1 /*- 2 * Copyright (c) 2002 Doug Rabson 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include "opt_compat.h" 31 #include "opt_inet.h" 32 #include "opt_inet6.h" 33 34 #define __ELF_WORD_SIZE 32 35 36 #include <sys/param.h> 37 #include <sys/bus.h> 38 #include <sys/capability.h> 39 #include <sys/clock.h> 40 #include <sys/exec.h> 41 #include <sys/fcntl.h> 42 #include <sys/filedesc.h> 43 #include <sys/imgact.h> 44 #include <sys/jail.h> 45 #include <sys/kernel.h> 46 #include <sys/limits.h> 47 #include <sys/linker.h> 48 #include <sys/lock.h> 49 #include <sys/malloc.h> 50 #include <sys/file.h> /* Must come after sys/malloc.h */ 51 #include <sys/imgact.h> 52 #include <sys/mbuf.h> 53 #include <sys/mman.h> 54 #include <sys/module.h> 55 #include <sys/mount.h> 56 #include <sys/mutex.h> 57 #include <sys/namei.h> 58 #include <sys/proc.h> 59 #include <sys/procctl.h> 60 #include <sys/reboot.h> 61 #include <sys/resource.h> 62 #include <sys/resourcevar.h> 63 #include <sys/selinfo.h> 64 #include <sys/eventvar.h> /* Must come after sys/selinfo.h */ 65 #include <sys/pipe.h> /* Must come after sys/selinfo.h */ 66 #include <sys/signal.h> 67 #include <sys/signalvar.h> 68 #include <sys/socket.h> 69 #include <sys/socketvar.h> 70 #include <sys/stat.h> 71 #include <sys/syscall.h> 72 #include <sys/syscallsubr.h> 73 #include <sys/sysctl.h> 74 #include <sys/sysent.h> 75 #include <sys/sysproto.h> 76 #include <sys/systm.h> 77 #include <sys/thr.h> 78 #include <sys/unistd.h> 79 #include <sys/ucontext.h> 80 #include <sys/vnode.h> 81 #include <sys/wait.h> 82 #include <sys/ipc.h> 83 #include <sys/msg.h> 84 #include <sys/sem.h> 85 #include <sys/shm.h> 86 #include <sys/condvar.h> 87 #include <sys/sf_buf.h> 88 #include <sys/sf_sync.h> 89 #include <sys/sf_base.h> 90 91 #ifdef INET 92 #include <netinet/in.h> 93 #endif 94 95 #include <vm/vm.h> 96 #include <vm/vm_param.h> 97 #include <vm/pmap.h> 98 #include <vm/vm_map.h> 99 #include <vm/vm_object.h> 100 #include <vm/vm_extern.h> 101 102 #include <machine/cpu.h> 103 #include <machine/elf.h> 104 105 #include <security/audit/audit.h> 106 107 #include <compat/freebsd32/freebsd32_util.h> 108 #include <compat/freebsd32/freebsd32.h> 109 #include <compat/freebsd32/freebsd32_ipc.h> 110 #include <compat/freebsd32/freebsd32_misc.h> 111 #include <compat/freebsd32/freebsd32_signal.h> 112 #include <compat/freebsd32/freebsd32_proto.h> 113 114 FEATURE(compat_freebsd_32bit, "Compatible with 32-bit FreeBSD"); 115 116 #ifndef __mips__ 117 CTASSERT(sizeof(struct timeval32) == 8); 118 CTASSERT(sizeof(struct timespec32) == 8); 119 CTASSERT(sizeof(struct itimerval32) == 16); 120 #endif 121 CTASSERT(sizeof(struct statfs32) == 256); 122 #ifndef __mips__ 123 CTASSERT(sizeof(struct rusage32) == 72); 124 #endif 125 CTASSERT(sizeof(struct sigaltstack32) == 12); 126 CTASSERT(sizeof(struct kevent32) == 20); 127 CTASSERT(sizeof(struct iovec32) == 8); 128 CTASSERT(sizeof(struct msghdr32) == 28); 129 #ifndef __mips__ 130 CTASSERT(sizeof(struct stat32) == 96); 131 #endif 132 CTASSERT(sizeof(struct sigaction32) == 24); 133 134 static int freebsd32_kevent_copyout(void *arg, struct kevent *kevp, int count); 135 static int freebsd32_kevent_copyin(void *arg, struct kevent *kevp, int count); 136 137 void 138 freebsd32_rusage_out(const struct rusage *s, struct rusage32 *s32) 139 { 140 141 TV_CP(*s, *s32, ru_utime); 142 TV_CP(*s, *s32, ru_stime); 143 CP(*s, *s32, ru_maxrss); 144 CP(*s, *s32, ru_ixrss); 145 CP(*s, *s32, ru_idrss); 146 CP(*s, *s32, ru_isrss); 147 CP(*s, *s32, ru_minflt); 148 CP(*s, *s32, ru_majflt); 149 CP(*s, *s32, ru_nswap); 150 CP(*s, *s32, ru_inblock); 151 CP(*s, *s32, ru_oublock); 152 CP(*s, *s32, ru_msgsnd); 153 CP(*s, *s32, ru_msgrcv); 154 CP(*s, *s32, ru_nsignals); 155 CP(*s, *s32, ru_nvcsw); 156 CP(*s, *s32, ru_nivcsw); 157 } 158 159 int 160 freebsd32_wait4(struct thread *td, struct freebsd32_wait4_args *uap) 161 { 162 int error, status; 163 struct rusage32 ru32; 164 struct rusage ru, *rup; 165 166 if (uap->rusage != NULL) 167 rup = &ru; 168 else 169 rup = NULL; 170 error = kern_wait(td, uap->pid, &status, uap->options, rup); 171 if (error) 172 return (error); 173 if (uap->status != NULL) 174 error = copyout(&status, uap->status, sizeof(status)); 175 if (uap->rusage != NULL && error == 0) { 176 freebsd32_rusage_out(&ru, &ru32); 177 error = copyout(&ru32, uap->rusage, sizeof(ru32)); 178 } 179 return (error); 180 } 181 182 int 183 freebsd32_wait6(struct thread *td, struct freebsd32_wait6_args *uap) 184 { 185 struct wrusage32 wru32; 186 struct __wrusage wru, *wrup; 187 struct siginfo32 si32; 188 struct __siginfo si, *sip; 189 int error, status; 190 191 if (uap->wrusage != NULL) 192 wrup = &wru; 193 else 194 wrup = NULL; 195 if (uap->info != NULL) { 196 sip = &si; 197 bzero(sip, sizeof(*sip)); 198 } else 199 sip = NULL; 200 error = kern_wait6(td, uap->idtype, PAIR32TO64(id_t, uap->id), 201 &status, uap->options, wrup, sip); 202 if (error != 0) 203 return (error); 204 if (uap->status != NULL) 205 error = copyout(&status, uap->status, sizeof(status)); 206 if (uap->wrusage != NULL && error == 0) { 207 freebsd32_rusage_out(&wru.wru_self, &wru32.wru_self); 208 freebsd32_rusage_out(&wru.wru_children, &wru32.wru_children); 209 error = copyout(&wru32, uap->wrusage, sizeof(wru32)); 210 } 211 if (uap->info != NULL && error == 0) { 212 siginfo_to_siginfo32 (&si, &si32); 213 error = copyout(&si32, uap->info, sizeof(si32)); 214 } 215 return (error); 216 } 217 218 #ifdef COMPAT_FREEBSD4 219 static void 220 copy_statfs(struct statfs *in, struct statfs32 *out) 221 { 222 223 statfs_scale_blocks(in, INT32_MAX); 224 bzero(out, sizeof(*out)); 225 CP(*in, *out, f_bsize); 226 out->f_iosize = MIN(in->f_iosize, INT32_MAX); 227 CP(*in, *out, f_blocks); 228 CP(*in, *out, f_bfree); 229 CP(*in, *out, f_bavail); 230 out->f_files = MIN(in->f_files, INT32_MAX); 231 out->f_ffree = MIN(in->f_ffree, INT32_MAX); 232 CP(*in, *out, f_fsid); 233 CP(*in, *out, f_owner); 234 CP(*in, *out, f_type); 235 CP(*in, *out, f_flags); 236 out->f_syncwrites = MIN(in->f_syncwrites, INT32_MAX); 237 out->f_asyncwrites = MIN(in->f_asyncwrites, INT32_MAX); 238 strlcpy(out->f_fstypename, 239 in->f_fstypename, MFSNAMELEN); 240 strlcpy(out->f_mntonname, 241 in->f_mntonname, min(MNAMELEN, FREEBSD4_MNAMELEN)); 242 out->f_syncreads = MIN(in->f_syncreads, INT32_MAX); 243 out->f_asyncreads = MIN(in->f_asyncreads, INT32_MAX); 244 strlcpy(out->f_mntfromname, 245 in->f_mntfromname, min(MNAMELEN, FREEBSD4_MNAMELEN)); 246 } 247 #endif 248 249 #ifdef COMPAT_FREEBSD4 250 int 251 freebsd4_freebsd32_getfsstat(struct thread *td, struct freebsd4_freebsd32_getfsstat_args *uap) 252 { 253 struct statfs *buf, *sp; 254 struct statfs32 stat32; 255 size_t count, size; 256 int error; 257 258 count = uap->bufsize / sizeof(struct statfs32); 259 size = count * sizeof(struct statfs); 260 error = kern_getfsstat(td, &buf, size, UIO_SYSSPACE, uap->flags); 261 if (size > 0) { 262 count = td->td_retval[0]; 263 sp = buf; 264 while (count > 0 && error == 0) { 265 copy_statfs(sp, &stat32); 266 error = copyout(&stat32, uap->buf, sizeof(stat32)); 267 sp++; 268 uap->buf++; 269 count--; 270 } 271 free(buf, M_TEMP); 272 } 273 return (error); 274 } 275 #endif 276 277 int 278 freebsd32_sigaltstack(struct thread *td, 279 struct freebsd32_sigaltstack_args *uap) 280 { 281 struct sigaltstack32 s32; 282 struct sigaltstack ss, oss, *ssp; 283 int error; 284 285 if (uap->ss != NULL) { 286 error = copyin(uap->ss, &s32, sizeof(s32)); 287 if (error) 288 return (error); 289 PTRIN_CP(s32, ss, ss_sp); 290 CP(s32, ss, ss_size); 291 CP(s32, ss, ss_flags); 292 ssp = &ss; 293 } else 294 ssp = NULL; 295 error = kern_sigaltstack(td, ssp, &oss); 296 if (error == 0 && uap->oss != NULL) { 297 PTROUT_CP(oss, s32, ss_sp); 298 CP(oss, s32, ss_size); 299 CP(oss, s32, ss_flags); 300 error = copyout(&s32, uap->oss, sizeof(s32)); 301 } 302 return (error); 303 } 304 305 /* 306 * Custom version of exec_copyin_args() so that we can translate 307 * the pointers. 308 */ 309 int 310 freebsd32_exec_copyin_args(struct image_args *args, char *fname, 311 enum uio_seg segflg, u_int32_t *argv, u_int32_t *envv) 312 { 313 char *argp, *envp; 314 u_int32_t *p32, arg; 315 size_t length; 316 int error; 317 318 bzero(args, sizeof(*args)); 319 if (argv == NULL) 320 return (EFAULT); 321 322 /* 323 * Allocate demand-paged memory for the file name, argument, and 324 * environment strings. 325 */ 326 error = exec_alloc_args(args); 327 if (error != 0) 328 return (error); 329 330 /* 331 * Copy the file name. 332 */ 333 if (fname != NULL) { 334 args->fname = args->buf; 335 error = (segflg == UIO_SYSSPACE) ? 336 copystr(fname, args->fname, PATH_MAX, &length) : 337 copyinstr(fname, args->fname, PATH_MAX, &length); 338 if (error != 0) 339 goto err_exit; 340 } else 341 length = 0; 342 343 args->begin_argv = args->buf + length; 344 args->endp = args->begin_argv; 345 args->stringspace = ARG_MAX; 346 347 /* 348 * extract arguments first 349 */ 350 p32 = argv; 351 for (;;) { 352 error = copyin(p32++, &arg, sizeof(arg)); 353 if (error) 354 goto err_exit; 355 if (arg == 0) 356 break; 357 argp = PTRIN(arg); 358 error = copyinstr(argp, args->endp, args->stringspace, &length); 359 if (error) { 360 if (error == ENAMETOOLONG) 361 error = E2BIG; 362 goto err_exit; 363 } 364 args->stringspace -= length; 365 args->endp += length; 366 args->argc++; 367 } 368 369 args->begin_envv = args->endp; 370 371 /* 372 * extract environment strings 373 */ 374 if (envv) { 375 p32 = envv; 376 for (;;) { 377 error = copyin(p32++, &arg, sizeof(arg)); 378 if (error) 379 goto err_exit; 380 if (arg == 0) 381 break; 382 envp = PTRIN(arg); 383 error = copyinstr(envp, args->endp, args->stringspace, 384 &length); 385 if (error) { 386 if (error == ENAMETOOLONG) 387 error = E2BIG; 388 goto err_exit; 389 } 390 args->stringspace -= length; 391 args->endp += length; 392 args->envc++; 393 } 394 } 395 396 return (0); 397 398 err_exit: 399 exec_free_args(args); 400 return (error); 401 } 402 403 int 404 freebsd32_execve(struct thread *td, struct freebsd32_execve_args *uap) 405 { 406 struct image_args eargs; 407 int error; 408 409 error = freebsd32_exec_copyin_args(&eargs, uap->fname, UIO_USERSPACE, 410 uap->argv, uap->envv); 411 if (error == 0) 412 error = kern_execve(td, &eargs, NULL); 413 return (error); 414 } 415 416 int 417 freebsd32_fexecve(struct thread *td, struct freebsd32_fexecve_args *uap) 418 { 419 struct image_args eargs; 420 int error; 421 422 error = freebsd32_exec_copyin_args(&eargs, NULL, UIO_SYSSPACE, 423 uap->argv, uap->envv); 424 if (error == 0) { 425 eargs.fd = uap->fd; 426 error = kern_execve(td, &eargs, NULL); 427 } 428 return (error); 429 } 430 431 #ifdef __ia64__ 432 static int 433 freebsd32_mmap_partial(struct thread *td, vm_offset_t start, vm_offset_t end, 434 int prot, int fd, off_t pos) 435 { 436 vm_map_t map; 437 vm_map_entry_t entry; 438 int rv; 439 440 map = &td->td_proc->p_vmspace->vm_map; 441 if (fd != -1) 442 prot |= VM_PROT_WRITE; 443 444 if (vm_map_lookup_entry(map, start, &entry)) { 445 if ((entry->protection & prot) != prot) { 446 rv = vm_map_protect(map, 447 trunc_page(start), 448 round_page(end), 449 entry->protection | prot, 450 FALSE); 451 if (rv != KERN_SUCCESS) 452 return (EINVAL); 453 } 454 } else { 455 vm_offset_t addr = trunc_page(start); 456 rv = vm_map_find(map, NULL, 0, &addr, PAGE_SIZE, 0, 457 VMFS_NO_SPACE, prot, VM_PROT_ALL, 0); 458 if (rv != KERN_SUCCESS) 459 return (EINVAL); 460 } 461 462 if (fd != -1) { 463 struct pread_args r; 464 r.fd = fd; 465 r.buf = (void *) start; 466 r.nbyte = end - start; 467 r.offset = pos; 468 return (sys_pread(td, &r)); 469 } else { 470 while (start < end) { 471 subyte((void *) start, 0); 472 start++; 473 } 474 return (0); 475 } 476 } 477 #endif 478 479 int 480 freebsd32_mprotect(struct thread *td, struct freebsd32_mprotect_args *uap) 481 { 482 struct mprotect_args ap; 483 484 ap.addr = PTRIN(uap->addr); 485 ap.len = uap->len; 486 ap.prot = uap->prot; 487 #if defined(__amd64__) || defined(__ia64__) 488 if (i386_read_exec && (ap.prot & PROT_READ) != 0) 489 ap.prot |= PROT_EXEC; 490 #endif 491 return (sys_mprotect(td, &ap)); 492 } 493 494 int 495 freebsd32_mmap(struct thread *td, struct freebsd32_mmap_args *uap) 496 { 497 struct mmap_args ap; 498 vm_offset_t addr = (vm_offset_t) uap->addr; 499 vm_size_t len = uap->len; 500 int prot = uap->prot; 501 int flags = uap->flags; 502 int fd = uap->fd; 503 off_t pos = PAIR32TO64(off_t,uap->pos); 504 #ifdef __ia64__ 505 vm_size_t pageoff; 506 int error; 507 508 /* 509 * Attempt to handle page size hassles. 510 */ 511 pageoff = (pos & PAGE_MASK); 512 if (flags & MAP_FIXED) { 513 vm_offset_t start, end; 514 start = addr; 515 end = addr + len; 516 517 if (start != trunc_page(start)) { 518 error = freebsd32_mmap_partial(td, start, 519 round_page(start), prot, 520 fd, pos); 521 if (fd != -1) 522 pos += round_page(start) - start; 523 start = round_page(start); 524 } 525 if (end != round_page(end)) { 526 vm_offset_t t = trunc_page(end); 527 error = freebsd32_mmap_partial(td, t, end, 528 prot, fd, 529 pos + t - start); 530 end = trunc_page(end); 531 } 532 if (end > start && fd != -1 && (pos & PAGE_MASK)) { 533 /* 534 * We can't map this region at all. The specified 535 * address doesn't have the same alignment as the file 536 * position. Fake the mapping by simply reading the 537 * entire region into memory. First we need to make 538 * sure the region exists. 539 */ 540 vm_map_t map; 541 struct pread_args r; 542 int rv; 543 544 prot |= VM_PROT_WRITE; 545 map = &td->td_proc->p_vmspace->vm_map; 546 rv = vm_map_remove(map, start, end); 547 if (rv != KERN_SUCCESS) 548 return (EINVAL); 549 rv = vm_map_find(map, NULL, 0, &start, end - start, 550 0, VMFS_NO_SPACE, prot, VM_PROT_ALL, 0); 551 if (rv != KERN_SUCCESS) 552 return (EINVAL); 553 r.fd = fd; 554 r.buf = (void *) start; 555 r.nbyte = end - start; 556 r.offset = pos; 557 error = sys_pread(td, &r); 558 if (error) 559 return (error); 560 561 td->td_retval[0] = addr; 562 return (0); 563 } 564 if (end == start) { 565 /* 566 * After dealing with the ragged ends, there 567 * might be none left. 568 */ 569 td->td_retval[0] = addr; 570 return (0); 571 } 572 addr = start; 573 len = end - start; 574 } 575 #endif 576 577 #if defined(__amd64__) || defined(__ia64__) 578 if (i386_read_exec && (prot & PROT_READ)) 579 prot |= PROT_EXEC; 580 #endif 581 582 ap.addr = (void *) addr; 583 ap.len = len; 584 ap.prot = prot; 585 ap.flags = flags; 586 ap.fd = fd; 587 ap.pos = pos; 588 589 return (sys_mmap(td, &ap)); 590 } 591 592 #ifdef COMPAT_FREEBSD6 593 int 594 freebsd6_freebsd32_mmap(struct thread *td, struct freebsd6_freebsd32_mmap_args *uap) 595 { 596 struct freebsd32_mmap_args ap; 597 598 ap.addr = uap->addr; 599 ap.len = uap->len; 600 ap.prot = uap->prot; 601 ap.flags = uap->flags; 602 ap.fd = uap->fd; 603 ap.pos1 = uap->pos1; 604 ap.pos2 = uap->pos2; 605 606 return (freebsd32_mmap(td, &ap)); 607 } 608 #endif 609 610 int 611 freebsd32_setitimer(struct thread *td, struct freebsd32_setitimer_args *uap) 612 { 613 struct itimerval itv, oitv, *itvp; 614 struct itimerval32 i32; 615 int error; 616 617 if (uap->itv != NULL) { 618 error = copyin(uap->itv, &i32, sizeof(i32)); 619 if (error) 620 return (error); 621 TV_CP(i32, itv, it_interval); 622 TV_CP(i32, itv, it_value); 623 itvp = &itv; 624 } else 625 itvp = NULL; 626 error = kern_setitimer(td, uap->which, itvp, &oitv); 627 if (error || uap->oitv == NULL) 628 return (error); 629 TV_CP(oitv, i32, it_interval); 630 TV_CP(oitv, i32, it_value); 631 return (copyout(&i32, uap->oitv, sizeof(i32))); 632 } 633 634 int 635 freebsd32_getitimer(struct thread *td, struct freebsd32_getitimer_args *uap) 636 { 637 struct itimerval itv; 638 struct itimerval32 i32; 639 int error; 640 641 error = kern_getitimer(td, uap->which, &itv); 642 if (error || uap->itv == NULL) 643 return (error); 644 TV_CP(itv, i32, it_interval); 645 TV_CP(itv, i32, it_value); 646 return (copyout(&i32, uap->itv, sizeof(i32))); 647 } 648 649 int 650 freebsd32_select(struct thread *td, struct freebsd32_select_args *uap) 651 { 652 struct timeval32 tv32; 653 struct timeval tv, *tvp; 654 int error; 655 656 if (uap->tv != NULL) { 657 error = copyin(uap->tv, &tv32, sizeof(tv32)); 658 if (error) 659 return (error); 660 CP(tv32, tv, tv_sec); 661 CP(tv32, tv, tv_usec); 662 tvp = &tv; 663 } else 664 tvp = NULL; 665 /* 666 * XXX Do pointers need PTRIN()? 667 */ 668 return (kern_select(td, uap->nd, uap->in, uap->ou, uap->ex, tvp, 669 sizeof(int32_t) * 8)); 670 } 671 672 int 673 freebsd32_pselect(struct thread *td, struct freebsd32_pselect_args *uap) 674 { 675 struct timespec32 ts32; 676 struct timespec ts; 677 struct timeval tv, *tvp; 678 sigset_t set, *uset; 679 int error; 680 681 if (uap->ts != NULL) { 682 error = copyin(uap->ts, &ts32, sizeof(ts32)); 683 if (error != 0) 684 return (error); 685 CP(ts32, ts, tv_sec); 686 CP(ts32, ts, tv_nsec); 687 TIMESPEC_TO_TIMEVAL(&tv, &ts); 688 tvp = &tv; 689 } else 690 tvp = NULL; 691 if (uap->sm != NULL) { 692 error = copyin(uap->sm, &set, sizeof(set)); 693 if (error != 0) 694 return (error); 695 uset = &set; 696 } else 697 uset = NULL; 698 /* 699 * XXX Do pointers need PTRIN()? 700 */ 701 error = kern_pselect(td, uap->nd, uap->in, uap->ou, uap->ex, tvp, 702 uset, sizeof(int32_t) * 8); 703 return (error); 704 } 705 706 /* 707 * Copy 'count' items into the destination list pointed to by uap->eventlist. 708 */ 709 static int 710 freebsd32_kevent_copyout(void *arg, struct kevent *kevp, int count) 711 { 712 struct freebsd32_kevent_args *uap; 713 struct kevent32 ks32[KQ_NEVENTS]; 714 int i, error = 0; 715 716 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count)); 717 uap = (struct freebsd32_kevent_args *)arg; 718 719 for (i = 0; i < count; i++) { 720 CP(kevp[i], ks32[i], ident); 721 CP(kevp[i], ks32[i], filter); 722 CP(kevp[i], ks32[i], flags); 723 CP(kevp[i], ks32[i], fflags); 724 CP(kevp[i], ks32[i], data); 725 PTROUT_CP(kevp[i], ks32[i], udata); 726 } 727 error = copyout(ks32, uap->eventlist, count * sizeof *ks32); 728 if (error == 0) 729 uap->eventlist += count; 730 return (error); 731 } 732 733 /* 734 * Copy 'count' items from the list pointed to by uap->changelist. 735 */ 736 static int 737 freebsd32_kevent_copyin(void *arg, struct kevent *kevp, int count) 738 { 739 struct freebsd32_kevent_args *uap; 740 struct kevent32 ks32[KQ_NEVENTS]; 741 int i, error = 0; 742 743 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count)); 744 uap = (struct freebsd32_kevent_args *)arg; 745 746 error = copyin(uap->changelist, ks32, count * sizeof *ks32); 747 if (error) 748 goto done; 749 uap->changelist += count; 750 751 for (i = 0; i < count; i++) { 752 CP(ks32[i], kevp[i], ident); 753 CP(ks32[i], kevp[i], filter); 754 CP(ks32[i], kevp[i], flags); 755 CP(ks32[i], kevp[i], fflags); 756 CP(ks32[i], kevp[i], data); 757 PTRIN_CP(ks32[i], kevp[i], udata); 758 } 759 done: 760 return (error); 761 } 762 763 int 764 freebsd32_kevent(struct thread *td, struct freebsd32_kevent_args *uap) 765 { 766 struct timespec32 ts32; 767 struct timespec ts, *tsp; 768 struct kevent_copyops k_ops = { uap, 769 freebsd32_kevent_copyout, 770 freebsd32_kevent_copyin}; 771 int error; 772 773 774 if (uap->timeout) { 775 error = copyin(uap->timeout, &ts32, sizeof(ts32)); 776 if (error) 777 return (error); 778 CP(ts32, ts, tv_sec); 779 CP(ts32, ts, tv_nsec); 780 tsp = &ts; 781 } else 782 tsp = NULL; 783 error = kern_kevent(td, uap->fd, uap->nchanges, uap->nevents, 784 &k_ops, tsp); 785 return (error); 786 } 787 788 int 789 freebsd32_gettimeofday(struct thread *td, 790 struct freebsd32_gettimeofday_args *uap) 791 { 792 struct timeval atv; 793 struct timeval32 atv32; 794 struct timezone rtz; 795 int error = 0; 796 797 if (uap->tp) { 798 microtime(&atv); 799 CP(atv, atv32, tv_sec); 800 CP(atv, atv32, tv_usec); 801 error = copyout(&atv32, uap->tp, sizeof (atv32)); 802 } 803 if (error == 0 && uap->tzp != NULL) { 804 rtz.tz_minuteswest = tz_minuteswest; 805 rtz.tz_dsttime = tz_dsttime; 806 error = copyout(&rtz, uap->tzp, sizeof (rtz)); 807 } 808 return (error); 809 } 810 811 int 812 freebsd32_getrusage(struct thread *td, struct freebsd32_getrusage_args *uap) 813 { 814 struct rusage32 s32; 815 struct rusage s; 816 int error; 817 818 error = kern_getrusage(td, uap->who, &s); 819 if (error) 820 return (error); 821 if (uap->rusage != NULL) { 822 freebsd32_rusage_out(&s, &s32); 823 error = copyout(&s32, uap->rusage, sizeof(s32)); 824 } 825 return (error); 826 } 827 828 static int 829 freebsd32_copyinuio(struct iovec32 *iovp, u_int iovcnt, struct uio **uiop) 830 { 831 struct iovec32 iov32; 832 struct iovec *iov; 833 struct uio *uio; 834 u_int iovlen; 835 int error, i; 836 837 *uiop = NULL; 838 if (iovcnt > UIO_MAXIOV) 839 return (EINVAL); 840 iovlen = iovcnt * sizeof(struct iovec); 841 uio = malloc(iovlen + sizeof *uio, M_IOV, M_WAITOK); 842 iov = (struct iovec *)(uio + 1); 843 for (i = 0; i < iovcnt; i++) { 844 error = copyin(&iovp[i], &iov32, sizeof(struct iovec32)); 845 if (error) { 846 free(uio, M_IOV); 847 return (error); 848 } 849 iov[i].iov_base = PTRIN(iov32.iov_base); 850 iov[i].iov_len = iov32.iov_len; 851 } 852 uio->uio_iov = iov; 853 uio->uio_iovcnt = iovcnt; 854 uio->uio_segflg = UIO_USERSPACE; 855 uio->uio_offset = -1; 856 uio->uio_resid = 0; 857 for (i = 0; i < iovcnt; i++) { 858 if (iov->iov_len > INT_MAX - uio->uio_resid) { 859 free(uio, M_IOV); 860 return (EINVAL); 861 } 862 uio->uio_resid += iov->iov_len; 863 iov++; 864 } 865 *uiop = uio; 866 return (0); 867 } 868 869 int 870 freebsd32_readv(struct thread *td, struct freebsd32_readv_args *uap) 871 { 872 struct uio *auio; 873 int error; 874 875 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 876 if (error) 877 return (error); 878 error = kern_readv(td, uap->fd, auio); 879 free(auio, M_IOV); 880 return (error); 881 } 882 883 int 884 freebsd32_writev(struct thread *td, struct freebsd32_writev_args *uap) 885 { 886 struct uio *auio; 887 int error; 888 889 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 890 if (error) 891 return (error); 892 error = kern_writev(td, uap->fd, auio); 893 free(auio, M_IOV); 894 return (error); 895 } 896 897 int 898 freebsd32_preadv(struct thread *td, struct freebsd32_preadv_args *uap) 899 { 900 struct uio *auio; 901 int error; 902 903 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 904 if (error) 905 return (error); 906 error = kern_preadv(td, uap->fd, auio, PAIR32TO64(off_t,uap->offset)); 907 free(auio, M_IOV); 908 return (error); 909 } 910 911 int 912 freebsd32_pwritev(struct thread *td, struct freebsd32_pwritev_args *uap) 913 { 914 struct uio *auio; 915 int error; 916 917 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 918 if (error) 919 return (error); 920 error = kern_pwritev(td, uap->fd, auio, PAIR32TO64(off_t,uap->offset)); 921 free(auio, M_IOV); 922 return (error); 923 } 924 925 int 926 freebsd32_copyiniov(struct iovec32 *iovp32, u_int iovcnt, struct iovec **iovp, 927 int error) 928 { 929 struct iovec32 iov32; 930 struct iovec *iov; 931 u_int iovlen; 932 int i; 933 934 *iovp = NULL; 935 if (iovcnt > UIO_MAXIOV) 936 return (error); 937 iovlen = iovcnt * sizeof(struct iovec); 938 iov = malloc(iovlen, M_IOV, M_WAITOK); 939 for (i = 0; i < iovcnt; i++) { 940 error = copyin(&iovp32[i], &iov32, sizeof(struct iovec32)); 941 if (error) { 942 free(iov, M_IOV); 943 return (error); 944 } 945 iov[i].iov_base = PTRIN(iov32.iov_base); 946 iov[i].iov_len = iov32.iov_len; 947 } 948 *iovp = iov; 949 return (0); 950 } 951 952 static int 953 freebsd32_copyinmsghdr(struct msghdr32 *msg32, struct msghdr *msg) 954 { 955 struct msghdr32 m32; 956 int error; 957 958 error = copyin(msg32, &m32, sizeof(m32)); 959 if (error) 960 return (error); 961 msg->msg_name = PTRIN(m32.msg_name); 962 msg->msg_namelen = m32.msg_namelen; 963 msg->msg_iov = PTRIN(m32.msg_iov); 964 msg->msg_iovlen = m32.msg_iovlen; 965 msg->msg_control = PTRIN(m32.msg_control); 966 msg->msg_controllen = m32.msg_controllen; 967 msg->msg_flags = m32.msg_flags; 968 return (0); 969 } 970 971 static int 972 freebsd32_copyoutmsghdr(struct msghdr *msg, struct msghdr32 *msg32) 973 { 974 struct msghdr32 m32; 975 int error; 976 977 m32.msg_name = PTROUT(msg->msg_name); 978 m32.msg_namelen = msg->msg_namelen; 979 m32.msg_iov = PTROUT(msg->msg_iov); 980 m32.msg_iovlen = msg->msg_iovlen; 981 m32.msg_control = PTROUT(msg->msg_control); 982 m32.msg_controllen = msg->msg_controllen; 983 m32.msg_flags = msg->msg_flags; 984 error = copyout(&m32, msg32, sizeof(m32)); 985 return (error); 986 } 987 988 #ifndef __mips__ 989 #define FREEBSD32_ALIGNBYTES (sizeof(int) - 1) 990 #else 991 #define FREEBSD32_ALIGNBYTES (sizeof(long) - 1) 992 #endif 993 #define FREEBSD32_ALIGN(p) \ 994 (((u_long)(p) + FREEBSD32_ALIGNBYTES) & ~FREEBSD32_ALIGNBYTES) 995 #define FREEBSD32_CMSG_SPACE(l) \ 996 (FREEBSD32_ALIGN(sizeof(struct cmsghdr)) + FREEBSD32_ALIGN(l)) 997 998 #define FREEBSD32_CMSG_DATA(cmsg) ((unsigned char *)(cmsg) + \ 999 FREEBSD32_ALIGN(sizeof(struct cmsghdr))) 1000 static int 1001 freebsd32_copy_msg_out(struct msghdr *msg, struct mbuf *control) 1002 { 1003 struct cmsghdr *cm; 1004 void *data; 1005 socklen_t clen, datalen; 1006 int error; 1007 caddr_t ctlbuf; 1008 int len, maxlen, copylen; 1009 struct mbuf *m; 1010 error = 0; 1011 1012 len = msg->msg_controllen; 1013 maxlen = msg->msg_controllen; 1014 msg->msg_controllen = 0; 1015 1016 m = control; 1017 ctlbuf = msg->msg_control; 1018 1019 while (m && len > 0) { 1020 cm = mtod(m, struct cmsghdr *); 1021 clen = m->m_len; 1022 1023 while (cm != NULL) { 1024 1025 if (sizeof(struct cmsghdr) > clen || 1026 cm->cmsg_len > clen) { 1027 error = EINVAL; 1028 break; 1029 } 1030 1031 data = CMSG_DATA(cm); 1032 datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data; 1033 1034 /* Adjust message length */ 1035 cm->cmsg_len = FREEBSD32_ALIGN(sizeof(struct cmsghdr)) + 1036 datalen; 1037 1038 1039 /* Copy cmsghdr */ 1040 copylen = sizeof(struct cmsghdr); 1041 if (len < copylen) { 1042 msg->msg_flags |= MSG_CTRUNC; 1043 copylen = len; 1044 } 1045 1046 error = copyout(cm,ctlbuf,copylen); 1047 if (error) 1048 goto exit; 1049 1050 ctlbuf += FREEBSD32_ALIGN(copylen); 1051 len -= FREEBSD32_ALIGN(copylen); 1052 1053 if (len <= 0) 1054 break; 1055 1056 /* Copy data */ 1057 copylen = datalen; 1058 if (len < copylen) { 1059 msg->msg_flags |= MSG_CTRUNC; 1060 copylen = len; 1061 } 1062 1063 error = copyout(data,ctlbuf,copylen); 1064 if (error) 1065 goto exit; 1066 1067 ctlbuf += FREEBSD32_ALIGN(copylen); 1068 len -= FREEBSD32_ALIGN(copylen); 1069 1070 if (CMSG_SPACE(datalen) < clen) { 1071 clen -= CMSG_SPACE(datalen); 1072 cm = (struct cmsghdr *) 1073 ((caddr_t)cm + CMSG_SPACE(datalen)); 1074 } else { 1075 clen = 0; 1076 cm = NULL; 1077 } 1078 } 1079 m = m->m_next; 1080 } 1081 1082 msg->msg_controllen = (len <= 0) ? maxlen : ctlbuf - (caddr_t)msg->msg_control; 1083 1084 exit: 1085 return (error); 1086 1087 } 1088 1089 int 1090 freebsd32_recvmsg(td, uap) 1091 struct thread *td; 1092 struct freebsd32_recvmsg_args /* { 1093 int s; 1094 struct msghdr32 *msg; 1095 int flags; 1096 } */ *uap; 1097 { 1098 struct msghdr msg; 1099 struct msghdr32 m32; 1100 struct iovec *uiov, *iov; 1101 struct mbuf *control = NULL; 1102 struct mbuf **controlp; 1103 1104 int error; 1105 error = copyin(uap->msg, &m32, sizeof(m32)); 1106 if (error) 1107 return (error); 1108 error = freebsd32_copyinmsghdr(uap->msg, &msg); 1109 if (error) 1110 return (error); 1111 error = freebsd32_copyiniov(PTRIN(m32.msg_iov), m32.msg_iovlen, &iov, 1112 EMSGSIZE); 1113 if (error) 1114 return (error); 1115 msg.msg_flags = uap->flags; 1116 uiov = msg.msg_iov; 1117 msg.msg_iov = iov; 1118 1119 controlp = (msg.msg_control != NULL) ? &control : NULL; 1120 error = kern_recvit(td, uap->s, &msg, UIO_USERSPACE, controlp); 1121 if (error == 0) { 1122 msg.msg_iov = uiov; 1123 1124 if (control != NULL) 1125 error = freebsd32_copy_msg_out(&msg, control); 1126 else 1127 msg.msg_controllen = 0; 1128 1129 if (error == 0) 1130 error = freebsd32_copyoutmsghdr(&msg, uap->msg); 1131 } 1132 free(iov, M_IOV); 1133 1134 if (control != NULL) 1135 m_freem(control); 1136 1137 return (error); 1138 } 1139 1140 1141 static int 1142 freebsd32_convert_msg_in(struct mbuf **controlp) 1143 { 1144 struct mbuf *control = *controlp; 1145 struct cmsghdr *cm = mtod(control, struct cmsghdr *); 1146 void *data; 1147 socklen_t clen = control->m_len, datalen; 1148 int error; 1149 1150 error = 0; 1151 *controlp = NULL; 1152 1153 while (cm != NULL) { 1154 if (sizeof(struct cmsghdr) > clen || cm->cmsg_len > clen) { 1155 error = EINVAL; 1156 break; 1157 } 1158 1159 data = FREEBSD32_CMSG_DATA(cm); 1160 datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data; 1161 1162 *controlp = sbcreatecontrol(data, datalen, cm->cmsg_type, 1163 cm->cmsg_level); 1164 controlp = &(*controlp)->m_next; 1165 1166 if (FREEBSD32_CMSG_SPACE(datalen) < clen) { 1167 clen -= FREEBSD32_CMSG_SPACE(datalen); 1168 cm = (struct cmsghdr *) 1169 ((caddr_t)cm + FREEBSD32_CMSG_SPACE(datalen)); 1170 } else { 1171 clen = 0; 1172 cm = NULL; 1173 } 1174 } 1175 1176 m_freem(control); 1177 return (error); 1178 } 1179 1180 1181 int 1182 freebsd32_sendmsg(struct thread *td, 1183 struct freebsd32_sendmsg_args *uap) 1184 { 1185 struct msghdr msg; 1186 struct msghdr32 m32; 1187 struct iovec *iov; 1188 struct mbuf *control = NULL; 1189 struct sockaddr *to = NULL; 1190 int error; 1191 1192 error = copyin(uap->msg, &m32, sizeof(m32)); 1193 if (error) 1194 return (error); 1195 error = freebsd32_copyinmsghdr(uap->msg, &msg); 1196 if (error) 1197 return (error); 1198 error = freebsd32_copyiniov(PTRIN(m32.msg_iov), m32.msg_iovlen, &iov, 1199 EMSGSIZE); 1200 if (error) 1201 return (error); 1202 msg.msg_iov = iov; 1203 if (msg.msg_name != NULL) { 1204 error = getsockaddr(&to, msg.msg_name, msg.msg_namelen); 1205 if (error) { 1206 to = NULL; 1207 goto out; 1208 } 1209 msg.msg_name = to; 1210 } 1211 1212 if (msg.msg_control) { 1213 if (msg.msg_controllen < sizeof(struct cmsghdr)) { 1214 error = EINVAL; 1215 goto out; 1216 } 1217 1218 error = sockargs(&control, msg.msg_control, 1219 msg.msg_controllen, MT_CONTROL); 1220 if (error) 1221 goto out; 1222 1223 error = freebsd32_convert_msg_in(&control); 1224 if (error) 1225 goto out; 1226 } 1227 1228 error = kern_sendit(td, uap->s, &msg, uap->flags, control, 1229 UIO_USERSPACE); 1230 1231 out: 1232 free(iov, M_IOV); 1233 if (to) 1234 free(to, M_SONAME); 1235 return (error); 1236 } 1237 1238 int 1239 freebsd32_recvfrom(struct thread *td, 1240 struct freebsd32_recvfrom_args *uap) 1241 { 1242 struct msghdr msg; 1243 struct iovec aiov; 1244 int error; 1245 1246 if (uap->fromlenaddr) { 1247 error = copyin(PTRIN(uap->fromlenaddr), &msg.msg_namelen, 1248 sizeof(msg.msg_namelen)); 1249 if (error) 1250 return (error); 1251 } else { 1252 msg.msg_namelen = 0; 1253 } 1254 1255 msg.msg_name = PTRIN(uap->from); 1256 msg.msg_iov = &aiov; 1257 msg.msg_iovlen = 1; 1258 aiov.iov_base = PTRIN(uap->buf); 1259 aiov.iov_len = uap->len; 1260 msg.msg_control = NULL; 1261 msg.msg_flags = uap->flags; 1262 error = kern_recvit(td, uap->s, &msg, UIO_USERSPACE, NULL); 1263 if (error == 0 && uap->fromlenaddr) 1264 error = copyout(&msg.msg_namelen, PTRIN(uap->fromlenaddr), 1265 sizeof (msg.msg_namelen)); 1266 return (error); 1267 } 1268 1269 int 1270 freebsd32_settimeofday(struct thread *td, 1271 struct freebsd32_settimeofday_args *uap) 1272 { 1273 struct timeval32 tv32; 1274 struct timeval tv, *tvp; 1275 struct timezone tz, *tzp; 1276 int error; 1277 1278 if (uap->tv) { 1279 error = copyin(uap->tv, &tv32, sizeof(tv32)); 1280 if (error) 1281 return (error); 1282 CP(tv32, tv, tv_sec); 1283 CP(tv32, tv, tv_usec); 1284 tvp = &tv; 1285 } else 1286 tvp = NULL; 1287 if (uap->tzp) { 1288 error = copyin(uap->tzp, &tz, sizeof(tz)); 1289 if (error) 1290 return (error); 1291 tzp = &tz; 1292 } else 1293 tzp = NULL; 1294 return (kern_settimeofday(td, tvp, tzp)); 1295 } 1296 1297 int 1298 freebsd32_utimes(struct thread *td, struct freebsd32_utimes_args *uap) 1299 { 1300 struct timeval32 s32[2]; 1301 struct timeval s[2], *sp; 1302 int error; 1303 1304 if (uap->tptr != NULL) { 1305 error = copyin(uap->tptr, s32, sizeof(s32)); 1306 if (error) 1307 return (error); 1308 CP(s32[0], s[0], tv_sec); 1309 CP(s32[0], s[0], tv_usec); 1310 CP(s32[1], s[1], tv_sec); 1311 CP(s32[1], s[1], tv_usec); 1312 sp = s; 1313 } else 1314 sp = NULL; 1315 return (kern_utimes(td, uap->path, UIO_USERSPACE, sp, UIO_SYSSPACE)); 1316 } 1317 1318 int 1319 freebsd32_lutimes(struct thread *td, struct freebsd32_lutimes_args *uap) 1320 { 1321 struct timeval32 s32[2]; 1322 struct timeval s[2], *sp; 1323 int error; 1324 1325 if (uap->tptr != NULL) { 1326 error = copyin(uap->tptr, s32, sizeof(s32)); 1327 if (error) 1328 return (error); 1329 CP(s32[0], s[0], tv_sec); 1330 CP(s32[0], s[0], tv_usec); 1331 CP(s32[1], s[1], tv_sec); 1332 CP(s32[1], s[1], tv_usec); 1333 sp = s; 1334 } else 1335 sp = NULL; 1336 return (kern_lutimes(td, uap->path, UIO_USERSPACE, sp, UIO_SYSSPACE)); 1337 } 1338 1339 int 1340 freebsd32_futimes(struct thread *td, struct freebsd32_futimes_args *uap) 1341 { 1342 struct timeval32 s32[2]; 1343 struct timeval s[2], *sp; 1344 int error; 1345 1346 if (uap->tptr != NULL) { 1347 error = copyin(uap->tptr, s32, sizeof(s32)); 1348 if (error) 1349 return (error); 1350 CP(s32[0], s[0], tv_sec); 1351 CP(s32[0], s[0], tv_usec); 1352 CP(s32[1], s[1], tv_sec); 1353 CP(s32[1], s[1], tv_usec); 1354 sp = s; 1355 } else 1356 sp = NULL; 1357 return (kern_futimes(td, uap->fd, sp, UIO_SYSSPACE)); 1358 } 1359 1360 int 1361 freebsd32_futimesat(struct thread *td, struct freebsd32_futimesat_args *uap) 1362 { 1363 struct timeval32 s32[2]; 1364 struct timeval s[2], *sp; 1365 int error; 1366 1367 if (uap->times != NULL) { 1368 error = copyin(uap->times, s32, sizeof(s32)); 1369 if (error) 1370 return (error); 1371 CP(s32[0], s[0], tv_sec); 1372 CP(s32[0], s[0], tv_usec); 1373 CP(s32[1], s[1], tv_sec); 1374 CP(s32[1], s[1], tv_usec); 1375 sp = s; 1376 } else 1377 sp = NULL; 1378 return (kern_utimesat(td, uap->fd, uap->path, UIO_USERSPACE, 1379 sp, UIO_SYSSPACE)); 1380 } 1381 1382 int 1383 freebsd32_adjtime(struct thread *td, struct freebsd32_adjtime_args *uap) 1384 { 1385 struct timeval32 tv32; 1386 struct timeval delta, olddelta, *deltap; 1387 int error; 1388 1389 if (uap->delta) { 1390 error = copyin(uap->delta, &tv32, sizeof(tv32)); 1391 if (error) 1392 return (error); 1393 CP(tv32, delta, tv_sec); 1394 CP(tv32, delta, tv_usec); 1395 deltap = δ 1396 } else 1397 deltap = NULL; 1398 error = kern_adjtime(td, deltap, &olddelta); 1399 if (uap->olddelta && error == 0) { 1400 CP(olddelta, tv32, tv_sec); 1401 CP(olddelta, tv32, tv_usec); 1402 error = copyout(&tv32, uap->olddelta, sizeof(tv32)); 1403 } 1404 return (error); 1405 } 1406 1407 #ifdef COMPAT_FREEBSD4 1408 int 1409 freebsd4_freebsd32_statfs(struct thread *td, struct freebsd4_freebsd32_statfs_args *uap) 1410 { 1411 struct statfs32 s32; 1412 struct statfs s; 1413 int error; 1414 1415 error = kern_statfs(td, uap->path, UIO_USERSPACE, &s); 1416 if (error) 1417 return (error); 1418 copy_statfs(&s, &s32); 1419 return (copyout(&s32, uap->buf, sizeof(s32))); 1420 } 1421 #endif 1422 1423 #ifdef COMPAT_FREEBSD4 1424 int 1425 freebsd4_freebsd32_fstatfs(struct thread *td, struct freebsd4_freebsd32_fstatfs_args *uap) 1426 { 1427 struct statfs32 s32; 1428 struct statfs s; 1429 int error; 1430 1431 error = kern_fstatfs(td, uap->fd, &s); 1432 if (error) 1433 return (error); 1434 copy_statfs(&s, &s32); 1435 return (copyout(&s32, uap->buf, sizeof(s32))); 1436 } 1437 #endif 1438 1439 #ifdef COMPAT_FREEBSD4 1440 int 1441 freebsd4_freebsd32_fhstatfs(struct thread *td, struct freebsd4_freebsd32_fhstatfs_args *uap) 1442 { 1443 struct statfs32 s32; 1444 struct statfs s; 1445 fhandle_t fh; 1446 int error; 1447 1448 if ((error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t))) != 0) 1449 return (error); 1450 error = kern_fhstatfs(td, fh, &s); 1451 if (error) 1452 return (error); 1453 copy_statfs(&s, &s32); 1454 return (copyout(&s32, uap->buf, sizeof(s32))); 1455 } 1456 #endif 1457 1458 int 1459 freebsd32_pread(struct thread *td, struct freebsd32_pread_args *uap) 1460 { 1461 struct pread_args ap; 1462 1463 ap.fd = uap->fd; 1464 ap.buf = uap->buf; 1465 ap.nbyte = uap->nbyte; 1466 ap.offset = PAIR32TO64(off_t,uap->offset); 1467 return (sys_pread(td, &ap)); 1468 } 1469 1470 int 1471 freebsd32_pwrite(struct thread *td, struct freebsd32_pwrite_args *uap) 1472 { 1473 struct pwrite_args ap; 1474 1475 ap.fd = uap->fd; 1476 ap.buf = uap->buf; 1477 ap.nbyte = uap->nbyte; 1478 ap.offset = PAIR32TO64(off_t,uap->offset); 1479 return (sys_pwrite(td, &ap)); 1480 } 1481 1482 #ifdef COMPAT_43 1483 int 1484 ofreebsd32_lseek(struct thread *td, struct ofreebsd32_lseek_args *uap) 1485 { 1486 struct lseek_args nuap; 1487 1488 nuap.fd = uap->fd; 1489 nuap.offset = uap->offset; 1490 nuap.whence = uap->whence; 1491 return (sys_lseek(td, &nuap)); 1492 } 1493 #endif 1494 1495 int 1496 freebsd32_lseek(struct thread *td, struct freebsd32_lseek_args *uap) 1497 { 1498 int error; 1499 struct lseek_args ap; 1500 off_t pos; 1501 1502 ap.fd = uap->fd; 1503 ap.offset = PAIR32TO64(off_t,uap->offset); 1504 ap.whence = uap->whence; 1505 error = sys_lseek(td, &ap); 1506 /* Expand the quad return into two parts for eax and edx */ 1507 pos = *(off_t *)(td->td_retval); 1508 td->td_retval[RETVAL_LO] = pos & 0xffffffff; /* %eax */ 1509 td->td_retval[RETVAL_HI] = pos >> 32; /* %edx */ 1510 return error; 1511 } 1512 1513 int 1514 freebsd32_truncate(struct thread *td, struct freebsd32_truncate_args *uap) 1515 { 1516 struct truncate_args ap; 1517 1518 ap.path = uap->path; 1519 ap.length = PAIR32TO64(off_t,uap->length); 1520 return (sys_truncate(td, &ap)); 1521 } 1522 1523 int 1524 freebsd32_ftruncate(struct thread *td, struct freebsd32_ftruncate_args *uap) 1525 { 1526 struct ftruncate_args ap; 1527 1528 ap.fd = uap->fd; 1529 ap.length = PAIR32TO64(off_t,uap->length); 1530 return (sys_ftruncate(td, &ap)); 1531 } 1532 1533 #ifdef COMPAT_43 1534 int 1535 ofreebsd32_getdirentries(struct thread *td, 1536 struct ofreebsd32_getdirentries_args *uap) 1537 { 1538 struct ogetdirentries_args ap; 1539 int error; 1540 long loff; 1541 int32_t loff_cut; 1542 1543 ap.fd = uap->fd; 1544 ap.buf = uap->buf; 1545 ap.count = uap->count; 1546 ap.basep = NULL; 1547 error = kern_ogetdirentries(td, &ap, &loff); 1548 if (error == 0) { 1549 loff_cut = loff; 1550 error = copyout(&loff_cut, uap->basep, sizeof(int32_t)); 1551 } 1552 return (error); 1553 } 1554 #endif 1555 1556 int 1557 freebsd32_getdirentries(struct thread *td, 1558 struct freebsd32_getdirentries_args *uap) 1559 { 1560 long base; 1561 int32_t base32; 1562 int error; 1563 1564 error = kern_getdirentries(td, uap->fd, uap->buf, uap->count, &base, 1565 NULL, UIO_USERSPACE); 1566 if (error) 1567 return (error); 1568 if (uap->basep != NULL) { 1569 base32 = base; 1570 error = copyout(&base32, uap->basep, sizeof(int32_t)); 1571 } 1572 return (error); 1573 } 1574 1575 #ifdef COMPAT_FREEBSD6 1576 /* versions with the 'int pad' argument */ 1577 int 1578 freebsd6_freebsd32_pread(struct thread *td, struct freebsd6_freebsd32_pread_args *uap) 1579 { 1580 struct pread_args ap; 1581 1582 ap.fd = uap->fd; 1583 ap.buf = uap->buf; 1584 ap.nbyte = uap->nbyte; 1585 ap.offset = PAIR32TO64(off_t,uap->offset); 1586 return (sys_pread(td, &ap)); 1587 } 1588 1589 int 1590 freebsd6_freebsd32_pwrite(struct thread *td, struct freebsd6_freebsd32_pwrite_args *uap) 1591 { 1592 struct pwrite_args ap; 1593 1594 ap.fd = uap->fd; 1595 ap.buf = uap->buf; 1596 ap.nbyte = uap->nbyte; 1597 ap.offset = PAIR32TO64(off_t,uap->offset); 1598 return (sys_pwrite(td, &ap)); 1599 } 1600 1601 int 1602 freebsd6_freebsd32_lseek(struct thread *td, struct freebsd6_freebsd32_lseek_args *uap) 1603 { 1604 int error; 1605 struct lseek_args ap; 1606 off_t pos; 1607 1608 ap.fd = uap->fd; 1609 ap.offset = PAIR32TO64(off_t,uap->offset); 1610 ap.whence = uap->whence; 1611 error = sys_lseek(td, &ap); 1612 /* Expand the quad return into two parts for eax and edx */ 1613 pos = *(off_t *)(td->td_retval); 1614 td->td_retval[RETVAL_LO] = pos & 0xffffffff; /* %eax */ 1615 td->td_retval[RETVAL_HI] = pos >> 32; /* %edx */ 1616 return error; 1617 } 1618 1619 int 1620 freebsd6_freebsd32_truncate(struct thread *td, struct freebsd6_freebsd32_truncate_args *uap) 1621 { 1622 struct truncate_args ap; 1623 1624 ap.path = uap->path; 1625 ap.length = PAIR32TO64(off_t,uap->length); 1626 return (sys_truncate(td, &ap)); 1627 } 1628 1629 int 1630 freebsd6_freebsd32_ftruncate(struct thread *td, struct freebsd6_freebsd32_ftruncate_args *uap) 1631 { 1632 struct ftruncate_args ap; 1633 1634 ap.fd = uap->fd; 1635 ap.length = PAIR32TO64(off_t,uap->length); 1636 return (sys_ftruncate(td, &ap)); 1637 } 1638 #endif /* COMPAT_FREEBSD6 */ 1639 1640 struct sf_hdtr32 { 1641 uint32_t headers; 1642 int hdr_cnt; 1643 uint32_t trailers; 1644 int trl_cnt; 1645 }; 1646 1647 struct sf_hdtr_kq32 { 1648 int kq_fd; 1649 uint32_t kq_flags; 1650 uint32_t kq_udata; /* 32-bit void ptr */ 1651 uint32_t kq_ident; /* 32-bit uintptr_t */ 1652 }; 1653 1654 static int 1655 freebsd32_do_sendfile(struct thread *td, 1656 struct freebsd32_sendfile_args *uap, int compat) 1657 { 1658 struct sf_hdtr32 hdtr32; 1659 struct sf_hdtr hdtr; 1660 struct sf_hdtr_kq32 hdtr_kq32; 1661 struct sf_hdtr_kq hdtr_kq; 1662 struct uio *hdr_uio, *trl_uio; 1663 struct iovec32 *iov32; 1664 off_t offset; 1665 int error; 1666 off_t sbytes; 1667 struct sendfile_sync *sfs; 1668 int do_kqueue = 0; 1669 1670 offset = PAIR32TO64(off_t, uap->offset); 1671 if (offset < 0) 1672 return (EINVAL); 1673 1674 hdr_uio = trl_uio = NULL; 1675 sfs = NULL; 1676 1677 if (uap->hdtr != NULL) { 1678 error = copyin(uap->hdtr, &hdtr32, sizeof(hdtr32)); 1679 if (error) 1680 goto out; 1681 PTRIN_CP(hdtr32, hdtr, headers); 1682 CP(hdtr32, hdtr, hdr_cnt); 1683 PTRIN_CP(hdtr32, hdtr, trailers); 1684 CP(hdtr32, hdtr, trl_cnt); 1685 1686 if (hdtr.headers != NULL) { 1687 iov32 = PTRIN(hdtr32.headers); 1688 error = freebsd32_copyinuio(iov32, 1689 hdtr32.hdr_cnt, &hdr_uio); 1690 if (error) 1691 goto out; 1692 } 1693 if (hdtr.trailers != NULL) { 1694 iov32 = PTRIN(hdtr32.trailers); 1695 error = freebsd32_copyinuio(iov32, 1696 hdtr32.trl_cnt, &trl_uio); 1697 if (error) 1698 goto out; 1699 } 1700 1701 /* 1702 * If SF_KQUEUE is set, then we need to also copy in 1703 * the kqueue data after the normal hdtr set and set do_kqueue=1. 1704 */ 1705 if (uap->flags & SF_KQUEUE) { 1706 error = copyin(((char *) uap->hdtr) + sizeof(hdtr32), 1707 &hdtr_kq32, 1708 sizeof(hdtr_kq32)); 1709 if (error != 0) 1710 goto out; 1711 1712 /* 32->64 bit fields */ 1713 CP(hdtr_kq32, hdtr_kq, kq_fd); 1714 CP(hdtr_kq32, hdtr_kq, kq_flags); 1715 PTRIN_CP(hdtr_kq32, hdtr_kq, kq_udata); 1716 CP(hdtr_kq32, hdtr_kq, kq_ident); 1717 do_kqueue = 1; 1718 } 1719 } 1720 1721 1722 /* Call sendfile */ 1723 /* XXX stack depth! */ 1724 error = _do_sendfile(td, uap->fd, uap->s, uap->flags, compat, 1725 offset, uap->nbytes, &sbytes, hdr_uio, trl_uio, &hdtr_kq); 1726 1727 if (uap->sbytes != NULL) 1728 copyout(&sbytes, uap->sbytes, sizeof(off_t)); 1729 1730 out: 1731 if (hdr_uio) 1732 free(hdr_uio, M_IOV); 1733 if (trl_uio) 1734 free(trl_uio, M_IOV); 1735 return (error); 1736 } 1737 1738 #ifdef COMPAT_FREEBSD4 1739 int 1740 freebsd4_freebsd32_sendfile(struct thread *td, 1741 struct freebsd4_freebsd32_sendfile_args *uap) 1742 { 1743 return (freebsd32_do_sendfile(td, 1744 (struct freebsd32_sendfile_args *)uap, 1)); 1745 } 1746 #endif 1747 1748 int 1749 freebsd32_sendfile(struct thread *td, struct freebsd32_sendfile_args *uap) 1750 { 1751 1752 return (freebsd32_do_sendfile(td, uap, 0)); 1753 } 1754 1755 static void 1756 copy_stat(struct stat *in, struct stat32 *out) 1757 { 1758 1759 CP(*in, *out, st_dev); 1760 CP(*in, *out, st_ino); 1761 CP(*in, *out, st_mode); 1762 CP(*in, *out, st_nlink); 1763 CP(*in, *out, st_uid); 1764 CP(*in, *out, st_gid); 1765 CP(*in, *out, st_rdev); 1766 TS_CP(*in, *out, st_atim); 1767 TS_CP(*in, *out, st_mtim); 1768 TS_CP(*in, *out, st_ctim); 1769 CP(*in, *out, st_size); 1770 CP(*in, *out, st_blocks); 1771 CP(*in, *out, st_blksize); 1772 CP(*in, *out, st_flags); 1773 CP(*in, *out, st_gen); 1774 TS_CP(*in, *out, st_birthtim); 1775 } 1776 1777 #ifdef COMPAT_43 1778 static void 1779 copy_ostat(struct stat *in, struct ostat32 *out) 1780 { 1781 1782 CP(*in, *out, st_dev); 1783 CP(*in, *out, st_ino); 1784 CP(*in, *out, st_mode); 1785 CP(*in, *out, st_nlink); 1786 CP(*in, *out, st_uid); 1787 CP(*in, *out, st_gid); 1788 CP(*in, *out, st_rdev); 1789 CP(*in, *out, st_size); 1790 TS_CP(*in, *out, st_atim); 1791 TS_CP(*in, *out, st_mtim); 1792 TS_CP(*in, *out, st_ctim); 1793 CP(*in, *out, st_blksize); 1794 CP(*in, *out, st_blocks); 1795 CP(*in, *out, st_flags); 1796 CP(*in, *out, st_gen); 1797 } 1798 #endif 1799 1800 int 1801 freebsd32_stat(struct thread *td, struct freebsd32_stat_args *uap) 1802 { 1803 struct stat sb; 1804 struct stat32 sb32; 1805 int error; 1806 1807 error = kern_stat(td, uap->path, UIO_USERSPACE, &sb); 1808 if (error) 1809 return (error); 1810 copy_stat(&sb, &sb32); 1811 error = copyout(&sb32, uap->ub, sizeof (sb32)); 1812 return (error); 1813 } 1814 1815 #ifdef COMPAT_43 1816 int 1817 ofreebsd32_stat(struct thread *td, struct ofreebsd32_stat_args *uap) 1818 { 1819 struct stat sb; 1820 struct ostat32 sb32; 1821 int error; 1822 1823 error = kern_stat(td, uap->path, UIO_USERSPACE, &sb); 1824 if (error) 1825 return (error); 1826 copy_ostat(&sb, &sb32); 1827 error = copyout(&sb32, uap->ub, sizeof (sb32)); 1828 return (error); 1829 } 1830 #endif 1831 1832 int 1833 freebsd32_fstat(struct thread *td, struct freebsd32_fstat_args *uap) 1834 { 1835 struct stat ub; 1836 struct stat32 ub32; 1837 int error; 1838 1839 error = kern_fstat(td, uap->fd, &ub); 1840 if (error) 1841 return (error); 1842 copy_stat(&ub, &ub32); 1843 error = copyout(&ub32, uap->ub, sizeof(ub32)); 1844 return (error); 1845 } 1846 1847 #ifdef COMPAT_43 1848 int 1849 ofreebsd32_fstat(struct thread *td, struct ofreebsd32_fstat_args *uap) 1850 { 1851 struct stat ub; 1852 struct ostat32 ub32; 1853 int error; 1854 1855 error = kern_fstat(td, uap->fd, &ub); 1856 if (error) 1857 return (error); 1858 copy_ostat(&ub, &ub32); 1859 error = copyout(&ub32, uap->ub, sizeof(ub32)); 1860 return (error); 1861 } 1862 #endif 1863 1864 int 1865 freebsd32_fstatat(struct thread *td, struct freebsd32_fstatat_args *uap) 1866 { 1867 struct stat ub; 1868 struct stat32 ub32; 1869 int error; 1870 1871 error = kern_statat(td, uap->flag, uap->fd, uap->path, UIO_USERSPACE, &ub); 1872 if (error) 1873 return (error); 1874 copy_stat(&ub, &ub32); 1875 error = copyout(&ub32, uap->buf, sizeof(ub32)); 1876 return (error); 1877 } 1878 1879 int 1880 freebsd32_lstat(struct thread *td, struct freebsd32_lstat_args *uap) 1881 { 1882 struct stat sb; 1883 struct stat32 sb32; 1884 int error; 1885 1886 error = kern_lstat(td, uap->path, UIO_USERSPACE, &sb); 1887 if (error) 1888 return (error); 1889 copy_stat(&sb, &sb32); 1890 error = copyout(&sb32, uap->ub, sizeof (sb32)); 1891 return (error); 1892 } 1893 1894 #ifdef COMPAT_43 1895 int 1896 ofreebsd32_lstat(struct thread *td, struct ofreebsd32_lstat_args *uap) 1897 { 1898 struct stat sb; 1899 struct ostat32 sb32; 1900 int error; 1901 1902 error = kern_lstat(td, uap->path, UIO_USERSPACE, &sb); 1903 if (error) 1904 return (error); 1905 copy_ostat(&sb, &sb32); 1906 error = copyout(&sb32, uap->ub, sizeof (sb32)); 1907 return (error); 1908 } 1909 #endif 1910 1911 int 1912 freebsd32_sysctl(struct thread *td, struct freebsd32_sysctl_args *uap) 1913 { 1914 int error, name[CTL_MAXNAME]; 1915 size_t j, oldlen; 1916 1917 if (uap->namelen > CTL_MAXNAME || uap->namelen < 2) 1918 return (EINVAL); 1919 error = copyin(uap->name, name, uap->namelen * sizeof(int)); 1920 if (error) 1921 return (error); 1922 if (uap->oldlenp) 1923 oldlen = fuword32(uap->oldlenp); 1924 else 1925 oldlen = 0; 1926 error = userland_sysctl(td, name, uap->namelen, 1927 uap->old, &oldlen, 1, 1928 uap->new, uap->newlen, &j, SCTL_MASK32); 1929 if (error && error != ENOMEM) 1930 return (error); 1931 if (uap->oldlenp) 1932 suword32(uap->oldlenp, j); 1933 return (0); 1934 } 1935 1936 int 1937 freebsd32_jail(struct thread *td, struct freebsd32_jail_args *uap) 1938 { 1939 uint32_t version; 1940 int error; 1941 struct jail j; 1942 1943 error = copyin(uap->jail, &version, sizeof(uint32_t)); 1944 if (error) 1945 return (error); 1946 1947 switch (version) { 1948 case 0: 1949 { 1950 /* FreeBSD single IPv4 jails. */ 1951 struct jail32_v0 j32_v0; 1952 1953 bzero(&j, sizeof(struct jail)); 1954 error = copyin(uap->jail, &j32_v0, sizeof(struct jail32_v0)); 1955 if (error) 1956 return (error); 1957 CP(j32_v0, j, version); 1958 PTRIN_CP(j32_v0, j, path); 1959 PTRIN_CP(j32_v0, j, hostname); 1960 j.ip4s = htonl(j32_v0.ip_number); /* jail_v0 is host order */ 1961 break; 1962 } 1963 1964 case 1: 1965 /* 1966 * Version 1 was used by multi-IPv4 jail implementations 1967 * that never made it into the official kernel. 1968 */ 1969 return (EINVAL); 1970 1971 case 2: /* JAIL_API_VERSION */ 1972 { 1973 /* FreeBSD multi-IPv4/IPv6,noIP jails. */ 1974 struct jail32 j32; 1975 1976 error = copyin(uap->jail, &j32, sizeof(struct jail32)); 1977 if (error) 1978 return (error); 1979 CP(j32, j, version); 1980 PTRIN_CP(j32, j, path); 1981 PTRIN_CP(j32, j, hostname); 1982 PTRIN_CP(j32, j, jailname); 1983 CP(j32, j, ip4s); 1984 CP(j32, j, ip6s); 1985 PTRIN_CP(j32, j, ip4); 1986 PTRIN_CP(j32, j, ip6); 1987 break; 1988 } 1989 1990 default: 1991 /* Sci-Fi jails are not supported, sorry. */ 1992 return (EINVAL); 1993 } 1994 return (kern_jail(td, &j)); 1995 } 1996 1997 int 1998 freebsd32_jail_set(struct thread *td, struct freebsd32_jail_set_args *uap) 1999 { 2000 struct uio *auio; 2001 int error; 2002 2003 /* Check that we have an even number of iovecs. */ 2004 if (uap->iovcnt & 1) 2005 return (EINVAL); 2006 2007 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 2008 if (error) 2009 return (error); 2010 error = kern_jail_set(td, auio, uap->flags); 2011 free(auio, M_IOV); 2012 return (error); 2013 } 2014 2015 int 2016 freebsd32_jail_get(struct thread *td, struct freebsd32_jail_get_args *uap) 2017 { 2018 struct iovec32 iov32; 2019 struct uio *auio; 2020 int error, i; 2021 2022 /* Check that we have an even number of iovecs. */ 2023 if (uap->iovcnt & 1) 2024 return (EINVAL); 2025 2026 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 2027 if (error) 2028 return (error); 2029 error = kern_jail_get(td, auio, uap->flags); 2030 if (error == 0) 2031 for (i = 0; i < uap->iovcnt; i++) { 2032 PTROUT_CP(auio->uio_iov[i], iov32, iov_base); 2033 CP(auio->uio_iov[i], iov32, iov_len); 2034 error = copyout(&iov32, uap->iovp + i, sizeof(iov32)); 2035 if (error != 0) 2036 break; 2037 } 2038 free(auio, M_IOV); 2039 return (error); 2040 } 2041 2042 int 2043 freebsd32_sigaction(struct thread *td, struct freebsd32_sigaction_args *uap) 2044 { 2045 struct sigaction32 s32; 2046 struct sigaction sa, osa, *sap; 2047 int error; 2048 2049 if (uap->act) { 2050 error = copyin(uap->act, &s32, sizeof(s32)); 2051 if (error) 2052 return (error); 2053 sa.sa_handler = PTRIN(s32.sa_u); 2054 CP(s32, sa, sa_flags); 2055 CP(s32, sa, sa_mask); 2056 sap = &sa; 2057 } else 2058 sap = NULL; 2059 error = kern_sigaction(td, uap->sig, sap, &osa, 0); 2060 if (error == 0 && uap->oact != NULL) { 2061 s32.sa_u = PTROUT(osa.sa_handler); 2062 CP(osa, s32, sa_flags); 2063 CP(osa, s32, sa_mask); 2064 error = copyout(&s32, uap->oact, sizeof(s32)); 2065 } 2066 return (error); 2067 } 2068 2069 #ifdef COMPAT_FREEBSD4 2070 int 2071 freebsd4_freebsd32_sigaction(struct thread *td, 2072 struct freebsd4_freebsd32_sigaction_args *uap) 2073 { 2074 struct sigaction32 s32; 2075 struct sigaction sa, osa, *sap; 2076 int error; 2077 2078 if (uap->act) { 2079 error = copyin(uap->act, &s32, sizeof(s32)); 2080 if (error) 2081 return (error); 2082 sa.sa_handler = PTRIN(s32.sa_u); 2083 CP(s32, sa, sa_flags); 2084 CP(s32, sa, sa_mask); 2085 sap = &sa; 2086 } else 2087 sap = NULL; 2088 error = kern_sigaction(td, uap->sig, sap, &osa, KSA_FREEBSD4); 2089 if (error == 0 && uap->oact != NULL) { 2090 s32.sa_u = PTROUT(osa.sa_handler); 2091 CP(osa, s32, sa_flags); 2092 CP(osa, s32, sa_mask); 2093 error = copyout(&s32, uap->oact, sizeof(s32)); 2094 } 2095 return (error); 2096 } 2097 #endif 2098 2099 #ifdef COMPAT_43 2100 struct osigaction32 { 2101 u_int32_t sa_u; 2102 osigset_t sa_mask; 2103 int sa_flags; 2104 }; 2105 2106 #define ONSIG 32 2107 2108 int 2109 ofreebsd32_sigaction(struct thread *td, 2110 struct ofreebsd32_sigaction_args *uap) 2111 { 2112 struct osigaction32 s32; 2113 struct sigaction sa, osa, *sap; 2114 int error; 2115 2116 if (uap->signum <= 0 || uap->signum >= ONSIG) 2117 return (EINVAL); 2118 2119 if (uap->nsa) { 2120 error = copyin(uap->nsa, &s32, sizeof(s32)); 2121 if (error) 2122 return (error); 2123 sa.sa_handler = PTRIN(s32.sa_u); 2124 CP(s32, sa, sa_flags); 2125 OSIG2SIG(s32.sa_mask, sa.sa_mask); 2126 sap = &sa; 2127 } else 2128 sap = NULL; 2129 error = kern_sigaction(td, uap->signum, sap, &osa, KSA_OSIGSET); 2130 if (error == 0 && uap->osa != NULL) { 2131 s32.sa_u = PTROUT(osa.sa_handler); 2132 CP(osa, s32, sa_flags); 2133 SIG2OSIG(osa.sa_mask, s32.sa_mask); 2134 error = copyout(&s32, uap->osa, sizeof(s32)); 2135 } 2136 return (error); 2137 } 2138 2139 int 2140 ofreebsd32_sigprocmask(struct thread *td, 2141 struct ofreebsd32_sigprocmask_args *uap) 2142 { 2143 sigset_t set, oset; 2144 int error; 2145 2146 OSIG2SIG(uap->mask, set); 2147 error = kern_sigprocmask(td, uap->how, &set, &oset, SIGPROCMASK_OLD); 2148 SIG2OSIG(oset, td->td_retval[0]); 2149 return (error); 2150 } 2151 2152 int 2153 ofreebsd32_sigpending(struct thread *td, 2154 struct ofreebsd32_sigpending_args *uap) 2155 { 2156 struct proc *p = td->td_proc; 2157 sigset_t siglist; 2158 2159 PROC_LOCK(p); 2160 siglist = p->p_siglist; 2161 SIGSETOR(siglist, td->td_siglist); 2162 PROC_UNLOCK(p); 2163 SIG2OSIG(siglist, td->td_retval[0]); 2164 return (0); 2165 } 2166 2167 struct sigvec32 { 2168 u_int32_t sv_handler; 2169 int sv_mask; 2170 int sv_flags; 2171 }; 2172 2173 int 2174 ofreebsd32_sigvec(struct thread *td, 2175 struct ofreebsd32_sigvec_args *uap) 2176 { 2177 struct sigvec32 vec; 2178 struct sigaction sa, osa, *sap; 2179 int error; 2180 2181 if (uap->signum <= 0 || uap->signum >= ONSIG) 2182 return (EINVAL); 2183 2184 if (uap->nsv) { 2185 error = copyin(uap->nsv, &vec, sizeof(vec)); 2186 if (error) 2187 return (error); 2188 sa.sa_handler = PTRIN(vec.sv_handler); 2189 OSIG2SIG(vec.sv_mask, sa.sa_mask); 2190 sa.sa_flags = vec.sv_flags; 2191 sa.sa_flags ^= SA_RESTART; 2192 sap = &sa; 2193 } else 2194 sap = NULL; 2195 error = kern_sigaction(td, uap->signum, sap, &osa, KSA_OSIGSET); 2196 if (error == 0 && uap->osv != NULL) { 2197 vec.sv_handler = PTROUT(osa.sa_handler); 2198 SIG2OSIG(osa.sa_mask, vec.sv_mask); 2199 vec.sv_flags = osa.sa_flags; 2200 vec.sv_flags &= ~SA_NOCLDWAIT; 2201 vec.sv_flags ^= SA_RESTART; 2202 error = copyout(&vec, uap->osv, sizeof(vec)); 2203 } 2204 return (error); 2205 } 2206 2207 int 2208 ofreebsd32_sigblock(struct thread *td, 2209 struct ofreebsd32_sigblock_args *uap) 2210 { 2211 sigset_t set, oset; 2212 2213 OSIG2SIG(uap->mask, set); 2214 kern_sigprocmask(td, SIG_BLOCK, &set, &oset, 0); 2215 SIG2OSIG(oset, td->td_retval[0]); 2216 return (0); 2217 } 2218 2219 int 2220 ofreebsd32_sigsetmask(struct thread *td, 2221 struct ofreebsd32_sigsetmask_args *uap) 2222 { 2223 sigset_t set, oset; 2224 2225 OSIG2SIG(uap->mask, set); 2226 kern_sigprocmask(td, SIG_SETMASK, &set, &oset, 0); 2227 SIG2OSIG(oset, td->td_retval[0]); 2228 return (0); 2229 } 2230 2231 int 2232 ofreebsd32_sigsuspend(struct thread *td, 2233 struct ofreebsd32_sigsuspend_args *uap) 2234 { 2235 sigset_t mask; 2236 2237 OSIG2SIG(uap->mask, mask); 2238 return (kern_sigsuspend(td, mask)); 2239 } 2240 2241 struct sigstack32 { 2242 u_int32_t ss_sp; 2243 int ss_onstack; 2244 }; 2245 2246 int 2247 ofreebsd32_sigstack(struct thread *td, 2248 struct ofreebsd32_sigstack_args *uap) 2249 { 2250 struct sigstack32 s32; 2251 struct sigstack nss, oss; 2252 int error = 0, unss; 2253 2254 if (uap->nss != NULL) { 2255 error = copyin(uap->nss, &s32, sizeof(s32)); 2256 if (error) 2257 return (error); 2258 nss.ss_sp = PTRIN(s32.ss_sp); 2259 CP(s32, nss, ss_onstack); 2260 unss = 1; 2261 } else { 2262 unss = 0; 2263 } 2264 oss.ss_sp = td->td_sigstk.ss_sp; 2265 oss.ss_onstack = sigonstack(cpu_getstack(td)); 2266 if (unss) { 2267 td->td_sigstk.ss_sp = nss.ss_sp; 2268 td->td_sigstk.ss_size = 0; 2269 td->td_sigstk.ss_flags |= (nss.ss_onstack & SS_ONSTACK); 2270 td->td_pflags |= TDP_ALTSTACK; 2271 } 2272 if (uap->oss != NULL) { 2273 s32.ss_sp = PTROUT(oss.ss_sp); 2274 CP(oss, s32, ss_onstack); 2275 error = copyout(&s32, uap->oss, sizeof(s32)); 2276 } 2277 return (error); 2278 } 2279 #endif 2280 2281 int 2282 freebsd32_nanosleep(struct thread *td, struct freebsd32_nanosleep_args *uap) 2283 { 2284 struct timespec32 rmt32, rqt32; 2285 struct timespec rmt, rqt; 2286 int error; 2287 2288 error = copyin(uap->rqtp, &rqt32, sizeof(rqt32)); 2289 if (error) 2290 return (error); 2291 2292 CP(rqt32, rqt, tv_sec); 2293 CP(rqt32, rqt, tv_nsec); 2294 2295 if (uap->rmtp && 2296 !useracc((caddr_t)uap->rmtp, sizeof(rmt), VM_PROT_WRITE)) 2297 return (EFAULT); 2298 error = kern_nanosleep(td, &rqt, &rmt); 2299 if (error && uap->rmtp) { 2300 int error2; 2301 2302 CP(rmt, rmt32, tv_sec); 2303 CP(rmt, rmt32, tv_nsec); 2304 2305 error2 = copyout(&rmt32, uap->rmtp, sizeof(rmt32)); 2306 if (error2) 2307 error = error2; 2308 } 2309 return (error); 2310 } 2311 2312 int 2313 freebsd32_clock_gettime(struct thread *td, 2314 struct freebsd32_clock_gettime_args *uap) 2315 { 2316 struct timespec ats; 2317 struct timespec32 ats32; 2318 int error; 2319 2320 error = kern_clock_gettime(td, uap->clock_id, &ats); 2321 if (error == 0) { 2322 CP(ats, ats32, tv_sec); 2323 CP(ats, ats32, tv_nsec); 2324 error = copyout(&ats32, uap->tp, sizeof(ats32)); 2325 } 2326 return (error); 2327 } 2328 2329 int 2330 freebsd32_clock_settime(struct thread *td, 2331 struct freebsd32_clock_settime_args *uap) 2332 { 2333 struct timespec ats; 2334 struct timespec32 ats32; 2335 int error; 2336 2337 error = copyin(uap->tp, &ats32, sizeof(ats32)); 2338 if (error) 2339 return (error); 2340 CP(ats32, ats, tv_sec); 2341 CP(ats32, ats, tv_nsec); 2342 2343 return (kern_clock_settime(td, uap->clock_id, &ats)); 2344 } 2345 2346 int 2347 freebsd32_clock_getres(struct thread *td, 2348 struct freebsd32_clock_getres_args *uap) 2349 { 2350 struct timespec ts; 2351 struct timespec32 ts32; 2352 int error; 2353 2354 if (uap->tp == NULL) 2355 return (0); 2356 error = kern_clock_getres(td, uap->clock_id, &ts); 2357 if (error == 0) { 2358 CP(ts, ts32, tv_sec); 2359 CP(ts, ts32, tv_nsec); 2360 error = copyout(&ts32, uap->tp, sizeof(ts32)); 2361 } 2362 return (error); 2363 } 2364 2365 int freebsd32_ktimer_create(struct thread *td, 2366 struct freebsd32_ktimer_create_args *uap) 2367 { 2368 struct sigevent32 ev32; 2369 struct sigevent ev, *evp; 2370 int error, id; 2371 2372 if (uap->evp == NULL) { 2373 evp = NULL; 2374 } else { 2375 evp = &ev; 2376 error = copyin(uap->evp, &ev32, sizeof(ev32)); 2377 if (error != 0) 2378 return (error); 2379 error = convert_sigevent32(&ev32, &ev); 2380 if (error != 0) 2381 return (error); 2382 } 2383 error = kern_ktimer_create(td, uap->clock_id, evp, &id, -1); 2384 if (error == 0) { 2385 error = copyout(&id, uap->timerid, sizeof(int)); 2386 if (error != 0) 2387 kern_ktimer_delete(td, id); 2388 } 2389 return (error); 2390 } 2391 2392 int 2393 freebsd32_ktimer_settime(struct thread *td, 2394 struct freebsd32_ktimer_settime_args *uap) 2395 { 2396 struct itimerspec32 val32, oval32; 2397 struct itimerspec val, oval, *ovalp; 2398 int error; 2399 2400 error = copyin(uap->value, &val32, sizeof(val32)); 2401 if (error != 0) 2402 return (error); 2403 ITS_CP(val32, val); 2404 ovalp = uap->ovalue != NULL ? &oval : NULL; 2405 error = kern_ktimer_settime(td, uap->timerid, uap->flags, &val, ovalp); 2406 if (error == 0 && uap->ovalue != NULL) { 2407 ITS_CP(oval, oval32); 2408 error = copyout(&oval32, uap->ovalue, sizeof(oval32)); 2409 } 2410 return (error); 2411 } 2412 2413 int 2414 freebsd32_ktimer_gettime(struct thread *td, 2415 struct freebsd32_ktimer_gettime_args *uap) 2416 { 2417 struct itimerspec32 val32; 2418 struct itimerspec val; 2419 int error; 2420 2421 error = kern_ktimer_gettime(td, uap->timerid, &val); 2422 if (error == 0) { 2423 ITS_CP(val, val32); 2424 error = copyout(&val32, uap->value, sizeof(val32)); 2425 } 2426 return (error); 2427 } 2428 2429 int 2430 freebsd32_clock_getcpuclockid2(struct thread *td, 2431 struct freebsd32_clock_getcpuclockid2_args *uap) 2432 { 2433 clockid_t clk_id; 2434 int error; 2435 2436 error = kern_clock_getcpuclockid2(td, PAIR32TO64(id_t, uap->id), 2437 uap->which, &clk_id); 2438 if (error == 0) 2439 error = copyout(&clk_id, uap->clock_id, sizeof(clockid_t)); 2440 return (error); 2441 } 2442 2443 int 2444 freebsd32_thr_new(struct thread *td, 2445 struct freebsd32_thr_new_args *uap) 2446 { 2447 struct thr_param32 param32; 2448 struct thr_param param; 2449 int error; 2450 2451 if (uap->param_size < 0 || 2452 uap->param_size > sizeof(struct thr_param32)) 2453 return (EINVAL); 2454 bzero(¶m, sizeof(struct thr_param)); 2455 bzero(¶m32, sizeof(struct thr_param32)); 2456 error = copyin(uap->param, ¶m32, uap->param_size); 2457 if (error != 0) 2458 return (error); 2459 param.start_func = PTRIN(param32.start_func); 2460 param.arg = PTRIN(param32.arg); 2461 param.stack_base = PTRIN(param32.stack_base); 2462 param.stack_size = param32.stack_size; 2463 param.tls_base = PTRIN(param32.tls_base); 2464 param.tls_size = param32.tls_size; 2465 param.child_tid = PTRIN(param32.child_tid); 2466 param.parent_tid = PTRIN(param32.parent_tid); 2467 param.flags = param32.flags; 2468 param.rtp = PTRIN(param32.rtp); 2469 param.spare[0] = PTRIN(param32.spare[0]); 2470 param.spare[1] = PTRIN(param32.spare[1]); 2471 param.spare[2] = PTRIN(param32.spare[2]); 2472 2473 return (kern_thr_new(td, ¶m)); 2474 } 2475 2476 int 2477 freebsd32_thr_suspend(struct thread *td, struct freebsd32_thr_suspend_args *uap) 2478 { 2479 struct timespec32 ts32; 2480 struct timespec ts, *tsp; 2481 int error; 2482 2483 error = 0; 2484 tsp = NULL; 2485 if (uap->timeout != NULL) { 2486 error = copyin((const void *)uap->timeout, (void *)&ts32, 2487 sizeof(struct timespec32)); 2488 if (error != 0) 2489 return (error); 2490 ts.tv_sec = ts32.tv_sec; 2491 ts.tv_nsec = ts32.tv_nsec; 2492 tsp = &ts; 2493 } 2494 return (kern_thr_suspend(td, tsp)); 2495 } 2496 2497 void 2498 siginfo_to_siginfo32(const siginfo_t *src, struct siginfo32 *dst) 2499 { 2500 bzero(dst, sizeof(*dst)); 2501 dst->si_signo = src->si_signo; 2502 dst->si_errno = src->si_errno; 2503 dst->si_code = src->si_code; 2504 dst->si_pid = src->si_pid; 2505 dst->si_uid = src->si_uid; 2506 dst->si_status = src->si_status; 2507 dst->si_addr = (uintptr_t)src->si_addr; 2508 dst->si_value.sival_int = src->si_value.sival_int; 2509 dst->si_timerid = src->si_timerid; 2510 dst->si_overrun = src->si_overrun; 2511 } 2512 2513 int 2514 freebsd32_sigtimedwait(struct thread *td, struct freebsd32_sigtimedwait_args *uap) 2515 { 2516 struct timespec32 ts32; 2517 struct timespec ts; 2518 struct timespec *timeout; 2519 sigset_t set; 2520 ksiginfo_t ksi; 2521 struct siginfo32 si32; 2522 int error; 2523 2524 if (uap->timeout) { 2525 error = copyin(uap->timeout, &ts32, sizeof(ts32)); 2526 if (error) 2527 return (error); 2528 ts.tv_sec = ts32.tv_sec; 2529 ts.tv_nsec = ts32.tv_nsec; 2530 timeout = &ts; 2531 } else 2532 timeout = NULL; 2533 2534 error = copyin(uap->set, &set, sizeof(set)); 2535 if (error) 2536 return (error); 2537 2538 error = kern_sigtimedwait(td, set, &ksi, timeout); 2539 if (error) 2540 return (error); 2541 2542 if (uap->info) { 2543 siginfo_to_siginfo32(&ksi.ksi_info, &si32); 2544 error = copyout(&si32, uap->info, sizeof(struct siginfo32)); 2545 } 2546 2547 if (error == 0) 2548 td->td_retval[0] = ksi.ksi_signo; 2549 return (error); 2550 } 2551 2552 /* 2553 * MPSAFE 2554 */ 2555 int 2556 freebsd32_sigwaitinfo(struct thread *td, struct freebsd32_sigwaitinfo_args *uap) 2557 { 2558 ksiginfo_t ksi; 2559 struct siginfo32 si32; 2560 sigset_t set; 2561 int error; 2562 2563 error = copyin(uap->set, &set, sizeof(set)); 2564 if (error) 2565 return (error); 2566 2567 error = kern_sigtimedwait(td, set, &ksi, NULL); 2568 if (error) 2569 return (error); 2570 2571 if (uap->info) { 2572 siginfo_to_siginfo32(&ksi.ksi_info, &si32); 2573 error = copyout(&si32, uap->info, sizeof(struct siginfo32)); 2574 } 2575 if (error == 0) 2576 td->td_retval[0] = ksi.ksi_signo; 2577 return (error); 2578 } 2579 2580 int 2581 freebsd32_cpuset_setid(struct thread *td, 2582 struct freebsd32_cpuset_setid_args *uap) 2583 { 2584 struct cpuset_setid_args ap; 2585 2586 ap.which = uap->which; 2587 ap.id = PAIR32TO64(id_t,uap->id); 2588 ap.setid = uap->setid; 2589 2590 return (sys_cpuset_setid(td, &ap)); 2591 } 2592 2593 int 2594 freebsd32_cpuset_getid(struct thread *td, 2595 struct freebsd32_cpuset_getid_args *uap) 2596 { 2597 struct cpuset_getid_args ap; 2598 2599 ap.level = uap->level; 2600 ap.which = uap->which; 2601 ap.id = PAIR32TO64(id_t,uap->id); 2602 ap.setid = uap->setid; 2603 2604 return (sys_cpuset_getid(td, &ap)); 2605 } 2606 2607 int 2608 freebsd32_cpuset_getaffinity(struct thread *td, 2609 struct freebsd32_cpuset_getaffinity_args *uap) 2610 { 2611 struct cpuset_getaffinity_args ap; 2612 2613 ap.level = uap->level; 2614 ap.which = uap->which; 2615 ap.id = PAIR32TO64(id_t,uap->id); 2616 ap.cpusetsize = uap->cpusetsize; 2617 ap.mask = uap->mask; 2618 2619 return (sys_cpuset_getaffinity(td, &ap)); 2620 } 2621 2622 int 2623 freebsd32_cpuset_setaffinity(struct thread *td, 2624 struct freebsd32_cpuset_setaffinity_args *uap) 2625 { 2626 struct cpuset_setaffinity_args ap; 2627 2628 ap.level = uap->level; 2629 ap.which = uap->which; 2630 ap.id = PAIR32TO64(id_t,uap->id); 2631 ap.cpusetsize = uap->cpusetsize; 2632 ap.mask = uap->mask; 2633 2634 return (sys_cpuset_setaffinity(td, &ap)); 2635 } 2636 2637 int 2638 freebsd32_nmount(struct thread *td, 2639 struct freebsd32_nmount_args /* { 2640 struct iovec *iovp; 2641 unsigned int iovcnt; 2642 int flags; 2643 } */ *uap) 2644 { 2645 struct uio *auio; 2646 uint64_t flags; 2647 int error; 2648 2649 /* 2650 * Mount flags are now 64-bits. On 32-bit archtectures only 2651 * 32-bits are passed in, but from here on everything handles 2652 * 64-bit flags correctly. 2653 */ 2654 flags = uap->flags; 2655 2656 AUDIT_ARG_FFLAGS(flags); 2657 2658 /* 2659 * Filter out MNT_ROOTFS. We do not want clients of nmount() in 2660 * userspace to set this flag, but we must filter it out if we want 2661 * MNT_UPDATE on the root file system to work. 2662 * MNT_ROOTFS should only be set by the kernel when mounting its 2663 * root file system. 2664 */ 2665 flags &= ~MNT_ROOTFS; 2666 2667 /* 2668 * check that we have an even number of iovec's 2669 * and that we have at least two options. 2670 */ 2671 if ((uap->iovcnt & 1) || (uap->iovcnt < 4)) 2672 return (EINVAL); 2673 2674 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 2675 if (error) 2676 return (error); 2677 error = vfs_donmount(td, flags, auio); 2678 2679 free(auio, M_IOV); 2680 return error; 2681 } 2682 2683 #if 0 2684 int 2685 freebsd32_xxx(struct thread *td, struct freebsd32_xxx_args *uap) 2686 { 2687 struct yyy32 *p32, s32; 2688 struct yyy *p = NULL, s; 2689 struct xxx_arg ap; 2690 int error; 2691 2692 if (uap->zzz) { 2693 error = copyin(uap->zzz, &s32, sizeof(s32)); 2694 if (error) 2695 return (error); 2696 /* translate in */ 2697 p = &s; 2698 } 2699 error = kern_xxx(td, p); 2700 if (error) 2701 return (error); 2702 if (uap->zzz) { 2703 /* translate out */ 2704 error = copyout(&s32, p32, sizeof(s32)); 2705 } 2706 return (error); 2707 } 2708 #endif 2709 2710 int 2711 syscall32_register(int *offset, struct sysent *new_sysent, 2712 struct sysent *old_sysent) 2713 { 2714 if (*offset == NO_SYSCALL) { 2715 int i; 2716 2717 for (i = 1; i < SYS_MAXSYSCALL; ++i) 2718 if (freebsd32_sysent[i].sy_call == 2719 (sy_call_t *)lkmnosys) 2720 break; 2721 if (i == SYS_MAXSYSCALL) 2722 return (ENFILE); 2723 *offset = i; 2724 } else if (*offset < 0 || *offset >= SYS_MAXSYSCALL) 2725 return (EINVAL); 2726 else if (freebsd32_sysent[*offset].sy_call != (sy_call_t *)lkmnosys && 2727 freebsd32_sysent[*offset].sy_call != (sy_call_t *)lkmressys) 2728 return (EEXIST); 2729 2730 *old_sysent = freebsd32_sysent[*offset]; 2731 freebsd32_sysent[*offset] = *new_sysent; 2732 return 0; 2733 } 2734 2735 int 2736 syscall32_deregister(int *offset, struct sysent *old_sysent) 2737 { 2738 2739 if (*offset) 2740 freebsd32_sysent[*offset] = *old_sysent; 2741 return 0; 2742 } 2743 2744 int 2745 syscall32_module_handler(struct module *mod, int what, void *arg) 2746 { 2747 struct syscall_module_data *data = (struct syscall_module_data*)arg; 2748 modspecific_t ms; 2749 int error; 2750 2751 switch (what) { 2752 case MOD_LOAD: 2753 error = syscall32_register(data->offset, data->new_sysent, 2754 &data->old_sysent); 2755 if (error) { 2756 /* Leave a mark so we know to safely unload below. */ 2757 data->offset = NULL; 2758 return error; 2759 } 2760 ms.intval = *data->offset; 2761 MOD_XLOCK; 2762 module_setspecific(mod, &ms); 2763 MOD_XUNLOCK; 2764 if (data->chainevh) 2765 error = data->chainevh(mod, what, data->chainarg); 2766 return (error); 2767 case MOD_UNLOAD: 2768 /* 2769 * MOD_LOAD failed, so just return without calling the 2770 * chained handler since we didn't pass along the MOD_LOAD 2771 * event. 2772 */ 2773 if (data->offset == NULL) 2774 return (0); 2775 if (data->chainevh) { 2776 error = data->chainevh(mod, what, data->chainarg); 2777 if (error) 2778 return (error); 2779 } 2780 error = syscall32_deregister(data->offset, &data->old_sysent); 2781 return (error); 2782 default: 2783 error = EOPNOTSUPP; 2784 if (data->chainevh) 2785 error = data->chainevh(mod, what, data->chainarg); 2786 return (error); 2787 } 2788 } 2789 2790 int 2791 syscall32_helper_register(struct syscall_helper_data *sd) 2792 { 2793 struct syscall_helper_data *sd1; 2794 int error; 2795 2796 for (sd1 = sd; sd1->syscall_no != NO_SYSCALL; sd1++) { 2797 error = syscall32_register(&sd1->syscall_no, &sd1->new_sysent, 2798 &sd1->old_sysent); 2799 if (error != 0) { 2800 syscall32_helper_unregister(sd); 2801 return (error); 2802 } 2803 sd1->registered = 1; 2804 } 2805 return (0); 2806 } 2807 2808 int 2809 syscall32_helper_unregister(struct syscall_helper_data *sd) 2810 { 2811 struct syscall_helper_data *sd1; 2812 2813 for (sd1 = sd; sd1->registered != 0; sd1++) { 2814 syscall32_deregister(&sd1->syscall_no, &sd1->old_sysent); 2815 sd1->registered = 0; 2816 } 2817 return (0); 2818 } 2819 2820 register_t * 2821 freebsd32_copyout_strings(struct image_params *imgp) 2822 { 2823 int argc, envc, i; 2824 u_int32_t *vectp; 2825 char *stringp, *destp; 2826 u_int32_t *stack_base; 2827 struct freebsd32_ps_strings *arginfo; 2828 char canary[sizeof(long) * 8]; 2829 int32_t pagesizes32[MAXPAGESIZES]; 2830 size_t execpath_len; 2831 int szsigcode; 2832 2833 /* 2834 * Calculate string base and vector table pointers. 2835 * Also deal with signal trampoline code for this exec type. 2836 */ 2837 if (imgp->execpath != NULL && imgp->auxargs != NULL) 2838 execpath_len = strlen(imgp->execpath) + 1; 2839 else 2840 execpath_len = 0; 2841 arginfo = (struct freebsd32_ps_strings *)curproc->p_sysent-> 2842 sv_psstrings; 2843 if (imgp->proc->p_sysent->sv_sigcode_base == 0) 2844 szsigcode = *(imgp->proc->p_sysent->sv_szsigcode); 2845 else 2846 szsigcode = 0; 2847 destp = (caddr_t)arginfo - szsigcode - SPARE_USRSPACE - 2848 roundup(execpath_len, sizeof(char *)) - 2849 roundup(sizeof(canary), sizeof(char *)) - 2850 roundup(sizeof(pagesizes32), sizeof(char *)) - 2851 roundup((ARG_MAX - imgp->args->stringspace), sizeof(char *)); 2852 2853 /* 2854 * install sigcode 2855 */ 2856 if (szsigcode != 0) 2857 copyout(imgp->proc->p_sysent->sv_sigcode, 2858 ((caddr_t)arginfo - szsigcode), szsigcode); 2859 2860 /* 2861 * Copy the image path for the rtld. 2862 */ 2863 if (execpath_len != 0) { 2864 imgp->execpathp = (uintptr_t)arginfo - szsigcode - execpath_len; 2865 copyout(imgp->execpath, (void *)imgp->execpathp, 2866 execpath_len); 2867 } 2868 2869 /* 2870 * Prepare the canary for SSP. 2871 */ 2872 arc4rand(canary, sizeof(canary), 0); 2873 imgp->canary = (uintptr_t)arginfo - szsigcode - execpath_len - 2874 sizeof(canary); 2875 copyout(canary, (void *)imgp->canary, sizeof(canary)); 2876 imgp->canarylen = sizeof(canary); 2877 2878 /* 2879 * Prepare the pagesizes array. 2880 */ 2881 for (i = 0; i < MAXPAGESIZES; i++) 2882 pagesizes32[i] = (uint32_t)pagesizes[i]; 2883 imgp->pagesizes = (uintptr_t)arginfo - szsigcode - execpath_len - 2884 roundup(sizeof(canary), sizeof(char *)) - sizeof(pagesizes32); 2885 copyout(pagesizes32, (void *)imgp->pagesizes, sizeof(pagesizes32)); 2886 imgp->pagesizeslen = sizeof(pagesizes32); 2887 2888 /* 2889 * If we have a valid auxargs ptr, prepare some room 2890 * on the stack. 2891 */ 2892 if (imgp->auxargs) { 2893 /* 2894 * 'AT_COUNT*2' is size for the ELF Auxargs data. This is for 2895 * lower compatibility. 2896 */ 2897 imgp->auxarg_size = (imgp->auxarg_size) ? imgp->auxarg_size 2898 : (AT_COUNT * 2); 2899 /* 2900 * The '+ 2' is for the null pointers at the end of each of 2901 * the arg and env vector sets,and imgp->auxarg_size is room 2902 * for argument of Runtime loader. 2903 */ 2904 vectp = (u_int32_t *) (destp - (imgp->args->argc + 2905 imgp->args->envc + 2 + imgp->auxarg_size + execpath_len) * 2906 sizeof(u_int32_t)); 2907 } else 2908 /* 2909 * The '+ 2' is for the null pointers at the end of each of 2910 * the arg and env vector sets 2911 */ 2912 vectp = (u_int32_t *) 2913 (destp - (imgp->args->argc + imgp->args->envc + 2) * sizeof(u_int32_t)); 2914 2915 /* 2916 * vectp also becomes our initial stack base 2917 */ 2918 stack_base = vectp; 2919 2920 stringp = imgp->args->begin_argv; 2921 argc = imgp->args->argc; 2922 envc = imgp->args->envc; 2923 /* 2924 * Copy out strings - arguments and environment. 2925 */ 2926 copyout(stringp, destp, ARG_MAX - imgp->args->stringspace); 2927 2928 /* 2929 * Fill in "ps_strings" struct for ps, w, etc. 2930 */ 2931 suword32(&arginfo->ps_argvstr, (u_int32_t)(intptr_t)vectp); 2932 suword32(&arginfo->ps_nargvstr, argc); 2933 2934 /* 2935 * Fill in argument portion of vector table. 2936 */ 2937 for (; argc > 0; --argc) { 2938 suword32(vectp++, (u_int32_t)(intptr_t)destp); 2939 while (*stringp++ != 0) 2940 destp++; 2941 destp++; 2942 } 2943 2944 /* a null vector table pointer separates the argp's from the envp's */ 2945 suword32(vectp++, 0); 2946 2947 suword32(&arginfo->ps_envstr, (u_int32_t)(intptr_t)vectp); 2948 suword32(&arginfo->ps_nenvstr, envc); 2949 2950 /* 2951 * Fill in environment portion of vector table. 2952 */ 2953 for (; envc > 0; --envc) { 2954 suword32(vectp++, (u_int32_t)(intptr_t)destp); 2955 while (*stringp++ != 0) 2956 destp++; 2957 destp++; 2958 } 2959 2960 /* end of vector table is a null pointer */ 2961 suword32(vectp, 0); 2962 2963 return ((register_t *)stack_base); 2964 } 2965 2966 int 2967 freebsd32_kldstat(struct thread *td, struct freebsd32_kldstat_args *uap) 2968 { 2969 struct kld_file_stat stat; 2970 struct kld32_file_stat stat32; 2971 int error, version; 2972 2973 if ((error = copyin(&uap->stat->version, &version, sizeof(version))) 2974 != 0) 2975 return (error); 2976 if (version != sizeof(struct kld32_file_stat_1) && 2977 version != sizeof(struct kld32_file_stat)) 2978 return (EINVAL); 2979 2980 error = kern_kldstat(td, uap->fileid, &stat); 2981 if (error != 0) 2982 return (error); 2983 2984 bcopy(&stat.name[0], &stat32.name[0], sizeof(stat.name)); 2985 CP(stat, stat32, refs); 2986 CP(stat, stat32, id); 2987 PTROUT_CP(stat, stat32, address); 2988 CP(stat, stat32, size); 2989 bcopy(&stat.pathname[0], &stat32.pathname[0], sizeof(stat.pathname)); 2990 return (copyout(&stat32, uap->stat, version)); 2991 } 2992 2993 int 2994 freebsd32_posix_fallocate(struct thread *td, 2995 struct freebsd32_posix_fallocate_args *uap) 2996 { 2997 2998 return (kern_posix_fallocate(td, uap->fd, 2999 PAIR32TO64(off_t, uap->offset), PAIR32TO64(off_t, uap->len))); 3000 } 3001 3002 int 3003 freebsd32_posix_fadvise(struct thread *td, 3004 struct freebsd32_posix_fadvise_args *uap) 3005 { 3006 3007 return (kern_posix_fadvise(td, uap->fd, PAIR32TO64(off_t, uap->offset), 3008 PAIR32TO64(off_t, uap->len), uap->advice)); 3009 } 3010 3011 int 3012 convert_sigevent32(struct sigevent32 *sig32, struct sigevent *sig) 3013 { 3014 3015 CP(*sig32, *sig, sigev_notify); 3016 switch (sig->sigev_notify) { 3017 case SIGEV_NONE: 3018 break; 3019 case SIGEV_THREAD_ID: 3020 CP(*sig32, *sig, sigev_notify_thread_id); 3021 /* FALLTHROUGH */ 3022 case SIGEV_SIGNAL: 3023 CP(*sig32, *sig, sigev_signo); 3024 PTRIN_CP(*sig32, *sig, sigev_value.sival_ptr); 3025 break; 3026 case SIGEV_KEVENT: 3027 CP(*sig32, *sig, sigev_notify_kqueue); 3028 CP(*sig32, *sig, sigev_notify_kevent_flags); 3029 PTRIN_CP(*sig32, *sig, sigev_value.sival_ptr); 3030 break; 3031 default: 3032 return (EINVAL); 3033 } 3034 return (0); 3035 } 3036 3037 int 3038 freebsd32_procctl(struct thread *td, struct freebsd32_procctl_args *uap) 3039 { 3040 void *data; 3041 int error, flags; 3042 3043 switch (uap->com) { 3044 case PROC_SPROTECT: 3045 error = copyin(PTRIN(uap->data), &flags, sizeof(flags)); 3046 if (error) 3047 return (error); 3048 data = &flags; 3049 break; 3050 default: 3051 return (EINVAL); 3052 } 3053 return (kern_procctl(td, uap->idtype, PAIR32TO64(id_t, uap->id), 3054 uap->com, data)); 3055 } 3056