseek_args *uap)
2091 {
2092 	int error;
2093 	off_t pos;
2094 
2095 	error = kern_lseek(td, uap->fd, PAIR32TO64(off_t, uap->offset),
2096 	    uap->whence);
2097 	/* Expand the quad return into two parts for eax and edx */
2098 	pos = *(off_t *)(td->td_retval);
2099 	td->td_retval[RETVAL_LO] = pos & 0xffffffff;	/* %eax */
2100 	td->td_retval[RETVAL_HI] = pos >> 32;		/* %edx */
2101 	return error;
2102 }
2103 
2104 int
2105 freebsd6_freebsd32_truncate(struct thread *td, struct freebsd6_freebsd32_truncate_args *uap)
2106 {
2107 
2108 	return (kern_truncate(td, uap->path, UIO_USERSPACE,
2109 	    PAIR32TO64(off_t, uap->length)));
2110 }
2111 
2112 int
2113 freebsd6_freebsd32_ftruncate(struct thread *td, struct freebsd6_freebsd32_ftruncate_args *uap)
2114 {
2115 
2116 	return (kern_ftruncate(td, uap->fd, PAIR32TO64(off_t, uap->length)));
2117 }
2118 #endif /* COMPAT_FREEBSD6 */
2119 
2120 struct sf_hdtr32 {
2121 	uint32_t headers;
2122 	int hdr_cnt;
2123 	uint32_t trailers;
2124 	int trl_cnt;
2125 };
2126 
2127 static int
2128 freebsd32_do_sendfile(struct thread *td,
2129     struct freebsd32_sendfile_args *uap, int compat)
2130 {
2131 	struct sf_hdtr32 hdtr32;
2132 	struct sf_hdtr hdtr;
2133 	struct uio *hdr_uio, *trl_uio;
2134 	struct file *fp;
2135 	cap_rights_t rights;
2136 	struct iovec32 *iov32;
2137 	off_t offset, sbytes;
2138 	int error;
2139 
2140 	offset = PAIR32TO64(off_t, uap->offset);
2141 	if (offset < 0)
2142 		return (EINVAL);
2143 
2144 	hdr_uio = trl_uio = NULL;
2145 
2146 	if (uap->hdtr != NULL) {
2147 		error = copyin(uap->hdtr, &hdtr32, sizeof(hdtr32));
2148 		if (error)
2149 			goto out;
2150 		PTRIN_CP(hdtr32, hdtr, headers);
2151 		CP(hdtr32, hdtr, hdr_cnt);
2152 		PTRIN_CP(hdtr32, hdtr, trailers);
2153 		CP(hdtr32, hdtr, trl_cnt);
2154 
2155 		if (hdtr.headers != NULL) {
2156 			iov32 = PTRIN(hdtr32.headers);
2157 			error = freebsd32_copyinuio(iov32,
2158 			    hdtr32.hdr_cnt, &hdr_uio);
2159 			if (error)
2160 				goto out;
2161 #ifdef COMPAT_FREEBSD4
2162 			/*
2163 			 * In FreeBSD < 5.0 the nbytes to send also included
2164 			 * the header.  If compat is specified subtract the
2165 			 * header size from nbytes.
2166 			 */
2167 			if (compat) {
2168 				if (uap->nbytes > hdr_uio->uio_resid)
2169 					uap->nbytes -= hdr_uio->uio_resid;
2170 				else
2171 					uap->nbytes = 0;
2172 			}
2173 #endif
2174 		}
2175 		if (hdtr.trailers != NULL) {
2176 			iov32 = PTRIN(hdtr32.trailers);
2177 			error = freebsd32_copyinuio(iov32,
2178 			    hdtr32.trl_cnt, &trl_uio);
2179 			if (error)
2180 				goto out;
2181 		}
2182 	}
2183 
2184 	AUDIT_ARG_FD(uap->fd);
2185 
2186 	if ((error = fget_read(td, uap->fd,
2187 	    cap_rights_init_one(&rights, CAP_PREAD), &fp)) != 0)
2188 		goto out;
2189 
2190 	error = fo_sendfile(fp, uap->s, hdr_uio, trl_uio, offset,
2191 	    uap->nbytes, &sbytes, uap->flags, td);
2192 	fdrop(fp, td);
2193 
2194 	if (uap->sbytes != NULL)
2195 		(void)copyout(&sbytes, uap->sbytes, sizeof(off_t));
2196 
2197 out:
2198 	if (hdr_uio)
2199 		freeuio(hdr_uio);
2200 	if (trl_uio)
2201 		freeuio(trl_uio);
2202 	return (error);
2203 }
2204 
2205 #ifdef COMPAT_FREEBSD4
2206 int
2207 freebsd4_freebsd32_sendfile(struct thread *td,
2208     struct freebsd4_freebsd32_sendfile_args *uap)
2209 {
2210 	return (freebsd32_do_sendfile(td,
2211 	    (struct freebsd32_sendfile_args *)uap, 1));
2212 }
2213 #endif
2214 
2215 int
2216 freebsd32_sendfile(struct thread *td, struct freebsd32_sendfile_args *uap)
2217 {
2218 
2219 	return (freebsd32_do_sendfile(td, uap, 0));
2220 }
2221 
2222 static void
2223 copy_stat(struct stat *in, struct stat32 *out)
2224 {
2225 
2226 #ifndef __amd64__
2227 	/*
2228 	 * 32-bit architectures other than i386 have 64-bit time_t.  This
2229 	 * results in struct timespec32 with 12 bytes for tv_sec and tv_nsec,
2230 	 * and 4 bytes of padding.  Zero the padding holes in struct stat32.
2231 	 */
2232 	bzero(&out->st_atim, sizeof(out->st_atim));
2233 	bzero(&out->st_mtim, sizeof(out->st_mtim));
2234 	bzero(&out->st_ctim, sizeof(out->st_ctim));
2235 	bzero(&out->st_birthtim, sizeof(out->st_birthtim));
2236 #endif
2237 	CP(*in, *out, st_dev);
2238 	CP(*in, *out, st_ino);
2239 	CP(*in, *out, st_mode);
2240 	CP(*in, *out, st_nlink);
2241 	CP(*in, *out, st_uid);
2242 	CP(*in, *out, st_gid);
2243 	CP(*in, *out, st_rdev);
2244 	TS_CP(*in, *out, st_atim);
2245 	TS_CP(*in, *out, st_mtim);
2246 	TS_CP(*in, *out, st_ctim);
2247 	CP(*in, *out, st_size);
2248 	CP(*in, *out, st_blocks);
2249 	CP(*in, *out, st_blksize);
2250 	CP(*in, *out, st_flags);
2251 	CP(*in, *out, st_gen);
2252 	TS_CP(*in, *out, st_birthtim);
2253 	out->st_padding0 = 0;
2254 	out->st_padding1 = 0;
2255 #ifdef __STAT32_TIME_T_EXT
2256 	out->st_atim_ext = 0;
2257 	out->st_mtim_ext = 0;
2258 	out->st_ctim_ext = 0;
2259 	out->st_btim_ext = 0;
2260 #endif
2261 	bzero(out->st_spare, sizeof(out->st_spare));
2262 }
2263 
2264 #ifdef COMPAT_43
2265 static void
2266 copy_ostat(struct stat *in, struct ostat32 *out)
2267 {
2268 
2269 	bzero(out, sizeof(*out));
2270 	CP(*in, *out, st_dev);
2271 	CP(*in, *out, st_ino);
2272 	CP(*in, *out, st_mode);
2273 	CP(*in, *out, st_nlink);
2274 	CP(*in, *out, st_uid);
2275 	CP(*in, *out, st_gid);
2276 	CP(*in, *out, st_rdev);
2277 	out->st_size = MIN(in->st_size, INT32_MAX);
2278 	TS_CP(*in, *out, st_atim);
2279 	TS_CP(*in, *out, st_mtim);
2280 	TS_CP(*in, *out, st_ctim);
2281 	CP(*in, *out, st_blksize);
2282 	CP(*in, *out, st_blocks);
2283 	CP(*in, *out, st_flags);
2284 	CP(*in, *out, st_gen);
2285 }
2286 #endif
2287 
2288 #ifdef COMPAT_43
2289 int
2290 ofreebsd32_stat(struct thread *td, struct ofreebsd32_stat_args *uap)
2291 {
2292 	struct stat sb;
2293 	struct ostat32 sb32;
2294 	int error;
2295 
2296 	error = kern_statat(td, 0, AT_FDCWD, uap->path, UIO_USERSPACE, &sb);
2297 	if (error)
2298 		return (error);
2299 	copy_ostat(&sb, &sb32);
2300 	error = copyout(&sb32, uap->ub, sizeof (sb32));
2301 	return (error);
2302 }
2303 #endif
2304 
2305 int
2306 freebsd32_fstat(struct thread *td, struct freebsd32_fstat_args *uap)
2307 {
2308 	struct stat ub;
2309 	struct stat32 ub32;
2310 	int error;
2311 
2312 	error = kern_fstat(td, uap->fd, &ub);
2313 	if (error)
2314 		return (error);
2315 	copy_stat(&ub, &ub32);
2316 	error = copyout(&ub32, uap->sb, sizeof(ub32));
2317 	return (error);
2318 }
2319 
2320 #ifdef COMPAT_43
2321 int
2322 ofreebsd32_fstat(struct thread *td, struct ofreebsd32_fstat_args *uap)
2323 {
2324 	struct stat ub;
2325 	struct ostat32 ub32;
2326 	int error;
2327 
2328 	error = kern_fstat(td, uap->fd, &ub);
2329 	if (error)
2330 		return (error);
2331 	copy_ostat(&ub, &ub32);
2332 	error = copyout(&ub32, uap->sb, sizeof(ub32));
2333 	return (error);
2334 }
2335 #endif
2336 
2337 int
2338 freebsd32_fstatat(struct thread *td, struct freebsd32_fstatat_args *uap)
2339 {
2340 	struct stat ub;
2341 	struct stat32 ub32;
2342 	int error;
2343 
2344 	error = kern_statat(td, uap->flag, uap->fd, uap->path, UIO_USERSPACE,
2345 	    &ub);
2346 	if (error)
2347 		return (error);
2348 	copy_stat(&ub, &ub32);
2349 	error = copyout(&ub32, uap->buf, sizeof(ub32));
2350 	return (error);
2351 }
2352 
2353 #ifdef COMPAT_43
2354 int
2355 ofreebsd32_lstat(struct thread *td, struct ofreebsd32_lstat_args *uap)
2356 {
2357 	struct stat sb;
2358 	struct ostat32 sb32;
2359 	int error;
2360 
2361 	error = kern_statat(td, AT_SYMLINK_NOFOLLOW, AT_FDCWD, uap->path,
2362 	    UIO_USERSPACE, &sb);
2363 	if (error)
2364 		return (error);
2365 	copy_ostat(&sb, &sb32);
2366 	error = copyout(&sb32, uap->ub, sizeof (sb32));
2367 	return (error);
2368 }
2369 #endif
2370 
2371 int
2372 freebsd32_fhstat(struct thread *td, struct freebsd32_fhstat_args *uap)
2373 {
2374 	struct stat sb;
2375 	struct stat32 sb32;
2376 	struct fhandle fh;
2377 	int error;
2378 
2379 	error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t));
2380         if (error != 0)
2381                 return (error);
2382 	error = kern_fhstat(td, fh, &sb);
2383 	if (error != 0)
2384 		return (error);
2385 	copy_stat(&sb, &sb32);
2386 	error = copyout(&sb32, uap->sb, sizeof (sb32));
2387 	return (error);
2388 }
2389 
2390 #if defined(COMPAT_FREEBSD11)
2391 extern int ino64_trunc_error;
2392 
2393 static int
2394 freebsd11_cvtstat32(struct stat *in, struct freebsd11_stat32 *out)
2395 {
2396 
2397 #ifndef __amd64__
2398 	/*
2399 	 * 32-bit architectures other than i386 have 64-bit time_t.  This
2400 	 * results in struct timespec32 with 12 bytes for tv_sec and tv_nsec,
2401 	 * and 4 bytes of padding.  Zero the padding holes in freebsd11_stat32.
2402 	 */
2403 	bzero(&out->st_atim, sizeof(out->st_atim));
2404 	bzero(&out->st_mtim, sizeof(out->st_mtim));
2405 	bzero(&out->st_ctim, sizeof(out->st_ctim));
2406 	bzero(&out->st_birthtim, sizeof(out->st_birthtim));
2407 #endif
2408 
2409 	CP(*in, *out, st_ino);
2410 	if (in->st_ino != out->st_ino) {
2411 		switch (ino64_trunc_error) {
2412 		default:
2413 		case 0:
2414 			break;
2415 		case 1:
2416 			return (EOVERFLOW);
2417 		case 2:
2418 			out->st_ino = UINT32_MAX;
2419 			break;
2420 		}
2421 	}
2422 	CP(*in, *out, st_nlink);
2423 	if (in->st_nlink != out->st_nlink) {
2424 		switch (ino64_trunc_error) {
2425 		default:
2426 		case 0:
2427 			break;
2428 		case 1:
2429 			return (EOVERFLOW);
2430 		case 2:
2431 			out->st_nlink = UINT16_MAX;
2432 			break;
2433 		}
2434 	}
2435 	out->st_dev = in->st_dev;
2436 	if (out->st_dev != in->st_dev) {
2437 		switch (ino64_trunc_error) {
2438 		default:
2439 			break;
2440 		case 1:
2441 			return (EOVERFLOW);
2442 		}
2443 	}
2444 	CP(*in, *out, st_mode);
2445 	CP(*in, *out, st_uid);
2446 	CP(*in, *out, st_gid);
2447 	out->st_rdev = in->st_rdev;
2448 	if (out->st_rdev != in->st_rdev) {
2449 		switch (ino64_trunc_error) {
2450 		default:
2451 			break;
2452 		case 1:
2453 			return (EOVERFLOW);
2454 		}
2455 	}
2456 	TS_CP(*in, *out, st_atim);
2457 	TS_CP(*in, *out, st_mtim);
2458 	TS_CP(*in, *out, st_ctim);
2459 	CP(*in, *out, st_size);
2460 	CP(*in, *out, st_blocks);
2461 	CP(*in, *out, st_blksize);
2462 	CP(*in, *out, st_flags);
2463 	CP(*in, *out, st_gen);
2464 	TS_CP(*in, *out, st_birthtim);
2465 	out->st_lspare = 0;
2466 	bzero((char *)&out->st_birthtim + sizeof(out->st_birthtim),
2467 	    sizeof(*out) - offsetof(struct freebsd11_stat32,
2468 	    st_birthtim) - sizeof(out->st_birthtim));
2469 	return (0);
2470 }
2471 
2472 int
2473 freebsd11_freebsd32_stat(struct thread *td,
2474     struct freebsd11_freebsd32_stat_args *uap)
2475 {
2476 	struct stat sb;
2477 	struct freebsd11_stat32 sb32;
2478 	int error;
2479 
2480 	error = kern_statat(td, 0, AT_FDCWD, uap->path, UIO_USERSPACE, &sb);
2481 	if (error != 0)
2482 		return (error);
2483 	error = freebsd11_cvtstat32(&sb, &sb32);
2484 	if (error == 0)
2485 		error = copyout(&sb32, uap->ub, sizeof (sb32));
2486 	return (error);
2487 }
2488 
2489 int
2490 freebsd11_freebsd32_fstat(struct thread *td,
2491     struct freebsd11_freebsd32_fstat_args *uap)
2492 {
2493 	struct stat sb;
2494 	struct freebsd11_stat32 sb32;
2495 	int error;
2496 
2497 	error = kern_fstat(td, uap->fd, &sb);
2498 	if (error != 0)
2499 		return (error);
2500 	error = freebsd11_cvtstat32(&sb, &sb32);
2501 	if (error == 0)
2502 		error = copyout(&sb32, uap->sb, sizeof (sb32));
2503 	return (error);
2504 }
2505 
2506 int
2507 freebsd11_freebsd32_fstatat(struct thread *td,
2508     struct freebsd11_freebsd32_fstatat_args *uap)
2509 {
2510 	struct stat sb;
2511 	struct freebsd11_stat32 sb32;
2512 	int error;
2513 
2514 	error = kern_statat(td, uap->flag, uap->fd, uap->path, UIO_USERSPACE,
2515 	    &sb);
2516 	if (error != 0)
2517 		return (error);
2518 	error = freebsd11_cvtstat32(&sb, &sb32);
2519 	if (error == 0)
2520 		error = copyout(&sb32, uap->buf, sizeof (sb32));
2521 	return (error);
2522 }
2523 
2524 int
2525 freebsd11_freebsd32_lstat(struct thread *td,
2526     struct freebsd11_freebsd32_lstat_args *uap)
2527 {
2528 	struct stat sb;
2529 	struct freebsd11_stat32 sb32;
2530 	int error;
2531 
2532 	error = kern_statat(td, AT_SYMLINK_NOFOLLOW, AT_FDCWD, uap->path,
2533 	    UIO_USERSPACE, &sb);
2534 	if (error != 0)
2535 		return (error);
2536 	error = freebsd11_cvtstat32(&sb, &sb32);
2537 	if (error == 0)
2538 		error = copyout(&sb32, uap->ub, sizeof (sb32));
2539 	return (error);
2540 }
2541 
2542 int
2543 freebsd11_freebsd32_fhstat(struct thread *td,
2544     struct freebsd11_freebsd32_fhstat_args *uap)
2545 {
2546 	struct stat sb;
2547 	struct freebsd11_stat32 sb32;
2548 	struct fhandle fh;
2549 	int error;
2550 
2551 	error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t));
2552         if (error != 0)
2553                 return (error);
2554 	error = kern_fhstat(td, fh, &sb);
2555 	if (error != 0)
2556 		return (error);
2557 	error = freebsd11_cvtstat32(&sb, &sb32);
2558 	if (error == 0)
2559 		error = copyout(&sb32, uap->sb, sizeof (sb32));
2560 	return (error);
2561 }
2562 
2563 static int
2564 freebsd11_cvtnstat32(struct stat *sb, struct nstat32 *nsb32)
2565 {
2566 	struct nstat nsb;
2567 	int error;
2568 
2569 	error = freebsd11_cvtnstat(sb, &nsb);
2570 	if (error != 0)
2571 		return (error);
2572 
2573 	bzero(nsb32, sizeof(*nsb32));
2574 	CP(nsb, *nsb32, st_dev);
2575 	CP(nsb, *nsb32, st_ino);
2576 	CP(nsb, *nsb32, st_mode);
2577 	CP(nsb, *nsb32, st_nlink);
2578 	CP(nsb, *nsb32, st_uid);
2579 	CP(nsb, *nsb32, st_gid);
2580 	CP(nsb, *nsb32, st_rdev);
2581 	CP(nsb, *nsb32, st_atim.tv_sec);
2582 	CP(nsb, *nsb32, st_atim.tv_nsec);
2583 	CP(nsb, *nsb32, st_mtim.tv_sec);
2584 	CP(nsb, *nsb32, st_mtim.tv_nsec);
2585 	CP(nsb, *nsb32, st_ctim.tv_sec);
2586 	CP(nsb, *nsb32, st_ctim.tv_nsec);
2587 	CP(nsb, *nsb32, st_size);
2588 	CP(nsb, *nsb32, st_blocks);
2589 	CP(nsb, *nsb32, st_blksize);
2590 	CP(nsb, *nsb32, st_flags);
2591 	CP(nsb, *nsb32, st_gen);
2592 	CP(nsb, *nsb32, st_birthtim.tv_sec);
2593 	CP(nsb, *nsb32, st_birthtim.tv_nsec);
2594 	return (0);
2595 }
2596 
2597 int
2598 freebsd11_freebsd32_nstat(struct thread *td,
2599     struct freebsd11_freebsd32_nstat_args *uap)
2600 {
2601 	struct stat sb;
2602 	struct nstat32 nsb;
2603 	int error;
2604 
2605 	error = kern_statat(td, 0, AT_FDCWD, uap->path, UIO_USERSPACE, &sb);
2606 	if (error != 0)
2607 		return (error);
2608 	error = freebsd11_cvtnstat32(&sb, &nsb);
2609 	if (error != 0)
2610 		error = copyout(&nsb, uap->ub, sizeof (nsb));
2611 	return (error);
2612 }
2613 
2614 int
2615 freebsd11_freebsd32_nlstat(struct thread *td,
2616     struct freebsd11_freebsd32_nlstat_args *uap)
2617 {
2618 	struct stat sb;
2619 	struct nstat32 nsb;
2620 	int error;
2621 
2622 	error = kern_statat(td, AT_SYMLINK_NOFOLLOW, AT_FDCWD, uap->path,
2623 	    UIO_USERSPACE, &sb);
2624 	if (error != 0)
2625 		return (error);
2626 	error = freebsd11_cvtnstat32(&sb, &nsb);
2627 	if (error == 0)
2628 		error = copyout(&nsb, uap->ub, sizeof (nsb));
2629 	return (error);
2630 }
2631 
2632 int
2633 freebsd11_freebsd32_nfstat(struct thread *td,
2634     struct freebsd11_freebsd32_nfstat_args *uap)
2635 {
2636 	struct nstat32 nub;
2637 	struct stat ub;
2638 	int error;
2639 
2640 	error = kern_fstat(td, uap->fd, &ub);
2641 	if (error != 0)
2642 		return (error);
2643 	error = freebsd11_cvtnstat32(&ub, &nub);
2644 	if (error == 0)
2645 		error = copyout(&nub, uap->sb, sizeof(nub));
2646 	return (error);
2647 }
2648 #endif
2649 
2650 int
2651 freebsd32___sysctl(struct thread *td, struct freebsd32___sysctl_args *uap)
2652 {
2653 	int error, name[CTL_MAXNAME];
2654 	size_t j, oldlen;
2655 	uint32_t tmp;
2656 
2657 	if (uap->namelen > CTL_MAXNAME || uap->namelen < 2)
2658 		return (EINVAL);
2659  	error = copyin(uap->name, name, uap->namelen * sizeof(int));
2660  	if (error)
2661 		return (error);
2662 	if (uap->oldlenp) {
2663 		error = fueword32(uap->oldlenp, &tmp);
2664 		oldlen = tmp;
2665 	} else {
2666 		oldlen = 0;
2667 	}
2668 	if (error != 0)
2669 		return (EFAULT);
2670 	error = userland_sysctl(td, name, uap->namelen,
2671 		uap->old, &oldlen, 1,
2672 		uap->new, uap->newlen, &j, SCTL_MASK32);
2673 	if (error)
2674 		return (error);
2675 	if (uap->oldlenp != NULL && suword32(uap->oldlenp, j) != 0)
2676 		error = EFAULT;
2677 	return (error);
2678 }
2679 
2680 int
2681 freebsd32___sysctlbyname(struct thread *td,
2682     struct freebsd32___sysctlbyname_args *uap)
2683 {
2684 	size_t oldlen, rv;
2685 	int error;
2686 	uint32_t tmp;
2687 
2688 	if (uap->oldlenp != NULL) {
2689 		error = fueword32(uap->oldlenp, &tmp);
2690 		oldlen = tmp;
2691 	} else {
2692 		error = oldlen = 0;
2693 	}
2694 	if (error != 0)
2695 		return (EFAULT);
2696 	error = kern___sysctlbyname(td, uap->name, uap->namelen, uap->old,
2697 	    &oldlen, uap->new, uap->newlen, &rv, SCTL_MASK32, 1);
2698 	if (error != 0)
2699 		return (error);
2700 	if (uap->oldlenp != NULL && suword32(uap->oldlenp, rv) != 0)
2701 		error = EFAULT;
2702 	return (error);
2703 }
2704 
2705 int
2706 freebsd32_jail(struct thread *td, struct freebsd32_jail_args *uap)
2707 {
2708 	uint32_t version;
2709 	int error;
2710 	struct jail j;
2711 
2712 	error = copyin(uap->jail, &version, sizeof(uint32_t));
2713 	if (error)
2714 		return (error);
2715 
2716 	switch (version) {
2717 	case 0:
2718 	{
2719 		/* FreeBSD single IPv4 jails. */
2720 		struct jail32_v0 j32_v0;
2721 
2722 		bzero(&j, sizeof(struct jail));
2723 		error = copyin(uap->jail, &j32_v0, sizeof(struct jail32_v0));
2724 		if (error)
2725 			return (error);
2726 		CP(j32_v0, j, version);
2727 		PTRIN_CP(j32_v0, j, path);
2728 		PTRIN_CP(j32_v0, j, hostname);
2729 		j.ip4s = htonl(j32_v0.ip_number);	/* jail_v0 is host order */
2730 		break;
2731 	}
2732 
2733 	case 1:
2734 		/*
2735 		 * Version 1 was used by multi-IPv4 jail implementations
2736 		 * that never made it into the official kernel.
2737 		 */
2738 		return (EINVAL);
2739 
2740 	case 2:	/* JAIL_API_VERSION */
2741 	{
2742 		/* FreeBSD multi-IPv4/IPv6,noIP jails. */
2743 		struct jail32 j32;
2744 
2745 		error = copyin(uap->jail, &j32, sizeof(struct jail32));
2746 		if (error)
2747 			return (error);
2748 		CP(j32, j, version);
2749 		PTRIN_CP(j32, j, path);
2750 		PTRIN_CP(j32, j, hostname);
2751 		PTRIN_CP(j32, j, jailname);
2752 		CP(j32, j, ip4s);
2753 		CP(j32, j, ip6s);
2754 		PTRIN_CP(j32, j, ip4);
2755 		PTRIN_CP(j32, j, ip6);
2756 		break;
2757 	}
2758 
2759 	default:
2760 		/* Sci-Fi jails are not supported, sorry. */
2761 		return (EINVAL);
2762 	}
2763 	return (kern_jail(td, &j));
2764 }
2765 
2766 int
2767 freebsd32_jail_set(struct thread *td, struct freebsd32_jail_set_args *uap)
2768 {
2769 	struct uio *auio;
2770 	int error;
2771 
2772 	/* Check that we have an even number of iovecs. */
2773 	if (uap->iovcnt & 1)
2774 		return (EINVAL);
2775 
2776 	error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio);
2777 	if (error)
2778 		return (error);
2779 	error = kern_jail_set(td, auio, uap->flags);
2780 	freeuio(auio);
2781 	return (error);
2782 }
2783 
2784 int
2785 freebsd32_jail_get(struct thread *td, struct freebsd32_jail_get_args *uap)
2786 {
2787 	struct iovec32 iov32;
2788 	struct uio *auio;
2789 	int error, i;
2790 
2791 	/* Check that we have an even number of iovecs. */
2792 	if (uap->iovcnt & 1)
2793 		return (EINVAL);
2794 
2795 	error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio);
2796 	if (error)
2797 		return (error);
2798 	error = kern_jail_get(td, auio, uap->flags);
2799 	if (error == 0)
2800 		for (i = 0; i < uap->iovcnt; i++) {
2801 			PTROUT_CP(auio->uio_iov[i], iov32, iov_base);
2802 			CP(auio->uio_iov[i], iov32, iov_len);
2803 			error = copyout(&iov32, uap->iovp + i, sizeof(iov32));
2804 			if (error != 0)
2805 				break;
2806 		}
2807 	freeuio(auio);
2808 	return (error);
2809 }
2810 
2811 int
2812 freebsd32_sigaction(struct thread *td, struct freebsd32_sigaction_args *uap)
2813 {
2814 	struct sigaction32 s32;
2815 	struct sigaction sa, osa, *sap;
2816 	int error;
2817 
2818 	if (uap->act) {
2819 		error = copyin(uap->act, &s32, sizeof(s32));
2820 		if (error)
2821 			return (error);
2822 		sa.sa_handler = PTRIN(s32.sa_u);
2823 		CP(s32, sa, sa_flags);
2824 		CP(s32, sa, sa_mask);
2825 		sap = &sa;
2826 	} else
2827 		sap = NULL;
2828 	error = kern_sigaction(td, uap->sig, sap, &osa, 0);
2829 	if (error == 0 && uap->oact != NULL) {
2830 		s32.sa_u = PTROUT(osa.sa_handler);
2831 		CP(osa, s32, sa_flags);
2832 		CP(osa, s32, sa_mask);
2833 		error = copyout(&s32, uap->oact, sizeof(s32));
2834 	}
2835 	return (error);
2836 }
2837 
2838 #ifdef COMPAT_FREEBSD4
2839 int
2840 freebsd4_freebsd32_sigaction(struct thread *td,
2841 			     struct freebsd4_freebsd32_sigaction_args *uap)
2842 {
2843 	struct sigaction32 s32;
2844 	struct sigaction sa, osa, *sap;
2845 	int error;
2846 
2847 	if (uap->act) {
2848 		error = copyin(uap->act, &s32, sizeof(s32));
2849 		if (error)
2850 			return (error);
2851 		sa.sa_handler = PTRIN(s32.sa_u);
2852 		CP(s32, sa, sa_flags);
2853 		CP(s32, sa, sa_mask);
2854 		sap = &sa;
2855 	} else
2856 		sap = NULL;
2857 	error = kern_sigaction(td, uap->sig, sap, &osa, KSA_FREEBSD4);
2858 	if (error == 0 && uap->oact != NULL) {
2859 		s32.sa_u = PTROUT(osa.sa_handler);
2860 		CP(osa, s32, sa_flags);
2861 		CP(osa, s32, sa_mask);
2862 		error = copyout(&s32, uap->oact, sizeof(s32));
2863 	}
2864 	return (error);
2865 }
2866 #endif
2867 
2868 #ifdef COMPAT_43
2869 struct osigaction32 {
2870 	uint32_t	sa_u;
2871 	osigset_t	sa_mask;
2872 	int		sa_flags;
2873 };
2874 
2875 #define	ONSIG	32
2876 
2877 int
2878 ofreebsd32_sigaction(struct thread *td,
2879 			     struct ofreebsd32_sigaction_args *uap)
2880 {
2881 	struct osigaction32 s32;
2882 	struct sigaction sa, osa, *sap;
2883 	int error;
2884 
2885 	if (uap->signum <= 0 || uap->signum >= ONSIG)
2886 		return (EINVAL);
2887 
2888 	if (uap->nsa) {
2889 		error = copyin(uap->nsa, &s32, sizeof(s32));
2890 		if (error)
2891 			return (error);
2892 		sa.sa_handler = PTRIN(s32.sa_u);
2893 		CP(s32, sa, sa_flags);
2894 		OSIG2SIG(s32.sa_mask, sa.sa_mask);
2895 		sap = &sa;
2896 	} else
2897 		sap = NULL;
2898 	error = kern_sigaction(td, uap->signum, sap, &osa, KSA_OSIGSET);
2899 	if (error == 0 && uap->osa != NULL) {
2900 		s32.sa_u = PTROUT(osa.sa_handler);
2901 		CP(osa, s32, sa_flags);
2902 		SIG2OSIG(osa.sa_mask, s32.sa_mask);
2903 		error = copyout(&s32, uap->osa, sizeof(s32));
2904 	}
2905 	return (error);
2906 }
2907 
2908 struct sigvec32 {
2909 	uint32_t	sv_handler;
2910 	int		sv_mask;
2911 	int		sv_flags;
2912 };
2913 
2914 int
2915 ofreebsd32_sigvec(struct thread *td,
2916 			  struct ofreebsd32_sigvec_args *uap)
2917 {
2918 	struct sigvec32 vec;
2919 	struct sigaction sa, osa, *sap;
2920 	int error;
2921 
2922 	if (uap->signum <= 0 || uap->signum >= ONSIG)
2923 		return (EINVAL);
2924 
2925 	if (uap->nsv) {
2926 		error = copyin(uap->nsv, &vec, sizeof(vec));
2927 		if (error)
2928 			return (error);
2929 		sa.sa_handler = PTRIN(vec.sv_handler);
2930 		OSIG2SIG(vec.sv_mask, sa.sa_mask);
2931 		sa.sa_flags = vec.sv_flags;
2932 		sa.sa_flags ^= SA_RESTART;
2933 		sap = &sa;
2934 	} else
2935 		sap = NULL;
2936 	error = kern_sigaction(td, uap->signum, sap, &osa, KSA_OSIGSET);
2937 	if (error == 0 && uap->osv != NULL) {
2938 		vec.sv_handler = PTROUT(osa.sa_handler);
2939 		SIG2OSIG(osa.sa_mask, vec.sv_mask);
2940 		vec.sv_flags = osa.sa_flags;
2941 		vec.sv_flags &= ~SA_NOCLDWAIT;
2942 		vec.sv_flags ^= SA_RESTART;
2943 		error = copyout(&vec, uap->osv, sizeof(vec));
2944 	}
2945 	return (error);
2946 }
2947 
2948 struct sigstack32 {
2949 	uint32_t	ss_sp;
2950 	int		ss_onstack;
2951 };
2952 
2953 int
2954 ofreebsd32_sigstack(struct thread *td,
2955 			    struct ofreebsd32_sigstack_args *uap)
2956 {
2957 	struct sigstack32 s32;
2958 	struct sigstack nss, oss;
2959 	int error = 0, unss;
2960 
2961 	if (uap->nss != NULL) {
2962 		error = copyin(uap->nss, &s32, sizeof(s32));
2963 		if (error)
2964 			return (error);
2965 		nss.ss_sp = PTRIN(s32.ss_sp);
2966 		CP(s32, nss, ss_onstack);
2967 		unss = 1;
2968 	} else {
2969 		unss = 0;
2970 	}
2971 	oss.ss_sp = td->td_sigstk.ss_sp;
2972 	oss.ss_onstack = sigonstack(cpu_getstack(td));
2973 	if (unss) {
2974 		td->td_sigstk.ss_sp = nss.ss_sp;
2975 		td->td_sigstk.ss_size = 0;
2976 		td->td_sigstk.ss_flags |= (nss.ss_onstack & SS_ONSTACK);
2977 		td->td_pflags |= TDP_ALTSTACK;
2978 	}
2979 	if (uap->oss != NULL) {
2980 		s32.ss_sp = PTROUT(oss.ss_sp);
2981 		CP(oss, s32, ss_onstack);
2982 		error = copyout(&s32, uap->oss, sizeof(s32));
2983 	}
2984 	return (error);
2985 }
2986 #endif
2987 
2988 int
2989 freebsd32_nanosleep(struct thread *td, struct freebsd32_nanosleep_args *uap)
2990 {
2991 
2992 	return (freebsd32_user_clock_nanosleep(td, CLOCK_REALTIME,
2993 	    TIMER_RELTIME, uap->rqtp, uap->rmtp));
2994 }
2995 
2996 int
2997 freebsd32_clock_nanosleep(struct thread *td,
2998     struct freebsd32_clock_nanosleep_args *uap)
2999 {
3000 	int error;
3001 
3002 	error = freebsd32_user_clock_nanosleep(td, uap->clock_id, uap->flags,
3003 	    uap->rqtp, uap->rmtp);
3004 	return (kern_posix_error(td, error));
3005 }
3006 
3007 static int
3008 freebsd32_user_clock_nanosleep(struct thread *td, clockid_t clock_id,
3009     int flags, const struct timespec32 *ua_rqtp, struct timespec32 *ua_rmtp)
3010 {
3011 	struct timespec32 rmt32, rqt32;
3012 	struct timespec rmt, rqt;
3013 	int error, error2;
3014 
3015 	error = copyin(ua_rqtp, &rqt32, sizeof(rqt32));
3016 	if (error)
3017 		return (error);
3018 
3019 	CP(rqt32, rqt, tv_sec);
3020 	CP(rqt32, rqt, tv_nsec);
3021 
3022 	error = kern_clock_nanosleep(td, clock_id, flags, &rqt, &rmt);
3023 	if (error == EINTR && ua_rmtp != NULL && (flags & TIMER_ABSTIME) == 0) {
3024 		CP(rmt, rmt32, tv_sec);
3025 		CP(rmt, rmt32, tv_nsec);
3026 
3027 		error2 = copyout(&rmt32, ua_rmtp, sizeof(rmt32));
3028 		if (error2 != 0)
3029 			error = error2;
3030 	}
3031 	return (error);
3032 }
3033 
3034 int
3035 freebsd32_clock_gettime(struct thread *td,
3036 			struct freebsd32_clock_gettime_args *uap)
3037 {
3038 	struct timespec	ats;
3039 	struct timespec32 ats32;
3040 	int error;
3041 
3042 	error = kern_clock_gettime(td, uap->clock_id, &ats);
3043 	if (error == 0) {
3044 		CP(ats, ats32, tv_sec);
3045 		CP(ats, ats32, tv_nsec);
3046 		error = copyout(&ats32, uap->tp, sizeof(ats32));
3047 	}
3048 	return (error);
3049 }
3050 
3051 int
3052 freebsd32_clock_settime(struct thread *td,
3053 			struct freebsd32_clock_settime_args *uap)
3054 {
3055 	struct timespec	ats;
3056 	struct timespec32 ats32;
3057 	int error;
3058 
3059 	error = copyin(uap->tp, &ats32, sizeof(ats32));
3060 	if (error)
3061 		return (error);
3062 	CP(ats32, ats, tv_sec);
3063 	CP(ats32, ats, tv_nsec);
3064 
3065 	return (kern_clock_settime(td, uap->clock_id, &ats));
3066 }
3067 
3068 int
3069 freebsd32_clock_getres(struct thread *td,
3070 		       struct freebsd32_clock_getres_args *uap)
3071 {
3072 	struct timespec	ts;
3073 	struct timespec32 ts32;
3074 	int error;
3075 
3076 	if (uap->tp == NULL)
3077 		return (0);
3078 	error = kern_clock_getres(td, uap->clock_id, &ts);
3079 	if (error == 0) {
3080 		CP(ts, ts32, tv_sec);
3081 		CP(ts, ts32, tv_nsec);
3082 		error = copyout(&ts32, uap->tp, sizeof(ts32));
3083 	}
3084 	return (error);
3085 }
3086 
3087 int freebsd32_ktimer_create(struct thread *td,
3088     struct freebsd32_ktimer_create_args *uap)
3089 {
3090 	struct sigevent32 ev32;
3091 	struct sigevent ev, *evp;
3092 	int error, id;
3093 
3094 	if (uap->evp == NULL) {
3095 		evp = NULL;
3096 	} else {
3097 		evp = &ev;
3098 		error = copyin(uap->evp, &ev32, sizeof(ev32));
3099 		if (error != 0)
3100 			return (error);
3101 		error = convert_sigevent32(&ev32, &ev);
3102 		if (error != 0)
3103 			return (error);
3104 	}
3105 	error = kern_ktimer_create(td, uap->clock_id, evp, &id, -1);
3106 	if (error == 0) {
3107 		error = copyout(&id, uap->timerid, sizeof(int));
3108 		if (error != 0)
3109 			kern_ktimer_delete(td, id);
3110 	}
3111 	return (error);
3112 }
3113 
3114 int
3115 freebsd32_ktimer_settime(struct thread *td,
3116     struct freebsd32_ktimer_settime_args *uap)
3117 {
3118 	struct itimerspec32 val32, oval32;
3119 	struct itimerspec val, oval, *ovalp;
3120 	int error;
3121 
3122 	error = copyin(uap->value, &val32, sizeof(val32));
3123 	if (error != 0)
3124 		return (error);
3125 	ITS_CP(val32, val);
3126 	ovalp = uap->ovalue != NULL ? &oval : NULL;
3127 	error = kern_ktimer_settime(td, uap->timerid, uap->flags, &val, ovalp);
3128 	if (error == 0 && uap->ovalue != NULL) {
3129 		ITS_CP(oval, oval32);
3130 		error = copyout(&oval32, uap->ovalue, sizeof(oval32));
3131 	}
3132 	return (error);
3133 }
3134 
3135 int
3136 freebsd32_ktimer_gettime(struct thread *td,
3137     struct freebsd32_ktimer_gettime_args *uap)
3138 {
3139 	struct itimerspec32 val32;
3140 	struct itimerspec val;
3141 	int error;
3142 
3143 	error = kern_ktimer_gettime(td, uap->timerid, &val);
3144 	if (error == 0) {
3145 		ITS_CP(val, val32);
3146 		error = copyout(&val32, uap->value, sizeof(val32));
3147 	}
3148 	return (error);
3149 }
3150 
3151 int
3152 freebsd32_timerfd_gettime(struct thread *td,
3153     struct freebsd32_timerfd_gettime_args *uap)
3154 {
3155 	struct itimerspec curr_value;
3156 	struct itimerspec32 curr_value32;
3157 	int error;
3158 
3159 	error = kern_timerfd_gettime(td, uap->fd, &curr_value);
3160 	if (error == 0) {
3161 		CP(curr_value, curr_value32, it_value.tv_sec);
3162 		CP(curr_value, curr_value32, it_value.tv_nsec);
3163 		CP(curr_value, curr_value32, it_interval.tv_sec);
3164 		CP(curr_value, curr_value32, it_interval.tv_nsec);
3165 		error = copyout(&curr_value32, uap->curr_value,
3166 		    sizeof(curr_value32));
3167 	}
3168 
3169 	return (error);
3170 }
3171 
3172 int
3173 freebsd32_timerfd_settime(struct thread *td,
3174     struct freebsd32_timerfd_settime_args *uap)
3175 {
3176 	struct itimerspec new_value, old_value;
3177 	struct itimerspec32 new_value32, old_value32;
3178 	int error;
3179 
3180 	error = copyin(uap->new_value, &new_value32, sizeof(new_value32));
3181 	if (error != 0)
3182 		return (error);
3183 	CP(new_value32, new_value, it_value.tv_sec);
3184 	CP(new_value32, new_value, it_value.tv_nsec);
3185 	CP(new_value32, new_value, it_interval.tv_sec);
3186 	CP(new_value32, new_value, it_interval.tv_nsec);
3187 	if (uap->old_value == NULL) {
3188 		error = kern_timerfd_settime(td, uap->fd, uap->flags,
3189 		    &new_value, NULL);
3190 	} else {
3191 		error = kern_timerfd_settime(td, uap->fd, uap->flags,
3192 		    &new_value, &old_value);
3193 		if (error == 0) {
3194 			CP(old_value, old_value32, it_value.tv_sec);
3195 			CP(old_value, old_value32, it_value.tv_nsec);
3196 			CP(old_value, old_value32, it_interval.tv_sec);
3197 			CP(old_value, old_value32, it_interval.tv_nsec);
3198 			error = copyout(&old_value32, uap->old_value,
3199 			    sizeof(old_value32));
3200 		}
3201 	}
3202 	return (error);
3203 }
3204 
3205 int
3206 freebsd32_clock_getcpuclockid2(struct thread *td,
3207     struct freebsd32_clock_getcpuclockid2_args *uap)
3208 {
3209 	clockid_t clk_id;
3210 	int error;
3211 
3212 	error = kern_clock_getcpuclockid2(td, PAIR32TO64(id_t, uap->id),
3213 	    uap->which, &clk_id);
3214 	if (error == 0)
3215 		error = copyout(&clk_id, uap->clock_id, sizeof(clockid_t));
3216 	return (error);
3217 }
3218 
3219 int
3220 freebsd32_thr_new(struct thread *td,
3221 		  struct freebsd32_thr_new_args *uap)
3222 {
3223 	struct thr_param32 param32;
3224 	struct thr_param param;
3225 	int error;
3226 
3227 	if (uap->param_size < 0 ||
3228 	    uap->param_size > sizeof(struct thr_param32))
3229 		return (EINVAL);
3230 	bzero(&param, sizeof(struct thr_param));
3231 	bzero(&param32, sizeof(struct thr_param32));
3232 	error = copyin(uap->param, &param32, uap->param_size);
3233 	if (error != 0)
3234 		return (error);
3235 	param.start_func = PTRIN(param32.start_func);
3236 	param.arg = PTRIN(param32.arg);
3237 	param.stack_base = PTRIN(param32.stack_base);
3238 	param.stack_size = param32.stack_size;
3239 	param.tls_base = PTRIN(param32.tls_base);
3240 	param.tls_size = param32.tls_size;
3241 	param.child_tid = PTRIN(param32.child_tid);
3242 	param.parent_tid = PTRIN(param32.parent_tid);
3243 	param.flags = param32.flags;
3244 	param.rtp = PTRIN(param32.rtp);
3245 	param.spare[0] = PTRIN(param32.spare[0]);
3246 	param.spare[1] = PTRIN(param32.spare[1]);
3247 	param.spare[2] = PTRIN(param32.spare[2]);
3248 
3249 	return (kern_thr_new(td, &param));
3250 }
3251 
3252 int
3253 freebsd32_thr_suspend(struct thread *td, struct freebsd32_thr_suspend_args *uap)
3254 {
3255 	struct timespec32 ts32;
3256 	struct timespec ts, *tsp;
3257 	int error;
3258 
3259 	error = 0;
3260 	tsp = NULL;
3261 	if (uap->timeout != NULL) {
3262 		error = copyin((const void *)uap->timeout, (void *)&ts32,
3263 		    sizeof(struct timespec32));
3264 		if (error != 0)
3265 			return (error);
3266 		ts.tv_sec = ts32.tv_sec;
3267 		ts.tv_nsec = ts32.tv_nsec;
3268 		tsp = &ts;
3269 	}
3270 	return (kern_thr_suspend(td, tsp));
3271 }
3272 
3273 void
3274 siginfo_to_siginfo32(const siginfo_t *src, struct __siginfo32 *dst)
3275 {
3276 	bzero(dst, sizeof(*dst));
3277 	dst->si_signo = src->si_signo;
3278 	dst->si_errno = src->si_errno;
3279 	dst->si_code = src->si_code;
3280 	dst->si_pid = src->si_pid;
3281 	dst->si_uid = src->si_uid;
3282 	dst->si_status = src->si_status;
3283 	dst->si_addr = (uintptr_t)src->si_addr;
3284 	dst->si_value.sival_int = src->si_value.sival_int;
3285 	dst->si_timerid = src->si_timerid;
3286 	dst->si_overrun = src->si_overrun;
3287 }
3288 
3289 #ifndef _FREEBSD32_SYSPROTO_H_
3290 struct freebsd32_sigqueue_args {
3291         pid_t pid;
3292         int signum;
3293         /* union sigval32 */ int value;
3294 };
3295 #endif
3296 int
3297 freebsd32_sigqueue(struct thread *td, struct freebsd32_sigqueue_args *uap)
3298 {
3299 	union sigval sv;
3300 
3301 	/*
3302 	 * On 32-bit ABIs, sival_int and sival_ptr are the same.
3303 	 * On 64-bit little-endian ABIs, the low bits are the same.
3304 	 * In 64-bit big-endian ABIs, sival_int overlaps with
3305 	 * sival_ptr's HIGH bits.  We choose to support sival_int
3306 	 * rather than sival_ptr in this case as it seems to be
3307 	 * more common.
3308 	 */
3309 	bzero(&sv, sizeof(sv));
3310 	sv.sival_int = (uint32_t)(uint64_t)uap->value;
3311 
3312 	return (kern_sigqueue(td, uap->pid, uap->signum, &sv));
3313 }
3314 
3315 int
3316 freebsd32_sigtimedwait(struct thread *td, struct freebsd32_sigtimedwait_args *uap)
3317 {
3318 	struct timespec32 ts32;
3319 	struct timespec ts;
3320 	struct timespec *timeout;
3321 	sigset_t set;
3322 	ksiginfo_t ksi;
3323 	struct __siginfo32 si32;
3324 	int error;
3325 
3326 	if (uap->timeout) {
3327 		error = copyin(uap->timeout, &ts32, sizeof(ts32));
3328 		if (error)
3329 			return (error);
3330 		ts.tv_sec = ts32.tv_sec;
3331 		ts.tv_nsec = ts32.tv_nsec;
3332 		timeout = &ts;
3333 	} else
3334 		timeout = NULL;
3335 
3336 	error = copyin(uap->set, &set, sizeof(set));
3337 	if (error)
3338 		return (error);
3339 
3340 	error = kern_sigtimedwait(td, set, &ksi, timeout);
3341 	if (error)
3342 		return (error);
3343 
3344 	if (uap->info) {
3345 		siginfo_to_siginfo32(&ksi.ksi_info, &si32);
3346 		error = copyout(&si32, uap->info, sizeof(struct __siginfo32));
3347 	}
3348 
3349 	if (error == 0)
3350 		td->td_retval[0] = ksi.ksi_signo;
3351 	return (error);
3352 }
3353 
3354 /*
3355  * MPSAFE
3356  */
3357 int
3358 freebsd32_sigwaitinfo(struct thread *td, struct freebsd32_sigwaitinfo_args *uap)
3359 {
3360 	ksiginfo_t ksi;
3361 	struct __siginfo32 si32;
3362 	sigset_t set;
3363 	int error;
3364 
3365 	error = copyin(uap->set, &set, sizeof(set));
3366 	if (error)
3367 		return (error);
3368 
3369 	error = kern_sigtimedwait(td, set, &ksi, NULL);
3370 	if (error)
3371 		return (error);
3372 
3373 	if (uap->info) {
3374 		siginfo_to_siginfo32(&ksi.ksi_info, &si32);
3375 		error = copyout(&si32, uap->info, sizeof(struct __siginfo32));
3376 	}
3377 	if (error == 0)
3378 		td->td_retval[0] = ksi.ksi_signo;
3379 	return (error);
3380 }
3381 
3382 int
3383 freebsd32_cpuset_setid(struct thread *td,
3384     struct freebsd32_cpuset_setid_args *uap)
3385 {
3386 
3387 	return (kern_cpuset_setid(td, uap->which,
3388 	    PAIR32TO64(id_t, uap->id), uap->setid));
3389 }
3390 
3391 int
3392 freebsd32_cpuset_getid(struct thread *td,
3393     struct freebsd32_cpuset_getid_args *uap)
3394 {
3395 
3396 	return (kern_cpuset_getid(td, uap->level, uap->which,
3397 	    PAIR32TO64(id_t, uap->id), uap->setid));
3398 }
3399 
3400 static int
3401 copyin32_set(const void *u, void *k, size_t size)
3402 {
3403 #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
3404 	int rv;
3405 	struct bitset *kb = k;
3406 	int *p;
3407 
3408 	rv = copyin(u, k, size);
3409 	if (rv != 0)
3410 		return (rv);
3411 
3412 	p = (int *)kb->__bits;
3413 	/* Loop through swapping words.
3414 	 * `size' is in bytes, we need bits. */
3415 	for (int i = 0; i < __bitset_words(size * 8); i++) {
3416 		int tmp = p[0];
3417 		p[0] = p[1];
3418 		p[1] = tmp;
3419 		p += 2;
3420 	}
3421 	return (0);
3422 #else
3423 	return (copyin(u, k, size));
3424 #endif
3425 }
3426 
3427 static int
3428 copyout32_set(const void *k, void *u, size_t size)
3429 {
3430 #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
3431 	const struct bitset *kb = k;
3432 	struct bitset *ub = u;
3433 	const int *kp = (const int *)kb->__bits;
3434 	int *up = (int *)ub->__bits;
3435 	int rv;
3436 
3437 	for (int i = 0; i < __bitset_words(CPU_SETSIZE); i++) {
3438 		/* `size' is in bytes, we need bits. */
3439 		for (int i = 0; i < __bitset_words(size * 8); i++) {
3440 			rv = suword32(up, kp[1]);
3441 			if (rv == 0)
3442 				rv = suword32(up + 1, kp[0]);
3443 			if (rv != 0)
3444 				return (EFAULT);
3445 		}
3446 	}
3447 	return (0);
3448 #else
3449 	return (copyout(k, u, size));
3450 #endif
3451 }
3452 
3453 static const struct cpuset_copy_cb cpuset_copy32_cb = {
3454 	.cpuset_copyin = copyin32_set,
3455 	.cpuset_copyout = copyout32_set
3456 };
3457 
3458 int
3459 freebsd32_cpuset_getaffinity(struct thread *td,
3460     struct freebsd32_cpuset_getaffinity_args *uap)
3461 {
3462 
3463 	return (user_cpuset_getaffinity(td, uap->level, uap->which,
3464 	    PAIR32TO64(id_t,uap->id), uap->cpusetsize, uap->mask,
3465 	    &cpuset_copy32_cb));
3466 }
3467 
3468 int
3469 freebsd32_cpuset_setaffinity(struct thread *td,
3470     struct freebsd32_cpuset_setaffinity_args *uap)
3471 {
3472 
3473 	return (user_cpuset_setaffinity(td, uap->level, uap->which,
3474 	    PAIR32TO64(id_t,uap->id), uap->cpusetsize, uap->mask,
3475 	    &cpuset_copy32_cb));
3476 }
3477 
3478 int
3479 freebsd32_cpuset_getdomain(struct thread *td,
3480     struct freebsd32_cpuset_getdomain_args *uap)
3481 {
3482 
3483 	return (kern_cpuset_getdomain(td, uap->level, uap->which,
3484 	    PAIR32TO64(id_t,uap->id), uap->domainsetsize, uap->mask, uap->policy,
3485 	    &cpuset_copy32_cb));
3486 }
3487 
3488 int
3489 freebsd32_cpuset_setdomain(struct thread *td,
3490     struct freebsd32_cpuset_setdomain_args *uap)
3491 {
3492 
3493 	return (kern_cpuset_setdomain(td, uap->level, uap->which,
3494 	    PAIR32TO64(id_t,uap->id), uap->domainsetsize, uap->mask, uap->policy,
3495 	    &cpuset_copy32_cb));
3496 }
3497 
3498 int
3499 freebsd32_nmount(struct thread *td,
3500     struct freebsd32_nmount_args /* {
3501     	struct iovec *iovp;
3502     	unsigned int iovcnt;
3503     	int flags;
3504     } */ *uap)
3505 {
3506 	struct uio *auio;
3507 	uint64_t flags;
3508 	int error;
3509 
3510 	/*
3511 	 * Mount flags are now 64-bits. On 32-bit archtectures only
3512 	 * 32-bits are passed in, but from here on everything handles
3513 	 * 64-bit flags correctly.
3514 	 */
3515 	flags = uap->flags;
3516 
3517 	AUDIT_ARG_FFLAGS(flags);
3518 
3519 	/*
3520 	 * Filter out MNT_ROOTFS.  We do not want clients of nmount() in
3521 	 * userspace to set this flag, but we must filter it out if we want
3522 	 * MNT_UPDATE on the root file system to work.
3523 	 * MNT_ROOTFS should only be set by the kernel when mounting its
3524 	 * root file system.
3525 	 */
3526 	flags &= ~MNT_ROOTFS;
3527 
3528 	/*
3529 	 * check that we have an even number of iovec's
3530 	 * and that we have at least two options.
3531 	 */
3532 	if ((uap->iovcnt & 1) || (uap->iovcnt < 4))
3533 		return (EINVAL);
3534 
3535 	error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio);
3536 	if (error)
3537 		return (error);
3538 	error = vfs_donmount(td, flags, auio);
3539 
3540 	freeuio(auio);
3541 	return error;
3542 }
3543 
3544 #if 0
3545 int
3546 freebsd32_xxx(struct thread *td, struct freebsd32_xxx_args *uap)
3547 {
3548 	struct yyy32 *p32, s32;
3549 	struct yyy *p = NULL, s;
3550 	struct xxx_arg ap;
3551 	int error;
3552 
3553 	if (uap->zzz) {
3554 		error = copyin(uap->zzz, &s32, sizeof(s32));
3555 		if (error)
3556 			return (error);
3557 		/* translate in */
3558 		p = &s;
3559 	}
3560 	error = kern_xxx(td, p);
3561 	if (error)
3562 		return (error);
3563 	if (uap->zzz) {
3564 		/* translate out */
3565 		error = copyout(&s32, p32, sizeof(s32));
3566 	}
3567 	return (error);
3568 }
3569 #endif
3570 
3571 int
3572 syscall32_module_handler(struct module *mod, int what, void *arg)
3573 {
3574 
3575 	return (kern_syscall_module_handler(freebsd32_sysent, mod, what, arg));
3576 }
3577 
3578 int
3579 syscall32_helper_register(struct syscall_helper_data *sd, int flags)
3580 {
3581 
3582 	return (kern_syscall_helper_register(freebsd32_sysent, sd, flags));
3583 }
3584 
3585 int
3586 syscall32_helper_unregister(struct syscall_helper_data *sd)
3587 {
3588 
3589 	return (kern_syscall_helper_unregister(freebsd32_sysent, sd));
3590 }
3591 
3592 int
3593 freebsd32_copyout_strings(struct image_params *imgp, uintptr_t *stack_base)
3594 {
3595 	struct sysentvec *sysent;
3596 	int argc, envc, i;
3597 	uint32_t *vectp;
3598 	char *stringp;
3599 	uintptr_t destp, ustringp;
3600 	struct freebsd32_ps_strings *arginfo;
3601 	char canary[sizeof(long) * 8];
3602 	int32_t pagesizes32[MAXPAGESIZES];
3603 	size_t execpath_len;
3604 	int error, szsigcode;
3605 
3606 	sysent = imgp->sysent;
3607 
3608 	arginfo = (struct freebsd32_ps_strings *)PROC_PS_STRINGS(imgp->proc);
3609 	imgp->ps_strings = arginfo;
3610 	destp =	(uintptr_t)arginfo;
3611 
3612 	/*
3613 	 * Install sigcode.
3614 	 */
3615 	if (!PROC_HAS_SHP(imgp->proc)) {
3616 		szsigcode = *sysent->sv_szsigcode;
3617 		destp -= szsigcode;
3618 		destp = rounddown2(destp, sizeof(uint32_t));
3619 		error = copyout(sysent->sv_sigcode, (void *)destp,
3620 		    szsigcode);
3621 		if (error != 0)
3622 			return (error);
3623 	}
3624 
3625 	/*
3626 	 * Copy the image path for the rtld.
3627 	 */
3628 	if (imgp->execpath != NULL && imgp->auxargs != NULL) {
3629 		execpath_len = strlen(imgp->execpath) + 1;
3630 		destp -= execpath_len;
3631 		imgp->execpathp = (void *)destp;
3632 		error = copyout(imgp->execpath, imgp->execpathp, execpath_len);
3633 		if (error != 0)
3634 			return (error);
3635 	}
3636 
3637 	/*
3638 	 * Prepare the canary for SSP.
3639 	 */
3640 	arc4rand(canary, sizeof(canary), 0);
3641 	destp -= sizeof(canary);
3642 	imgp->canary = (void *)destp;
3643 	error = copyout(canary, imgp->canary, sizeof(canary));
3644 	if (error != 0)
3645 		return (error);
3646 	imgp->canarylen = sizeof(canary);
3647 
3648 	/*
3649 	 * Prepare the pagesizes array.
3650 	 */
3651 	for (i = 0; i < MAXPAGESIZES; i++)
3652 		pagesizes32[i] = (uint32_t)pagesizes[i];
3653 	destp -= sizeof(pagesizes32);
3654 	destp = rounddown2(destp, sizeof(uint32_t));
3655 	imgp->pagesizes = (void *)destp;
3656 	error = copyout(pagesizes32, imgp->pagesizes, sizeof(pagesizes32));
3657 	if (error != 0)
3658 		return (error);
3659 	imgp->pagesizeslen = sizeof(pagesizes32);
3660 
3661 	/*
3662 	 * Allocate room for the argument and environment strings.
3663 	 */
3664 	destp -= ARG_MAX - imgp->args->stringspace;
3665 	destp = rounddown2(destp, sizeof(uint32_t));
3666 	ustringp = destp;
3667 
3668 	if (imgp->auxargs) {
3669 		/*
3670 		 * Allocate room on the stack for the ELF auxargs
3671 		 * array.  It has up to AT_COUNT entries.
3672 		 */
3673 		destp -= AT_COUNT * sizeof(Elf32_Auxinfo);
3674 		destp = rounddown2(destp, sizeof(uint32_t));
3675 	}
3676 
3677 	vectp = (uint32_t *)destp;
3678 
3679 	/*
3680 	 * Allocate room for the argv[] and env vectors including the
3681 	 * terminating NULL pointers.
3682 	 */
3683 	vectp -= imgp->args->argc + 1 + imgp->args->envc + 1;
3684 
3685 	/*
3686 	 * vectp also becomes our initial stack base
3687 	 */
3688 	*stack_base = (uintptr_t)vectp;
3689 
3690 	stringp = imgp->args->begin_argv;
3691 	argc = imgp->args->argc;
3692 	envc = imgp->args->envc;
3693 	/*
3694 	 * Copy out strings - arguments and environment.
3695 	 */
3696 	error = copyout(stringp, (void *)ustringp,
3697 	    ARG_MAX - imgp->args->stringspace);
3698 	if (error != 0)
3699 		return (error);
3700 
3701 	/*
3702 	 * Fill in "ps_strings" struct for ps, w, etc.
3703 	 */
3704 	imgp->argv = vectp;
3705 	if (suword32(&arginfo->ps_argvstr, (uint32_t)(intptr_t)vectp) != 0 ||
3706 	    suword32(&arginfo->ps_nargvstr, argc) != 0)
3707 		return (EFAULT);
3708 
3709 	/*
3710 	 * Fill in argument portion of vector table.
3711 	 */
3712 	for (; argc > 0; --argc) {
3713 		if (suword32(vectp++, ustringp) != 0)
3714 			return (EFAULT);
3715 		while (*stringp++ != 0)
3716 			ustringp++;
3717 		ustringp++;
3718 	}
3719 
3720 	/* a null vector table pointer separates the argp's from the envp's */
3721 	if (suword32(vectp++, 0) != 0)
3722 		return (EFAULT);
3723 
3724 	imgp->envv = vectp;
3725 	if (suword32(&arginfo->ps_envstr, (uint32_t)(intptr_t)vectp) != 0 ||
3726 	    suword32(&arginfo->ps_nenvstr, envc) != 0)
3727 		return (EFAULT);
3728 
3729 	/*
3730 	 * Fill in environment portion of vector table.
3731 	 */
3732 	for (; envc > 0; --envc) {
3733 		if (suword32(vectp++, ustringp) != 0)
3734 			return (EFAULT);
3735 		while (*stringp++ != 0)
3736 			ustringp++;
3737 		ustringp++;
3738 	}
3739 
3740 	/* end of vector table is a null pointer */
3741 	if (suword32(vectp, 0) != 0)
3742 		return (EFAULT);
3743 
3744 	if (imgp->auxargs) {
3745 		vectp++;
3746 		error = imgp->sysent->sv_copyout_auxargs(imgp,
3747 		    (uintptr_t)vectp);
3748 		if (error != 0)
3749 			return (error);
3750 	}
3751 
3752 	return (0);
3753 }
3754 
3755 int
3756 freebsd32_kldstat(struct thread *td, struct freebsd32_kldstat_args *uap)
3757 {
3758 	struct kld_file_stat *stat;
3759 	struct kld_file_stat32 *stat32;
3760 	int error, version;
3761 
3762 	if ((error = copyin(&uap->stat->version, &version, sizeof(version)))
3763 	    != 0)
3764 		return (error);
3765 	if (version != sizeof(struct kld_file_stat_1_32) &&
3766 	    version != sizeof(struct kld_file_stat32))
3767 		return (EINVAL);
3768 
3769 	stat = malloc(sizeof(*stat), M_TEMP, M_WAITOK | M_ZERO);
3770 	stat32 = malloc(sizeof(*stat32), M_TEMP, M_WAITOK | M_ZERO);
3771 	error = kern_kldstat(td, uap->fileid, stat);
3772 	if (error == 0) {
3773 		bcopy(&stat->name[0], &stat32->name[0], sizeof(stat->name));
3774 		CP(*stat, *stat32, refs);
3775 		CP(*stat, *stat32, id);
3776 		PTROUT_CP(*stat, *stat32, address);
3777 		CP(*stat, *stat32, size);
3778 		bcopy(&stat->pathname[0], &stat32->pathname[0],
3779 		    sizeof(stat->pathname));
3780 		stat32->version  = version;
3781 		error = copyout(stat32, uap->stat, version);
3782 	}
3783 	free(stat, M_TEMP);
3784 	free(stat32, M_TEMP);
3785 	return (error);
3786 }
3787 
3788 int
3789 freebsd32_posix_fallocate(struct thread *td,
3790     struct freebsd32_posix_fallocate_args *uap)
3791 {
3792 	int error;
3793 
3794 	error = kern_posix_fallocate(td, uap->fd,
3795 	    PAIR32TO64(off_t, uap->offset), PAIR32TO64(off_t, uap->len));
3796 	return (kern_posix_error(td, error));
3797 }
3798 
3799 int
3800 freebsd32_posix_fadvise(struct thread *td,
3801     struct freebsd32_posix_fadvise_args *uap)
3802 {
3803 	int error;
3804 
3805 	error = kern_posix_fadvise(td, uap->fd, PAIR32TO64(off_t, uap->offset),
3806 	    PAIR32TO64(off_t, uap->len), uap->advice);
3807 	return (kern_posix_error(td, error));
3808 }
3809 
3810 int
3811 convert_sigevent32(struct sigevent32 *sig32, struct sigevent *sig)
3812 {
3813 
3814 	CP(*sig32, *sig, sigev_notify);
3815 	switch (sig->sigev_notify) {
3816 	case SIGEV_NONE:
3817 		break;
3818 	case SIGEV_THREAD_ID:
3819 		CP(*sig32, *sig, sigev_notify_thread_id);
3820 		/* FALLTHROUGH */
3821 	case SIGEV_SIGNAL:
3822 		CP(*sig32, *sig, sigev_signo);
3823 		PTRIN_CP(*sig32, *sig, sigev_value.sival_ptr);
3824 		break;
3825 	case SIGEV_KEVENT:
3826 		CP(*sig32, *sig, sigev_notify_kqueue);
3827 		CP(*sig32, *sig, sigev_notify_kevent_flags);
3828 		PTRIN_CP(*sig32, *sig, sigev_value.sival_ptr);
3829 		break;
3830 	default:
3831 		return (EINVAL);
3832 	}
3833 	return (0);
3834 }
3835 
3836 int
3837 freebsd32_procctl(struct thread *td, struct freebsd32_procctl_args *uap)
3838 {
3839 	void *data;
3840 	union {
3841 		struct procctl_reaper_status rs;
3842 		struct procctl_reaper_pids rp;
3843 		struct procctl_reaper_kill rk;
3844 	} x;
3845 	union {
3846 		struct procctl_reaper_pids32 rp;
3847 	} x32;
3848 	int error, error1, flags, signum;
3849 
3850 	if (uap->com >= PROC_PROCCTL_MD_MIN)
3851 		return (cpu_procctl(td, uap->idtype, PAIR32TO64(id_t, uap->id),
3852 		    uap->com, PTRIN(uap->data)));
3853 
3854 	switch (uap->com) {
3855 	case PROC_ASLR_CTL:
3856 	case PROC_PROTMAX_CTL:
3857 	case PROC_SPROTECT:
3858 	case PROC_STACKGAP_CTL:
3859 	case PROC_TRACE_CTL:
3860 	case PROC_TRAPCAP_CTL:
3861 	case PROC_NO_NEW_PRIVS_CTL:
3862 	case PROC_WXMAP_CTL:
3863 		error = copyin(PTRIN(uap->data), &flags, sizeof(flags));
3864 		if (error != 0)
3865 			return (error);
3866 		data = &flags;
3867 		break;
3868 	case PROC_REAP_ACQUIRE:
3869 	case PROC_REAP_RELEASE:
3870 		if (uap->data != NULL)
3871 			return (EINVAL);
3872 		data = NULL;
3873 		break;
3874 	case PROC_REAP_STATUS:
3875 		data = &x.rs;
3876 		break;
3877 	case PROC_REAP_GETPIDS:
3878 		error = copyin(uap->data, &x32.rp, sizeof(x32.rp));
3879 		if (error != 0)
3880 			return (error);
3881 		CP(x32.rp, x.rp, rp_count);
3882 		PTRIN_CP(x32.rp, x.rp, rp_pids);
3883 		data = &x.rp;
3884 		break;
3885 	case PROC_REAP_KILL:
3886 		error = copyin(uap->data, &x.rk, sizeof(x.rk));
3887 		if (error != 0)
3888 			return (error);
3889 		data = &x.rk;
3890 		break;
3891 	case PROC_ASLR_STATUS:
3892 	case PROC_PROTMAX_STATUS:
3893 	case PROC_STACKGAP_STATUS:
3894 	case PROC_TRACE_STATUS:
3895 	case PROC_TRAPCAP_STATUS:
3896 	case PROC_NO_NEW_PRIVS_STATUS:
3897 	case PROC_WXMAP_STATUS:
3898 		data = &flags;
3899 		break;
3900 	case PROC_PDEATHSIG_CTL:
3901 		error = copyin(uap->data, &signum, sizeof(signum));
3902 		if (error != 0)
3903 			return (error);
3904 		data = &signum;
3905 		break;
3906 	case PROC_PDEATHSIG_STATUS:
3907 		data = &signum;
3908 		break;
3909 	default:
3910 		return (EINVAL);
3911 	}
3912 	error = kern_procctl(td, uap->idtype, PAIR32TO64(id_t, uap->id),
3913 	    uap->com, data);
3914 	switch (uap->com) {
3915 	case PROC_REAP_STATUS:
3916 		if (error == 0)
3917 			error = copyout(&x.rs, uap->data, sizeof(x.rs));
3918 		break;
3919 	case PROC_REAP_KILL:
3920 		error1 = copyout(&x.rk, uap->data, sizeof(x.rk));
3921 		if (error == 0)
3922 			error = error1;
3923 		break;
3924 	case PROC_ASLR_STATUS:
3925 	case PROC_PROTMAX_STATUS:
3926 	case PROC_STACKGAP_STATUS:
3927 	case PROC_TRACE_STATUS:
3928 	case PROC_TRAPCAP_STATUS:
3929 	case PROC_NO_NEW_PRIVS_STATUS:
3930 	case PROC_WXMAP_STATUS:
3931 		if (error == 0)
3932 			error = copyout(&flags, uap->data, sizeof(flags));
3933 		break;
3934 	case PROC_PDEATHSIG_STATUS:
3935 		if (error == 0)
3936 			error = copyout(&signum, uap->data, sizeof(signum));
3937 		break;
3938 	}
3939 	return (error);
3940 }
3941 
3942 int
3943 freebsd32_fcntl(struct thread *td, struct freebsd32_fcntl_args *uap)
3944 {
3945 	intptr_t tmp;
3946 
3947 	switch (uap->cmd) {
3948 	/*
3949 	 * Do unsigned conversion for arg when operation
3950 	 * interprets it as flags or pointer.
3951 	 */
3952 	case F_SETLK_REMOTE:
3953 	case F_SETLKW:
3954 	case F_SETLK:
3955 	case F_GETLK:
3956 	case F_SETFD:
3957 	case F_SETFL:
3958 	case F_OGETLK:
3959 	case F_OSETLK:
3960 	case F_OSETLKW:
3961 	case F_KINFO:
3962 		tmp = (unsigned int)(uap->arg);
3963 		break;
3964 	default:
3965 		tmp = uap->arg;
3966 		break;
3967 	}
3968 	return (kern_fcntl_freebsd(td, uap->fd, uap->cmd, tmp));
3969 }
3970 
3971 int
3972 freebsd32_ppoll(struct thread *td, struct freebsd32_ppoll_args *uap)
3973 {
3974 	struct timespec32 ts32;
3975 	struct timespec ts, *tsp;
3976 	sigset_t set, *ssp;
3977 	int error;
3978 
3979 	if (uap->ts != NULL) {
3980 		error = copyin(uap->ts, &ts32, sizeof(ts32));
3981 		if (error != 0)
3982 			return (error);
3983 		CP(ts32, ts, tv_sec);
3984 		CP(ts32, ts, tv_nsec);
3985 		tsp = &ts;
3986 	} else
3987 		tsp = NULL;
3988 	if (uap->set != NULL) {
3989 		error = copyin(uap->set, &set, sizeof(set));
3990 		if (error != 0)
3991 			return (error);
3992 		ssp = &set;
3993 	} else
3994 		ssp = NULL;
3995 
3996 	return (kern_poll(td, uap->fds, uap->nfds, tsp, ssp));
3997 }
3998 
3999 int
4000 freebsd32_sched_rr_get_interval(struct thread *td,
4001     struct freebsd32_sched_rr_get_interval_args *uap)
4002 {
4003 	struct timespec ts;
4004 	struct timespec32 ts32;
4005 	int error;
4006 
4007 	error = kern_sched_rr_get_interval(td, uap->pid, &ts);
4008 	if (error == 0) {
4009 		CP(ts, ts32, tv_sec);
4010 		CP(ts, ts32, tv_nsec);
4011 		error = copyout(&ts32, uap->interval, sizeof(ts32));
4012 	}
4013 	return (error);
4014 }
4015 
4016 static void
4017 timex_to_32(struct timex32 *dst, struct timex *src)
4018 {
4019 	CP(*src, *dst, modes);
4020 	CP(*src, *dst, offset);
4021 	CP(*src, *dst, freq);
4022 	CP(*src, *dst, maxerror);
4023 	CP(*src, *dst, esterror);
4024 	CP(*src, *dst, status);
4025 	CP(*src, *dst, constant);
4026 	CP(*src, *dst, precision);
4027 	CP(*src, *dst, tolerance);
4028 	CP(*src, *dst, ppsfreq);
4029 	CP(*src, *dst, jitter);
4030 	CP(*src, *dst, shift);
4031 	CP(*src, *dst, stabil);
4032 	CP(*src, *dst, jitcnt);
4033 	CP(*src, *dst, calcnt);
4034 	CP(*src, *dst, errcnt);
4035 	CP(*src, *dst, stbcnt);
4036 }
4037 
4038 static void
4039 timex_from_32(struct timex *dst, struct timex32 *src)
4040 {
4041 	CP(*src, *dst, modes);
4042 	CP(*src, *dst, offset);
4043 	CP(*src, *dst, freq);
4044 	CP(*src, *dst, maxerror);
4045 	CP(*src, *dst, esterror);
4046 	CP(*src, *dst, status);
4047 	CP(*src, *dst, constant);
4048 	CP(*src, *dst, precision);
4049 	CP(*src, *dst, tolerance);
4050 	CP(*src, *dst, ppsfreq);
4051 	CP(*src, *dst, jitter);
4052 	CP(*src, *dst, shift);
4053 	CP(*src, *dst, stabil);
4054 	CP(*src, *dst, jitcnt);
4055 	CP(*src, *dst, calcnt);
4056 	CP(*src, *dst, errcnt);
4057 	CP(*src, *dst, stbcnt);
4058 }
4059 
4060 int
4061 freebsd32_ntp_adjtime(struct thread *td, struct freebsd32_ntp_adjtime_args *uap)
4062 {
4063 	struct timex tx;
4064 	struct timex32 tx32;
4065 	int error, retval;
4066 
4067 	error = copyin(uap->tp, &tx32, sizeof(tx32));
4068 	if (error == 0) {
4069 		timex_from_32(&tx, &tx32);
4070 		error = kern_ntp_adjtime(td, &tx, &retval);
4071 		if (error == 0) {
4072 			timex_to_32(&tx32, &tx);
4073 			error = copyout(&tx32, uap->tp, sizeof(tx32));
4074 			if (error == 0)
4075 				td->td_retval[0] = retval;
4076 		}
4077 	}
4078 	return (error);
4079 }
4080 
4081 #ifdef FFCLOCK
4082 extern struct mtx ffclock_mtx;
4083 extern struct ffclock_estimate ffclock_estimate;
4084 extern int8_t ffclock_updated;
4085 
4086 int
4087 freebsd32_ffclock_setestimate(struct thread *td,
4088     struct freebsd32_ffclock_setestimate_args *uap)
4089 {
4090 	struct ffclock_estimate cest;
4091 	struct ffclock_estimate32 cest32;
4092 	int error;
4093 
4094 	/* Reuse of PRIV_CLOCK_SETTIME. */
4095 	if ((error = priv_check(td, PRIV_CLOCK_SETTIME)) != 0)
4096 		return (error);
4097 
4098 	if ((error = copyin(uap->cest, &cest32,
4099 	    sizeof(struct ffclock_estimate32))) != 0)
4100 		return (error);
4101 
4102 	CP(cest.update_time, cest32.update_time, sec);
4103 	memcpy(&cest.update_time.frac, &cest32.update_time.frac, sizeof(uint64_t));
4104 	CP(cest, cest32, update_ffcount);
4105 	CP(cest, cest32, leapsec_next);
4106 	CP(cest, cest32, period);
4107 	CP(cest, cest32, errb_abs);
4108 	CP(cest, cest32, errb_rate);
4109 	CP(cest, cest32, status);
4110 	CP(cest, cest32, leapsec_total);
4111 	CP(cest, cest32, leapsec);
4112 
4113 	mtx_lock(&ffclock_mtx);
4114 	memcpy(&ffclock_estimate, &cest, sizeof(struct ffclock_estimate));
4115 	ffclock_updated++;
4116 	mtx_unlock(&ffclock_mtx);
4117 	return (error);
4118 }
4119 
4120 int
4121 freebsd32_ffclock_getestimate(struct thread *td,
4122     struct freebsd32_ffclock_getestimate_args *uap)
4123 {
4124 	struct ffclock_estimate cest;
4125 	struct ffclock_estimate32 cest32;
4126 	int error;
4127 
4128 	mtx_lock(&ffclock_mtx);
4129 	memcpy(&cest, &ffclock_estimate, sizeof(struct ffclock_estimate));
4130 	mtx_unlock(&ffclock_mtx);
4131 
4132 	CP(cest32.update_time, cest.update_time, sec);
4133 	memcpy(&cest32.update_time.frac, &cest.update_time.frac, sizeof(uint64_t));
4134 	CP(cest32, cest, update_ffcount);
4135 	CP(cest32, cest, leapsec_next);
4136 	CP(cest32, cest, period);
4137 	CP(cest32, cest, errb_abs);
4138 	CP(cest32, cest, errb_rate);
4139 	CP(cest32, cest, status);
4140 	CP(cest32, cest, leapsec_total);
4141 	CP(cest32, cest, leapsec);
4142 
4143 	error = copyout(&cest32, uap->cest, sizeof(struct ffclock_estimate32));
4144 	return (error);
4145 }
4146 #else /* !FFCLOCK */
4147 int
4148 freebsd32_ffclock_setestimate(struct thread *td,
4149     struct freebsd32_ffclock_setestimate_args *uap)
4150 {
4151 	return (ENOSYS);
4152 }
4153 
4154 int
4155 freebsd32_ffclock_getestimate(struct thread *td,
4156     struct freebsd32_ffclock_getestimate_args *uap)
4157 {
4158 	return (ENOSYS);
4159 }
4160 #endif /* FFCLOCK */
4161 
4162 #ifdef COMPAT_43
4163 int
4164 ofreebsd32_sethostid(struct thread *td, struct ofreebsd32_sethostid_args *uap)
4165 {
4166 	int name[] = { CTL_KERN, KERN_HOSTID };
4167 	long hostid;
4168 
4169 	hostid = uap->hostid;
4170 	return (kernel_sysctl(td, name, nitems(name), NULL, NULL, &hostid,
4171 	    sizeof(hostid), NULL, 0));
4172 }
4173 #endif
4174