xref: /freebsd/sys/compat/freebsd32/freebsd32_misc.c (revision 389e4940069316fe667ffa263fa7d6390d0a960f)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2002 Doug Rabson
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include "opt_inet.h"
33 #include "opt_inet6.h"
34 #include "opt_ktrace.h"
35 
36 #define __ELF_WORD_SIZE 32
37 
38 #ifdef COMPAT_FREEBSD11
39 #define	_WANT_FREEBSD11_KEVENT
40 #endif
41 
42 #include <sys/param.h>
43 #include <sys/bus.h>
44 #include <sys/capsicum.h>
45 #include <sys/clock.h>
46 #include <sys/exec.h>
47 #include <sys/fcntl.h>
48 #include <sys/filedesc.h>
49 #include <sys/imgact.h>
50 #include <sys/jail.h>
51 #include <sys/kernel.h>
52 #include <sys/limits.h>
53 #include <sys/linker.h>
54 #include <sys/lock.h>
55 #include <sys/malloc.h>
56 #include <sys/file.h>		/* Must come after sys/malloc.h */
57 #include <sys/imgact.h>
58 #include <sys/mbuf.h>
59 #include <sys/mman.h>
60 #include <sys/module.h>
61 #include <sys/mount.h>
62 #include <sys/mutex.h>
63 #include <sys/namei.h>
64 #include <sys/proc.h>
65 #include <sys/procctl.h>
66 #include <sys/reboot.h>
67 #include <sys/resource.h>
68 #include <sys/resourcevar.h>
69 #include <sys/selinfo.h>
70 #include <sys/eventvar.h>	/* Must come after sys/selinfo.h */
71 #include <sys/pipe.h>		/* Must come after sys/selinfo.h */
72 #include <sys/signal.h>
73 #include <sys/signalvar.h>
74 #include <sys/socket.h>
75 #include <sys/socketvar.h>
76 #include <sys/stat.h>
77 #include <sys/syscall.h>
78 #include <sys/syscallsubr.h>
79 #include <sys/sysctl.h>
80 #include <sys/sysent.h>
81 #include <sys/sysproto.h>
82 #include <sys/systm.h>
83 #include <sys/thr.h>
84 #include <sys/unistd.h>
85 #include <sys/ucontext.h>
86 #include <sys/vnode.h>
87 #include <sys/wait.h>
88 #include <sys/ipc.h>
89 #include <sys/msg.h>
90 #include <sys/sem.h>
91 #include <sys/shm.h>
92 #ifdef KTRACE
93 #include <sys/ktrace.h>
94 #endif
95 
96 #ifdef INET
97 #include <netinet/in.h>
98 #endif
99 
100 #include <vm/vm.h>
101 #include <vm/vm_param.h>
102 #include <vm/pmap.h>
103 #include <vm/vm_map.h>
104 #include <vm/vm_object.h>
105 #include <vm/vm_extern.h>
106 
107 #include <machine/cpu.h>
108 #include <machine/elf.h>
109 
110 #include <security/audit/audit.h>
111 
112 #include <compat/freebsd32/freebsd32_util.h>
113 #include <compat/freebsd32/freebsd32.h>
114 #include <compat/freebsd32/freebsd32_ipc.h>
115 #include <compat/freebsd32/freebsd32_misc.h>
116 #include <compat/freebsd32/freebsd32_signal.h>
117 #include <compat/freebsd32/freebsd32_proto.h>
118 
119 FEATURE(compat_freebsd_32bit, "Compatible with 32-bit FreeBSD");
120 
121 #ifdef __amd64__
122 CTASSERT(sizeof(struct timeval32) == 8);
123 CTASSERT(sizeof(struct timespec32) == 8);
124 CTASSERT(sizeof(struct itimerval32) == 16);
125 CTASSERT(sizeof(struct bintime32) == 12);
126 #endif
127 CTASSERT(sizeof(struct statfs32) == 256);
128 #ifdef __amd64__
129 CTASSERT(sizeof(struct rusage32) == 72);
130 #endif
131 CTASSERT(sizeof(struct sigaltstack32) == 12);
132 #ifdef __amd64__
133 CTASSERT(sizeof(struct kevent32) == 56);
134 #else
135 CTASSERT(sizeof(struct kevent32) == 64);
136 #endif
137 CTASSERT(sizeof(struct iovec32) == 8);
138 CTASSERT(sizeof(struct msghdr32) == 28);
139 #ifdef __amd64__
140 CTASSERT(sizeof(struct stat32) == 208);
141 CTASSERT(sizeof(struct freebsd11_stat32) == 96);
142 #endif
143 CTASSERT(sizeof(struct sigaction32) == 24);
144 
145 static int freebsd32_kevent_copyout(void *arg, struct kevent *kevp, int count);
146 static int freebsd32_kevent_copyin(void *arg, struct kevent *kevp, int count);
147 static int freebsd32_user_clock_nanosleep(struct thread *td, clockid_t clock_id,
148     int flags, const struct timespec32 *ua_rqtp, struct timespec32 *ua_rmtp);
149 
150 void
151 freebsd32_rusage_out(const struct rusage *s, struct rusage32 *s32)
152 {
153 
154 	TV_CP(*s, *s32, ru_utime);
155 	TV_CP(*s, *s32, ru_stime);
156 	CP(*s, *s32, ru_maxrss);
157 	CP(*s, *s32, ru_ixrss);
158 	CP(*s, *s32, ru_idrss);
159 	CP(*s, *s32, ru_isrss);
160 	CP(*s, *s32, ru_minflt);
161 	CP(*s, *s32, ru_majflt);
162 	CP(*s, *s32, ru_nswap);
163 	CP(*s, *s32, ru_inblock);
164 	CP(*s, *s32, ru_oublock);
165 	CP(*s, *s32, ru_msgsnd);
166 	CP(*s, *s32, ru_msgrcv);
167 	CP(*s, *s32, ru_nsignals);
168 	CP(*s, *s32, ru_nvcsw);
169 	CP(*s, *s32, ru_nivcsw);
170 }
171 
172 int
173 freebsd32_wait4(struct thread *td, struct freebsd32_wait4_args *uap)
174 {
175 	int error, status;
176 	struct rusage32 ru32;
177 	struct rusage ru, *rup;
178 
179 	if (uap->rusage != NULL)
180 		rup = &ru;
181 	else
182 		rup = NULL;
183 	error = kern_wait(td, uap->pid, &status, uap->options, rup);
184 	if (error)
185 		return (error);
186 	if (uap->status != NULL)
187 		error = copyout(&status, uap->status, sizeof(status));
188 	if (uap->rusage != NULL && error == 0) {
189 		freebsd32_rusage_out(&ru, &ru32);
190 		error = copyout(&ru32, uap->rusage, sizeof(ru32));
191 	}
192 	return (error);
193 }
194 
195 int
196 freebsd32_wait6(struct thread *td, struct freebsd32_wait6_args *uap)
197 {
198 	struct wrusage32 wru32;
199 	struct __wrusage wru, *wrup;
200 	struct siginfo32 si32;
201 	struct __siginfo si, *sip;
202 	int error, status;
203 
204 	if (uap->wrusage != NULL)
205 		wrup = &wru;
206 	else
207 		wrup = NULL;
208 	if (uap->info != NULL) {
209 		sip = &si;
210 		bzero(sip, sizeof(*sip));
211 	} else
212 		sip = NULL;
213 	error = kern_wait6(td, uap->idtype, PAIR32TO64(id_t, uap->id),
214 	    &status, uap->options, wrup, sip);
215 	if (error != 0)
216 		return (error);
217 	if (uap->status != NULL)
218 		error = copyout(&status, uap->status, sizeof(status));
219 	if (uap->wrusage != NULL && error == 0) {
220 		freebsd32_rusage_out(&wru.wru_self, &wru32.wru_self);
221 		freebsd32_rusage_out(&wru.wru_children, &wru32.wru_children);
222 		error = copyout(&wru32, uap->wrusage, sizeof(wru32));
223 	}
224 	if (uap->info != NULL && error == 0) {
225 		siginfo_to_siginfo32 (&si, &si32);
226 		error = copyout(&si32, uap->info, sizeof(si32));
227 	}
228 	return (error);
229 }
230 
231 #ifdef COMPAT_FREEBSD4
232 static void
233 copy_statfs(struct statfs *in, struct statfs32 *out)
234 {
235 
236 	statfs_scale_blocks(in, INT32_MAX);
237 	bzero(out, sizeof(*out));
238 	CP(*in, *out, f_bsize);
239 	out->f_iosize = MIN(in->f_iosize, INT32_MAX);
240 	CP(*in, *out, f_blocks);
241 	CP(*in, *out, f_bfree);
242 	CP(*in, *out, f_bavail);
243 	out->f_files = MIN(in->f_files, INT32_MAX);
244 	out->f_ffree = MIN(in->f_ffree, INT32_MAX);
245 	CP(*in, *out, f_fsid);
246 	CP(*in, *out, f_owner);
247 	CP(*in, *out, f_type);
248 	CP(*in, *out, f_flags);
249 	out->f_syncwrites = MIN(in->f_syncwrites, INT32_MAX);
250 	out->f_asyncwrites = MIN(in->f_asyncwrites, INT32_MAX);
251 	strlcpy(out->f_fstypename,
252 	      in->f_fstypename, MFSNAMELEN);
253 	strlcpy(out->f_mntonname,
254 	      in->f_mntonname, min(MNAMELEN, FREEBSD4_MNAMELEN));
255 	out->f_syncreads = MIN(in->f_syncreads, INT32_MAX);
256 	out->f_asyncreads = MIN(in->f_asyncreads, INT32_MAX);
257 	strlcpy(out->f_mntfromname,
258 	      in->f_mntfromname, min(MNAMELEN, FREEBSD4_MNAMELEN));
259 }
260 #endif
261 
262 #ifdef COMPAT_FREEBSD4
263 int
264 freebsd4_freebsd32_getfsstat(struct thread *td,
265     struct freebsd4_freebsd32_getfsstat_args *uap)
266 {
267 	struct statfs *buf, *sp;
268 	struct statfs32 stat32;
269 	size_t count, size, copycount;
270 	int error;
271 
272 	count = uap->bufsize / sizeof(struct statfs32);
273 	size = count * sizeof(struct statfs);
274 	error = kern_getfsstat(td, &buf, size, &count, UIO_SYSSPACE, uap->mode);
275 	if (size > 0) {
276 		sp = buf;
277 		copycount = count;
278 		while (copycount > 0 && error == 0) {
279 			copy_statfs(sp, &stat32);
280 			error = copyout(&stat32, uap->buf, sizeof(stat32));
281 			sp++;
282 			uap->buf++;
283 			copycount--;
284 		}
285 		free(buf, M_STATFS);
286 	}
287 	if (error == 0)
288 		td->td_retval[0] = count;
289 	return (error);
290 }
291 #endif
292 
293 #ifdef COMPAT_FREEBSD10
294 int
295 freebsd10_freebsd32_pipe(struct thread *td,
296     struct freebsd10_freebsd32_pipe_args *uap) {
297 
298 	return (freebsd10_pipe(td, (struct freebsd10_pipe_args*)uap));
299 }
300 #endif
301 
302 int
303 freebsd32_sigaltstack(struct thread *td,
304 		      struct freebsd32_sigaltstack_args *uap)
305 {
306 	struct sigaltstack32 s32;
307 	struct sigaltstack ss, oss, *ssp;
308 	int error;
309 
310 	if (uap->ss != NULL) {
311 		error = copyin(uap->ss, &s32, sizeof(s32));
312 		if (error)
313 			return (error);
314 		PTRIN_CP(s32, ss, ss_sp);
315 		CP(s32, ss, ss_size);
316 		CP(s32, ss, ss_flags);
317 		ssp = &ss;
318 	} else
319 		ssp = NULL;
320 	error = kern_sigaltstack(td, ssp, &oss);
321 	if (error == 0 && uap->oss != NULL) {
322 		PTROUT_CP(oss, s32, ss_sp);
323 		CP(oss, s32, ss_size);
324 		CP(oss, s32, ss_flags);
325 		error = copyout(&s32, uap->oss, sizeof(s32));
326 	}
327 	return (error);
328 }
329 
330 /*
331  * Custom version of exec_copyin_args() so that we can translate
332  * the pointers.
333  */
334 int
335 freebsd32_exec_copyin_args(struct image_args *args, char *fname,
336     enum uio_seg segflg, u_int32_t *argv, u_int32_t *envv)
337 {
338 	char *argp, *envp;
339 	u_int32_t *p32, arg;
340 	size_t length;
341 	int error;
342 
343 	bzero(args, sizeof(*args));
344 	if (argv == NULL)
345 		return (EFAULT);
346 
347 	/*
348 	 * Allocate demand-paged memory for the file name, argument, and
349 	 * environment strings.
350 	 */
351 	error = exec_alloc_args(args);
352 	if (error != 0)
353 		return (error);
354 
355 	/*
356 	 * Copy the file name.
357 	 */
358 	if (fname != NULL) {
359 		args->fname = args->buf;
360 		error = (segflg == UIO_SYSSPACE) ?
361 		    copystr(fname, args->fname, PATH_MAX, &length) :
362 		    copyinstr(fname, args->fname, PATH_MAX, &length);
363 		if (error != 0)
364 			goto err_exit;
365 	} else
366 		length = 0;
367 
368 	args->begin_argv = args->buf + length;
369 	args->endp = args->begin_argv;
370 	args->stringspace = ARG_MAX;
371 
372 	/*
373 	 * extract arguments first
374 	 */
375 	p32 = argv;
376 	for (;;) {
377 		error = copyin(p32++, &arg, sizeof(arg));
378 		if (error)
379 			goto err_exit;
380 		if (arg == 0)
381 			break;
382 		argp = PTRIN(arg);
383 		error = copyinstr(argp, args->endp, args->stringspace, &length);
384 		if (error) {
385 			if (error == ENAMETOOLONG)
386 				error = E2BIG;
387 			goto err_exit;
388 		}
389 		args->stringspace -= length;
390 		args->endp += length;
391 		args->argc++;
392 	}
393 
394 	args->begin_envv = args->endp;
395 
396 	/*
397 	 * extract environment strings
398 	 */
399 	if (envv) {
400 		p32 = envv;
401 		for (;;) {
402 			error = copyin(p32++, &arg, sizeof(arg));
403 			if (error)
404 				goto err_exit;
405 			if (arg == 0)
406 				break;
407 			envp = PTRIN(arg);
408 			error = copyinstr(envp, args->endp, args->stringspace,
409 			    &length);
410 			if (error) {
411 				if (error == ENAMETOOLONG)
412 					error = E2BIG;
413 				goto err_exit;
414 			}
415 			args->stringspace -= length;
416 			args->endp += length;
417 			args->envc++;
418 		}
419 	}
420 
421 	return (0);
422 
423 err_exit:
424 	exec_free_args(args);
425 	return (error);
426 }
427 
428 int
429 freebsd32_execve(struct thread *td, struct freebsd32_execve_args *uap)
430 {
431 	struct image_args eargs;
432 	struct vmspace *oldvmspace;
433 	int error;
434 
435 	error = pre_execve(td, &oldvmspace);
436 	if (error != 0)
437 		return (error);
438 	error = freebsd32_exec_copyin_args(&eargs, uap->fname, UIO_USERSPACE,
439 	    uap->argv, uap->envv);
440 	if (error == 0)
441 		error = kern_execve(td, &eargs, NULL);
442 	post_execve(td, error, oldvmspace);
443 	return (error);
444 }
445 
446 int
447 freebsd32_fexecve(struct thread *td, struct freebsd32_fexecve_args *uap)
448 {
449 	struct image_args eargs;
450 	struct vmspace *oldvmspace;
451 	int error;
452 
453 	error = pre_execve(td, &oldvmspace);
454 	if (error != 0)
455 		return (error);
456 	error = freebsd32_exec_copyin_args(&eargs, NULL, UIO_SYSSPACE,
457 	    uap->argv, uap->envv);
458 	if (error == 0) {
459 		eargs.fd = uap->fd;
460 		error = kern_execve(td, &eargs, NULL);
461 	}
462 	post_execve(td, error, oldvmspace);
463 	return (error);
464 }
465 
466 #if defined(COMPAT_FREEBSD11)
467 int
468 freebsd11_freebsd32_mknod(struct thread *td,
469     struct freebsd11_freebsd32_mknod_args *uap)
470 {
471 
472 	return (kern_mknodat(td, AT_FDCWD, uap->path, UIO_USERSPACE, uap->mode,
473 	    uap->dev));
474 }
475 
476 int
477 freebsd11_freebsd32_mknodat(struct thread *td,
478     struct freebsd11_freebsd32_mknodat_args *uap)
479 {
480 
481 	return (kern_mknodat(td, uap->fd, uap->path, UIO_USERSPACE, uap->mode,
482 	    uap->dev));
483 }
484 #endif /* COMPAT_FREEBSD11 */
485 
486 int
487 freebsd32_mprotect(struct thread *td, struct freebsd32_mprotect_args *uap)
488 {
489 	int prot;
490 
491 	prot = uap->prot;
492 #if defined(__amd64__)
493 	if (i386_read_exec && (prot & PROT_READ) != 0)
494 		prot |= PROT_EXEC;
495 #endif
496 	return (kern_mprotect(td, (uintptr_t)PTRIN(uap->addr), uap->len,
497 	    prot));
498 }
499 
500 int
501 freebsd32_mmap(struct thread *td, struct freebsd32_mmap_args *uap)
502 {
503 	int prot;
504 
505 	prot = uap->prot;
506 #if defined(__amd64__)
507 	if (i386_read_exec && (prot & PROT_READ))
508 		prot |= PROT_EXEC;
509 #endif
510 
511 	return (kern_mmap(td, (uintptr_t)uap->addr, uap->len, prot,
512 	    uap->flags, uap->fd, PAIR32TO64(off_t, uap->pos)));
513 }
514 
515 #ifdef COMPAT_FREEBSD6
516 int
517 freebsd6_freebsd32_mmap(struct thread *td,
518     struct freebsd6_freebsd32_mmap_args *uap)
519 {
520 	int prot;
521 
522 	prot = uap->prot;
523 #if defined(__amd64__)
524 	if (i386_read_exec && (prot & PROT_READ))
525 		prot |= PROT_EXEC;
526 #endif
527 
528 	return (kern_mmap(td, (uintptr_t)uap->addr, uap->len, prot,
529 	    uap->flags, uap->fd, PAIR32TO64(off_t, uap->pos)));
530 }
531 #endif
532 
533 int
534 freebsd32_setitimer(struct thread *td, struct freebsd32_setitimer_args *uap)
535 {
536 	struct itimerval itv, oitv, *itvp;
537 	struct itimerval32 i32;
538 	int error;
539 
540 	if (uap->itv != NULL) {
541 		error = copyin(uap->itv, &i32, sizeof(i32));
542 		if (error)
543 			return (error);
544 		TV_CP(i32, itv, it_interval);
545 		TV_CP(i32, itv, it_value);
546 		itvp = &itv;
547 	} else
548 		itvp = NULL;
549 	error = kern_setitimer(td, uap->which, itvp, &oitv);
550 	if (error || uap->oitv == NULL)
551 		return (error);
552 	TV_CP(oitv, i32, it_interval);
553 	TV_CP(oitv, i32, it_value);
554 	return (copyout(&i32, uap->oitv, sizeof(i32)));
555 }
556 
557 int
558 freebsd32_getitimer(struct thread *td, struct freebsd32_getitimer_args *uap)
559 {
560 	struct itimerval itv;
561 	struct itimerval32 i32;
562 	int error;
563 
564 	error = kern_getitimer(td, uap->which, &itv);
565 	if (error || uap->itv == NULL)
566 		return (error);
567 	TV_CP(itv, i32, it_interval);
568 	TV_CP(itv, i32, it_value);
569 	return (copyout(&i32, uap->itv, sizeof(i32)));
570 }
571 
572 int
573 freebsd32_select(struct thread *td, struct freebsd32_select_args *uap)
574 {
575 	struct timeval32 tv32;
576 	struct timeval tv, *tvp;
577 	int error;
578 
579 	if (uap->tv != NULL) {
580 		error = copyin(uap->tv, &tv32, sizeof(tv32));
581 		if (error)
582 			return (error);
583 		CP(tv32, tv, tv_sec);
584 		CP(tv32, tv, tv_usec);
585 		tvp = &tv;
586 	} else
587 		tvp = NULL;
588 	/*
589 	 * XXX Do pointers need PTRIN()?
590 	 */
591 	return (kern_select(td, uap->nd, uap->in, uap->ou, uap->ex, tvp,
592 	    sizeof(int32_t) * 8));
593 }
594 
595 int
596 freebsd32_pselect(struct thread *td, struct freebsd32_pselect_args *uap)
597 {
598 	struct timespec32 ts32;
599 	struct timespec ts;
600 	struct timeval tv, *tvp;
601 	sigset_t set, *uset;
602 	int error;
603 
604 	if (uap->ts != NULL) {
605 		error = copyin(uap->ts, &ts32, sizeof(ts32));
606 		if (error != 0)
607 			return (error);
608 		CP(ts32, ts, tv_sec);
609 		CP(ts32, ts, tv_nsec);
610 		TIMESPEC_TO_TIMEVAL(&tv, &ts);
611 		tvp = &tv;
612 	} else
613 		tvp = NULL;
614 	if (uap->sm != NULL) {
615 		error = copyin(uap->sm, &set, sizeof(set));
616 		if (error != 0)
617 			return (error);
618 		uset = &set;
619 	} else
620 		uset = NULL;
621 	/*
622 	 * XXX Do pointers need PTRIN()?
623 	 */
624 	error = kern_pselect(td, uap->nd, uap->in, uap->ou, uap->ex, tvp,
625 	    uset, sizeof(int32_t) * 8);
626 	return (error);
627 }
628 
629 /*
630  * Copy 'count' items into the destination list pointed to by uap->eventlist.
631  */
632 static int
633 freebsd32_kevent_copyout(void *arg, struct kevent *kevp, int count)
634 {
635 	struct freebsd32_kevent_args *uap;
636 	struct kevent32	ks32[KQ_NEVENTS];
637 	uint64_t e;
638 	int i, j, error;
639 
640 	KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
641 	uap = (struct freebsd32_kevent_args *)arg;
642 
643 	for (i = 0; i < count; i++) {
644 		CP(kevp[i], ks32[i], ident);
645 		CP(kevp[i], ks32[i], filter);
646 		CP(kevp[i], ks32[i], flags);
647 		CP(kevp[i], ks32[i], fflags);
648 #if BYTE_ORDER == LITTLE_ENDIAN
649 		ks32[i].data1 = kevp[i].data;
650 		ks32[i].data2 = kevp[i].data >> 32;
651 #else
652 		ks32[i].data1 = kevp[i].data >> 32;
653 		ks32[i].data2 = kevp[i].data;
654 #endif
655 		PTROUT_CP(kevp[i], ks32[i], udata);
656 		for (j = 0; j < nitems(kevp->ext); j++) {
657 			e = kevp[i].ext[j];
658 #if BYTE_ORDER == LITTLE_ENDIAN
659 			ks32[i].ext64[2 * j] = e;
660 			ks32[i].ext64[2 * j + 1] = e >> 32;
661 #else
662 			ks32[i].ext64[2 * j] = e >> 32;
663 			ks32[i].ext64[2 * j + 1] = e;
664 #endif
665 		}
666 	}
667 	error = copyout(ks32, uap->eventlist, count * sizeof *ks32);
668 	if (error == 0)
669 		uap->eventlist += count;
670 	return (error);
671 }
672 
673 /*
674  * Copy 'count' items from the list pointed to by uap->changelist.
675  */
676 static int
677 freebsd32_kevent_copyin(void *arg, struct kevent *kevp, int count)
678 {
679 	struct freebsd32_kevent_args *uap;
680 	struct kevent32	ks32[KQ_NEVENTS];
681 	uint64_t e;
682 	int i, j, error;
683 
684 	KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
685 	uap = (struct freebsd32_kevent_args *)arg;
686 
687 	error = copyin(uap->changelist, ks32, count * sizeof *ks32);
688 	if (error)
689 		goto done;
690 	uap->changelist += count;
691 
692 	for (i = 0; i < count; i++) {
693 		CP(ks32[i], kevp[i], ident);
694 		CP(ks32[i], kevp[i], filter);
695 		CP(ks32[i], kevp[i], flags);
696 		CP(ks32[i], kevp[i], fflags);
697 		kevp[i].data = PAIR32TO64(uint64_t, ks32[i].data);
698 		PTRIN_CP(ks32[i], kevp[i], udata);
699 		for (j = 0; j < nitems(kevp->ext); j++) {
700 #if BYTE_ORDER == LITTLE_ENDIAN
701 			e = ks32[i].ext64[2 * j + 1];
702 			e <<= 32;
703 			e += ks32[i].ext64[2 * j];
704 #else
705 			e = ks32[i].ext64[2 * j];
706 			e <<= 32;
707 			e += ks32[i].ext64[2 * j + 1];
708 #endif
709 			kevp[i].ext[j] = e;
710 		}
711 	}
712 done:
713 	return (error);
714 }
715 
716 int
717 freebsd32_kevent(struct thread *td, struct freebsd32_kevent_args *uap)
718 {
719 	struct timespec32 ts32;
720 	struct timespec ts, *tsp;
721 	struct kevent_copyops k_ops = {
722 		.arg = uap,
723 		.k_copyout = freebsd32_kevent_copyout,
724 		.k_copyin = freebsd32_kevent_copyin,
725 	};
726 #ifdef KTRACE
727 	struct kevent32 *eventlist = uap->eventlist;
728 #endif
729 	int error;
730 
731 	if (uap->timeout) {
732 		error = copyin(uap->timeout, &ts32, sizeof(ts32));
733 		if (error)
734 			return (error);
735 		CP(ts32, ts, tv_sec);
736 		CP(ts32, ts, tv_nsec);
737 		tsp = &ts;
738 	} else
739 		tsp = NULL;
740 #ifdef KTRACE
741 	if (KTRPOINT(td, KTR_STRUCT_ARRAY))
742 		ktrstructarray("kevent32", UIO_USERSPACE, uap->changelist,
743 		    uap->nchanges, sizeof(struct kevent32));
744 #endif
745 	error = kern_kevent(td, uap->fd, uap->nchanges, uap->nevents,
746 	    &k_ops, tsp);
747 #ifdef KTRACE
748 	if (error == 0 && KTRPOINT(td, KTR_STRUCT_ARRAY))
749 		ktrstructarray("kevent32", UIO_USERSPACE, eventlist,
750 		    td->td_retval[0], sizeof(struct kevent32));
751 #endif
752 	return (error);
753 }
754 
755 #ifdef COMPAT_FREEBSD11
756 static int
757 freebsd32_kevent11_copyout(void *arg, struct kevent *kevp, int count)
758 {
759 	struct freebsd11_freebsd32_kevent_args *uap;
760 	struct kevent32_freebsd11 ks32[KQ_NEVENTS];
761 	int i, error;
762 
763 	KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
764 	uap = (struct freebsd11_freebsd32_kevent_args *)arg;
765 
766 	for (i = 0; i < count; i++) {
767 		CP(kevp[i], ks32[i], ident);
768 		CP(kevp[i], ks32[i], filter);
769 		CP(kevp[i], ks32[i], flags);
770 		CP(kevp[i], ks32[i], fflags);
771 		CP(kevp[i], ks32[i], data);
772 		PTROUT_CP(kevp[i], ks32[i], udata);
773 	}
774 	error = copyout(ks32, uap->eventlist, count * sizeof *ks32);
775 	if (error == 0)
776 		uap->eventlist += count;
777 	return (error);
778 }
779 
780 /*
781  * Copy 'count' items from the list pointed to by uap->changelist.
782  */
783 static int
784 freebsd32_kevent11_copyin(void *arg, struct kevent *kevp, int count)
785 {
786 	struct freebsd11_freebsd32_kevent_args *uap;
787 	struct kevent32_freebsd11 ks32[KQ_NEVENTS];
788 	int i, j, error;
789 
790 	KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
791 	uap = (struct freebsd11_freebsd32_kevent_args *)arg;
792 
793 	error = copyin(uap->changelist, ks32, count * sizeof *ks32);
794 	if (error)
795 		goto done;
796 	uap->changelist += count;
797 
798 	for (i = 0; i < count; i++) {
799 		CP(ks32[i], kevp[i], ident);
800 		CP(ks32[i], kevp[i], filter);
801 		CP(ks32[i], kevp[i], flags);
802 		CP(ks32[i], kevp[i], fflags);
803 		CP(ks32[i], kevp[i], data);
804 		PTRIN_CP(ks32[i], kevp[i], udata);
805 		for (j = 0; j < nitems(kevp->ext); j++)
806 			kevp[i].ext[j] = 0;
807 	}
808 done:
809 	return (error);
810 }
811 
812 int
813 freebsd11_freebsd32_kevent(struct thread *td,
814     struct freebsd11_freebsd32_kevent_args *uap)
815 {
816 	struct timespec32 ts32;
817 	struct timespec ts, *tsp;
818 	struct kevent_copyops k_ops = {
819 		.arg = uap,
820 		.k_copyout = freebsd32_kevent11_copyout,
821 		.k_copyin = freebsd32_kevent11_copyin,
822 	};
823 #ifdef KTRACE
824 	struct kevent32_freebsd11 *eventlist = uap->eventlist;
825 #endif
826 	int error;
827 
828 	if (uap->timeout) {
829 		error = copyin(uap->timeout, &ts32, sizeof(ts32));
830 		if (error)
831 			return (error);
832 		CP(ts32, ts, tv_sec);
833 		CP(ts32, ts, tv_nsec);
834 		tsp = &ts;
835 	} else
836 		tsp = NULL;
837 #ifdef KTRACE
838 	if (KTRPOINT(td, KTR_STRUCT_ARRAY))
839 		ktrstructarray("kevent32_freebsd11", UIO_USERSPACE,
840 		    uap->changelist, uap->nchanges,
841 		    sizeof(struct kevent32_freebsd11));
842 #endif
843 	error = kern_kevent(td, uap->fd, uap->nchanges, uap->nevents,
844 	    &k_ops, tsp);
845 #ifdef KTRACE
846 	if (error == 0 && KTRPOINT(td, KTR_STRUCT_ARRAY))
847 		ktrstructarray("kevent32_freebsd11", UIO_USERSPACE,
848 		    eventlist, td->td_retval[0],
849 		    sizeof(struct kevent32_freebsd11));
850 #endif
851 	return (error);
852 }
853 #endif
854 
855 int
856 freebsd32_gettimeofday(struct thread *td,
857 		       struct freebsd32_gettimeofday_args *uap)
858 {
859 	struct timeval atv;
860 	struct timeval32 atv32;
861 	struct timezone rtz;
862 	int error = 0;
863 
864 	if (uap->tp) {
865 		microtime(&atv);
866 		CP(atv, atv32, tv_sec);
867 		CP(atv, atv32, tv_usec);
868 		error = copyout(&atv32, uap->tp, sizeof (atv32));
869 	}
870 	if (error == 0 && uap->tzp != NULL) {
871 		rtz.tz_minuteswest = tz_minuteswest;
872 		rtz.tz_dsttime = tz_dsttime;
873 		error = copyout(&rtz, uap->tzp, sizeof (rtz));
874 	}
875 	return (error);
876 }
877 
878 int
879 freebsd32_getrusage(struct thread *td, struct freebsd32_getrusage_args *uap)
880 {
881 	struct rusage32 s32;
882 	struct rusage s;
883 	int error;
884 
885 	error = kern_getrusage(td, uap->who, &s);
886 	if (error)
887 		return (error);
888 	if (uap->rusage != NULL) {
889 		freebsd32_rusage_out(&s, &s32);
890 		error = copyout(&s32, uap->rusage, sizeof(s32));
891 	}
892 	return (error);
893 }
894 
895 static int
896 freebsd32_copyinuio(struct iovec32 *iovp, u_int iovcnt, struct uio **uiop)
897 {
898 	struct iovec32 iov32;
899 	struct iovec *iov;
900 	struct uio *uio;
901 	u_int iovlen;
902 	int error, i;
903 
904 	*uiop = NULL;
905 	if (iovcnt > UIO_MAXIOV)
906 		return (EINVAL);
907 	iovlen = iovcnt * sizeof(struct iovec);
908 	uio = malloc(iovlen + sizeof *uio, M_IOV, M_WAITOK);
909 	iov = (struct iovec *)(uio + 1);
910 	for (i = 0; i < iovcnt; i++) {
911 		error = copyin(&iovp[i], &iov32, sizeof(struct iovec32));
912 		if (error) {
913 			free(uio, M_IOV);
914 			return (error);
915 		}
916 		iov[i].iov_base = PTRIN(iov32.iov_base);
917 		iov[i].iov_len = iov32.iov_len;
918 	}
919 	uio->uio_iov = iov;
920 	uio->uio_iovcnt = iovcnt;
921 	uio->uio_segflg = UIO_USERSPACE;
922 	uio->uio_offset = -1;
923 	uio->uio_resid = 0;
924 	for (i = 0; i < iovcnt; i++) {
925 		if (iov->iov_len > INT_MAX - uio->uio_resid) {
926 			free(uio, M_IOV);
927 			return (EINVAL);
928 		}
929 		uio->uio_resid += iov->iov_len;
930 		iov++;
931 	}
932 	*uiop = uio;
933 	return (0);
934 }
935 
936 int
937 freebsd32_readv(struct thread *td, struct freebsd32_readv_args *uap)
938 {
939 	struct uio *auio;
940 	int error;
941 
942 	error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio);
943 	if (error)
944 		return (error);
945 	error = kern_readv(td, uap->fd, auio);
946 	free(auio, M_IOV);
947 	return (error);
948 }
949 
950 int
951 freebsd32_writev(struct thread *td, struct freebsd32_writev_args *uap)
952 {
953 	struct uio *auio;
954 	int error;
955 
956 	error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio);
957 	if (error)
958 		return (error);
959 	error = kern_writev(td, uap->fd, auio);
960 	free(auio, M_IOV);
961 	return (error);
962 }
963 
964 int
965 freebsd32_preadv(struct thread *td, struct freebsd32_preadv_args *uap)
966 {
967 	struct uio *auio;
968 	int error;
969 
970 	error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio);
971 	if (error)
972 		return (error);
973 	error = kern_preadv(td, uap->fd, auio, PAIR32TO64(off_t,uap->offset));
974 	free(auio, M_IOV);
975 	return (error);
976 }
977 
978 int
979 freebsd32_pwritev(struct thread *td, struct freebsd32_pwritev_args *uap)
980 {
981 	struct uio *auio;
982 	int error;
983 
984 	error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio);
985 	if (error)
986 		return (error);
987 	error = kern_pwritev(td, uap->fd, auio, PAIR32TO64(off_t,uap->offset));
988 	free(auio, M_IOV);
989 	return (error);
990 }
991 
992 int
993 freebsd32_copyiniov(struct iovec32 *iovp32, u_int iovcnt, struct iovec **iovp,
994     int error)
995 {
996 	struct iovec32 iov32;
997 	struct iovec *iov;
998 	u_int iovlen;
999 	int i;
1000 
1001 	*iovp = NULL;
1002 	if (iovcnt > UIO_MAXIOV)
1003 		return (error);
1004 	iovlen = iovcnt * sizeof(struct iovec);
1005 	iov = malloc(iovlen, M_IOV, M_WAITOK);
1006 	for (i = 0; i < iovcnt; i++) {
1007 		error = copyin(&iovp32[i], &iov32, sizeof(struct iovec32));
1008 		if (error) {
1009 			free(iov, M_IOV);
1010 			return (error);
1011 		}
1012 		iov[i].iov_base = PTRIN(iov32.iov_base);
1013 		iov[i].iov_len = iov32.iov_len;
1014 	}
1015 	*iovp = iov;
1016 	return (0);
1017 }
1018 
1019 static int
1020 freebsd32_copyinmsghdr(struct msghdr32 *msg32, struct msghdr *msg)
1021 {
1022 	struct msghdr32 m32;
1023 	int error;
1024 
1025 	error = copyin(msg32, &m32, sizeof(m32));
1026 	if (error)
1027 		return (error);
1028 	msg->msg_name = PTRIN(m32.msg_name);
1029 	msg->msg_namelen = m32.msg_namelen;
1030 	msg->msg_iov = PTRIN(m32.msg_iov);
1031 	msg->msg_iovlen = m32.msg_iovlen;
1032 	msg->msg_control = PTRIN(m32.msg_control);
1033 	msg->msg_controllen = m32.msg_controllen;
1034 	msg->msg_flags = m32.msg_flags;
1035 	return (0);
1036 }
1037 
1038 static int
1039 freebsd32_copyoutmsghdr(struct msghdr *msg, struct msghdr32 *msg32)
1040 {
1041 	struct msghdr32 m32;
1042 	int error;
1043 
1044 	m32.msg_name = PTROUT(msg->msg_name);
1045 	m32.msg_namelen = msg->msg_namelen;
1046 	m32.msg_iov = PTROUT(msg->msg_iov);
1047 	m32.msg_iovlen = msg->msg_iovlen;
1048 	m32.msg_control = PTROUT(msg->msg_control);
1049 	m32.msg_controllen = msg->msg_controllen;
1050 	m32.msg_flags = msg->msg_flags;
1051 	error = copyout(&m32, msg32, sizeof(m32));
1052 	return (error);
1053 }
1054 
1055 #ifndef __mips__
1056 #define FREEBSD32_ALIGNBYTES	(sizeof(int) - 1)
1057 #else
1058 #define FREEBSD32_ALIGNBYTES	(sizeof(long) - 1)
1059 #endif
1060 #define FREEBSD32_ALIGN(p)	\
1061 	(((u_long)(p) + FREEBSD32_ALIGNBYTES) & ~FREEBSD32_ALIGNBYTES)
1062 #define	FREEBSD32_CMSG_SPACE(l)	\
1063 	(FREEBSD32_ALIGN(sizeof(struct cmsghdr)) + FREEBSD32_ALIGN(l))
1064 
1065 #define	FREEBSD32_CMSG_DATA(cmsg)	((unsigned char *)(cmsg) + \
1066 				 FREEBSD32_ALIGN(sizeof(struct cmsghdr)))
1067 
1068 static size_t
1069 freebsd32_cmsg_convert(struct cmsghdr *cm, void *data, socklen_t datalen)
1070 {
1071 	size_t copylen;
1072 	union {
1073 		struct timespec32 ts;
1074 		struct timeval32 tv;
1075 		struct bintime32 bt;
1076 	} tmp32;
1077 
1078 	union {
1079 		struct timespec ts;
1080 		struct timeval tv;
1081 		struct bintime bt;
1082 	} *in;
1083 
1084 	in = data;
1085 	copylen = 0;
1086 	switch (cm->cmsg_level) {
1087 	case SOL_SOCKET:
1088 		switch (cm->cmsg_type) {
1089 		case SCM_TIMESTAMP:
1090 			TV_CP(*in, tmp32, tv);
1091 			copylen = sizeof(tmp32.tv);
1092 			break;
1093 
1094 		case SCM_BINTIME:
1095 			BT_CP(*in, tmp32, bt);
1096 			copylen = sizeof(tmp32.bt);
1097 			break;
1098 
1099 		case SCM_REALTIME:
1100 		case SCM_MONOTONIC:
1101 			TS_CP(*in, tmp32, ts);
1102 			copylen = sizeof(tmp32.ts);
1103 			break;
1104 
1105 		default:
1106 			break;
1107 		}
1108 
1109 	default:
1110 		break;
1111 	}
1112 
1113 	if (copylen == 0)
1114 		return (datalen);
1115 
1116 	KASSERT((datalen >= copylen), ("corrupted cmsghdr"));
1117 
1118 	bcopy(&tmp32, data, copylen);
1119 	return (copylen);
1120 }
1121 
1122 static int
1123 freebsd32_copy_msg_out(struct msghdr *msg, struct mbuf *control)
1124 {
1125 	struct cmsghdr *cm;
1126 	void *data;
1127 	socklen_t clen, datalen, datalen_out;
1128 	int error;
1129 	caddr_t ctlbuf;
1130 	int len, maxlen, copylen;
1131 	struct mbuf *m;
1132 	error = 0;
1133 
1134 	len    = msg->msg_controllen;
1135 	maxlen = msg->msg_controllen;
1136 	msg->msg_controllen = 0;
1137 
1138 	m = control;
1139 	ctlbuf = msg->msg_control;
1140 
1141 	while (m && len > 0) {
1142 		cm = mtod(m, struct cmsghdr *);
1143 		clen = m->m_len;
1144 
1145 		while (cm != NULL) {
1146 
1147 			if (sizeof(struct cmsghdr) > clen ||
1148 			    cm->cmsg_len > clen) {
1149 				error = EINVAL;
1150 				break;
1151 			}
1152 
1153 			data   = CMSG_DATA(cm);
1154 			datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data;
1155 			datalen_out = freebsd32_cmsg_convert(cm, data, datalen);
1156 
1157 			/* Adjust message length */
1158 			cm->cmsg_len = FREEBSD32_ALIGN(sizeof(struct cmsghdr)) +
1159 			    datalen_out;
1160 
1161 			/* Copy cmsghdr */
1162 			copylen = sizeof(struct cmsghdr);
1163 			if (len < copylen) {
1164 				msg->msg_flags |= MSG_CTRUNC;
1165 				copylen = len;
1166 			}
1167 
1168 			error = copyout(cm, ctlbuf, copylen);
1169 			if (error)
1170 				goto exit;
1171 
1172 			ctlbuf += FREEBSD32_ALIGN(copylen);
1173 			len    -= FREEBSD32_ALIGN(copylen);
1174 
1175 			if (len <= 0)
1176 				break;
1177 
1178 			/* Copy data */
1179 			copylen = datalen_out;
1180 			if (len < copylen) {
1181 				msg->msg_flags |= MSG_CTRUNC;
1182 				copylen = len;
1183 			}
1184 
1185 			error = copyout(data, ctlbuf, copylen);
1186 			if (error)
1187 				goto exit;
1188 
1189 			ctlbuf += FREEBSD32_ALIGN(copylen);
1190 			len    -= FREEBSD32_ALIGN(copylen);
1191 
1192 			if (CMSG_SPACE(datalen) < clen) {
1193 				clen -= CMSG_SPACE(datalen);
1194 				cm = (struct cmsghdr *)
1195 					((caddr_t)cm + CMSG_SPACE(datalen));
1196 			} else {
1197 				clen = 0;
1198 				cm = NULL;
1199 			}
1200 		}
1201 		m = m->m_next;
1202 	}
1203 
1204 	msg->msg_controllen = (len <= 0) ? maxlen :  ctlbuf - (caddr_t)msg->msg_control;
1205 
1206 exit:
1207 	return (error);
1208 
1209 }
1210 
1211 int
1212 freebsd32_recvmsg(td, uap)
1213 	struct thread *td;
1214 	struct freebsd32_recvmsg_args /* {
1215 		int	s;
1216 		struct	msghdr32 *msg;
1217 		int	flags;
1218 	} */ *uap;
1219 {
1220 	struct msghdr msg;
1221 	struct msghdr32 m32;
1222 	struct iovec *uiov, *iov;
1223 	struct mbuf *control = NULL;
1224 	struct mbuf **controlp;
1225 
1226 	int error;
1227 	error = copyin(uap->msg, &m32, sizeof(m32));
1228 	if (error)
1229 		return (error);
1230 	error = freebsd32_copyinmsghdr(uap->msg, &msg);
1231 	if (error)
1232 		return (error);
1233 	error = freebsd32_copyiniov(PTRIN(m32.msg_iov), m32.msg_iovlen, &iov,
1234 	    EMSGSIZE);
1235 	if (error)
1236 		return (error);
1237 	msg.msg_flags = uap->flags;
1238 	uiov = msg.msg_iov;
1239 	msg.msg_iov = iov;
1240 
1241 	controlp = (msg.msg_control != NULL) ?  &control : NULL;
1242 	error = kern_recvit(td, uap->s, &msg, UIO_USERSPACE, controlp);
1243 	if (error == 0) {
1244 		msg.msg_iov = uiov;
1245 
1246 		if (control != NULL)
1247 			error = freebsd32_copy_msg_out(&msg, control);
1248 		else
1249 			msg.msg_controllen = 0;
1250 
1251 		if (error == 0)
1252 			error = freebsd32_copyoutmsghdr(&msg, uap->msg);
1253 	}
1254 	free(iov, M_IOV);
1255 
1256 	if (control != NULL)
1257 		m_freem(control);
1258 
1259 	return (error);
1260 }
1261 
1262 /*
1263  * Copy-in the array of control messages constructed using alignment
1264  * and padding suitable for a 32-bit environment and construct an
1265  * mbuf using alignment and padding suitable for a 64-bit kernel.
1266  * The alignment and padding are defined indirectly by CMSG_DATA(),
1267  * CMSG_SPACE() and CMSG_LEN().
1268  */
1269 static int
1270 freebsd32_copyin_control(struct mbuf **mp, caddr_t buf, u_int buflen)
1271 {
1272 	struct mbuf *m;
1273 	void *md;
1274 	u_int idx, len, msglen;
1275 	int error;
1276 
1277 	buflen = FREEBSD32_ALIGN(buflen);
1278 
1279 	if (buflen > MCLBYTES)
1280 		return (EINVAL);
1281 
1282 	/*
1283 	 * Iterate over the buffer and get the length of each message
1284 	 * in there. This has 32-bit alignment and padding. Use it to
1285 	 * determine the length of these messages when using 64-bit
1286 	 * alignment and padding.
1287 	 */
1288 	idx = 0;
1289 	len = 0;
1290 	while (idx < buflen) {
1291 		error = copyin(buf + idx, &msglen, sizeof(msglen));
1292 		if (error)
1293 			return (error);
1294 		if (msglen < sizeof(struct cmsghdr))
1295 			return (EINVAL);
1296 		msglen = FREEBSD32_ALIGN(msglen);
1297 		if (idx + msglen > buflen)
1298 			return (EINVAL);
1299 		idx += msglen;
1300 		msglen += CMSG_ALIGN(sizeof(struct cmsghdr)) -
1301 		    FREEBSD32_ALIGN(sizeof(struct cmsghdr));
1302 		len += CMSG_ALIGN(msglen);
1303 	}
1304 
1305 	if (len > MCLBYTES)
1306 		return (EINVAL);
1307 
1308 	m = m_get(M_WAITOK, MT_CONTROL);
1309 	if (len > MLEN)
1310 		MCLGET(m, M_WAITOK);
1311 	m->m_len = len;
1312 
1313 	md = mtod(m, void *);
1314 	while (buflen > 0) {
1315 		error = copyin(buf, md, sizeof(struct cmsghdr));
1316 		if (error)
1317 			break;
1318 		msglen = *(u_int *)md;
1319 		msglen = FREEBSD32_ALIGN(msglen);
1320 
1321 		/* Modify the message length to account for alignment. */
1322 		*(u_int *)md = msglen + CMSG_ALIGN(sizeof(struct cmsghdr)) -
1323 		    FREEBSD32_ALIGN(sizeof(struct cmsghdr));
1324 
1325 		md = (char *)md + CMSG_ALIGN(sizeof(struct cmsghdr));
1326 		buf += FREEBSD32_ALIGN(sizeof(struct cmsghdr));
1327 		buflen -= FREEBSD32_ALIGN(sizeof(struct cmsghdr));
1328 
1329 		msglen -= FREEBSD32_ALIGN(sizeof(struct cmsghdr));
1330 		if (msglen > 0) {
1331 			error = copyin(buf, md, msglen);
1332 			if (error)
1333 				break;
1334 			md = (char *)md + CMSG_ALIGN(msglen);
1335 			buf += msglen;
1336 			buflen -= msglen;
1337 		}
1338 	}
1339 
1340 	if (error)
1341 		m_free(m);
1342 	else
1343 		*mp = m;
1344 	return (error);
1345 }
1346 
1347 int
1348 freebsd32_sendmsg(struct thread *td,
1349 		  struct freebsd32_sendmsg_args *uap)
1350 {
1351 	struct msghdr msg;
1352 	struct msghdr32 m32;
1353 	struct iovec *iov;
1354 	struct mbuf *control = NULL;
1355 	struct sockaddr *to = NULL;
1356 	int error;
1357 
1358 	error = copyin(uap->msg, &m32, sizeof(m32));
1359 	if (error)
1360 		return (error);
1361 	error = freebsd32_copyinmsghdr(uap->msg, &msg);
1362 	if (error)
1363 		return (error);
1364 	error = freebsd32_copyiniov(PTRIN(m32.msg_iov), m32.msg_iovlen, &iov,
1365 	    EMSGSIZE);
1366 	if (error)
1367 		return (error);
1368 	msg.msg_iov = iov;
1369 	if (msg.msg_name != NULL) {
1370 		error = getsockaddr(&to, msg.msg_name, msg.msg_namelen);
1371 		if (error) {
1372 			to = NULL;
1373 			goto out;
1374 		}
1375 		msg.msg_name = to;
1376 	}
1377 
1378 	if (msg.msg_control) {
1379 		if (msg.msg_controllen < sizeof(struct cmsghdr)) {
1380 			error = EINVAL;
1381 			goto out;
1382 		}
1383 
1384 		error = freebsd32_copyin_control(&control, msg.msg_control,
1385 		    msg.msg_controllen);
1386 		if (error)
1387 			goto out;
1388 
1389 		msg.msg_control = NULL;
1390 		msg.msg_controllen = 0;
1391 	}
1392 
1393 	error = kern_sendit(td, uap->s, &msg, uap->flags, control,
1394 	    UIO_USERSPACE);
1395 
1396 out:
1397 	free(iov, M_IOV);
1398 	if (to)
1399 		free(to, M_SONAME);
1400 	return (error);
1401 }
1402 
1403 int
1404 freebsd32_recvfrom(struct thread *td,
1405 		   struct freebsd32_recvfrom_args *uap)
1406 {
1407 	struct msghdr msg;
1408 	struct iovec aiov;
1409 	int error;
1410 
1411 	if (uap->fromlenaddr) {
1412 		error = copyin(PTRIN(uap->fromlenaddr), &msg.msg_namelen,
1413 		    sizeof(msg.msg_namelen));
1414 		if (error)
1415 			return (error);
1416 	} else {
1417 		msg.msg_namelen = 0;
1418 	}
1419 
1420 	msg.msg_name = PTRIN(uap->from);
1421 	msg.msg_iov = &aiov;
1422 	msg.msg_iovlen = 1;
1423 	aiov.iov_base = PTRIN(uap->buf);
1424 	aiov.iov_len = uap->len;
1425 	msg.msg_control = NULL;
1426 	msg.msg_flags = uap->flags;
1427 	error = kern_recvit(td, uap->s, &msg, UIO_USERSPACE, NULL);
1428 	if (error == 0 && uap->fromlenaddr)
1429 		error = copyout(&msg.msg_namelen, PTRIN(uap->fromlenaddr),
1430 		    sizeof (msg.msg_namelen));
1431 	return (error);
1432 }
1433 
1434 int
1435 freebsd32_settimeofday(struct thread *td,
1436 		       struct freebsd32_settimeofday_args *uap)
1437 {
1438 	struct timeval32 tv32;
1439 	struct timeval tv, *tvp;
1440 	struct timezone tz, *tzp;
1441 	int error;
1442 
1443 	if (uap->tv) {
1444 		error = copyin(uap->tv, &tv32, sizeof(tv32));
1445 		if (error)
1446 			return (error);
1447 		CP(tv32, tv, tv_sec);
1448 		CP(tv32, tv, tv_usec);
1449 		tvp = &tv;
1450 	} else
1451 		tvp = NULL;
1452 	if (uap->tzp) {
1453 		error = copyin(uap->tzp, &tz, sizeof(tz));
1454 		if (error)
1455 			return (error);
1456 		tzp = &tz;
1457 	} else
1458 		tzp = NULL;
1459 	return (kern_settimeofday(td, tvp, tzp));
1460 }
1461 
1462 int
1463 freebsd32_utimes(struct thread *td, struct freebsd32_utimes_args *uap)
1464 {
1465 	struct timeval32 s32[2];
1466 	struct timeval s[2], *sp;
1467 	int error;
1468 
1469 	if (uap->tptr != NULL) {
1470 		error = copyin(uap->tptr, s32, sizeof(s32));
1471 		if (error)
1472 			return (error);
1473 		CP(s32[0], s[0], tv_sec);
1474 		CP(s32[0], s[0], tv_usec);
1475 		CP(s32[1], s[1], tv_sec);
1476 		CP(s32[1], s[1], tv_usec);
1477 		sp = s;
1478 	} else
1479 		sp = NULL;
1480 	return (kern_utimesat(td, AT_FDCWD, uap->path, UIO_USERSPACE,
1481 	    sp, UIO_SYSSPACE));
1482 }
1483 
1484 int
1485 freebsd32_lutimes(struct thread *td, struct freebsd32_lutimes_args *uap)
1486 {
1487 	struct timeval32 s32[2];
1488 	struct timeval s[2], *sp;
1489 	int error;
1490 
1491 	if (uap->tptr != NULL) {
1492 		error = copyin(uap->tptr, s32, sizeof(s32));
1493 		if (error)
1494 			return (error);
1495 		CP(s32[0], s[0], tv_sec);
1496 		CP(s32[0], s[0], tv_usec);
1497 		CP(s32[1], s[1], tv_sec);
1498 		CP(s32[1], s[1], tv_usec);
1499 		sp = s;
1500 	} else
1501 		sp = NULL;
1502 	return (kern_lutimes(td, uap->path, UIO_USERSPACE, sp, UIO_SYSSPACE));
1503 }
1504 
1505 int
1506 freebsd32_futimes(struct thread *td, struct freebsd32_futimes_args *uap)
1507 {
1508 	struct timeval32 s32[2];
1509 	struct timeval s[2], *sp;
1510 	int error;
1511 
1512 	if (uap->tptr != NULL) {
1513 		error = copyin(uap->tptr, s32, sizeof(s32));
1514 		if (error)
1515 			return (error);
1516 		CP(s32[0], s[0], tv_sec);
1517 		CP(s32[0], s[0], tv_usec);
1518 		CP(s32[1], s[1], tv_sec);
1519 		CP(s32[1], s[1], tv_usec);
1520 		sp = s;
1521 	} else
1522 		sp = NULL;
1523 	return (kern_futimes(td, uap->fd, sp, UIO_SYSSPACE));
1524 }
1525 
1526 int
1527 freebsd32_futimesat(struct thread *td, struct freebsd32_futimesat_args *uap)
1528 {
1529 	struct timeval32 s32[2];
1530 	struct timeval s[2], *sp;
1531 	int error;
1532 
1533 	if (uap->times != NULL) {
1534 		error = copyin(uap->times, s32, sizeof(s32));
1535 		if (error)
1536 			return (error);
1537 		CP(s32[0], s[0], tv_sec);
1538 		CP(s32[0], s[0], tv_usec);
1539 		CP(s32[1], s[1], tv_sec);
1540 		CP(s32[1], s[1], tv_usec);
1541 		sp = s;
1542 	} else
1543 		sp = NULL;
1544 	return (kern_utimesat(td, uap->fd, uap->path, UIO_USERSPACE,
1545 		sp, UIO_SYSSPACE));
1546 }
1547 
1548 int
1549 freebsd32_futimens(struct thread *td, struct freebsd32_futimens_args *uap)
1550 {
1551 	struct timespec32 ts32[2];
1552 	struct timespec ts[2], *tsp;
1553 	int error;
1554 
1555 	if (uap->times != NULL) {
1556 		error = copyin(uap->times, ts32, sizeof(ts32));
1557 		if (error)
1558 			return (error);
1559 		CP(ts32[0], ts[0], tv_sec);
1560 		CP(ts32[0], ts[0], tv_nsec);
1561 		CP(ts32[1], ts[1], tv_sec);
1562 		CP(ts32[1], ts[1], tv_nsec);
1563 		tsp = ts;
1564 	} else
1565 		tsp = NULL;
1566 	return (kern_futimens(td, uap->fd, tsp, UIO_SYSSPACE));
1567 }
1568 
1569 int
1570 freebsd32_utimensat(struct thread *td, struct freebsd32_utimensat_args *uap)
1571 {
1572 	struct timespec32 ts32[2];
1573 	struct timespec ts[2], *tsp;
1574 	int error;
1575 
1576 	if (uap->times != NULL) {
1577 		error = copyin(uap->times, ts32, sizeof(ts32));
1578 		if (error)
1579 			return (error);
1580 		CP(ts32[0], ts[0], tv_sec);
1581 		CP(ts32[0], ts[0], tv_nsec);
1582 		CP(ts32[1], ts[1], tv_sec);
1583 		CP(ts32[1], ts[1], tv_nsec);
1584 		tsp = ts;
1585 	} else
1586 		tsp = NULL;
1587 	return (kern_utimensat(td, uap->fd, uap->path, UIO_USERSPACE,
1588 	    tsp, UIO_SYSSPACE, uap->flag));
1589 }
1590 
1591 int
1592 freebsd32_adjtime(struct thread *td, struct freebsd32_adjtime_args *uap)
1593 {
1594 	struct timeval32 tv32;
1595 	struct timeval delta, olddelta, *deltap;
1596 	int error;
1597 
1598 	if (uap->delta) {
1599 		error = copyin(uap->delta, &tv32, sizeof(tv32));
1600 		if (error)
1601 			return (error);
1602 		CP(tv32, delta, tv_sec);
1603 		CP(tv32, delta, tv_usec);
1604 		deltap = &delta;
1605 	} else
1606 		deltap = NULL;
1607 	error = kern_adjtime(td, deltap, &olddelta);
1608 	if (uap->olddelta && error == 0) {
1609 		CP(olddelta, tv32, tv_sec);
1610 		CP(olddelta, tv32, tv_usec);
1611 		error = copyout(&tv32, uap->olddelta, sizeof(tv32));
1612 	}
1613 	return (error);
1614 }
1615 
1616 #ifdef COMPAT_FREEBSD4
1617 int
1618 freebsd4_freebsd32_statfs(struct thread *td, struct freebsd4_freebsd32_statfs_args *uap)
1619 {
1620 	struct statfs32 s32;
1621 	struct statfs *sp;
1622 	int error;
1623 
1624 	sp = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK);
1625 	error = kern_statfs(td, uap->path, UIO_USERSPACE, sp);
1626 	if (error == 0) {
1627 		copy_statfs(sp, &s32);
1628 		error = copyout(&s32, uap->buf, sizeof(s32));
1629 	}
1630 	free(sp, M_STATFS);
1631 	return (error);
1632 }
1633 #endif
1634 
1635 #ifdef COMPAT_FREEBSD4
1636 int
1637 freebsd4_freebsd32_fstatfs(struct thread *td, struct freebsd4_freebsd32_fstatfs_args *uap)
1638 {
1639 	struct statfs32 s32;
1640 	struct statfs *sp;
1641 	int error;
1642 
1643 	sp = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK);
1644 	error = kern_fstatfs(td, uap->fd, sp);
1645 	if (error == 0) {
1646 		copy_statfs(sp, &s32);
1647 		error = copyout(&s32, uap->buf, sizeof(s32));
1648 	}
1649 	free(sp, M_STATFS);
1650 	return (error);
1651 }
1652 #endif
1653 
1654 #ifdef COMPAT_FREEBSD4
1655 int
1656 freebsd4_freebsd32_fhstatfs(struct thread *td, struct freebsd4_freebsd32_fhstatfs_args *uap)
1657 {
1658 	struct statfs32 s32;
1659 	struct statfs *sp;
1660 	fhandle_t fh;
1661 	int error;
1662 
1663 	if ((error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t))) != 0)
1664 		return (error);
1665 	sp = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK);
1666 	error = kern_fhstatfs(td, fh, sp);
1667 	if (error == 0) {
1668 		copy_statfs(sp, &s32);
1669 		error = copyout(&s32, uap->buf, sizeof(s32));
1670 	}
1671 	free(sp, M_STATFS);
1672 	return (error);
1673 }
1674 #endif
1675 
1676 int
1677 freebsd32_pread(struct thread *td, struct freebsd32_pread_args *uap)
1678 {
1679 
1680 	return (kern_pread(td, uap->fd, uap->buf, uap->nbyte,
1681 	    PAIR32TO64(off_t, uap->offset)));
1682 }
1683 
1684 int
1685 freebsd32_pwrite(struct thread *td, struct freebsd32_pwrite_args *uap)
1686 {
1687 
1688 	return (kern_pwrite(td, uap->fd, uap->buf, uap->nbyte,
1689 	    PAIR32TO64(off_t, uap->offset)));
1690 }
1691 
1692 #ifdef COMPAT_43
1693 int
1694 ofreebsd32_lseek(struct thread *td, struct ofreebsd32_lseek_args *uap)
1695 {
1696 
1697 	return (kern_lseek(td, uap->fd, uap->offset, uap->whence));
1698 }
1699 #endif
1700 
1701 int
1702 freebsd32_lseek(struct thread *td, struct freebsd32_lseek_args *uap)
1703 {
1704 	int error;
1705 	off_t pos;
1706 
1707 	error = kern_lseek(td, uap->fd, PAIR32TO64(off_t, uap->offset),
1708 	    uap->whence);
1709 	/* Expand the quad return into two parts for eax and edx */
1710 	pos = td->td_uretoff.tdu_off;
1711 	td->td_retval[RETVAL_LO] = pos & 0xffffffff;	/* %eax */
1712 	td->td_retval[RETVAL_HI] = pos >> 32;		/* %edx */
1713 	return error;
1714 }
1715 
1716 int
1717 freebsd32_truncate(struct thread *td, struct freebsd32_truncate_args *uap)
1718 {
1719 
1720 	return (kern_truncate(td, uap->path, UIO_USERSPACE,
1721 	    PAIR32TO64(off_t, uap->length)));
1722 }
1723 
1724 int
1725 freebsd32_ftruncate(struct thread *td, struct freebsd32_ftruncate_args *uap)
1726 {
1727 
1728 	return (kern_ftruncate(td, uap->fd, PAIR32TO64(off_t, uap->length)));
1729 }
1730 
1731 #ifdef COMPAT_43
1732 int
1733 ofreebsd32_getdirentries(struct thread *td,
1734     struct ofreebsd32_getdirentries_args *uap)
1735 {
1736 	struct ogetdirentries_args ap;
1737 	int error;
1738 	long loff;
1739 	int32_t loff_cut;
1740 
1741 	ap.fd = uap->fd;
1742 	ap.buf = uap->buf;
1743 	ap.count = uap->count;
1744 	ap.basep = NULL;
1745 	error = kern_ogetdirentries(td, &ap, &loff);
1746 	if (error == 0) {
1747 		loff_cut = loff;
1748 		error = copyout(&loff_cut, uap->basep, sizeof(int32_t));
1749 	}
1750 	return (error);
1751 }
1752 #endif
1753 
1754 #if defined(COMPAT_FREEBSD11)
1755 int
1756 freebsd11_freebsd32_getdirentries(struct thread *td,
1757     struct freebsd11_freebsd32_getdirentries_args *uap)
1758 {
1759 	long base;
1760 	int32_t base32;
1761 	int error;
1762 
1763 	error = freebsd11_kern_getdirentries(td, uap->fd, uap->buf, uap->count,
1764 	    &base, NULL);
1765 	if (error)
1766 		return (error);
1767 	if (uap->basep != NULL) {
1768 		base32 = base;
1769 		error = copyout(&base32, uap->basep, sizeof(int32_t));
1770 	}
1771 	return (error);
1772 }
1773 
1774 int
1775 freebsd11_freebsd32_getdents(struct thread *td,
1776     struct freebsd11_freebsd32_getdents_args *uap)
1777 {
1778 	struct freebsd11_freebsd32_getdirentries_args ap;
1779 
1780 	ap.fd = uap->fd;
1781 	ap.buf = uap->buf;
1782 	ap.count = uap->count;
1783 	ap.basep = NULL;
1784 	return (freebsd11_freebsd32_getdirentries(td, &ap));
1785 }
1786 #endif /* COMPAT_FREEBSD11 */
1787 
1788 #ifdef COMPAT_FREEBSD6
1789 /* versions with the 'int pad' argument */
1790 int
1791 freebsd6_freebsd32_pread(struct thread *td, struct freebsd6_freebsd32_pread_args *uap)
1792 {
1793 
1794 	return (kern_pread(td, uap->fd, uap->buf, uap->nbyte,
1795 	    PAIR32TO64(off_t, uap->offset)));
1796 }
1797 
1798 int
1799 freebsd6_freebsd32_pwrite(struct thread *td, struct freebsd6_freebsd32_pwrite_args *uap)
1800 {
1801 
1802 	return (kern_pwrite(td, uap->fd, uap->buf, uap->nbyte,
1803 	    PAIR32TO64(off_t, uap->offset)));
1804 }
1805 
1806 int
1807 freebsd6_freebsd32_lseek(struct thread *td, struct freebsd6_freebsd32_lseek_args *uap)
1808 {
1809 	int error;
1810 	off_t pos;
1811 
1812 	error = kern_lseek(td, uap->fd, PAIR32TO64(off_t, uap->offset),
1813 	    uap->whence);
1814 	/* Expand the quad return into two parts for eax and edx */
1815 	pos = *(off_t *)(td->td_retval);
1816 	td->td_retval[RETVAL_LO] = pos & 0xffffffff;	/* %eax */
1817 	td->td_retval[RETVAL_HI] = pos >> 32;		/* %edx */
1818 	return error;
1819 }
1820 
1821 int
1822 freebsd6_freebsd32_truncate(struct thread *td, struct freebsd6_freebsd32_truncate_args *uap)
1823 {
1824 
1825 	return (kern_truncate(td, uap->path, UIO_USERSPACE,
1826 	    PAIR32TO64(off_t, uap->length)));
1827 }
1828 
1829 int
1830 freebsd6_freebsd32_ftruncate(struct thread *td, struct freebsd6_freebsd32_ftruncate_args *uap)
1831 {
1832 
1833 	return (kern_ftruncate(td, uap->fd, PAIR32TO64(off_t, uap->length)));
1834 }
1835 #endif /* COMPAT_FREEBSD6 */
1836 
1837 struct sf_hdtr32 {
1838 	uint32_t headers;
1839 	int hdr_cnt;
1840 	uint32_t trailers;
1841 	int trl_cnt;
1842 };
1843 
1844 static int
1845 freebsd32_do_sendfile(struct thread *td,
1846     struct freebsd32_sendfile_args *uap, int compat)
1847 {
1848 	struct sf_hdtr32 hdtr32;
1849 	struct sf_hdtr hdtr;
1850 	struct uio *hdr_uio, *trl_uio;
1851 	struct file *fp;
1852 	cap_rights_t rights;
1853 	struct iovec32 *iov32;
1854 	off_t offset, sbytes;
1855 	int error;
1856 
1857 	offset = PAIR32TO64(off_t, uap->offset);
1858 	if (offset < 0)
1859 		return (EINVAL);
1860 
1861 	hdr_uio = trl_uio = NULL;
1862 
1863 	if (uap->hdtr != NULL) {
1864 		error = copyin(uap->hdtr, &hdtr32, sizeof(hdtr32));
1865 		if (error)
1866 			goto out;
1867 		PTRIN_CP(hdtr32, hdtr, headers);
1868 		CP(hdtr32, hdtr, hdr_cnt);
1869 		PTRIN_CP(hdtr32, hdtr, trailers);
1870 		CP(hdtr32, hdtr, trl_cnt);
1871 
1872 		if (hdtr.headers != NULL) {
1873 			iov32 = PTRIN(hdtr32.headers);
1874 			error = freebsd32_copyinuio(iov32,
1875 			    hdtr32.hdr_cnt, &hdr_uio);
1876 			if (error)
1877 				goto out;
1878 #ifdef COMPAT_FREEBSD4
1879 			/*
1880 			 * In FreeBSD < 5.0 the nbytes to send also included
1881 			 * the header.  If compat is specified subtract the
1882 			 * header size from nbytes.
1883 			 */
1884 			if (compat) {
1885 				if (uap->nbytes > hdr_uio->uio_resid)
1886 					uap->nbytes -= hdr_uio->uio_resid;
1887 				else
1888 					uap->nbytes = 0;
1889 			}
1890 #endif
1891 		}
1892 		if (hdtr.trailers != NULL) {
1893 			iov32 = PTRIN(hdtr32.trailers);
1894 			error = freebsd32_copyinuio(iov32,
1895 			    hdtr32.trl_cnt, &trl_uio);
1896 			if (error)
1897 				goto out;
1898 		}
1899 	}
1900 
1901 	AUDIT_ARG_FD(uap->fd);
1902 
1903 	if ((error = fget_read(td, uap->fd,
1904 	    cap_rights_init(&rights, CAP_PREAD), &fp)) != 0)
1905 		goto out;
1906 
1907 	error = fo_sendfile(fp, uap->s, hdr_uio, trl_uio, offset,
1908 	    uap->nbytes, &sbytes, uap->flags, td);
1909 	fdrop(fp, td);
1910 
1911 	if (uap->sbytes != NULL)
1912 		copyout(&sbytes, uap->sbytes, sizeof(off_t));
1913 
1914 out:
1915 	if (hdr_uio)
1916 		free(hdr_uio, M_IOV);
1917 	if (trl_uio)
1918 		free(trl_uio, M_IOV);
1919 	return (error);
1920 }
1921 
1922 #ifdef COMPAT_FREEBSD4
1923 int
1924 freebsd4_freebsd32_sendfile(struct thread *td,
1925     struct freebsd4_freebsd32_sendfile_args *uap)
1926 {
1927 	return (freebsd32_do_sendfile(td,
1928 	    (struct freebsd32_sendfile_args *)uap, 1));
1929 }
1930 #endif
1931 
1932 int
1933 freebsd32_sendfile(struct thread *td, struct freebsd32_sendfile_args *uap)
1934 {
1935 
1936 	return (freebsd32_do_sendfile(td, uap, 0));
1937 }
1938 
1939 static void
1940 copy_stat(struct stat *in, struct stat32 *out)
1941 {
1942 
1943 	CP(*in, *out, st_dev);
1944 	CP(*in, *out, st_ino);
1945 	CP(*in, *out, st_mode);
1946 	CP(*in, *out, st_nlink);
1947 	CP(*in, *out, st_uid);
1948 	CP(*in, *out, st_gid);
1949 	CP(*in, *out, st_rdev);
1950 	TS_CP(*in, *out, st_atim);
1951 	TS_CP(*in, *out, st_mtim);
1952 	TS_CP(*in, *out, st_ctim);
1953 	CP(*in, *out, st_size);
1954 	CP(*in, *out, st_blocks);
1955 	CP(*in, *out, st_blksize);
1956 	CP(*in, *out, st_flags);
1957 	CP(*in, *out, st_gen);
1958 	TS_CP(*in, *out, st_birthtim);
1959 	out->st_padding0 = 0;
1960 	out->st_padding1 = 0;
1961 #ifdef __STAT32_TIME_T_EXT
1962 	out->st_atim_ext = 0;
1963 	out->st_mtim_ext = 0;
1964 	out->st_ctim_ext = 0;
1965 	out->st_btim_ext = 0;
1966 #endif
1967 	bzero(out->st_spare, sizeof(out->st_spare));
1968 }
1969 
1970 #ifdef COMPAT_43
1971 static void
1972 copy_ostat(struct stat *in, struct ostat32 *out)
1973 {
1974 
1975 	bzero(out, sizeof(*out));
1976 	CP(*in, *out, st_dev);
1977 	CP(*in, *out, st_ino);
1978 	CP(*in, *out, st_mode);
1979 	CP(*in, *out, st_nlink);
1980 	CP(*in, *out, st_uid);
1981 	CP(*in, *out, st_gid);
1982 	CP(*in, *out, st_rdev);
1983 	out->st_size = MIN(in->st_size, INT32_MAX);
1984 	TS_CP(*in, *out, st_atim);
1985 	TS_CP(*in, *out, st_mtim);
1986 	TS_CP(*in, *out, st_ctim);
1987 	CP(*in, *out, st_blksize);
1988 	CP(*in, *out, st_blocks);
1989 	CP(*in, *out, st_flags);
1990 	CP(*in, *out, st_gen);
1991 }
1992 #endif
1993 
1994 #ifdef COMPAT_43
1995 int
1996 ofreebsd32_stat(struct thread *td, struct ofreebsd32_stat_args *uap)
1997 {
1998 	struct stat sb;
1999 	struct ostat32 sb32;
2000 	int error;
2001 
2002 	error = kern_statat(td, 0, AT_FDCWD, uap->path, UIO_USERSPACE,
2003 	    &sb, NULL);
2004 	if (error)
2005 		return (error);
2006 	copy_ostat(&sb, &sb32);
2007 	error = copyout(&sb32, uap->ub, sizeof (sb32));
2008 	return (error);
2009 }
2010 #endif
2011 
2012 int
2013 freebsd32_fstat(struct thread *td, struct freebsd32_fstat_args *uap)
2014 {
2015 	struct stat ub;
2016 	struct stat32 ub32;
2017 	int error;
2018 
2019 	error = kern_fstat(td, uap->fd, &ub);
2020 	if (error)
2021 		return (error);
2022 	copy_stat(&ub, &ub32);
2023 	error = copyout(&ub32, uap->ub, sizeof(ub32));
2024 	return (error);
2025 }
2026 
2027 #ifdef COMPAT_43
2028 int
2029 ofreebsd32_fstat(struct thread *td, struct ofreebsd32_fstat_args *uap)
2030 {
2031 	struct stat ub;
2032 	struct ostat32 ub32;
2033 	int error;
2034 
2035 	error = kern_fstat(td, uap->fd, &ub);
2036 	if (error)
2037 		return (error);
2038 	copy_ostat(&ub, &ub32);
2039 	error = copyout(&ub32, uap->ub, sizeof(ub32));
2040 	return (error);
2041 }
2042 #endif
2043 
2044 int
2045 freebsd32_fstatat(struct thread *td, struct freebsd32_fstatat_args *uap)
2046 {
2047 	struct stat ub;
2048 	struct stat32 ub32;
2049 	int error;
2050 
2051 	error = kern_statat(td, uap->flag, uap->fd, uap->path, UIO_USERSPACE,
2052 	    &ub, NULL);
2053 	if (error)
2054 		return (error);
2055 	copy_stat(&ub, &ub32);
2056 	error = copyout(&ub32, uap->buf, sizeof(ub32));
2057 	return (error);
2058 }
2059 
2060 #ifdef COMPAT_43
2061 int
2062 ofreebsd32_lstat(struct thread *td, struct ofreebsd32_lstat_args *uap)
2063 {
2064 	struct stat sb;
2065 	struct ostat32 sb32;
2066 	int error;
2067 
2068 	error = kern_statat(td, AT_SYMLINK_NOFOLLOW, AT_FDCWD, uap->path,
2069 	    UIO_USERSPACE, &sb, NULL);
2070 	if (error)
2071 		return (error);
2072 	copy_ostat(&sb, &sb32);
2073 	error = copyout(&sb32, uap->ub, sizeof (sb32));
2074 	return (error);
2075 }
2076 #endif
2077 
2078 int
2079 freebsd32_fhstat(struct thread *td, struct freebsd32_fhstat_args *uap)
2080 {
2081 	struct stat sb;
2082 	struct stat32 sb32;
2083 	struct fhandle fh;
2084 	int error;
2085 
2086 	error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t));
2087         if (error != 0)
2088                 return (error);
2089 	error = kern_fhstat(td, fh, &sb);
2090 	if (error != 0)
2091 		return (error);
2092 	copy_stat(&sb, &sb32);
2093 	error = copyout(&sb32, uap->sb, sizeof (sb32));
2094 	return (error);
2095 }
2096 
2097 #if defined(COMPAT_FREEBSD11)
2098 extern int ino64_trunc_error;
2099 
2100 static int
2101 freebsd11_cvtstat32(struct stat *in, struct freebsd11_stat32 *out)
2102 {
2103 
2104 	CP(*in, *out, st_ino);
2105 	if (in->st_ino != out->st_ino) {
2106 		switch (ino64_trunc_error) {
2107 		default:
2108 		case 0:
2109 			break;
2110 		case 1:
2111 			return (EOVERFLOW);
2112 		case 2:
2113 			out->st_ino = UINT32_MAX;
2114 			break;
2115 		}
2116 	}
2117 	CP(*in, *out, st_nlink);
2118 	if (in->st_nlink != out->st_nlink) {
2119 		switch (ino64_trunc_error) {
2120 		default:
2121 		case 0:
2122 			break;
2123 		case 1:
2124 			return (EOVERFLOW);
2125 		case 2:
2126 			out->st_nlink = UINT16_MAX;
2127 			break;
2128 		}
2129 	}
2130 	out->st_dev = in->st_dev;
2131 	if (out->st_dev != in->st_dev) {
2132 		switch (ino64_trunc_error) {
2133 		default:
2134 			break;
2135 		case 1:
2136 			return (EOVERFLOW);
2137 		}
2138 	}
2139 	CP(*in, *out, st_mode);
2140 	CP(*in, *out, st_uid);
2141 	CP(*in, *out, st_gid);
2142 	out->st_rdev = in->st_rdev;
2143 	if (out->st_rdev != in->st_rdev) {
2144 		switch (ino64_trunc_error) {
2145 		default:
2146 			break;
2147 		case 1:
2148 			return (EOVERFLOW);
2149 		}
2150 	}
2151 	TS_CP(*in, *out, st_atim);
2152 	TS_CP(*in, *out, st_mtim);
2153 	TS_CP(*in, *out, st_ctim);
2154 	CP(*in, *out, st_size);
2155 	CP(*in, *out, st_blocks);
2156 	CP(*in, *out, st_blksize);
2157 	CP(*in, *out, st_flags);
2158 	CP(*in, *out, st_gen);
2159 	TS_CP(*in, *out, st_birthtim);
2160 	out->st_lspare = 0;
2161 	bzero((char *)&out->st_birthtim + sizeof(out->st_birthtim),
2162 	    sizeof(*out) - offsetof(struct freebsd11_stat32,
2163 	    st_birthtim) - sizeof(out->st_birthtim));
2164 	return (0);
2165 }
2166 
2167 int
2168 freebsd11_freebsd32_stat(struct thread *td,
2169     struct freebsd11_freebsd32_stat_args *uap)
2170 {
2171 	struct stat sb;
2172 	struct freebsd11_stat32 sb32;
2173 	int error;
2174 
2175 	error = kern_statat(td, 0, AT_FDCWD, uap->path, UIO_USERSPACE,
2176 	    &sb, NULL);
2177 	if (error != 0)
2178 		return (error);
2179 	error = freebsd11_cvtstat32(&sb, &sb32);
2180 	if (error == 0)
2181 		error = copyout(&sb32, uap->ub, sizeof (sb32));
2182 	return (error);
2183 }
2184 
2185 int
2186 freebsd11_freebsd32_fstat(struct thread *td,
2187     struct freebsd11_freebsd32_fstat_args *uap)
2188 {
2189 	struct stat sb;
2190 	struct freebsd11_stat32 sb32;
2191 	int error;
2192 
2193 	error = kern_fstat(td, uap->fd, &sb);
2194 	if (error != 0)
2195 		return (error);
2196 	error = freebsd11_cvtstat32(&sb, &sb32);
2197 	if (error == 0)
2198 		error = copyout(&sb32, uap->ub, sizeof (sb32));
2199 	return (error);
2200 }
2201 
2202 int
2203 freebsd11_freebsd32_fstatat(struct thread *td,
2204     struct freebsd11_freebsd32_fstatat_args *uap)
2205 {
2206 	struct stat sb;
2207 	struct freebsd11_stat32 sb32;
2208 	int error;
2209 
2210 	error = kern_statat(td, uap->flag, uap->fd, uap->path, UIO_USERSPACE,
2211 	    &sb, NULL);
2212 	if (error != 0)
2213 		return (error);
2214 	error = freebsd11_cvtstat32(&sb, &sb32);
2215 	if (error == 0)
2216 		error = copyout(&sb32, uap->buf, sizeof (sb32));
2217 	return (error);
2218 }
2219 
2220 int
2221 freebsd11_freebsd32_lstat(struct thread *td,
2222     struct freebsd11_freebsd32_lstat_args *uap)
2223 {
2224 	struct stat sb;
2225 	struct freebsd11_stat32 sb32;
2226 	int error;
2227 
2228 	error = kern_statat(td, AT_SYMLINK_NOFOLLOW, AT_FDCWD, uap->path,
2229 	    UIO_USERSPACE, &sb, NULL);
2230 	if (error != 0)
2231 		return (error);
2232 	error = freebsd11_cvtstat32(&sb, &sb32);
2233 	if (error == 0)
2234 		error = copyout(&sb32, uap->ub, sizeof (sb32));
2235 	return (error);
2236 }
2237 
2238 int
2239 freebsd11_freebsd32_fhstat(struct thread *td,
2240     struct freebsd11_freebsd32_fhstat_args *uap)
2241 {
2242 	struct stat sb;
2243 	struct freebsd11_stat32 sb32;
2244 	struct fhandle fh;
2245 	int error;
2246 
2247 	error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t));
2248         if (error != 0)
2249                 return (error);
2250 	error = kern_fhstat(td, fh, &sb);
2251 	if (error != 0)
2252 		return (error);
2253 	error = freebsd11_cvtstat32(&sb, &sb32);
2254 	if (error == 0)
2255 		error = copyout(&sb32, uap->sb, sizeof (sb32));
2256 	return (error);
2257 }
2258 #endif
2259 
2260 int
2261 freebsd32_sysctl(struct thread *td, struct freebsd32_sysctl_args *uap)
2262 {
2263 	int error, name[CTL_MAXNAME];
2264 	size_t j, oldlen;
2265 	uint32_t tmp;
2266 
2267 	if (uap->namelen > CTL_MAXNAME || uap->namelen < 2)
2268 		return (EINVAL);
2269  	error = copyin(uap->name, name, uap->namelen * sizeof(int));
2270  	if (error)
2271 		return (error);
2272 	if (uap->oldlenp) {
2273 		error = fueword32(uap->oldlenp, &tmp);
2274 		oldlen = tmp;
2275 	} else {
2276 		oldlen = 0;
2277 	}
2278 	if (error != 0)
2279 		return (EFAULT);
2280 	error = userland_sysctl(td, name, uap->namelen,
2281 		uap->old, &oldlen, 1,
2282 		uap->new, uap->newlen, &j, SCTL_MASK32);
2283 	if (error)
2284 		return (error);
2285 	if (uap->oldlenp)
2286 		suword32(uap->oldlenp, j);
2287 	return (0);
2288 }
2289 
2290 int
2291 freebsd32_jail(struct thread *td, struct freebsd32_jail_args *uap)
2292 {
2293 	uint32_t version;
2294 	int error;
2295 	struct jail j;
2296 
2297 	error = copyin(uap->jail, &version, sizeof(uint32_t));
2298 	if (error)
2299 		return (error);
2300 
2301 	switch (version) {
2302 	case 0:
2303 	{
2304 		/* FreeBSD single IPv4 jails. */
2305 		struct jail32_v0 j32_v0;
2306 
2307 		bzero(&j, sizeof(struct jail));
2308 		error = copyin(uap->jail, &j32_v0, sizeof(struct jail32_v0));
2309 		if (error)
2310 			return (error);
2311 		CP(j32_v0, j, version);
2312 		PTRIN_CP(j32_v0, j, path);
2313 		PTRIN_CP(j32_v0, j, hostname);
2314 		j.ip4s = htonl(j32_v0.ip_number);	/* jail_v0 is host order */
2315 		break;
2316 	}
2317 
2318 	case 1:
2319 		/*
2320 		 * Version 1 was used by multi-IPv4 jail implementations
2321 		 * that never made it into the official kernel.
2322 		 */
2323 		return (EINVAL);
2324 
2325 	case 2:	/* JAIL_API_VERSION */
2326 	{
2327 		/* FreeBSD multi-IPv4/IPv6,noIP jails. */
2328 		struct jail32 j32;
2329 
2330 		error = copyin(uap->jail, &j32, sizeof(struct jail32));
2331 		if (error)
2332 			return (error);
2333 		CP(j32, j, version);
2334 		PTRIN_CP(j32, j, path);
2335 		PTRIN_CP(j32, j, hostname);
2336 		PTRIN_CP(j32, j, jailname);
2337 		CP(j32, j, ip4s);
2338 		CP(j32, j, ip6s);
2339 		PTRIN_CP(j32, j, ip4);
2340 		PTRIN_CP(j32, j, ip6);
2341 		break;
2342 	}
2343 
2344 	default:
2345 		/* Sci-Fi jails are not supported, sorry. */
2346 		return (EINVAL);
2347 	}
2348 	return (kern_jail(td, &j));
2349 }
2350 
2351 int
2352 freebsd32_jail_set(struct thread *td, struct freebsd32_jail_set_args *uap)
2353 {
2354 	struct uio *auio;
2355 	int error;
2356 
2357 	/* Check that we have an even number of iovecs. */
2358 	if (uap->iovcnt & 1)
2359 		return (EINVAL);
2360 
2361 	error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio);
2362 	if (error)
2363 		return (error);
2364 	error = kern_jail_set(td, auio, uap->flags);
2365 	free(auio, M_IOV);
2366 	return (error);
2367 }
2368 
2369 int
2370 freebsd32_jail_get(struct thread *td, struct freebsd32_jail_get_args *uap)
2371 {
2372 	struct iovec32 iov32;
2373 	struct uio *auio;
2374 	int error, i;
2375 
2376 	/* Check that we have an even number of iovecs. */
2377 	if (uap->iovcnt & 1)
2378 		return (EINVAL);
2379 
2380 	error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio);
2381 	if (error)
2382 		return (error);
2383 	error = kern_jail_get(td, auio, uap->flags);
2384 	if (error == 0)
2385 		for (i = 0; i < uap->iovcnt; i++) {
2386 			PTROUT_CP(auio->uio_iov[i], iov32, iov_base);
2387 			CP(auio->uio_iov[i], iov32, iov_len);
2388 			error = copyout(&iov32, uap->iovp + i, sizeof(iov32));
2389 			if (error != 0)
2390 				break;
2391 		}
2392 	free(auio, M_IOV);
2393 	return (error);
2394 }
2395 
2396 int
2397 freebsd32_sigaction(struct thread *td, struct freebsd32_sigaction_args *uap)
2398 {
2399 	struct sigaction32 s32;
2400 	struct sigaction sa, osa, *sap;
2401 	int error;
2402 
2403 	if (uap->act) {
2404 		error = copyin(uap->act, &s32, sizeof(s32));
2405 		if (error)
2406 			return (error);
2407 		sa.sa_handler = PTRIN(s32.sa_u);
2408 		CP(s32, sa, sa_flags);
2409 		CP(s32, sa, sa_mask);
2410 		sap = &sa;
2411 	} else
2412 		sap = NULL;
2413 	error = kern_sigaction(td, uap->sig, sap, &osa, 0);
2414 	if (error == 0 && uap->oact != NULL) {
2415 		s32.sa_u = PTROUT(osa.sa_handler);
2416 		CP(osa, s32, sa_flags);
2417 		CP(osa, s32, sa_mask);
2418 		error = copyout(&s32, uap->oact, sizeof(s32));
2419 	}
2420 	return (error);
2421 }
2422 
2423 #ifdef COMPAT_FREEBSD4
2424 int
2425 freebsd4_freebsd32_sigaction(struct thread *td,
2426 			     struct freebsd4_freebsd32_sigaction_args *uap)
2427 {
2428 	struct sigaction32 s32;
2429 	struct sigaction sa, osa, *sap;
2430 	int error;
2431 
2432 	if (uap->act) {
2433 		error = copyin(uap->act, &s32, sizeof(s32));
2434 		if (error)
2435 			return (error);
2436 		sa.sa_handler = PTRIN(s32.sa_u);
2437 		CP(s32, sa, sa_flags);
2438 		CP(s32, sa, sa_mask);
2439 		sap = &sa;
2440 	} else
2441 		sap = NULL;
2442 	error = kern_sigaction(td, uap->sig, sap, &osa, KSA_FREEBSD4);
2443 	if (error == 0 && uap->oact != NULL) {
2444 		s32.sa_u = PTROUT(osa.sa_handler);
2445 		CP(osa, s32, sa_flags);
2446 		CP(osa, s32, sa_mask);
2447 		error = copyout(&s32, uap->oact, sizeof(s32));
2448 	}
2449 	return (error);
2450 }
2451 #endif
2452 
2453 #ifdef COMPAT_43
2454 struct osigaction32 {
2455 	u_int32_t	sa_u;
2456 	osigset_t	sa_mask;
2457 	int		sa_flags;
2458 };
2459 
2460 #define	ONSIG	32
2461 
2462 int
2463 ofreebsd32_sigaction(struct thread *td,
2464 			     struct ofreebsd32_sigaction_args *uap)
2465 {
2466 	struct osigaction32 s32;
2467 	struct sigaction sa, osa, *sap;
2468 	int error;
2469 
2470 	if (uap->signum <= 0 || uap->signum >= ONSIG)
2471 		return (EINVAL);
2472 
2473 	if (uap->nsa) {
2474 		error = copyin(uap->nsa, &s32, sizeof(s32));
2475 		if (error)
2476 			return (error);
2477 		sa.sa_handler = PTRIN(s32.sa_u);
2478 		CP(s32, sa, sa_flags);
2479 		OSIG2SIG(s32.sa_mask, sa.sa_mask);
2480 		sap = &sa;
2481 	} else
2482 		sap = NULL;
2483 	error = kern_sigaction(td, uap->signum, sap, &osa, KSA_OSIGSET);
2484 	if (error == 0 && uap->osa != NULL) {
2485 		s32.sa_u = PTROUT(osa.sa_handler);
2486 		CP(osa, s32, sa_flags);
2487 		SIG2OSIG(osa.sa_mask, s32.sa_mask);
2488 		error = copyout(&s32, uap->osa, sizeof(s32));
2489 	}
2490 	return (error);
2491 }
2492 
2493 int
2494 ofreebsd32_sigprocmask(struct thread *td,
2495 			       struct ofreebsd32_sigprocmask_args *uap)
2496 {
2497 	sigset_t set, oset;
2498 	int error;
2499 
2500 	OSIG2SIG(uap->mask, set);
2501 	error = kern_sigprocmask(td, uap->how, &set, &oset, SIGPROCMASK_OLD);
2502 	SIG2OSIG(oset, td->td_retval[0]);
2503 	return (error);
2504 }
2505 
2506 int
2507 ofreebsd32_sigpending(struct thread *td,
2508 			      struct ofreebsd32_sigpending_args *uap)
2509 {
2510 	struct proc *p = td->td_proc;
2511 	sigset_t siglist;
2512 
2513 	PROC_LOCK(p);
2514 	siglist = p->p_siglist;
2515 	SIGSETOR(siglist, td->td_siglist);
2516 	PROC_UNLOCK(p);
2517 	SIG2OSIG(siglist, td->td_retval[0]);
2518 	return (0);
2519 }
2520 
2521 struct sigvec32 {
2522 	u_int32_t	sv_handler;
2523 	int		sv_mask;
2524 	int		sv_flags;
2525 };
2526 
2527 int
2528 ofreebsd32_sigvec(struct thread *td,
2529 			  struct ofreebsd32_sigvec_args *uap)
2530 {
2531 	struct sigvec32 vec;
2532 	struct sigaction sa, osa, *sap;
2533 	int error;
2534 
2535 	if (uap->signum <= 0 || uap->signum >= ONSIG)
2536 		return (EINVAL);
2537 
2538 	if (uap->nsv) {
2539 		error = copyin(uap->nsv, &vec, sizeof(vec));
2540 		if (error)
2541 			return (error);
2542 		sa.sa_handler = PTRIN(vec.sv_handler);
2543 		OSIG2SIG(vec.sv_mask, sa.sa_mask);
2544 		sa.sa_flags = vec.sv_flags;
2545 		sa.sa_flags ^= SA_RESTART;
2546 		sap = &sa;
2547 	} else
2548 		sap = NULL;
2549 	error = kern_sigaction(td, uap->signum, sap, &osa, KSA_OSIGSET);
2550 	if (error == 0 && uap->osv != NULL) {
2551 		vec.sv_handler = PTROUT(osa.sa_handler);
2552 		SIG2OSIG(osa.sa_mask, vec.sv_mask);
2553 		vec.sv_flags = osa.sa_flags;
2554 		vec.sv_flags &= ~SA_NOCLDWAIT;
2555 		vec.sv_flags ^= SA_RESTART;
2556 		error = copyout(&vec, uap->osv, sizeof(vec));
2557 	}
2558 	return (error);
2559 }
2560 
2561 int
2562 ofreebsd32_sigblock(struct thread *td,
2563 			    struct ofreebsd32_sigblock_args *uap)
2564 {
2565 	sigset_t set, oset;
2566 
2567 	OSIG2SIG(uap->mask, set);
2568 	kern_sigprocmask(td, SIG_BLOCK, &set, &oset, 0);
2569 	SIG2OSIG(oset, td->td_retval[0]);
2570 	return (0);
2571 }
2572 
2573 int
2574 ofreebsd32_sigsetmask(struct thread *td,
2575 			      struct ofreebsd32_sigsetmask_args *uap)
2576 {
2577 	sigset_t set, oset;
2578 
2579 	OSIG2SIG(uap->mask, set);
2580 	kern_sigprocmask(td, SIG_SETMASK, &set, &oset, 0);
2581 	SIG2OSIG(oset, td->td_retval[0]);
2582 	return (0);
2583 }
2584 
2585 int
2586 ofreebsd32_sigsuspend(struct thread *td,
2587 			      struct ofreebsd32_sigsuspend_args *uap)
2588 {
2589 	sigset_t mask;
2590 
2591 	OSIG2SIG(uap->mask, mask);
2592 	return (kern_sigsuspend(td, mask));
2593 }
2594 
2595 struct sigstack32 {
2596 	u_int32_t	ss_sp;
2597 	int		ss_onstack;
2598 };
2599 
2600 int
2601 ofreebsd32_sigstack(struct thread *td,
2602 			    struct ofreebsd32_sigstack_args *uap)
2603 {
2604 	struct sigstack32 s32;
2605 	struct sigstack nss, oss;
2606 	int error = 0, unss;
2607 
2608 	if (uap->nss != NULL) {
2609 		error = copyin(uap->nss, &s32, sizeof(s32));
2610 		if (error)
2611 			return (error);
2612 		nss.ss_sp = PTRIN(s32.ss_sp);
2613 		CP(s32, nss, ss_onstack);
2614 		unss = 1;
2615 	} else {
2616 		unss = 0;
2617 	}
2618 	oss.ss_sp = td->td_sigstk.ss_sp;
2619 	oss.ss_onstack = sigonstack(cpu_getstack(td));
2620 	if (unss) {
2621 		td->td_sigstk.ss_sp = nss.ss_sp;
2622 		td->td_sigstk.ss_size = 0;
2623 		td->td_sigstk.ss_flags |= (nss.ss_onstack & SS_ONSTACK);
2624 		td->td_pflags |= TDP_ALTSTACK;
2625 	}
2626 	if (uap->oss != NULL) {
2627 		s32.ss_sp = PTROUT(oss.ss_sp);
2628 		CP(oss, s32, ss_onstack);
2629 		error = copyout(&s32, uap->oss, sizeof(s32));
2630 	}
2631 	return (error);
2632 }
2633 #endif
2634 
2635 int
2636 freebsd32_nanosleep(struct thread *td, struct freebsd32_nanosleep_args *uap)
2637 {
2638 
2639 	return (freebsd32_user_clock_nanosleep(td, CLOCK_REALTIME,
2640 	    TIMER_RELTIME, uap->rqtp, uap->rmtp));
2641 }
2642 
2643 int
2644 freebsd32_clock_nanosleep(struct thread *td,
2645     struct freebsd32_clock_nanosleep_args *uap)
2646 {
2647 	int error;
2648 
2649 	error = freebsd32_user_clock_nanosleep(td, uap->clock_id, uap->flags,
2650 	    uap->rqtp, uap->rmtp);
2651 	return (kern_posix_error(td, error));
2652 }
2653 
2654 static int
2655 freebsd32_user_clock_nanosleep(struct thread *td, clockid_t clock_id,
2656     int flags, const struct timespec32 *ua_rqtp, struct timespec32 *ua_rmtp)
2657 {
2658 	struct timespec32 rmt32, rqt32;
2659 	struct timespec rmt, rqt;
2660 	int error;
2661 
2662 	error = copyin(ua_rqtp, &rqt32, sizeof(rqt32));
2663 	if (error)
2664 		return (error);
2665 
2666 	CP(rqt32, rqt, tv_sec);
2667 	CP(rqt32, rqt, tv_nsec);
2668 
2669 	if (ua_rmtp != NULL && (flags & TIMER_ABSTIME) == 0 &&
2670 	    !useracc(ua_rmtp, sizeof(rmt32), VM_PROT_WRITE))
2671 		return (EFAULT);
2672 	error = kern_clock_nanosleep(td, clock_id, flags, &rqt, &rmt);
2673 	if (error == EINTR && ua_rmtp != NULL && (flags & TIMER_ABSTIME) == 0) {
2674 		int error2;
2675 
2676 		CP(rmt, rmt32, tv_sec);
2677 		CP(rmt, rmt32, tv_nsec);
2678 
2679 		error2 = copyout(&rmt32, ua_rmtp, sizeof(rmt32));
2680 		if (error2)
2681 			error = error2;
2682 	}
2683 	return (error);
2684 }
2685 
2686 int
2687 freebsd32_clock_gettime(struct thread *td,
2688 			struct freebsd32_clock_gettime_args *uap)
2689 {
2690 	struct timespec	ats;
2691 	struct timespec32 ats32;
2692 	int error;
2693 
2694 	error = kern_clock_gettime(td, uap->clock_id, &ats);
2695 	if (error == 0) {
2696 		CP(ats, ats32, tv_sec);
2697 		CP(ats, ats32, tv_nsec);
2698 		error = copyout(&ats32, uap->tp, sizeof(ats32));
2699 	}
2700 	return (error);
2701 }
2702 
2703 int
2704 freebsd32_clock_settime(struct thread *td,
2705 			struct freebsd32_clock_settime_args *uap)
2706 {
2707 	struct timespec	ats;
2708 	struct timespec32 ats32;
2709 	int error;
2710 
2711 	error = copyin(uap->tp, &ats32, sizeof(ats32));
2712 	if (error)
2713 		return (error);
2714 	CP(ats32, ats, tv_sec);
2715 	CP(ats32, ats, tv_nsec);
2716 
2717 	return (kern_clock_settime(td, uap->clock_id, &ats));
2718 }
2719 
2720 int
2721 freebsd32_clock_getres(struct thread *td,
2722 		       struct freebsd32_clock_getres_args *uap)
2723 {
2724 	struct timespec	ts;
2725 	struct timespec32 ts32;
2726 	int error;
2727 
2728 	if (uap->tp == NULL)
2729 		return (0);
2730 	error = kern_clock_getres(td, uap->clock_id, &ts);
2731 	if (error == 0) {
2732 		CP(ts, ts32, tv_sec);
2733 		CP(ts, ts32, tv_nsec);
2734 		error = copyout(&ts32, uap->tp, sizeof(ts32));
2735 	}
2736 	return (error);
2737 }
2738 
2739 int freebsd32_ktimer_create(struct thread *td,
2740     struct freebsd32_ktimer_create_args *uap)
2741 {
2742 	struct sigevent32 ev32;
2743 	struct sigevent ev, *evp;
2744 	int error, id;
2745 
2746 	if (uap->evp == NULL) {
2747 		evp = NULL;
2748 	} else {
2749 		evp = &ev;
2750 		error = copyin(uap->evp, &ev32, sizeof(ev32));
2751 		if (error != 0)
2752 			return (error);
2753 		error = convert_sigevent32(&ev32, &ev);
2754 		if (error != 0)
2755 			return (error);
2756 	}
2757 	error = kern_ktimer_create(td, uap->clock_id, evp, &id, -1);
2758 	if (error == 0) {
2759 		error = copyout(&id, uap->timerid, sizeof(int));
2760 		if (error != 0)
2761 			kern_ktimer_delete(td, id);
2762 	}
2763 	return (error);
2764 }
2765 
2766 int
2767 freebsd32_ktimer_settime(struct thread *td,
2768     struct freebsd32_ktimer_settime_args *uap)
2769 {
2770 	struct itimerspec32 val32, oval32;
2771 	struct itimerspec val, oval, *ovalp;
2772 	int error;
2773 
2774 	error = copyin(uap->value, &val32, sizeof(val32));
2775 	if (error != 0)
2776 		return (error);
2777 	ITS_CP(val32, val);
2778 	ovalp = uap->ovalue != NULL ? &oval : NULL;
2779 	error = kern_ktimer_settime(td, uap->timerid, uap->flags, &val, ovalp);
2780 	if (error == 0 && uap->ovalue != NULL) {
2781 		ITS_CP(oval, oval32);
2782 		error = copyout(&oval32, uap->ovalue, sizeof(oval32));
2783 	}
2784 	return (error);
2785 }
2786 
2787 int
2788 freebsd32_ktimer_gettime(struct thread *td,
2789     struct freebsd32_ktimer_gettime_args *uap)
2790 {
2791 	struct itimerspec32 val32;
2792 	struct itimerspec val;
2793 	int error;
2794 
2795 	error = kern_ktimer_gettime(td, uap->timerid, &val);
2796 	if (error == 0) {
2797 		ITS_CP(val, val32);
2798 		error = copyout(&val32, uap->value, sizeof(val32));
2799 	}
2800 	return (error);
2801 }
2802 
2803 int
2804 freebsd32_clock_getcpuclockid2(struct thread *td,
2805     struct freebsd32_clock_getcpuclockid2_args *uap)
2806 {
2807 	clockid_t clk_id;
2808 	int error;
2809 
2810 	error = kern_clock_getcpuclockid2(td, PAIR32TO64(id_t, uap->id),
2811 	    uap->which, &clk_id);
2812 	if (error == 0)
2813 		error = copyout(&clk_id, uap->clock_id, sizeof(clockid_t));
2814 	return (error);
2815 }
2816 
2817 int
2818 freebsd32_thr_new(struct thread *td,
2819 		  struct freebsd32_thr_new_args *uap)
2820 {
2821 	struct thr_param32 param32;
2822 	struct thr_param param;
2823 	int error;
2824 
2825 	if (uap->param_size < 0 ||
2826 	    uap->param_size > sizeof(struct thr_param32))
2827 		return (EINVAL);
2828 	bzero(&param, sizeof(struct thr_param));
2829 	bzero(&param32, sizeof(struct thr_param32));
2830 	error = copyin(uap->param, &param32, uap->param_size);
2831 	if (error != 0)
2832 		return (error);
2833 	param.start_func = PTRIN(param32.start_func);
2834 	param.arg = PTRIN(param32.arg);
2835 	param.stack_base = PTRIN(param32.stack_base);
2836 	param.stack_size = param32.stack_size;
2837 	param.tls_base = PTRIN(param32.tls_base);
2838 	param.tls_size = param32.tls_size;
2839 	param.child_tid = PTRIN(param32.child_tid);
2840 	param.parent_tid = PTRIN(param32.parent_tid);
2841 	param.flags = param32.flags;
2842 	param.rtp = PTRIN(param32.rtp);
2843 	param.spare[0] = PTRIN(param32.spare[0]);
2844 	param.spare[1] = PTRIN(param32.spare[1]);
2845 	param.spare[2] = PTRIN(param32.spare[2]);
2846 
2847 	return (kern_thr_new(td, &param));
2848 }
2849 
2850 int
2851 freebsd32_thr_suspend(struct thread *td, struct freebsd32_thr_suspend_args *uap)
2852 {
2853 	struct timespec32 ts32;
2854 	struct timespec ts, *tsp;
2855 	int error;
2856 
2857 	error = 0;
2858 	tsp = NULL;
2859 	if (uap->timeout != NULL) {
2860 		error = copyin((const void *)uap->timeout, (void *)&ts32,
2861 		    sizeof(struct timespec32));
2862 		if (error != 0)
2863 			return (error);
2864 		ts.tv_sec = ts32.tv_sec;
2865 		ts.tv_nsec = ts32.tv_nsec;
2866 		tsp = &ts;
2867 	}
2868 	return (kern_thr_suspend(td, tsp));
2869 }
2870 
2871 void
2872 siginfo_to_siginfo32(const siginfo_t *src, struct siginfo32 *dst)
2873 {
2874 	bzero(dst, sizeof(*dst));
2875 	dst->si_signo = src->si_signo;
2876 	dst->si_errno = src->si_errno;
2877 	dst->si_code = src->si_code;
2878 	dst->si_pid = src->si_pid;
2879 	dst->si_uid = src->si_uid;
2880 	dst->si_status = src->si_status;
2881 	dst->si_addr = (uintptr_t)src->si_addr;
2882 	dst->si_value.sival_int = src->si_value.sival_int;
2883 	dst->si_timerid = src->si_timerid;
2884 	dst->si_overrun = src->si_overrun;
2885 }
2886 
2887 #ifndef _FREEBSD32_SYSPROTO_H_
2888 struct freebsd32_sigqueue_args {
2889         pid_t pid;
2890         int signum;
2891         /* union sigval32 */ int value;
2892 };
2893 #endif
2894 int
2895 freebsd32_sigqueue(struct thread *td, struct freebsd32_sigqueue_args *uap)
2896 {
2897 	union sigval sv;
2898 
2899 	/*
2900 	 * On 32-bit ABIs, sival_int and sival_ptr are the same.
2901 	 * On 64-bit little-endian ABIs, the low bits are the same.
2902 	 * In 64-bit big-endian ABIs, sival_int overlaps with
2903 	 * sival_ptr's HIGH bits.  We choose to support sival_int
2904 	 * rather than sival_ptr in this case as it seems to be
2905 	 * more common.
2906 	 */
2907 	bzero(&sv, sizeof(sv));
2908 	sv.sival_int = uap->value;
2909 
2910 	return (kern_sigqueue(td, uap->pid, uap->signum, &sv));
2911 }
2912 
2913 int
2914 freebsd32_sigtimedwait(struct thread *td, struct freebsd32_sigtimedwait_args *uap)
2915 {
2916 	struct timespec32 ts32;
2917 	struct timespec ts;
2918 	struct timespec *timeout;
2919 	sigset_t set;
2920 	ksiginfo_t ksi;
2921 	struct siginfo32 si32;
2922 	int error;
2923 
2924 	if (uap->timeout) {
2925 		error = copyin(uap->timeout, &ts32, sizeof(ts32));
2926 		if (error)
2927 			return (error);
2928 		ts.tv_sec = ts32.tv_sec;
2929 		ts.tv_nsec = ts32.tv_nsec;
2930 		timeout = &ts;
2931 	} else
2932 		timeout = NULL;
2933 
2934 	error = copyin(uap->set, &set, sizeof(set));
2935 	if (error)
2936 		return (error);
2937 
2938 	error = kern_sigtimedwait(td, set, &ksi, timeout);
2939 	if (error)
2940 		return (error);
2941 
2942 	if (uap->info) {
2943 		siginfo_to_siginfo32(&ksi.ksi_info, &si32);
2944 		error = copyout(&si32, uap->info, sizeof(struct siginfo32));
2945 	}
2946 
2947 	if (error == 0)
2948 		td->td_retval[0] = ksi.ksi_signo;
2949 	return (error);
2950 }
2951 
2952 /*
2953  * MPSAFE
2954  */
2955 int
2956 freebsd32_sigwaitinfo(struct thread *td, struct freebsd32_sigwaitinfo_args *uap)
2957 {
2958 	ksiginfo_t ksi;
2959 	struct siginfo32 si32;
2960 	sigset_t set;
2961 	int error;
2962 
2963 	error = copyin(uap->set, &set, sizeof(set));
2964 	if (error)
2965 		return (error);
2966 
2967 	error = kern_sigtimedwait(td, set, &ksi, NULL);
2968 	if (error)
2969 		return (error);
2970 
2971 	if (uap->info) {
2972 		siginfo_to_siginfo32(&ksi.ksi_info, &si32);
2973 		error = copyout(&si32, uap->info, sizeof(struct siginfo32));
2974 	}
2975 	if (error == 0)
2976 		td->td_retval[0] = ksi.ksi_signo;
2977 	return (error);
2978 }
2979 
2980 int
2981 freebsd32_cpuset_setid(struct thread *td,
2982     struct freebsd32_cpuset_setid_args *uap)
2983 {
2984 
2985 	return (kern_cpuset_setid(td, uap->which,
2986 	    PAIR32TO64(id_t, uap->id), uap->setid));
2987 }
2988 
2989 int
2990 freebsd32_cpuset_getid(struct thread *td,
2991     struct freebsd32_cpuset_getid_args *uap)
2992 {
2993 
2994 	return (kern_cpuset_getid(td, uap->level, uap->which,
2995 	    PAIR32TO64(id_t, uap->id), uap->setid));
2996 }
2997 
2998 int
2999 freebsd32_cpuset_getaffinity(struct thread *td,
3000     struct freebsd32_cpuset_getaffinity_args *uap)
3001 {
3002 
3003 	return (kern_cpuset_getaffinity(td, uap->level, uap->which,
3004 	    PAIR32TO64(id_t,uap->id), uap->cpusetsize, uap->mask));
3005 }
3006 
3007 int
3008 freebsd32_cpuset_setaffinity(struct thread *td,
3009     struct freebsd32_cpuset_setaffinity_args *uap)
3010 {
3011 
3012 	return (kern_cpuset_setaffinity(td, uap->level, uap->which,
3013 	    PAIR32TO64(id_t,uap->id), uap->cpusetsize, uap->mask));
3014 }
3015 
3016 int
3017 freebsd32_cpuset_getdomain(struct thread *td,
3018     struct freebsd32_cpuset_getdomain_args *uap)
3019 {
3020 
3021 	return (kern_cpuset_getdomain(td, uap->level, uap->which,
3022 	    PAIR32TO64(id_t,uap->id), uap->domainsetsize, uap->mask, uap->policy));
3023 }
3024 
3025 int
3026 freebsd32_cpuset_setdomain(struct thread *td,
3027     struct freebsd32_cpuset_setdomain_args *uap)
3028 {
3029 
3030 	return (kern_cpuset_setdomain(td, uap->level, uap->which,
3031 	    PAIR32TO64(id_t,uap->id), uap->domainsetsize, uap->mask, uap->policy));
3032 }
3033 
3034 int
3035 freebsd32_nmount(struct thread *td,
3036     struct freebsd32_nmount_args /* {
3037     	struct iovec *iovp;
3038     	unsigned int iovcnt;
3039     	int flags;
3040     } */ *uap)
3041 {
3042 	struct uio *auio;
3043 	uint64_t flags;
3044 	int error;
3045 
3046 	/*
3047 	 * Mount flags are now 64-bits. On 32-bit archtectures only
3048 	 * 32-bits are passed in, but from here on everything handles
3049 	 * 64-bit flags correctly.
3050 	 */
3051 	flags = uap->flags;
3052 
3053 	AUDIT_ARG_FFLAGS(flags);
3054 
3055 	/*
3056 	 * Filter out MNT_ROOTFS.  We do not want clients of nmount() in
3057 	 * userspace to set this flag, but we must filter it out if we want
3058 	 * MNT_UPDATE on the root file system to work.
3059 	 * MNT_ROOTFS should only be set by the kernel when mounting its
3060 	 * root file system.
3061 	 */
3062 	flags &= ~MNT_ROOTFS;
3063 
3064 	/*
3065 	 * check that we have an even number of iovec's
3066 	 * and that we have at least two options.
3067 	 */
3068 	if ((uap->iovcnt & 1) || (uap->iovcnt < 4))
3069 		return (EINVAL);
3070 
3071 	error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio);
3072 	if (error)
3073 		return (error);
3074 	error = vfs_donmount(td, flags, auio);
3075 
3076 	free(auio, M_IOV);
3077 	return error;
3078 }
3079 
3080 #if 0
3081 int
3082 freebsd32_xxx(struct thread *td, struct freebsd32_xxx_args *uap)
3083 {
3084 	struct yyy32 *p32, s32;
3085 	struct yyy *p = NULL, s;
3086 	struct xxx_arg ap;
3087 	int error;
3088 
3089 	if (uap->zzz) {
3090 		error = copyin(uap->zzz, &s32, sizeof(s32));
3091 		if (error)
3092 			return (error);
3093 		/* translate in */
3094 		p = &s;
3095 	}
3096 	error = kern_xxx(td, p);
3097 	if (error)
3098 		return (error);
3099 	if (uap->zzz) {
3100 		/* translate out */
3101 		error = copyout(&s32, p32, sizeof(s32));
3102 	}
3103 	return (error);
3104 }
3105 #endif
3106 
3107 int
3108 syscall32_module_handler(struct module *mod, int what, void *arg)
3109 {
3110 
3111 	return (kern_syscall_module_handler(freebsd32_sysent, mod, what, arg));
3112 }
3113 
3114 int
3115 syscall32_helper_register(struct syscall_helper_data *sd, int flags)
3116 {
3117 
3118 	return (kern_syscall_helper_register(freebsd32_sysent, sd, flags));
3119 }
3120 
3121 int
3122 syscall32_helper_unregister(struct syscall_helper_data *sd)
3123 {
3124 
3125 	return (kern_syscall_helper_unregister(freebsd32_sysent, sd));
3126 }
3127 
3128 register_t *
3129 freebsd32_copyout_strings(struct image_params *imgp)
3130 {
3131 	int argc, envc, i;
3132 	u_int32_t *vectp;
3133 	char *stringp;
3134 	uintptr_t destp;
3135 	u_int32_t *stack_base;
3136 	struct freebsd32_ps_strings *arginfo;
3137 	char canary[sizeof(long) * 8];
3138 	int32_t pagesizes32[MAXPAGESIZES];
3139 	size_t execpath_len;
3140 	int szsigcode;
3141 
3142 	/*
3143 	 * Calculate string base and vector table pointers.
3144 	 * Also deal with signal trampoline code for this exec type.
3145 	 */
3146 	if (imgp->execpath != NULL && imgp->auxargs != NULL)
3147 		execpath_len = strlen(imgp->execpath) + 1;
3148 	else
3149 		execpath_len = 0;
3150 	arginfo = (struct freebsd32_ps_strings *)curproc->p_sysent->
3151 	    sv_psstrings;
3152 	if (imgp->proc->p_sysent->sv_sigcode_base == 0)
3153 		szsigcode = *(imgp->proc->p_sysent->sv_szsigcode);
3154 	else
3155 		szsigcode = 0;
3156 	destp =	(uintptr_t)arginfo;
3157 
3158 	/*
3159 	 * install sigcode
3160 	 */
3161 	if (szsigcode != 0) {
3162 		destp -= szsigcode;
3163 		destp = rounddown2(destp, sizeof(uint32_t));
3164 		copyout(imgp->proc->p_sysent->sv_sigcode, (void *)destp,
3165 		    szsigcode);
3166 	}
3167 
3168 	/*
3169 	 * Copy the image path for the rtld.
3170 	 */
3171 	if (execpath_len != 0) {
3172 		destp -= execpath_len;
3173 		imgp->execpathp = destp;
3174 		copyout(imgp->execpath, (void *)destp, execpath_len);
3175 	}
3176 
3177 	/*
3178 	 * Prepare the canary for SSP.
3179 	 */
3180 	arc4rand(canary, sizeof(canary), 0);
3181 	destp -= sizeof(canary);
3182 	imgp->canary = destp;
3183 	copyout(canary, (void *)destp, sizeof(canary));
3184 	imgp->canarylen = sizeof(canary);
3185 
3186 	/*
3187 	 * Prepare the pagesizes array.
3188 	 */
3189 	for (i = 0; i < MAXPAGESIZES; i++)
3190 		pagesizes32[i] = (uint32_t)pagesizes[i];
3191 	destp -= sizeof(pagesizes32);
3192 	destp = rounddown2(destp, sizeof(uint32_t));
3193 	imgp->pagesizes = destp;
3194 	copyout(pagesizes32, (void *)destp, sizeof(pagesizes32));
3195 	imgp->pagesizeslen = sizeof(pagesizes32);
3196 
3197 	destp -= ARG_MAX - imgp->args->stringspace;
3198 	destp = rounddown2(destp, sizeof(uint32_t));
3199 
3200 	vectp = (uint32_t *)destp;
3201 	if (imgp->auxargs) {
3202 		/*
3203 		 * Allocate room on the stack for the ELF auxargs
3204 		 * array.  It has up to AT_COUNT entries.
3205 		 */
3206 		vectp -= howmany(AT_COUNT * sizeof(Elf32_Auxinfo),
3207 		    sizeof(*vectp));
3208 	}
3209 
3210 	/*
3211 	 * Allocate room for the argv[] and env vectors including the
3212 	 * terminating NULL pointers.
3213 	 */
3214 	vectp -= imgp->args->argc + 1 + imgp->args->envc + 1;
3215 
3216 	/*
3217 	 * vectp also becomes our initial stack base
3218 	 */
3219 	stack_base = vectp;
3220 
3221 	stringp = imgp->args->begin_argv;
3222 	argc = imgp->args->argc;
3223 	envc = imgp->args->envc;
3224 	/*
3225 	 * Copy out strings - arguments and environment.
3226 	 */
3227 	copyout(stringp, (void *)destp, ARG_MAX - imgp->args->stringspace);
3228 
3229 	/*
3230 	 * Fill in "ps_strings" struct for ps, w, etc.
3231 	 */
3232 	suword32(&arginfo->ps_argvstr, (u_int32_t)(intptr_t)vectp);
3233 	suword32(&arginfo->ps_nargvstr, argc);
3234 
3235 	/*
3236 	 * Fill in argument portion of vector table.
3237 	 */
3238 	for (; argc > 0; --argc) {
3239 		suword32(vectp++, (u_int32_t)(intptr_t)destp);
3240 		while (*stringp++ != 0)
3241 			destp++;
3242 		destp++;
3243 	}
3244 
3245 	/* a null vector table pointer separates the argp's from the envp's */
3246 	suword32(vectp++, 0);
3247 
3248 	suword32(&arginfo->ps_envstr, (u_int32_t)(intptr_t)vectp);
3249 	suword32(&arginfo->ps_nenvstr, envc);
3250 
3251 	/*
3252 	 * Fill in environment portion of vector table.
3253 	 */
3254 	for (; envc > 0; --envc) {
3255 		suword32(vectp++, (u_int32_t)(intptr_t)destp);
3256 		while (*stringp++ != 0)
3257 			destp++;
3258 		destp++;
3259 	}
3260 
3261 	/* end of vector table is a null pointer */
3262 	suword32(vectp, 0);
3263 
3264 	return ((register_t *)stack_base);
3265 }
3266 
3267 int
3268 freebsd32_kldstat(struct thread *td, struct freebsd32_kldstat_args *uap)
3269 {
3270 	struct kld_file_stat *stat;
3271 	struct kld32_file_stat *stat32;
3272 	int error, version;
3273 
3274 	if ((error = copyin(&uap->stat->version, &version, sizeof(version)))
3275 	    != 0)
3276 		return (error);
3277 	if (version != sizeof(struct kld32_file_stat_1) &&
3278 	    version != sizeof(struct kld32_file_stat))
3279 		return (EINVAL);
3280 
3281 	stat = malloc(sizeof(*stat), M_TEMP, M_WAITOK | M_ZERO);
3282 	stat32 = malloc(sizeof(*stat32), M_TEMP, M_WAITOK | M_ZERO);
3283 	error = kern_kldstat(td, uap->fileid, stat);
3284 	if (error == 0) {
3285 		bcopy(&stat->name[0], &stat32->name[0], sizeof(stat->name));
3286 		CP(*stat, *stat32, refs);
3287 		CP(*stat, *stat32, id);
3288 		PTROUT_CP(*stat, *stat32, address);
3289 		CP(*stat, *stat32, size);
3290 		bcopy(&stat->pathname[0], &stat32->pathname[0],
3291 		    sizeof(stat->pathname));
3292 		stat32->version  = version;
3293 		error = copyout(stat32, uap->stat, version);
3294 	}
3295 	free(stat, M_TEMP);
3296 	free(stat32, M_TEMP);
3297 	return (error);
3298 }
3299 
3300 int
3301 freebsd32_posix_fallocate(struct thread *td,
3302     struct freebsd32_posix_fallocate_args *uap)
3303 {
3304 	int error;
3305 
3306 	error = kern_posix_fallocate(td, uap->fd,
3307 	    PAIR32TO64(off_t, uap->offset), PAIR32TO64(off_t, uap->len));
3308 	return (kern_posix_error(td, error));
3309 }
3310 
3311 int
3312 freebsd32_posix_fadvise(struct thread *td,
3313     struct freebsd32_posix_fadvise_args *uap)
3314 {
3315 	int error;
3316 
3317 	error = kern_posix_fadvise(td, uap->fd, PAIR32TO64(off_t, uap->offset),
3318 	    PAIR32TO64(off_t, uap->len), uap->advice);
3319 	return (kern_posix_error(td, error));
3320 }
3321 
3322 int
3323 convert_sigevent32(struct sigevent32 *sig32, struct sigevent *sig)
3324 {
3325 
3326 	CP(*sig32, *sig, sigev_notify);
3327 	switch (sig->sigev_notify) {
3328 	case SIGEV_NONE:
3329 		break;
3330 	case SIGEV_THREAD_ID:
3331 		CP(*sig32, *sig, sigev_notify_thread_id);
3332 		/* FALLTHROUGH */
3333 	case SIGEV_SIGNAL:
3334 		CP(*sig32, *sig, sigev_signo);
3335 		PTRIN_CP(*sig32, *sig, sigev_value.sival_ptr);
3336 		break;
3337 	case SIGEV_KEVENT:
3338 		CP(*sig32, *sig, sigev_notify_kqueue);
3339 		CP(*sig32, *sig, sigev_notify_kevent_flags);
3340 		PTRIN_CP(*sig32, *sig, sigev_value.sival_ptr);
3341 		break;
3342 	default:
3343 		return (EINVAL);
3344 	}
3345 	return (0);
3346 }
3347 
3348 int
3349 freebsd32_procctl(struct thread *td, struct freebsd32_procctl_args *uap)
3350 {
3351 	void *data;
3352 	union {
3353 		struct procctl_reaper_status rs;
3354 		struct procctl_reaper_pids rp;
3355 		struct procctl_reaper_kill rk;
3356 	} x;
3357 	union {
3358 		struct procctl_reaper_pids32 rp;
3359 	} x32;
3360 	int error, error1, flags, signum;
3361 
3362 	switch (uap->com) {
3363 	case PROC_SPROTECT:
3364 	case PROC_TRACE_CTL:
3365 	case PROC_TRAPCAP_CTL:
3366 		error = copyin(PTRIN(uap->data), &flags, sizeof(flags));
3367 		if (error != 0)
3368 			return (error);
3369 		data = &flags;
3370 		break;
3371 	case PROC_REAP_ACQUIRE:
3372 	case PROC_REAP_RELEASE:
3373 		if (uap->data != NULL)
3374 			return (EINVAL);
3375 		data = NULL;
3376 		break;
3377 	case PROC_REAP_STATUS:
3378 		data = &x.rs;
3379 		break;
3380 	case PROC_REAP_GETPIDS:
3381 		error = copyin(uap->data, &x32.rp, sizeof(x32.rp));
3382 		if (error != 0)
3383 			return (error);
3384 		CP(x32.rp, x.rp, rp_count);
3385 		PTRIN_CP(x32.rp, x.rp, rp_pids);
3386 		data = &x.rp;
3387 		break;
3388 	case PROC_REAP_KILL:
3389 		error = copyin(uap->data, &x.rk, sizeof(x.rk));
3390 		if (error != 0)
3391 			return (error);
3392 		data = &x.rk;
3393 		break;
3394 	case PROC_TRACE_STATUS:
3395 	case PROC_TRAPCAP_STATUS:
3396 		data = &flags;
3397 		break;
3398 	case PROC_PDEATHSIG_CTL:
3399 		error = copyin(uap->data, &signum, sizeof(signum));
3400 		if (error != 0)
3401 			return (error);
3402 		data = &signum;
3403 		break;
3404 	case PROC_PDEATHSIG_STATUS:
3405 		data = &signum;
3406 		break;
3407 	default:
3408 		return (EINVAL);
3409 	}
3410 	error = kern_procctl(td, uap->idtype, PAIR32TO64(id_t, uap->id),
3411 	    uap->com, data);
3412 	switch (uap->com) {
3413 	case PROC_REAP_STATUS:
3414 		if (error == 0)
3415 			error = copyout(&x.rs, uap->data, sizeof(x.rs));
3416 		break;
3417 	case PROC_REAP_KILL:
3418 		error1 = copyout(&x.rk, uap->data, sizeof(x.rk));
3419 		if (error == 0)
3420 			error = error1;
3421 		break;
3422 	case PROC_TRACE_STATUS:
3423 	case PROC_TRAPCAP_STATUS:
3424 		if (error == 0)
3425 			error = copyout(&flags, uap->data, sizeof(flags));
3426 		break;
3427 	case PROC_PDEATHSIG_STATUS:
3428 		if (error == 0)
3429 			error = copyout(&signum, uap->data, sizeof(signum));
3430 		break;
3431 	}
3432 	return (error);
3433 }
3434 
3435 int
3436 freebsd32_fcntl(struct thread *td, struct freebsd32_fcntl_args *uap)
3437 {
3438 	long tmp;
3439 
3440 	switch (uap->cmd) {
3441 	/*
3442 	 * Do unsigned conversion for arg when operation
3443 	 * interprets it as flags or pointer.
3444 	 */
3445 	case F_SETLK_REMOTE:
3446 	case F_SETLKW:
3447 	case F_SETLK:
3448 	case F_GETLK:
3449 	case F_SETFD:
3450 	case F_SETFL:
3451 	case F_OGETLK:
3452 	case F_OSETLK:
3453 	case F_OSETLKW:
3454 		tmp = (unsigned int)(uap->arg);
3455 		break;
3456 	default:
3457 		tmp = uap->arg;
3458 		break;
3459 	}
3460 	return (kern_fcntl_freebsd(td, uap->fd, uap->cmd, tmp));
3461 }
3462 
3463 int
3464 freebsd32_ppoll(struct thread *td, struct freebsd32_ppoll_args *uap)
3465 {
3466 	struct timespec32 ts32;
3467 	struct timespec ts, *tsp;
3468 	sigset_t set, *ssp;
3469 	int error;
3470 
3471 	if (uap->ts != NULL) {
3472 		error = copyin(uap->ts, &ts32, sizeof(ts32));
3473 		if (error != 0)
3474 			return (error);
3475 		CP(ts32, ts, tv_sec);
3476 		CP(ts32, ts, tv_nsec);
3477 		tsp = &ts;
3478 	} else
3479 		tsp = NULL;
3480 	if (uap->set != NULL) {
3481 		error = copyin(uap->set, &set, sizeof(set));
3482 		if (error != 0)
3483 			return (error);
3484 		ssp = &set;
3485 	} else
3486 		ssp = NULL;
3487 
3488 	return (kern_poll(td, uap->fds, uap->nfds, tsp, ssp));
3489 }
3490