1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2002 Doug Rabson 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 #include "opt_ffclock.h" 31 #include "opt_inet.h" 32 #include "opt_inet6.h" 33 #include "opt_ktrace.h" 34 35 #define __ELF_WORD_SIZE 32 36 37 #ifdef COMPAT_FREEBSD11 38 #define _WANT_FREEBSD11_KEVENT 39 #endif 40 41 #include <sys/param.h> 42 #include <sys/bus.h> 43 #include <sys/capsicum.h> 44 #include <sys/clock.h> 45 #include <sys/exec.h> 46 #include <sys/fcntl.h> 47 #include <sys/filedesc.h> 48 #include <sys/imgact.h> 49 #include <sys/jail.h> 50 #include <sys/kernel.h> 51 #include <sys/limits.h> 52 #include <sys/linker.h> 53 #include <sys/lock.h> 54 #include <sys/malloc.h> 55 #include <sys/file.h> /* Must come after sys/malloc.h */ 56 #include <sys/imgact.h> 57 #include <sys/mbuf.h> 58 #include <sys/mman.h> 59 #include <sys/module.h> 60 #include <sys/mount.h> 61 #include <sys/mutex.h> 62 #include <sys/namei.h> 63 #include <sys/priv.h> 64 #include <sys/proc.h> 65 #include <sys/procctl.h> 66 #include <sys/ptrace.h> 67 #include <sys/reboot.h> 68 #include <sys/resource.h> 69 #include <sys/resourcevar.h> 70 #include <sys/selinfo.h> 71 #include <sys/eventvar.h> /* Must come after sys/selinfo.h */ 72 #include <sys/pipe.h> /* Must come after sys/selinfo.h */ 73 #include <sys/signal.h> 74 #include <sys/signalvar.h> 75 #include <sys/socket.h> 76 #include <sys/socketvar.h> 77 #include <sys/stat.h> 78 #include <sys/syscall.h> 79 #include <sys/syscallsubr.h> 80 #include <sys/sysctl.h> 81 #include <sys/sysent.h> 82 #include <sys/sysproto.h> 83 #include <sys/systm.h> 84 #include <sys/thr.h> 85 #include <sys/timerfd.h> 86 #include <sys/timex.h> 87 #include <sys/unistd.h> 88 #include <sys/ucontext.h> 89 #include <sys/vnode.h> 90 #include <sys/wait.h> 91 #include <sys/ipc.h> 92 #include <sys/msg.h> 93 #include <sys/sem.h> 94 #include <sys/shm.h> 95 #include <sys/timeffc.h> 96 #ifdef KTRACE 97 #include <sys/ktrace.h> 98 #endif 99 100 #ifdef INET 101 #include <netinet/in.h> 102 #endif 103 104 #include <vm/vm.h> 105 #include <vm/vm_param.h> 106 #include <vm/pmap.h> 107 #include <vm/vm_map.h> 108 #include <vm/vm_object.h> 109 #include <vm/vm_extern.h> 110 111 #include <machine/cpu.h> 112 #include <machine/elf.h> 113 #ifdef __amd64__ 114 #include <machine/md_var.h> 115 #endif 116 117 #include <security/audit/audit.h> 118 119 #include <compat/freebsd32/freebsd32_util.h> 120 #include <compat/freebsd32/freebsd32.h> 121 #include <compat/freebsd32/freebsd32_ipc.h> 122 #include <compat/freebsd32/freebsd32_misc.h> 123 #include <compat/freebsd32/freebsd32_signal.h> 124 #include <compat/freebsd32/freebsd32_proto.h> 125 126 int compat_freebsd_32bit = 1; 127 128 static void 129 register_compat32_feature(void *arg) 130 { 131 if (!compat_freebsd_32bit) 132 return; 133 134 FEATURE_ADD("compat_freebsd32", "Compatible with 32-bit FreeBSD"); 135 FEATURE_ADD("compat_freebsd_32bit", 136 "Compatible with 32-bit FreeBSD (legacy feature name)"); 137 } 138 SYSINIT(freebsd32, SI_SUB_EXEC, SI_ORDER_ANY, register_compat32_feature, 139 NULL); 140 141 struct ptrace_io_desc32 { 142 int piod_op; 143 uint32_t piod_offs; 144 uint32_t piod_addr; 145 uint32_t piod_len; 146 }; 147 148 struct ptrace_vm_entry32 { 149 int pve_entry; 150 int pve_timestamp; 151 uint32_t pve_start; 152 uint32_t pve_end; 153 uint32_t pve_offset; 154 u_int pve_prot; 155 u_int pve_pathlen; 156 int32_t pve_fileid; 157 u_int pve_fsid; 158 uint32_t pve_path; 159 }; 160 161 #ifdef __amd64__ 162 CTASSERT(sizeof(struct timeval32) == 8); 163 CTASSERT(sizeof(struct timespec32) == 8); 164 CTASSERT(sizeof(struct itimerval32) == 16); 165 CTASSERT(sizeof(struct bintime32) == 12); 166 #else 167 CTASSERT(sizeof(struct timeval32) == 16); 168 CTASSERT(sizeof(struct timespec32) == 16); 169 CTASSERT(sizeof(struct itimerval32) == 32); 170 CTASSERT(sizeof(struct bintime32) == 16); 171 #endif 172 CTASSERT(sizeof(struct ostatfs32) == 256); 173 #ifdef __amd64__ 174 CTASSERT(sizeof(struct rusage32) == 72); 175 #else 176 CTASSERT(sizeof(struct rusage32) == 88); 177 #endif 178 CTASSERT(sizeof(struct sigaltstack32) == 12); 179 #ifdef __amd64__ 180 CTASSERT(sizeof(struct kevent32) == 56); 181 #else 182 CTASSERT(sizeof(struct kevent32) == 64); 183 #endif 184 CTASSERT(sizeof(struct iovec32) == 8); 185 CTASSERT(sizeof(struct msghdr32) == 28); 186 #ifdef __amd64__ 187 CTASSERT(sizeof(struct stat32) == 208); 188 CTASSERT(sizeof(struct freebsd11_stat32) == 96); 189 #else 190 CTASSERT(sizeof(struct stat32) == 224); 191 CTASSERT(sizeof(struct freebsd11_stat32) == 120); 192 #endif 193 CTASSERT(sizeof(struct sigaction32) == 24); 194 195 static int freebsd32_kevent_copyout(void *arg, struct kevent *kevp, int count); 196 static int freebsd32_kevent_copyin(void *arg, struct kevent *kevp, int count); 197 static int freebsd32_user_clock_nanosleep(struct thread *td, clockid_t clock_id, 198 int flags, const struct timespec32 *ua_rqtp, struct timespec32 *ua_rmtp); 199 200 void 201 freebsd32_rusage_out(const struct rusage *s, struct rusage32 *s32) 202 { 203 204 TV_CP(*s, *s32, ru_utime); 205 TV_CP(*s, *s32, ru_stime); 206 CP(*s, *s32, ru_maxrss); 207 CP(*s, *s32, ru_ixrss); 208 CP(*s, *s32, ru_idrss); 209 CP(*s, *s32, ru_isrss); 210 CP(*s, *s32, ru_minflt); 211 CP(*s, *s32, ru_majflt); 212 CP(*s, *s32, ru_nswap); 213 CP(*s, *s32, ru_inblock); 214 CP(*s, *s32, ru_oublock); 215 CP(*s, *s32, ru_msgsnd); 216 CP(*s, *s32, ru_msgrcv); 217 CP(*s, *s32, ru_nsignals); 218 CP(*s, *s32, ru_nvcsw); 219 CP(*s, *s32, ru_nivcsw); 220 } 221 222 int 223 freebsd32_wait4(struct thread *td, struct freebsd32_wait4_args *uap) 224 { 225 int error, status; 226 struct rusage32 ru32; 227 struct rusage ru, *rup; 228 229 if (uap->rusage != NULL) 230 rup = &ru; 231 else 232 rup = NULL; 233 error = kern_wait(td, uap->pid, &status, uap->options, rup); 234 if (error) 235 return (error); 236 if (uap->status != NULL) 237 error = copyout(&status, uap->status, sizeof(status)); 238 if (uap->rusage != NULL && error == 0) { 239 freebsd32_rusage_out(&ru, &ru32); 240 error = copyout(&ru32, uap->rusage, sizeof(ru32)); 241 } 242 return (error); 243 } 244 245 int 246 freebsd32_wait6(struct thread *td, struct freebsd32_wait6_args *uap) 247 { 248 struct __wrusage32 wru32; 249 struct __wrusage wru, *wrup; 250 struct siginfo32 si32; 251 struct __siginfo si, *sip; 252 int error, status; 253 254 if (uap->wrusage != NULL) 255 wrup = &wru; 256 else 257 wrup = NULL; 258 if (uap->info != NULL) { 259 sip = &si; 260 bzero(sip, sizeof(*sip)); 261 } else 262 sip = NULL; 263 error = kern_wait6(td, uap->idtype, PAIR32TO64(id_t, uap->id), 264 &status, uap->options, wrup, sip); 265 if (error != 0) 266 return (error); 267 if (uap->status != NULL) 268 error = copyout(&status, uap->status, sizeof(status)); 269 if (uap->wrusage != NULL && error == 0) { 270 freebsd32_rusage_out(&wru.wru_self, &wru32.wru_self); 271 freebsd32_rusage_out(&wru.wru_children, &wru32.wru_children); 272 error = copyout(&wru32, uap->wrusage, sizeof(wru32)); 273 } 274 if (uap->info != NULL && error == 0) { 275 siginfo_to_siginfo32 (&si, &si32); 276 error = copyout(&si32, uap->info, sizeof(si32)); 277 } 278 return (error); 279 } 280 281 #ifdef COMPAT_FREEBSD4 282 static void 283 copy_statfs(struct statfs *in, struct ostatfs32 *out) 284 { 285 286 statfs_scale_blocks(in, INT32_MAX); 287 bzero(out, sizeof(*out)); 288 CP(*in, *out, f_bsize); 289 out->f_iosize = MIN(in->f_iosize, INT32_MAX); 290 CP(*in, *out, f_blocks); 291 CP(*in, *out, f_bfree); 292 CP(*in, *out, f_bavail); 293 out->f_files = MIN(in->f_files, INT32_MAX); 294 out->f_ffree = MIN(in->f_ffree, INT32_MAX); 295 CP(*in, *out, f_fsid); 296 CP(*in, *out, f_owner); 297 CP(*in, *out, f_type); 298 CP(*in, *out, f_flags); 299 out->f_syncwrites = MIN(in->f_syncwrites, INT32_MAX); 300 out->f_asyncwrites = MIN(in->f_asyncwrites, INT32_MAX); 301 strlcpy(out->f_fstypename, 302 in->f_fstypename, MFSNAMELEN); 303 strlcpy(out->f_mntonname, 304 in->f_mntonname, min(MNAMELEN, FREEBSD4_OMNAMELEN)); 305 out->f_syncreads = MIN(in->f_syncreads, INT32_MAX); 306 out->f_asyncreads = MIN(in->f_asyncreads, INT32_MAX); 307 strlcpy(out->f_mntfromname, 308 in->f_mntfromname, min(MNAMELEN, FREEBSD4_OMNAMELEN)); 309 } 310 #endif 311 312 int 313 freebsd32_getfsstat(struct thread *td, struct freebsd32_getfsstat_args *uap) 314 { 315 size_t count; 316 int error; 317 318 if (uap->bufsize < 0 || uap->bufsize > SIZE_MAX) 319 return (EINVAL); 320 error = kern_getfsstat(td, &uap->buf, uap->bufsize, &count, 321 UIO_USERSPACE, uap->mode); 322 if (error == 0) 323 td->td_retval[0] = count; 324 return (error); 325 } 326 327 #ifdef COMPAT_FREEBSD4 328 int 329 freebsd4_freebsd32_getfsstat(struct thread *td, 330 struct freebsd4_freebsd32_getfsstat_args *uap) 331 { 332 struct statfs *buf, *sp; 333 struct ostatfs32 stat32; 334 size_t count, size, copycount; 335 int error; 336 337 count = uap->bufsize / sizeof(struct ostatfs32); 338 size = count * sizeof(struct statfs); 339 error = kern_getfsstat(td, &buf, size, &count, UIO_SYSSPACE, uap->mode); 340 if (size > 0) { 341 sp = buf; 342 copycount = count; 343 while (copycount > 0 && error == 0) { 344 copy_statfs(sp, &stat32); 345 error = copyout(&stat32, uap->buf, sizeof(stat32)); 346 sp++; 347 uap->buf++; 348 copycount--; 349 } 350 free(buf, M_STATFS); 351 } 352 if (error == 0) 353 td->td_retval[0] = count; 354 return (error); 355 } 356 #endif 357 358 #ifdef COMPAT_FREEBSD11 359 int 360 freebsd11_freebsd32_getfsstat(struct thread *td, 361 struct freebsd11_freebsd32_getfsstat_args *uap) 362 { 363 return(kern_freebsd11_getfsstat(td, uap->buf, uap->bufsize, 364 uap->mode)); 365 } 366 #endif 367 368 int 369 freebsd32_sigaltstack(struct thread *td, 370 struct freebsd32_sigaltstack_args *uap) 371 { 372 struct sigaltstack32 s32; 373 struct sigaltstack ss, oss, *ssp; 374 int error; 375 376 if (uap->ss != NULL) { 377 error = copyin(uap->ss, &s32, sizeof(s32)); 378 if (error) 379 return (error); 380 PTRIN_CP(s32, ss, ss_sp); 381 CP(s32, ss, ss_size); 382 CP(s32, ss, ss_flags); 383 ssp = &ss; 384 } else 385 ssp = NULL; 386 error = kern_sigaltstack(td, ssp, &oss); 387 if (error == 0 && uap->oss != NULL) { 388 PTROUT_CP(oss, s32, ss_sp); 389 CP(oss, s32, ss_size); 390 CP(oss, s32, ss_flags); 391 error = copyout(&s32, uap->oss, sizeof(s32)); 392 } 393 return (error); 394 } 395 396 /* 397 * Custom version of exec_copyin_args() so that we can translate 398 * the pointers. 399 */ 400 int 401 freebsd32_exec_copyin_args(struct image_args *args, const char *fname, 402 enum uio_seg segflg, uint32_t *argv, uint32_t *envv) 403 { 404 char *argp, *envp; 405 uint32_t *p32, arg; 406 int error; 407 408 bzero(args, sizeof(*args)); 409 if (argv == NULL) 410 return (EFAULT); 411 412 /* 413 * Allocate demand-paged memory for the file name, argument, and 414 * environment strings. 415 */ 416 error = exec_alloc_args(args); 417 if (error != 0) 418 return (error); 419 420 /* 421 * Copy the file name. 422 */ 423 error = exec_args_add_fname(args, fname, segflg); 424 if (error != 0) 425 goto err_exit; 426 427 /* 428 * extract arguments first 429 */ 430 p32 = argv; 431 for (;;) { 432 error = copyin(p32++, &arg, sizeof(arg)); 433 if (error) 434 goto err_exit; 435 if (arg == 0) 436 break; 437 argp = PTRIN(arg); 438 error = exec_args_add_arg(args, argp, UIO_USERSPACE); 439 if (error != 0) 440 goto err_exit; 441 } 442 443 /* 444 * extract environment strings 445 */ 446 if (envv) { 447 p32 = envv; 448 for (;;) { 449 error = copyin(p32++, &arg, sizeof(arg)); 450 if (error) 451 goto err_exit; 452 if (arg == 0) 453 break; 454 envp = PTRIN(arg); 455 error = exec_args_add_env(args, envp, UIO_USERSPACE); 456 if (error != 0) 457 goto err_exit; 458 } 459 } 460 461 return (0); 462 463 err_exit: 464 exec_free_args(args); 465 return (error); 466 } 467 468 int 469 freebsd32_execve(struct thread *td, struct freebsd32_execve_args *uap) 470 { 471 struct image_args eargs; 472 struct vmspace *oldvmspace; 473 int error; 474 475 error = pre_execve(td, &oldvmspace); 476 if (error != 0) 477 return (error); 478 error = freebsd32_exec_copyin_args(&eargs, uap->fname, UIO_USERSPACE, 479 uap->argv, uap->envv); 480 if (error == 0) 481 error = kern_execve(td, &eargs, NULL, oldvmspace); 482 post_execve(td, error, oldvmspace); 483 AUDIT_SYSCALL_EXIT(error == EJUSTRETURN ? 0 : error, td); 484 return (error); 485 } 486 487 int 488 freebsd32_fexecve(struct thread *td, struct freebsd32_fexecve_args *uap) 489 { 490 struct image_args eargs; 491 struct vmspace *oldvmspace; 492 int error; 493 494 error = pre_execve(td, &oldvmspace); 495 if (error != 0) 496 return (error); 497 error = freebsd32_exec_copyin_args(&eargs, NULL, UIO_SYSSPACE, 498 uap->argv, uap->envv); 499 if (error == 0) { 500 eargs.fd = uap->fd; 501 error = kern_execve(td, &eargs, NULL, oldvmspace); 502 } 503 post_execve(td, error, oldvmspace); 504 AUDIT_SYSCALL_EXIT(error == EJUSTRETURN ? 0 : error, td); 505 return (error); 506 } 507 508 int 509 freebsd32_mknodat(struct thread *td, struct freebsd32_mknodat_args *uap) 510 { 511 512 return (kern_mknodat(td, uap->fd, uap->path, UIO_USERSPACE, 513 uap->mode, PAIR32TO64(dev_t, uap->dev))); 514 } 515 516 int 517 freebsd32_mprotect(struct thread *td, struct freebsd32_mprotect_args *uap) 518 { 519 int prot; 520 521 prot = uap->prot; 522 #if defined(__amd64__) 523 if (i386_read_exec && (prot & PROT_READ) != 0) 524 prot |= PROT_EXEC; 525 #endif 526 return (kern_mprotect(td, (uintptr_t)PTRIN(uap->addr), uap->len, 527 prot, 0)); 528 } 529 530 int 531 freebsd32_mmap(struct thread *td, struct freebsd32_mmap_args *uap) 532 { 533 int prot; 534 535 prot = uap->prot; 536 #if defined(__amd64__) 537 if (i386_read_exec && (prot & PROT_READ)) 538 prot |= PROT_EXEC; 539 #endif 540 541 return (kern_mmap(td, &(struct mmap_req){ 542 .mr_hint = (uintptr_t)uap->addr, 543 .mr_len = uap->len, 544 .mr_prot = prot, 545 .mr_flags = uap->flags, 546 .mr_fd = uap->fd, 547 .mr_pos = PAIR32TO64(off_t, uap->pos), 548 })); 549 } 550 551 #ifdef COMPAT_FREEBSD6 552 int 553 freebsd6_freebsd32_mmap(struct thread *td, 554 struct freebsd6_freebsd32_mmap_args *uap) 555 { 556 int prot; 557 558 prot = uap->prot; 559 #if defined(__amd64__) 560 if (i386_read_exec && (prot & PROT_READ)) 561 prot |= PROT_EXEC; 562 #endif 563 564 return (kern_mmap(td, &(struct mmap_req){ 565 .mr_hint = (uintptr_t)uap->addr, 566 .mr_len = uap->len, 567 .mr_prot = prot, 568 .mr_flags = uap->flags, 569 .mr_fd = uap->fd, 570 .mr_pos = PAIR32TO64(off_t, uap->pos), 571 })); 572 } 573 #endif 574 575 #ifdef COMPAT_43 576 int 577 ofreebsd32_mmap(struct thread *td, struct ofreebsd32_mmap_args *uap) 578 { 579 return (kern_ommap(td, (uintptr_t)uap->addr, uap->len, uap->prot, 580 uap->flags, uap->fd, uap->pos)); 581 } 582 #endif 583 584 int 585 freebsd32_setitimer(struct thread *td, struct freebsd32_setitimer_args *uap) 586 { 587 struct itimerval itv, oitv, *itvp; 588 struct itimerval32 i32; 589 int error; 590 591 if (uap->itv != NULL) { 592 error = copyin(uap->itv, &i32, sizeof(i32)); 593 if (error) 594 return (error); 595 TV_CP(i32, itv, it_interval); 596 TV_CP(i32, itv, it_value); 597 itvp = &itv; 598 } else 599 itvp = NULL; 600 error = kern_setitimer(td, uap->which, itvp, &oitv); 601 if (error || uap->oitv == NULL) 602 return (error); 603 TV_CP(oitv, i32, it_interval); 604 TV_CP(oitv, i32, it_value); 605 return (copyout(&i32, uap->oitv, sizeof(i32))); 606 } 607 608 int 609 freebsd32_getitimer(struct thread *td, struct freebsd32_getitimer_args *uap) 610 { 611 struct itimerval itv; 612 struct itimerval32 i32; 613 int error; 614 615 error = kern_getitimer(td, uap->which, &itv); 616 if (error || uap->itv == NULL) 617 return (error); 618 TV_CP(itv, i32, it_interval); 619 TV_CP(itv, i32, it_value); 620 return (copyout(&i32, uap->itv, sizeof(i32))); 621 } 622 623 int 624 freebsd32_select(struct thread *td, struct freebsd32_select_args *uap) 625 { 626 struct timeval32 tv32; 627 struct timeval tv, *tvp; 628 int error; 629 630 if (uap->tv != NULL) { 631 error = copyin(uap->tv, &tv32, sizeof(tv32)); 632 if (error) 633 return (error); 634 CP(tv32, tv, tv_sec); 635 CP(tv32, tv, tv_usec); 636 tvp = &tv; 637 } else 638 tvp = NULL; 639 /* 640 * XXX Do pointers need PTRIN()? 641 */ 642 return (kern_select(td, uap->nd, uap->in, uap->ou, uap->ex, tvp, 643 sizeof(int32_t) * 8)); 644 } 645 646 int 647 freebsd32_pselect(struct thread *td, struct freebsd32_pselect_args *uap) 648 { 649 struct timespec32 ts32; 650 struct timespec ts; 651 struct timeval tv, *tvp; 652 sigset_t set, *uset; 653 int error; 654 655 if (uap->ts != NULL) { 656 error = copyin(uap->ts, &ts32, sizeof(ts32)); 657 if (error != 0) 658 return (error); 659 CP(ts32, ts, tv_sec); 660 CP(ts32, ts, tv_nsec); 661 TIMESPEC_TO_TIMEVAL(&tv, &ts); 662 tvp = &tv; 663 } else 664 tvp = NULL; 665 if (uap->sm != NULL) { 666 error = copyin(uap->sm, &set, sizeof(set)); 667 if (error != 0) 668 return (error); 669 uset = &set; 670 } else 671 uset = NULL; 672 /* 673 * XXX Do pointers need PTRIN()? 674 */ 675 error = kern_pselect(td, uap->nd, uap->in, uap->ou, uap->ex, tvp, 676 uset, sizeof(int32_t) * 8); 677 return (error); 678 } 679 680 /* 681 * Copy 'count' items into the destination list pointed to by uap->eventlist. 682 */ 683 static int 684 freebsd32_kevent_copyout(void *arg, struct kevent *kevp, int count) 685 { 686 struct freebsd32_kevent_args *uap; 687 struct kevent32 ks32[KQ_NEVENTS]; 688 uint64_t e; 689 int i, j, error; 690 691 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count)); 692 uap = (struct freebsd32_kevent_args *)arg; 693 694 for (i = 0; i < count; i++) { 695 CP(kevp[i], ks32[i], ident); 696 CP(kevp[i], ks32[i], filter); 697 CP(kevp[i], ks32[i], flags); 698 CP(kevp[i], ks32[i], fflags); 699 #if BYTE_ORDER == LITTLE_ENDIAN 700 ks32[i].data1 = kevp[i].data; 701 ks32[i].data2 = kevp[i].data >> 32; 702 #else 703 ks32[i].data1 = kevp[i].data >> 32; 704 ks32[i].data2 = kevp[i].data; 705 #endif 706 PTROUT_CP(kevp[i], ks32[i], udata); 707 for (j = 0; j < nitems(kevp->ext); j++) { 708 e = kevp[i].ext[j]; 709 #if BYTE_ORDER == LITTLE_ENDIAN 710 ks32[i].ext64[2 * j] = e; 711 ks32[i].ext64[2 * j + 1] = e >> 32; 712 #else 713 ks32[i].ext64[2 * j] = e >> 32; 714 ks32[i].ext64[2 * j + 1] = e; 715 #endif 716 } 717 } 718 error = copyout(ks32, uap->eventlist, count * sizeof *ks32); 719 if (error == 0) 720 uap->eventlist += count; 721 return (error); 722 } 723 724 /* 725 * Copy 'count' items from the list pointed to by uap->changelist. 726 */ 727 static int 728 freebsd32_kevent_copyin(void *arg, struct kevent *kevp, int count) 729 { 730 struct freebsd32_kevent_args *uap; 731 struct kevent32 ks32[KQ_NEVENTS]; 732 uint64_t e; 733 int i, j, error; 734 735 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count)); 736 uap = (struct freebsd32_kevent_args *)arg; 737 738 error = copyin(uap->changelist, ks32, count * sizeof *ks32); 739 if (error) 740 goto done; 741 uap->changelist += count; 742 743 for (i = 0; i < count; i++) { 744 CP(ks32[i], kevp[i], ident); 745 CP(ks32[i], kevp[i], filter); 746 CP(ks32[i], kevp[i], flags); 747 CP(ks32[i], kevp[i], fflags); 748 kevp[i].data = PAIR32TO64(uint64_t, ks32[i].data); 749 PTRIN_CP(ks32[i], kevp[i], udata); 750 for (j = 0; j < nitems(kevp->ext); j++) { 751 #if BYTE_ORDER == LITTLE_ENDIAN 752 e = ks32[i].ext64[2 * j + 1]; 753 e <<= 32; 754 e += ks32[i].ext64[2 * j]; 755 #else 756 e = ks32[i].ext64[2 * j]; 757 e <<= 32; 758 e += ks32[i].ext64[2 * j + 1]; 759 #endif 760 kevp[i].ext[j] = e; 761 } 762 } 763 done: 764 return (error); 765 } 766 767 int 768 freebsd32_kevent(struct thread *td, struct freebsd32_kevent_args *uap) 769 { 770 struct timespec32 ts32; 771 struct timespec ts, *tsp; 772 struct kevent_copyops k_ops = { 773 .arg = uap, 774 .k_copyout = freebsd32_kevent_copyout, 775 .k_copyin = freebsd32_kevent_copyin, 776 }; 777 #ifdef KTRACE 778 struct kevent32 *eventlist = uap->eventlist; 779 #endif 780 int error; 781 782 if (uap->timeout) { 783 error = copyin(uap->timeout, &ts32, sizeof(ts32)); 784 if (error) 785 return (error); 786 CP(ts32, ts, tv_sec); 787 CP(ts32, ts, tv_nsec); 788 tsp = &ts; 789 } else 790 tsp = NULL; 791 #ifdef KTRACE 792 if (KTRPOINT(td, KTR_STRUCT_ARRAY)) 793 ktrstructarray("kevent32", UIO_USERSPACE, uap->changelist, 794 uap->nchanges, sizeof(struct kevent32)); 795 #endif 796 error = kern_kevent(td, uap->fd, uap->nchanges, uap->nevents, 797 &k_ops, tsp); 798 #ifdef KTRACE 799 if (error == 0 && KTRPOINT(td, KTR_STRUCT_ARRAY)) 800 ktrstructarray("kevent32", UIO_USERSPACE, eventlist, 801 td->td_retval[0], sizeof(struct kevent32)); 802 #endif 803 return (error); 804 } 805 806 #ifdef COMPAT_FREEBSD11 807 static int 808 freebsd32_kevent11_copyout(void *arg, struct kevent *kevp, int count) 809 { 810 struct freebsd11_freebsd32_kevent_args *uap; 811 struct freebsd11_kevent32 ks32[KQ_NEVENTS]; 812 int i, error; 813 814 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count)); 815 uap = (struct freebsd11_freebsd32_kevent_args *)arg; 816 817 for (i = 0; i < count; i++) { 818 CP(kevp[i], ks32[i], ident); 819 CP(kevp[i], ks32[i], filter); 820 CP(kevp[i], ks32[i], flags); 821 CP(kevp[i], ks32[i], fflags); 822 CP(kevp[i], ks32[i], data); 823 PTROUT_CP(kevp[i], ks32[i], udata); 824 } 825 error = copyout(ks32, uap->eventlist, count * sizeof *ks32); 826 if (error == 0) 827 uap->eventlist += count; 828 return (error); 829 } 830 831 /* 832 * Copy 'count' items from the list pointed to by uap->changelist. 833 */ 834 static int 835 freebsd32_kevent11_copyin(void *arg, struct kevent *kevp, int count) 836 { 837 struct freebsd11_freebsd32_kevent_args *uap; 838 struct freebsd11_kevent32 ks32[KQ_NEVENTS]; 839 int i, j, error; 840 841 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count)); 842 uap = (struct freebsd11_freebsd32_kevent_args *)arg; 843 844 error = copyin(uap->changelist, ks32, count * sizeof *ks32); 845 if (error) 846 goto done; 847 uap->changelist += count; 848 849 for (i = 0; i < count; i++) { 850 CP(ks32[i], kevp[i], ident); 851 CP(ks32[i], kevp[i], filter); 852 CP(ks32[i], kevp[i], flags); 853 CP(ks32[i], kevp[i], fflags); 854 CP(ks32[i], kevp[i], data); 855 PTRIN_CP(ks32[i], kevp[i], udata); 856 for (j = 0; j < nitems(kevp->ext); j++) 857 kevp[i].ext[j] = 0; 858 } 859 done: 860 return (error); 861 } 862 863 int 864 freebsd11_freebsd32_kevent(struct thread *td, 865 struct freebsd11_freebsd32_kevent_args *uap) 866 { 867 struct timespec32 ts32; 868 struct timespec ts, *tsp; 869 struct kevent_copyops k_ops = { 870 .arg = uap, 871 .k_copyout = freebsd32_kevent11_copyout, 872 .k_copyin = freebsd32_kevent11_copyin, 873 }; 874 #ifdef KTRACE 875 struct freebsd11_kevent32 *eventlist = uap->eventlist; 876 #endif 877 int error; 878 879 if (uap->timeout) { 880 error = copyin(uap->timeout, &ts32, sizeof(ts32)); 881 if (error) 882 return (error); 883 CP(ts32, ts, tv_sec); 884 CP(ts32, ts, tv_nsec); 885 tsp = &ts; 886 } else 887 tsp = NULL; 888 #ifdef KTRACE 889 if (KTRPOINT(td, KTR_STRUCT_ARRAY)) 890 ktrstructarray("freebsd11_kevent32", UIO_USERSPACE, 891 uap->changelist, uap->nchanges, 892 sizeof(struct freebsd11_kevent32)); 893 #endif 894 error = kern_kevent(td, uap->fd, uap->nchanges, uap->nevents, 895 &k_ops, tsp); 896 #ifdef KTRACE 897 if (error == 0 && KTRPOINT(td, KTR_STRUCT_ARRAY)) 898 ktrstructarray("freebsd11_kevent32", UIO_USERSPACE, 899 eventlist, td->td_retval[0], 900 sizeof(struct freebsd11_kevent32)); 901 #endif 902 return (error); 903 } 904 #endif 905 906 int 907 freebsd32_gettimeofday(struct thread *td, 908 struct freebsd32_gettimeofday_args *uap) 909 { 910 struct timeval atv; 911 struct timeval32 atv32; 912 struct timezone rtz; 913 int error = 0; 914 915 if (uap->tp) { 916 microtime(&atv); 917 CP(atv, atv32, tv_sec); 918 CP(atv, atv32, tv_usec); 919 error = copyout(&atv32, uap->tp, sizeof (atv32)); 920 } 921 if (error == 0 && uap->tzp != NULL) { 922 rtz.tz_minuteswest = 0; 923 rtz.tz_dsttime = 0; 924 error = copyout(&rtz, uap->tzp, sizeof (rtz)); 925 } 926 return (error); 927 } 928 929 int 930 freebsd32_getrusage(struct thread *td, struct freebsd32_getrusage_args *uap) 931 { 932 struct rusage32 s32; 933 struct rusage s; 934 int error; 935 936 error = kern_getrusage(td, uap->who, &s); 937 if (error == 0) { 938 freebsd32_rusage_out(&s, &s32); 939 error = copyout(&s32, uap->rusage, sizeof(s32)); 940 } 941 return (error); 942 } 943 944 static void 945 ptrace_lwpinfo_to32(const struct ptrace_lwpinfo *pl, 946 struct ptrace_lwpinfo32 *pl32) 947 { 948 949 bzero(pl32, sizeof(*pl32)); 950 pl32->pl_lwpid = pl->pl_lwpid; 951 pl32->pl_event = pl->pl_event; 952 pl32->pl_flags = pl->pl_flags; 953 pl32->pl_sigmask = pl->pl_sigmask; 954 pl32->pl_siglist = pl->pl_siglist; 955 siginfo_to_siginfo32(&pl->pl_siginfo, &pl32->pl_siginfo); 956 strcpy(pl32->pl_tdname, pl->pl_tdname); 957 pl32->pl_child_pid = pl->pl_child_pid; 958 pl32->pl_syscall_code = pl->pl_syscall_code; 959 pl32->pl_syscall_narg = pl->pl_syscall_narg; 960 } 961 962 static void 963 ptrace_sc_ret_to32(const struct ptrace_sc_ret *psr, 964 struct ptrace_sc_ret32 *psr32) 965 { 966 967 bzero(psr32, sizeof(*psr32)); 968 psr32->sr_retval[0] = psr->sr_retval[0]; 969 psr32->sr_retval[1] = psr->sr_retval[1]; 970 psr32->sr_error = psr->sr_error; 971 } 972 973 int 974 freebsd32_ptrace(struct thread *td, struct freebsd32_ptrace_args *uap) 975 { 976 union { 977 struct ptrace_io_desc piod; 978 struct ptrace_lwpinfo pl; 979 struct ptrace_vm_entry pve; 980 struct ptrace_coredump pc; 981 struct ptrace_sc_remote sr; 982 struct dbreg32 dbreg; 983 struct fpreg32 fpreg; 984 struct reg32 reg; 985 struct iovec vec; 986 register_t args[nitems(td->td_sa.args)]; 987 struct ptrace_sc_ret psr; 988 int ptevents; 989 } r; 990 union { 991 struct ptrace_io_desc32 piod; 992 struct ptrace_lwpinfo32 pl; 993 struct ptrace_vm_entry32 pve; 994 struct ptrace_coredump32 pc; 995 struct ptrace_sc_remote32 sr; 996 uint32_t args[nitems(td->td_sa.args)]; 997 struct ptrace_sc_ret32 psr; 998 struct iovec32 vec; 999 } r32; 1000 syscallarg_t pscr_args[nitems(td->td_sa.args)]; 1001 u_int pscr_args32[nitems(td->td_sa.args)]; 1002 void *addr; 1003 int data, error, i; 1004 1005 if (!allow_ptrace) 1006 return (ENOSYS); 1007 error = 0; 1008 1009 AUDIT_ARG_PID(uap->pid); 1010 AUDIT_ARG_CMD(uap->req); 1011 AUDIT_ARG_VALUE(uap->data); 1012 addr = &r; 1013 data = uap->data; 1014 switch (uap->req) { 1015 case PT_GET_EVENT_MASK: 1016 case PT_GET_SC_ARGS: 1017 case PT_GET_SC_RET: 1018 break; 1019 case PT_LWPINFO: 1020 if (uap->data > sizeof(r32.pl)) 1021 return (EINVAL); 1022 1023 /* 1024 * Pass size of native structure in 'data'. Truncate 1025 * if necessary to avoid siginfo. 1026 */ 1027 data = sizeof(r.pl); 1028 if (uap->data < offsetof(struct ptrace_lwpinfo32, pl_siginfo) + 1029 sizeof(struct siginfo32)) 1030 data = offsetof(struct ptrace_lwpinfo, pl_siginfo); 1031 break; 1032 case PT_GETREGS: 1033 bzero(&r.reg, sizeof(r.reg)); 1034 break; 1035 case PT_GETFPREGS: 1036 bzero(&r.fpreg, sizeof(r.fpreg)); 1037 break; 1038 case PT_GETDBREGS: 1039 bzero(&r.dbreg, sizeof(r.dbreg)); 1040 break; 1041 case PT_SETREGS: 1042 error = copyin(uap->addr, &r.reg, sizeof(r.reg)); 1043 break; 1044 case PT_SETFPREGS: 1045 error = copyin(uap->addr, &r.fpreg, sizeof(r.fpreg)); 1046 break; 1047 case PT_SETDBREGS: 1048 error = copyin(uap->addr, &r.dbreg, sizeof(r.dbreg)); 1049 break; 1050 case PT_GETREGSET: 1051 case PT_SETREGSET: 1052 error = copyin(uap->addr, &r32.vec, sizeof(r32.vec)); 1053 if (error != 0) 1054 break; 1055 1056 r.vec.iov_len = r32.vec.iov_len; 1057 r.vec.iov_base = PTRIN(r32.vec.iov_base); 1058 break; 1059 case PT_SET_EVENT_MASK: 1060 if (uap->data != sizeof(r.ptevents)) 1061 error = EINVAL; 1062 else 1063 error = copyin(uap->addr, &r.ptevents, uap->data); 1064 break; 1065 case PT_IO: 1066 error = copyin(uap->addr, &r32.piod, sizeof(r32.piod)); 1067 if (error) 1068 break; 1069 CP(r32.piod, r.piod, piod_op); 1070 PTRIN_CP(r32.piod, r.piod, piod_offs); 1071 PTRIN_CP(r32.piod, r.piod, piod_addr); 1072 CP(r32.piod, r.piod, piod_len); 1073 break; 1074 case PT_VM_ENTRY: 1075 error = copyin(uap->addr, &r32.pve, sizeof(r32.pve)); 1076 if (error) 1077 break; 1078 1079 CP(r32.pve, r.pve, pve_entry); 1080 CP(r32.pve, r.pve, pve_timestamp); 1081 CP(r32.pve, r.pve, pve_start); 1082 CP(r32.pve, r.pve, pve_end); 1083 CP(r32.pve, r.pve, pve_offset); 1084 CP(r32.pve, r.pve, pve_prot); 1085 CP(r32.pve, r.pve, pve_pathlen); 1086 CP(r32.pve, r.pve, pve_fileid); 1087 CP(r32.pve, r.pve, pve_fsid); 1088 PTRIN_CP(r32.pve, r.pve, pve_path); 1089 break; 1090 case PT_COREDUMP: 1091 if (uap->data != sizeof(r32.pc)) 1092 error = EINVAL; 1093 else 1094 error = copyin(uap->addr, &r32.pc, uap->data); 1095 CP(r32.pc, r.pc, pc_fd); 1096 CP(r32.pc, r.pc, pc_flags); 1097 r.pc.pc_limit = PAIR32TO64(off_t, r32.pc.pc_limit); 1098 data = sizeof(r.pc); 1099 break; 1100 case PT_SC_REMOTE: 1101 if (uap->data != sizeof(r32.sr)) { 1102 error = EINVAL; 1103 break; 1104 } 1105 error = copyin(uap->addr, &r32.sr, uap->data); 1106 if (error != 0) 1107 break; 1108 CP(r32.sr, r.sr, pscr_syscall); 1109 CP(r32.sr, r.sr, pscr_nargs); 1110 if (r.sr.pscr_nargs > nitems(td->td_sa.args)) { 1111 error = EINVAL; 1112 break; 1113 } 1114 error = copyin(PTRIN(r32.sr.pscr_args), pscr_args32, 1115 sizeof(u_int) * r32.sr.pscr_nargs); 1116 if (error != 0) 1117 break; 1118 for (i = 0; i < r32.sr.pscr_nargs; i++) 1119 pscr_args[i] = pscr_args32[i]; 1120 r.sr.pscr_args = pscr_args; 1121 break; 1122 default: 1123 addr = uap->addr; 1124 break; 1125 } 1126 if (error) 1127 return (error); 1128 1129 error = kern_ptrace(td, uap->req, uap->pid, addr, data); 1130 if (error) 1131 return (error); 1132 1133 switch (uap->req) { 1134 case PT_VM_ENTRY: 1135 CP(r.pve, r32.pve, pve_entry); 1136 CP(r.pve, r32.pve, pve_timestamp); 1137 CP(r.pve, r32.pve, pve_start); 1138 CP(r.pve, r32.pve, pve_end); 1139 CP(r.pve, r32.pve, pve_offset); 1140 CP(r.pve, r32.pve, pve_prot); 1141 CP(r.pve, r32.pve, pve_pathlen); 1142 CP(r.pve, r32.pve, pve_fileid); 1143 CP(r.pve, r32.pve, pve_fsid); 1144 error = copyout(&r32.pve, uap->addr, sizeof(r32.pve)); 1145 break; 1146 case PT_IO: 1147 CP(r.piod, r32.piod, piod_len); 1148 error = copyout(&r32.piod, uap->addr, sizeof(r32.piod)); 1149 break; 1150 case PT_GETREGS: 1151 error = copyout(&r.reg, uap->addr, sizeof(r.reg)); 1152 break; 1153 case PT_GETFPREGS: 1154 error = copyout(&r.fpreg, uap->addr, sizeof(r.fpreg)); 1155 break; 1156 case PT_GETDBREGS: 1157 error = copyout(&r.dbreg, uap->addr, sizeof(r.dbreg)); 1158 break; 1159 case PT_GETREGSET: 1160 r32.vec.iov_len = r.vec.iov_len; 1161 error = copyout(&r32.vec, uap->addr, sizeof(r32.vec)); 1162 break; 1163 case PT_GET_EVENT_MASK: 1164 /* NB: The size in uap->data is validated in kern_ptrace(). */ 1165 error = copyout(&r.ptevents, uap->addr, uap->data); 1166 break; 1167 case PT_LWPINFO: 1168 ptrace_lwpinfo_to32(&r.pl, &r32.pl); 1169 error = copyout(&r32.pl, uap->addr, uap->data); 1170 break; 1171 case PT_GET_SC_ARGS: 1172 for (i = 0; i < nitems(r.args); i++) 1173 r32.args[i] = (uint32_t)r.args[i]; 1174 error = copyout(r32.args, uap->addr, MIN(uap->data, 1175 sizeof(r32.args))); 1176 break; 1177 case PT_GET_SC_RET: 1178 ptrace_sc_ret_to32(&r.psr, &r32.psr); 1179 error = copyout(&r32.psr, uap->addr, MIN(uap->data, 1180 sizeof(r32.psr))); 1181 break; 1182 case PT_SC_REMOTE: 1183 ptrace_sc_ret_to32(&r.sr.pscr_ret, &r32.sr.pscr_ret); 1184 error = copyout(&r32.sr.pscr_ret, uap->addr + 1185 offsetof(struct ptrace_sc_remote32, pscr_ret), 1186 sizeof(r32.psr)); 1187 break; 1188 } 1189 1190 return (error); 1191 } 1192 1193 int 1194 freebsd32_copyinuio(struct iovec32 *iovp, u_int iovcnt, struct uio **uiop) 1195 { 1196 struct iovec32 iov32; 1197 struct iovec *iov; 1198 struct uio *uio; 1199 u_int iovlen; 1200 int error, i; 1201 1202 *uiop = NULL; 1203 if (iovcnt > UIO_MAXIOV) 1204 return (EINVAL); 1205 iovlen = iovcnt * sizeof(struct iovec); 1206 uio = malloc(iovlen + sizeof *uio, M_IOV, M_WAITOK); 1207 iov = (struct iovec *)(uio + 1); 1208 for (i = 0; i < iovcnt; i++) { 1209 error = copyin(&iovp[i], &iov32, sizeof(struct iovec32)); 1210 if (error) { 1211 free(uio, M_IOV); 1212 return (error); 1213 } 1214 iov[i].iov_base = PTRIN(iov32.iov_base); 1215 iov[i].iov_len = iov32.iov_len; 1216 } 1217 uio->uio_iov = iov; 1218 uio->uio_iovcnt = iovcnt; 1219 uio->uio_segflg = UIO_USERSPACE; 1220 uio->uio_offset = -1; 1221 uio->uio_resid = 0; 1222 for (i = 0; i < iovcnt; i++) { 1223 if (iov->iov_len > INT_MAX - uio->uio_resid) { 1224 free(uio, M_IOV); 1225 return (EINVAL); 1226 } 1227 uio->uio_resid += iov->iov_len; 1228 iov++; 1229 } 1230 *uiop = uio; 1231 return (0); 1232 } 1233 1234 int 1235 freebsd32_readv(struct thread *td, struct freebsd32_readv_args *uap) 1236 { 1237 struct uio *auio; 1238 int error; 1239 1240 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 1241 if (error) 1242 return (error); 1243 error = kern_readv(td, uap->fd, auio); 1244 free(auio, M_IOV); 1245 return (error); 1246 } 1247 1248 int 1249 freebsd32_writev(struct thread *td, struct freebsd32_writev_args *uap) 1250 { 1251 struct uio *auio; 1252 int error; 1253 1254 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 1255 if (error) 1256 return (error); 1257 error = kern_writev(td, uap->fd, auio); 1258 free(auio, M_IOV); 1259 return (error); 1260 } 1261 1262 int 1263 freebsd32_preadv(struct thread *td, struct freebsd32_preadv_args *uap) 1264 { 1265 struct uio *auio; 1266 int error; 1267 1268 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 1269 if (error) 1270 return (error); 1271 error = kern_preadv(td, uap->fd, auio, PAIR32TO64(off_t,uap->offset)); 1272 free(auio, M_IOV); 1273 return (error); 1274 } 1275 1276 int 1277 freebsd32_pwritev(struct thread *td, struct freebsd32_pwritev_args *uap) 1278 { 1279 struct uio *auio; 1280 int error; 1281 1282 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 1283 if (error) 1284 return (error); 1285 error = kern_pwritev(td, uap->fd, auio, PAIR32TO64(off_t,uap->offset)); 1286 free(auio, M_IOV); 1287 return (error); 1288 } 1289 1290 int 1291 freebsd32_copyiniov(struct iovec32 *iovp32, u_int iovcnt, struct iovec **iovp, 1292 int error) 1293 { 1294 struct iovec32 iov32; 1295 struct iovec *iov; 1296 u_int iovlen; 1297 int i; 1298 1299 *iovp = NULL; 1300 if (iovcnt > UIO_MAXIOV) 1301 return (error); 1302 iovlen = iovcnt * sizeof(struct iovec); 1303 iov = malloc(iovlen, M_IOV, M_WAITOK); 1304 for (i = 0; i < iovcnt; i++) { 1305 error = copyin(&iovp32[i], &iov32, sizeof(struct iovec32)); 1306 if (error) { 1307 free(iov, M_IOV); 1308 return (error); 1309 } 1310 iov[i].iov_base = PTRIN(iov32.iov_base); 1311 iov[i].iov_len = iov32.iov_len; 1312 } 1313 *iovp = iov; 1314 return (0); 1315 } 1316 1317 static int 1318 freebsd32_copyinmsghdr(const struct msghdr32 *msg32, struct msghdr *msg) 1319 { 1320 struct msghdr32 m32; 1321 int error; 1322 1323 error = copyin(msg32, &m32, sizeof(m32)); 1324 if (error) 1325 return (error); 1326 msg->msg_name = PTRIN(m32.msg_name); 1327 msg->msg_namelen = m32.msg_namelen; 1328 msg->msg_iov = PTRIN(m32.msg_iov); 1329 msg->msg_iovlen = m32.msg_iovlen; 1330 msg->msg_control = PTRIN(m32.msg_control); 1331 msg->msg_controllen = m32.msg_controllen; 1332 msg->msg_flags = m32.msg_flags; 1333 return (0); 1334 } 1335 1336 static int 1337 freebsd32_copyoutmsghdr(struct msghdr *msg, struct msghdr32 *msg32) 1338 { 1339 struct msghdr32 m32; 1340 int error; 1341 1342 m32.msg_name = PTROUT(msg->msg_name); 1343 m32.msg_namelen = msg->msg_namelen; 1344 m32.msg_iov = PTROUT(msg->msg_iov); 1345 m32.msg_iovlen = msg->msg_iovlen; 1346 m32.msg_control = PTROUT(msg->msg_control); 1347 m32.msg_controllen = msg->msg_controllen; 1348 m32.msg_flags = msg->msg_flags; 1349 error = copyout(&m32, msg32, sizeof(m32)); 1350 return (error); 1351 } 1352 1353 #define FREEBSD32_ALIGNBYTES (sizeof(int) - 1) 1354 #define FREEBSD32_ALIGN(p) \ 1355 (((u_long)(p) + FREEBSD32_ALIGNBYTES) & ~FREEBSD32_ALIGNBYTES) 1356 #define FREEBSD32_CMSG_SPACE(l) \ 1357 (FREEBSD32_ALIGN(sizeof(struct cmsghdr)) + FREEBSD32_ALIGN(l)) 1358 1359 #define FREEBSD32_CMSG_DATA(cmsg) ((unsigned char *)(cmsg) + \ 1360 FREEBSD32_ALIGN(sizeof(struct cmsghdr))) 1361 1362 static size_t 1363 freebsd32_cmsg_convert(const struct cmsghdr *cm, void *data, socklen_t datalen) 1364 { 1365 size_t copylen; 1366 union { 1367 struct timespec32 ts; 1368 struct timeval32 tv; 1369 struct bintime32 bt; 1370 } tmp32; 1371 1372 union { 1373 struct timespec ts; 1374 struct timeval tv; 1375 struct bintime bt; 1376 } *in; 1377 1378 in = data; 1379 copylen = 0; 1380 switch (cm->cmsg_level) { 1381 case SOL_SOCKET: 1382 switch (cm->cmsg_type) { 1383 case SCM_TIMESTAMP: 1384 TV_CP(*in, tmp32, tv); 1385 copylen = sizeof(tmp32.tv); 1386 break; 1387 1388 case SCM_BINTIME: 1389 BT_CP(*in, tmp32, bt); 1390 copylen = sizeof(tmp32.bt); 1391 break; 1392 1393 case SCM_REALTIME: 1394 case SCM_MONOTONIC: 1395 TS_CP(*in, tmp32, ts); 1396 copylen = sizeof(tmp32.ts); 1397 break; 1398 1399 default: 1400 break; 1401 } 1402 1403 default: 1404 break; 1405 } 1406 1407 if (copylen == 0) 1408 return (datalen); 1409 1410 KASSERT((datalen >= copylen), ("corrupted cmsghdr")); 1411 1412 bcopy(&tmp32, data, copylen); 1413 return (copylen); 1414 } 1415 1416 static int 1417 freebsd32_copy_msg_out(struct msghdr *msg, struct mbuf *control) 1418 { 1419 struct cmsghdr *cm; 1420 void *data; 1421 socklen_t clen, datalen, datalen_out, oldclen; 1422 int error; 1423 caddr_t ctlbuf; 1424 int len, copylen; 1425 struct mbuf *m; 1426 error = 0; 1427 1428 len = msg->msg_controllen; 1429 msg->msg_controllen = 0; 1430 1431 ctlbuf = msg->msg_control; 1432 for (m = control; m != NULL && len > 0; m = m->m_next) { 1433 cm = mtod(m, struct cmsghdr *); 1434 clen = m->m_len; 1435 while (cm != NULL) { 1436 if (sizeof(struct cmsghdr) > clen || 1437 cm->cmsg_len > clen) { 1438 error = EINVAL; 1439 break; 1440 } 1441 1442 data = CMSG_DATA(cm); 1443 datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data; 1444 datalen_out = freebsd32_cmsg_convert(cm, data, datalen); 1445 1446 /* 1447 * Copy out the message header. Preserve the native 1448 * message size in case we need to inspect the message 1449 * contents later. 1450 */ 1451 copylen = sizeof(struct cmsghdr); 1452 if (len < copylen) { 1453 msg->msg_flags |= MSG_CTRUNC; 1454 m_dispose_extcontrolm(m); 1455 goto exit; 1456 } 1457 oldclen = cm->cmsg_len; 1458 cm->cmsg_len = FREEBSD32_ALIGN(sizeof(struct cmsghdr)) + 1459 datalen_out; 1460 error = copyout(cm, ctlbuf, copylen); 1461 cm->cmsg_len = oldclen; 1462 if (error != 0) 1463 goto exit; 1464 1465 ctlbuf += FREEBSD32_ALIGN(copylen); 1466 len -= FREEBSD32_ALIGN(copylen); 1467 1468 copylen = datalen_out; 1469 if (len < copylen) { 1470 msg->msg_flags |= MSG_CTRUNC; 1471 m_dispose_extcontrolm(m); 1472 break; 1473 } 1474 1475 /* Copy out the message data. */ 1476 error = copyout(data, ctlbuf, copylen); 1477 if (error) 1478 goto exit; 1479 1480 ctlbuf += FREEBSD32_ALIGN(copylen); 1481 len -= FREEBSD32_ALIGN(copylen); 1482 1483 if (CMSG_SPACE(datalen) < clen) { 1484 clen -= CMSG_SPACE(datalen); 1485 cm = (struct cmsghdr *) 1486 ((caddr_t)cm + CMSG_SPACE(datalen)); 1487 } else { 1488 clen = 0; 1489 cm = NULL; 1490 } 1491 1492 msg->msg_controllen += 1493 FREEBSD32_CMSG_SPACE(datalen_out); 1494 } 1495 } 1496 if (len == 0 && m != NULL) { 1497 msg->msg_flags |= MSG_CTRUNC; 1498 m_dispose_extcontrolm(m); 1499 } 1500 1501 exit: 1502 return (error); 1503 } 1504 1505 int 1506 freebsd32_recvmsg(struct thread *td, struct freebsd32_recvmsg_args *uap) 1507 { 1508 struct msghdr msg; 1509 struct iovec *uiov, *iov; 1510 struct mbuf *control = NULL; 1511 struct mbuf **controlp; 1512 int error; 1513 1514 error = freebsd32_copyinmsghdr(uap->msg, &msg); 1515 if (error) 1516 return (error); 1517 error = freebsd32_copyiniov((void *)msg.msg_iov, msg.msg_iovlen, &iov, 1518 EMSGSIZE); 1519 if (error) 1520 return (error); 1521 msg.msg_flags = uap->flags; 1522 uiov = msg.msg_iov; 1523 msg.msg_iov = iov; 1524 1525 controlp = (msg.msg_control != NULL) ? &control : NULL; 1526 error = kern_recvit(td, uap->s, &msg, UIO_USERSPACE, controlp); 1527 if (error == 0) { 1528 msg.msg_iov = uiov; 1529 1530 if (control != NULL) 1531 error = freebsd32_copy_msg_out(&msg, control); 1532 else 1533 msg.msg_controllen = 0; 1534 1535 if (error == 0) 1536 error = freebsd32_copyoutmsghdr(&msg, uap->msg); 1537 } 1538 free(iov, M_IOV); 1539 1540 if (control != NULL) { 1541 if (error != 0) 1542 m_dispose_extcontrolm(control); 1543 m_freem(control); 1544 } 1545 1546 return (error); 1547 } 1548 1549 #ifdef COMPAT_43 1550 int 1551 ofreebsd32_recvmsg(struct thread *td, struct ofreebsd32_recvmsg_args *uap) 1552 { 1553 return (ENOSYS); 1554 } 1555 #endif 1556 1557 /* 1558 * Copy-in the array of control messages constructed using alignment 1559 * and padding suitable for a 32-bit environment and construct an 1560 * mbuf using alignment and padding suitable for a 64-bit kernel. 1561 * The alignment and padding are defined indirectly by CMSG_DATA(), 1562 * CMSG_SPACE() and CMSG_LEN(). 1563 */ 1564 static int 1565 freebsd32_copyin_control(struct mbuf **mp, caddr_t buf, u_int buflen) 1566 { 1567 struct cmsghdr *cm; 1568 struct mbuf *m; 1569 void *in, *in1, *md; 1570 u_int msglen, outlen; 1571 int error; 1572 1573 /* Enforce the size limit of the native implementation. */ 1574 if (buflen > MCLBYTES) 1575 return (EINVAL); 1576 1577 in = malloc(buflen, M_TEMP, M_WAITOK); 1578 error = copyin(buf, in, buflen); 1579 if (error != 0) 1580 goto out; 1581 1582 /* 1583 * Make a pass over the input buffer to determine the amount of space 1584 * required for 64 bit-aligned copies of the control messages. 1585 */ 1586 in1 = in; 1587 outlen = 0; 1588 while (buflen > 0) { 1589 if (buflen < sizeof(*cm)) { 1590 error = EINVAL; 1591 break; 1592 } 1593 cm = (struct cmsghdr *)in1; 1594 if (cm->cmsg_len < FREEBSD32_ALIGN(sizeof(*cm)) || 1595 cm->cmsg_len > buflen) { 1596 error = EINVAL; 1597 break; 1598 } 1599 msglen = FREEBSD32_ALIGN(cm->cmsg_len); 1600 if (msglen < cm->cmsg_len) { 1601 error = EINVAL; 1602 break; 1603 } 1604 /* The native ABI permits the final padding to be omitted. */ 1605 if (msglen > buflen) 1606 msglen = buflen; 1607 buflen -= msglen; 1608 1609 in1 = (char *)in1 + msglen; 1610 outlen += CMSG_ALIGN(sizeof(*cm)) + 1611 CMSG_ALIGN(msglen - FREEBSD32_ALIGN(sizeof(*cm))); 1612 } 1613 if (error != 0) 1614 goto out; 1615 1616 /* 1617 * Allocate up to MJUMPAGESIZE space for the re-aligned and 1618 * re-padded control messages. This allows a full MCLBYTES of 1619 * 32-bit sized and aligned messages to fit and avoids an ABI 1620 * mismatch with the native implementation. 1621 */ 1622 m = m_get2(outlen, M_WAITOK, MT_CONTROL, 0); 1623 if (m == NULL) { 1624 error = EINVAL; 1625 goto out; 1626 } 1627 m->m_len = outlen; 1628 md = mtod(m, void *); 1629 1630 /* 1631 * Make a second pass over input messages, copying them into the output 1632 * buffer. 1633 */ 1634 in1 = in; 1635 while (outlen > 0) { 1636 /* Copy the message header and align the length field. */ 1637 cm = md; 1638 memcpy(cm, in1, sizeof(*cm)); 1639 msglen = cm->cmsg_len - FREEBSD32_ALIGN(sizeof(*cm)); 1640 cm->cmsg_len = CMSG_ALIGN(sizeof(*cm)) + msglen; 1641 1642 /* Copy the message body. */ 1643 in1 = (char *)in1 + FREEBSD32_ALIGN(sizeof(*cm)); 1644 md = (char *)md + CMSG_ALIGN(sizeof(*cm)); 1645 memcpy(md, in1, msglen); 1646 in1 = (char *)in1 + FREEBSD32_ALIGN(msglen); 1647 md = (char *)md + CMSG_ALIGN(msglen); 1648 KASSERT(outlen >= CMSG_ALIGN(sizeof(*cm)) + CMSG_ALIGN(msglen), 1649 ("outlen %u underflow, msglen %u", outlen, msglen)); 1650 outlen -= CMSG_ALIGN(sizeof(*cm)) + CMSG_ALIGN(msglen); 1651 } 1652 1653 *mp = m; 1654 out: 1655 free(in, M_TEMP); 1656 return (error); 1657 } 1658 1659 int 1660 freebsd32_sendmsg(struct thread *td, struct freebsd32_sendmsg_args *uap) 1661 { 1662 struct msghdr msg; 1663 struct iovec *iov; 1664 struct mbuf *control = NULL; 1665 struct sockaddr *to = NULL; 1666 int error; 1667 1668 error = freebsd32_copyinmsghdr(uap->msg, &msg); 1669 if (error) 1670 return (error); 1671 error = freebsd32_copyiniov((void *)msg.msg_iov, msg.msg_iovlen, &iov, 1672 EMSGSIZE); 1673 if (error) 1674 return (error); 1675 msg.msg_iov = iov; 1676 if (msg.msg_name != NULL) { 1677 error = getsockaddr(&to, msg.msg_name, msg.msg_namelen); 1678 if (error) { 1679 to = NULL; 1680 goto out; 1681 } 1682 msg.msg_name = to; 1683 } 1684 1685 if (msg.msg_control) { 1686 if (msg.msg_controllen < sizeof(struct cmsghdr)) { 1687 error = EINVAL; 1688 goto out; 1689 } 1690 1691 error = freebsd32_copyin_control(&control, msg.msg_control, 1692 msg.msg_controllen); 1693 if (error) 1694 goto out; 1695 1696 msg.msg_control = NULL; 1697 msg.msg_controllen = 0; 1698 } 1699 1700 error = kern_sendit(td, uap->s, &msg, uap->flags, control, 1701 UIO_USERSPACE); 1702 1703 out: 1704 free(iov, M_IOV); 1705 if (to) 1706 free(to, M_SONAME); 1707 return (error); 1708 } 1709 1710 #ifdef COMPAT_43 1711 int 1712 ofreebsd32_sendmsg(struct thread *td, struct ofreebsd32_sendmsg_args *uap) 1713 { 1714 return (ENOSYS); 1715 } 1716 #endif 1717 1718 1719 int 1720 freebsd32_settimeofday(struct thread *td, 1721 struct freebsd32_settimeofday_args *uap) 1722 { 1723 struct timeval32 tv32; 1724 struct timeval tv, *tvp; 1725 struct timezone tz, *tzp; 1726 int error; 1727 1728 if (uap->tv) { 1729 error = copyin(uap->tv, &tv32, sizeof(tv32)); 1730 if (error) 1731 return (error); 1732 CP(tv32, tv, tv_sec); 1733 CP(tv32, tv, tv_usec); 1734 tvp = &tv; 1735 } else 1736 tvp = NULL; 1737 if (uap->tzp) { 1738 error = copyin(uap->tzp, &tz, sizeof(tz)); 1739 if (error) 1740 return (error); 1741 tzp = &tz; 1742 } else 1743 tzp = NULL; 1744 return (kern_settimeofday(td, tvp, tzp)); 1745 } 1746 1747 int 1748 freebsd32_utimes(struct thread *td, struct freebsd32_utimes_args *uap) 1749 { 1750 struct timeval32 s32[2]; 1751 struct timeval s[2], *sp; 1752 int error; 1753 1754 if (uap->tptr != NULL) { 1755 error = copyin(uap->tptr, s32, sizeof(s32)); 1756 if (error) 1757 return (error); 1758 CP(s32[0], s[0], tv_sec); 1759 CP(s32[0], s[0], tv_usec); 1760 CP(s32[1], s[1], tv_sec); 1761 CP(s32[1], s[1], tv_usec); 1762 sp = s; 1763 } else 1764 sp = NULL; 1765 return (kern_utimesat(td, AT_FDCWD, uap->path, UIO_USERSPACE, 1766 sp, UIO_SYSSPACE)); 1767 } 1768 1769 int 1770 freebsd32_lutimes(struct thread *td, struct freebsd32_lutimes_args *uap) 1771 { 1772 struct timeval32 s32[2]; 1773 struct timeval s[2], *sp; 1774 int error; 1775 1776 if (uap->tptr != NULL) { 1777 error = copyin(uap->tptr, s32, sizeof(s32)); 1778 if (error) 1779 return (error); 1780 CP(s32[0], s[0], tv_sec); 1781 CP(s32[0], s[0], tv_usec); 1782 CP(s32[1], s[1], tv_sec); 1783 CP(s32[1], s[1], tv_usec); 1784 sp = s; 1785 } else 1786 sp = NULL; 1787 return (kern_lutimes(td, uap->path, UIO_USERSPACE, sp, UIO_SYSSPACE)); 1788 } 1789 1790 int 1791 freebsd32_futimes(struct thread *td, struct freebsd32_futimes_args *uap) 1792 { 1793 struct timeval32 s32[2]; 1794 struct timeval s[2], *sp; 1795 int error; 1796 1797 if (uap->tptr != NULL) { 1798 error = copyin(uap->tptr, s32, sizeof(s32)); 1799 if (error) 1800 return (error); 1801 CP(s32[0], s[0], tv_sec); 1802 CP(s32[0], s[0], tv_usec); 1803 CP(s32[1], s[1], tv_sec); 1804 CP(s32[1], s[1], tv_usec); 1805 sp = s; 1806 } else 1807 sp = NULL; 1808 return (kern_futimes(td, uap->fd, sp, UIO_SYSSPACE)); 1809 } 1810 1811 int 1812 freebsd32_futimesat(struct thread *td, struct freebsd32_futimesat_args *uap) 1813 { 1814 struct timeval32 s32[2]; 1815 struct timeval s[2], *sp; 1816 int error; 1817 1818 if (uap->times != NULL) { 1819 error = copyin(uap->times, s32, sizeof(s32)); 1820 if (error) 1821 return (error); 1822 CP(s32[0], s[0], tv_sec); 1823 CP(s32[0], s[0], tv_usec); 1824 CP(s32[1], s[1], tv_sec); 1825 CP(s32[1], s[1], tv_usec); 1826 sp = s; 1827 } else 1828 sp = NULL; 1829 return (kern_utimesat(td, uap->fd, uap->path, UIO_USERSPACE, 1830 sp, UIO_SYSSPACE)); 1831 } 1832 1833 int 1834 freebsd32_futimens(struct thread *td, struct freebsd32_futimens_args *uap) 1835 { 1836 struct timespec32 ts32[2]; 1837 struct timespec ts[2], *tsp; 1838 int error; 1839 1840 if (uap->times != NULL) { 1841 error = copyin(uap->times, ts32, sizeof(ts32)); 1842 if (error) 1843 return (error); 1844 CP(ts32[0], ts[0], tv_sec); 1845 CP(ts32[0], ts[0], tv_nsec); 1846 CP(ts32[1], ts[1], tv_sec); 1847 CP(ts32[1], ts[1], tv_nsec); 1848 tsp = ts; 1849 } else 1850 tsp = NULL; 1851 return (kern_futimens(td, uap->fd, tsp, UIO_SYSSPACE)); 1852 } 1853 1854 int 1855 freebsd32_utimensat(struct thread *td, struct freebsd32_utimensat_args *uap) 1856 { 1857 struct timespec32 ts32[2]; 1858 struct timespec ts[2], *tsp; 1859 int error; 1860 1861 if (uap->times != NULL) { 1862 error = copyin(uap->times, ts32, sizeof(ts32)); 1863 if (error) 1864 return (error); 1865 CP(ts32[0], ts[0], tv_sec); 1866 CP(ts32[0], ts[0], tv_nsec); 1867 CP(ts32[1], ts[1], tv_sec); 1868 CP(ts32[1], ts[1], tv_nsec); 1869 tsp = ts; 1870 } else 1871 tsp = NULL; 1872 return (kern_utimensat(td, uap->fd, uap->path, UIO_USERSPACE, 1873 tsp, UIO_SYSSPACE, uap->flag)); 1874 } 1875 1876 int 1877 freebsd32_adjtime(struct thread *td, struct freebsd32_adjtime_args *uap) 1878 { 1879 struct timeval32 tv32; 1880 struct timeval delta, olddelta, *deltap; 1881 int error; 1882 1883 if (uap->delta) { 1884 error = copyin(uap->delta, &tv32, sizeof(tv32)); 1885 if (error) 1886 return (error); 1887 CP(tv32, delta, tv_sec); 1888 CP(tv32, delta, tv_usec); 1889 deltap = δ 1890 } else 1891 deltap = NULL; 1892 error = kern_adjtime(td, deltap, &olddelta); 1893 if (uap->olddelta && error == 0) { 1894 CP(olddelta, tv32, tv_sec); 1895 CP(olddelta, tv32, tv_usec); 1896 error = copyout(&tv32, uap->olddelta, sizeof(tv32)); 1897 } 1898 return (error); 1899 } 1900 1901 #ifdef COMPAT_FREEBSD4 1902 int 1903 freebsd4_freebsd32_statfs(struct thread *td, struct freebsd4_freebsd32_statfs_args *uap) 1904 { 1905 struct ostatfs32 s32; 1906 struct statfs *sp; 1907 int error; 1908 1909 sp = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK); 1910 error = kern_statfs(td, uap->path, UIO_USERSPACE, sp); 1911 if (error == 0) { 1912 copy_statfs(sp, &s32); 1913 error = copyout(&s32, uap->buf, sizeof(s32)); 1914 } 1915 free(sp, M_STATFS); 1916 return (error); 1917 } 1918 #endif 1919 1920 #ifdef COMPAT_FREEBSD4 1921 int 1922 freebsd4_freebsd32_fstatfs(struct thread *td, struct freebsd4_freebsd32_fstatfs_args *uap) 1923 { 1924 struct ostatfs32 s32; 1925 struct statfs *sp; 1926 int error; 1927 1928 sp = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK); 1929 error = kern_fstatfs(td, uap->fd, sp); 1930 if (error == 0) { 1931 copy_statfs(sp, &s32); 1932 error = copyout(&s32, uap->buf, sizeof(s32)); 1933 } 1934 free(sp, M_STATFS); 1935 return (error); 1936 } 1937 #endif 1938 1939 #ifdef COMPAT_FREEBSD4 1940 int 1941 freebsd4_freebsd32_fhstatfs(struct thread *td, struct freebsd4_freebsd32_fhstatfs_args *uap) 1942 { 1943 struct ostatfs32 s32; 1944 struct statfs *sp; 1945 fhandle_t fh; 1946 int error; 1947 1948 if ((error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t))) != 0) 1949 return (error); 1950 sp = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK); 1951 error = kern_fhstatfs(td, fh, sp); 1952 if (error == 0) { 1953 copy_statfs(sp, &s32); 1954 error = copyout(&s32, uap->buf, sizeof(s32)); 1955 } 1956 free(sp, M_STATFS); 1957 return (error); 1958 } 1959 #endif 1960 1961 int 1962 freebsd32_pread(struct thread *td, struct freebsd32_pread_args *uap) 1963 { 1964 1965 return (kern_pread(td, uap->fd, uap->buf, uap->nbyte, 1966 PAIR32TO64(off_t, uap->offset))); 1967 } 1968 1969 int 1970 freebsd32_pwrite(struct thread *td, struct freebsd32_pwrite_args *uap) 1971 { 1972 1973 return (kern_pwrite(td, uap->fd, uap->buf, uap->nbyte, 1974 PAIR32TO64(off_t, uap->offset))); 1975 } 1976 1977 #ifdef COMPAT_43 1978 int 1979 ofreebsd32_lseek(struct thread *td, struct ofreebsd32_lseek_args *uap) 1980 { 1981 1982 return (kern_lseek(td, uap->fd, uap->offset, uap->whence)); 1983 } 1984 #endif 1985 1986 int 1987 freebsd32_lseek(struct thread *td, struct freebsd32_lseek_args *uap) 1988 { 1989 int error; 1990 off_t pos; 1991 1992 error = kern_lseek(td, uap->fd, PAIR32TO64(off_t, uap->offset), 1993 uap->whence); 1994 /* Expand the quad return into two parts for eax and edx */ 1995 pos = td->td_uretoff.tdu_off; 1996 td->td_retval[RETVAL_LO] = pos & 0xffffffff; /* %eax */ 1997 td->td_retval[RETVAL_HI] = pos >> 32; /* %edx */ 1998 return error; 1999 } 2000 2001 int 2002 freebsd32_truncate(struct thread *td, struct freebsd32_truncate_args *uap) 2003 { 2004 2005 return (kern_truncate(td, uap->path, UIO_USERSPACE, 2006 PAIR32TO64(off_t, uap->length))); 2007 } 2008 2009 #ifdef COMPAT_43 2010 int 2011 ofreebsd32_truncate(struct thread *td, struct ofreebsd32_truncate_args *uap) 2012 { 2013 return (kern_truncate(td, uap->path, UIO_USERSPACE, uap->length)); 2014 } 2015 #endif 2016 2017 int 2018 freebsd32_ftruncate(struct thread *td, struct freebsd32_ftruncate_args *uap) 2019 { 2020 2021 return (kern_ftruncate(td, uap->fd, PAIR32TO64(off_t, uap->length))); 2022 } 2023 2024 #ifdef COMPAT_43 2025 int 2026 ofreebsd32_ftruncate(struct thread *td, struct ofreebsd32_ftruncate_args *uap) 2027 { 2028 return (kern_ftruncate(td, uap->fd, uap->length)); 2029 } 2030 2031 int 2032 ofreebsd32_getdirentries(struct thread *td, 2033 struct ofreebsd32_getdirentries_args *uap) 2034 { 2035 struct ogetdirentries_args ap; 2036 int error; 2037 long loff; 2038 int32_t loff_cut; 2039 2040 ap.fd = uap->fd; 2041 ap.buf = uap->buf; 2042 ap.count = uap->count; 2043 ap.basep = NULL; 2044 error = kern_ogetdirentries(td, &ap, &loff); 2045 if (error == 0) { 2046 loff_cut = loff; 2047 error = copyout(&loff_cut, uap->basep, sizeof(int32_t)); 2048 } 2049 return (error); 2050 } 2051 #endif 2052 2053 #if defined(COMPAT_FREEBSD11) 2054 int 2055 freebsd11_freebsd32_getdirentries(struct thread *td, 2056 struct freebsd11_freebsd32_getdirentries_args *uap) 2057 { 2058 long base; 2059 int32_t base32; 2060 int error; 2061 2062 error = freebsd11_kern_getdirentries(td, uap->fd, uap->buf, uap->count, 2063 &base, NULL); 2064 if (error) 2065 return (error); 2066 if (uap->basep != NULL) { 2067 base32 = base; 2068 error = copyout(&base32, uap->basep, sizeof(int32_t)); 2069 } 2070 return (error); 2071 } 2072 #endif /* COMPAT_FREEBSD11 */ 2073 2074 #ifdef COMPAT_FREEBSD6 2075 /* versions with the 'int pad' argument */ 2076 int 2077 freebsd6_freebsd32_pread(struct thread *td, struct freebsd6_freebsd32_pread_args *uap) 2078 { 2079 2080 return (kern_pread(td, uap->fd, uap->buf, uap->nbyte, 2081 PAIR32TO64(off_t, uap->offset))); 2082 } 2083 2084 int 2085 freebsd6_freebsd32_pwrite(struct thread *td, struct freebsd6_freebsd32_pwrite_args *uap) 2086 { 2087 2088 return (kern_pwrite(td, uap->fd, uap->buf, uap->nbyte, 2089 PAIR32TO64(off_t, uap->offset))); 2090 } 2091 2092 int 2093 freebsd6_freebsd32_lseek(struct thread *td, struct freebsd6_freebsd32_lseek_args *uap) 2094 { 2095 int error; 2096 off_t pos; 2097 2098 error = kern_lseek(td, uap->fd, PAIR32TO64(off_t, uap->offset), 2099 uap->whence); 2100 /* Expand the quad return into two parts for eax and edx */ 2101 pos = *(off_t *)(td->td_retval); 2102 td->td_retval[RETVAL_LO] = pos & 0xffffffff; /* %eax */ 2103 td->td_retval[RETVAL_HI] = pos >> 32; /* %edx */ 2104 return error; 2105 } 2106 2107 int 2108 freebsd6_freebsd32_truncate(struct thread *td, struct freebsd6_freebsd32_truncate_args *uap) 2109 { 2110 2111 return (kern_truncate(td, uap->path, UIO_USERSPACE, 2112 PAIR32TO64(off_t, uap->length))); 2113 } 2114 2115 int 2116 freebsd6_freebsd32_ftruncate(struct thread *td, struct freebsd6_freebsd32_ftruncate_args *uap) 2117 { 2118 2119 return (kern_ftruncate(td, uap->fd, PAIR32TO64(off_t, uap->length))); 2120 } 2121 #endif /* COMPAT_FREEBSD6 */ 2122 2123 struct sf_hdtr32 { 2124 uint32_t headers; 2125 int hdr_cnt; 2126 uint32_t trailers; 2127 int trl_cnt; 2128 }; 2129 2130 static int 2131 freebsd32_do_sendfile(struct thread *td, 2132 struct freebsd32_sendfile_args *uap, int compat) 2133 { 2134 struct sf_hdtr32 hdtr32; 2135 struct sf_hdtr hdtr; 2136 struct uio *hdr_uio, *trl_uio; 2137 struct file *fp; 2138 cap_rights_t rights; 2139 struct iovec32 *iov32; 2140 off_t offset, sbytes; 2141 int error; 2142 2143 offset = PAIR32TO64(off_t, uap->offset); 2144 if (offset < 0) 2145 return (EINVAL); 2146 2147 hdr_uio = trl_uio = NULL; 2148 2149 if (uap->hdtr != NULL) { 2150 error = copyin(uap->hdtr, &hdtr32, sizeof(hdtr32)); 2151 if (error) 2152 goto out; 2153 PTRIN_CP(hdtr32, hdtr, headers); 2154 CP(hdtr32, hdtr, hdr_cnt); 2155 PTRIN_CP(hdtr32, hdtr, trailers); 2156 CP(hdtr32, hdtr, trl_cnt); 2157 2158 if (hdtr.headers != NULL) { 2159 iov32 = PTRIN(hdtr32.headers); 2160 error = freebsd32_copyinuio(iov32, 2161 hdtr32.hdr_cnt, &hdr_uio); 2162 if (error) 2163 goto out; 2164 #ifdef COMPAT_FREEBSD4 2165 /* 2166 * In FreeBSD < 5.0 the nbytes to send also included 2167 * the header. If compat is specified subtract the 2168 * header size from nbytes. 2169 */ 2170 if (compat) { 2171 if (uap->nbytes > hdr_uio->uio_resid) 2172 uap->nbytes -= hdr_uio->uio_resid; 2173 else 2174 uap->nbytes = 0; 2175 } 2176 #endif 2177 } 2178 if (hdtr.trailers != NULL) { 2179 iov32 = PTRIN(hdtr32.trailers); 2180 error = freebsd32_copyinuio(iov32, 2181 hdtr32.trl_cnt, &trl_uio); 2182 if (error) 2183 goto out; 2184 } 2185 } 2186 2187 AUDIT_ARG_FD(uap->fd); 2188 2189 if ((error = fget_read(td, uap->fd, 2190 cap_rights_init_one(&rights, CAP_PREAD), &fp)) != 0) 2191 goto out; 2192 2193 error = fo_sendfile(fp, uap->s, hdr_uio, trl_uio, offset, 2194 uap->nbytes, &sbytes, uap->flags, td); 2195 fdrop(fp, td); 2196 2197 if (uap->sbytes != NULL) 2198 (void)copyout(&sbytes, uap->sbytes, sizeof(off_t)); 2199 2200 out: 2201 if (hdr_uio) 2202 free(hdr_uio, M_IOV); 2203 if (trl_uio) 2204 free(trl_uio, M_IOV); 2205 return (error); 2206 } 2207 2208 #ifdef COMPAT_FREEBSD4 2209 int 2210 freebsd4_freebsd32_sendfile(struct thread *td, 2211 struct freebsd4_freebsd32_sendfile_args *uap) 2212 { 2213 return (freebsd32_do_sendfile(td, 2214 (struct freebsd32_sendfile_args *)uap, 1)); 2215 } 2216 #endif 2217 2218 int 2219 freebsd32_sendfile(struct thread *td, struct freebsd32_sendfile_args *uap) 2220 { 2221 2222 return (freebsd32_do_sendfile(td, uap, 0)); 2223 } 2224 2225 static void 2226 copy_stat(struct stat *in, struct stat32 *out) 2227 { 2228 2229 #ifndef __amd64__ 2230 /* 2231 * 32-bit architectures other than i386 have 64-bit time_t. This 2232 * results in struct timespec32 with 12 bytes for tv_sec and tv_nsec, 2233 * and 4 bytes of padding. Zero the padding holes in struct stat32. 2234 */ 2235 bzero(&out->st_atim, sizeof(out->st_atim)); 2236 bzero(&out->st_mtim, sizeof(out->st_mtim)); 2237 bzero(&out->st_ctim, sizeof(out->st_ctim)); 2238 bzero(&out->st_birthtim, sizeof(out->st_birthtim)); 2239 #endif 2240 CP(*in, *out, st_dev); 2241 CP(*in, *out, st_ino); 2242 CP(*in, *out, st_mode); 2243 CP(*in, *out, st_nlink); 2244 CP(*in, *out, st_uid); 2245 CP(*in, *out, st_gid); 2246 CP(*in, *out, st_rdev); 2247 TS_CP(*in, *out, st_atim); 2248 TS_CP(*in, *out, st_mtim); 2249 TS_CP(*in, *out, st_ctim); 2250 CP(*in, *out, st_size); 2251 CP(*in, *out, st_blocks); 2252 CP(*in, *out, st_blksize); 2253 CP(*in, *out, st_flags); 2254 CP(*in, *out, st_gen); 2255 TS_CP(*in, *out, st_birthtim); 2256 out->st_padding0 = 0; 2257 out->st_padding1 = 0; 2258 #ifdef __STAT32_TIME_T_EXT 2259 out->st_atim_ext = 0; 2260 out->st_mtim_ext = 0; 2261 out->st_ctim_ext = 0; 2262 out->st_btim_ext = 0; 2263 #endif 2264 bzero(out->st_spare, sizeof(out->st_spare)); 2265 } 2266 2267 #ifdef COMPAT_43 2268 static void 2269 copy_ostat(struct stat *in, struct ostat32 *out) 2270 { 2271 2272 bzero(out, sizeof(*out)); 2273 CP(*in, *out, st_dev); 2274 CP(*in, *out, st_ino); 2275 CP(*in, *out, st_mode); 2276 CP(*in, *out, st_nlink); 2277 CP(*in, *out, st_uid); 2278 CP(*in, *out, st_gid); 2279 CP(*in, *out, st_rdev); 2280 out->st_size = MIN(in->st_size, INT32_MAX); 2281 TS_CP(*in, *out, st_atim); 2282 TS_CP(*in, *out, st_mtim); 2283 TS_CP(*in, *out, st_ctim); 2284 CP(*in, *out, st_blksize); 2285 CP(*in, *out, st_blocks); 2286 CP(*in, *out, st_flags); 2287 CP(*in, *out, st_gen); 2288 } 2289 #endif 2290 2291 #ifdef COMPAT_43 2292 int 2293 ofreebsd32_stat(struct thread *td, struct ofreebsd32_stat_args *uap) 2294 { 2295 struct stat sb; 2296 struct ostat32 sb32; 2297 int error; 2298 2299 error = kern_statat(td, 0, AT_FDCWD, uap->path, UIO_USERSPACE, &sb); 2300 if (error) 2301 return (error); 2302 copy_ostat(&sb, &sb32); 2303 error = copyout(&sb32, uap->ub, sizeof (sb32)); 2304 return (error); 2305 } 2306 #endif 2307 2308 int 2309 freebsd32_fstat(struct thread *td, struct freebsd32_fstat_args *uap) 2310 { 2311 struct stat ub; 2312 struct stat32 ub32; 2313 int error; 2314 2315 error = kern_fstat(td, uap->fd, &ub); 2316 if (error) 2317 return (error); 2318 copy_stat(&ub, &ub32); 2319 error = copyout(&ub32, uap->sb, sizeof(ub32)); 2320 return (error); 2321 } 2322 2323 #ifdef COMPAT_43 2324 int 2325 ofreebsd32_fstat(struct thread *td, struct ofreebsd32_fstat_args *uap) 2326 { 2327 struct stat ub; 2328 struct ostat32 ub32; 2329 int error; 2330 2331 error = kern_fstat(td, uap->fd, &ub); 2332 if (error) 2333 return (error); 2334 copy_ostat(&ub, &ub32); 2335 error = copyout(&ub32, uap->sb, sizeof(ub32)); 2336 return (error); 2337 } 2338 #endif 2339 2340 int 2341 freebsd32_fstatat(struct thread *td, struct freebsd32_fstatat_args *uap) 2342 { 2343 struct stat ub; 2344 struct stat32 ub32; 2345 int error; 2346 2347 error = kern_statat(td, uap->flag, uap->fd, uap->path, UIO_USERSPACE, 2348 &ub); 2349 if (error) 2350 return (error); 2351 copy_stat(&ub, &ub32); 2352 error = copyout(&ub32, uap->buf, sizeof(ub32)); 2353 return (error); 2354 } 2355 2356 #ifdef COMPAT_43 2357 int 2358 ofreebsd32_lstat(struct thread *td, struct ofreebsd32_lstat_args *uap) 2359 { 2360 struct stat sb; 2361 struct ostat32 sb32; 2362 int error; 2363 2364 error = kern_statat(td, AT_SYMLINK_NOFOLLOW, AT_FDCWD, uap->path, 2365 UIO_USERSPACE, &sb); 2366 if (error) 2367 return (error); 2368 copy_ostat(&sb, &sb32); 2369 error = copyout(&sb32, uap->ub, sizeof (sb32)); 2370 return (error); 2371 } 2372 #endif 2373 2374 int 2375 freebsd32_fhstat(struct thread *td, struct freebsd32_fhstat_args *uap) 2376 { 2377 struct stat sb; 2378 struct stat32 sb32; 2379 struct fhandle fh; 2380 int error; 2381 2382 error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t)); 2383 if (error != 0) 2384 return (error); 2385 error = kern_fhstat(td, fh, &sb); 2386 if (error != 0) 2387 return (error); 2388 copy_stat(&sb, &sb32); 2389 error = copyout(&sb32, uap->sb, sizeof (sb32)); 2390 return (error); 2391 } 2392 2393 #if defined(COMPAT_FREEBSD11) 2394 extern int ino64_trunc_error; 2395 2396 static int 2397 freebsd11_cvtstat32(struct stat *in, struct freebsd11_stat32 *out) 2398 { 2399 2400 #ifndef __amd64__ 2401 /* 2402 * 32-bit architectures other than i386 have 64-bit time_t. This 2403 * results in struct timespec32 with 12 bytes for tv_sec and tv_nsec, 2404 * and 4 bytes of padding. Zero the padding holes in freebsd11_stat32. 2405 */ 2406 bzero(&out->st_atim, sizeof(out->st_atim)); 2407 bzero(&out->st_mtim, sizeof(out->st_mtim)); 2408 bzero(&out->st_ctim, sizeof(out->st_ctim)); 2409 bzero(&out->st_birthtim, sizeof(out->st_birthtim)); 2410 #endif 2411 2412 CP(*in, *out, st_ino); 2413 if (in->st_ino != out->st_ino) { 2414 switch (ino64_trunc_error) { 2415 default: 2416 case 0: 2417 break; 2418 case 1: 2419 return (EOVERFLOW); 2420 case 2: 2421 out->st_ino = UINT32_MAX; 2422 break; 2423 } 2424 } 2425 CP(*in, *out, st_nlink); 2426 if (in->st_nlink != out->st_nlink) { 2427 switch (ino64_trunc_error) { 2428 default: 2429 case 0: 2430 break; 2431 case 1: 2432 return (EOVERFLOW); 2433 case 2: 2434 out->st_nlink = UINT16_MAX; 2435 break; 2436 } 2437 } 2438 out->st_dev = in->st_dev; 2439 if (out->st_dev != in->st_dev) { 2440 switch (ino64_trunc_error) { 2441 default: 2442 break; 2443 case 1: 2444 return (EOVERFLOW); 2445 } 2446 } 2447 CP(*in, *out, st_mode); 2448 CP(*in, *out, st_uid); 2449 CP(*in, *out, st_gid); 2450 out->st_rdev = in->st_rdev; 2451 if (out->st_rdev != in->st_rdev) { 2452 switch (ino64_trunc_error) { 2453 default: 2454 break; 2455 case 1: 2456 return (EOVERFLOW); 2457 } 2458 } 2459 TS_CP(*in, *out, st_atim); 2460 TS_CP(*in, *out, st_mtim); 2461 TS_CP(*in, *out, st_ctim); 2462 CP(*in, *out, st_size); 2463 CP(*in, *out, st_blocks); 2464 CP(*in, *out, st_blksize); 2465 CP(*in, *out, st_flags); 2466 CP(*in, *out, st_gen); 2467 TS_CP(*in, *out, st_birthtim); 2468 out->st_lspare = 0; 2469 bzero((char *)&out->st_birthtim + sizeof(out->st_birthtim), 2470 sizeof(*out) - offsetof(struct freebsd11_stat32, 2471 st_birthtim) - sizeof(out->st_birthtim)); 2472 return (0); 2473 } 2474 2475 int 2476 freebsd11_freebsd32_stat(struct thread *td, 2477 struct freebsd11_freebsd32_stat_args *uap) 2478 { 2479 struct stat sb; 2480 struct freebsd11_stat32 sb32; 2481 int error; 2482 2483 error = kern_statat(td, 0, AT_FDCWD, uap->path, UIO_USERSPACE, &sb); 2484 if (error != 0) 2485 return (error); 2486 error = freebsd11_cvtstat32(&sb, &sb32); 2487 if (error == 0) 2488 error = copyout(&sb32, uap->ub, sizeof (sb32)); 2489 return (error); 2490 } 2491 2492 int 2493 freebsd11_freebsd32_fstat(struct thread *td, 2494 struct freebsd11_freebsd32_fstat_args *uap) 2495 { 2496 struct stat sb; 2497 struct freebsd11_stat32 sb32; 2498 int error; 2499 2500 error = kern_fstat(td, uap->fd, &sb); 2501 if (error != 0) 2502 return (error); 2503 error = freebsd11_cvtstat32(&sb, &sb32); 2504 if (error == 0) 2505 error = copyout(&sb32, uap->sb, sizeof (sb32)); 2506 return (error); 2507 } 2508 2509 int 2510 freebsd11_freebsd32_fstatat(struct thread *td, 2511 struct freebsd11_freebsd32_fstatat_args *uap) 2512 { 2513 struct stat sb; 2514 struct freebsd11_stat32 sb32; 2515 int error; 2516 2517 error = kern_statat(td, uap->flag, uap->fd, uap->path, UIO_USERSPACE, 2518 &sb); 2519 if (error != 0) 2520 return (error); 2521 error = freebsd11_cvtstat32(&sb, &sb32); 2522 if (error == 0) 2523 error = copyout(&sb32, uap->buf, sizeof (sb32)); 2524 return (error); 2525 } 2526 2527 int 2528 freebsd11_freebsd32_lstat(struct thread *td, 2529 struct freebsd11_freebsd32_lstat_args *uap) 2530 { 2531 struct stat sb; 2532 struct freebsd11_stat32 sb32; 2533 int error; 2534 2535 error = kern_statat(td, AT_SYMLINK_NOFOLLOW, AT_FDCWD, uap->path, 2536 UIO_USERSPACE, &sb); 2537 if (error != 0) 2538 return (error); 2539 error = freebsd11_cvtstat32(&sb, &sb32); 2540 if (error == 0) 2541 error = copyout(&sb32, uap->ub, sizeof (sb32)); 2542 return (error); 2543 } 2544 2545 int 2546 freebsd11_freebsd32_fhstat(struct thread *td, 2547 struct freebsd11_freebsd32_fhstat_args *uap) 2548 { 2549 struct stat sb; 2550 struct freebsd11_stat32 sb32; 2551 struct fhandle fh; 2552 int error; 2553 2554 error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t)); 2555 if (error != 0) 2556 return (error); 2557 error = kern_fhstat(td, fh, &sb); 2558 if (error != 0) 2559 return (error); 2560 error = freebsd11_cvtstat32(&sb, &sb32); 2561 if (error == 0) 2562 error = copyout(&sb32, uap->sb, sizeof (sb32)); 2563 return (error); 2564 } 2565 2566 static int 2567 freebsd11_cvtnstat32(struct stat *sb, struct nstat32 *nsb32) 2568 { 2569 struct nstat nsb; 2570 int error; 2571 2572 error = freebsd11_cvtnstat(sb, &nsb); 2573 if (error != 0) 2574 return (error); 2575 2576 bzero(nsb32, sizeof(*nsb32)); 2577 CP(nsb, *nsb32, st_dev); 2578 CP(nsb, *nsb32, st_ino); 2579 CP(nsb, *nsb32, st_mode); 2580 CP(nsb, *nsb32, st_nlink); 2581 CP(nsb, *nsb32, st_uid); 2582 CP(nsb, *nsb32, st_gid); 2583 CP(nsb, *nsb32, st_rdev); 2584 CP(nsb, *nsb32, st_atim.tv_sec); 2585 CP(nsb, *nsb32, st_atim.tv_nsec); 2586 CP(nsb, *nsb32, st_mtim.tv_sec); 2587 CP(nsb, *nsb32, st_mtim.tv_nsec); 2588 CP(nsb, *nsb32, st_ctim.tv_sec); 2589 CP(nsb, *nsb32, st_ctim.tv_nsec); 2590 CP(nsb, *nsb32, st_size); 2591 CP(nsb, *nsb32, st_blocks); 2592 CP(nsb, *nsb32, st_blksize); 2593 CP(nsb, *nsb32, st_flags); 2594 CP(nsb, *nsb32, st_gen); 2595 CP(nsb, *nsb32, st_birthtim.tv_sec); 2596 CP(nsb, *nsb32, st_birthtim.tv_nsec); 2597 return (0); 2598 } 2599 2600 int 2601 freebsd11_freebsd32_nstat(struct thread *td, 2602 struct freebsd11_freebsd32_nstat_args *uap) 2603 { 2604 struct stat sb; 2605 struct nstat32 nsb; 2606 int error; 2607 2608 error = kern_statat(td, 0, AT_FDCWD, uap->path, UIO_USERSPACE, &sb); 2609 if (error != 0) 2610 return (error); 2611 error = freebsd11_cvtnstat32(&sb, &nsb); 2612 if (error != 0) 2613 error = copyout(&nsb, uap->ub, sizeof (nsb)); 2614 return (error); 2615 } 2616 2617 int 2618 freebsd11_freebsd32_nlstat(struct thread *td, 2619 struct freebsd11_freebsd32_nlstat_args *uap) 2620 { 2621 struct stat sb; 2622 struct nstat32 nsb; 2623 int error; 2624 2625 error = kern_statat(td, AT_SYMLINK_NOFOLLOW, AT_FDCWD, uap->path, 2626 UIO_USERSPACE, &sb); 2627 if (error != 0) 2628 return (error); 2629 error = freebsd11_cvtnstat32(&sb, &nsb); 2630 if (error == 0) 2631 error = copyout(&nsb, uap->ub, sizeof (nsb)); 2632 return (error); 2633 } 2634 2635 int 2636 freebsd11_freebsd32_nfstat(struct thread *td, 2637 struct freebsd11_freebsd32_nfstat_args *uap) 2638 { 2639 struct nstat32 nub; 2640 struct stat ub; 2641 int error; 2642 2643 error = kern_fstat(td, uap->fd, &ub); 2644 if (error != 0) 2645 return (error); 2646 error = freebsd11_cvtnstat32(&ub, &nub); 2647 if (error == 0) 2648 error = copyout(&nub, uap->sb, sizeof(nub)); 2649 return (error); 2650 } 2651 #endif 2652 2653 int 2654 freebsd32___sysctl(struct thread *td, struct freebsd32___sysctl_args *uap) 2655 { 2656 int error, name[CTL_MAXNAME]; 2657 size_t j, oldlen; 2658 uint32_t tmp; 2659 2660 if (uap->namelen > CTL_MAXNAME || uap->namelen < 2) 2661 return (EINVAL); 2662 error = copyin(uap->name, name, uap->namelen * sizeof(int)); 2663 if (error) 2664 return (error); 2665 if (uap->oldlenp) { 2666 error = fueword32(uap->oldlenp, &tmp); 2667 oldlen = tmp; 2668 } else { 2669 oldlen = 0; 2670 } 2671 if (error != 0) 2672 return (EFAULT); 2673 error = userland_sysctl(td, name, uap->namelen, 2674 uap->old, &oldlen, 1, 2675 uap->new, uap->newlen, &j, SCTL_MASK32); 2676 if (error) 2677 return (error); 2678 if (uap->oldlenp != NULL && suword32(uap->oldlenp, j) != 0) 2679 error = EFAULT; 2680 return (error); 2681 } 2682 2683 int 2684 freebsd32___sysctlbyname(struct thread *td, 2685 struct freebsd32___sysctlbyname_args *uap) 2686 { 2687 size_t oldlen, rv; 2688 int error; 2689 uint32_t tmp; 2690 2691 if (uap->oldlenp != NULL) { 2692 error = fueword32(uap->oldlenp, &tmp); 2693 oldlen = tmp; 2694 } else { 2695 error = oldlen = 0; 2696 } 2697 if (error != 0) 2698 return (EFAULT); 2699 error = kern___sysctlbyname(td, uap->name, uap->namelen, uap->old, 2700 &oldlen, uap->new, uap->newlen, &rv, SCTL_MASK32, 1); 2701 if (error != 0) 2702 return (error); 2703 if (uap->oldlenp != NULL && suword32(uap->oldlenp, rv) != 0) 2704 error = EFAULT; 2705 return (error); 2706 } 2707 2708 int 2709 freebsd32_jail(struct thread *td, struct freebsd32_jail_args *uap) 2710 { 2711 uint32_t version; 2712 int error; 2713 struct jail j; 2714 2715 error = copyin(uap->jail, &version, sizeof(uint32_t)); 2716 if (error) 2717 return (error); 2718 2719 switch (version) { 2720 case 0: 2721 { 2722 /* FreeBSD single IPv4 jails. */ 2723 struct jail32_v0 j32_v0; 2724 2725 bzero(&j, sizeof(struct jail)); 2726 error = copyin(uap->jail, &j32_v0, sizeof(struct jail32_v0)); 2727 if (error) 2728 return (error); 2729 CP(j32_v0, j, version); 2730 PTRIN_CP(j32_v0, j, path); 2731 PTRIN_CP(j32_v0, j, hostname); 2732 j.ip4s = htonl(j32_v0.ip_number); /* jail_v0 is host order */ 2733 break; 2734 } 2735 2736 case 1: 2737 /* 2738 * Version 1 was used by multi-IPv4 jail implementations 2739 * that never made it into the official kernel. 2740 */ 2741 return (EINVAL); 2742 2743 case 2: /* JAIL_API_VERSION */ 2744 { 2745 /* FreeBSD multi-IPv4/IPv6,noIP jails. */ 2746 struct jail32 j32; 2747 2748 error = copyin(uap->jail, &j32, sizeof(struct jail32)); 2749 if (error) 2750 return (error); 2751 CP(j32, j, version); 2752 PTRIN_CP(j32, j, path); 2753 PTRIN_CP(j32, j, hostname); 2754 PTRIN_CP(j32, j, jailname); 2755 CP(j32, j, ip4s); 2756 CP(j32, j, ip6s); 2757 PTRIN_CP(j32, j, ip4); 2758 PTRIN_CP(j32, j, ip6); 2759 break; 2760 } 2761 2762 default: 2763 /* Sci-Fi jails are not supported, sorry. */ 2764 return (EINVAL); 2765 } 2766 return (kern_jail(td, &j)); 2767 } 2768 2769 int 2770 freebsd32_jail_set(struct thread *td, struct freebsd32_jail_set_args *uap) 2771 { 2772 struct uio *auio; 2773 int error; 2774 2775 /* Check that we have an even number of iovecs. */ 2776 if (uap->iovcnt & 1) 2777 return (EINVAL); 2778 2779 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 2780 if (error) 2781 return (error); 2782 error = kern_jail_set(td, auio, uap->flags); 2783 free(auio, M_IOV); 2784 return (error); 2785 } 2786 2787 int 2788 freebsd32_jail_get(struct thread *td, struct freebsd32_jail_get_args *uap) 2789 { 2790 struct iovec32 iov32; 2791 struct uio *auio; 2792 int error, i; 2793 2794 /* Check that we have an even number of iovecs. */ 2795 if (uap->iovcnt & 1) 2796 return (EINVAL); 2797 2798 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 2799 if (error) 2800 return (error); 2801 error = kern_jail_get(td, auio, uap->flags); 2802 if (error == 0) 2803 for (i = 0; i < uap->iovcnt; i++) { 2804 PTROUT_CP(auio->uio_iov[i], iov32, iov_base); 2805 CP(auio->uio_iov[i], iov32, iov_len); 2806 error = copyout(&iov32, uap->iovp + i, sizeof(iov32)); 2807 if (error != 0) 2808 break; 2809 } 2810 free(auio, M_IOV); 2811 return (error); 2812 } 2813 2814 int 2815 freebsd32_sigaction(struct thread *td, struct freebsd32_sigaction_args *uap) 2816 { 2817 struct sigaction32 s32; 2818 struct sigaction sa, osa, *sap; 2819 int error; 2820 2821 if (uap->act) { 2822 error = copyin(uap->act, &s32, sizeof(s32)); 2823 if (error) 2824 return (error); 2825 sa.sa_handler = PTRIN(s32.sa_u); 2826 CP(s32, sa, sa_flags); 2827 CP(s32, sa, sa_mask); 2828 sap = &sa; 2829 } else 2830 sap = NULL; 2831 error = kern_sigaction(td, uap->sig, sap, &osa, 0); 2832 if (error == 0 && uap->oact != NULL) { 2833 s32.sa_u = PTROUT(osa.sa_handler); 2834 CP(osa, s32, sa_flags); 2835 CP(osa, s32, sa_mask); 2836 error = copyout(&s32, uap->oact, sizeof(s32)); 2837 } 2838 return (error); 2839 } 2840 2841 #ifdef COMPAT_FREEBSD4 2842 int 2843 freebsd4_freebsd32_sigaction(struct thread *td, 2844 struct freebsd4_freebsd32_sigaction_args *uap) 2845 { 2846 struct sigaction32 s32; 2847 struct sigaction sa, osa, *sap; 2848 int error; 2849 2850 if (uap->act) { 2851 error = copyin(uap->act, &s32, sizeof(s32)); 2852 if (error) 2853 return (error); 2854 sa.sa_handler = PTRIN(s32.sa_u); 2855 CP(s32, sa, sa_flags); 2856 CP(s32, sa, sa_mask); 2857 sap = &sa; 2858 } else 2859 sap = NULL; 2860 error = kern_sigaction(td, uap->sig, sap, &osa, KSA_FREEBSD4); 2861 if (error == 0 && uap->oact != NULL) { 2862 s32.sa_u = PTROUT(osa.sa_handler); 2863 CP(osa, s32, sa_flags); 2864 CP(osa, s32, sa_mask); 2865 error = copyout(&s32, uap->oact, sizeof(s32)); 2866 } 2867 return (error); 2868 } 2869 #endif 2870 2871 #ifdef COMPAT_43 2872 struct osigaction32 { 2873 uint32_t sa_u; 2874 osigset_t sa_mask; 2875 int sa_flags; 2876 }; 2877 2878 #define ONSIG 32 2879 2880 int 2881 ofreebsd32_sigaction(struct thread *td, 2882 struct ofreebsd32_sigaction_args *uap) 2883 { 2884 struct osigaction32 s32; 2885 struct sigaction sa, osa, *sap; 2886 int error; 2887 2888 if (uap->signum <= 0 || uap->signum >= ONSIG) 2889 return (EINVAL); 2890 2891 if (uap->nsa) { 2892 error = copyin(uap->nsa, &s32, sizeof(s32)); 2893 if (error) 2894 return (error); 2895 sa.sa_handler = PTRIN(s32.sa_u); 2896 CP(s32, sa, sa_flags); 2897 OSIG2SIG(s32.sa_mask, sa.sa_mask); 2898 sap = &sa; 2899 } else 2900 sap = NULL; 2901 error = kern_sigaction(td, uap->signum, sap, &osa, KSA_OSIGSET); 2902 if (error == 0 && uap->osa != NULL) { 2903 s32.sa_u = PTROUT(osa.sa_handler); 2904 CP(osa, s32, sa_flags); 2905 SIG2OSIG(osa.sa_mask, s32.sa_mask); 2906 error = copyout(&s32, uap->osa, sizeof(s32)); 2907 } 2908 return (error); 2909 } 2910 2911 struct sigvec32 { 2912 uint32_t sv_handler; 2913 int sv_mask; 2914 int sv_flags; 2915 }; 2916 2917 int 2918 ofreebsd32_sigvec(struct thread *td, 2919 struct ofreebsd32_sigvec_args *uap) 2920 { 2921 struct sigvec32 vec; 2922 struct sigaction sa, osa, *sap; 2923 int error; 2924 2925 if (uap->signum <= 0 || uap->signum >= ONSIG) 2926 return (EINVAL); 2927 2928 if (uap->nsv) { 2929 error = copyin(uap->nsv, &vec, sizeof(vec)); 2930 if (error) 2931 return (error); 2932 sa.sa_handler = PTRIN(vec.sv_handler); 2933 OSIG2SIG(vec.sv_mask, sa.sa_mask); 2934 sa.sa_flags = vec.sv_flags; 2935 sa.sa_flags ^= SA_RESTART; 2936 sap = &sa; 2937 } else 2938 sap = NULL; 2939 error = kern_sigaction(td, uap->signum, sap, &osa, KSA_OSIGSET); 2940 if (error == 0 && uap->osv != NULL) { 2941 vec.sv_handler = PTROUT(osa.sa_handler); 2942 SIG2OSIG(osa.sa_mask, vec.sv_mask); 2943 vec.sv_flags = osa.sa_flags; 2944 vec.sv_flags &= ~SA_NOCLDWAIT; 2945 vec.sv_flags ^= SA_RESTART; 2946 error = copyout(&vec, uap->osv, sizeof(vec)); 2947 } 2948 return (error); 2949 } 2950 2951 struct sigstack32 { 2952 uint32_t ss_sp; 2953 int ss_onstack; 2954 }; 2955 2956 int 2957 ofreebsd32_sigstack(struct thread *td, 2958 struct ofreebsd32_sigstack_args *uap) 2959 { 2960 struct sigstack32 s32; 2961 struct sigstack nss, oss; 2962 int error = 0, unss; 2963 2964 if (uap->nss != NULL) { 2965 error = copyin(uap->nss, &s32, sizeof(s32)); 2966 if (error) 2967 return (error); 2968 nss.ss_sp = PTRIN(s32.ss_sp); 2969 CP(s32, nss, ss_onstack); 2970 unss = 1; 2971 } else { 2972 unss = 0; 2973 } 2974 oss.ss_sp = td->td_sigstk.ss_sp; 2975 oss.ss_onstack = sigonstack(cpu_getstack(td)); 2976 if (unss) { 2977 td->td_sigstk.ss_sp = nss.ss_sp; 2978 td->td_sigstk.ss_size = 0; 2979 td->td_sigstk.ss_flags |= (nss.ss_onstack & SS_ONSTACK); 2980 td->td_pflags |= TDP_ALTSTACK; 2981 } 2982 if (uap->oss != NULL) { 2983 s32.ss_sp = PTROUT(oss.ss_sp); 2984 CP(oss, s32, ss_onstack); 2985 error = copyout(&s32, uap->oss, sizeof(s32)); 2986 } 2987 return (error); 2988 } 2989 #endif 2990 2991 int 2992 freebsd32_nanosleep(struct thread *td, struct freebsd32_nanosleep_args *uap) 2993 { 2994 2995 return (freebsd32_user_clock_nanosleep(td, CLOCK_REALTIME, 2996 TIMER_RELTIME, uap->rqtp, uap->rmtp)); 2997 } 2998 2999 int 3000 freebsd32_clock_nanosleep(struct thread *td, 3001 struct freebsd32_clock_nanosleep_args *uap) 3002 { 3003 int error; 3004 3005 error = freebsd32_user_clock_nanosleep(td, uap->clock_id, uap->flags, 3006 uap->rqtp, uap->rmtp); 3007 return (kern_posix_error(td, error)); 3008 } 3009 3010 static int 3011 freebsd32_user_clock_nanosleep(struct thread *td, clockid_t clock_id, 3012 int flags, const struct timespec32 *ua_rqtp, struct timespec32 *ua_rmtp) 3013 { 3014 struct timespec32 rmt32, rqt32; 3015 struct timespec rmt, rqt; 3016 int error, error2; 3017 3018 error = copyin(ua_rqtp, &rqt32, sizeof(rqt32)); 3019 if (error) 3020 return (error); 3021 3022 CP(rqt32, rqt, tv_sec); 3023 CP(rqt32, rqt, tv_nsec); 3024 3025 error = kern_clock_nanosleep(td, clock_id, flags, &rqt, &rmt); 3026 if (error == EINTR && ua_rmtp != NULL && (flags & TIMER_ABSTIME) == 0) { 3027 CP(rmt, rmt32, tv_sec); 3028 CP(rmt, rmt32, tv_nsec); 3029 3030 error2 = copyout(&rmt32, ua_rmtp, sizeof(rmt32)); 3031 if (error2 != 0) 3032 error = error2; 3033 } 3034 return (error); 3035 } 3036 3037 int 3038 freebsd32_clock_gettime(struct thread *td, 3039 struct freebsd32_clock_gettime_args *uap) 3040 { 3041 struct timespec ats; 3042 struct timespec32 ats32; 3043 int error; 3044 3045 error = kern_clock_gettime(td, uap->clock_id, &ats); 3046 if (error == 0) { 3047 CP(ats, ats32, tv_sec); 3048 CP(ats, ats32, tv_nsec); 3049 error = copyout(&ats32, uap->tp, sizeof(ats32)); 3050 } 3051 return (error); 3052 } 3053 3054 int 3055 freebsd32_clock_settime(struct thread *td, 3056 struct freebsd32_clock_settime_args *uap) 3057 { 3058 struct timespec ats; 3059 struct timespec32 ats32; 3060 int error; 3061 3062 error = copyin(uap->tp, &ats32, sizeof(ats32)); 3063 if (error) 3064 return (error); 3065 CP(ats32, ats, tv_sec); 3066 CP(ats32, ats, tv_nsec); 3067 3068 return (kern_clock_settime(td, uap->clock_id, &ats)); 3069 } 3070 3071 int 3072 freebsd32_clock_getres(struct thread *td, 3073 struct freebsd32_clock_getres_args *uap) 3074 { 3075 struct timespec ts; 3076 struct timespec32 ts32; 3077 int error; 3078 3079 if (uap->tp == NULL) 3080 return (0); 3081 error = kern_clock_getres(td, uap->clock_id, &ts); 3082 if (error == 0) { 3083 CP(ts, ts32, tv_sec); 3084 CP(ts, ts32, tv_nsec); 3085 error = copyout(&ts32, uap->tp, sizeof(ts32)); 3086 } 3087 return (error); 3088 } 3089 3090 int freebsd32_ktimer_create(struct thread *td, 3091 struct freebsd32_ktimer_create_args *uap) 3092 { 3093 struct sigevent32 ev32; 3094 struct sigevent ev, *evp; 3095 int error, id; 3096 3097 if (uap->evp == NULL) { 3098 evp = NULL; 3099 } else { 3100 evp = &ev; 3101 error = copyin(uap->evp, &ev32, sizeof(ev32)); 3102 if (error != 0) 3103 return (error); 3104 error = convert_sigevent32(&ev32, &ev); 3105 if (error != 0) 3106 return (error); 3107 } 3108 error = kern_ktimer_create(td, uap->clock_id, evp, &id, -1); 3109 if (error == 0) { 3110 error = copyout(&id, uap->timerid, sizeof(int)); 3111 if (error != 0) 3112 kern_ktimer_delete(td, id); 3113 } 3114 return (error); 3115 } 3116 3117 int 3118 freebsd32_ktimer_settime(struct thread *td, 3119 struct freebsd32_ktimer_settime_args *uap) 3120 { 3121 struct itimerspec32 val32, oval32; 3122 struct itimerspec val, oval, *ovalp; 3123 int error; 3124 3125 error = copyin(uap->value, &val32, sizeof(val32)); 3126 if (error != 0) 3127 return (error); 3128 ITS_CP(val32, val); 3129 ovalp = uap->ovalue != NULL ? &oval : NULL; 3130 error = kern_ktimer_settime(td, uap->timerid, uap->flags, &val, ovalp); 3131 if (error == 0 && uap->ovalue != NULL) { 3132 ITS_CP(oval, oval32); 3133 error = copyout(&oval32, uap->ovalue, sizeof(oval32)); 3134 } 3135 return (error); 3136 } 3137 3138 int 3139 freebsd32_ktimer_gettime(struct thread *td, 3140 struct freebsd32_ktimer_gettime_args *uap) 3141 { 3142 struct itimerspec32 val32; 3143 struct itimerspec val; 3144 int error; 3145 3146 error = kern_ktimer_gettime(td, uap->timerid, &val); 3147 if (error == 0) { 3148 ITS_CP(val, val32); 3149 error = copyout(&val32, uap->value, sizeof(val32)); 3150 } 3151 return (error); 3152 } 3153 3154 int 3155 freebsd32_timerfd_gettime(struct thread *td, 3156 struct freebsd32_timerfd_gettime_args *uap) 3157 { 3158 struct itimerspec curr_value; 3159 struct itimerspec32 curr_value32; 3160 int error; 3161 3162 error = kern_timerfd_gettime(td, uap->fd, &curr_value); 3163 if (error == 0) { 3164 CP(curr_value, curr_value32, it_value.tv_sec); 3165 CP(curr_value, curr_value32, it_value.tv_nsec); 3166 CP(curr_value, curr_value32, it_interval.tv_sec); 3167 CP(curr_value, curr_value32, it_interval.tv_nsec); 3168 error = copyout(&curr_value32, uap->curr_value, 3169 sizeof(curr_value32)); 3170 } 3171 3172 return (error); 3173 } 3174 3175 int 3176 freebsd32_timerfd_settime(struct thread *td, 3177 struct freebsd32_timerfd_settime_args *uap) 3178 { 3179 struct itimerspec new_value, old_value; 3180 struct itimerspec32 new_value32, old_value32; 3181 int error; 3182 3183 error = copyin(uap->new_value, &new_value32, sizeof(new_value32)); 3184 if (error != 0) 3185 return (error); 3186 CP(new_value32, new_value, it_value.tv_sec); 3187 CP(new_value32, new_value, it_value.tv_nsec); 3188 CP(new_value32, new_value, it_interval.tv_sec); 3189 CP(new_value32, new_value, it_interval.tv_nsec); 3190 if (uap->old_value == NULL) { 3191 error = kern_timerfd_settime(td, uap->fd, uap->flags, 3192 &new_value, NULL); 3193 } else { 3194 error = kern_timerfd_settime(td, uap->fd, uap->flags, 3195 &new_value, &old_value); 3196 if (error == 0) { 3197 CP(old_value, old_value32, it_value.tv_sec); 3198 CP(old_value, old_value32, it_value.tv_nsec); 3199 CP(old_value, old_value32, it_interval.tv_sec); 3200 CP(old_value, old_value32, it_interval.tv_nsec); 3201 error = copyout(&old_value32, uap->old_value, 3202 sizeof(old_value32)); 3203 } 3204 } 3205 return (error); 3206 } 3207 3208 int 3209 freebsd32_clock_getcpuclockid2(struct thread *td, 3210 struct freebsd32_clock_getcpuclockid2_args *uap) 3211 { 3212 clockid_t clk_id; 3213 int error; 3214 3215 error = kern_clock_getcpuclockid2(td, PAIR32TO64(id_t, uap->id), 3216 uap->which, &clk_id); 3217 if (error == 0) 3218 error = copyout(&clk_id, uap->clock_id, sizeof(clockid_t)); 3219 return (error); 3220 } 3221 3222 int 3223 freebsd32_thr_new(struct thread *td, 3224 struct freebsd32_thr_new_args *uap) 3225 { 3226 struct thr_param32 param32; 3227 struct thr_param param; 3228 int error; 3229 3230 if (uap->param_size < 0 || 3231 uap->param_size > sizeof(struct thr_param32)) 3232 return (EINVAL); 3233 bzero(¶m, sizeof(struct thr_param)); 3234 bzero(¶m32, sizeof(struct thr_param32)); 3235 error = copyin(uap->param, ¶m32, uap->param_size); 3236 if (error != 0) 3237 return (error); 3238 param.start_func = PTRIN(param32.start_func); 3239 param.arg = PTRIN(param32.arg); 3240 param.stack_base = PTRIN(param32.stack_base); 3241 param.stack_size = param32.stack_size; 3242 param.tls_base = PTRIN(param32.tls_base); 3243 param.tls_size = param32.tls_size; 3244 param.child_tid = PTRIN(param32.child_tid); 3245 param.parent_tid = PTRIN(param32.parent_tid); 3246 param.flags = param32.flags; 3247 param.rtp = PTRIN(param32.rtp); 3248 param.spare[0] = PTRIN(param32.spare[0]); 3249 param.spare[1] = PTRIN(param32.spare[1]); 3250 param.spare[2] = PTRIN(param32.spare[2]); 3251 3252 return (kern_thr_new(td, ¶m)); 3253 } 3254 3255 int 3256 freebsd32_thr_suspend(struct thread *td, struct freebsd32_thr_suspend_args *uap) 3257 { 3258 struct timespec32 ts32; 3259 struct timespec ts, *tsp; 3260 int error; 3261 3262 error = 0; 3263 tsp = NULL; 3264 if (uap->timeout != NULL) { 3265 error = copyin((const void *)uap->timeout, (void *)&ts32, 3266 sizeof(struct timespec32)); 3267 if (error != 0) 3268 return (error); 3269 ts.tv_sec = ts32.tv_sec; 3270 ts.tv_nsec = ts32.tv_nsec; 3271 tsp = &ts; 3272 } 3273 return (kern_thr_suspend(td, tsp)); 3274 } 3275 3276 void 3277 siginfo_to_siginfo32(const siginfo_t *src, struct siginfo32 *dst) 3278 { 3279 bzero(dst, sizeof(*dst)); 3280 dst->si_signo = src->si_signo; 3281 dst->si_errno = src->si_errno; 3282 dst->si_code = src->si_code; 3283 dst->si_pid = src->si_pid; 3284 dst->si_uid = src->si_uid; 3285 dst->si_status = src->si_status; 3286 dst->si_addr = (uintptr_t)src->si_addr; 3287 dst->si_value.sival_int = src->si_value.sival_int; 3288 dst->si_timerid = src->si_timerid; 3289 dst->si_overrun = src->si_overrun; 3290 } 3291 3292 #ifndef _FREEBSD32_SYSPROTO_H_ 3293 struct freebsd32_sigqueue_args { 3294 pid_t pid; 3295 int signum; 3296 /* union sigval32 */ int value; 3297 }; 3298 #endif 3299 int 3300 freebsd32_sigqueue(struct thread *td, struct freebsd32_sigqueue_args *uap) 3301 { 3302 union sigval sv; 3303 3304 /* 3305 * On 32-bit ABIs, sival_int and sival_ptr are the same. 3306 * On 64-bit little-endian ABIs, the low bits are the same. 3307 * In 64-bit big-endian ABIs, sival_int overlaps with 3308 * sival_ptr's HIGH bits. We choose to support sival_int 3309 * rather than sival_ptr in this case as it seems to be 3310 * more common. 3311 */ 3312 bzero(&sv, sizeof(sv)); 3313 sv.sival_int = (uint32_t)(uint64_t)uap->value; 3314 3315 return (kern_sigqueue(td, uap->pid, uap->signum, &sv)); 3316 } 3317 3318 int 3319 freebsd32_sigtimedwait(struct thread *td, struct freebsd32_sigtimedwait_args *uap) 3320 { 3321 struct timespec32 ts32; 3322 struct timespec ts; 3323 struct timespec *timeout; 3324 sigset_t set; 3325 ksiginfo_t ksi; 3326 struct siginfo32 si32; 3327 int error; 3328 3329 if (uap->timeout) { 3330 error = copyin(uap->timeout, &ts32, sizeof(ts32)); 3331 if (error) 3332 return (error); 3333 ts.tv_sec = ts32.tv_sec; 3334 ts.tv_nsec = ts32.tv_nsec; 3335 timeout = &ts; 3336 } else 3337 timeout = NULL; 3338 3339 error = copyin(uap->set, &set, sizeof(set)); 3340 if (error) 3341 return (error); 3342 3343 error = kern_sigtimedwait(td, set, &ksi, timeout); 3344 if (error) 3345 return (error); 3346 3347 if (uap->info) { 3348 siginfo_to_siginfo32(&ksi.ksi_info, &si32); 3349 error = copyout(&si32, uap->info, sizeof(struct siginfo32)); 3350 } 3351 3352 if (error == 0) 3353 td->td_retval[0] = ksi.ksi_signo; 3354 return (error); 3355 } 3356 3357 /* 3358 * MPSAFE 3359 */ 3360 int 3361 freebsd32_sigwaitinfo(struct thread *td, struct freebsd32_sigwaitinfo_args *uap) 3362 { 3363 ksiginfo_t ksi; 3364 struct siginfo32 si32; 3365 sigset_t set; 3366 int error; 3367 3368 error = copyin(uap->set, &set, sizeof(set)); 3369 if (error) 3370 return (error); 3371 3372 error = kern_sigtimedwait(td, set, &ksi, NULL); 3373 if (error) 3374 return (error); 3375 3376 if (uap->info) { 3377 siginfo_to_siginfo32(&ksi.ksi_info, &si32); 3378 error = copyout(&si32, uap->info, sizeof(struct siginfo32)); 3379 } 3380 if (error == 0) 3381 td->td_retval[0] = ksi.ksi_signo; 3382 return (error); 3383 } 3384 3385 int 3386 freebsd32_cpuset_setid(struct thread *td, 3387 struct freebsd32_cpuset_setid_args *uap) 3388 { 3389 3390 return (kern_cpuset_setid(td, uap->which, 3391 PAIR32TO64(id_t, uap->id), uap->setid)); 3392 } 3393 3394 int 3395 freebsd32_cpuset_getid(struct thread *td, 3396 struct freebsd32_cpuset_getid_args *uap) 3397 { 3398 3399 return (kern_cpuset_getid(td, uap->level, uap->which, 3400 PAIR32TO64(id_t, uap->id), uap->setid)); 3401 } 3402 3403 static int 3404 copyin32_set(const void *u, void *k, size_t size) 3405 { 3406 #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 3407 int rv; 3408 struct bitset *kb = k; 3409 int *p; 3410 3411 rv = copyin(u, k, size); 3412 if (rv != 0) 3413 return (rv); 3414 3415 p = (int *)kb->__bits; 3416 /* Loop through swapping words. 3417 * `size' is in bytes, we need bits. */ 3418 for (int i = 0; i < __bitset_words(size * 8); i++) { 3419 int tmp = p[0]; 3420 p[0] = p[1]; 3421 p[1] = tmp; 3422 p += 2; 3423 } 3424 return (0); 3425 #else 3426 return (copyin(u, k, size)); 3427 #endif 3428 } 3429 3430 static int 3431 copyout32_set(const void *k, void *u, size_t size) 3432 { 3433 #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 3434 const struct bitset *kb = k; 3435 struct bitset *ub = u; 3436 const int *kp = (const int *)kb->__bits; 3437 int *up = (int *)ub->__bits; 3438 int rv; 3439 3440 for (int i = 0; i < __bitset_words(CPU_SETSIZE); i++) { 3441 /* `size' is in bytes, we need bits. */ 3442 for (int i = 0; i < __bitset_words(size * 8); i++) { 3443 rv = suword32(up, kp[1]); 3444 if (rv == 0) 3445 rv = suword32(up + 1, kp[0]); 3446 if (rv != 0) 3447 return (EFAULT); 3448 } 3449 } 3450 return (0); 3451 #else 3452 return (copyout(k, u, size)); 3453 #endif 3454 } 3455 3456 static const struct cpuset_copy_cb cpuset_copy32_cb = { 3457 .cpuset_copyin = copyin32_set, 3458 .cpuset_copyout = copyout32_set 3459 }; 3460 3461 int 3462 freebsd32_cpuset_getaffinity(struct thread *td, 3463 struct freebsd32_cpuset_getaffinity_args *uap) 3464 { 3465 3466 return (user_cpuset_getaffinity(td, uap->level, uap->which, 3467 PAIR32TO64(id_t,uap->id), uap->cpusetsize, uap->mask, 3468 &cpuset_copy32_cb)); 3469 } 3470 3471 int 3472 freebsd32_cpuset_setaffinity(struct thread *td, 3473 struct freebsd32_cpuset_setaffinity_args *uap) 3474 { 3475 3476 return (user_cpuset_setaffinity(td, uap->level, uap->which, 3477 PAIR32TO64(id_t,uap->id), uap->cpusetsize, uap->mask, 3478 &cpuset_copy32_cb)); 3479 } 3480 3481 int 3482 freebsd32_cpuset_getdomain(struct thread *td, 3483 struct freebsd32_cpuset_getdomain_args *uap) 3484 { 3485 3486 return (kern_cpuset_getdomain(td, uap->level, uap->which, 3487 PAIR32TO64(id_t,uap->id), uap->domainsetsize, uap->mask, uap->policy, 3488 &cpuset_copy32_cb)); 3489 } 3490 3491 int 3492 freebsd32_cpuset_setdomain(struct thread *td, 3493 struct freebsd32_cpuset_setdomain_args *uap) 3494 { 3495 3496 return (kern_cpuset_setdomain(td, uap->level, uap->which, 3497 PAIR32TO64(id_t,uap->id), uap->domainsetsize, uap->mask, uap->policy, 3498 &cpuset_copy32_cb)); 3499 } 3500 3501 int 3502 freebsd32_nmount(struct thread *td, 3503 struct freebsd32_nmount_args /* { 3504 struct iovec *iovp; 3505 unsigned int iovcnt; 3506 int flags; 3507 } */ *uap) 3508 { 3509 struct uio *auio; 3510 uint64_t flags; 3511 int error; 3512 3513 /* 3514 * Mount flags are now 64-bits. On 32-bit archtectures only 3515 * 32-bits are passed in, but from here on everything handles 3516 * 64-bit flags correctly. 3517 */ 3518 flags = uap->flags; 3519 3520 AUDIT_ARG_FFLAGS(flags); 3521 3522 /* 3523 * Filter out MNT_ROOTFS. We do not want clients of nmount() in 3524 * userspace to set this flag, but we must filter it out if we want 3525 * MNT_UPDATE on the root file system to work. 3526 * MNT_ROOTFS should only be set by the kernel when mounting its 3527 * root file system. 3528 */ 3529 flags &= ~MNT_ROOTFS; 3530 3531 /* 3532 * check that we have an even number of iovec's 3533 * and that we have at least two options. 3534 */ 3535 if ((uap->iovcnt & 1) || (uap->iovcnt < 4)) 3536 return (EINVAL); 3537 3538 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 3539 if (error) 3540 return (error); 3541 error = vfs_donmount(td, flags, auio); 3542 3543 free(auio, M_IOV); 3544 return error; 3545 } 3546 3547 #if 0 3548 int 3549 freebsd32_xxx(struct thread *td, struct freebsd32_xxx_args *uap) 3550 { 3551 struct yyy32 *p32, s32; 3552 struct yyy *p = NULL, s; 3553 struct xxx_arg ap; 3554 int error; 3555 3556 if (uap->zzz) { 3557 error = copyin(uap->zzz, &s32, sizeof(s32)); 3558 if (error) 3559 return (error); 3560 /* translate in */ 3561 p = &s; 3562 } 3563 error = kern_xxx(td, p); 3564 if (error) 3565 return (error); 3566 if (uap->zzz) { 3567 /* translate out */ 3568 error = copyout(&s32, p32, sizeof(s32)); 3569 } 3570 return (error); 3571 } 3572 #endif 3573 3574 int 3575 syscall32_module_handler(struct module *mod, int what, void *arg) 3576 { 3577 3578 return (kern_syscall_module_handler(freebsd32_sysent, mod, what, arg)); 3579 } 3580 3581 int 3582 syscall32_helper_register(struct syscall_helper_data *sd, int flags) 3583 { 3584 3585 return (kern_syscall_helper_register(freebsd32_sysent, sd, flags)); 3586 } 3587 3588 int 3589 syscall32_helper_unregister(struct syscall_helper_data *sd) 3590 { 3591 3592 return (kern_syscall_helper_unregister(freebsd32_sysent, sd)); 3593 } 3594 3595 int 3596 freebsd32_copyout_strings(struct image_params *imgp, uintptr_t *stack_base) 3597 { 3598 struct sysentvec *sysent; 3599 int argc, envc, i; 3600 uint32_t *vectp; 3601 char *stringp; 3602 uintptr_t destp, ustringp; 3603 struct freebsd32_ps_strings *arginfo; 3604 char canary[sizeof(long) * 8]; 3605 int32_t pagesizes32[MAXPAGESIZES]; 3606 size_t execpath_len; 3607 int error, szsigcode; 3608 3609 sysent = imgp->sysent; 3610 3611 arginfo = (struct freebsd32_ps_strings *)PROC_PS_STRINGS(imgp->proc); 3612 imgp->ps_strings = arginfo; 3613 destp = (uintptr_t)arginfo; 3614 3615 /* 3616 * Install sigcode. 3617 */ 3618 if (!PROC_HAS_SHP(imgp->proc)) { 3619 szsigcode = *sysent->sv_szsigcode; 3620 destp -= szsigcode; 3621 destp = rounddown2(destp, sizeof(uint32_t)); 3622 error = copyout(sysent->sv_sigcode, (void *)destp, 3623 szsigcode); 3624 if (error != 0) 3625 return (error); 3626 } 3627 3628 /* 3629 * Copy the image path for the rtld. 3630 */ 3631 if (imgp->execpath != NULL && imgp->auxargs != NULL) { 3632 execpath_len = strlen(imgp->execpath) + 1; 3633 destp -= execpath_len; 3634 imgp->execpathp = (void *)destp; 3635 error = copyout(imgp->execpath, imgp->execpathp, execpath_len); 3636 if (error != 0) 3637 return (error); 3638 } 3639 3640 /* 3641 * Prepare the canary for SSP. 3642 */ 3643 arc4rand(canary, sizeof(canary), 0); 3644 destp -= sizeof(canary); 3645 imgp->canary = (void *)destp; 3646 error = copyout(canary, imgp->canary, sizeof(canary)); 3647 if (error != 0) 3648 return (error); 3649 imgp->canarylen = sizeof(canary); 3650 3651 /* 3652 * Prepare the pagesizes array. 3653 */ 3654 for (i = 0; i < MAXPAGESIZES; i++) 3655 pagesizes32[i] = (uint32_t)pagesizes[i]; 3656 destp -= sizeof(pagesizes32); 3657 destp = rounddown2(destp, sizeof(uint32_t)); 3658 imgp->pagesizes = (void *)destp; 3659 error = copyout(pagesizes32, imgp->pagesizes, sizeof(pagesizes32)); 3660 if (error != 0) 3661 return (error); 3662 imgp->pagesizeslen = sizeof(pagesizes32); 3663 3664 /* 3665 * Allocate room for the argument and environment strings. 3666 */ 3667 destp -= ARG_MAX - imgp->args->stringspace; 3668 destp = rounddown2(destp, sizeof(uint32_t)); 3669 ustringp = destp; 3670 3671 if (imgp->auxargs) { 3672 /* 3673 * Allocate room on the stack for the ELF auxargs 3674 * array. It has up to AT_COUNT entries. 3675 */ 3676 destp -= AT_COUNT * sizeof(Elf32_Auxinfo); 3677 destp = rounddown2(destp, sizeof(uint32_t)); 3678 } 3679 3680 vectp = (uint32_t *)destp; 3681 3682 /* 3683 * Allocate room for the argv[] and env vectors including the 3684 * terminating NULL pointers. 3685 */ 3686 vectp -= imgp->args->argc + 1 + imgp->args->envc + 1; 3687 3688 /* 3689 * vectp also becomes our initial stack base 3690 */ 3691 *stack_base = (uintptr_t)vectp; 3692 3693 stringp = imgp->args->begin_argv; 3694 argc = imgp->args->argc; 3695 envc = imgp->args->envc; 3696 /* 3697 * Copy out strings - arguments and environment. 3698 */ 3699 error = copyout(stringp, (void *)ustringp, 3700 ARG_MAX - imgp->args->stringspace); 3701 if (error != 0) 3702 return (error); 3703 3704 /* 3705 * Fill in "ps_strings" struct for ps, w, etc. 3706 */ 3707 imgp->argv = vectp; 3708 if (suword32(&arginfo->ps_argvstr, (uint32_t)(intptr_t)vectp) != 0 || 3709 suword32(&arginfo->ps_nargvstr, argc) != 0) 3710 return (EFAULT); 3711 3712 /* 3713 * Fill in argument portion of vector table. 3714 */ 3715 for (; argc > 0; --argc) { 3716 if (suword32(vectp++, ustringp) != 0) 3717 return (EFAULT); 3718 while (*stringp++ != 0) 3719 ustringp++; 3720 ustringp++; 3721 } 3722 3723 /* a null vector table pointer separates the argp's from the envp's */ 3724 if (suword32(vectp++, 0) != 0) 3725 return (EFAULT); 3726 3727 imgp->envv = vectp; 3728 if (suword32(&arginfo->ps_envstr, (uint32_t)(intptr_t)vectp) != 0 || 3729 suword32(&arginfo->ps_nenvstr, envc) != 0) 3730 return (EFAULT); 3731 3732 /* 3733 * Fill in environment portion of vector table. 3734 */ 3735 for (; envc > 0; --envc) { 3736 if (suword32(vectp++, ustringp) != 0) 3737 return (EFAULT); 3738 while (*stringp++ != 0) 3739 ustringp++; 3740 ustringp++; 3741 } 3742 3743 /* end of vector table is a null pointer */ 3744 if (suword32(vectp, 0) != 0) 3745 return (EFAULT); 3746 3747 if (imgp->auxargs) { 3748 vectp++; 3749 error = imgp->sysent->sv_copyout_auxargs(imgp, 3750 (uintptr_t)vectp); 3751 if (error != 0) 3752 return (error); 3753 } 3754 3755 return (0); 3756 } 3757 3758 int 3759 freebsd32_kldstat(struct thread *td, struct freebsd32_kldstat_args *uap) 3760 { 3761 struct kld_file_stat *stat; 3762 struct kld_file_stat32 *stat32; 3763 int error, version; 3764 3765 if ((error = copyin(&uap->stat->version, &version, sizeof(version))) 3766 != 0) 3767 return (error); 3768 if (version != sizeof(struct kld_file_stat_1_32) && 3769 version != sizeof(struct kld_file_stat32)) 3770 return (EINVAL); 3771 3772 stat = malloc(sizeof(*stat), M_TEMP, M_WAITOK | M_ZERO); 3773 stat32 = malloc(sizeof(*stat32), M_TEMP, M_WAITOK | M_ZERO); 3774 error = kern_kldstat(td, uap->fileid, stat); 3775 if (error == 0) { 3776 bcopy(&stat->name[0], &stat32->name[0], sizeof(stat->name)); 3777 CP(*stat, *stat32, refs); 3778 CP(*stat, *stat32, id); 3779 PTROUT_CP(*stat, *stat32, address); 3780 CP(*stat, *stat32, size); 3781 bcopy(&stat->pathname[0], &stat32->pathname[0], 3782 sizeof(stat->pathname)); 3783 stat32->version = version; 3784 error = copyout(stat32, uap->stat, version); 3785 } 3786 free(stat, M_TEMP); 3787 free(stat32, M_TEMP); 3788 return (error); 3789 } 3790 3791 int 3792 freebsd32_posix_fallocate(struct thread *td, 3793 struct freebsd32_posix_fallocate_args *uap) 3794 { 3795 int error; 3796 3797 error = kern_posix_fallocate(td, uap->fd, 3798 PAIR32TO64(off_t, uap->offset), PAIR32TO64(off_t, uap->len)); 3799 return (kern_posix_error(td, error)); 3800 } 3801 3802 int 3803 freebsd32_posix_fadvise(struct thread *td, 3804 struct freebsd32_posix_fadvise_args *uap) 3805 { 3806 int error; 3807 3808 error = kern_posix_fadvise(td, uap->fd, PAIR32TO64(off_t, uap->offset), 3809 PAIR32TO64(off_t, uap->len), uap->advice); 3810 return (kern_posix_error(td, error)); 3811 } 3812 3813 int 3814 convert_sigevent32(struct sigevent32 *sig32, struct sigevent *sig) 3815 { 3816 3817 CP(*sig32, *sig, sigev_notify); 3818 switch (sig->sigev_notify) { 3819 case SIGEV_NONE: 3820 break; 3821 case SIGEV_THREAD_ID: 3822 CP(*sig32, *sig, sigev_notify_thread_id); 3823 /* FALLTHROUGH */ 3824 case SIGEV_SIGNAL: 3825 CP(*sig32, *sig, sigev_signo); 3826 PTRIN_CP(*sig32, *sig, sigev_value.sival_ptr); 3827 break; 3828 case SIGEV_KEVENT: 3829 CP(*sig32, *sig, sigev_notify_kqueue); 3830 CP(*sig32, *sig, sigev_notify_kevent_flags); 3831 PTRIN_CP(*sig32, *sig, sigev_value.sival_ptr); 3832 break; 3833 default: 3834 return (EINVAL); 3835 } 3836 return (0); 3837 } 3838 3839 int 3840 freebsd32_procctl(struct thread *td, struct freebsd32_procctl_args *uap) 3841 { 3842 void *data; 3843 union { 3844 struct procctl_reaper_status rs; 3845 struct procctl_reaper_pids rp; 3846 struct procctl_reaper_kill rk; 3847 } x; 3848 union { 3849 struct procctl_reaper_pids32 rp; 3850 } x32; 3851 int error, error1, flags, signum; 3852 3853 if (uap->com >= PROC_PROCCTL_MD_MIN) 3854 return (cpu_procctl(td, uap->idtype, PAIR32TO64(id_t, uap->id), 3855 uap->com, PTRIN(uap->data))); 3856 3857 switch (uap->com) { 3858 case PROC_ASLR_CTL: 3859 case PROC_PROTMAX_CTL: 3860 case PROC_SPROTECT: 3861 case PROC_STACKGAP_CTL: 3862 case PROC_TRACE_CTL: 3863 case PROC_TRAPCAP_CTL: 3864 case PROC_NO_NEW_PRIVS_CTL: 3865 case PROC_WXMAP_CTL: 3866 error = copyin(PTRIN(uap->data), &flags, sizeof(flags)); 3867 if (error != 0) 3868 return (error); 3869 data = &flags; 3870 break; 3871 case PROC_REAP_ACQUIRE: 3872 case PROC_REAP_RELEASE: 3873 if (uap->data != NULL) 3874 return (EINVAL); 3875 data = NULL; 3876 break; 3877 case PROC_REAP_STATUS: 3878 data = &x.rs; 3879 break; 3880 case PROC_REAP_GETPIDS: 3881 error = copyin(uap->data, &x32.rp, sizeof(x32.rp)); 3882 if (error != 0) 3883 return (error); 3884 CP(x32.rp, x.rp, rp_count); 3885 PTRIN_CP(x32.rp, x.rp, rp_pids); 3886 data = &x.rp; 3887 break; 3888 case PROC_REAP_KILL: 3889 error = copyin(uap->data, &x.rk, sizeof(x.rk)); 3890 if (error != 0) 3891 return (error); 3892 data = &x.rk; 3893 break; 3894 case PROC_ASLR_STATUS: 3895 case PROC_PROTMAX_STATUS: 3896 case PROC_STACKGAP_STATUS: 3897 case PROC_TRACE_STATUS: 3898 case PROC_TRAPCAP_STATUS: 3899 case PROC_NO_NEW_PRIVS_STATUS: 3900 case PROC_WXMAP_STATUS: 3901 data = &flags; 3902 break; 3903 case PROC_PDEATHSIG_CTL: 3904 error = copyin(uap->data, &signum, sizeof(signum)); 3905 if (error != 0) 3906 return (error); 3907 data = &signum; 3908 break; 3909 case PROC_PDEATHSIG_STATUS: 3910 data = &signum; 3911 break; 3912 default: 3913 return (EINVAL); 3914 } 3915 error = kern_procctl(td, uap->idtype, PAIR32TO64(id_t, uap->id), 3916 uap->com, data); 3917 switch (uap->com) { 3918 case PROC_REAP_STATUS: 3919 if (error == 0) 3920 error = copyout(&x.rs, uap->data, sizeof(x.rs)); 3921 break; 3922 case PROC_REAP_KILL: 3923 error1 = copyout(&x.rk, uap->data, sizeof(x.rk)); 3924 if (error == 0) 3925 error = error1; 3926 break; 3927 case PROC_ASLR_STATUS: 3928 case PROC_PROTMAX_STATUS: 3929 case PROC_STACKGAP_STATUS: 3930 case PROC_TRACE_STATUS: 3931 case PROC_TRAPCAP_STATUS: 3932 case PROC_NO_NEW_PRIVS_STATUS: 3933 case PROC_WXMAP_STATUS: 3934 if (error == 0) 3935 error = copyout(&flags, uap->data, sizeof(flags)); 3936 break; 3937 case PROC_PDEATHSIG_STATUS: 3938 if (error == 0) 3939 error = copyout(&signum, uap->data, sizeof(signum)); 3940 break; 3941 } 3942 return (error); 3943 } 3944 3945 int 3946 freebsd32_fcntl(struct thread *td, struct freebsd32_fcntl_args *uap) 3947 { 3948 long tmp; 3949 3950 switch (uap->cmd) { 3951 /* 3952 * Do unsigned conversion for arg when operation 3953 * interprets it as flags or pointer. 3954 */ 3955 case F_SETLK_REMOTE: 3956 case F_SETLKW: 3957 case F_SETLK: 3958 case F_GETLK: 3959 case F_SETFD: 3960 case F_SETFL: 3961 case F_OGETLK: 3962 case F_OSETLK: 3963 case F_OSETLKW: 3964 case F_KINFO: 3965 tmp = (unsigned int)(uap->arg); 3966 break; 3967 default: 3968 tmp = uap->arg; 3969 break; 3970 } 3971 return (kern_fcntl_freebsd(td, uap->fd, uap->cmd, tmp)); 3972 } 3973 3974 int 3975 freebsd32_ppoll(struct thread *td, struct freebsd32_ppoll_args *uap) 3976 { 3977 struct timespec32 ts32; 3978 struct timespec ts, *tsp; 3979 sigset_t set, *ssp; 3980 int error; 3981 3982 if (uap->ts != NULL) { 3983 error = copyin(uap->ts, &ts32, sizeof(ts32)); 3984 if (error != 0) 3985 return (error); 3986 CP(ts32, ts, tv_sec); 3987 CP(ts32, ts, tv_nsec); 3988 tsp = &ts; 3989 } else 3990 tsp = NULL; 3991 if (uap->set != NULL) { 3992 error = copyin(uap->set, &set, sizeof(set)); 3993 if (error != 0) 3994 return (error); 3995 ssp = &set; 3996 } else 3997 ssp = NULL; 3998 3999 return (kern_poll(td, uap->fds, uap->nfds, tsp, ssp)); 4000 } 4001 4002 int 4003 freebsd32_sched_rr_get_interval(struct thread *td, 4004 struct freebsd32_sched_rr_get_interval_args *uap) 4005 { 4006 struct timespec ts; 4007 struct timespec32 ts32; 4008 int error; 4009 4010 error = kern_sched_rr_get_interval(td, uap->pid, &ts); 4011 if (error == 0) { 4012 CP(ts, ts32, tv_sec); 4013 CP(ts, ts32, tv_nsec); 4014 error = copyout(&ts32, uap->interval, sizeof(ts32)); 4015 } 4016 return (error); 4017 } 4018 4019 static void 4020 timex_to_32(struct timex32 *dst, struct timex *src) 4021 { 4022 CP(*src, *dst, modes); 4023 CP(*src, *dst, offset); 4024 CP(*src, *dst, freq); 4025 CP(*src, *dst, maxerror); 4026 CP(*src, *dst, esterror); 4027 CP(*src, *dst, status); 4028 CP(*src, *dst, constant); 4029 CP(*src, *dst, precision); 4030 CP(*src, *dst, tolerance); 4031 CP(*src, *dst, ppsfreq); 4032 CP(*src, *dst, jitter); 4033 CP(*src, *dst, shift); 4034 CP(*src, *dst, stabil); 4035 CP(*src, *dst, jitcnt); 4036 CP(*src, *dst, calcnt); 4037 CP(*src, *dst, errcnt); 4038 CP(*src, *dst, stbcnt); 4039 } 4040 4041 static void 4042 timex_from_32(struct timex *dst, struct timex32 *src) 4043 { 4044 CP(*src, *dst, modes); 4045 CP(*src, *dst, offset); 4046 CP(*src, *dst, freq); 4047 CP(*src, *dst, maxerror); 4048 CP(*src, *dst, esterror); 4049 CP(*src, *dst, status); 4050 CP(*src, *dst, constant); 4051 CP(*src, *dst, precision); 4052 CP(*src, *dst, tolerance); 4053 CP(*src, *dst, ppsfreq); 4054 CP(*src, *dst, jitter); 4055 CP(*src, *dst, shift); 4056 CP(*src, *dst, stabil); 4057 CP(*src, *dst, jitcnt); 4058 CP(*src, *dst, calcnt); 4059 CP(*src, *dst, errcnt); 4060 CP(*src, *dst, stbcnt); 4061 } 4062 4063 int 4064 freebsd32_ntp_adjtime(struct thread *td, struct freebsd32_ntp_adjtime_args *uap) 4065 { 4066 struct timex tx; 4067 struct timex32 tx32; 4068 int error, retval; 4069 4070 error = copyin(uap->tp, &tx32, sizeof(tx32)); 4071 if (error == 0) { 4072 timex_from_32(&tx, &tx32); 4073 error = kern_ntp_adjtime(td, &tx, &retval); 4074 if (error == 0) { 4075 timex_to_32(&tx32, &tx); 4076 error = copyout(&tx32, uap->tp, sizeof(tx32)); 4077 if (error == 0) 4078 td->td_retval[0] = retval; 4079 } 4080 } 4081 return (error); 4082 } 4083 4084 #ifdef FFCLOCK 4085 extern struct mtx ffclock_mtx; 4086 extern struct ffclock_estimate ffclock_estimate; 4087 extern int8_t ffclock_updated; 4088 4089 int 4090 freebsd32_ffclock_setestimate(struct thread *td, 4091 struct freebsd32_ffclock_setestimate_args *uap) 4092 { 4093 struct ffclock_estimate cest; 4094 struct ffclock_estimate32 cest32; 4095 int error; 4096 4097 /* Reuse of PRIV_CLOCK_SETTIME. */ 4098 if ((error = priv_check(td, PRIV_CLOCK_SETTIME)) != 0) 4099 return (error); 4100 4101 if ((error = copyin(uap->cest, &cest32, 4102 sizeof(struct ffclock_estimate32))) != 0) 4103 return (error); 4104 4105 CP(cest.update_time, cest32.update_time, sec); 4106 memcpy(&cest.update_time.frac, &cest32.update_time.frac, sizeof(uint64_t)); 4107 CP(cest, cest32, update_ffcount); 4108 CP(cest, cest32, leapsec_next); 4109 CP(cest, cest32, period); 4110 CP(cest, cest32, errb_abs); 4111 CP(cest, cest32, errb_rate); 4112 CP(cest, cest32, status); 4113 CP(cest, cest32, leapsec_total); 4114 CP(cest, cest32, leapsec); 4115 4116 mtx_lock(&ffclock_mtx); 4117 memcpy(&ffclock_estimate, &cest, sizeof(struct ffclock_estimate)); 4118 ffclock_updated++; 4119 mtx_unlock(&ffclock_mtx); 4120 return (error); 4121 } 4122 4123 int 4124 freebsd32_ffclock_getestimate(struct thread *td, 4125 struct freebsd32_ffclock_getestimate_args *uap) 4126 { 4127 struct ffclock_estimate cest; 4128 struct ffclock_estimate32 cest32; 4129 int error; 4130 4131 mtx_lock(&ffclock_mtx); 4132 memcpy(&cest, &ffclock_estimate, sizeof(struct ffclock_estimate)); 4133 mtx_unlock(&ffclock_mtx); 4134 4135 CP(cest32.update_time, cest.update_time, sec); 4136 memcpy(&cest32.update_time.frac, &cest.update_time.frac, sizeof(uint64_t)); 4137 CP(cest32, cest, update_ffcount); 4138 CP(cest32, cest, leapsec_next); 4139 CP(cest32, cest, period); 4140 CP(cest32, cest, errb_abs); 4141 CP(cest32, cest, errb_rate); 4142 CP(cest32, cest, status); 4143 CP(cest32, cest, leapsec_total); 4144 CP(cest32, cest, leapsec); 4145 4146 error = copyout(&cest32, uap->cest, sizeof(struct ffclock_estimate32)); 4147 return (error); 4148 } 4149 #else /* !FFCLOCK */ 4150 int 4151 freebsd32_ffclock_setestimate(struct thread *td, 4152 struct freebsd32_ffclock_setestimate_args *uap) 4153 { 4154 return (ENOSYS); 4155 } 4156 4157 int 4158 freebsd32_ffclock_getestimate(struct thread *td, 4159 struct freebsd32_ffclock_getestimate_args *uap) 4160 { 4161 return (ENOSYS); 4162 } 4163 #endif /* FFCLOCK */ 4164 4165 #ifdef COMPAT_43 4166 int 4167 ofreebsd32_sethostid(struct thread *td, struct ofreebsd32_sethostid_args *uap) 4168 { 4169 int name[] = { CTL_KERN, KERN_HOSTID }; 4170 long hostid; 4171 4172 hostid = uap->hostid; 4173 return (kernel_sysctl(td, name, nitems(name), NULL, NULL, &hostid, 4174 sizeof(hostid), NULL, 0)); 4175 } 4176 #endif 4177