1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2002 Doug Rabson 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include "opt_inet.h" 33 #include "opt_inet6.h" 34 #include "opt_ktrace.h" 35 36 #define __ELF_WORD_SIZE 32 37 38 #ifdef COMPAT_FREEBSD11 39 #define _WANT_FREEBSD11_KEVENT 40 #endif 41 42 #include <sys/param.h> 43 #include <sys/bus.h> 44 #include <sys/capsicum.h> 45 #include <sys/clock.h> 46 #include <sys/exec.h> 47 #include <sys/fcntl.h> 48 #include <sys/filedesc.h> 49 #include <sys/imgact.h> 50 #include <sys/jail.h> 51 #include <sys/kernel.h> 52 #include <sys/limits.h> 53 #include <sys/linker.h> 54 #include <sys/lock.h> 55 #include <sys/malloc.h> 56 #include <sys/file.h> /* Must come after sys/malloc.h */ 57 #include <sys/imgact.h> 58 #include <sys/mbuf.h> 59 #include <sys/mman.h> 60 #include <sys/module.h> 61 #include <sys/mount.h> 62 #include <sys/mutex.h> 63 #include <sys/namei.h> 64 #include <sys/proc.h> 65 #include <sys/procctl.h> 66 #include <sys/reboot.h> 67 #include <sys/resource.h> 68 #include <sys/resourcevar.h> 69 #include <sys/selinfo.h> 70 #include <sys/eventvar.h> /* Must come after sys/selinfo.h */ 71 #include <sys/pipe.h> /* Must come after sys/selinfo.h */ 72 #include <sys/signal.h> 73 #include <sys/signalvar.h> 74 #include <sys/socket.h> 75 #include <sys/socketvar.h> 76 #include <sys/stat.h> 77 #include <sys/syscall.h> 78 #include <sys/syscallsubr.h> 79 #include <sys/sysctl.h> 80 #include <sys/sysent.h> 81 #include <sys/sysproto.h> 82 #include <sys/systm.h> 83 #include <sys/thr.h> 84 #include <sys/unistd.h> 85 #include <sys/ucontext.h> 86 #include <sys/vnode.h> 87 #include <sys/wait.h> 88 #include <sys/ipc.h> 89 #include <sys/msg.h> 90 #include <sys/sem.h> 91 #include <sys/shm.h> 92 #ifdef KTRACE 93 #include <sys/ktrace.h> 94 #endif 95 96 #ifdef INET 97 #include <netinet/in.h> 98 #endif 99 100 #include <vm/vm.h> 101 #include <vm/vm_param.h> 102 #include <vm/pmap.h> 103 #include <vm/vm_map.h> 104 #include <vm/vm_object.h> 105 #include <vm/vm_extern.h> 106 107 #include <machine/cpu.h> 108 #include <machine/elf.h> 109 110 #include <security/audit/audit.h> 111 112 #include <compat/freebsd32/freebsd32_util.h> 113 #include <compat/freebsd32/freebsd32.h> 114 #include <compat/freebsd32/freebsd32_ipc.h> 115 #include <compat/freebsd32/freebsd32_misc.h> 116 #include <compat/freebsd32/freebsd32_signal.h> 117 #include <compat/freebsd32/freebsd32_proto.h> 118 119 FEATURE(compat_freebsd_32bit, "Compatible with 32-bit FreeBSD"); 120 121 #ifdef __amd64__ 122 CTASSERT(sizeof(struct timeval32) == 8); 123 CTASSERT(sizeof(struct timespec32) == 8); 124 CTASSERT(sizeof(struct itimerval32) == 16); 125 CTASSERT(sizeof(struct bintime32) == 12); 126 #endif 127 CTASSERT(sizeof(struct statfs32) == 256); 128 #ifdef __amd64__ 129 CTASSERT(sizeof(struct rusage32) == 72); 130 #endif 131 CTASSERT(sizeof(struct sigaltstack32) == 12); 132 #ifdef __amd64__ 133 CTASSERT(sizeof(struct kevent32) == 56); 134 #else 135 CTASSERT(sizeof(struct kevent32) == 64); 136 #endif 137 CTASSERT(sizeof(struct iovec32) == 8); 138 CTASSERT(sizeof(struct msghdr32) == 28); 139 #ifdef __amd64__ 140 CTASSERT(sizeof(struct stat32) == 208); 141 CTASSERT(sizeof(struct freebsd11_stat32) == 96); 142 #endif 143 CTASSERT(sizeof(struct sigaction32) == 24); 144 145 static int freebsd32_kevent_copyout(void *arg, struct kevent *kevp, int count); 146 static int freebsd32_kevent_copyin(void *arg, struct kevent *kevp, int count); 147 static int freebsd32_user_clock_nanosleep(struct thread *td, clockid_t clock_id, 148 int flags, const struct timespec32 *ua_rqtp, struct timespec32 *ua_rmtp); 149 150 void 151 freebsd32_rusage_out(const struct rusage *s, struct rusage32 *s32) 152 { 153 154 TV_CP(*s, *s32, ru_utime); 155 TV_CP(*s, *s32, ru_stime); 156 CP(*s, *s32, ru_maxrss); 157 CP(*s, *s32, ru_ixrss); 158 CP(*s, *s32, ru_idrss); 159 CP(*s, *s32, ru_isrss); 160 CP(*s, *s32, ru_minflt); 161 CP(*s, *s32, ru_majflt); 162 CP(*s, *s32, ru_nswap); 163 CP(*s, *s32, ru_inblock); 164 CP(*s, *s32, ru_oublock); 165 CP(*s, *s32, ru_msgsnd); 166 CP(*s, *s32, ru_msgrcv); 167 CP(*s, *s32, ru_nsignals); 168 CP(*s, *s32, ru_nvcsw); 169 CP(*s, *s32, ru_nivcsw); 170 } 171 172 int 173 freebsd32_wait4(struct thread *td, struct freebsd32_wait4_args *uap) 174 { 175 int error, status; 176 struct rusage32 ru32; 177 struct rusage ru, *rup; 178 179 if (uap->rusage != NULL) 180 rup = &ru; 181 else 182 rup = NULL; 183 error = kern_wait(td, uap->pid, &status, uap->options, rup); 184 if (error) 185 return (error); 186 if (uap->status != NULL) 187 error = copyout(&status, uap->status, sizeof(status)); 188 if (uap->rusage != NULL && error == 0) { 189 freebsd32_rusage_out(&ru, &ru32); 190 error = copyout(&ru32, uap->rusage, sizeof(ru32)); 191 } 192 return (error); 193 } 194 195 int 196 freebsd32_wait6(struct thread *td, struct freebsd32_wait6_args *uap) 197 { 198 struct wrusage32 wru32; 199 struct __wrusage wru, *wrup; 200 struct siginfo32 si32; 201 struct __siginfo si, *sip; 202 int error, status; 203 204 if (uap->wrusage != NULL) 205 wrup = &wru; 206 else 207 wrup = NULL; 208 if (uap->info != NULL) { 209 sip = &si; 210 bzero(sip, sizeof(*sip)); 211 } else 212 sip = NULL; 213 error = kern_wait6(td, uap->idtype, PAIR32TO64(id_t, uap->id), 214 &status, uap->options, wrup, sip); 215 if (error != 0) 216 return (error); 217 if (uap->status != NULL) 218 error = copyout(&status, uap->status, sizeof(status)); 219 if (uap->wrusage != NULL && error == 0) { 220 freebsd32_rusage_out(&wru.wru_self, &wru32.wru_self); 221 freebsd32_rusage_out(&wru.wru_children, &wru32.wru_children); 222 error = copyout(&wru32, uap->wrusage, sizeof(wru32)); 223 } 224 if (uap->info != NULL && error == 0) { 225 siginfo_to_siginfo32 (&si, &si32); 226 error = copyout(&si32, uap->info, sizeof(si32)); 227 } 228 return (error); 229 } 230 231 #ifdef COMPAT_FREEBSD4 232 static void 233 copy_statfs(struct statfs *in, struct statfs32 *out) 234 { 235 236 statfs_scale_blocks(in, INT32_MAX); 237 bzero(out, sizeof(*out)); 238 CP(*in, *out, f_bsize); 239 out->f_iosize = MIN(in->f_iosize, INT32_MAX); 240 CP(*in, *out, f_blocks); 241 CP(*in, *out, f_bfree); 242 CP(*in, *out, f_bavail); 243 out->f_files = MIN(in->f_files, INT32_MAX); 244 out->f_ffree = MIN(in->f_ffree, INT32_MAX); 245 CP(*in, *out, f_fsid); 246 CP(*in, *out, f_owner); 247 CP(*in, *out, f_type); 248 CP(*in, *out, f_flags); 249 out->f_syncwrites = MIN(in->f_syncwrites, INT32_MAX); 250 out->f_asyncwrites = MIN(in->f_asyncwrites, INT32_MAX); 251 strlcpy(out->f_fstypename, 252 in->f_fstypename, MFSNAMELEN); 253 strlcpy(out->f_mntonname, 254 in->f_mntonname, min(MNAMELEN, FREEBSD4_MNAMELEN)); 255 out->f_syncreads = MIN(in->f_syncreads, INT32_MAX); 256 out->f_asyncreads = MIN(in->f_asyncreads, INT32_MAX); 257 strlcpy(out->f_mntfromname, 258 in->f_mntfromname, min(MNAMELEN, FREEBSD4_MNAMELEN)); 259 } 260 #endif 261 262 #ifdef COMPAT_FREEBSD4 263 int 264 freebsd4_freebsd32_getfsstat(struct thread *td, 265 struct freebsd4_freebsd32_getfsstat_args *uap) 266 { 267 struct statfs *buf, *sp; 268 struct statfs32 stat32; 269 size_t count, size, copycount; 270 int error; 271 272 count = uap->bufsize / sizeof(struct statfs32); 273 size = count * sizeof(struct statfs); 274 error = kern_getfsstat(td, &buf, size, &count, UIO_SYSSPACE, uap->mode); 275 if (size > 0) { 276 sp = buf; 277 copycount = count; 278 while (copycount > 0 && error == 0) { 279 copy_statfs(sp, &stat32); 280 error = copyout(&stat32, uap->buf, sizeof(stat32)); 281 sp++; 282 uap->buf++; 283 copycount--; 284 } 285 free(buf, M_STATFS); 286 } 287 if (error == 0) 288 td->td_retval[0] = count; 289 return (error); 290 } 291 #endif 292 293 #ifdef COMPAT_FREEBSD10 294 int 295 freebsd10_freebsd32_pipe(struct thread *td, 296 struct freebsd10_freebsd32_pipe_args *uap) { 297 298 return (freebsd10_pipe(td, (struct freebsd10_pipe_args*)uap)); 299 } 300 #endif 301 302 int 303 freebsd32_sigaltstack(struct thread *td, 304 struct freebsd32_sigaltstack_args *uap) 305 { 306 struct sigaltstack32 s32; 307 struct sigaltstack ss, oss, *ssp; 308 int error; 309 310 if (uap->ss != NULL) { 311 error = copyin(uap->ss, &s32, sizeof(s32)); 312 if (error) 313 return (error); 314 PTRIN_CP(s32, ss, ss_sp); 315 CP(s32, ss, ss_size); 316 CP(s32, ss, ss_flags); 317 ssp = &ss; 318 } else 319 ssp = NULL; 320 error = kern_sigaltstack(td, ssp, &oss); 321 if (error == 0 && uap->oss != NULL) { 322 PTROUT_CP(oss, s32, ss_sp); 323 CP(oss, s32, ss_size); 324 CP(oss, s32, ss_flags); 325 error = copyout(&s32, uap->oss, sizeof(s32)); 326 } 327 return (error); 328 } 329 330 /* 331 * Custom version of exec_copyin_args() so that we can translate 332 * the pointers. 333 */ 334 int 335 freebsd32_exec_copyin_args(struct image_args *args, char *fname, 336 enum uio_seg segflg, u_int32_t *argv, u_int32_t *envv) 337 { 338 char *argp, *envp; 339 u_int32_t *p32, arg; 340 size_t length; 341 int error; 342 343 bzero(args, sizeof(*args)); 344 if (argv == NULL) 345 return (EFAULT); 346 347 /* 348 * Allocate demand-paged memory for the file name, argument, and 349 * environment strings. 350 */ 351 error = exec_alloc_args(args); 352 if (error != 0) 353 return (error); 354 355 /* 356 * Copy the file name. 357 */ 358 if (fname != NULL) { 359 args->fname = args->buf; 360 error = (segflg == UIO_SYSSPACE) ? 361 copystr(fname, args->fname, PATH_MAX, &length) : 362 copyinstr(fname, args->fname, PATH_MAX, &length); 363 if (error != 0) 364 goto err_exit; 365 } else 366 length = 0; 367 368 args->begin_argv = args->buf + length; 369 args->endp = args->begin_argv; 370 args->stringspace = ARG_MAX; 371 372 /* 373 * extract arguments first 374 */ 375 p32 = argv; 376 for (;;) { 377 error = copyin(p32++, &arg, sizeof(arg)); 378 if (error) 379 goto err_exit; 380 if (arg == 0) 381 break; 382 argp = PTRIN(arg); 383 error = copyinstr(argp, args->endp, args->stringspace, &length); 384 if (error) { 385 if (error == ENAMETOOLONG) 386 error = E2BIG; 387 goto err_exit; 388 } 389 args->stringspace -= length; 390 args->endp += length; 391 args->argc++; 392 } 393 394 args->begin_envv = args->endp; 395 396 /* 397 * extract environment strings 398 */ 399 if (envv) { 400 p32 = envv; 401 for (;;) { 402 error = copyin(p32++, &arg, sizeof(arg)); 403 if (error) 404 goto err_exit; 405 if (arg == 0) 406 break; 407 envp = PTRIN(arg); 408 error = copyinstr(envp, args->endp, args->stringspace, 409 &length); 410 if (error) { 411 if (error == ENAMETOOLONG) 412 error = E2BIG; 413 goto err_exit; 414 } 415 args->stringspace -= length; 416 args->endp += length; 417 args->envc++; 418 } 419 } 420 421 return (0); 422 423 err_exit: 424 exec_free_args(args); 425 return (error); 426 } 427 428 int 429 freebsd32_execve(struct thread *td, struct freebsd32_execve_args *uap) 430 { 431 struct image_args eargs; 432 struct vmspace *oldvmspace; 433 int error; 434 435 error = pre_execve(td, &oldvmspace); 436 if (error != 0) 437 return (error); 438 error = freebsd32_exec_copyin_args(&eargs, uap->fname, UIO_USERSPACE, 439 uap->argv, uap->envv); 440 if (error == 0) 441 error = kern_execve(td, &eargs, NULL); 442 post_execve(td, error, oldvmspace); 443 return (error); 444 } 445 446 int 447 freebsd32_fexecve(struct thread *td, struct freebsd32_fexecve_args *uap) 448 { 449 struct image_args eargs; 450 struct vmspace *oldvmspace; 451 int error; 452 453 error = pre_execve(td, &oldvmspace); 454 if (error != 0) 455 return (error); 456 error = freebsd32_exec_copyin_args(&eargs, NULL, UIO_SYSSPACE, 457 uap->argv, uap->envv); 458 if (error == 0) { 459 eargs.fd = uap->fd; 460 error = kern_execve(td, &eargs, NULL); 461 } 462 post_execve(td, error, oldvmspace); 463 return (error); 464 } 465 466 #if defined(COMPAT_FREEBSD11) 467 int 468 freebsd11_freebsd32_mknod(struct thread *td, 469 struct freebsd11_freebsd32_mknod_args *uap) 470 { 471 472 return (kern_mknodat(td, AT_FDCWD, uap->path, UIO_USERSPACE, uap->mode, 473 uap->dev)); 474 } 475 476 int 477 freebsd11_freebsd32_mknodat(struct thread *td, 478 struct freebsd11_freebsd32_mknodat_args *uap) 479 { 480 481 return (kern_mknodat(td, uap->fd, uap->path, UIO_USERSPACE, uap->mode, 482 uap->dev)); 483 } 484 #endif /* COMPAT_FREEBSD11 */ 485 486 int 487 freebsd32_mprotect(struct thread *td, struct freebsd32_mprotect_args *uap) 488 { 489 int prot; 490 491 prot = uap->prot; 492 #if defined(__amd64__) 493 if (i386_read_exec && (prot & PROT_READ) != 0) 494 prot |= PROT_EXEC; 495 #endif 496 return (kern_mprotect(td, (uintptr_t)PTRIN(uap->addr), uap->len, 497 prot)); 498 } 499 500 int 501 freebsd32_mmap(struct thread *td, struct freebsd32_mmap_args *uap) 502 { 503 int prot; 504 505 prot = uap->prot; 506 #if defined(__amd64__) 507 if (i386_read_exec && (prot & PROT_READ)) 508 prot |= PROT_EXEC; 509 #endif 510 511 return (kern_mmap(td, (uintptr_t)uap->addr, uap->len, prot, 512 uap->flags, uap->fd, PAIR32TO64(off_t, uap->pos))); 513 } 514 515 #ifdef COMPAT_FREEBSD6 516 int 517 freebsd6_freebsd32_mmap(struct thread *td, 518 struct freebsd6_freebsd32_mmap_args *uap) 519 { 520 int prot; 521 522 prot = uap->prot; 523 #if defined(__amd64__) 524 if (i386_read_exec && (prot & PROT_READ)) 525 prot |= PROT_EXEC; 526 #endif 527 528 return (kern_mmap(td, (uintptr_t)uap->addr, uap->len, prot, 529 uap->flags, uap->fd, PAIR32TO64(off_t, uap->pos))); 530 } 531 #endif 532 533 int 534 freebsd32_setitimer(struct thread *td, struct freebsd32_setitimer_args *uap) 535 { 536 struct itimerval itv, oitv, *itvp; 537 struct itimerval32 i32; 538 int error; 539 540 if (uap->itv != NULL) { 541 error = copyin(uap->itv, &i32, sizeof(i32)); 542 if (error) 543 return (error); 544 TV_CP(i32, itv, it_interval); 545 TV_CP(i32, itv, it_value); 546 itvp = &itv; 547 } else 548 itvp = NULL; 549 error = kern_setitimer(td, uap->which, itvp, &oitv); 550 if (error || uap->oitv == NULL) 551 return (error); 552 TV_CP(oitv, i32, it_interval); 553 TV_CP(oitv, i32, it_value); 554 return (copyout(&i32, uap->oitv, sizeof(i32))); 555 } 556 557 int 558 freebsd32_getitimer(struct thread *td, struct freebsd32_getitimer_args *uap) 559 { 560 struct itimerval itv; 561 struct itimerval32 i32; 562 int error; 563 564 error = kern_getitimer(td, uap->which, &itv); 565 if (error || uap->itv == NULL) 566 return (error); 567 TV_CP(itv, i32, it_interval); 568 TV_CP(itv, i32, it_value); 569 return (copyout(&i32, uap->itv, sizeof(i32))); 570 } 571 572 int 573 freebsd32_select(struct thread *td, struct freebsd32_select_args *uap) 574 { 575 struct timeval32 tv32; 576 struct timeval tv, *tvp; 577 int error; 578 579 if (uap->tv != NULL) { 580 error = copyin(uap->tv, &tv32, sizeof(tv32)); 581 if (error) 582 return (error); 583 CP(tv32, tv, tv_sec); 584 CP(tv32, tv, tv_usec); 585 tvp = &tv; 586 } else 587 tvp = NULL; 588 /* 589 * XXX Do pointers need PTRIN()? 590 */ 591 return (kern_select(td, uap->nd, uap->in, uap->ou, uap->ex, tvp, 592 sizeof(int32_t) * 8)); 593 } 594 595 int 596 freebsd32_pselect(struct thread *td, struct freebsd32_pselect_args *uap) 597 { 598 struct timespec32 ts32; 599 struct timespec ts; 600 struct timeval tv, *tvp; 601 sigset_t set, *uset; 602 int error; 603 604 if (uap->ts != NULL) { 605 error = copyin(uap->ts, &ts32, sizeof(ts32)); 606 if (error != 0) 607 return (error); 608 CP(ts32, ts, tv_sec); 609 CP(ts32, ts, tv_nsec); 610 TIMESPEC_TO_TIMEVAL(&tv, &ts); 611 tvp = &tv; 612 } else 613 tvp = NULL; 614 if (uap->sm != NULL) { 615 error = copyin(uap->sm, &set, sizeof(set)); 616 if (error != 0) 617 return (error); 618 uset = &set; 619 } else 620 uset = NULL; 621 /* 622 * XXX Do pointers need PTRIN()? 623 */ 624 error = kern_pselect(td, uap->nd, uap->in, uap->ou, uap->ex, tvp, 625 uset, sizeof(int32_t) * 8); 626 return (error); 627 } 628 629 /* 630 * Copy 'count' items into the destination list pointed to by uap->eventlist. 631 */ 632 static int 633 freebsd32_kevent_copyout(void *arg, struct kevent *kevp, int count) 634 { 635 struct freebsd32_kevent_args *uap; 636 struct kevent32 ks32[KQ_NEVENTS]; 637 uint64_t e; 638 int i, j, error; 639 640 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count)); 641 uap = (struct freebsd32_kevent_args *)arg; 642 643 for (i = 0; i < count; i++) { 644 CP(kevp[i], ks32[i], ident); 645 CP(kevp[i], ks32[i], filter); 646 CP(kevp[i], ks32[i], flags); 647 CP(kevp[i], ks32[i], fflags); 648 #if BYTE_ORDER == LITTLE_ENDIAN 649 ks32[i].data1 = kevp[i].data; 650 ks32[i].data2 = kevp[i].data >> 32; 651 #else 652 ks32[i].data1 = kevp[i].data >> 32; 653 ks32[i].data2 = kevp[i].data; 654 #endif 655 PTROUT_CP(kevp[i], ks32[i], udata); 656 for (j = 0; j < nitems(kevp->ext); j++) { 657 e = kevp[i].ext[j]; 658 #if BYTE_ORDER == LITTLE_ENDIAN 659 ks32[i].ext64[2 * j] = e; 660 ks32[i].ext64[2 * j + 1] = e >> 32; 661 #else 662 ks32[i].ext64[2 * j] = e >> 32; 663 ks32[i].ext64[2 * j + 1] = e; 664 #endif 665 } 666 } 667 error = copyout(ks32, uap->eventlist, count * sizeof *ks32); 668 if (error == 0) 669 uap->eventlist += count; 670 return (error); 671 } 672 673 /* 674 * Copy 'count' items from the list pointed to by uap->changelist. 675 */ 676 static int 677 freebsd32_kevent_copyin(void *arg, struct kevent *kevp, int count) 678 { 679 struct freebsd32_kevent_args *uap; 680 struct kevent32 ks32[KQ_NEVENTS]; 681 uint64_t e; 682 int i, j, error; 683 684 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count)); 685 uap = (struct freebsd32_kevent_args *)arg; 686 687 error = copyin(uap->changelist, ks32, count * sizeof *ks32); 688 if (error) 689 goto done; 690 uap->changelist += count; 691 692 for (i = 0; i < count; i++) { 693 CP(ks32[i], kevp[i], ident); 694 CP(ks32[i], kevp[i], filter); 695 CP(ks32[i], kevp[i], flags); 696 CP(ks32[i], kevp[i], fflags); 697 kevp[i].data = PAIR32TO64(uint64_t, ks32[i].data); 698 PTRIN_CP(ks32[i], kevp[i], udata); 699 for (j = 0; j < nitems(kevp->ext); j++) { 700 #if BYTE_ORDER == LITTLE_ENDIAN 701 e = ks32[i].ext64[2 * j + 1]; 702 e <<= 32; 703 e += ks32[i].ext64[2 * j]; 704 #else 705 e = ks32[i].ext64[2 * j]; 706 e <<= 32; 707 e += ks32[i].ext64[2 * j + 1]; 708 #endif 709 kevp[i].ext[j] = e; 710 } 711 } 712 done: 713 return (error); 714 } 715 716 int 717 freebsd32_kevent(struct thread *td, struct freebsd32_kevent_args *uap) 718 { 719 struct timespec32 ts32; 720 struct timespec ts, *tsp; 721 struct kevent_copyops k_ops = { 722 .arg = uap, 723 .k_copyout = freebsd32_kevent_copyout, 724 .k_copyin = freebsd32_kevent_copyin, 725 }; 726 #ifdef KTRACE 727 struct kevent32 *eventlist = uap->eventlist; 728 #endif 729 int error; 730 731 if (uap->timeout) { 732 error = copyin(uap->timeout, &ts32, sizeof(ts32)); 733 if (error) 734 return (error); 735 CP(ts32, ts, tv_sec); 736 CP(ts32, ts, tv_nsec); 737 tsp = &ts; 738 } else 739 tsp = NULL; 740 #ifdef KTRACE 741 if (KTRPOINT(td, KTR_STRUCT_ARRAY)) 742 ktrstructarray("kevent32", UIO_USERSPACE, uap->changelist, 743 uap->nchanges, sizeof(struct kevent32)); 744 #endif 745 error = kern_kevent(td, uap->fd, uap->nchanges, uap->nevents, 746 &k_ops, tsp); 747 #ifdef KTRACE 748 if (error == 0 && KTRPOINT(td, KTR_STRUCT_ARRAY)) 749 ktrstructarray("kevent32", UIO_USERSPACE, eventlist, 750 td->td_retval[0], sizeof(struct kevent32)); 751 #endif 752 return (error); 753 } 754 755 #ifdef COMPAT_FREEBSD11 756 static int 757 freebsd32_kevent11_copyout(void *arg, struct kevent *kevp, int count) 758 { 759 struct freebsd11_freebsd32_kevent_args *uap; 760 struct kevent32_freebsd11 ks32[KQ_NEVENTS]; 761 int i, error; 762 763 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count)); 764 uap = (struct freebsd11_freebsd32_kevent_args *)arg; 765 766 for (i = 0; i < count; i++) { 767 CP(kevp[i], ks32[i], ident); 768 CP(kevp[i], ks32[i], filter); 769 CP(kevp[i], ks32[i], flags); 770 CP(kevp[i], ks32[i], fflags); 771 CP(kevp[i], ks32[i], data); 772 PTROUT_CP(kevp[i], ks32[i], udata); 773 } 774 error = copyout(ks32, uap->eventlist, count * sizeof *ks32); 775 if (error == 0) 776 uap->eventlist += count; 777 return (error); 778 } 779 780 /* 781 * Copy 'count' items from the list pointed to by uap->changelist. 782 */ 783 static int 784 freebsd32_kevent11_copyin(void *arg, struct kevent *kevp, int count) 785 { 786 struct freebsd11_freebsd32_kevent_args *uap; 787 struct kevent32_freebsd11 ks32[KQ_NEVENTS]; 788 int i, j, error; 789 790 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count)); 791 uap = (struct freebsd11_freebsd32_kevent_args *)arg; 792 793 error = copyin(uap->changelist, ks32, count * sizeof *ks32); 794 if (error) 795 goto done; 796 uap->changelist += count; 797 798 for (i = 0; i < count; i++) { 799 CP(ks32[i], kevp[i], ident); 800 CP(ks32[i], kevp[i], filter); 801 CP(ks32[i], kevp[i], flags); 802 CP(ks32[i], kevp[i], fflags); 803 CP(ks32[i], kevp[i], data); 804 PTRIN_CP(ks32[i], kevp[i], udata); 805 for (j = 0; j < nitems(kevp->ext); j++) 806 kevp[i].ext[j] = 0; 807 } 808 done: 809 return (error); 810 } 811 812 int 813 freebsd11_freebsd32_kevent(struct thread *td, 814 struct freebsd11_freebsd32_kevent_args *uap) 815 { 816 struct timespec32 ts32; 817 struct timespec ts, *tsp; 818 struct kevent_copyops k_ops = { 819 .arg = uap, 820 .k_copyout = freebsd32_kevent11_copyout, 821 .k_copyin = freebsd32_kevent11_copyin, 822 }; 823 #ifdef KTRACE 824 struct kevent32_freebsd11 *eventlist = uap->eventlist; 825 #endif 826 int error; 827 828 if (uap->timeout) { 829 error = copyin(uap->timeout, &ts32, sizeof(ts32)); 830 if (error) 831 return (error); 832 CP(ts32, ts, tv_sec); 833 CP(ts32, ts, tv_nsec); 834 tsp = &ts; 835 } else 836 tsp = NULL; 837 #ifdef KTRACE 838 if (KTRPOINT(td, KTR_STRUCT_ARRAY)) 839 ktrstructarray("kevent32_freebsd11", UIO_USERSPACE, 840 uap->changelist, uap->nchanges, 841 sizeof(struct kevent32_freebsd11)); 842 #endif 843 error = kern_kevent(td, uap->fd, uap->nchanges, uap->nevents, 844 &k_ops, tsp); 845 #ifdef KTRACE 846 if (error == 0 && KTRPOINT(td, KTR_STRUCT_ARRAY)) 847 ktrstructarray("kevent32_freebsd11", UIO_USERSPACE, 848 eventlist, td->td_retval[0], 849 sizeof(struct kevent32_freebsd11)); 850 #endif 851 return (error); 852 } 853 #endif 854 855 int 856 freebsd32_gettimeofday(struct thread *td, 857 struct freebsd32_gettimeofday_args *uap) 858 { 859 struct timeval atv; 860 struct timeval32 atv32; 861 struct timezone rtz; 862 int error = 0; 863 864 if (uap->tp) { 865 microtime(&atv); 866 CP(atv, atv32, tv_sec); 867 CP(atv, atv32, tv_usec); 868 error = copyout(&atv32, uap->tp, sizeof (atv32)); 869 } 870 if (error == 0 && uap->tzp != NULL) { 871 rtz.tz_minuteswest = tz_minuteswest; 872 rtz.tz_dsttime = tz_dsttime; 873 error = copyout(&rtz, uap->tzp, sizeof (rtz)); 874 } 875 return (error); 876 } 877 878 int 879 freebsd32_getrusage(struct thread *td, struct freebsd32_getrusage_args *uap) 880 { 881 struct rusage32 s32; 882 struct rusage s; 883 int error; 884 885 error = kern_getrusage(td, uap->who, &s); 886 if (error) 887 return (error); 888 if (uap->rusage != NULL) { 889 freebsd32_rusage_out(&s, &s32); 890 error = copyout(&s32, uap->rusage, sizeof(s32)); 891 } 892 return (error); 893 } 894 895 static int 896 freebsd32_copyinuio(struct iovec32 *iovp, u_int iovcnt, struct uio **uiop) 897 { 898 struct iovec32 iov32; 899 struct iovec *iov; 900 struct uio *uio; 901 u_int iovlen; 902 int error, i; 903 904 *uiop = NULL; 905 if (iovcnt > UIO_MAXIOV) 906 return (EINVAL); 907 iovlen = iovcnt * sizeof(struct iovec); 908 uio = malloc(iovlen + sizeof *uio, M_IOV, M_WAITOK); 909 iov = (struct iovec *)(uio + 1); 910 for (i = 0; i < iovcnt; i++) { 911 error = copyin(&iovp[i], &iov32, sizeof(struct iovec32)); 912 if (error) { 913 free(uio, M_IOV); 914 return (error); 915 } 916 iov[i].iov_base = PTRIN(iov32.iov_base); 917 iov[i].iov_len = iov32.iov_len; 918 } 919 uio->uio_iov = iov; 920 uio->uio_iovcnt = iovcnt; 921 uio->uio_segflg = UIO_USERSPACE; 922 uio->uio_offset = -1; 923 uio->uio_resid = 0; 924 for (i = 0; i < iovcnt; i++) { 925 if (iov->iov_len > INT_MAX - uio->uio_resid) { 926 free(uio, M_IOV); 927 return (EINVAL); 928 } 929 uio->uio_resid += iov->iov_len; 930 iov++; 931 } 932 *uiop = uio; 933 return (0); 934 } 935 936 int 937 freebsd32_readv(struct thread *td, struct freebsd32_readv_args *uap) 938 { 939 struct uio *auio; 940 int error; 941 942 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 943 if (error) 944 return (error); 945 error = kern_readv(td, uap->fd, auio); 946 free(auio, M_IOV); 947 return (error); 948 } 949 950 int 951 freebsd32_writev(struct thread *td, struct freebsd32_writev_args *uap) 952 { 953 struct uio *auio; 954 int error; 955 956 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 957 if (error) 958 return (error); 959 error = kern_writev(td, uap->fd, auio); 960 free(auio, M_IOV); 961 return (error); 962 } 963 964 int 965 freebsd32_preadv(struct thread *td, struct freebsd32_preadv_args *uap) 966 { 967 struct uio *auio; 968 int error; 969 970 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 971 if (error) 972 return (error); 973 error = kern_preadv(td, uap->fd, auio, PAIR32TO64(off_t,uap->offset)); 974 free(auio, M_IOV); 975 return (error); 976 } 977 978 int 979 freebsd32_pwritev(struct thread *td, struct freebsd32_pwritev_args *uap) 980 { 981 struct uio *auio; 982 int error; 983 984 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 985 if (error) 986 return (error); 987 error = kern_pwritev(td, uap->fd, auio, PAIR32TO64(off_t,uap->offset)); 988 free(auio, M_IOV); 989 return (error); 990 } 991 992 int 993 freebsd32_copyiniov(struct iovec32 *iovp32, u_int iovcnt, struct iovec **iovp, 994 int error) 995 { 996 struct iovec32 iov32; 997 struct iovec *iov; 998 u_int iovlen; 999 int i; 1000 1001 *iovp = NULL; 1002 if (iovcnt > UIO_MAXIOV) 1003 return (error); 1004 iovlen = iovcnt * sizeof(struct iovec); 1005 iov = malloc(iovlen, M_IOV, M_WAITOK); 1006 for (i = 0; i < iovcnt; i++) { 1007 error = copyin(&iovp32[i], &iov32, sizeof(struct iovec32)); 1008 if (error) { 1009 free(iov, M_IOV); 1010 return (error); 1011 } 1012 iov[i].iov_base = PTRIN(iov32.iov_base); 1013 iov[i].iov_len = iov32.iov_len; 1014 } 1015 *iovp = iov; 1016 return (0); 1017 } 1018 1019 static int 1020 freebsd32_copyinmsghdr(struct msghdr32 *msg32, struct msghdr *msg) 1021 { 1022 struct msghdr32 m32; 1023 int error; 1024 1025 error = copyin(msg32, &m32, sizeof(m32)); 1026 if (error) 1027 return (error); 1028 msg->msg_name = PTRIN(m32.msg_name); 1029 msg->msg_namelen = m32.msg_namelen; 1030 msg->msg_iov = PTRIN(m32.msg_iov); 1031 msg->msg_iovlen = m32.msg_iovlen; 1032 msg->msg_control = PTRIN(m32.msg_control); 1033 msg->msg_controllen = m32.msg_controllen; 1034 msg->msg_flags = m32.msg_flags; 1035 return (0); 1036 } 1037 1038 static int 1039 freebsd32_copyoutmsghdr(struct msghdr *msg, struct msghdr32 *msg32) 1040 { 1041 struct msghdr32 m32; 1042 int error; 1043 1044 m32.msg_name = PTROUT(msg->msg_name); 1045 m32.msg_namelen = msg->msg_namelen; 1046 m32.msg_iov = PTROUT(msg->msg_iov); 1047 m32.msg_iovlen = msg->msg_iovlen; 1048 m32.msg_control = PTROUT(msg->msg_control); 1049 m32.msg_controllen = msg->msg_controllen; 1050 m32.msg_flags = msg->msg_flags; 1051 error = copyout(&m32, msg32, sizeof(m32)); 1052 return (error); 1053 } 1054 1055 #ifndef __mips__ 1056 #define FREEBSD32_ALIGNBYTES (sizeof(int) - 1) 1057 #else 1058 #define FREEBSD32_ALIGNBYTES (sizeof(long) - 1) 1059 #endif 1060 #define FREEBSD32_ALIGN(p) \ 1061 (((u_long)(p) + FREEBSD32_ALIGNBYTES) & ~FREEBSD32_ALIGNBYTES) 1062 #define FREEBSD32_CMSG_SPACE(l) \ 1063 (FREEBSD32_ALIGN(sizeof(struct cmsghdr)) + FREEBSD32_ALIGN(l)) 1064 1065 #define FREEBSD32_CMSG_DATA(cmsg) ((unsigned char *)(cmsg) + \ 1066 FREEBSD32_ALIGN(sizeof(struct cmsghdr))) 1067 1068 static size_t 1069 freebsd32_cmsg_convert(struct cmsghdr *cm, void *data, socklen_t datalen) 1070 { 1071 size_t copylen; 1072 union { 1073 struct timespec32 ts; 1074 struct timeval32 tv; 1075 struct bintime32 bt; 1076 } tmp32; 1077 1078 union { 1079 struct timespec ts; 1080 struct timeval tv; 1081 struct bintime bt; 1082 } *in; 1083 1084 in = data; 1085 copylen = 0; 1086 switch (cm->cmsg_level) { 1087 case SOL_SOCKET: 1088 switch (cm->cmsg_type) { 1089 case SCM_TIMESTAMP: 1090 TV_CP(*in, tmp32, tv); 1091 copylen = sizeof(tmp32.tv); 1092 break; 1093 1094 case SCM_BINTIME: 1095 BT_CP(*in, tmp32, bt); 1096 copylen = sizeof(tmp32.bt); 1097 break; 1098 1099 case SCM_REALTIME: 1100 case SCM_MONOTONIC: 1101 TS_CP(*in, tmp32, ts); 1102 copylen = sizeof(tmp32.ts); 1103 break; 1104 1105 default: 1106 break; 1107 } 1108 1109 default: 1110 break; 1111 } 1112 1113 if (copylen == 0) 1114 return (datalen); 1115 1116 KASSERT((datalen >= copylen), ("corrupted cmsghdr")); 1117 1118 bcopy(&tmp32, data, copylen); 1119 return (copylen); 1120 } 1121 1122 static int 1123 freebsd32_copy_msg_out(struct msghdr *msg, struct mbuf *control) 1124 { 1125 struct cmsghdr *cm; 1126 void *data; 1127 socklen_t clen, datalen, datalen_out; 1128 int error; 1129 caddr_t ctlbuf; 1130 int len, maxlen, copylen; 1131 struct mbuf *m; 1132 error = 0; 1133 1134 len = msg->msg_controllen; 1135 maxlen = msg->msg_controllen; 1136 msg->msg_controllen = 0; 1137 1138 m = control; 1139 ctlbuf = msg->msg_control; 1140 1141 while (m && len > 0) { 1142 cm = mtod(m, struct cmsghdr *); 1143 clen = m->m_len; 1144 1145 while (cm != NULL) { 1146 1147 if (sizeof(struct cmsghdr) > clen || 1148 cm->cmsg_len > clen) { 1149 error = EINVAL; 1150 break; 1151 } 1152 1153 data = CMSG_DATA(cm); 1154 datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data; 1155 datalen_out = freebsd32_cmsg_convert(cm, data, datalen); 1156 1157 /* Adjust message length */ 1158 cm->cmsg_len = FREEBSD32_ALIGN(sizeof(struct cmsghdr)) + 1159 datalen_out; 1160 1161 /* Copy cmsghdr */ 1162 copylen = sizeof(struct cmsghdr); 1163 if (len < copylen) { 1164 msg->msg_flags |= MSG_CTRUNC; 1165 copylen = len; 1166 } 1167 1168 error = copyout(cm, ctlbuf, copylen); 1169 if (error) 1170 goto exit; 1171 1172 ctlbuf += FREEBSD32_ALIGN(copylen); 1173 len -= FREEBSD32_ALIGN(copylen); 1174 1175 if (len <= 0) 1176 break; 1177 1178 /* Copy data */ 1179 copylen = datalen_out; 1180 if (len < copylen) { 1181 msg->msg_flags |= MSG_CTRUNC; 1182 copylen = len; 1183 } 1184 1185 error = copyout(data, ctlbuf, copylen); 1186 if (error) 1187 goto exit; 1188 1189 ctlbuf += FREEBSD32_ALIGN(copylen); 1190 len -= FREEBSD32_ALIGN(copylen); 1191 1192 if (CMSG_SPACE(datalen) < clen) { 1193 clen -= CMSG_SPACE(datalen); 1194 cm = (struct cmsghdr *) 1195 ((caddr_t)cm + CMSG_SPACE(datalen)); 1196 } else { 1197 clen = 0; 1198 cm = NULL; 1199 } 1200 } 1201 m = m->m_next; 1202 } 1203 1204 msg->msg_controllen = (len <= 0) ? maxlen : ctlbuf - (caddr_t)msg->msg_control; 1205 1206 exit: 1207 return (error); 1208 1209 } 1210 1211 int 1212 freebsd32_recvmsg(td, uap) 1213 struct thread *td; 1214 struct freebsd32_recvmsg_args /* { 1215 int s; 1216 struct msghdr32 *msg; 1217 int flags; 1218 } */ *uap; 1219 { 1220 struct msghdr msg; 1221 struct msghdr32 m32; 1222 struct iovec *uiov, *iov; 1223 struct mbuf *control = NULL; 1224 struct mbuf **controlp; 1225 1226 int error; 1227 error = copyin(uap->msg, &m32, sizeof(m32)); 1228 if (error) 1229 return (error); 1230 error = freebsd32_copyinmsghdr(uap->msg, &msg); 1231 if (error) 1232 return (error); 1233 error = freebsd32_copyiniov(PTRIN(m32.msg_iov), m32.msg_iovlen, &iov, 1234 EMSGSIZE); 1235 if (error) 1236 return (error); 1237 msg.msg_flags = uap->flags; 1238 uiov = msg.msg_iov; 1239 msg.msg_iov = iov; 1240 1241 controlp = (msg.msg_control != NULL) ? &control : NULL; 1242 error = kern_recvit(td, uap->s, &msg, UIO_USERSPACE, controlp); 1243 if (error == 0) { 1244 msg.msg_iov = uiov; 1245 1246 if (control != NULL) 1247 error = freebsd32_copy_msg_out(&msg, control); 1248 else 1249 msg.msg_controllen = 0; 1250 1251 if (error == 0) 1252 error = freebsd32_copyoutmsghdr(&msg, uap->msg); 1253 } 1254 free(iov, M_IOV); 1255 1256 if (control != NULL) 1257 m_freem(control); 1258 1259 return (error); 1260 } 1261 1262 /* 1263 * Copy-in the array of control messages constructed using alignment 1264 * and padding suitable for a 32-bit environment and construct an 1265 * mbuf using alignment and padding suitable for a 64-bit kernel. 1266 * The alignment and padding are defined indirectly by CMSG_DATA(), 1267 * CMSG_SPACE() and CMSG_LEN(). 1268 */ 1269 static int 1270 freebsd32_copyin_control(struct mbuf **mp, caddr_t buf, u_int buflen) 1271 { 1272 struct mbuf *m; 1273 void *md; 1274 u_int idx, len, msglen; 1275 int error; 1276 1277 buflen = FREEBSD32_ALIGN(buflen); 1278 1279 if (buflen > MCLBYTES) 1280 return (EINVAL); 1281 1282 /* 1283 * Iterate over the buffer and get the length of each message 1284 * in there. This has 32-bit alignment and padding. Use it to 1285 * determine the length of these messages when using 64-bit 1286 * alignment and padding. 1287 */ 1288 idx = 0; 1289 len = 0; 1290 while (idx < buflen) { 1291 error = copyin(buf + idx, &msglen, sizeof(msglen)); 1292 if (error) 1293 return (error); 1294 if (msglen < sizeof(struct cmsghdr)) 1295 return (EINVAL); 1296 msglen = FREEBSD32_ALIGN(msglen); 1297 if (idx + msglen > buflen) 1298 return (EINVAL); 1299 idx += msglen; 1300 msglen += CMSG_ALIGN(sizeof(struct cmsghdr)) - 1301 FREEBSD32_ALIGN(sizeof(struct cmsghdr)); 1302 len += CMSG_ALIGN(msglen); 1303 } 1304 1305 if (len > MCLBYTES) 1306 return (EINVAL); 1307 1308 m = m_get(M_WAITOK, MT_CONTROL); 1309 if (len > MLEN) 1310 MCLGET(m, M_WAITOK); 1311 m->m_len = len; 1312 1313 md = mtod(m, void *); 1314 while (buflen > 0) { 1315 error = copyin(buf, md, sizeof(struct cmsghdr)); 1316 if (error) 1317 break; 1318 msglen = *(u_int *)md; 1319 msglen = FREEBSD32_ALIGN(msglen); 1320 1321 /* Modify the message length to account for alignment. */ 1322 *(u_int *)md = msglen + CMSG_ALIGN(sizeof(struct cmsghdr)) - 1323 FREEBSD32_ALIGN(sizeof(struct cmsghdr)); 1324 1325 md = (char *)md + CMSG_ALIGN(sizeof(struct cmsghdr)); 1326 buf += FREEBSD32_ALIGN(sizeof(struct cmsghdr)); 1327 buflen -= FREEBSD32_ALIGN(sizeof(struct cmsghdr)); 1328 1329 msglen -= FREEBSD32_ALIGN(sizeof(struct cmsghdr)); 1330 if (msglen > 0) { 1331 error = copyin(buf, md, msglen); 1332 if (error) 1333 break; 1334 md = (char *)md + CMSG_ALIGN(msglen); 1335 buf += msglen; 1336 buflen -= msglen; 1337 } 1338 } 1339 1340 if (error) 1341 m_free(m); 1342 else 1343 *mp = m; 1344 return (error); 1345 } 1346 1347 int 1348 freebsd32_sendmsg(struct thread *td, 1349 struct freebsd32_sendmsg_args *uap) 1350 { 1351 struct msghdr msg; 1352 struct msghdr32 m32; 1353 struct iovec *iov; 1354 struct mbuf *control = NULL; 1355 struct sockaddr *to = NULL; 1356 int error; 1357 1358 error = copyin(uap->msg, &m32, sizeof(m32)); 1359 if (error) 1360 return (error); 1361 error = freebsd32_copyinmsghdr(uap->msg, &msg); 1362 if (error) 1363 return (error); 1364 error = freebsd32_copyiniov(PTRIN(m32.msg_iov), m32.msg_iovlen, &iov, 1365 EMSGSIZE); 1366 if (error) 1367 return (error); 1368 msg.msg_iov = iov; 1369 if (msg.msg_name != NULL) { 1370 error = getsockaddr(&to, msg.msg_name, msg.msg_namelen); 1371 if (error) { 1372 to = NULL; 1373 goto out; 1374 } 1375 msg.msg_name = to; 1376 } 1377 1378 if (msg.msg_control) { 1379 if (msg.msg_controllen < sizeof(struct cmsghdr)) { 1380 error = EINVAL; 1381 goto out; 1382 } 1383 1384 error = freebsd32_copyin_control(&control, msg.msg_control, 1385 msg.msg_controllen); 1386 if (error) 1387 goto out; 1388 1389 msg.msg_control = NULL; 1390 msg.msg_controllen = 0; 1391 } 1392 1393 error = kern_sendit(td, uap->s, &msg, uap->flags, control, 1394 UIO_USERSPACE); 1395 1396 out: 1397 free(iov, M_IOV); 1398 if (to) 1399 free(to, M_SONAME); 1400 return (error); 1401 } 1402 1403 int 1404 freebsd32_recvfrom(struct thread *td, 1405 struct freebsd32_recvfrom_args *uap) 1406 { 1407 struct msghdr msg; 1408 struct iovec aiov; 1409 int error; 1410 1411 if (uap->fromlenaddr) { 1412 error = copyin(PTRIN(uap->fromlenaddr), &msg.msg_namelen, 1413 sizeof(msg.msg_namelen)); 1414 if (error) 1415 return (error); 1416 } else { 1417 msg.msg_namelen = 0; 1418 } 1419 1420 msg.msg_name = PTRIN(uap->from); 1421 msg.msg_iov = &aiov; 1422 msg.msg_iovlen = 1; 1423 aiov.iov_base = PTRIN(uap->buf); 1424 aiov.iov_len = uap->len; 1425 msg.msg_control = NULL; 1426 msg.msg_flags = uap->flags; 1427 error = kern_recvit(td, uap->s, &msg, UIO_USERSPACE, NULL); 1428 if (error == 0 && uap->fromlenaddr) 1429 error = copyout(&msg.msg_namelen, PTRIN(uap->fromlenaddr), 1430 sizeof (msg.msg_namelen)); 1431 return (error); 1432 } 1433 1434 int 1435 freebsd32_settimeofday(struct thread *td, 1436 struct freebsd32_settimeofday_args *uap) 1437 { 1438 struct timeval32 tv32; 1439 struct timeval tv, *tvp; 1440 struct timezone tz, *tzp; 1441 int error; 1442 1443 if (uap->tv) { 1444 error = copyin(uap->tv, &tv32, sizeof(tv32)); 1445 if (error) 1446 return (error); 1447 CP(tv32, tv, tv_sec); 1448 CP(tv32, tv, tv_usec); 1449 tvp = &tv; 1450 } else 1451 tvp = NULL; 1452 if (uap->tzp) { 1453 error = copyin(uap->tzp, &tz, sizeof(tz)); 1454 if (error) 1455 return (error); 1456 tzp = &tz; 1457 } else 1458 tzp = NULL; 1459 return (kern_settimeofday(td, tvp, tzp)); 1460 } 1461 1462 int 1463 freebsd32_utimes(struct thread *td, struct freebsd32_utimes_args *uap) 1464 { 1465 struct timeval32 s32[2]; 1466 struct timeval s[2], *sp; 1467 int error; 1468 1469 if (uap->tptr != NULL) { 1470 error = copyin(uap->tptr, s32, sizeof(s32)); 1471 if (error) 1472 return (error); 1473 CP(s32[0], s[0], tv_sec); 1474 CP(s32[0], s[0], tv_usec); 1475 CP(s32[1], s[1], tv_sec); 1476 CP(s32[1], s[1], tv_usec); 1477 sp = s; 1478 } else 1479 sp = NULL; 1480 return (kern_utimesat(td, AT_FDCWD, uap->path, UIO_USERSPACE, 1481 sp, UIO_SYSSPACE)); 1482 } 1483 1484 int 1485 freebsd32_lutimes(struct thread *td, struct freebsd32_lutimes_args *uap) 1486 { 1487 struct timeval32 s32[2]; 1488 struct timeval s[2], *sp; 1489 int error; 1490 1491 if (uap->tptr != NULL) { 1492 error = copyin(uap->tptr, s32, sizeof(s32)); 1493 if (error) 1494 return (error); 1495 CP(s32[0], s[0], tv_sec); 1496 CP(s32[0], s[0], tv_usec); 1497 CP(s32[1], s[1], tv_sec); 1498 CP(s32[1], s[1], tv_usec); 1499 sp = s; 1500 } else 1501 sp = NULL; 1502 return (kern_lutimes(td, uap->path, UIO_USERSPACE, sp, UIO_SYSSPACE)); 1503 } 1504 1505 int 1506 freebsd32_futimes(struct thread *td, struct freebsd32_futimes_args *uap) 1507 { 1508 struct timeval32 s32[2]; 1509 struct timeval s[2], *sp; 1510 int error; 1511 1512 if (uap->tptr != NULL) { 1513 error = copyin(uap->tptr, s32, sizeof(s32)); 1514 if (error) 1515 return (error); 1516 CP(s32[0], s[0], tv_sec); 1517 CP(s32[0], s[0], tv_usec); 1518 CP(s32[1], s[1], tv_sec); 1519 CP(s32[1], s[1], tv_usec); 1520 sp = s; 1521 } else 1522 sp = NULL; 1523 return (kern_futimes(td, uap->fd, sp, UIO_SYSSPACE)); 1524 } 1525 1526 int 1527 freebsd32_futimesat(struct thread *td, struct freebsd32_futimesat_args *uap) 1528 { 1529 struct timeval32 s32[2]; 1530 struct timeval s[2], *sp; 1531 int error; 1532 1533 if (uap->times != NULL) { 1534 error = copyin(uap->times, s32, sizeof(s32)); 1535 if (error) 1536 return (error); 1537 CP(s32[0], s[0], tv_sec); 1538 CP(s32[0], s[0], tv_usec); 1539 CP(s32[1], s[1], tv_sec); 1540 CP(s32[1], s[1], tv_usec); 1541 sp = s; 1542 } else 1543 sp = NULL; 1544 return (kern_utimesat(td, uap->fd, uap->path, UIO_USERSPACE, 1545 sp, UIO_SYSSPACE)); 1546 } 1547 1548 int 1549 freebsd32_futimens(struct thread *td, struct freebsd32_futimens_args *uap) 1550 { 1551 struct timespec32 ts32[2]; 1552 struct timespec ts[2], *tsp; 1553 int error; 1554 1555 if (uap->times != NULL) { 1556 error = copyin(uap->times, ts32, sizeof(ts32)); 1557 if (error) 1558 return (error); 1559 CP(ts32[0], ts[0], tv_sec); 1560 CP(ts32[0], ts[0], tv_nsec); 1561 CP(ts32[1], ts[1], tv_sec); 1562 CP(ts32[1], ts[1], tv_nsec); 1563 tsp = ts; 1564 } else 1565 tsp = NULL; 1566 return (kern_futimens(td, uap->fd, tsp, UIO_SYSSPACE)); 1567 } 1568 1569 int 1570 freebsd32_utimensat(struct thread *td, struct freebsd32_utimensat_args *uap) 1571 { 1572 struct timespec32 ts32[2]; 1573 struct timespec ts[2], *tsp; 1574 int error; 1575 1576 if (uap->times != NULL) { 1577 error = copyin(uap->times, ts32, sizeof(ts32)); 1578 if (error) 1579 return (error); 1580 CP(ts32[0], ts[0], tv_sec); 1581 CP(ts32[0], ts[0], tv_nsec); 1582 CP(ts32[1], ts[1], tv_sec); 1583 CP(ts32[1], ts[1], tv_nsec); 1584 tsp = ts; 1585 } else 1586 tsp = NULL; 1587 return (kern_utimensat(td, uap->fd, uap->path, UIO_USERSPACE, 1588 tsp, UIO_SYSSPACE, uap->flag)); 1589 } 1590 1591 int 1592 freebsd32_adjtime(struct thread *td, struct freebsd32_adjtime_args *uap) 1593 { 1594 struct timeval32 tv32; 1595 struct timeval delta, olddelta, *deltap; 1596 int error; 1597 1598 if (uap->delta) { 1599 error = copyin(uap->delta, &tv32, sizeof(tv32)); 1600 if (error) 1601 return (error); 1602 CP(tv32, delta, tv_sec); 1603 CP(tv32, delta, tv_usec); 1604 deltap = δ 1605 } else 1606 deltap = NULL; 1607 error = kern_adjtime(td, deltap, &olddelta); 1608 if (uap->olddelta && error == 0) { 1609 CP(olddelta, tv32, tv_sec); 1610 CP(olddelta, tv32, tv_usec); 1611 error = copyout(&tv32, uap->olddelta, sizeof(tv32)); 1612 } 1613 return (error); 1614 } 1615 1616 #ifdef COMPAT_FREEBSD4 1617 int 1618 freebsd4_freebsd32_statfs(struct thread *td, struct freebsd4_freebsd32_statfs_args *uap) 1619 { 1620 struct statfs32 s32; 1621 struct statfs *sp; 1622 int error; 1623 1624 sp = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK); 1625 error = kern_statfs(td, uap->path, UIO_USERSPACE, sp); 1626 if (error == 0) { 1627 copy_statfs(sp, &s32); 1628 error = copyout(&s32, uap->buf, sizeof(s32)); 1629 } 1630 free(sp, M_STATFS); 1631 return (error); 1632 } 1633 #endif 1634 1635 #ifdef COMPAT_FREEBSD4 1636 int 1637 freebsd4_freebsd32_fstatfs(struct thread *td, struct freebsd4_freebsd32_fstatfs_args *uap) 1638 { 1639 struct statfs32 s32; 1640 struct statfs *sp; 1641 int error; 1642 1643 sp = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK); 1644 error = kern_fstatfs(td, uap->fd, sp); 1645 if (error == 0) { 1646 copy_statfs(sp, &s32); 1647 error = copyout(&s32, uap->buf, sizeof(s32)); 1648 } 1649 free(sp, M_STATFS); 1650 return (error); 1651 } 1652 #endif 1653 1654 #ifdef COMPAT_FREEBSD4 1655 int 1656 freebsd4_freebsd32_fhstatfs(struct thread *td, struct freebsd4_freebsd32_fhstatfs_args *uap) 1657 { 1658 struct statfs32 s32; 1659 struct statfs *sp; 1660 fhandle_t fh; 1661 int error; 1662 1663 if ((error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t))) != 0) 1664 return (error); 1665 sp = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK); 1666 error = kern_fhstatfs(td, fh, sp); 1667 if (error == 0) { 1668 copy_statfs(sp, &s32); 1669 error = copyout(&s32, uap->buf, sizeof(s32)); 1670 } 1671 free(sp, M_STATFS); 1672 return (error); 1673 } 1674 #endif 1675 1676 int 1677 freebsd32_pread(struct thread *td, struct freebsd32_pread_args *uap) 1678 { 1679 1680 return (kern_pread(td, uap->fd, uap->buf, uap->nbyte, 1681 PAIR32TO64(off_t, uap->offset))); 1682 } 1683 1684 int 1685 freebsd32_pwrite(struct thread *td, struct freebsd32_pwrite_args *uap) 1686 { 1687 1688 return (kern_pwrite(td, uap->fd, uap->buf, uap->nbyte, 1689 PAIR32TO64(off_t, uap->offset))); 1690 } 1691 1692 #ifdef COMPAT_43 1693 int 1694 ofreebsd32_lseek(struct thread *td, struct ofreebsd32_lseek_args *uap) 1695 { 1696 1697 return (kern_lseek(td, uap->fd, uap->offset, uap->whence)); 1698 } 1699 #endif 1700 1701 int 1702 freebsd32_lseek(struct thread *td, struct freebsd32_lseek_args *uap) 1703 { 1704 int error; 1705 off_t pos; 1706 1707 error = kern_lseek(td, uap->fd, PAIR32TO64(off_t, uap->offset), 1708 uap->whence); 1709 /* Expand the quad return into two parts for eax and edx */ 1710 pos = td->td_uretoff.tdu_off; 1711 td->td_retval[RETVAL_LO] = pos & 0xffffffff; /* %eax */ 1712 td->td_retval[RETVAL_HI] = pos >> 32; /* %edx */ 1713 return error; 1714 } 1715 1716 int 1717 freebsd32_truncate(struct thread *td, struct freebsd32_truncate_args *uap) 1718 { 1719 1720 return (kern_truncate(td, uap->path, UIO_USERSPACE, 1721 PAIR32TO64(off_t, uap->length))); 1722 } 1723 1724 int 1725 freebsd32_ftruncate(struct thread *td, struct freebsd32_ftruncate_args *uap) 1726 { 1727 1728 return (kern_ftruncate(td, uap->fd, PAIR32TO64(off_t, uap->length))); 1729 } 1730 1731 #ifdef COMPAT_43 1732 int 1733 ofreebsd32_getdirentries(struct thread *td, 1734 struct ofreebsd32_getdirentries_args *uap) 1735 { 1736 struct ogetdirentries_args ap; 1737 int error; 1738 long loff; 1739 int32_t loff_cut; 1740 1741 ap.fd = uap->fd; 1742 ap.buf = uap->buf; 1743 ap.count = uap->count; 1744 ap.basep = NULL; 1745 error = kern_ogetdirentries(td, &ap, &loff); 1746 if (error == 0) { 1747 loff_cut = loff; 1748 error = copyout(&loff_cut, uap->basep, sizeof(int32_t)); 1749 } 1750 return (error); 1751 } 1752 #endif 1753 1754 #if defined(COMPAT_FREEBSD11) 1755 int 1756 freebsd11_freebsd32_getdirentries(struct thread *td, 1757 struct freebsd11_freebsd32_getdirentries_args *uap) 1758 { 1759 long base; 1760 int32_t base32; 1761 int error; 1762 1763 error = freebsd11_kern_getdirentries(td, uap->fd, uap->buf, uap->count, 1764 &base, NULL); 1765 if (error) 1766 return (error); 1767 if (uap->basep != NULL) { 1768 base32 = base; 1769 error = copyout(&base32, uap->basep, sizeof(int32_t)); 1770 } 1771 return (error); 1772 } 1773 1774 int 1775 freebsd11_freebsd32_getdents(struct thread *td, 1776 struct freebsd11_freebsd32_getdents_args *uap) 1777 { 1778 struct freebsd11_freebsd32_getdirentries_args ap; 1779 1780 ap.fd = uap->fd; 1781 ap.buf = uap->buf; 1782 ap.count = uap->count; 1783 ap.basep = NULL; 1784 return (freebsd11_freebsd32_getdirentries(td, &ap)); 1785 } 1786 #endif /* COMPAT_FREEBSD11 */ 1787 1788 #ifdef COMPAT_FREEBSD6 1789 /* versions with the 'int pad' argument */ 1790 int 1791 freebsd6_freebsd32_pread(struct thread *td, struct freebsd6_freebsd32_pread_args *uap) 1792 { 1793 1794 return (kern_pread(td, uap->fd, uap->buf, uap->nbyte, 1795 PAIR32TO64(off_t, uap->offset))); 1796 } 1797 1798 int 1799 freebsd6_freebsd32_pwrite(struct thread *td, struct freebsd6_freebsd32_pwrite_args *uap) 1800 { 1801 1802 return (kern_pwrite(td, uap->fd, uap->buf, uap->nbyte, 1803 PAIR32TO64(off_t, uap->offset))); 1804 } 1805 1806 int 1807 freebsd6_freebsd32_lseek(struct thread *td, struct freebsd6_freebsd32_lseek_args *uap) 1808 { 1809 int error; 1810 off_t pos; 1811 1812 error = kern_lseek(td, uap->fd, PAIR32TO64(off_t, uap->offset), 1813 uap->whence); 1814 /* Expand the quad return into two parts for eax and edx */ 1815 pos = *(off_t *)(td->td_retval); 1816 td->td_retval[RETVAL_LO] = pos & 0xffffffff; /* %eax */ 1817 td->td_retval[RETVAL_HI] = pos >> 32; /* %edx */ 1818 return error; 1819 } 1820 1821 int 1822 freebsd6_freebsd32_truncate(struct thread *td, struct freebsd6_freebsd32_truncate_args *uap) 1823 { 1824 1825 return (kern_truncate(td, uap->path, UIO_USERSPACE, 1826 PAIR32TO64(off_t, uap->length))); 1827 } 1828 1829 int 1830 freebsd6_freebsd32_ftruncate(struct thread *td, struct freebsd6_freebsd32_ftruncate_args *uap) 1831 { 1832 1833 return (kern_ftruncate(td, uap->fd, PAIR32TO64(off_t, uap->length))); 1834 } 1835 #endif /* COMPAT_FREEBSD6 */ 1836 1837 struct sf_hdtr32 { 1838 uint32_t headers; 1839 int hdr_cnt; 1840 uint32_t trailers; 1841 int trl_cnt; 1842 }; 1843 1844 static int 1845 freebsd32_do_sendfile(struct thread *td, 1846 struct freebsd32_sendfile_args *uap, int compat) 1847 { 1848 struct sf_hdtr32 hdtr32; 1849 struct sf_hdtr hdtr; 1850 struct uio *hdr_uio, *trl_uio; 1851 struct file *fp; 1852 cap_rights_t rights; 1853 struct iovec32 *iov32; 1854 off_t offset, sbytes; 1855 int error; 1856 1857 offset = PAIR32TO64(off_t, uap->offset); 1858 if (offset < 0) 1859 return (EINVAL); 1860 1861 hdr_uio = trl_uio = NULL; 1862 1863 if (uap->hdtr != NULL) { 1864 error = copyin(uap->hdtr, &hdtr32, sizeof(hdtr32)); 1865 if (error) 1866 goto out; 1867 PTRIN_CP(hdtr32, hdtr, headers); 1868 CP(hdtr32, hdtr, hdr_cnt); 1869 PTRIN_CP(hdtr32, hdtr, trailers); 1870 CP(hdtr32, hdtr, trl_cnt); 1871 1872 if (hdtr.headers != NULL) { 1873 iov32 = PTRIN(hdtr32.headers); 1874 error = freebsd32_copyinuio(iov32, 1875 hdtr32.hdr_cnt, &hdr_uio); 1876 if (error) 1877 goto out; 1878 #ifdef COMPAT_FREEBSD4 1879 /* 1880 * In FreeBSD < 5.0 the nbytes to send also included 1881 * the header. If compat is specified subtract the 1882 * header size from nbytes. 1883 */ 1884 if (compat) { 1885 if (uap->nbytes > hdr_uio->uio_resid) 1886 uap->nbytes -= hdr_uio->uio_resid; 1887 else 1888 uap->nbytes = 0; 1889 } 1890 #endif 1891 } 1892 if (hdtr.trailers != NULL) { 1893 iov32 = PTRIN(hdtr32.trailers); 1894 error = freebsd32_copyinuio(iov32, 1895 hdtr32.trl_cnt, &trl_uio); 1896 if (error) 1897 goto out; 1898 } 1899 } 1900 1901 AUDIT_ARG_FD(uap->fd); 1902 1903 if ((error = fget_read(td, uap->fd, 1904 cap_rights_init(&rights, CAP_PREAD), &fp)) != 0) 1905 goto out; 1906 1907 error = fo_sendfile(fp, uap->s, hdr_uio, trl_uio, offset, 1908 uap->nbytes, &sbytes, uap->flags, td); 1909 fdrop(fp, td); 1910 1911 if (uap->sbytes != NULL) 1912 copyout(&sbytes, uap->sbytes, sizeof(off_t)); 1913 1914 out: 1915 if (hdr_uio) 1916 free(hdr_uio, M_IOV); 1917 if (trl_uio) 1918 free(trl_uio, M_IOV); 1919 return (error); 1920 } 1921 1922 #ifdef COMPAT_FREEBSD4 1923 int 1924 freebsd4_freebsd32_sendfile(struct thread *td, 1925 struct freebsd4_freebsd32_sendfile_args *uap) 1926 { 1927 return (freebsd32_do_sendfile(td, 1928 (struct freebsd32_sendfile_args *)uap, 1)); 1929 } 1930 #endif 1931 1932 int 1933 freebsd32_sendfile(struct thread *td, struct freebsd32_sendfile_args *uap) 1934 { 1935 1936 return (freebsd32_do_sendfile(td, uap, 0)); 1937 } 1938 1939 static void 1940 copy_stat(struct stat *in, struct stat32 *out) 1941 { 1942 1943 CP(*in, *out, st_dev); 1944 CP(*in, *out, st_ino); 1945 CP(*in, *out, st_mode); 1946 CP(*in, *out, st_nlink); 1947 CP(*in, *out, st_uid); 1948 CP(*in, *out, st_gid); 1949 CP(*in, *out, st_rdev); 1950 TS_CP(*in, *out, st_atim); 1951 TS_CP(*in, *out, st_mtim); 1952 TS_CP(*in, *out, st_ctim); 1953 CP(*in, *out, st_size); 1954 CP(*in, *out, st_blocks); 1955 CP(*in, *out, st_blksize); 1956 CP(*in, *out, st_flags); 1957 CP(*in, *out, st_gen); 1958 TS_CP(*in, *out, st_birthtim); 1959 out->st_padding0 = 0; 1960 out->st_padding1 = 0; 1961 #ifdef __STAT32_TIME_T_EXT 1962 out->st_atim_ext = 0; 1963 out->st_mtim_ext = 0; 1964 out->st_ctim_ext = 0; 1965 out->st_btim_ext = 0; 1966 #endif 1967 bzero(out->st_spare, sizeof(out->st_spare)); 1968 } 1969 1970 #ifdef COMPAT_43 1971 static void 1972 copy_ostat(struct stat *in, struct ostat32 *out) 1973 { 1974 1975 bzero(out, sizeof(*out)); 1976 CP(*in, *out, st_dev); 1977 CP(*in, *out, st_ino); 1978 CP(*in, *out, st_mode); 1979 CP(*in, *out, st_nlink); 1980 CP(*in, *out, st_uid); 1981 CP(*in, *out, st_gid); 1982 CP(*in, *out, st_rdev); 1983 out->st_size = MIN(in->st_size, INT32_MAX); 1984 TS_CP(*in, *out, st_atim); 1985 TS_CP(*in, *out, st_mtim); 1986 TS_CP(*in, *out, st_ctim); 1987 CP(*in, *out, st_blksize); 1988 CP(*in, *out, st_blocks); 1989 CP(*in, *out, st_flags); 1990 CP(*in, *out, st_gen); 1991 } 1992 #endif 1993 1994 #ifdef COMPAT_43 1995 int 1996 ofreebsd32_stat(struct thread *td, struct ofreebsd32_stat_args *uap) 1997 { 1998 struct stat sb; 1999 struct ostat32 sb32; 2000 int error; 2001 2002 error = kern_statat(td, 0, AT_FDCWD, uap->path, UIO_USERSPACE, 2003 &sb, NULL); 2004 if (error) 2005 return (error); 2006 copy_ostat(&sb, &sb32); 2007 error = copyout(&sb32, uap->ub, sizeof (sb32)); 2008 return (error); 2009 } 2010 #endif 2011 2012 int 2013 freebsd32_fstat(struct thread *td, struct freebsd32_fstat_args *uap) 2014 { 2015 struct stat ub; 2016 struct stat32 ub32; 2017 int error; 2018 2019 error = kern_fstat(td, uap->fd, &ub); 2020 if (error) 2021 return (error); 2022 copy_stat(&ub, &ub32); 2023 error = copyout(&ub32, uap->ub, sizeof(ub32)); 2024 return (error); 2025 } 2026 2027 #ifdef COMPAT_43 2028 int 2029 ofreebsd32_fstat(struct thread *td, struct ofreebsd32_fstat_args *uap) 2030 { 2031 struct stat ub; 2032 struct ostat32 ub32; 2033 int error; 2034 2035 error = kern_fstat(td, uap->fd, &ub); 2036 if (error) 2037 return (error); 2038 copy_ostat(&ub, &ub32); 2039 error = copyout(&ub32, uap->ub, sizeof(ub32)); 2040 return (error); 2041 } 2042 #endif 2043 2044 int 2045 freebsd32_fstatat(struct thread *td, struct freebsd32_fstatat_args *uap) 2046 { 2047 struct stat ub; 2048 struct stat32 ub32; 2049 int error; 2050 2051 error = kern_statat(td, uap->flag, uap->fd, uap->path, UIO_USERSPACE, 2052 &ub, NULL); 2053 if (error) 2054 return (error); 2055 copy_stat(&ub, &ub32); 2056 error = copyout(&ub32, uap->buf, sizeof(ub32)); 2057 return (error); 2058 } 2059 2060 #ifdef COMPAT_43 2061 int 2062 ofreebsd32_lstat(struct thread *td, struct ofreebsd32_lstat_args *uap) 2063 { 2064 struct stat sb; 2065 struct ostat32 sb32; 2066 int error; 2067 2068 error = kern_statat(td, AT_SYMLINK_NOFOLLOW, AT_FDCWD, uap->path, 2069 UIO_USERSPACE, &sb, NULL); 2070 if (error) 2071 return (error); 2072 copy_ostat(&sb, &sb32); 2073 error = copyout(&sb32, uap->ub, sizeof (sb32)); 2074 return (error); 2075 } 2076 #endif 2077 2078 int 2079 freebsd32_fhstat(struct thread *td, struct freebsd32_fhstat_args *uap) 2080 { 2081 struct stat sb; 2082 struct stat32 sb32; 2083 struct fhandle fh; 2084 int error; 2085 2086 error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t)); 2087 if (error != 0) 2088 return (error); 2089 error = kern_fhstat(td, fh, &sb); 2090 if (error != 0) 2091 return (error); 2092 copy_stat(&sb, &sb32); 2093 error = copyout(&sb32, uap->sb, sizeof (sb32)); 2094 return (error); 2095 } 2096 2097 #if defined(COMPAT_FREEBSD11) 2098 extern int ino64_trunc_error; 2099 2100 static int 2101 freebsd11_cvtstat32(struct stat *in, struct freebsd11_stat32 *out) 2102 { 2103 2104 CP(*in, *out, st_ino); 2105 if (in->st_ino != out->st_ino) { 2106 switch (ino64_trunc_error) { 2107 default: 2108 case 0: 2109 break; 2110 case 1: 2111 return (EOVERFLOW); 2112 case 2: 2113 out->st_ino = UINT32_MAX; 2114 break; 2115 } 2116 } 2117 CP(*in, *out, st_nlink); 2118 if (in->st_nlink != out->st_nlink) { 2119 switch (ino64_trunc_error) { 2120 default: 2121 case 0: 2122 break; 2123 case 1: 2124 return (EOVERFLOW); 2125 case 2: 2126 out->st_nlink = UINT16_MAX; 2127 break; 2128 } 2129 } 2130 out->st_dev = in->st_dev; 2131 if (out->st_dev != in->st_dev) { 2132 switch (ino64_trunc_error) { 2133 default: 2134 break; 2135 case 1: 2136 return (EOVERFLOW); 2137 } 2138 } 2139 CP(*in, *out, st_mode); 2140 CP(*in, *out, st_uid); 2141 CP(*in, *out, st_gid); 2142 out->st_rdev = in->st_rdev; 2143 if (out->st_rdev != in->st_rdev) { 2144 switch (ino64_trunc_error) { 2145 default: 2146 break; 2147 case 1: 2148 return (EOVERFLOW); 2149 } 2150 } 2151 TS_CP(*in, *out, st_atim); 2152 TS_CP(*in, *out, st_mtim); 2153 TS_CP(*in, *out, st_ctim); 2154 CP(*in, *out, st_size); 2155 CP(*in, *out, st_blocks); 2156 CP(*in, *out, st_blksize); 2157 CP(*in, *out, st_flags); 2158 CP(*in, *out, st_gen); 2159 TS_CP(*in, *out, st_birthtim); 2160 out->st_lspare = 0; 2161 bzero((char *)&out->st_birthtim + sizeof(out->st_birthtim), 2162 sizeof(*out) - offsetof(struct freebsd11_stat32, 2163 st_birthtim) - sizeof(out->st_birthtim)); 2164 return (0); 2165 } 2166 2167 int 2168 freebsd11_freebsd32_stat(struct thread *td, 2169 struct freebsd11_freebsd32_stat_args *uap) 2170 { 2171 struct stat sb; 2172 struct freebsd11_stat32 sb32; 2173 int error; 2174 2175 error = kern_statat(td, 0, AT_FDCWD, uap->path, UIO_USERSPACE, 2176 &sb, NULL); 2177 if (error != 0) 2178 return (error); 2179 error = freebsd11_cvtstat32(&sb, &sb32); 2180 if (error == 0) 2181 error = copyout(&sb32, uap->ub, sizeof (sb32)); 2182 return (error); 2183 } 2184 2185 int 2186 freebsd11_freebsd32_fstat(struct thread *td, 2187 struct freebsd11_freebsd32_fstat_args *uap) 2188 { 2189 struct stat sb; 2190 struct freebsd11_stat32 sb32; 2191 int error; 2192 2193 error = kern_fstat(td, uap->fd, &sb); 2194 if (error != 0) 2195 return (error); 2196 error = freebsd11_cvtstat32(&sb, &sb32); 2197 if (error == 0) 2198 error = copyout(&sb32, uap->ub, sizeof (sb32)); 2199 return (error); 2200 } 2201 2202 int 2203 freebsd11_freebsd32_fstatat(struct thread *td, 2204 struct freebsd11_freebsd32_fstatat_args *uap) 2205 { 2206 struct stat sb; 2207 struct freebsd11_stat32 sb32; 2208 int error; 2209 2210 error = kern_statat(td, uap->flag, uap->fd, uap->path, UIO_USERSPACE, 2211 &sb, NULL); 2212 if (error != 0) 2213 return (error); 2214 error = freebsd11_cvtstat32(&sb, &sb32); 2215 if (error == 0) 2216 error = copyout(&sb32, uap->buf, sizeof (sb32)); 2217 return (error); 2218 } 2219 2220 int 2221 freebsd11_freebsd32_lstat(struct thread *td, 2222 struct freebsd11_freebsd32_lstat_args *uap) 2223 { 2224 struct stat sb; 2225 struct freebsd11_stat32 sb32; 2226 int error; 2227 2228 error = kern_statat(td, AT_SYMLINK_NOFOLLOW, AT_FDCWD, uap->path, 2229 UIO_USERSPACE, &sb, NULL); 2230 if (error != 0) 2231 return (error); 2232 error = freebsd11_cvtstat32(&sb, &sb32); 2233 if (error == 0) 2234 error = copyout(&sb32, uap->ub, sizeof (sb32)); 2235 return (error); 2236 } 2237 2238 int 2239 freebsd11_freebsd32_fhstat(struct thread *td, 2240 struct freebsd11_freebsd32_fhstat_args *uap) 2241 { 2242 struct stat sb; 2243 struct freebsd11_stat32 sb32; 2244 struct fhandle fh; 2245 int error; 2246 2247 error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t)); 2248 if (error != 0) 2249 return (error); 2250 error = kern_fhstat(td, fh, &sb); 2251 if (error != 0) 2252 return (error); 2253 error = freebsd11_cvtstat32(&sb, &sb32); 2254 if (error == 0) 2255 error = copyout(&sb32, uap->sb, sizeof (sb32)); 2256 return (error); 2257 } 2258 #endif 2259 2260 int 2261 freebsd32_sysctl(struct thread *td, struct freebsd32_sysctl_args *uap) 2262 { 2263 int error, name[CTL_MAXNAME]; 2264 size_t j, oldlen; 2265 uint32_t tmp; 2266 2267 if (uap->namelen > CTL_MAXNAME || uap->namelen < 2) 2268 return (EINVAL); 2269 error = copyin(uap->name, name, uap->namelen * sizeof(int)); 2270 if (error) 2271 return (error); 2272 if (uap->oldlenp) { 2273 error = fueword32(uap->oldlenp, &tmp); 2274 oldlen = tmp; 2275 } else { 2276 oldlen = 0; 2277 } 2278 if (error != 0) 2279 return (EFAULT); 2280 error = userland_sysctl(td, name, uap->namelen, 2281 uap->old, &oldlen, 1, 2282 uap->new, uap->newlen, &j, SCTL_MASK32); 2283 if (error) 2284 return (error); 2285 if (uap->oldlenp) 2286 suword32(uap->oldlenp, j); 2287 return (0); 2288 } 2289 2290 int 2291 freebsd32_jail(struct thread *td, struct freebsd32_jail_args *uap) 2292 { 2293 uint32_t version; 2294 int error; 2295 struct jail j; 2296 2297 error = copyin(uap->jail, &version, sizeof(uint32_t)); 2298 if (error) 2299 return (error); 2300 2301 switch (version) { 2302 case 0: 2303 { 2304 /* FreeBSD single IPv4 jails. */ 2305 struct jail32_v0 j32_v0; 2306 2307 bzero(&j, sizeof(struct jail)); 2308 error = copyin(uap->jail, &j32_v0, sizeof(struct jail32_v0)); 2309 if (error) 2310 return (error); 2311 CP(j32_v0, j, version); 2312 PTRIN_CP(j32_v0, j, path); 2313 PTRIN_CP(j32_v0, j, hostname); 2314 j.ip4s = htonl(j32_v0.ip_number); /* jail_v0 is host order */ 2315 break; 2316 } 2317 2318 case 1: 2319 /* 2320 * Version 1 was used by multi-IPv4 jail implementations 2321 * that never made it into the official kernel. 2322 */ 2323 return (EINVAL); 2324 2325 case 2: /* JAIL_API_VERSION */ 2326 { 2327 /* FreeBSD multi-IPv4/IPv6,noIP jails. */ 2328 struct jail32 j32; 2329 2330 error = copyin(uap->jail, &j32, sizeof(struct jail32)); 2331 if (error) 2332 return (error); 2333 CP(j32, j, version); 2334 PTRIN_CP(j32, j, path); 2335 PTRIN_CP(j32, j, hostname); 2336 PTRIN_CP(j32, j, jailname); 2337 CP(j32, j, ip4s); 2338 CP(j32, j, ip6s); 2339 PTRIN_CP(j32, j, ip4); 2340 PTRIN_CP(j32, j, ip6); 2341 break; 2342 } 2343 2344 default: 2345 /* Sci-Fi jails are not supported, sorry. */ 2346 return (EINVAL); 2347 } 2348 return (kern_jail(td, &j)); 2349 } 2350 2351 int 2352 freebsd32_jail_set(struct thread *td, struct freebsd32_jail_set_args *uap) 2353 { 2354 struct uio *auio; 2355 int error; 2356 2357 /* Check that we have an even number of iovecs. */ 2358 if (uap->iovcnt & 1) 2359 return (EINVAL); 2360 2361 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 2362 if (error) 2363 return (error); 2364 error = kern_jail_set(td, auio, uap->flags); 2365 free(auio, M_IOV); 2366 return (error); 2367 } 2368 2369 int 2370 freebsd32_jail_get(struct thread *td, struct freebsd32_jail_get_args *uap) 2371 { 2372 struct iovec32 iov32; 2373 struct uio *auio; 2374 int error, i; 2375 2376 /* Check that we have an even number of iovecs. */ 2377 if (uap->iovcnt & 1) 2378 return (EINVAL); 2379 2380 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 2381 if (error) 2382 return (error); 2383 error = kern_jail_get(td, auio, uap->flags); 2384 if (error == 0) 2385 for (i = 0; i < uap->iovcnt; i++) { 2386 PTROUT_CP(auio->uio_iov[i], iov32, iov_base); 2387 CP(auio->uio_iov[i], iov32, iov_len); 2388 error = copyout(&iov32, uap->iovp + i, sizeof(iov32)); 2389 if (error != 0) 2390 break; 2391 } 2392 free(auio, M_IOV); 2393 return (error); 2394 } 2395 2396 int 2397 freebsd32_sigaction(struct thread *td, struct freebsd32_sigaction_args *uap) 2398 { 2399 struct sigaction32 s32; 2400 struct sigaction sa, osa, *sap; 2401 int error; 2402 2403 if (uap->act) { 2404 error = copyin(uap->act, &s32, sizeof(s32)); 2405 if (error) 2406 return (error); 2407 sa.sa_handler = PTRIN(s32.sa_u); 2408 CP(s32, sa, sa_flags); 2409 CP(s32, sa, sa_mask); 2410 sap = &sa; 2411 } else 2412 sap = NULL; 2413 error = kern_sigaction(td, uap->sig, sap, &osa, 0); 2414 if (error == 0 && uap->oact != NULL) { 2415 s32.sa_u = PTROUT(osa.sa_handler); 2416 CP(osa, s32, sa_flags); 2417 CP(osa, s32, sa_mask); 2418 error = copyout(&s32, uap->oact, sizeof(s32)); 2419 } 2420 return (error); 2421 } 2422 2423 #ifdef COMPAT_FREEBSD4 2424 int 2425 freebsd4_freebsd32_sigaction(struct thread *td, 2426 struct freebsd4_freebsd32_sigaction_args *uap) 2427 { 2428 struct sigaction32 s32; 2429 struct sigaction sa, osa, *sap; 2430 int error; 2431 2432 if (uap->act) { 2433 error = copyin(uap->act, &s32, sizeof(s32)); 2434 if (error) 2435 return (error); 2436 sa.sa_handler = PTRIN(s32.sa_u); 2437 CP(s32, sa, sa_flags); 2438 CP(s32, sa, sa_mask); 2439 sap = &sa; 2440 } else 2441 sap = NULL; 2442 error = kern_sigaction(td, uap->sig, sap, &osa, KSA_FREEBSD4); 2443 if (error == 0 && uap->oact != NULL) { 2444 s32.sa_u = PTROUT(osa.sa_handler); 2445 CP(osa, s32, sa_flags); 2446 CP(osa, s32, sa_mask); 2447 error = copyout(&s32, uap->oact, sizeof(s32)); 2448 } 2449 return (error); 2450 } 2451 #endif 2452 2453 #ifdef COMPAT_43 2454 struct osigaction32 { 2455 u_int32_t sa_u; 2456 osigset_t sa_mask; 2457 int sa_flags; 2458 }; 2459 2460 #define ONSIG 32 2461 2462 int 2463 ofreebsd32_sigaction(struct thread *td, 2464 struct ofreebsd32_sigaction_args *uap) 2465 { 2466 struct osigaction32 s32; 2467 struct sigaction sa, osa, *sap; 2468 int error; 2469 2470 if (uap->signum <= 0 || uap->signum >= ONSIG) 2471 return (EINVAL); 2472 2473 if (uap->nsa) { 2474 error = copyin(uap->nsa, &s32, sizeof(s32)); 2475 if (error) 2476 return (error); 2477 sa.sa_handler = PTRIN(s32.sa_u); 2478 CP(s32, sa, sa_flags); 2479 OSIG2SIG(s32.sa_mask, sa.sa_mask); 2480 sap = &sa; 2481 } else 2482 sap = NULL; 2483 error = kern_sigaction(td, uap->signum, sap, &osa, KSA_OSIGSET); 2484 if (error == 0 && uap->osa != NULL) { 2485 s32.sa_u = PTROUT(osa.sa_handler); 2486 CP(osa, s32, sa_flags); 2487 SIG2OSIG(osa.sa_mask, s32.sa_mask); 2488 error = copyout(&s32, uap->osa, sizeof(s32)); 2489 } 2490 return (error); 2491 } 2492 2493 int 2494 ofreebsd32_sigprocmask(struct thread *td, 2495 struct ofreebsd32_sigprocmask_args *uap) 2496 { 2497 sigset_t set, oset; 2498 int error; 2499 2500 OSIG2SIG(uap->mask, set); 2501 error = kern_sigprocmask(td, uap->how, &set, &oset, SIGPROCMASK_OLD); 2502 SIG2OSIG(oset, td->td_retval[0]); 2503 return (error); 2504 } 2505 2506 int 2507 ofreebsd32_sigpending(struct thread *td, 2508 struct ofreebsd32_sigpending_args *uap) 2509 { 2510 struct proc *p = td->td_proc; 2511 sigset_t siglist; 2512 2513 PROC_LOCK(p); 2514 siglist = p->p_siglist; 2515 SIGSETOR(siglist, td->td_siglist); 2516 PROC_UNLOCK(p); 2517 SIG2OSIG(siglist, td->td_retval[0]); 2518 return (0); 2519 } 2520 2521 struct sigvec32 { 2522 u_int32_t sv_handler; 2523 int sv_mask; 2524 int sv_flags; 2525 }; 2526 2527 int 2528 ofreebsd32_sigvec(struct thread *td, 2529 struct ofreebsd32_sigvec_args *uap) 2530 { 2531 struct sigvec32 vec; 2532 struct sigaction sa, osa, *sap; 2533 int error; 2534 2535 if (uap->signum <= 0 || uap->signum >= ONSIG) 2536 return (EINVAL); 2537 2538 if (uap->nsv) { 2539 error = copyin(uap->nsv, &vec, sizeof(vec)); 2540 if (error) 2541 return (error); 2542 sa.sa_handler = PTRIN(vec.sv_handler); 2543 OSIG2SIG(vec.sv_mask, sa.sa_mask); 2544 sa.sa_flags = vec.sv_flags; 2545 sa.sa_flags ^= SA_RESTART; 2546 sap = &sa; 2547 } else 2548 sap = NULL; 2549 error = kern_sigaction(td, uap->signum, sap, &osa, KSA_OSIGSET); 2550 if (error == 0 && uap->osv != NULL) { 2551 vec.sv_handler = PTROUT(osa.sa_handler); 2552 SIG2OSIG(osa.sa_mask, vec.sv_mask); 2553 vec.sv_flags = osa.sa_flags; 2554 vec.sv_flags &= ~SA_NOCLDWAIT; 2555 vec.sv_flags ^= SA_RESTART; 2556 error = copyout(&vec, uap->osv, sizeof(vec)); 2557 } 2558 return (error); 2559 } 2560 2561 int 2562 ofreebsd32_sigblock(struct thread *td, 2563 struct ofreebsd32_sigblock_args *uap) 2564 { 2565 sigset_t set, oset; 2566 2567 OSIG2SIG(uap->mask, set); 2568 kern_sigprocmask(td, SIG_BLOCK, &set, &oset, 0); 2569 SIG2OSIG(oset, td->td_retval[0]); 2570 return (0); 2571 } 2572 2573 int 2574 ofreebsd32_sigsetmask(struct thread *td, 2575 struct ofreebsd32_sigsetmask_args *uap) 2576 { 2577 sigset_t set, oset; 2578 2579 OSIG2SIG(uap->mask, set); 2580 kern_sigprocmask(td, SIG_SETMASK, &set, &oset, 0); 2581 SIG2OSIG(oset, td->td_retval[0]); 2582 return (0); 2583 } 2584 2585 int 2586 ofreebsd32_sigsuspend(struct thread *td, 2587 struct ofreebsd32_sigsuspend_args *uap) 2588 { 2589 sigset_t mask; 2590 2591 OSIG2SIG(uap->mask, mask); 2592 return (kern_sigsuspend(td, mask)); 2593 } 2594 2595 struct sigstack32 { 2596 u_int32_t ss_sp; 2597 int ss_onstack; 2598 }; 2599 2600 int 2601 ofreebsd32_sigstack(struct thread *td, 2602 struct ofreebsd32_sigstack_args *uap) 2603 { 2604 struct sigstack32 s32; 2605 struct sigstack nss, oss; 2606 int error = 0, unss; 2607 2608 if (uap->nss != NULL) { 2609 error = copyin(uap->nss, &s32, sizeof(s32)); 2610 if (error) 2611 return (error); 2612 nss.ss_sp = PTRIN(s32.ss_sp); 2613 CP(s32, nss, ss_onstack); 2614 unss = 1; 2615 } else { 2616 unss = 0; 2617 } 2618 oss.ss_sp = td->td_sigstk.ss_sp; 2619 oss.ss_onstack = sigonstack(cpu_getstack(td)); 2620 if (unss) { 2621 td->td_sigstk.ss_sp = nss.ss_sp; 2622 td->td_sigstk.ss_size = 0; 2623 td->td_sigstk.ss_flags |= (nss.ss_onstack & SS_ONSTACK); 2624 td->td_pflags |= TDP_ALTSTACK; 2625 } 2626 if (uap->oss != NULL) { 2627 s32.ss_sp = PTROUT(oss.ss_sp); 2628 CP(oss, s32, ss_onstack); 2629 error = copyout(&s32, uap->oss, sizeof(s32)); 2630 } 2631 return (error); 2632 } 2633 #endif 2634 2635 int 2636 freebsd32_nanosleep(struct thread *td, struct freebsd32_nanosleep_args *uap) 2637 { 2638 2639 return (freebsd32_user_clock_nanosleep(td, CLOCK_REALTIME, 2640 TIMER_RELTIME, uap->rqtp, uap->rmtp)); 2641 } 2642 2643 int 2644 freebsd32_clock_nanosleep(struct thread *td, 2645 struct freebsd32_clock_nanosleep_args *uap) 2646 { 2647 int error; 2648 2649 error = freebsd32_user_clock_nanosleep(td, uap->clock_id, uap->flags, 2650 uap->rqtp, uap->rmtp); 2651 return (kern_posix_error(td, error)); 2652 } 2653 2654 static int 2655 freebsd32_user_clock_nanosleep(struct thread *td, clockid_t clock_id, 2656 int flags, const struct timespec32 *ua_rqtp, struct timespec32 *ua_rmtp) 2657 { 2658 struct timespec32 rmt32, rqt32; 2659 struct timespec rmt, rqt; 2660 int error; 2661 2662 error = copyin(ua_rqtp, &rqt32, sizeof(rqt32)); 2663 if (error) 2664 return (error); 2665 2666 CP(rqt32, rqt, tv_sec); 2667 CP(rqt32, rqt, tv_nsec); 2668 2669 if (ua_rmtp != NULL && (flags & TIMER_ABSTIME) == 0 && 2670 !useracc(ua_rmtp, sizeof(rmt32), VM_PROT_WRITE)) 2671 return (EFAULT); 2672 error = kern_clock_nanosleep(td, clock_id, flags, &rqt, &rmt); 2673 if (error == EINTR && ua_rmtp != NULL && (flags & TIMER_ABSTIME) == 0) { 2674 int error2; 2675 2676 CP(rmt, rmt32, tv_sec); 2677 CP(rmt, rmt32, tv_nsec); 2678 2679 error2 = copyout(&rmt32, ua_rmtp, sizeof(rmt32)); 2680 if (error2) 2681 error = error2; 2682 } 2683 return (error); 2684 } 2685 2686 int 2687 freebsd32_clock_gettime(struct thread *td, 2688 struct freebsd32_clock_gettime_args *uap) 2689 { 2690 struct timespec ats; 2691 struct timespec32 ats32; 2692 int error; 2693 2694 error = kern_clock_gettime(td, uap->clock_id, &ats); 2695 if (error == 0) { 2696 CP(ats, ats32, tv_sec); 2697 CP(ats, ats32, tv_nsec); 2698 error = copyout(&ats32, uap->tp, sizeof(ats32)); 2699 } 2700 return (error); 2701 } 2702 2703 int 2704 freebsd32_clock_settime(struct thread *td, 2705 struct freebsd32_clock_settime_args *uap) 2706 { 2707 struct timespec ats; 2708 struct timespec32 ats32; 2709 int error; 2710 2711 error = copyin(uap->tp, &ats32, sizeof(ats32)); 2712 if (error) 2713 return (error); 2714 CP(ats32, ats, tv_sec); 2715 CP(ats32, ats, tv_nsec); 2716 2717 return (kern_clock_settime(td, uap->clock_id, &ats)); 2718 } 2719 2720 int 2721 freebsd32_clock_getres(struct thread *td, 2722 struct freebsd32_clock_getres_args *uap) 2723 { 2724 struct timespec ts; 2725 struct timespec32 ts32; 2726 int error; 2727 2728 if (uap->tp == NULL) 2729 return (0); 2730 error = kern_clock_getres(td, uap->clock_id, &ts); 2731 if (error == 0) { 2732 CP(ts, ts32, tv_sec); 2733 CP(ts, ts32, tv_nsec); 2734 error = copyout(&ts32, uap->tp, sizeof(ts32)); 2735 } 2736 return (error); 2737 } 2738 2739 int freebsd32_ktimer_create(struct thread *td, 2740 struct freebsd32_ktimer_create_args *uap) 2741 { 2742 struct sigevent32 ev32; 2743 struct sigevent ev, *evp; 2744 int error, id; 2745 2746 if (uap->evp == NULL) { 2747 evp = NULL; 2748 } else { 2749 evp = &ev; 2750 error = copyin(uap->evp, &ev32, sizeof(ev32)); 2751 if (error != 0) 2752 return (error); 2753 error = convert_sigevent32(&ev32, &ev); 2754 if (error != 0) 2755 return (error); 2756 } 2757 error = kern_ktimer_create(td, uap->clock_id, evp, &id, -1); 2758 if (error == 0) { 2759 error = copyout(&id, uap->timerid, sizeof(int)); 2760 if (error != 0) 2761 kern_ktimer_delete(td, id); 2762 } 2763 return (error); 2764 } 2765 2766 int 2767 freebsd32_ktimer_settime(struct thread *td, 2768 struct freebsd32_ktimer_settime_args *uap) 2769 { 2770 struct itimerspec32 val32, oval32; 2771 struct itimerspec val, oval, *ovalp; 2772 int error; 2773 2774 error = copyin(uap->value, &val32, sizeof(val32)); 2775 if (error != 0) 2776 return (error); 2777 ITS_CP(val32, val); 2778 ovalp = uap->ovalue != NULL ? &oval : NULL; 2779 error = kern_ktimer_settime(td, uap->timerid, uap->flags, &val, ovalp); 2780 if (error == 0 && uap->ovalue != NULL) { 2781 ITS_CP(oval, oval32); 2782 error = copyout(&oval32, uap->ovalue, sizeof(oval32)); 2783 } 2784 return (error); 2785 } 2786 2787 int 2788 freebsd32_ktimer_gettime(struct thread *td, 2789 struct freebsd32_ktimer_gettime_args *uap) 2790 { 2791 struct itimerspec32 val32; 2792 struct itimerspec val; 2793 int error; 2794 2795 error = kern_ktimer_gettime(td, uap->timerid, &val); 2796 if (error == 0) { 2797 ITS_CP(val, val32); 2798 error = copyout(&val32, uap->value, sizeof(val32)); 2799 } 2800 return (error); 2801 } 2802 2803 int 2804 freebsd32_clock_getcpuclockid2(struct thread *td, 2805 struct freebsd32_clock_getcpuclockid2_args *uap) 2806 { 2807 clockid_t clk_id; 2808 int error; 2809 2810 error = kern_clock_getcpuclockid2(td, PAIR32TO64(id_t, uap->id), 2811 uap->which, &clk_id); 2812 if (error == 0) 2813 error = copyout(&clk_id, uap->clock_id, sizeof(clockid_t)); 2814 return (error); 2815 } 2816 2817 int 2818 freebsd32_thr_new(struct thread *td, 2819 struct freebsd32_thr_new_args *uap) 2820 { 2821 struct thr_param32 param32; 2822 struct thr_param param; 2823 int error; 2824 2825 if (uap->param_size < 0 || 2826 uap->param_size > sizeof(struct thr_param32)) 2827 return (EINVAL); 2828 bzero(¶m, sizeof(struct thr_param)); 2829 bzero(¶m32, sizeof(struct thr_param32)); 2830 error = copyin(uap->param, ¶m32, uap->param_size); 2831 if (error != 0) 2832 return (error); 2833 param.start_func = PTRIN(param32.start_func); 2834 param.arg = PTRIN(param32.arg); 2835 param.stack_base = PTRIN(param32.stack_base); 2836 param.stack_size = param32.stack_size; 2837 param.tls_base = PTRIN(param32.tls_base); 2838 param.tls_size = param32.tls_size; 2839 param.child_tid = PTRIN(param32.child_tid); 2840 param.parent_tid = PTRIN(param32.parent_tid); 2841 param.flags = param32.flags; 2842 param.rtp = PTRIN(param32.rtp); 2843 param.spare[0] = PTRIN(param32.spare[0]); 2844 param.spare[1] = PTRIN(param32.spare[1]); 2845 param.spare[2] = PTRIN(param32.spare[2]); 2846 2847 return (kern_thr_new(td, ¶m)); 2848 } 2849 2850 int 2851 freebsd32_thr_suspend(struct thread *td, struct freebsd32_thr_suspend_args *uap) 2852 { 2853 struct timespec32 ts32; 2854 struct timespec ts, *tsp; 2855 int error; 2856 2857 error = 0; 2858 tsp = NULL; 2859 if (uap->timeout != NULL) { 2860 error = copyin((const void *)uap->timeout, (void *)&ts32, 2861 sizeof(struct timespec32)); 2862 if (error != 0) 2863 return (error); 2864 ts.tv_sec = ts32.tv_sec; 2865 ts.tv_nsec = ts32.tv_nsec; 2866 tsp = &ts; 2867 } 2868 return (kern_thr_suspend(td, tsp)); 2869 } 2870 2871 void 2872 siginfo_to_siginfo32(const siginfo_t *src, struct siginfo32 *dst) 2873 { 2874 bzero(dst, sizeof(*dst)); 2875 dst->si_signo = src->si_signo; 2876 dst->si_errno = src->si_errno; 2877 dst->si_code = src->si_code; 2878 dst->si_pid = src->si_pid; 2879 dst->si_uid = src->si_uid; 2880 dst->si_status = src->si_status; 2881 dst->si_addr = (uintptr_t)src->si_addr; 2882 dst->si_value.sival_int = src->si_value.sival_int; 2883 dst->si_timerid = src->si_timerid; 2884 dst->si_overrun = src->si_overrun; 2885 } 2886 2887 #ifndef _FREEBSD32_SYSPROTO_H_ 2888 struct freebsd32_sigqueue_args { 2889 pid_t pid; 2890 int signum; 2891 /* union sigval32 */ int value; 2892 }; 2893 #endif 2894 int 2895 freebsd32_sigqueue(struct thread *td, struct freebsd32_sigqueue_args *uap) 2896 { 2897 union sigval sv; 2898 2899 /* 2900 * On 32-bit ABIs, sival_int and sival_ptr are the same. 2901 * On 64-bit little-endian ABIs, the low bits are the same. 2902 * In 64-bit big-endian ABIs, sival_int overlaps with 2903 * sival_ptr's HIGH bits. We choose to support sival_int 2904 * rather than sival_ptr in this case as it seems to be 2905 * more common. 2906 */ 2907 bzero(&sv, sizeof(sv)); 2908 sv.sival_int = uap->value; 2909 2910 return (kern_sigqueue(td, uap->pid, uap->signum, &sv)); 2911 } 2912 2913 int 2914 freebsd32_sigtimedwait(struct thread *td, struct freebsd32_sigtimedwait_args *uap) 2915 { 2916 struct timespec32 ts32; 2917 struct timespec ts; 2918 struct timespec *timeout; 2919 sigset_t set; 2920 ksiginfo_t ksi; 2921 struct siginfo32 si32; 2922 int error; 2923 2924 if (uap->timeout) { 2925 error = copyin(uap->timeout, &ts32, sizeof(ts32)); 2926 if (error) 2927 return (error); 2928 ts.tv_sec = ts32.tv_sec; 2929 ts.tv_nsec = ts32.tv_nsec; 2930 timeout = &ts; 2931 } else 2932 timeout = NULL; 2933 2934 error = copyin(uap->set, &set, sizeof(set)); 2935 if (error) 2936 return (error); 2937 2938 error = kern_sigtimedwait(td, set, &ksi, timeout); 2939 if (error) 2940 return (error); 2941 2942 if (uap->info) { 2943 siginfo_to_siginfo32(&ksi.ksi_info, &si32); 2944 error = copyout(&si32, uap->info, sizeof(struct siginfo32)); 2945 } 2946 2947 if (error == 0) 2948 td->td_retval[0] = ksi.ksi_signo; 2949 return (error); 2950 } 2951 2952 /* 2953 * MPSAFE 2954 */ 2955 int 2956 freebsd32_sigwaitinfo(struct thread *td, struct freebsd32_sigwaitinfo_args *uap) 2957 { 2958 ksiginfo_t ksi; 2959 struct siginfo32 si32; 2960 sigset_t set; 2961 int error; 2962 2963 error = copyin(uap->set, &set, sizeof(set)); 2964 if (error) 2965 return (error); 2966 2967 error = kern_sigtimedwait(td, set, &ksi, NULL); 2968 if (error) 2969 return (error); 2970 2971 if (uap->info) { 2972 siginfo_to_siginfo32(&ksi.ksi_info, &si32); 2973 error = copyout(&si32, uap->info, sizeof(struct siginfo32)); 2974 } 2975 if (error == 0) 2976 td->td_retval[0] = ksi.ksi_signo; 2977 return (error); 2978 } 2979 2980 int 2981 freebsd32_cpuset_setid(struct thread *td, 2982 struct freebsd32_cpuset_setid_args *uap) 2983 { 2984 2985 return (kern_cpuset_setid(td, uap->which, 2986 PAIR32TO64(id_t, uap->id), uap->setid)); 2987 } 2988 2989 int 2990 freebsd32_cpuset_getid(struct thread *td, 2991 struct freebsd32_cpuset_getid_args *uap) 2992 { 2993 2994 return (kern_cpuset_getid(td, uap->level, uap->which, 2995 PAIR32TO64(id_t, uap->id), uap->setid)); 2996 } 2997 2998 int 2999 freebsd32_cpuset_getaffinity(struct thread *td, 3000 struct freebsd32_cpuset_getaffinity_args *uap) 3001 { 3002 3003 return (kern_cpuset_getaffinity(td, uap->level, uap->which, 3004 PAIR32TO64(id_t,uap->id), uap->cpusetsize, uap->mask)); 3005 } 3006 3007 int 3008 freebsd32_cpuset_setaffinity(struct thread *td, 3009 struct freebsd32_cpuset_setaffinity_args *uap) 3010 { 3011 3012 return (kern_cpuset_setaffinity(td, uap->level, uap->which, 3013 PAIR32TO64(id_t,uap->id), uap->cpusetsize, uap->mask)); 3014 } 3015 3016 int 3017 freebsd32_cpuset_getdomain(struct thread *td, 3018 struct freebsd32_cpuset_getdomain_args *uap) 3019 { 3020 3021 return (kern_cpuset_getdomain(td, uap->level, uap->which, 3022 PAIR32TO64(id_t,uap->id), uap->domainsetsize, uap->mask, uap->policy)); 3023 } 3024 3025 int 3026 freebsd32_cpuset_setdomain(struct thread *td, 3027 struct freebsd32_cpuset_setdomain_args *uap) 3028 { 3029 3030 return (kern_cpuset_setdomain(td, uap->level, uap->which, 3031 PAIR32TO64(id_t,uap->id), uap->domainsetsize, uap->mask, uap->policy)); 3032 } 3033 3034 int 3035 freebsd32_nmount(struct thread *td, 3036 struct freebsd32_nmount_args /* { 3037 struct iovec *iovp; 3038 unsigned int iovcnt; 3039 int flags; 3040 } */ *uap) 3041 { 3042 struct uio *auio; 3043 uint64_t flags; 3044 int error; 3045 3046 /* 3047 * Mount flags are now 64-bits. On 32-bit archtectures only 3048 * 32-bits are passed in, but from here on everything handles 3049 * 64-bit flags correctly. 3050 */ 3051 flags = uap->flags; 3052 3053 AUDIT_ARG_FFLAGS(flags); 3054 3055 /* 3056 * Filter out MNT_ROOTFS. We do not want clients of nmount() in 3057 * userspace to set this flag, but we must filter it out if we want 3058 * MNT_UPDATE on the root file system to work. 3059 * MNT_ROOTFS should only be set by the kernel when mounting its 3060 * root file system. 3061 */ 3062 flags &= ~MNT_ROOTFS; 3063 3064 /* 3065 * check that we have an even number of iovec's 3066 * and that we have at least two options. 3067 */ 3068 if ((uap->iovcnt & 1) || (uap->iovcnt < 4)) 3069 return (EINVAL); 3070 3071 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 3072 if (error) 3073 return (error); 3074 error = vfs_donmount(td, flags, auio); 3075 3076 free(auio, M_IOV); 3077 return error; 3078 } 3079 3080 #if 0 3081 int 3082 freebsd32_xxx(struct thread *td, struct freebsd32_xxx_args *uap) 3083 { 3084 struct yyy32 *p32, s32; 3085 struct yyy *p = NULL, s; 3086 struct xxx_arg ap; 3087 int error; 3088 3089 if (uap->zzz) { 3090 error = copyin(uap->zzz, &s32, sizeof(s32)); 3091 if (error) 3092 return (error); 3093 /* translate in */ 3094 p = &s; 3095 } 3096 error = kern_xxx(td, p); 3097 if (error) 3098 return (error); 3099 if (uap->zzz) { 3100 /* translate out */ 3101 error = copyout(&s32, p32, sizeof(s32)); 3102 } 3103 return (error); 3104 } 3105 #endif 3106 3107 int 3108 syscall32_module_handler(struct module *mod, int what, void *arg) 3109 { 3110 3111 return (kern_syscall_module_handler(freebsd32_sysent, mod, what, arg)); 3112 } 3113 3114 int 3115 syscall32_helper_register(struct syscall_helper_data *sd, int flags) 3116 { 3117 3118 return (kern_syscall_helper_register(freebsd32_sysent, sd, flags)); 3119 } 3120 3121 int 3122 syscall32_helper_unregister(struct syscall_helper_data *sd) 3123 { 3124 3125 return (kern_syscall_helper_unregister(freebsd32_sysent, sd)); 3126 } 3127 3128 register_t * 3129 freebsd32_copyout_strings(struct image_params *imgp) 3130 { 3131 int argc, envc, i; 3132 u_int32_t *vectp; 3133 char *stringp; 3134 uintptr_t destp; 3135 u_int32_t *stack_base; 3136 struct freebsd32_ps_strings *arginfo; 3137 char canary[sizeof(long) * 8]; 3138 int32_t pagesizes32[MAXPAGESIZES]; 3139 size_t execpath_len; 3140 int szsigcode; 3141 3142 /* 3143 * Calculate string base and vector table pointers. 3144 * Also deal with signal trampoline code for this exec type. 3145 */ 3146 if (imgp->execpath != NULL && imgp->auxargs != NULL) 3147 execpath_len = strlen(imgp->execpath) + 1; 3148 else 3149 execpath_len = 0; 3150 arginfo = (struct freebsd32_ps_strings *)curproc->p_sysent-> 3151 sv_psstrings; 3152 if (imgp->proc->p_sysent->sv_sigcode_base == 0) 3153 szsigcode = *(imgp->proc->p_sysent->sv_szsigcode); 3154 else 3155 szsigcode = 0; 3156 destp = (uintptr_t)arginfo; 3157 3158 /* 3159 * install sigcode 3160 */ 3161 if (szsigcode != 0) { 3162 destp -= szsigcode; 3163 destp = rounddown2(destp, sizeof(uint32_t)); 3164 copyout(imgp->proc->p_sysent->sv_sigcode, (void *)destp, 3165 szsigcode); 3166 } 3167 3168 /* 3169 * Copy the image path for the rtld. 3170 */ 3171 if (execpath_len != 0) { 3172 destp -= execpath_len; 3173 imgp->execpathp = destp; 3174 copyout(imgp->execpath, (void *)destp, execpath_len); 3175 } 3176 3177 /* 3178 * Prepare the canary for SSP. 3179 */ 3180 arc4rand(canary, sizeof(canary), 0); 3181 destp -= sizeof(canary); 3182 imgp->canary = destp; 3183 copyout(canary, (void *)destp, sizeof(canary)); 3184 imgp->canarylen = sizeof(canary); 3185 3186 /* 3187 * Prepare the pagesizes array. 3188 */ 3189 for (i = 0; i < MAXPAGESIZES; i++) 3190 pagesizes32[i] = (uint32_t)pagesizes[i]; 3191 destp -= sizeof(pagesizes32); 3192 destp = rounddown2(destp, sizeof(uint32_t)); 3193 imgp->pagesizes = destp; 3194 copyout(pagesizes32, (void *)destp, sizeof(pagesizes32)); 3195 imgp->pagesizeslen = sizeof(pagesizes32); 3196 3197 destp -= ARG_MAX - imgp->args->stringspace; 3198 destp = rounddown2(destp, sizeof(uint32_t)); 3199 3200 vectp = (uint32_t *)destp; 3201 if (imgp->auxargs) { 3202 /* 3203 * Allocate room on the stack for the ELF auxargs 3204 * array. It has up to AT_COUNT entries. 3205 */ 3206 vectp -= howmany(AT_COUNT * sizeof(Elf32_Auxinfo), 3207 sizeof(*vectp)); 3208 } 3209 3210 /* 3211 * Allocate room for the argv[] and env vectors including the 3212 * terminating NULL pointers. 3213 */ 3214 vectp -= imgp->args->argc + 1 + imgp->args->envc + 1; 3215 3216 /* 3217 * vectp also becomes our initial stack base 3218 */ 3219 stack_base = vectp; 3220 3221 stringp = imgp->args->begin_argv; 3222 argc = imgp->args->argc; 3223 envc = imgp->args->envc; 3224 /* 3225 * Copy out strings - arguments and environment. 3226 */ 3227 copyout(stringp, (void *)destp, ARG_MAX - imgp->args->stringspace); 3228 3229 /* 3230 * Fill in "ps_strings" struct for ps, w, etc. 3231 */ 3232 suword32(&arginfo->ps_argvstr, (u_int32_t)(intptr_t)vectp); 3233 suword32(&arginfo->ps_nargvstr, argc); 3234 3235 /* 3236 * Fill in argument portion of vector table. 3237 */ 3238 for (; argc > 0; --argc) { 3239 suword32(vectp++, (u_int32_t)(intptr_t)destp); 3240 while (*stringp++ != 0) 3241 destp++; 3242 destp++; 3243 } 3244 3245 /* a null vector table pointer separates the argp's from the envp's */ 3246 suword32(vectp++, 0); 3247 3248 suword32(&arginfo->ps_envstr, (u_int32_t)(intptr_t)vectp); 3249 suword32(&arginfo->ps_nenvstr, envc); 3250 3251 /* 3252 * Fill in environment portion of vector table. 3253 */ 3254 for (; envc > 0; --envc) { 3255 suword32(vectp++, (u_int32_t)(intptr_t)destp); 3256 while (*stringp++ != 0) 3257 destp++; 3258 destp++; 3259 } 3260 3261 /* end of vector table is a null pointer */ 3262 suword32(vectp, 0); 3263 3264 return ((register_t *)stack_base); 3265 } 3266 3267 int 3268 freebsd32_kldstat(struct thread *td, struct freebsd32_kldstat_args *uap) 3269 { 3270 struct kld_file_stat *stat; 3271 struct kld32_file_stat *stat32; 3272 int error, version; 3273 3274 if ((error = copyin(&uap->stat->version, &version, sizeof(version))) 3275 != 0) 3276 return (error); 3277 if (version != sizeof(struct kld32_file_stat_1) && 3278 version != sizeof(struct kld32_file_stat)) 3279 return (EINVAL); 3280 3281 stat = malloc(sizeof(*stat), M_TEMP, M_WAITOK | M_ZERO); 3282 stat32 = malloc(sizeof(*stat32), M_TEMP, M_WAITOK | M_ZERO); 3283 error = kern_kldstat(td, uap->fileid, stat); 3284 if (error == 0) { 3285 bcopy(&stat->name[0], &stat32->name[0], sizeof(stat->name)); 3286 CP(*stat, *stat32, refs); 3287 CP(*stat, *stat32, id); 3288 PTROUT_CP(*stat, *stat32, address); 3289 CP(*stat, *stat32, size); 3290 bcopy(&stat->pathname[0], &stat32->pathname[0], 3291 sizeof(stat->pathname)); 3292 stat32->version = version; 3293 error = copyout(stat32, uap->stat, version); 3294 } 3295 free(stat, M_TEMP); 3296 free(stat32, M_TEMP); 3297 return (error); 3298 } 3299 3300 int 3301 freebsd32_posix_fallocate(struct thread *td, 3302 struct freebsd32_posix_fallocate_args *uap) 3303 { 3304 int error; 3305 3306 error = kern_posix_fallocate(td, uap->fd, 3307 PAIR32TO64(off_t, uap->offset), PAIR32TO64(off_t, uap->len)); 3308 return (kern_posix_error(td, error)); 3309 } 3310 3311 int 3312 freebsd32_posix_fadvise(struct thread *td, 3313 struct freebsd32_posix_fadvise_args *uap) 3314 { 3315 int error; 3316 3317 error = kern_posix_fadvise(td, uap->fd, PAIR32TO64(off_t, uap->offset), 3318 PAIR32TO64(off_t, uap->len), uap->advice); 3319 return (kern_posix_error(td, error)); 3320 } 3321 3322 int 3323 convert_sigevent32(struct sigevent32 *sig32, struct sigevent *sig) 3324 { 3325 3326 CP(*sig32, *sig, sigev_notify); 3327 switch (sig->sigev_notify) { 3328 case SIGEV_NONE: 3329 break; 3330 case SIGEV_THREAD_ID: 3331 CP(*sig32, *sig, sigev_notify_thread_id); 3332 /* FALLTHROUGH */ 3333 case SIGEV_SIGNAL: 3334 CP(*sig32, *sig, sigev_signo); 3335 PTRIN_CP(*sig32, *sig, sigev_value.sival_ptr); 3336 break; 3337 case SIGEV_KEVENT: 3338 CP(*sig32, *sig, sigev_notify_kqueue); 3339 CP(*sig32, *sig, sigev_notify_kevent_flags); 3340 PTRIN_CP(*sig32, *sig, sigev_value.sival_ptr); 3341 break; 3342 default: 3343 return (EINVAL); 3344 } 3345 return (0); 3346 } 3347 3348 int 3349 freebsd32_procctl(struct thread *td, struct freebsd32_procctl_args *uap) 3350 { 3351 void *data; 3352 union { 3353 struct procctl_reaper_status rs; 3354 struct procctl_reaper_pids rp; 3355 struct procctl_reaper_kill rk; 3356 } x; 3357 union { 3358 struct procctl_reaper_pids32 rp; 3359 } x32; 3360 int error, error1, flags, signum; 3361 3362 switch (uap->com) { 3363 case PROC_SPROTECT: 3364 case PROC_TRACE_CTL: 3365 case PROC_TRAPCAP_CTL: 3366 error = copyin(PTRIN(uap->data), &flags, sizeof(flags)); 3367 if (error != 0) 3368 return (error); 3369 data = &flags; 3370 break; 3371 case PROC_REAP_ACQUIRE: 3372 case PROC_REAP_RELEASE: 3373 if (uap->data != NULL) 3374 return (EINVAL); 3375 data = NULL; 3376 break; 3377 case PROC_REAP_STATUS: 3378 data = &x.rs; 3379 break; 3380 case PROC_REAP_GETPIDS: 3381 error = copyin(uap->data, &x32.rp, sizeof(x32.rp)); 3382 if (error != 0) 3383 return (error); 3384 CP(x32.rp, x.rp, rp_count); 3385 PTRIN_CP(x32.rp, x.rp, rp_pids); 3386 data = &x.rp; 3387 break; 3388 case PROC_REAP_KILL: 3389 error = copyin(uap->data, &x.rk, sizeof(x.rk)); 3390 if (error != 0) 3391 return (error); 3392 data = &x.rk; 3393 break; 3394 case PROC_TRACE_STATUS: 3395 case PROC_TRAPCAP_STATUS: 3396 data = &flags; 3397 break; 3398 case PROC_PDEATHSIG_CTL: 3399 error = copyin(uap->data, &signum, sizeof(signum)); 3400 if (error != 0) 3401 return (error); 3402 data = &signum; 3403 break; 3404 case PROC_PDEATHSIG_STATUS: 3405 data = &signum; 3406 break; 3407 default: 3408 return (EINVAL); 3409 } 3410 error = kern_procctl(td, uap->idtype, PAIR32TO64(id_t, uap->id), 3411 uap->com, data); 3412 switch (uap->com) { 3413 case PROC_REAP_STATUS: 3414 if (error == 0) 3415 error = copyout(&x.rs, uap->data, sizeof(x.rs)); 3416 break; 3417 case PROC_REAP_KILL: 3418 error1 = copyout(&x.rk, uap->data, sizeof(x.rk)); 3419 if (error == 0) 3420 error = error1; 3421 break; 3422 case PROC_TRACE_STATUS: 3423 case PROC_TRAPCAP_STATUS: 3424 if (error == 0) 3425 error = copyout(&flags, uap->data, sizeof(flags)); 3426 break; 3427 case PROC_PDEATHSIG_STATUS: 3428 if (error == 0) 3429 error = copyout(&signum, uap->data, sizeof(signum)); 3430 break; 3431 } 3432 return (error); 3433 } 3434 3435 int 3436 freebsd32_fcntl(struct thread *td, struct freebsd32_fcntl_args *uap) 3437 { 3438 long tmp; 3439 3440 switch (uap->cmd) { 3441 /* 3442 * Do unsigned conversion for arg when operation 3443 * interprets it as flags or pointer. 3444 */ 3445 case F_SETLK_REMOTE: 3446 case F_SETLKW: 3447 case F_SETLK: 3448 case F_GETLK: 3449 case F_SETFD: 3450 case F_SETFL: 3451 case F_OGETLK: 3452 case F_OSETLK: 3453 case F_OSETLKW: 3454 tmp = (unsigned int)(uap->arg); 3455 break; 3456 default: 3457 tmp = uap->arg; 3458 break; 3459 } 3460 return (kern_fcntl_freebsd(td, uap->fd, uap->cmd, tmp)); 3461 } 3462 3463 int 3464 freebsd32_ppoll(struct thread *td, struct freebsd32_ppoll_args *uap) 3465 { 3466 struct timespec32 ts32; 3467 struct timespec ts, *tsp; 3468 sigset_t set, *ssp; 3469 int error; 3470 3471 if (uap->ts != NULL) { 3472 error = copyin(uap->ts, &ts32, sizeof(ts32)); 3473 if (error != 0) 3474 return (error); 3475 CP(ts32, ts, tv_sec); 3476 CP(ts32, ts, tv_nsec); 3477 tsp = &ts; 3478 } else 3479 tsp = NULL; 3480 if (uap->set != NULL) { 3481 error = copyin(uap->set, &set, sizeof(set)); 3482 if (error != 0) 3483 return (error); 3484 ssp = &set; 3485 } else 3486 ssp = NULL; 3487 3488 return (kern_poll(td, uap->fds, uap->nfds, tsp, ssp)); 3489 } 3490