1 /*- 2 * Copyright (c) 2002 Doug Rabson 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include "opt_compat.h" 31 #include "opt_inet.h" 32 #include "opt_inet6.h" 33 34 #define __ELF_WORD_SIZE 32 35 36 #include <sys/param.h> 37 #include <sys/bus.h> 38 #include <sys/clock.h> 39 #include <sys/exec.h> 40 #include <sys/fcntl.h> 41 #include <sys/filedesc.h> 42 #include <sys/imgact.h> 43 #include <sys/jail.h> 44 #include <sys/kernel.h> 45 #include <sys/limits.h> 46 #include <sys/linker.h> 47 #include <sys/lock.h> 48 #include <sys/malloc.h> 49 #include <sys/file.h> /* Must come after sys/malloc.h */ 50 #include <sys/imgact.h> 51 #include <sys/mbuf.h> 52 #include <sys/mman.h> 53 #include <sys/module.h> 54 #include <sys/mount.h> 55 #include <sys/mutex.h> 56 #include <sys/namei.h> 57 #include <sys/proc.h> 58 #include <sys/reboot.h> 59 #include <sys/resource.h> 60 #include <sys/resourcevar.h> 61 #include <sys/selinfo.h> 62 #include <sys/eventvar.h> /* Must come after sys/selinfo.h */ 63 #include <sys/pipe.h> /* Must come after sys/selinfo.h */ 64 #include <sys/signal.h> 65 #include <sys/signalvar.h> 66 #include <sys/socket.h> 67 #include <sys/socketvar.h> 68 #include <sys/stat.h> 69 #include <sys/syscall.h> 70 #include <sys/syscallsubr.h> 71 #include <sys/sysctl.h> 72 #include <sys/sysent.h> 73 #include <sys/sysproto.h> 74 #include <sys/systm.h> 75 #include <sys/thr.h> 76 #include <sys/unistd.h> 77 #include <sys/ucontext.h> 78 #include <sys/vnode.h> 79 #include <sys/wait.h> 80 #include <sys/ipc.h> 81 #include <sys/msg.h> 82 #include <sys/sem.h> 83 #include <sys/shm.h> 84 85 #ifdef INET 86 #include <netinet/in.h> 87 #endif 88 89 #include <vm/vm.h> 90 #include <vm/vm_param.h> 91 #include <vm/pmap.h> 92 #include <vm/vm_map.h> 93 #include <vm/vm_object.h> 94 #include <vm/vm_extern.h> 95 96 #include <machine/cpu.h> 97 #include <machine/elf.h> 98 99 #include <security/audit/audit.h> 100 101 #include <compat/freebsd32/freebsd32_util.h> 102 #include <compat/freebsd32/freebsd32.h> 103 #include <compat/freebsd32/freebsd32_ipc.h> 104 #include <compat/freebsd32/freebsd32_signal.h> 105 #include <compat/freebsd32/freebsd32_proto.h> 106 107 #ifndef __mips__ 108 CTASSERT(sizeof(struct timeval32) == 8); 109 CTASSERT(sizeof(struct timespec32) == 8); 110 CTASSERT(sizeof(struct itimerval32) == 16); 111 #endif 112 CTASSERT(sizeof(struct statfs32) == 256); 113 #ifndef __mips__ 114 CTASSERT(sizeof(struct rusage32) == 72); 115 #endif 116 CTASSERT(sizeof(struct sigaltstack32) == 12); 117 CTASSERT(sizeof(struct kevent32) == 20); 118 CTASSERT(sizeof(struct iovec32) == 8); 119 CTASSERT(sizeof(struct msghdr32) == 28); 120 #ifndef __mips__ 121 CTASSERT(sizeof(struct stat32) == 96); 122 #endif 123 CTASSERT(sizeof(struct sigaction32) == 24); 124 125 static int freebsd32_kevent_copyout(void *arg, struct kevent *kevp, int count); 126 static int freebsd32_kevent_copyin(void *arg, struct kevent *kevp, int count); 127 128 #if BYTE_ORDER == BIG_ENDIAN 129 #define PAIR32TO64(type, name) ((name ## 2) | ((type)(name ## 1) << 32)) 130 #define RETVAL_HI 0 131 #define RETVAL_LO 1 132 #else 133 #define PAIR32TO64(type, name) ((name ## 1) | ((type)(name ## 2) << 32)) 134 #define RETVAL_HI 1 135 #define RETVAL_LO 0 136 #endif 137 138 void 139 freebsd32_rusage_out(const struct rusage *s, struct rusage32 *s32) 140 { 141 142 TV_CP(*s, *s32, ru_utime); 143 TV_CP(*s, *s32, ru_stime); 144 CP(*s, *s32, ru_maxrss); 145 CP(*s, *s32, ru_ixrss); 146 CP(*s, *s32, ru_idrss); 147 CP(*s, *s32, ru_isrss); 148 CP(*s, *s32, ru_minflt); 149 CP(*s, *s32, ru_majflt); 150 CP(*s, *s32, ru_nswap); 151 CP(*s, *s32, ru_inblock); 152 CP(*s, *s32, ru_oublock); 153 CP(*s, *s32, ru_msgsnd); 154 CP(*s, *s32, ru_msgrcv); 155 CP(*s, *s32, ru_nsignals); 156 CP(*s, *s32, ru_nvcsw); 157 CP(*s, *s32, ru_nivcsw); 158 } 159 160 int 161 freebsd32_wait4(struct thread *td, struct freebsd32_wait4_args *uap) 162 { 163 int error, status; 164 struct rusage32 ru32; 165 struct rusage ru, *rup; 166 167 if (uap->rusage != NULL) 168 rup = &ru; 169 else 170 rup = NULL; 171 error = kern_wait(td, uap->pid, &status, uap->options, rup); 172 if (error) 173 return (error); 174 if (uap->status != NULL) 175 error = copyout(&status, uap->status, sizeof(status)); 176 if (uap->rusage != NULL && error == 0) { 177 freebsd32_rusage_out(&ru, &ru32); 178 error = copyout(&ru32, uap->rusage, sizeof(ru32)); 179 } 180 return (error); 181 } 182 183 #ifdef COMPAT_FREEBSD4 184 static void 185 copy_statfs(struct statfs *in, struct statfs32 *out) 186 { 187 188 statfs_scale_blocks(in, INT32_MAX); 189 bzero(out, sizeof(*out)); 190 CP(*in, *out, f_bsize); 191 out->f_iosize = MIN(in->f_iosize, INT32_MAX); 192 CP(*in, *out, f_blocks); 193 CP(*in, *out, f_bfree); 194 CP(*in, *out, f_bavail); 195 out->f_files = MIN(in->f_files, INT32_MAX); 196 out->f_ffree = MIN(in->f_ffree, INT32_MAX); 197 CP(*in, *out, f_fsid); 198 CP(*in, *out, f_owner); 199 CP(*in, *out, f_type); 200 CP(*in, *out, f_flags); 201 out->f_syncwrites = MIN(in->f_syncwrites, INT32_MAX); 202 out->f_asyncwrites = MIN(in->f_asyncwrites, INT32_MAX); 203 strlcpy(out->f_fstypename, 204 in->f_fstypename, MFSNAMELEN); 205 strlcpy(out->f_mntonname, 206 in->f_mntonname, min(MNAMELEN, FREEBSD4_MNAMELEN)); 207 out->f_syncreads = MIN(in->f_syncreads, INT32_MAX); 208 out->f_asyncreads = MIN(in->f_asyncreads, INT32_MAX); 209 strlcpy(out->f_mntfromname, 210 in->f_mntfromname, min(MNAMELEN, FREEBSD4_MNAMELEN)); 211 } 212 #endif 213 214 #ifdef COMPAT_FREEBSD4 215 int 216 freebsd4_freebsd32_getfsstat(struct thread *td, struct freebsd4_freebsd32_getfsstat_args *uap) 217 { 218 struct statfs *buf, *sp; 219 struct statfs32 stat32; 220 size_t count, size; 221 int error; 222 223 count = uap->bufsize / sizeof(struct statfs32); 224 size = count * sizeof(struct statfs); 225 error = kern_getfsstat(td, &buf, size, UIO_SYSSPACE, uap->flags); 226 if (size > 0) { 227 count = td->td_retval[0]; 228 sp = buf; 229 while (count > 0 && error == 0) { 230 copy_statfs(sp, &stat32); 231 error = copyout(&stat32, uap->buf, sizeof(stat32)); 232 sp++; 233 uap->buf++; 234 count--; 235 } 236 free(buf, M_TEMP); 237 } 238 return (error); 239 } 240 #endif 241 242 int 243 freebsd32_sigaltstack(struct thread *td, 244 struct freebsd32_sigaltstack_args *uap) 245 { 246 struct sigaltstack32 s32; 247 struct sigaltstack ss, oss, *ssp; 248 int error; 249 250 if (uap->ss != NULL) { 251 error = copyin(uap->ss, &s32, sizeof(s32)); 252 if (error) 253 return (error); 254 PTRIN_CP(s32, ss, ss_sp); 255 CP(s32, ss, ss_size); 256 CP(s32, ss, ss_flags); 257 ssp = &ss; 258 } else 259 ssp = NULL; 260 error = kern_sigaltstack(td, ssp, &oss); 261 if (error == 0 && uap->oss != NULL) { 262 PTROUT_CP(oss, s32, ss_sp); 263 CP(oss, s32, ss_size); 264 CP(oss, s32, ss_flags); 265 error = copyout(&s32, uap->oss, sizeof(s32)); 266 } 267 return (error); 268 } 269 270 /* 271 * Custom version of exec_copyin_args() so that we can translate 272 * the pointers. 273 */ 274 int 275 freebsd32_exec_copyin_args(struct image_args *args, char *fname, 276 enum uio_seg segflg, u_int32_t *argv, u_int32_t *envv) 277 { 278 char *argp, *envp; 279 u_int32_t *p32, arg; 280 size_t length; 281 int error; 282 283 bzero(args, sizeof(*args)); 284 if (argv == NULL) 285 return (EFAULT); 286 287 /* 288 * Allocate demand-paged memory for the file name, argument, and 289 * environment strings. 290 */ 291 error = exec_alloc_args(args); 292 if (error != 0) 293 return (error); 294 295 /* 296 * Copy the file name. 297 */ 298 if (fname != NULL) { 299 args->fname = args->buf; 300 error = (segflg == UIO_SYSSPACE) ? 301 copystr(fname, args->fname, PATH_MAX, &length) : 302 copyinstr(fname, args->fname, PATH_MAX, &length); 303 if (error != 0) 304 goto err_exit; 305 } else 306 length = 0; 307 308 args->begin_argv = args->buf + length; 309 args->endp = args->begin_argv; 310 args->stringspace = ARG_MAX; 311 312 /* 313 * extract arguments first 314 */ 315 p32 = argv; 316 for (;;) { 317 error = copyin(p32++, &arg, sizeof(arg)); 318 if (error) 319 goto err_exit; 320 if (arg == 0) 321 break; 322 argp = PTRIN(arg); 323 error = copyinstr(argp, args->endp, args->stringspace, &length); 324 if (error) { 325 if (error == ENAMETOOLONG) 326 error = E2BIG; 327 goto err_exit; 328 } 329 args->stringspace -= length; 330 args->endp += length; 331 args->argc++; 332 } 333 334 args->begin_envv = args->endp; 335 336 /* 337 * extract environment strings 338 */ 339 if (envv) { 340 p32 = envv; 341 for (;;) { 342 error = copyin(p32++, &arg, sizeof(arg)); 343 if (error) 344 goto err_exit; 345 if (arg == 0) 346 break; 347 envp = PTRIN(arg); 348 error = copyinstr(envp, args->endp, args->stringspace, 349 &length); 350 if (error) { 351 if (error == ENAMETOOLONG) 352 error = E2BIG; 353 goto err_exit; 354 } 355 args->stringspace -= length; 356 args->endp += length; 357 args->envc++; 358 } 359 } 360 361 return (0); 362 363 err_exit: 364 exec_free_args(args); 365 return (error); 366 } 367 368 int 369 freebsd32_execve(struct thread *td, struct freebsd32_execve_args *uap) 370 { 371 struct image_args eargs; 372 int error; 373 374 error = freebsd32_exec_copyin_args(&eargs, uap->fname, UIO_USERSPACE, 375 uap->argv, uap->envv); 376 if (error == 0) 377 error = kern_execve(td, &eargs, NULL); 378 return (error); 379 } 380 381 int 382 freebsd32_fexecve(struct thread *td, struct freebsd32_fexecve_args *uap) 383 { 384 struct image_args eargs; 385 int error; 386 387 error = freebsd32_exec_copyin_args(&eargs, NULL, UIO_SYSSPACE, 388 uap->argv, uap->envv); 389 if (error == 0) { 390 eargs.fd = uap->fd; 391 error = kern_execve(td, &eargs, NULL); 392 } 393 return (error); 394 } 395 396 #ifdef __ia64__ 397 static int 398 freebsd32_mmap_partial(struct thread *td, vm_offset_t start, vm_offset_t end, 399 int prot, int fd, off_t pos) 400 { 401 vm_map_t map; 402 vm_map_entry_t entry; 403 int rv; 404 405 map = &td->td_proc->p_vmspace->vm_map; 406 if (fd != -1) 407 prot |= VM_PROT_WRITE; 408 409 if (vm_map_lookup_entry(map, start, &entry)) { 410 if ((entry->protection & prot) != prot) { 411 rv = vm_map_protect(map, 412 trunc_page(start), 413 round_page(end), 414 entry->protection | prot, 415 FALSE); 416 if (rv != KERN_SUCCESS) 417 return (EINVAL); 418 } 419 } else { 420 vm_offset_t addr = trunc_page(start); 421 rv = vm_map_find(map, 0, 0, 422 &addr, PAGE_SIZE, FALSE, prot, 423 VM_PROT_ALL, 0); 424 if (rv != KERN_SUCCESS) 425 return (EINVAL); 426 } 427 428 if (fd != -1) { 429 struct pread_args r; 430 r.fd = fd; 431 r.buf = (void *) start; 432 r.nbyte = end - start; 433 r.offset = pos; 434 return (sys_pread(td, &r)); 435 } else { 436 while (start < end) { 437 subyte((void *) start, 0); 438 start++; 439 } 440 return (0); 441 } 442 } 443 #endif 444 445 int 446 freebsd32_mprotect(struct thread *td, struct freebsd32_mprotect_args *uap) 447 { 448 struct mprotect_args ap; 449 450 ap.addr = PTRIN(uap->addr); 451 ap.len = uap->len; 452 ap.prot = uap->prot; 453 #if defined(__amd64__) || defined(__ia64__) 454 if (i386_read_exec && (ap.prot & PROT_READ) != 0) 455 ap.prot |= PROT_EXEC; 456 #endif 457 return (sys_mprotect(td, &ap)); 458 } 459 460 int 461 freebsd32_mmap(struct thread *td, struct freebsd32_mmap_args *uap) 462 { 463 struct mmap_args ap; 464 vm_offset_t addr = (vm_offset_t) uap->addr; 465 vm_size_t len = uap->len; 466 int prot = uap->prot; 467 int flags = uap->flags; 468 int fd = uap->fd; 469 off_t pos = PAIR32TO64(off_t,uap->pos); 470 #ifdef __ia64__ 471 vm_size_t pageoff; 472 int error; 473 474 /* 475 * Attempt to handle page size hassles. 476 */ 477 pageoff = (pos & PAGE_MASK); 478 if (flags & MAP_FIXED) { 479 vm_offset_t start, end; 480 start = addr; 481 end = addr + len; 482 483 if (start != trunc_page(start)) { 484 error = freebsd32_mmap_partial(td, start, 485 round_page(start), prot, 486 fd, pos); 487 if (fd != -1) 488 pos += round_page(start) - start; 489 start = round_page(start); 490 } 491 if (end != round_page(end)) { 492 vm_offset_t t = trunc_page(end); 493 error = freebsd32_mmap_partial(td, t, end, 494 prot, fd, 495 pos + t - start); 496 end = trunc_page(end); 497 } 498 if (end > start && fd != -1 && (pos & PAGE_MASK)) { 499 /* 500 * We can't map this region at all. The specified 501 * address doesn't have the same alignment as the file 502 * position. Fake the mapping by simply reading the 503 * entire region into memory. First we need to make 504 * sure the region exists. 505 */ 506 vm_map_t map; 507 struct pread_args r; 508 int rv; 509 510 prot |= VM_PROT_WRITE; 511 map = &td->td_proc->p_vmspace->vm_map; 512 rv = vm_map_remove(map, start, end); 513 if (rv != KERN_SUCCESS) 514 return (EINVAL); 515 rv = vm_map_find(map, 0, 0, 516 &start, end - start, FALSE, 517 prot, VM_PROT_ALL, 0); 518 if (rv != KERN_SUCCESS) 519 return (EINVAL); 520 r.fd = fd; 521 r.buf = (void *) start; 522 r.nbyte = end - start; 523 r.offset = pos; 524 error = sys_pread(td, &r); 525 if (error) 526 return (error); 527 528 td->td_retval[0] = addr; 529 return (0); 530 } 531 if (end == start) { 532 /* 533 * After dealing with the ragged ends, there 534 * might be none left. 535 */ 536 td->td_retval[0] = addr; 537 return (0); 538 } 539 addr = start; 540 len = end - start; 541 } 542 #endif 543 544 #if defined(__amd64__) || defined(__ia64__) 545 if (i386_read_exec && (prot & PROT_READ)) 546 prot |= PROT_EXEC; 547 #endif 548 549 ap.addr = (void *) addr; 550 ap.len = len; 551 ap.prot = prot; 552 ap.flags = flags; 553 ap.fd = fd; 554 ap.pos = pos; 555 556 return (sys_mmap(td, &ap)); 557 } 558 559 #ifdef COMPAT_FREEBSD6 560 int 561 freebsd6_freebsd32_mmap(struct thread *td, struct freebsd6_freebsd32_mmap_args *uap) 562 { 563 struct freebsd32_mmap_args ap; 564 565 ap.addr = uap->addr; 566 ap.len = uap->len; 567 ap.prot = uap->prot; 568 ap.flags = uap->flags; 569 ap.fd = uap->fd; 570 ap.pos1 = uap->pos1; 571 ap.pos2 = uap->pos2; 572 573 return (freebsd32_mmap(td, &ap)); 574 } 575 #endif 576 577 int 578 freebsd32_setitimer(struct thread *td, struct freebsd32_setitimer_args *uap) 579 { 580 struct itimerval itv, oitv, *itvp; 581 struct itimerval32 i32; 582 int error; 583 584 if (uap->itv != NULL) { 585 error = copyin(uap->itv, &i32, sizeof(i32)); 586 if (error) 587 return (error); 588 TV_CP(i32, itv, it_interval); 589 TV_CP(i32, itv, it_value); 590 itvp = &itv; 591 } else 592 itvp = NULL; 593 error = kern_setitimer(td, uap->which, itvp, &oitv); 594 if (error || uap->oitv == NULL) 595 return (error); 596 TV_CP(oitv, i32, it_interval); 597 TV_CP(oitv, i32, it_value); 598 return (copyout(&i32, uap->oitv, sizeof(i32))); 599 } 600 601 int 602 freebsd32_getitimer(struct thread *td, struct freebsd32_getitimer_args *uap) 603 { 604 struct itimerval itv; 605 struct itimerval32 i32; 606 int error; 607 608 error = kern_getitimer(td, uap->which, &itv); 609 if (error || uap->itv == NULL) 610 return (error); 611 TV_CP(itv, i32, it_interval); 612 TV_CP(itv, i32, it_value); 613 return (copyout(&i32, uap->itv, sizeof(i32))); 614 } 615 616 int 617 freebsd32_select(struct thread *td, struct freebsd32_select_args *uap) 618 { 619 struct timeval32 tv32; 620 struct timeval tv, *tvp; 621 int error; 622 623 if (uap->tv != NULL) { 624 error = copyin(uap->tv, &tv32, sizeof(tv32)); 625 if (error) 626 return (error); 627 CP(tv32, tv, tv_sec); 628 CP(tv32, tv, tv_usec); 629 tvp = &tv; 630 } else 631 tvp = NULL; 632 /* 633 * XXX Do pointers need PTRIN()? 634 */ 635 return (kern_select(td, uap->nd, uap->in, uap->ou, uap->ex, tvp, 636 sizeof(int32_t) * 8)); 637 } 638 639 int 640 freebsd32_pselect(struct thread *td, struct freebsd32_pselect_args *uap) 641 { 642 struct timespec32 ts32; 643 struct timespec ts; 644 struct timeval tv, *tvp; 645 sigset_t set, *uset; 646 int error; 647 648 if (uap->ts != NULL) { 649 error = copyin(uap->ts, &ts32, sizeof(ts32)); 650 if (error != 0) 651 return (error); 652 CP(ts32, ts, tv_sec); 653 CP(ts32, ts, tv_nsec); 654 TIMESPEC_TO_TIMEVAL(&tv, &ts); 655 tvp = &tv; 656 } else 657 tvp = NULL; 658 if (uap->sm != NULL) { 659 error = copyin(uap->sm, &set, sizeof(set)); 660 if (error != 0) 661 return (error); 662 uset = &set; 663 } else 664 uset = NULL; 665 /* 666 * XXX Do pointers need PTRIN()? 667 */ 668 error = kern_pselect(td, uap->nd, uap->in, uap->ou, uap->ex, tvp, 669 uset, sizeof(int32_t) * 8); 670 return (error); 671 } 672 673 /* 674 * Copy 'count' items into the destination list pointed to by uap->eventlist. 675 */ 676 static int 677 freebsd32_kevent_copyout(void *arg, struct kevent *kevp, int count) 678 { 679 struct freebsd32_kevent_args *uap; 680 struct kevent32 ks32[KQ_NEVENTS]; 681 int i, error = 0; 682 683 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count)); 684 uap = (struct freebsd32_kevent_args *)arg; 685 686 for (i = 0; i < count; i++) { 687 CP(kevp[i], ks32[i], ident); 688 CP(kevp[i], ks32[i], filter); 689 CP(kevp[i], ks32[i], flags); 690 CP(kevp[i], ks32[i], fflags); 691 CP(kevp[i], ks32[i], data); 692 PTROUT_CP(kevp[i], ks32[i], udata); 693 } 694 error = copyout(ks32, uap->eventlist, count * sizeof *ks32); 695 if (error == 0) 696 uap->eventlist += count; 697 return (error); 698 } 699 700 /* 701 * Copy 'count' items from the list pointed to by uap->changelist. 702 */ 703 static int 704 freebsd32_kevent_copyin(void *arg, struct kevent *kevp, int count) 705 { 706 struct freebsd32_kevent_args *uap; 707 struct kevent32 ks32[KQ_NEVENTS]; 708 int i, error = 0; 709 710 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count)); 711 uap = (struct freebsd32_kevent_args *)arg; 712 713 error = copyin(uap->changelist, ks32, count * sizeof *ks32); 714 if (error) 715 goto done; 716 uap->changelist += count; 717 718 for (i = 0; i < count; i++) { 719 CP(ks32[i], kevp[i], ident); 720 CP(ks32[i], kevp[i], filter); 721 CP(ks32[i], kevp[i], flags); 722 CP(ks32[i], kevp[i], fflags); 723 CP(ks32[i], kevp[i], data); 724 PTRIN_CP(ks32[i], kevp[i], udata); 725 } 726 done: 727 return (error); 728 } 729 730 int 731 freebsd32_kevent(struct thread *td, struct freebsd32_kevent_args *uap) 732 { 733 struct timespec32 ts32; 734 struct timespec ts, *tsp; 735 struct kevent_copyops k_ops = { uap, 736 freebsd32_kevent_copyout, 737 freebsd32_kevent_copyin}; 738 int error; 739 740 741 if (uap->timeout) { 742 error = copyin(uap->timeout, &ts32, sizeof(ts32)); 743 if (error) 744 return (error); 745 CP(ts32, ts, tv_sec); 746 CP(ts32, ts, tv_nsec); 747 tsp = &ts; 748 } else 749 tsp = NULL; 750 error = kern_kevent(td, uap->fd, uap->nchanges, uap->nevents, 751 &k_ops, tsp); 752 return (error); 753 } 754 755 int 756 freebsd32_gettimeofday(struct thread *td, 757 struct freebsd32_gettimeofday_args *uap) 758 { 759 struct timeval atv; 760 struct timeval32 atv32; 761 struct timezone rtz; 762 int error = 0; 763 764 if (uap->tp) { 765 microtime(&atv); 766 CP(atv, atv32, tv_sec); 767 CP(atv, atv32, tv_usec); 768 error = copyout(&atv32, uap->tp, sizeof (atv32)); 769 } 770 if (error == 0 && uap->tzp != NULL) { 771 rtz.tz_minuteswest = tz_minuteswest; 772 rtz.tz_dsttime = tz_dsttime; 773 error = copyout(&rtz, uap->tzp, sizeof (rtz)); 774 } 775 return (error); 776 } 777 778 int 779 freebsd32_getrusage(struct thread *td, struct freebsd32_getrusage_args *uap) 780 { 781 struct rusage32 s32; 782 struct rusage s; 783 int error; 784 785 error = kern_getrusage(td, uap->who, &s); 786 if (error) 787 return (error); 788 if (uap->rusage != NULL) { 789 freebsd32_rusage_out(&s, &s32); 790 error = copyout(&s32, uap->rusage, sizeof(s32)); 791 } 792 return (error); 793 } 794 795 static int 796 freebsd32_copyinuio(struct iovec32 *iovp, u_int iovcnt, struct uio **uiop) 797 { 798 struct iovec32 iov32; 799 struct iovec *iov; 800 struct uio *uio; 801 u_int iovlen; 802 int error, i; 803 804 *uiop = NULL; 805 if (iovcnt > UIO_MAXIOV) 806 return (EINVAL); 807 iovlen = iovcnt * sizeof(struct iovec); 808 uio = malloc(iovlen + sizeof *uio, M_IOV, M_WAITOK); 809 iov = (struct iovec *)(uio + 1); 810 for (i = 0; i < iovcnt; i++) { 811 error = copyin(&iovp[i], &iov32, sizeof(struct iovec32)); 812 if (error) { 813 free(uio, M_IOV); 814 return (error); 815 } 816 iov[i].iov_base = PTRIN(iov32.iov_base); 817 iov[i].iov_len = iov32.iov_len; 818 } 819 uio->uio_iov = iov; 820 uio->uio_iovcnt = iovcnt; 821 uio->uio_segflg = UIO_USERSPACE; 822 uio->uio_offset = -1; 823 uio->uio_resid = 0; 824 for (i = 0; i < iovcnt; i++) { 825 if (iov->iov_len > INT_MAX - uio->uio_resid) { 826 free(uio, M_IOV); 827 return (EINVAL); 828 } 829 uio->uio_resid += iov->iov_len; 830 iov++; 831 } 832 *uiop = uio; 833 return (0); 834 } 835 836 int 837 freebsd32_readv(struct thread *td, struct freebsd32_readv_args *uap) 838 { 839 struct uio *auio; 840 int error; 841 842 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 843 if (error) 844 return (error); 845 error = kern_readv(td, uap->fd, auio); 846 free(auio, M_IOV); 847 return (error); 848 } 849 850 int 851 freebsd32_writev(struct thread *td, struct freebsd32_writev_args *uap) 852 { 853 struct uio *auio; 854 int error; 855 856 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 857 if (error) 858 return (error); 859 error = kern_writev(td, uap->fd, auio); 860 free(auio, M_IOV); 861 return (error); 862 } 863 864 int 865 freebsd32_preadv(struct thread *td, struct freebsd32_preadv_args *uap) 866 { 867 struct uio *auio; 868 int error; 869 870 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 871 if (error) 872 return (error); 873 error = kern_preadv(td, uap->fd, auio, PAIR32TO64(off_t,uap->offset)); 874 free(auio, M_IOV); 875 return (error); 876 } 877 878 int 879 freebsd32_pwritev(struct thread *td, struct freebsd32_pwritev_args *uap) 880 { 881 struct uio *auio; 882 int error; 883 884 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 885 if (error) 886 return (error); 887 error = kern_pwritev(td, uap->fd, auio, PAIR32TO64(off_t,uap->offset)); 888 free(auio, M_IOV); 889 return (error); 890 } 891 892 int 893 freebsd32_copyiniov(struct iovec32 *iovp32, u_int iovcnt, struct iovec **iovp, 894 int error) 895 { 896 struct iovec32 iov32; 897 struct iovec *iov; 898 u_int iovlen; 899 int i; 900 901 *iovp = NULL; 902 if (iovcnt > UIO_MAXIOV) 903 return (error); 904 iovlen = iovcnt * sizeof(struct iovec); 905 iov = malloc(iovlen, M_IOV, M_WAITOK); 906 for (i = 0; i < iovcnt; i++) { 907 error = copyin(&iovp32[i], &iov32, sizeof(struct iovec32)); 908 if (error) { 909 free(iov, M_IOV); 910 return (error); 911 } 912 iov[i].iov_base = PTRIN(iov32.iov_base); 913 iov[i].iov_len = iov32.iov_len; 914 } 915 *iovp = iov; 916 return (0); 917 } 918 919 static int 920 freebsd32_copyinmsghdr(struct msghdr32 *msg32, struct msghdr *msg) 921 { 922 struct msghdr32 m32; 923 int error; 924 925 error = copyin(msg32, &m32, sizeof(m32)); 926 if (error) 927 return (error); 928 msg->msg_name = PTRIN(m32.msg_name); 929 msg->msg_namelen = m32.msg_namelen; 930 msg->msg_iov = PTRIN(m32.msg_iov); 931 msg->msg_iovlen = m32.msg_iovlen; 932 msg->msg_control = PTRIN(m32.msg_control); 933 msg->msg_controllen = m32.msg_controllen; 934 msg->msg_flags = m32.msg_flags; 935 return (0); 936 } 937 938 static int 939 freebsd32_copyoutmsghdr(struct msghdr *msg, struct msghdr32 *msg32) 940 { 941 struct msghdr32 m32; 942 int error; 943 944 m32.msg_name = PTROUT(msg->msg_name); 945 m32.msg_namelen = msg->msg_namelen; 946 m32.msg_iov = PTROUT(msg->msg_iov); 947 m32.msg_iovlen = msg->msg_iovlen; 948 m32.msg_control = PTROUT(msg->msg_control); 949 m32.msg_controllen = msg->msg_controllen; 950 m32.msg_flags = msg->msg_flags; 951 error = copyout(&m32, msg32, sizeof(m32)); 952 return (error); 953 } 954 955 #ifndef __mips__ 956 #define FREEBSD32_ALIGNBYTES (sizeof(int) - 1) 957 #else 958 #define FREEBSD32_ALIGNBYTES (sizeof(long) - 1) 959 #endif 960 #define FREEBSD32_ALIGN(p) \ 961 (((u_long)(p) + FREEBSD32_ALIGNBYTES) & ~FREEBSD32_ALIGNBYTES) 962 #define FREEBSD32_CMSG_SPACE(l) \ 963 (FREEBSD32_ALIGN(sizeof(struct cmsghdr)) + FREEBSD32_ALIGN(l)) 964 965 #define FREEBSD32_CMSG_DATA(cmsg) ((unsigned char *)(cmsg) + \ 966 FREEBSD32_ALIGN(sizeof(struct cmsghdr))) 967 static int 968 freebsd32_copy_msg_out(struct msghdr *msg, struct mbuf *control) 969 { 970 struct cmsghdr *cm; 971 void *data; 972 socklen_t clen, datalen; 973 int error; 974 caddr_t ctlbuf; 975 int len, maxlen, copylen; 976 struct mbuf *m; 977 error = 0; 978 979 len = msg->msg_controllen; 980 maxlen = msg->msg_controllen; 981 msg->msg_controllen = 0; 982 983 m = control; 984 ctlbuf = msg->msg_control; 985 986 while (m && len > 0) { 987 cm = mtod(m, struct cmsghdr *); 988 clen = m->m_len; 989 990 while (cm != NULL) { 991 992 if (sizeof(struct cmsghdr) > clen || 993 cm->cmsg_len > clen) { 994 error = EINVAL; 995 break; 996 } 997 998 data = CMSG_DATA(cm); 999 datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data; 1000 1001 /* Adjust message length */ 1002 cm->cmsg_len = FREEBSD32_ALIGN(sizeof(struct cmsghdr)) + 1003 datalen; 1004 1005 1006 /* Copy cmsghdr */ 1007 copylen = sizeof(struct cmsghdr); 1008 if (len < copylen) { 1009 msg->msg_flags |= MSG_CTRUNC; 1010 copylen = len; 1011 } 1012 1013 error = copyout(cm,ctlbuf,copylen); 1014 if (error) 1015 goto exit; 1016 1017 ctlbuf += FREEBSD32_ALIGN(copylen); 1018 len -= FREEBSD32_ALIGN(copylen); 1019 1020 if (len <= 0) 1021 break; 1022 1023 /* Copy data */ 1024 copylen = datalen; 1025 if (len < copylen) { 1026 msg->msg_flags |= MSG_CTRUNC; 1027 copylen = len; 1028 } 1029 1030 error = copyout(data,ctlbuf,copylen); 1031 if (error) 1032 goto exit; 1033 1034 ctlbuf += FREEBSD32_ALIGN(copylen); 1035 len -= FREEBSD32_ALIGN(copylen); 1036 1037 if (CMSG_SPACE(datalen) < clen) { 1038 clen -= CMSG_SPACE(datalen); 1039 cm = (struct cmsghdr *) 1040 ((caddr_t)cm + CMSG_SPACE(datalen)); 1041 } else { 1042 clen = 0; 1043 cm = NULL; 1044 } 1045 } 1046 m = m->m_next; 1047 } 1048 1049 msg->msg_controllen = (len <= 0) ? maxlen : ctlbuf - (caddr_t)msg->msg_control; 1050 1051 exit: 1052 return (error); 1053 1054 } 1055 1056 int 1057 freebsd32_recvmsg(td, uap) 1058 struct thread *td; 1059 struct freebsd32_recvmsg_args /* { 1060 int s; 1061 struct msghdr32 *msg; 1062 int flags; 1063 } */ *uap; 1064 { 1065 struct msghdr msg; 1066 struct msghdr32 m32; 1067 struct iovec *uiov, *iov; 1068 struct mbuf *control = NULL; 1069 struct mbuf **controlp; 1070 1071 int error; 1072 error = copyin(uap->msg, &m32, sizeof(m32)); 1073 if (error) 1074 return (error); 1075 error = freebsd32_copyinmsghdr(uap->msg, &msg); 1076 if (error) 1077 return (error); 1078 error = freebsd32_copyiniov(PTRIN(m32.msg_iov), m32.msg_iovlen, &iov, 1079 EMSGSIZE); 1080 if (error) 1081 return (error); 1082 msg.msg_flags = uap->flags; 1083 uiov = msg.msg_iov; 1084 msg.msg_iov = iov; 1085 1086 controlp = (msg.msg_control != NULL) ? &control : NULL; 1087 error = kern_recvit(td, uap->s, &msg, UIO_USERSPACE, controlp); 1088 if (error == 0) { 1089 msg.msg_iov = uiov; 1090 1091 if (control != NULL) 1092 error = freebsd32_copy_msg_out(&msg, control); 1093 else 1094 msg.msg_controllen = 0; 1095 1096 if (error == 0) 1097 error = freebsd32_copyoutmsghdr(&msg, uap->msg); 1098 } 1099 free(iov, M_IOV); 1100 1101 if (control != NULL) 1102 m_freem(control); 1103 1104 return (error); 1105 } 1106 1107 1108 static int 1109 freebsd32_convert_msg_in(struct mbuf **controlp) 1110 { 1111 struct mbuf *control = *controlp; 1112 struct cmsghdr *cm = mtod(control, struct cmsghdr *); 1113 void *data; 1114 socklen_t clen = control->m_len, datalen; 1115 int error; 1116 1117 error = 0; 1118 *controlp = NULL; 1119 1120 while (cm != NULL) { 1121 if (sizeof(struct cmsghdr) > clen || cm->cmsg_len > clen) { 1122 error = EINVAL; 1123 break; 1124 } 1125 1126 data = FREEBSD32_CMSG_DATA(cm); 1127 datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data; 1128 1129 *controlp = sbcreatecontrol(data, datalen, cm->cmsg_type, 1130 cm->cmsg_level); 1131 controlp = &(*controlp)->m_next; 1132 1133 if (FREEBSD32_CMSG_SPACE(datalen) < clen) { 1134 clen -= FREEBSD32_CMSG_SPACE(datalen); 1135 cm = (struct cmsghdr *) 1136 ((caddr_t)cm + FREEBSD32_CMSG_SPACE(datalen)); 1137 } else { 1138 clen = 0; 1139 cm = NULL; 1140 } 1141 } 1142 1143 m_freem(control); 1144 return (error); 1145 } 1146 1147 1148 int 1149 freebsd32_sendmsg(struct thread *td, 1150 struct freebsd32_sendmsg_args *uap) 1151 { 1152 struct msghdr msg; 1153 struct msghdr32 m32; 1154 struct iovec *iov; 1155 struct mbuf *control = NULL; 1156 struct sockaddr *to = NULL; 1157 int error; 1158 1159 error = copyin(uap->msg, &m32, sizeof(m32)); 1160 if (error) 1161 return (error); 1162 error = freebsd32_copyinmsghdr(uap->msg, &msg); 1163 if (error) 1164 return (error); 1165 error = freebsd32_copyiniov(PTRIN(m32.msg_iov), m32.msg_iovlen, &iov, 1166 EMSGSIZE); 1167 if (error) 1168 return (error); 1169 msg.msg_iov = iov; 1170 if (msg.msg_name != NULL) { 1171 error = getsockaddr(&to, msg.msg_name, msg.msg_namelen); 1172 if (error) { 1173 to = NULL; 1174 goto out; 1175 } 1176 msg.msg_name = to; 1177 } 1178 1179 if (msg.msg_control) { 1180 if (msg.msg_controllen < sizeof(struct cmsghdr)) { 1181 error = EINVAL; 1182 goto out; 1183 } 1184 1185 error = sockargs(&control, msg.msg_control, 1186 msg.msg_controllen, MT_CONTROL); 1187 if (error) 1188 goto out; 1189 1190 error = freebsd32_convert_msg_in(&control); 1191 if (error) 1192 goto out; 1193 } 1194 1195 error = kern_sendit(td, uap->s, &msg, uap->flags, control, 1196 UIO_USERSPACE); 1197 1198 out: 1199 free(iov, M_IOV); 1200 if (to) 1201 free(to, M_SONAME); 1202 return (error); 1203 } 1204 1205 int 1206 freebsd32_recvfrom(struct thread *td, 1207 struct freebsd32_recvfrom_args *uap) 1208 { 1209 struct msghdr msg; 1210 struct iovec aiov; 1211 int error; 1212 1213 if (uap->fromlenaddr) { 1214 error = copyin(PTRIN(uap->fromlenaddr), &msg.msg_namelen, 1215 sizeof(msg.msg_namelen)); 1216 if (error) 1217 return (error); 1218 } else { 1219 msg.msg_namelen = 0; 1220 } 1221 1222 msg.msg_name = PTRIN(uap->from); 1223 msg.msg_iov = &aiov; 1224 msg.msg_iovlen = 1; 1225 aiov.iov_base = PTRIN(uap->buf); 1226 aiov.iov_len = uap->len; 1227 msg.msg_control = NULL; 1228 msg.msg_flags = uap->flags; 1229 error = kern_recvit(td, uap->s, &msg, UIO_USERSPACE, NULL); 1230 if (error == 0 && uap->fromlenaddr) 1231 error = copyout(&msg.msg_namelen, PTRIN(uap->fromlenaddr), 1232 sizeof (msg.msg_namelen)); 1233 return (error); 1234 } 1235 1236 int 1237 freebsd32_settimeofday(struct thread *td, 1238 struct freebsd32_settimeofday_args *uap) 1239 { 1240 struct timeval32 tv32; 1241 struct timeval tv, *tvp; 1242 struct timezone tz, *tzp; 1243 int error; 1244 1245 if (uap->tv) { 1246 error = copyin(uap->tv, &tv32, sizeof(tv32)); 1247 if (error) 1248 return (error); 1249 CP(tv32, tv, tv_sec); 1250 CP(tv32, tv, tv_usec); 1251 tvp = &tv; 1252 } else 1253 tvp = NULL; 1254 if (uap->tzp) { 1255 error = copyin(uap->tzp, &tz, sizeof(tz)); 1256 if (error) 1257 return (error); 1258 tzp = &tz; 1259 } else 1260 tzp = NULL; 1261 return (kern_settimeofday(td, tvp, tzp)); 1262 } 1263 1264 int 1265 freebsd32_utimes(struct thread *td, struct freebsd32_utimes_args *uap) 1266 { 1267 struct timeval32 s32[2]; 1268 struct timeval s[2], *sp; 1269 int error; 1270 1271 if (uap->tptr != NULL) { 1272 error = copyin(uap->tptr, s32, sizeof(s32)); 1273 if (error) 1274 return (error); 1275 CP(s32[0], s[0], tv_sec); 1276 CP(s32[0], s[0], tv_usec); 1277 CP(s32[1], s[1], tv_sec); 1278 CP(s32[1], s[1], tv_usec); 1279 sp = s; 1280 } else 1281 sp = NULL; 1282 return (kern_utimes(td, uap->path, UIO_USERSPACE, sp, UIO_SYSSPACE)); 1283 } 1284 1285 int 1286 freebsd32_lutimes(struct thread *td, struct freebsd32_lutimes_args *uap) 1287 { 1288 struct timeval32 s32[2]; 1289 struct timeval s[2], *sp; 1290 int error; 1291 1292 if (uap->tptr != NULL) { 1293 error = copyin(uap->tptr, s32, sizeof(s32)); 1294 if (error) 1295 return (error); 1296 CP(s32[0], s[0], tv_sec); 1297 CP(s32[0], s[0], tv_usec); 1298 CP(s32[1], s[1], tv_sec); 1299 CP(s32[1], s[1], tv_usec); 1300 sp = s; 1301 } else 1302 sp = NULL; 1303 return (kern_lutimes(td, uap->path, UIO_USERSPACE, sp, UIO_SYSSPACE)); 1304 } 1305 1306 int 1307 freebsd32_futimes(struct thread *td, struct freebsd32_futimes_args *uap) 1308 { 1309 struct timeval32 s32[2]; 1310 struct timeval s[2], *sp; 1311 int error; 1312 1313 if (uap->tptr != NULL) { 1314 error = copyin(uap->tptr, s32, sizeof(s32)); 1315 if (error) 1316 return (error); 1317 CP(s32[0], s[0], tv_sec); 1318 CP(s32[0], s[0], tv_usec); 1319 CP(s32[1], s[1], tv_sec); 1320 CP(s32[1], s[1], tv_usec); 1321 sp = s; 1322 } else 1323 sp = NULL; 1324 return (kern_futimes(td, uap->fd, sp, UIO_SYSSPACE)); 1325 } 1326 1327 int 1328 freebsd32_futimesat(struct thread *td, struct freebsd32_futimesat_args *uap) 1329 { 1330 struct timeval32 s32[2]; 1331 struct timeval s[2], *sp; 1332 int error; 1333 1334 if (uap->times != NULL) { 1335 error = copyin(uap->times, s32, sizeof(s32)); 1336 if (error) 1337 return (error); 1338 CP(s32[0], s[0], tv_sec); 1339 CP(s32[0], s[0], tv_usec); 1340 CP(s32[1], s[1], tv_sec); 1341 CP(s32[1], s[1], tv_usec); 1342 sp = s; 1343 } else 1344 sp = NULL; 1345 return (kern_utimesat(td, uap->fd, uap->path, UIO_USERSPACE, 1346 sp, UIO_SYSSPACE)); 1347 } 1348 1349 int 1350 freebsd32_adjtime(struct thread *td, struct freebsd32_adjtime_args *uap) 1351 { 1352 struct timeval32 tv32; 1353 struct timeval delta, olddelta, *deltap; 1354 int error; 1355 1356 if (uap->delta) { 1357 error = copyin(uap->delta, &tv32, sizeof(tv32)); 1358 if (error) 1359 return (error); 1360 CP(tv32, delta, tv_sec); 1361 CP(tv32, delta, tv_usec); 1362 deltap = δ 1363 } else 1364 deltap = NULL; 1365 error = kern_adjtime(td, deltap, &olddelta); 1366 if (uap->olddelta && error == 0) { 1367 CP(olddelta, tv32, tv_sec); 1368 CP(olddelta, tv32, tv_usec); 1369 error = copyout(&tv32, uap->olddelta, sizeof(tv32)); 1370 } 1371 return (error); 1372 } 1373 1374 #ifdef COMPAT_FREEBSD4 1375 int 1376 freebsd4_freebsd32_statfs(struct thread *td, struct freebsd4_freebsd32_statfs_args *uap) 1377 { 1378 struct statfs32 s32; 1379 struct statfs s; 1380 int error; 1381 1382 error = kern_statfs(td, uap->path, UIO_USERSPACE, &s); 1383 if (error) 1384 return (error); 1385 copy_statfs(&s, &s32); 1386 return (copyout(&s32, uap->buf, sizeof(s32))); 1387 } 1388 #endif 1389 1390 #ifdef COMPAT_FREEBSD4 1391 int 1392 freebsd4_freebsd32_fstatfs(struct thread *td, struct freebsd4_freebsd32_fstatfs_args *uap) 1393 { 1394 struct statfs32 s32; 1395 struct statfs s; 1396 int error; 1397 1398 error = kern_fstatfs(td, uap->fd, &s); 1399 if (error) 1400 return (error); 1401 copy_statfs(&s, &s32); 1402 return (copyout(&s32, uap->buf, sizeof(s32))); 1403 } 1404 #endif 1405 1406 #ifdef COMPAT_FREEBSD4 1407 int 1408 freebsd4_freebsd32_fhstatfs(struct thread *td, struct freebsd4_freebsd32_fhstatfs_args *uap) 1409 { 1410 struct statfs32 s32; 1411 struct statfs s; 1412 fhandle_t fh; 1413 int error; 1414 1415 if ((error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t))) != 0) 1416 return (error); 1417 error = kern_fhstatfs(td, fh, &s); 1418 if (error) 1419 return (error); 1420 copy_statfs(&s, &s32); 1421 return (copyout(&s32, uap->buf, sizeof(s32))); 1422 } 1423 #endif 1424 1425 int 1426 freebsd32_pread(struct thread *td, struct freebsd32_pread_args *uap) 1427 { 1428 struct pread_args ap; 1429 1430 ap.fd = uap->fd; 1431 ap.buf = uap->buf; 1432 ap.nbyte = uap->nbyte; 1433 ap.offset = PAIR32TO64(off_t,uap->offset); 1434 return (sys_pread(td, &ap)); 1435 } 1436 1437 int 1438 freebsd32_pwrite(struct thread *td, struct freebsd32_pwrite_args *uap) 1439 { 1440 struct pwrite_args ap; 1441 1442 ap.fd = uap->fd; 1443 ap.buf = uap->buf; 1444 ap.nbyte = uap->nbyte; 1445 ap.offset = PAIR32TO64(off_t,uap->offset); 1446 return (sys_pwrite(td, &ap)); 1447 } 1448 1449 #ifdef COMPAT_43 1450 int 1451 ofreebsd32_lseek(struct thread *td, struct ofreebsd32_lseek_args *uap) 1452 { 1453 struct lseek_args nuap; 1454 1455 nuap.fd = uap->fd; 1456 nuap.offset = uap->offset; 1457 nuap.whence = uap->whence; 1458 return (sys_lseek(td, &nuap)); 1459 } 1460 #endif 1461 1462 int 1463 freebsd32_lseek(struct thread *td, struct freebsd32_lseek_args *uap) 1464 { 1465 int error; 1466 struct lseek_args ap; 1467 off_t pos; 1468 1469 ap.fd = uap->fd; 1470 ap.offset = PAIR32TO64(off_t,uap->offset); 1471 ap.whence = uap->whence; 1472 error = sys_lseek(td, &ap); 1473 /* Expand the quad return into two parts for eax and edx */ 1474 pos = *(off_t *)(td->td_retval); 1475 td->td_retval[RETVAL_LO] = pos & 0xffffffff; /* %eax */ 1476 td->td_retval[RETVAL_HI] = pos >> 32; /* %edx */ 1477 return error; 1478 } 1479 1480 int 1481 freebsd32_truncate(struct thread *td, struct freebsd32_truncate_args *uap) 1482 { 1483 struct truncate_args ap; 1484 1485 ap.path = uap->path; 1486 ap.length = PAIR32TO64(off_t,uap->length); 1487 return (sys_truncate(td, &ap)); 1488 } 1489 1490 int 1491 freebsd32_ftruncate(struct thread *td, struct freebsd32_ftruncate_args *uap) 1492 { 1493 struct ftruncate_args ap; 1494 1495 ap.fd = uap->fd; 1496 ap.length = PAIR32TO64(off_t,uap->length); 1497 return (sys_ftruncate(td, &ap)); 1498 } 1499 1500 #ifdef COMPAT_43 1501 int 1502 ofreebsd32_getdirentries(struct thread *td, 1503 struct ofreebsd32_getdirentries_args *uap) 1504 { 1505 struct ogetdirentries_args ap; 1506 int error; 1507 long loff; 1508 int32_t loff_cut; 1509 1510 ap.fd = uap->fd; 1511 ap.buf = uap->buf; 1512 ap.count = uap->count; 1513 ap.basep = NULL; 1514 error = kern_ogetdirentries(td, &ap, &loff); 1515 if (error == 0) { 1516 loff_cut = loff; 1517 error = copyout(&loff_cut, uap->basep, sizeof(int32_t)); 1518 } 1519 return (error); 1520 } 1521 #endif 1522 1523 int 1524 freebsd32_getdirentries(struct thread *td, 1525 struct freebsd32_getdirentries_args *uap) 1526 { 1527 long base; 1528 int32_t base32; 1529 int error; 1530 1531 error = kern_getdirentries(td, uap->fd, uap->buf, uap->count, &base); 1532 if (error) 1533 return (error); 1534 if (uap->basep != NULL) { 1535 base32 = base; 1536 error = copyout(&base32, uap->basep, sizeof(int32_t)); 1537 } 1538 return (error); 1539 } 1540 1541 #ifdef COMPAT_FREEBSD6 1542 /* versions with the 'int pad' argument */ 1543 int 1544 freebsd6_freebsd32_pread(struct thread *td, struct freebsd6_freebsd32_pread_args *uap) 1545 { 1546 struct pread_args ap; 1547 1548 ap.fd = uap->fd; 1549 ap.buf = uap->buf; 1550 ap.nbyte = uap->nbyte; 1551 ap.offset = PAIR32TO64(off_t,uap->offset); 1552 return (sys_pread(td, &ap)); 1553 } 1554 1555 int 1556 freebsd6_freebsd32_pwrite(struct thread *td, struct freebsd6_freebsd32_pwrite_args *uap) 1557 { 1558 struct pwrite_args ap; 1559 1560 ap.fd = uap->fd; 1561 ap.buf = uap->buf; 1562 ap.nbyte = uap->nbyte; 1563 ap.offset = PAIR32TO64(off_t,uap->offset); 1564 return (sys_pwrite(td, &ap)); 1565 } 1566 1567 int 1568 freebsd6_freebsd32_lseek(struct thread *td, struct freebsd6_freebsd32_lseek_args *uap) 1569 { 1570 int error; 1571 struct lseek_args ap; 1572 off_t pos; 1573 1574 ap.fd = uap->fd; 1575 ap.offset = PAIR32TO64(off_t,uap->offset); 1576 ap.whence = uap->whence; 1577 error = sys_lseek(td, &ap); 1578 /* Expand the quad return into two parts for eax and edx */ 1579 pos = *(off_t *)(td->td_retval); 1580 td->td_retval[RETVAL_LO] = pos & 0xffffffff; /* %eax */ 1581 td->td_retval[RETVAL_HI] = pos >> 32; /* %edx */ 1582 return error; 1583 } 1584 1585 int 1586 freebsd6_freebsd32_truncate(struct thread *td, struct freebsd6_freebsd32_truncate_args *uap) 1587 { 1588 struct truncate_args ap; 1589 1590 ap.path = uap->path; 1591 ap.length = PAIR32TO64(off_t,uap->length); 1592 return (sys_truncate(td, &ap)); 1593 } 1594 1595 int 1596 freebsd6_freebsd32_ftruncate(struct thread *td, struct freebsd6_freebsd32_ftruncate_args *uap) 1597 { 1598 struct ftruncate_args ap; 1599 1600 ap.fd = uap->fd; 1601 ap.length = PAIR32TO64(off_t,uap->length); 1602 return (sys_ftruncate(td, &ap)); 1603 } 1604 #endif /* COMPAT_FREEBSD6 */ 1605 1606 struct sf_hdtr32 { 1607 uint32_t headers; 1608 int hdr_cnt; 1609 uint32_t trailers; 1610 int trl_cnt; 1611 }; 1612 1613 static int 1614 freebsd32_do_sendfile(struct thread *td, 1615 struct freebsd32_sendfile_args *uap, int compat) 1616 { 1617 struct sendfile_args ap; 1618 struct sf_hdtr32 hdtr32; 1619 struct sf_hdtr hdtr; 1620 struct uio *hdr_uio, *trl_uio; 1621 struct iovec32 *iov32; 1622 int error; 1623 1624 hdr_uio = trl_uio = NULL; 1625 1626 ap.fd = uap->fd; 1627 ap.s = uap->s; 1628 ap.offset = PAIR32TO64(off_t,uap->offset); 1629 ap.nbytes = uap->nbytes; 1630 ap.hdtr = (struct sf_hdtr *)uap->hdtr; /* XXX not used */ 1631 ap.sbytes = uap->sbytes; 1632 ap.flags = uap->flags; 1633 1634 if (uap->hdtr != NULL) { 1635 error = copyin(uap->hdtr, &hdtr32, sizeof(hdtr32)); 1636 if (error) 1637 goto out; 1638 PTRIN_CP(hdtr32, hdtr, headers); 1639 CP(hdtr32, hdtr, hdr_cnt); 1640 PTRIN_CP(hdtr32, hdtr, trailers); 1641 CP(hdtr32, hdtr, trl_cnt); 1642 1643 if (hdtr.headers != NULL) { 1644 iov32 = PTRIN(hdtr32.headers); 1645 error = freebsd32_copyinuio(iov32, 1646 hdtr32.hdr_cnt, &hdr_uio); 1647 if (error) 1648 goto out; 1649 } 1650 if (hdtr.trailers != NULL) { 1651 iov32 = PTRIN(hdtr32.trailers); 1652 error = freebsd32_copyinuio(iov32, 1653 hdtr32.trl_cnt, &trl_uio); 1654 if (error) 1655 goto out; 1656 } 1657 } 1658 1659 error = kern_sendfile(td, &ap, hdr_uio, trl_uio, compat); 1660 out: 1661 if (hdr_uio) 1662 free(hdr_uio, M_IOV); 1663 if (trl_uio) 1664 free(trl_uio, M_IOV); 1665 return (error); 1666 } 1667 1668 #ifdef COMPAT_FREEBSD4 1669 int 1670 freebsd4_freebsd32_sendfile(struct thread *td, 1671 struct freebsd4_freebsd32_sendfile_args *uap) 1672 { 1673 return (freebsd32_do_sendfile(td, 1674 (struct freebsd32_sendfile_args *)uap, 1)); 1675 } 1676 #endif 1677 1678 int 1679 freebsd32_sendfile(struct thread *td, struct freebsd32_sendfile_args *uap) 1680 { 1681 1682 return (freebsd32_do_sendfile(td, uap, 0)); 1683 } 1684 1685 static void 1686 copy_stat(struct stat *in, struct stat32 *out) 1687 { 1688 1689 CP(*in, *out, st_dev); 1690 CP(*in, *out, st_ino); 1691 CP(*in, *out, st_mode); 1692 CP(*in, *out, st_nlink); 1693 CP(*in, *out, st_uid); 1694 CP(*in, *out, st_gid); 1695 CP(*in, *out, st_rdev); 1696 TS_CP(*in, *out, st_atim); 1697 TS_CP(*in, *out, st_mtim); 1698 TS_CP(*in, *out, st_ctim); 1699 CP(*in, *out, st_size); 1700 CP(*in, *out, st_blocks); 1701 CP(*in, *out, st_blksize); 1702 CP(*in, *out, st_flags); 1703 CP(*in, *out, st_gen); 1704 TS_CP(*in, *out, st_birthtim); 1705 } 1706 1707 #ifdef COMPAT_43 1708 static void 1709 copy_ostat(struct stat *in, struct ostat32 *out) 1710 { 1711 1712 CP(*in, *out, st_dev); 1713 CP(*in, *out, st_ino); 1714 CP(*in, *out, st_mode); 1715 CP(*in, *out, st_nlink); 1716 CP(*in, *out, st_uid); 1717 CP(*in, *out, st_gid); 1718 CP(*in, *out, st_rdev); 1719 CP(*in, *out, st_size); 1720 TS_CP(*in, *out, st_atim); 1721 TS_CP(*in, *out, st_mtim); 1722 TS_CP(*in, *out, st_ctim); 1723 CP(*in, *out, st_blksize); 1724 CP(*in, *out, st_blocks); 1725 CP(*in, *out, st_flags); 1726 CP(*in, *out, st_gen); 1727 } 1728 #endif 1729 1730 int 1731 freebsd32_stat(struct thread *td, struct freebsd32_stat_args *uap) 1732 { 1733 struct stat sb; 1734 struct stat32 sb32; 1735 int error; 1736 1737 error = kern_stat(td, uap->path, UIO_USERSPACE, &sb); 1738 if (error) 1739 return (error); 1740 copy_stat(&sb, &sb32); 1741 error = copyout(&sb32, uap->ub, sizeof (sb32)); 1742 return (error); 1743 } 1744 1745 #ifdef COMPAT_43 1746 int 1747 ofreebsd32_stat(struct thread *td, struct ofreebsd32_stat_args *uap) 1748 { 1749 struct stat sb; 1750 struct ostat32 sb32; 1751 int error; 1752 1753 error = kern_stat(td, uap->path, UIO_USERSPACE, &sb); 1754 if (error) 1755 return (error); 1756 copy_ostat(&sb, &sb32); 1757 error = copyout(&sb32, uap->ub, sizeof (sb32)); 1758 return (error); 1759 } 1760 #endif 1761 1762 int 1763 freebsd32_fstat(struct thread *td, struct freebsd32_fstat_args *uap) 1764 { 1765 struct stat ub; 1766 struct stat32 ub32; 1767 int error; 1768 1769 error = kern_fstat(td, uap->fd, &ub); 1770 if (error) 1771 return (error); 1772 copy_stat(&ub, &ub32); 1773 error = copyout(&ub32, uap->ub, sizeof(ub32)); 1774 return (error); 1775 } 1776 1777 #ifdef COMPAT_43 1778 int 1779 ofreebsd32_fstat(struct thread *td, struct ofreebsd32_fstat_args *uap) 1780 { 1781 struct stat ub; 1782 struct ostat32 ub32; 1783 int error; 1784 1785 error = kern_fstat(td, uap->fd, &ub); 1786 if (error) 1787 return (error); 1788 copy_ostat(&ub, &ub32); 1789 error = copyout(&ub32, uap->ub, sizeof(ub32)); 1790 return (error); 1791 } 1792 #endif 1793 1794 int 1795 freebsd32_fstatat(struct thread *td, struct freebsd32_fstatat_args *uap) 1796 { 1797 struct stat ub; 1798 struct stat32 ub32; 1799 int error; 1800 1801 error = kern_statat(td, uap->flag, uap->fd, uap->path, UIO_USERSPACE, &ub); 1802 if (error) 1803 return (error); 1804 copy_stat(&ub, &ub32); 1805 error = copyout(&ub32, uap->buf, sizeof(ub32)); 1806 return (error); 1807 } 1808 1809 int 1810 freebsd32_lstat(struct thread *td, struct freebsd32_lstat_args *uap) 1811 { 1812 struct stat sb; 1813 struct stat32 sb32; 1814 int error; 1815 1816 error = kern_lstat(td, uap->path, UIO_USERSPACE, &sb); 1817 if (error) 1818 return (error); 1819 copy_stat(&sb, &sb32); 1820 error = copyout(&sb32, uap->ub, sizeof (sb32)); 1821 return (error); 1822 } 1823 1824 #ifdef COMPAT_43 1825 int 1826 ofreebsd32_lstat(struct thread *td, struct ofreebsd32_lstat_args *uap) 1827 { 1828 struct stat sb; 1829 struct ostat32 sb32; 1830 int error; 1831 1832 error = kern_lstat(td, uap->path, UIO_USERSPACE, &sb); 1833 if (error) 1834 return (error); 1835 copy_ostat(&sb, &sb32); 1836 error = copyout(&sb32, uap->ub, sizeof (sb32)); 1837 return (error); 1838 } 1839 #endif 1840 1841 int 1842 freebsd32_sysctl(struct thread *td, struct freebsd32_sysctl_args *uap) 1843 { 1844 int error, name[CTL_MAXNAME]; 1845 size_t j, oldlen; 1846 1847 if (uap->namelen > CTL_MAXNAME || uap->namelen < 2) 1848 return (EINVAL); 1849 error = copyin(uap->name, name, uap->namelen * sizeof(int)); 1850 if (error) 1851 return (error); 1852 if (uap->oldlenp) 1853 oldlen = fuword32(uap->oldlenp); 1854 else 1855 oldlen = 0; 1856 error = userland_sysctl(td, name, uap->namelen, 1857 uap->old, &oldlen, 1, 1858 uap->new, uap->newlen, &j, SCTL_MASK32); 1859 if (error && error != ENOMEM) 1860 return (error); 1861 if (uap->oldlenp) 1862 suword32(uap->oldlenp, j); 1863 return (0); 1864 } 1865 1866 int 1867 freebsd32_jail(struct thread *td, struct freebsd32_jail_args *uap) 1868 { 1869 uint32_t version; 1870 int error; 1871 struct jail j; 1872 1873 error = copyin(uap->jail, &version, sizeof(uint32_t)); 1874 if (error) 1875 return (error); 1876 1877 switch (version) { 1878 case 0: 1879 { 1880 /* FreeBSD single IPv4 jails. */ 1881 struct jail32_v0 j32_v0; 1882 1883 bzero(&j, sizeof(struct jail)); 1884 error = copyin(uap->jail, &j32_v0, sizeof(struct jail32_v0)); 1885 if (error) 1886 return (error); 1887 CP(j32_v0, j, version); 1888 PTRIN_CP(j32_v0, j, path); 1889 PTRIN_CP(j32_v0, j, hostname); 1890 j.ip4s = j32_v0.ip_number; 1891 break; 1892 } 1893 1894 case 1: 1895 /* 1896 * Version 1 was used by multi-IPv4 jail implementations 1897 * that never made it into the official kernel. 1898 */ 1899 return (EINVAL); 1900 1901 case 2: /* JAIL_API_VERSION */ 1902 { 1903 /* FreeBSD multi-IPv4/IPv6,noIP jails. */ 1904 struct jail32 j32; 1905 1906 error = copyin(uap->jail, &j32, sizeof(struct jail32)); 1907 if (error) 1908 return (error); 1909 CP(j32, j, version); 1910 PTRIN_CP(j32, j, path); 1911 PTRIN_CP(j32, j, hostname); 1912 PTRIN_CP(j32, j, jailname); 1913 CP(j32, j, ip4s); 1914 CP(j32, j, ip6s); 1915 PTRIN_CP(j32, j, ip4); 1916 PTRIN_CP(j32, j, ip6); 1917 break; 1918 } 1919 1920 default: 1921 /* Sci-Fi jails are not supported, sorry. */ 1922 return (EINVAL); 1923 } 1924 return (kern_jail(td, &j)); 1925 } 1926 1927 int 1928 freebsd32_jail_set(struct thread *td, struct freebsd32_jail_set_args *uap) 1929 { 1930 struct uio *auio; 1931 int error; 1932 1933 /* Check that we have an even number of iovecs. */ 1934 if (uap->iovcnt & 1) 1935 return (EINVAL); 1936 1937 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 1938 if (error) 1939 return (error); 1940 error = kern_jail_set(td, auio, uap->flags); 1941 free(auio, M_IOV); 1942 return (error); 1943 } 1944 1945 int 1946 freebsd32_jail_get(struct thread *td, struct freebsd32_jail_get_args *uap) 1947 { 1948 struct iovec32 iov32; 1949 struct uio *auio; 1950 int error, i; 1951 1952 /* Check that we have an even number of iovecs. */ 1953 if (uap->iovcnt & 1) 1954 return (EINVAL); 1955 1956 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 1957 if (error) 1958 return (error); 1959 error = kern_jail_get(td, auio, uap->flags); 1960 if (error == 0) 1961 for (i = 0; i < uap->iovcnt; i++) { 1962 PTROUT_CP(auio->uio_iov[i], iov32, iov_base); 1963 CP(auio->uio_iov[i], iov32, iov_len); 1964 error = copyout(&iov32, uap->iovp + i, sizeof(iov32)); 1965 if (error != 0) 1966 break; 1967 } 1968 free(auio, M_IOV); 1969 return (error); 1970 } 1971 1972 int 1973 freebsd32_sigaction(struct thread *td, struct freebsd32_sigaction_args *uap) 1974 { 1975 struct sigaction32 s32; 1976 struct sigaction sa, osa, *sap; 1977 int error; 1978 1979 if (uap->act) { 1980 error = copyin(uap->act, &s32, sizeof(s32)); 1981 if (error) 1982 return (error); 1983 sa.sa_handler = PTRIN(s32.sa_u); 1984 CP(s32, sa, sa_flags); 1985 CP(s32, sa, sa_mask); 1986 sap = &sa; 1987 } else 1988 sap = NULL; 1989 error = kern_sigaction(td, uap->sig, sap, &osa, 0); 1990 if (error == 0 && uap->oact != NULL) { 1991 s32.sa_u = PTROUT(osa.sa_handler); 1992 CP(osa, s32, sa_flags); 1993 CP(osa, s32, sa_mask); 1994 error = copyout(&s32, uap->oact, sizeof(s32)); 1995 } 1996 return (error); 1997 } 1998 1999 #ifdef COMPAT_FREEBSD4 2000 int 2001 freebsd4_freebsd32_sigaction(struct thread *td, 2002 struct freebsd4_freebsd32_sigaction_args *uap) 2003 { 2004 struct sigaction32 s32; 2005 struct sigaction sa, osa, *sap; 2006 int error; 2007 2008 if (uap->act) { 2009 error = copyin(uap->act, &s32, sizeof(s32)); 2010 if (error) 2011 return (error); 2012 sa.sa_handler = PTRIN(s32.sa_u); 2013 CP(s32, sa, sa_flags); 2014 CP(s32, sa, sa_mask); 2015 sap = &sa; 2016 } else 2017 sap = NULL; 2018 error = kern_sigaction(td, uap->sig, sap, &osa, KSA_FREEBSD4); 2019 if (error == 0 && uap->oact != NULL) { 2020 s32.sa_u = PTROUT(osa.sa_handler); 2021 CP(osa, s32, sa_flags); 2022 CP(osa, s32, sa_mask); 2023 error = copyout(&s32, uap->oact, sizeof(s32)); 2024 } 2025 return (error); 2026 } 2027 #endif 2028 2029 #ifdef COMPAT_43 2030 struct osigaction32 { 2031 u_int32_t sa_u; 2032 osigset_t sa_mask; 2033 int sa_flags; 2034 }; 2035 2036 #define ONSIG 32 2037 2038 int 2039 ofreebsd32_sigaction(struct thread *td, 2040 struct ofreebsd32_sigaction_args *uap) 2041 { 2042 struct osigaction32 s32; 2043 struct sigaction sa, osa, *sap; 2044 int error; 2045 2046 if (uap->signum <= 0 || uap->signum >= ONSIG) 2047 return (EINVAL); 2048 2049 if (uap->nsa) { 2050 error = copyin(uap->nsa, &s32, sizeof(s32)); 2051 if (error) 2052 return (error); 2053 sa.sa_handler = PTRIN(s32.sa_u); 2054 CP(s32, sa, sa_flags); 2055 OSIG2SIG(s32.sa_mask, sa.sa_mask); 2056 sap = &sa; 2057 } else 2058 sap = NULL; 2059 error = kern_sigaction(td, uap->signum, sap, &osa, KSA_OSIGSET); 2060 if (error == 0 && uap->osa != NULL) { 2061 s32.sa_u = PTROUT(osa.sa_handler); 2062 CP(osa, s32, sa_flags); 2063 SIG2OSIG(osa.sa_mask, s32.sa_mask); 2064 error = copyout(&s32, uap->osa, sizeof(s32)); 2065 } 2066 return (error); 2067 } 2068 2069 int 2070 ofreebsd32_sigprocmask(struct thread *td, 2071 struct ofreebsd32_sigprocmask_args *uap) 2072 { 2073 sigset_t set, oset; 2074 int error; 2075 2076 OSIG2SIG(uap->mask, set); 2077 error = kern_sigprocmask(td, uap->how, &set, &oset, SIGPROCMASK_OLD); 2078 SIG2OSIG(oset, td->td_retval[0]); 2079 return (error); 2080 } 2081 2082 int 2083 ofreebsd32_sigpending(struct thread *td, 2084 struct ofreebsd32_sigpending_args *uap) 2085 { 2086 struct proc *p = td->td_proc; 2087 sigset_t siglist; 2088 2089 PROC_LOCK(p); 2090 siglist = p->p_siglist; 2091 SIGSETOR(siglist, td->td_siglist); 2092 PROC_UNLOCK(p); 2093 SIG2OSIG(siglist, td->td_retval[0]); 2094 return (0); 2095 } 2096 2097 struct sigvec32 { 2098 u_int32_t sv_handler; 2099 int sv_mask; 2100 int sv_flags; 2101 }; 2102 2103 int 2104 ofreebsd32_sigvec(struct thread *td, 2105 struct ofreebsd32_sigvec_args *uap) 2106 { 2107 struct sigvec32 vec; 2108 struct sigaction sa, osa, *sap; 2109 int error; 2110 2111 if (uap->signum <= 0 || uap->signum >= ONSIG) 2112 return (EINVAL); 2113 2114 if (uap->nsv) { 2115 error = copyin(uap->nsv, &vec, sizeof(vec)); 2116 if (error) 2117 return (error); 2118 sa.sa_handler = PTRIN(vec.sv_handler); 2119 OSIG2SIG(vec.sv_mask, sa.sa_mask); 2120 sa.sa_flags = vec.sv_flags; 2121 sa.sa_flags ^= SA_RESTART; 2122 sap = &sa; 2123 } else 2124 sap = NULL; 2125 error = kern_sigaction(td, uap->signum, sap, &osa, KSA_OSIGSET); 2126 if (error == 0 && uap->osv != NULL) { 2127 vec.sv_handler = PTROUT(osa.sa_handler); 2128 SIG2OSIG(osa.sa_mask, vec.sv_mask); 2129 vec.sv_flags = osa.sa_flags; 2130 vec.sv_flags &= ~SA_NOCLDWAIT; 2131 vec.sv_flags ^= SA_RESTART; 2132 error = copyout(&vec, uap->osv, sizeof(vec)); 2133 } 2134 return (error); 2135 } 2136 2137 int 2138 ofreebsd32_sigblock(struct thread *td, 2139 struct ofreebsd32_sigblock_args *uap) 2140 { 2141 sigset_t set, oset; 2142 2143 OSIG2SIG(uap->mask, set); 2144 kern_sigprocmask(td, SIG_BLOCK, &set, &oset, 0); 2145 SIG2OSIG(oset, td->td_retval[0]); 2146 return (0); 2147 } 2148 2149 int 2150 ofreebsd32_sigsetmask(struct thread *td, 2151 struct ofreebsd32_sigsetmask_args *uap) 2152 { 2153 sigset_t set, oset; 2154 2155 OSIG2SIG(uap->mask, set); 2156 kern_sigprocmask(td, SIG_SETMASK, &set, &oset, 0); 2157 SIG2OSIG(oset, td->td_retval[0]); 2158 return (0); 2159 } 2160 2161 int 2162 ofreebsd32_sigsuspend(struct thread *td, 2163 struct ofreebsd32_sigsuspend_args *uap) 2164 { 2165 sigset_t mask; 2166 2167 OSIG2SIG(uap->mask, mask); 2168 return (kern_sigsuspend(td, mask)); 2169 } 2170 2171 struct sigstack32 { 2172 u_int32_t ss_sp; 2173 int ss_onstack; 2174 }; 2175 2176 int 2177 ofreebsd32_sigstack(struct thread *td, 2178 struct ofreebsd32_sigstack_args *uap) 2179 { 2180 struct sigstack32 s32; 2181 struct sigstack nss, oss; 2182 int error = 0, unss; 2183 2184 if (uap->nss != NULL) { 2185 error = copyin(uap->nss, &s32, sizeof(s32)); 2186 if (error) 2187 return (error); 2188 nss.ss_sp = PTRIN(s32.ss_sp); 2189 CP(s32, nss, ss_onstack); 2190 unss = 1; 2191 } else { 2192 unss = 0; 2193 } 2194 oss.ss_sp = td->td_sigstk.ss_sp; 2195 oss.ss_onstack = sigonstack(cpu_getstack(td)); 2196 if (unss) { 2197 td->td_sigstk.ss_sp = nss.ss_sp; 2198 td->td_sigstk.ss_size = 0; 2199 td->td_sigstk.ss_flags |= (nss.ss_onstack & SS_ONSTACK); 2200 td->td_pflags |= TDP_ALTSTACK; 2201 } 2202 if (uap->oss != NULL) { 2203 s32.ss_sp = PTROUT(oss.ss_sp); 2204 CP(oss, s32, ss_onstack); 2205 error = copyout(&s32, uap->oss, sizeof(s32)); 2206 } 2207 return (error); 2208 } 2209 #endif 2210 2211 int 2212 freebsd32_nanosleep(struct thread *td, struct freebsd32_nanosleep_args *uap) 2213 { 2214 struct timespec32 rmt32, rqt32; 2215 struct timespec rmt, rqt; 2216 int error; 2217 2218 error = copyin(uap->rqtp, &rqt32, sizeof(rqt32)); 2219 if (error) 2220 return (error); 2221 2222 CP(rqt32, rqt, tv_sec); 2223 CP(rqt32, rqt, tv_nsec); 2224 2225 if (uap->rmtp && 2226 !useracc((caddr_t)uap->rmtp, sizeof(rmt), VM_PROT_WRITE)) 2227 return (EFAULT); 2228 error = kern_nanosleep(td, &rqt, &rmt); 2229 if (error && uap->rmtp) { 2230 int error2; 2231 2232 CP(rmt, rmt32, tv_sec); 2233 CP(rmt, rmt32, tv_nsec); 2234 2235 error2 = copyout(&rmt32, uap->rmtp, sizeof(rmt32)); 2236 if (error2) 2237 error = error2; 2238 } 2239 return (error); 2240 } 2241 2242 int 2243 freebsd32_clock_gettime(struct thread *td, 2244 struct freebsd32_clock_gettime_args *uap) 2245 { 2246 struct timespec ats; 2247 struct timespec32 ats32; 2248 int error; 2249 2250 error = kern_clock_gettime(td, uap->clock_id, &ats); 2251 if (error == 0) { 2252 CP(ats, ats32, tv_sec); 2253 CP(ats, ats32, tv_nsec); 2254 error = copyout(&ats32, uap->tp, sizeof(ats32)); 2255 } 2256 return (error); 2257 } 2258 2259 int 2260 freebsd32_clock_settime(struct thread *td, 2261 struct freebsd32_clock_settime_args *uap) 2262 { 2263 struct timespec ats; 2264 struct timespec32 ats32; 2265 int error; 2266 2267 error = copyin(uap->tp, &ats32, sizeof(ats32)); 2268 if (error) 2269 return (error); 2270 CP(ats32, ats, tv_sec); 2271 CP(ats32, ats, tv_nsec); 2272 2273 return (kern_clock_settime(td, uap->clock_id, &ats)); 2274 } 2275 2276 int 2277 freebsd32_clock_getres(struct thread *td, 2278 struct freebsd32_clock_getres_args *uap) 2279 { 2280 struct timespec ts; 2281 struct timespec32 ts32; 2282 int error; 2283 2284 if (uap->tp == NULL) 2285 return (0); 2286 error = kern_clock_getres(td, uap->clock_id, &ts); 2287 if (error == 0) { 2288 CP(ts, ts32, tv_sec); 2289 CP(ts, ts32, tv_nsec); 2290 error = copyout(&ts32, uap->tp, sizeof(ts32)); 2291 } 2292 return (error); 2293 } 2294 2295 int 2296 freebsd32_thr_new(struct thread *td, 2297 struct freebsd32_thr_new_args *uap) 2298 { 2299 struct thr_param32 param32; 2300 struct thr_param param; 2301 int error; 2302 2303 if (uap->param_size < 0 || 2304 uap->param_size > sizeof(struct thr_param32)) 2305 return (EINVAL); 2306 bzero(¶m, sizeof(struct thr_param)); 2307 bzero(¶m32, sizeof(struct thr_param32)); 2308 error = copyin(uap->param, ¶m32, uap->param_size); 2309 if (error != 0) 2310 return (error); 2311 param.start_func = PTRIN(param32.start_func); 2312 param.arg = PTRIN(param32.arg); 2313 param.stack_base = PTRIN(param32.stack_base); 2314 param.stack_size = param32.stack_size; 2315 param.tls_base = PTRIN(param32.tls_base); 2316 param.tls_size = param32.tls_size; 2317 param.child_tid = PTRIN(param32.child_tid); 2318 param.parent_tid = PTRIN(param32.parent_tid); 2319 param.flags = param32.flags; 2320 param.rtp = PTRIN(param32.rtp); 2321 param.spare[0] = PTRIN(param32.spare[0]); 2322 param.spare[1] = PTRIN(param32.spare[1]); 2323 param.spare[2] = PTRIN(param32.spare[2]); 2324 2325 return (kern_thr_new(td, ¶m)); 2326 } 2327 2328 int 2329 freebsd32_thr_suspend(struct thread *td, struct freebsd32_thr_suspend_args *uap) 2330 { 2331 struct timespec32 ts32; 2332 struct timespec ts, *tsp; 2333 int error; 2334 2335 error = 0; 2336 tsp = NULL; 2337 if (uap->timeout != NULL) { 2338 error = copyin((const void *)uap->timeout, (void *)&ts32, 2339 sizeof(struct timespec32)); 2340 if (error != 0) 2341 return (error); 2342 ts.tv_sec = ts32.tv_sec; 2343 ts.tv_nsec = ts32.tv_nsec; 2344 tsp = &ts; 2345 } 2346 return (kern_thr_suspend(td, tsp)); 2347 } 2348 2349 void 2350 siginfo_to_siginfo32(const siginfo_t *src, struct siginfo32 *dst) 2351 { 2352 bzero(dst, sizeof(*dst)); 2353 dst->si_signo = src->si_signo; 2354 dst->si_errno = src->si_errno; 2355 dst->si_code = src->si_code; 2356 dst->si_pid = src->si_pid; 2357 dst->si_uid = src->si_uid; 2358 dst->si_status = src->si_status; 2359 dst->si_addr = (uintptr_t)src->si_addr; 2360 dst->si_value.sigval_int = src->si_value.sival_int; 2361 dst->si_timerid = src->si_timerid; 2362 dst->si_overrun = src->si_overrun; 2363 } 2364 2365 int 2366 freebsd32_sigtimedwait(struct thread *td, struct freebsd32_sigtimedwait_args *uap) 2367 { 2368 struct timespec32 ts32; 2369 struct timespec ts; 2370 struct timespec *timeout; 2371 sigset_t set; 2372 ksiginfo_t ksi; 2373 struct siginfo32 si32; 2374 int error; 2375 2376 if (uap->timeout) { 2377 error = copyin(uap->timeout, &ts32, sizeof(ts32)); 2378 if (error) 2379 return (error); 2380 ts.tv_sec = ts32.tv_sec; 2381 ts.tv_nsec = ts32.tv_nsec; 2382 timeout = &ts; 2383 } else 2384 timeout = NULL; 2385 2386 error = copyin(uap->set, &set, sizeof(set)); 2387 if (error) 2388 return (error); 2389 2390 error = kern_sigtimedwait(td, set, &ksi, timeout); 2391 if (error) 2392 return (error); 2393 2394 if (uap->info) { 2395 siginfo_to_siginfo32(&ksi.ksi_info, &si32); 2396 error = copyout(&si32, uap->info, sizeof(struct siginfo32)); 2397 } 2398 2399 if (error == 0) 2400 td->td_retval[0] = ksi.ksi_signo; 2401 return (error); 2402 } 2403 2404 /* 2405 * MPSAFE 2406 */ 2407 int 2408 freebsd32_sigwaitinfo(struct thread *td, struct freebsd32_sigwaitinfo_args *uap) 2409 { 2410 ksiginfo_t ksi; 2411 struct siginfo32 si32; 2412 sigset_t set; 2413 int error; 2414 2415 error = copyin(uap->set, &set, sizeof(set)); 2416 if (error) 2417 return (error); 2418 2419 error = kern_sigtimedwait(td, set, &ksi, NULL); 2420 if (error) 2421 return (error); 2422 2423 if (uap->info) { 2424 siginfo_to_siginfo32(&ksi.ksi_info, &si32); 2425 error = copyout(&si32, uap->info, sizeof(struct siginfo32)); 2426 } 2427 if (error == 0) 2428 td->td_retval[0] = ksi.ksi_signo; 2429 return (error); 2430 } 2431 2432 int 2433 freebsd32_cpuset_setid(struct thread *td, 2434 struct freebsd32_cpuset_setid_args *uap) 2435 { 2436 struct cpuset_setid_args ap; 2437 2438 ap.which = uap->which; 2439 ap.id = PAIR32TO64(id_t,uap->id); 2440 ap.setid = uap->setid; 2441 2442 return (sys_cpuset_setid(td, &ap)); 2443 } 2444 2445 int 2446 freebsd32_cpuset_getid(struct thread *td, 2447 struct freebsd32_cpuset_getid_args *uap) 2448 { 2449 struct cpuset_getid_args ap; 2450 2451 ap.level = uap->level; 2452 ap.which = uap->which; 2453 ap.id = PAIR32TO64(id_t,uap->id); 2454 ap.setid = uap->setid; 2455 2456 return (sys_cpuset_getid(td, &ap)); 2457 } 2458 2459 int 2460 freebsd32_cpuset_getaffinity(struct thread *td, 2461 struct freebsd32_cpuset_getaffinity_args *uap) 2462 { 2463 struct cpuset_getaffinity_args ap; 2464 2465 ap.level = uap->level; 2466 ap.which = uap->which; 2467 ap.id = PAIR32TO64(id_t,uap->id); 2468 ap.cpusetsize = uap->cpusetsize; 2469 ap.mask = uap->mask; 2470 2471 return (sys_cpuset_getaffinity(td, &ap)); 2472 } 2473 2474 int 2475 freebsd32_cpuset_setaffinity(struct thread *td, 2476 struct freebsd32_cpuset_setaffinity_args *uap) 2477 { 2478 struct cpuset_setaffinity_args ap; 2479 2480 ap.level = uap->level; 2481 ap.which = uap->which; 2482 ap.id = PAIR32TO64(id_t,uap->id); 2483 ap.cpusetsize = uap->cpusetsize; 2484 ap.mask = uap->mask; 2485 2486 return (sys_cpuset_setaffinity(td, &ap)); 2487 } 2488 2489 int 2490 freebsd32_nmount(struct thread *td, 2491 struct freebsd32_nmount_args /* { 2492 struct iovec *iovp; 2493 unsigned int iovcnt; 2494 int flags; 2495 } */ *uap) 2496 { 2497 struct uio *auio; 2498 uint64_t flags; 2499 int error; 2500 2501 /* 2502 * Mount flags are now 64-bits. On 32-bit archtectures only 2503 * 32-bits are passed in, but from here on everything handles 2504 * 64-bit flags correctly. 2505 */ 2506 flags = uap->flags; 2507 2508 AUDIT_ARG_FFLAGS(flags); 2509 2510 /* 2511 * Filter out MNT_ROOTFS. We do not want clients of nmount() in 2512 * userspace to set this flag, but we must filter it out if we want 2513 * MNT_UPDATE on the root file system to work. 2514 * MNT_ROOTFS should only be set by the kernel when mounting its 2515 * root file system. 2516 */ 2517 flags &= ~MNT_ROOTFS; 2518 2519 /* 2520 * check that we have an even number of iovec's 2521 * and that we have at least two options. 2522 */ 2523 if ((uap->iovcnt & 1) || (uap->iovcnt < 4)) 2524 return (EINVAL); 2525 2526 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 2527 if (error) 2528 return (error); 2529 error = vfs_donmount(td, flags, auio); 2530 2531 free(auio, M_IOV); 2532 return error; 2533 } 2534 2535 #if 0 2536 int 2537 freebsd32_xxx(struct thread *td, struct freebsd32_xxx_args *uap) 2538 { 2539 struct yyy32 *p32, s32; 2540 struct yyy *p = NULL, s; 2541 struct xxx_arg ap; 2542 int error; 2543 2544 if (uap->zzz) { 2545 error = copyin(uap->zzz, &s32, sizeof(s32)); 2546 if (error) 2547 return (error); 2548 /* translate in */ 2549 p = &s; 2550 } 2551 error = kern_xxx(td, p); 2552 if (error) 2553 return (error); 2554 if (uap->zzz) { 2555 /* translate out */ 2556 error = copyout(&s32, p32, sizeof(s32)); 2557 } 2558 return (error); 2559 } 2560 #endif 2561 2562 int 2563 syscall32_register(int *offset, struct sysent *new_sysent, 2564 struct sysent *old_sysent) 2565 { 2566 if (*offset == NO_SYSCALL) { 2567 int i; 2568 2569 for (i = 1; i < SYS_MAXSYSCALL; ++i) 2570 if (freebsd32_sysent[i].sy_call == 2571 (sy_call_t *)lkmnosys) 2572 break; 2573 if (i == SYS_MAXSYSCALL) 2574 return (ENFILE); 2575 *offset = i; 2576 } else if (*offset < 0 || *offset >= SYS_MAXSYSCALL) 2577 return (EINVAL); 2578 else if (freebsd32_sysent[*offset].sy_call != (sy_call_t *)lkmnosys && 2579 freebsd32_sysent[*offset].sy_call != (sy_call_t *)lkmressys) 2580 return (EEXIST); 2581 2582 *old_sysent = freebsd32_sysent[*offset]; 2583 freebsd32_sysent[*offset] = *new_sysent; 2584 return 0; 2585 } 2586 2587 int 2588 syscall32_deregister(int *offset, struct sysent *old_sysent) 2589 { 2590 2591 if (*offset) 2592 freebsd32_sysent[*offset] = *old_sysent; 2593 return 0; 2594 } 2595 2596 int 2597 syscall32_module_handler(struct module *mod, int what, void *arg) 2598 { 2599 struct syscall_module_data *data = (struct syscall_module_data*)arg; 2600 modspecific_t ms; 2601 int error; 2602 2603 switch (what) { 2604 case MOD_LOAD: 2605 error = syscall32_register(data->offset, data->new_sysent, 2606 &data->old_sysent); 2607 if (error) { 2608 /* Leave a mark so we know to safely unload below. */ 2609 data->offset = NULL; 2610 return error; 2611 } 2612 ms.intval = *data->offset; 2613 MOD_XLOCK; 2614 module_setspecific(mod, &ms); 2615 MOD_XUNLOCK; 2616 if (data->chainevh) 2617 error = data->chainevh(mod, what, data->chainarg); 2618 return (error); 2619 case MOD_UNLOAD: 2620 /* 2621 * MOD_LOAD failed, so just return without calling the 2622 * chained handler since we didn't pass along the MOD_LOAD 2623 * event. 2624 */ 2625 if (data->offset == NULL) 2626 return (0); 2627 if (data->chainevh) { 2628 error = data->chainevh(mod, what, data->chainarg); 2629 if (error) 2630 return (error); 2631 } 2632 error = syscall32_deregister(data->offset, &data->old_sysent); 2633 return (error); 2634 default: 2635 error = EOPNOTSUPP; 2636 if (data->chainevh) 2637 error = data->chainevh(mod, what, data->chainarg); 2638 return (error); 2639 } 2640 } 2641 2642 int 2643 syscall32_helper_register(struct syscall_helper_data *sd) 2644 { 2645 struct syscall_helper_data *sd1; 2646 int error; 2647 2648 for (sd1 = sd; sd1->syscall_no != NO_SYSCALL; sd1++) { 2649 error = syscall32_register(&sd1->syscall_no, &sd1->new_sysent, 2650 &sd1->old_sysent); 2651 if (error != 0) { 2652 syscall32_helper_unregister(sd); 2653 return (error); 2654 } 2655 sd1->registered = 1; 2656 } 2657 return (0); 2658 } 2659 2660 int 2661 syscall32_helper_unregister(struct syscall_helper_data *sd) 2662 { 2663 struct syscall_helper_data *sd1; 2664 2665 for (sd1 = sd; sd1->registered != 0; sd1++) { 2666 syscall32_deregister(&sd1->syscall_no, &sd1->old_sysent); 2667 sd1->registered = 0; 2668 } 2669 return (0); 2670 } 2671 2672 register_t * 2673 freebsd32_copyout_strings(struct image_params *imgp) 2674 { 2675 int argc, envc, i; 2676 u_int32_t *vectp; 2677 char *stringp, *destp; 2678 u_int32_t *stack_base; 2679 struct freebsd32_ps_strings *arginfo; 2680 char canary[sizeof(long) * 8]; 2681 int32_t pagesizes32[MAXPAGESIZES]; 2682 size_t execpath_len; 2683 int szsigcode; 2684 2685 /* 2686 * Calculate string base and vector table pointers. 2687 * Also deal with signal trampoline code for this exec type. 2688 */ 2689 if (imgp->execpath != NULL && imgp->auxargs != NULL) 2690 execpath_len = strlen(imgp->execpath) + 1; 2691 else 2692 execpath_len = 0; 2693 arginfo = (struct freebsd32_ps_strings *)curproc->p_sysent-> 2694 sv_psstrings; 2695 if (imgp->proc->p_sysent->sv_sigcode_base == 0) 2696 szsigcode = *(imgp->proc->p_sysent->sv_szsigcode); 2697 else 2698 szsigcode = 0; 2699 destp = (caddr_t)arginfo - szsigcode - SPARE_USRSPACE - 2700 roundup(execpath_len, sizeof(char *)) - 2701 roundup(sizeof(canary), sizeof(char *)) - 2702 roundup(sizeof(pagesizes32), sizeof(char *)) - 2703 roundup((ARG_MAX - imgp->args->stringspace), sizeof(char *)); 2704 2705 /* 2706 * install sigcode 2707 */ 2708 if (szsigcode != 0) 2709 copyout(imgp->proc->p_sysent->sv_sigcode, 2710 ((caddr_t)arginfo - szsigcode), szsigcode); 2711 2712 /* 2713 * Copy the image path for the rtld. 2714 */ 2715 if (execpath_len != 0) { 2716 imgp->execpathp = (uintptr_t)arginfo - szsigcode - execpath_len; 2717 copyout(imgp->execpath, (void *)imgp->execpathp, 2718 execpath_len); 2719 } 2720 2721 /* 2722 * Prepare the canary for SSP. 2723 */ 2724 arc4rand(canary, sizeof(canary), 0); 2725 imgp->canary = (uintptr_t)arginfo - szsigcode - execpath_len - 2726 sizeof(canary); 2727 copyout(canary, (void *)imgp->canary, sizeof(canary)); 2728 imgp->canarylen = sizeof(canary); 2729 2730 /* 2731 * Prepare the pagesizes array. 2732 */ 2733 for (i = 0; i < MAXPAGESIZES; i++) 2734 pagesizes32[i] = (uint32_t)pagesizes[i]; 2735 imgp->pagesizes = (uintptr_t)arginfo - szsigcode - execpath_len - 2736 roundup(sizeof(canary), sizeof(char *)) - sizeof(pagesizes32); 2737 copyout(pagesizes32, (void *)imgp->pagesizes, sizeof(pagesizes32)); 2738 imgp->pagesizeslen = sizeof(pagesizes32); 2739 2740 /* 2741 * If we have a valid auxargs ptr, prepare some room 2742 * on the stack. 2743 */ 2744 if (imgp->auxargs) { 2745 /* 2746 * 'AT_COUNT*2' is size for the ELF Auxargs data. This is for 2747 * lower compatibility. 2748 */ 2749 imgp->auxarg_size = (imgp->auxarg_size) ? imgp->auxarg_size 2750 : (AT_COUNT * 2); 2751 /* 2752 * The '+ 2' is for the null pointers at the end of each of 2753 * the arg and env vector sets,and imgp->auxarg_size is room 2754 * for argument of Runtime loader. 2755 */ 2756 vectp = (u_int32_t *) (destp - (imgp->args->argc + 2757 imgp->args->envc + 2 + imgp->auxarg_size + execpath_len) * 2758 sizeof(u_int32_t)); 2759 } else 2760 /* 2761 * The '+ 2' is for the null pointers at the end of each of 2762 * the arg and env vector sets 2763 */ 2764 vectp = (u_int32_t *) 2765 (destp - (imgp->args->argc + imgp->args->envc + 2) * sizeof(u_int32_t)); 2766 2767 /* 2768 * vectp also becomes our initial stack base 2769 */ 2770 stack_base = vectp; 2771 2772 stringp = imgp->args->begin_argv; 2773 argc = imgp->args->argc; 2774 envc = imgp->args->envc; 2775 /* 2776 * Copy out strings - arguments and environment. 2777 */ 2778 copyout(stringp, destp, ARG_MAX - imgp->args->stringspace); 2779 2780 /* 2781 * Fill in "ps_strings" struct for ps, w, etc. 2782 */ 2783 suword32(&arginfo->ps_argvstr, (u_int32_t)(intptr_t)vectp); 2784 suword32(&arginfo->ps_nargvstr, argc); 2785 2786 /* 2787 * Fill in argument portion of vector table. 2788 */ 2789 for (; argc > 0; --argc) { 2790 suword32(vectp++, (u_int32_t)(intptr_t)destp); 2791 while (*stringp++ != 0) 2792 destp++; 2793 destp++; 2794 } 2795 2796 /* a null vector table pointer separates the argp's from the envp's */ 2797 suword32(vectp++, 0); 2798 2799 suword32(&arginfo->ps_envstr, (u_int32_t)(intptr_t)vectp); 2800 suword32(&arginfo->ps_nenvstr, envc); 2801 2802 /* 2803 * Fill in environment portion of vector table. 2804 */ 2805 for (; envc > 0; --envc) { 2806 suword32(vectp++, (u_int32_t)(intptr_t)destp); 2807 while (*stringp++ != 0) 2808 destp++; 2809 destp++; 2810 } 2811 2812 /* end of vector table is a null pointer */ 2813 suword32(vectp, 0); 2814 2815 return ((register_t *)stack_base); 2816 } 2817 2818 int 2819 freebsd32_kldstat(struct thread *td, struct freebsd32_kldstat_args *uap) 2820 { 2821 struct kld_file_stat stat; 2822 struct kld32_file_stat stat32; 2823 int error, version; 2824 2825 if ((error = copyin(&uap->stat->version, &version, sizeof(version))) 2826 != 0) 2827 return (error); 2828 if (version != sizeof(struct kld32_file_stat_1) && 2829 version != sizeof(struct kld32_file_stat)) 2830 return (EINVAL); 2831 2832 error = kern_kldstat(td, uap->fileid, &stat); 2833 if (error != 0) 2834 return (error); 2835 2836 bcopy(&stat.name[0], &stat32.name[0], sizeof(stat.name)); 2837 CP(stat, stat32, refs); 2838 CP(stat, stat32, id); 2839 PTROUT_CP(stat, stat32, address); 2840 CP(stat, stat32, size); 2841 bcopy(&stat.pathname[0], &stat32.pathname[0], sizeof(stat.pathname)); 2842 return (copyout(&stat32, uap->stat, version)); 2843 } 2844 2845 int 2846 freebsd32_posix_fallocate(struct thread *td, 2847 struct freebsd32_posix_fallocate_args *uap) 2848 { 2849 2850 return (kern_posix_fallocate(td, uap->fd, 2851 PAIR32TO64(off_t, uap->offset), PAIR32TO64(off_t, uap->len))); 2852 } 2853 2854 int 2855 freebsd32_posix_fadvise(struct thread *td, 2856 struct freebsd32_posix_fadvise_args *uap) 2857 { 2858 2859 return (kern_posix_fadvise(td, uap->fd, PAIR32TO64(off_t, uap->offset), 2860 PAIR32TO64(off_t, uap->len), uap->advice)); 2861 } 2862