1 /*- 2 * Copyright (c) 2002 Doug Rabson 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include "opt_compat.h" 31 #include "opt_inet.h" 32 #include "opt_inet6.h" 33 34 #define __ELF_WORD_SIZE 32 35 36 #include <sys/param.h> 37 #include <sys/bus.h> 38 #include <sys/capsicum.h> 39 #include <sys/clock.h> 40 #include <sys/exec.h> 41 #include <sys/fcntl.h> 42 #include <sys/filedesc.h> 43 #include <sys/imgact.h> 44 #include <sys/jail.h> 45 #include <sys/kernel.h> 46 #include <sys/limits.h> 47 #include <sys/linker.h> 48 #include <sys/lock.h> 49 #include <sys/malloc.h> 50 #include <sys/file.h> /* Must come after sys/malloc.h */ 51 #include <sys/imgact.h> 52 #include <sys/mbuf.h> 53 #include <sys/mman.h> 54 #include <sys/module.h> 55 #include <sys/mount.h> 56 #include <sys/mutex.h> 57 #include <sys/namei.h> 58 #include <sys/proc.h> 59 #include <sys/procctl.h> 60 #include <sys/reboot.h> 61 #include <sys/resource.h> 62 #include <sys/resourcevar.h> 63 #include <sys/selinfo.h> 64 #include <sys/eventvar.h> /* Must come after sys/selinfo.h */ 65 #include <sys/pipe.h> /* Must come after sys/selinfo.h */ 66 #include <sys/signal.h> 67 #include <sys/signalvar.h> 68 #include <sys/socket.h> 69 #include <sys/socketvar.h> 70 #include <sys/stat.h> 71 #include <sys/syscall.h> 72 #include <sys/syscallsubr.h> 73 #include <sys/sysctl.h> 74 #include <sys/sysent.h> 75 #include <sys/sysproto.h> 76 #include <sys/systm.h> 77 #include <sys/thr.h> 78 #include <sys/unistd.h> 79 #include <sys/ucontext.h> 80 #include <sys/vnode.h> 81 #include <sys/wait.h> 82 #include <sys/ipc.h> 83 #include <sys/msg.h> 84 #include <sys/sem.h> 85 #include <sys/shm.h> 86 #include <sys/condvar.h> 87 #include <sys/sf_buf.h> 88 #include <sys/sf_sync.h> 89 #include <sys/sf_base.h> 90 91 #ifdef INET 92 #include <netinet/in.h> 93 #endif 94 95 #include <vm/vm.h> 96 #include <vm/vm_param.h> 97 #include <vm/pmap.h> 98 #include <vm/vm_map.h> 99 #include <vm/vm_object.h> 100 #include <vm/vm_extern.h> 101 102 #include <machine/cpu.h> 103 #include <machine/elf.h> 104 105 #include <security/audit/audit.h> 106 107 #include <compat/freebsd32/freebsd32_util.h> 108 #include <compat/freebsd32/freebsd32.h> 109 #include <compat/freebsd32/freebsd32_ipc.h> 110 #include <compat/freebsd32/freebsd32_misc.h> 111 #include <compat/freebsd32/freebsd32_signal.h> 112 #include <compat/freebsd32/freebsd32_proto.h> 113 114 FEATURE(compat_freebsd_32bit, "Compatible with 32-bit FreeBSD"); 115 116 #ifndef __mips__ 117 CTASSERT(sizeof(struct timeval32) == 8); 118 CTASSERT(sizeof(struct timespec32) == 8); 119 CTASSERT(sizeof(struct itimerval32) == 16); 120 #endif 121 CTASSERT(sizeof(struct statfs32) == 256); 122 #ifndef __mips__ 123 CTASSERT(sizeof(struct rusage32) == 72); 124 #endif 125 CTASSERT(sizeof(struct sigaltstack32) == 12); 126 CTASSERT(sizeof(struct kevent32) == 20); 127 CTASSERT(sizeof(struct iovec32) == 8); 128 CTASSERT(sizeof(struct msghdr32) == 28); 129 #ifndef __mips__ 130 CTASSERT(sizeof(struct stat32) == 96); 131 #endif 132 CTASSERT(sizeof(struct sigaction32) == 24); 133 134 static int freebsd32_kevent_copyout(void *arg, struct kevent *kevp, int count); 135 static int freebsd32_kevent_copyin(void *arg, struct kevent *kevp, int count); 136 137 void 138 freebsd32_rusage_out(const struct rusage *s, struct rusage32 *s32) 139 { 140 141 TV_CP(*s, *s32, ru_utime); 142 TV_CP(*s, *s32, ru_stime); 143 CP(*s, *s32, ru_maxrss); 144 CP(*s, *s32, ru_ixrss); 145 CP(*s, *s32, ru_idrss); 146 CP(*s, *s32, ru_isrss); 147 CP(*s, *s32, ru_minflt); 148 CP(*s, *s32, ru_majflt); 149 CP(*s, *s32, ru_nswap); 150 CP(*s, *s32, ru_inblock); 151 CP(*s, *s32, ru_oublock); 152 CP(*s, *s32, ru_msgsnd); 153 CP(*s, *s32, ru_msgrcv); 154 CP(*s, *s32, ru_nsignals); 155 CP(*s, *s32, ru_nvcsw); 156 CP(*s, *s32, ru_nivcsw); 157 } 158 159 int 160 freebsd32_wait4(struct thread *td, struct freebsd32_wait4_args *uap) 161 { 162 int error, status; 163 struct rusage32 ru32; 164 struct rusage ru, *rup; 165 166 if (uap->rusage != NULL) 167 rup = &ru; 168 else 169 rup = NULL; 170 error = kern_wait(td, uap->pid, &status, uap->options, rup); 171 if (error) 172 return (error); 173 if (uap->status != NULL) 174 error = copyout(&status, uap->status, sizeof(status)); 175 if (uap->rusage != NULL && error == 0) { 176 freebsd32_rusage_out(&ru, &ru32); 177 error = copyout(&ru32, uap->rusage, sizeof(ru32)); 178 } 179 return (error); 180 } 181 182 int 183 freebsd32_wait6(struct thread *td, struct freebsd32_wait6_args *uap) 184 { 185 struct wrusage32 wru32; 186 struct __wrusage wru, *wrup; 187 struct siginfo32 si32; 188 struct __siginfo si, *sip; 189 int error, status; 190 191 if (uap->wrusage != NULL) 192 wrup = &wru; 193 else 194 wrup = NULL; 195 if (uap->info != NULL) { 196 sip = &si; 197 bzero(sip, sizeof(*sip)); 198 } else 199 sip = NULL; 200 error = kern_wait6(td, uap->idtype, PAIR32TO64(id_t, uap->id), 201 &status, uap->options, wrup, sip); 202 if (error != 0) 203 return (error); 204 if (uap->status != NULL) 205 error = copyout(&status, uap->status, sizeof(status)); 206 if (uap->wrusage != NULL && error == 0) { 207 freebsd32_rusage_out(&wru.wru_self, &wru32.wru_self); 208 freebsd32_rusage_out(&wru.wru_children, &wru32.wru_children); 209 error = copyout(&wru32, uap->wrusage, sizeof(wru32)); 210 } 211 if (uap->info != NULL && error == 0) { 212 siginfo_to_siginfo32 (&si, &si32); 213 error = copyout(&si32, uap->info, sizeof(si32)); 214 } 215 return (error); 216 } 217 218 #ifdef COMPAT_FREEBSD4 219 static void 220 copy_statfs(struct statfs *in, struct statfs32 *out) 221 { 222 223 statfs_scale_blocks(in, INT32_MAX); 224 bzero(out, sizeof(*out)); 225 CP(*in, *out, f_bsize); 226 out->f_iosize = MIN(in->f_iosize, INT32_MAX); 227 CP(*in, *out, f_blocks); 228 CP(*in, *out, f_bfree); 229 CP(*in, *out, f_bavail); 230 out->f_files = MIN(in->f_files, INT32_MAX); 231 out->f_ffree = MIN(in->f_ffree, INT32_MAX); 232 CP(*in, *out, f_fsid); 233 CP(*in, *out, f_owner); 234 CP(*in, *out, f_type); 235 CP(*in, *out, f_flags); 236 out->f_syncwrites = MIN(in->f_syncwrites, INT32_MAX); 237 out->f_asyncwrites = MIN(in->f_asyncwrites, INT32_MAX); 238 strlcpy(out->f_fstypename, 239 in->f_fstypename, MFSNAMELEN); 240 strlcpy(out->f_mntonname, 241 in->f_mntonname, min(MNAMELEN, FREEBSD4_MNAMELEN)); 242 out->f_syncreads = MIN(in->f_syncreads, INT32_MAX); 243 out->f_asyncreads = MIN(in->f_asyncreads, INT32_MAX); 244 strlcpy(out->f_mntfromname, 245 in->f_mntfromname, min(MNAMELEN, FREEBSD4_MNAMELEN)); 246 } 247 #endif 248 249 #ifdef COMPAT_FREEBSD4 250 int 251 freebsd4_freebsd32_getfsstat(struct thread *td, struct freebsd4_freebsd32_getfsstat_args *uap) 252 { 253 struct statfs *buf, *sp; 254 struct statfs32 stat32; 255 size_t count, size; 256 int error; 257 258 count = uap->bufsize / sizeof(struct statfs32); 259 size = count * sizeof(struct statfs); 260 error = kern_getfsstat(td, &buf, size, UIO_SYSSPACE, uap->flags); 261 if (size > 0) { 262 count = td->td_retval[0]; 263 sp = buf; 264 while (count > 0 && error == 0) { 265 copy_statfs(sp, &stat32); 266 error = copyout(&stat32, uap->buf, sizeof(stat32)); 267 sp++; 268 uap->buf++; 269 count--; 270 } 271 free(buf, M_TEMP); 272 } 273 return (error); 274 } 275 #endif 276 277 int 278 freebsd32_sigaltstack(struct thread *td, 279 struct freebsd32_sigaltstack_args *uap) 280 { 281 struct sigaltstack32 s32; 282 struct sigaltstack ss, oss, *ssp; 283 int error; 284 285 if (uap->ss != NULL) { 286 error = copyin(uap->ss, &s32, sizeof(s32)); 287 if (error) 288 return (error); 289 PTRIN_CP(s32, ss, ss_sp); 290 CP(s32, ss, ss_size); 291 CP(s32, ss, ss_flags); 292 ssp = &ss; 293 } else 294 ssp = NULL; 295 error = kern_sigaltstack(td, ssp, &oss); 296 if (error == 0 && uap->oss != NULL) { 297 PTROUT_CP(oss, s32, ss_sp); 298 CP(oss, s32, ss_size); 299 CP(oss, s32, ss_flags); 300 error = copyout(&s32, uap->oss, sizeof(s32)); 301 } 302 return (error); 303 } 304 305 /* 306 * Custom version of exec_copyin_args() so that we can translate 307 * the pointers. 308 */ 309 int 310 freebsd32_exec_copyin_args(struct image_args *args, char *fname, 311 enum uio_seg segflg, u_int32_t *argv, u_int32_t *envv) 312 { 313 char *argp, *envp; 314 u_int32_t *p32, arg; 315 size_t length; 316 int error; 317 318 bzero(args, sizeof(*args)); 319 if (argv == NULL) 320 return (EFAULT); 321 322 /* 323 * Allocate demand-paged memory for the file name, argument, and 324 * environment strings. 325 */ 326 error = exec_alloc_args(args); 327 if (error != 0) 328 return (error); 329 330 /* 331 * Copy the file name. 332 */ 333 if (fname != NULL) { 334 args->fname = args->buf; 335 error = (segflg == UIO_SYSSPACE) ? 336 copystr(fname, args->fname, PATH_MAX, &length) : 337 copyinstr(fname, args->fname, PATH_MAX, &length); 338 if (error != 0) 339 goto err_exit; 340 } else 341 length = 0; 342 343 args->begin_argv = args->buf + length; 344 args->endp = args->begin_argv; 345 args->stringspace = ARG_MAX; 346 347 /* 348 * extract arguments first 349 */ 350 p32 = argv; 351 for (;;) { 352 error = copyin(p32++, &arg, sizeof(arg)); 353 if (error) 354 goto err_exit; 355 if (arg == 0) 356 break; 357 argp = PTRIN(arg); 358 error = copyinstr(argp, args->endp, args->stringspace, &length); 359 if (error) { 360 if (error == ENAMETOOLONG) 361 error = E2BIG; 362 goto err_exit; 363 } 364 args->stringspace -= length; 365 args->endp += length; 366 args->argc++; 367 } 368 369 args->begin_envv = args->endp; 370 371 /* 372 * extract environment strings 373 */ 374 if (envv) { 375 p32 = envv; 376 for (;;) { 377 error = copyin(p32++, &arg, sizeof(arg)); 378 if (error) 379 goto err_exit; 380 if (arg == 0) 381 break; 382 envp = PTRIN(arg); 383 error = copyinstr(envp, args->endp, args->stringspace, 384 &length); 385 if (error) { 386 if (error == ENAMETOOLONG) 387 error = E2BIG; 388 goto err_exit; 389 } 390 args->stringspace -= length; 391 args->endp += length; 392 args->envc++; 393 } 394 } 395 396 return (0); 397 398 err_exit: 399 exec_free_args(args); 400 return (error); 401 } 402 403 int 404 freebsd32_execve(struct thread *td, struct freebsd32_execve_args *uap) 405 { 406 struct image_args eargs; 407 int error; 408 409 error = freebsd32_exec_copyin_args(&eargs, uap->fname, UIO_USERSPACE, 410 uap->argv, uap->envv); 411 if (error == 0) 412 error = kern_execve(td, &eargs, NULL); 413 return (error); 414 } 415 416 int 417 freebsd32_fexecve(struct thread *td, struct freebsd32_fexecve_args *uap) 418 { 419 struct image_args eargs; 420 int error; 421 422 error = freebsd32_exec_copyin_args(&eargs, NULL, UIO_SYSSPACE, 423 uap->argv, uap->envv); 424 if (error == 0) { 425 eargs.fd = uap->fd; 426 error = kern_execve(td, &eargs, NULL); 427 } 428 return (error); 429 } 430 431 int 432 freebsd32_mprotect(struct thread *td, struct freebsd32_mprotect_args *uap) 433 { 434 struct mprotect_args ap; 435 436 ap.addr = PTRIN(uap->addr); 437 ap.len = uap->len; 438 ap.prot = uap->prot; 439 #if defined(__amd64__) 440 if (i386_read_exec && (ap.prot & PROT_READ) != 0) 441 ap.prot |= PROT_EXEC; 442 #endif 443 return (sys_mprotect(td, &ap)); 444 } 445 446 int 447 freebsd32_mmap(struct thread *td, struct freebsd32_mmap_args *uap) 448 { 449 struct mmap_args ap; 450 vm_offset_t addr = (vm_offset_t) uap->addr; 451 vm_size_t len = uap->len; 452 int prot = uap->prot; 453 int flags = uap->flags; 454 int fd = uap->fd; 455 off_t pos = PAIR32TO64(off_t,uap->pos); 456 457 #if defined(__amd64__) 458 if (i386_read_exec && (prot & PROT_READ)) 459 prot |= PROT_EXEC; 460 #endif 461 462 ap.addr = (void *) addr; 463 ap.len = len; 464 ap.prot = prot; 465 ap.flags = flags; 466 ap.fd = fd; 467 ap.pos = pos; 468 469 return (sys_mmap(td, &ap)); 470 } 471 472 #ifdef COMPAT_FREEBSD6 473 int 474 freebsd6_freebsd32_mmap(struct thread *td, struct freebsd6_freebsd32_mmap_args *uap) 475 { 476 struct freebsd32_mmap_args ap; 477 478 ap.addr = uap->addr; 479 ap.len = uap->len; 480 ap.prot = uap->prot; 481 ap.flags = uap->flags; 482 ap.fd = uap->fd; 483 ap.pos1 = uap->pos1; 484 ap.pos2 = uap->pos2; 485 486 return (freebsd32_mmap(td, &ap)); 487 } 488 #endif 489 490 int 491 freebsd32_setitimer(struct thread *td, struct freebsd32_setitimer_args *uap) 492 { 493 struct itimerval itv, oitv, *itvp; 494 struct itimerval32 i32; 495 int error; 496 497 if (uap->itv != NULL) { 498 error = copyin(uap->itv, &i32, sizeof(i32)); 499 if (error) 500 return (error); 501 TV_CP(i32, itv, it_interval); 502 TV_CP(i32, itv, it_value); 503 itvp = &itv; 504 } else 505 itvp = NULL; 506 error = kern_setitimer(td, uap->which, itvp, &oitv); 507 if (error || uap->oitv == NULL) 508 return (error); 509 TV_CP(oitv, i32, it_interval); 510 TV_CP(oitv, i32, it_value); 511 return (copyout(&i32, uap->oitv, sizeof(i32))); 512 } 513 514 int 515 freebsd32_getitimer(struct thread *td, struct freebsd32_getitimer_args *uap) 516 { 517 struct itimerval itv; 518 struct itimerval32 i32; 519 int error; 520 521 error = kern_getitimer(td, uap->which, &itv); 522 if (error || uap->itv == NULL) 523 return (error); 524 TV_CP(itv, i32, it_interval); 525 TV_CP(itv, i32, it_value); 526 return (copyout(&i32, uap->itv, sizeof(i32))); 527 } 528 529 int 530 freebsd32_select(struct thread *td, struct freebsd32_select_args *uap) 531 { 532 struct timeval32 tv32; 533 struct timeval tv, *tvp; 534 int error; 535 536 if (uap->tv != NULL) { 537 error = copyin(uap->tv, &tv32, sizeof(tv32)); 538 if (error) 539 return (error); 540 CP(tv32, tv, tv_sec); 541 CP(tv32, tv, tv_usec); 542 tvp = &tv; 543 } else 544 tvp = NULL; 545 /* 546 * XXX Do pointers need PTRIN()? 547 */ 548 return (kern_select(td, uap->nd, uap->in, uap->ou, uap->ex, tvp, 549 sizeof(int32_t) * 8)); 550 } 551 552 int 553 freebsd32_pselect(struct thread *td, struct freebsd32_pselect_args *uap) 554 { 555 struct timespec32 ts32; 556 struct timespec ts; 557 struct timeval tv, *tvp; 558 sigset_t set, *uset; 559 int error; 560 561 if (uap->ts != NULL) { 562 error = copyin(uap->ts, &ts32, sizeof(ts32)); 563 if (error != 0) 564 return (error); 565 CP(ts32, ts, tv_sec); 566 CP(ts32, ts, tv_nsec); 567 TIMESPEC_TO_TIMEVAL(&tv, &ts); 568 tvp = &tv; 569 } else 570 tvp = NULL; 571 if (uap->sm != NULL) { 572 error = copyin(uap->sm, &set, sizeof(set)); 573 if (error != 0) 574 return (error); 575 uset = &set; 576 } else 577 uset = NULL; 578 /* 579 * XXX Do pointers need PTRIN()? 580 */ 581 error = kern_pselect(td, uap->nd, uap->in, uap->ou, uap->ex, tvp, 582 uset, sizeof(int32_t) * 8); 583 return (error); 584 } 585 586 /* 587 * Copy 'count' items into the destination list pointed to by uap->eventlist. 588 */ 589 static int 590 freebsd32_kevent_copyout(void *arg, struct kevent *kevp, int count) 591 { 592 struct freebsd32_kevent_args *uap; 593 struct kevent32 ks32[KQ_NEVENTS]; 594 int i, error = 0; 595 596 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count)); 597 uap = (struct freebsd32_kevent_args *)arg; 598 599 for (i = 0; i < count; i++) { 600 CP(kevp[i], ks32[i], ident); 601 CP(kevp[i], ks32[i], filter); 602 CP(kevp[i], ks32[i], flags); 603 CP(kevp[i], ks32[i], fflags); 604 CP(kevp[i], ks32[i], data); 605 PTROUT_CP(kevp[i], ks32[i], udata); 606 } 607 error = copyout(ks32, uap->eventlist, count * sizeof *ks32); 608 if (error == 0) 609 uap->eventlist += count; 610 return (error); 611 } 612 613 /* 614 * Copy 'count' items from the list pointed to by uap->changelist. 615 */ 616 static int 617 freebsd32_kevent_copyin(void *arg, struct kevent *kevp, int count) 618 { 619 struct freebsd32_kevent_args *uap; 620 struct kevent32 ks32[KQ_NEVENTS]; 621 int i, error = 0; 622 623 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count)); 624 uap = (struct freebsd32_kevent_args *)arg; 625 626 error = copyin(uap->changelist, ks32, count * sizeof *ks32); 627 if (error) 628 goto done; 629 uap->changelist += count; 630 631 for (i = 0; i < count; i++) { 632 CP(ks32[i], kevp[i], ident); 633 CP(ks32[i], kevp[i], filter); 634 CP(ks32[i], kevp[i], flags); 635 CP(ks32[i], kevp[i], fflags); 636 CP(ks32[i], kevp[i], data); 637 PTRIN_CP(ks32[i], kevp[i], udata); 638 } 639 done: 640 return (error); 641 } 642 643 int 644 freebsd32_kevent(struct thread *td, struct freebsd32_kevent_args *uap) 645 { 646 struct timespec32 ts32; 647 struct timespec ts, *tsp; 648 struct kevent_copyops k_ops = { uap, 649 freebsd32_kevent_copyout, 650 freebsd32_kevent_copyin}; 651 int error; 652 653 654 if (uap->timeout) { 655 error = copyin(uap->timeout, &ts32, sizeof(ts32)); 656 if (error) 657 return (error); 658 CP(ts32, ts, tv_sec); 659 CP(ts32, ts, tv_nsec); 660 tsp = &ts; 661 } else 662 tsp = NULL; 663 error = kern_kevent(td, uap->fd, uap->nchanges, uap->nevents, 664 &k_ops, tsp); 665 return (error); 666 } 667 668 int 669 freebsd32_gettimeofday(struct thread *td, 670 struct freebsd32_gettimeofday_args *uap) 671 { 672 struct timeval atv; 673 struct timeval32 atv32; 674 struct timezone rtz; 675 int error = 0; 676 677 if (uap->tp) { 678 microtime(&atv); 679 CP(atv, atv32, tv_sec); 680 CP(atv, atv32, tv_usec); 681 error = copyout(&atv32, uap->tp, sizeof (atv32)); 682 } 683 if (error == 0 && uap->tzp != NULL) { 684 rtz.tz_minuteswest = tz_minuteswest; 685 rtz.tz_dsttime = tz_dsttime; 686 error = copyout(&rtz, uap->tzp, sizeof (rtz)); 687 } 688 return (error); 689 } 690 691 int 692 freebsd32_getrusage(struct thread *td, struct freebsd32_getrusage_args *uap) 693 { 694 struct rusage32 s32; 695 struct rusage s; 696 int error; 697 698 error = kern_getrusage(td, uap->who, &s); 699 if (error) 700 return (error); 701 if (uap->rusage != NULL) { 702 freebsd32_rusage_out(&s, &s32); 703 error = copyout(&s32, uap->rusage, sizeof(s32)); 704 } 705 return (error); 706 } 707 708 static int 709 freebsd32_copyinuio(struct iovec32 *iovp, u_int iovcnt, struct uio **uiop) 710 { 711 struct iovec32 iov32; 712 struct iovec *iov; 713 struct uio *uio; 714 u_int iovlen; 715 int error, i; 716 717 *uiop = NULL; 718 if (iovcnt > UIO_MAXIOV) 719 return (EINVAL); 720 iovlen = iovcnt * sizeof(struct iovec); 721 uio = malloc(iovlen + sizeof *uio, M_IOV, M_WAITOK); 722 iov = (struct iovec *)(uio + 1); 723 for (i = 0; i < iovcnt; i++) { 724 error = copyin(&iovp[i], &iov32, sizeof(struct iovec32)); 725 if (error) { 726 free(uio, M_IOV); 727 return (error); 728 } 729 iov[i].iov_base = PTRIN(iov32.iov_base); 730 iov[i].iov_len = iov32.iov_len; 731 } 732 uio->uio_iov = iov; 733 uio->uio_iovcnt = iovcnt; 734 uio->uio_segflg = UIO_USERSPACE; 735 uio->uio_offset = -1; 736 uio->uio_resid = 0; 737 for (i = 0; i < iovcnt; i++) { 738 if (iov->iov_len > INT_MAX - uio->uio_resid) { 739 free(uio, M_IOV); 740 return (EINVAL); 741 } 742 uio->uio_resid += iov->iov_len; 743 iov++; 744 } 745 *uiop = uio; 746 return (0); 747 } 748 749 int 750 freebsd32_readv(struct thread *td, struct freebsd32_readv_args *uap) 751 { 752 struct uio *auio; 753 int error; 754 755 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 756 if (error) 757 return (error); 758 error = kern_readv(td, uap->fd, auio); 759 free(auio, M_IOV); 760 return (error); 761 } 762 763 int 764 freebsd32_writev(struct thread *td, struct freebsd32_writev_args *uap) 765 { 766 struct uio *auio; 767 int error; 768 769 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 770 if (error) 771 return (error); 772 error = kern_writev(td, uap->fd, auio); 773 free(auio, M_IOV); 774 return (error); 775 } 776 777 int 778 freebsd32_preadv(struct thread *td, struct freebsd32_preadv_args *uap) 779 { 780 struct uio *auio; 781 int error; 782 783 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 784 if (error) 785 return (error); 786 error = kern_preadv(td, uap->fd, auio, PAIR32TO64(off_t,uap->offset)); 787 free(auio, M_IOV); 788 return (error); 789 } 790 791 int 792 freebsd32_pwritev(struct thread *td, struct freebsd32_pwritev_args *uap) 793 { 794 struct uio *auio; 795 int error; 796 797 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 798 if (error) 799 return (error); 800 error = kern_pwritev(td, uap->fd, auio, PAIR32TO64(off_t,uap->offset)); 801 free(auio, M_IOV); 802 return (error); 803 } 804 805 int 806 freebsd32_copyiniov(struct iovec32 *iovp32, u_int iovcnt, struct iovec **iovp, 807 int error) 808 { 809 struct iovec32 iov32; 810 struct iovec *iov; 811 u_int iovlen; 812 int i; 813 814 *iovp = NULL; 815 if (iovcnt > UIO_MAXIOV) 816 return (error); 817 iovlen = iovcnt * sizeof(struct iovec); 818 iov = malloc(iovlen, M_IOV, M_WAITOK); 819 for (i = 0; i < iovcnt; i++) { 820 error = copyin(&iovp32[i], &iov32, sizeof(struct iovec32)); 821 if (error) { 822 free(iov, M_IOV); 823 return (error); 824 } 825 iov[i].iov_base = PTRIN(iov32.iov_base); 826 iov[i].iov_len = iov32.iov_len; 827 } 828 *iovp = iov; 829 return (0); 830 } 831 832 static int 833 freebsd32_copyinmsghdr(struct msghdr32 *msg32, struct msghdr *msg) 834 { 835 struct msghdr32 m32; 836 int error; 837 838 error = copyin(msg32, &m32, sizeof(m32)); 839 if (error) 840 return (error); 841 msg->msg_name = PTRIN(m32.msg_name); 842 msg->msg_namelen = m32.msg_namelen; 843 msg->msg_iov = PTRIN(m32.msg_iov); 844 msg->msg_iovlen = m32.msg_iovlen; 845 msg->msg_control = PTRIN(m32.msg_control); 846 msg->msg_controllen = m32.msg_controllen; 847 msg->msg_flags = m32.msg_flags; 848 return (0); 849 } 850 851 static int 852 freebsd32_copyoutmsghdr(struct msghdr *msg, struct msghdr32 *msg32) 853 { 854 struct msghdr32 m32; 855 int error; 856 857 m32.msg_name = PTROUT(msg->msg_name); 858 m32.msg_namelen = msg->msg_namelen; 859 m32.msg_iov = PTROUT(msg->msg_iov); 860 m32.msg_iovlen = msg->msg_iovlen; 861 m32.msg_control = PTROUT(msg->msg_control); 862 m32.msg_controllen = msg->msg_controllen; 863 m32.msg_flags = msg->msg_flags; 864 error = copyout(&m32, msg32, sizeof(m32)); 865 return (error); 866 } 867 868 #ifndef __mips__ 869 #define FREEBSD32_ALIGNBYTES (sizeof(int) - 1) 870 #else 871 #define FREEBSD32_ALIGNBYTES (sizeof(long) - 1) 872 #endif 873 #define FREEBSD32_ALIGN(p) \ 874 (((u_long)(p) + FREEBSD32_ALIGNBYTES) & ~FREEBSD32_ALIGNBYTES) 875 #define FREEBSD32_CMSG_SPACE(l) \ 876 (FREEBSD32_ALIGN(sizeof(struct cmsghdr)) + FREEBSD32_ALIGN(l)) 877 878 #define FREEBSD32_CMSG_DATA(cmsg) ((unsigned char *)(cmsg) + \ 879 FREEBSD32_ALIGN(sizeof(struct cmsghdr))) 880 static int 881 freebsd32_copy_msg_out(struct msghdr *msg, struct mbuf *control) 882 { 883 struct cmsghdr *cm; 884 void *data; 885 socklen_t clen, datalen; 886 int error; 887 caddr_t ctlbuf; 888 int len, maxlen, copylen; 889 struct mbuf *m; 890 error = 0; 891 892 len = msg->msg_controllen; 893 maxlen = msg->msg_controllen; 894 msg->msg_controllen = 0; 895 896 m = control; 897 ctlbuf = msg->msg_control; 898 899 while (m && len > 0) { 900 cm = mtod(m, struct cmsghdr *); 901 clen = m->m_len; 902 903 while (cm != NULL) { 904 905 if (sizeof(struct cmsghdr) > clen || 906 cm->cmsg_len > clen) { 907 error = EINVAL; 908 break; 909 } 910 911 data = CMSG_DATA(cm); 912 datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data; 913 914 /* Adjust message length */ 915 cm->cmsg_len = FREEBSD32_ALIGN(sizeof(struct cmsghdr)) + 916 datalen; 917 918 919 /* Copy cmsghdr */ 920 copylen = sizeof(struct cmsghdr); 921 if (len < copylen) { 922 msg->msg_flags |= MSG_CTRUNC; 923 copylen = len; 924 } 925 926 error = copyout(cm,ctlbuf,copylen); 927 if (error) 928 goto exit; 929 930 ctlbuf += FREEBSD32_ALIGN(copylen); 931 len -= FREEBSD32_ALIGN(copylen); 932 933 if (len <= 0) 934 break; 935 936 /* Copy data */ 937 copylen = datalen; 938 if (len < copylen) { 939 msg->msg_flags |= MSG_CTRUNC; 940 copylen = len; 941 } 942 943 error = copyout(data,ctlbuf,copylen); 944 if (error) 945 goto exit; 946 947 ctlbuf += FREEBSD32_ALIGN(copylen); 948 len -= FREEBSD32_ALIGN(copylen); 949 950 if (CMSG_SPACE(datalen) < clen) { 951 clen -= CMSG_SPACE(datalen); 952 cm = (struct cmsghdr *) 953 ((caddr_t)cm + CMSG_SPACE(datalen)); 954 } else { 955 clen = 0; 956 cm = NULL; 957 } 958 } 959 m = m->m_next; 960 } 961 962 msg->msg_controllen = (len <= 0) ? maxlen : ctlbuf - (caddr_t)msg->msg_control; 963 964 exit: 965 return (error); 966 967 } 968 969 int 970 freebsd32_recvmsg(td, uap) 971 struct thread *td; 972 struct freebsd32_recvmsg_args /* { 973 int s; 974 struct msghdr32 *msg; 975 int flags; 976 } */ *uap; 977 { 978 struct msghdr msg; 979 struct msghdr32 m32; 980 struct iovec *uiov, *iov; 981 struct mbuf *control = NULL; 982 struct mbuf **controlp; 983 984 int error; 985 error = copyin(uap->msg, &m32, sizeof(m32)); 986 if (error) 987 return (error); 988 error = freebsd32_copyinmsghdr(uap->msg, &msg); 989 if (error) 990 return (error); 991 error = freebsd32_copyiniov(PTRIN(m32.msg_iov), m32.msg_iovlen, &iov, 992 EMSGSIZE); 993 if (error) 994 return (error); 995 msg.msg_flags = uap->flags; 996 uiov = msg.msg_iov; 997 msg.msg_iov = iov; 998 999 controlp = (msg.msg_control != NULL) ? &control : NULL; 1000 error = kern_recvit(td, uap->s, &msg, UIO_USERSPACE, controlp); 1001 if (error == 0) { 1002 msg.msg_iov = uiov; 1003 1004 if (control != NULL) 1005 error = freebsd32_copy_msg_out(&msg, control); 1006 else 1007 msg.msg_controllen = 0; 1008 1009 if (error == 0) 1010 error = freebsd32_copyoutmsghdr(&msg, uap->msg); 1011 } 1012 free(iov, M_IOV); 1013 1014 if (control != NULL) 1015 m_freem(control); 1016 1017 return (error); 1018 } 1019 1020 /* 1021 * Copy-in the array of control messages constructed using alignment 1022 * and padding suitable for a 32-bit environment and construct an 1023 * mbuf using alignment and padding suitable for a 64-bit kernel. 1024 * The alignment and padding are defined indirectly by CMSG_DATA(), 1025 * CMSG_SPACE() and CMSG_LEN(). 1026 */ 1027 static int 1028 freebsd32_copyin_control(struct mbuf **mp, caddr_t buf, u_int buflen) 1029 { 1030 struct mbuf *m; 1031 void *md; 1032 u_int idx, len, msglen; 1033 int error; 1034 1035 buflen = FREEBSD32_ALIGN(buflen); 1036 1037 if (buflen > MCLBYTES) 1038 return (EINVAL); 1039 1040 /* 1041 * Iterate over the buffer and get the length of each message 1042 * in there. This has 32-bit alignment and padding. Use it to 1043 * determine the length of these messages when using 64-bit 1044 * alignment and padding. 1045 */ 1046 idx = 0; 1047 len = 0; 1048 while (idx < buflen) { 1049 error = copyin(buf + idx, &msglen, sizeof(msglen)); 1050 if (error) 1051 return (error); 1052 if (msglen < sizeof(struct cmsghdr)) 1053 return (EINVAL); 1054 msglen = FREEBSD32_ALIGN(msglen); 1055 if (idx + msglen > buflen) 1056 return (EINVAL); 1057 idx += msglen; 1058 msglen += CMSG_ALIGN(sizeof(struct cmsghdr)) - 1059 FREEBSD32_ALIGN(sizeof(struct cmsghdr)); 1060 len += CMSG_ALIGN(msglen); 1061 } 1062 1063 if (len > MCLBYTES) 1064 return (EINVAL); 1065 1066 m = m_get(M_WAITOK, MT_CONTROL); 1067 if (len > MLEN) 1068 MCLGET(m, M_WAITOK); 1069 m->m_len = len; 1070 1071 md = mtod(m, void *); 1072 while (buflen > 0) { 1073 error = copyin(buf, md, sizeof(struct cmsghdr)); 1074 if (error) 1075 break; 1076 msglen = *(u_int *)md; 1077 msglen = FREEBSD32_ALIGN(msglen); 1078 1079 /* Modify the message length to account for alignment. */ 1080 *(u_int *)md = msglen + CMSG_ALIGN(sizeof(struct cmsghdr)) - 1081 FREEBSD32_ALIGN(sizeof(struct cmsghdr)); 1082 1083 md = (char *)md + CMSG_ALIGN(sizeof(struct cmsghdr)); 1084 buf += FREEBSD32_ALIGN(sizeof(struct cmsghdr)); 1085 buflen -= FREEBSD32_ALIGN(sizeof(struct cmsghdr)); 1086 1087 msglen -= FREEBSD32_ALIGN(sizeof(struct cmsghdr)); 1088 if (msglen > 0) { 1089 error = copyin(buf, md, msglen); 1090 if (error) 1091 break; 1092 md = (char *)md + CMSG_ALIGN(msglen); 1093 buf += msglen; 1094 buflen -= msglen; 1095 } 1096 } 1097 1098 if (error) 1099 m_free(m); 1100 else 1101 *mp = m; 1102 return (error); 1103 } 1104 1105 int 1106 freebsd32_sendmsg(struct thread *td, 1107 struct freebsd32_sendmsg_args *uap) 1108 { 1109 struct msghdr msg; 1110 struct msghdr32 m32; 1111 struct iovec *iov; 1112 struct mbuf *control = NULL; 1113 struct sockaddr *to = NULL; 1114 int error; 1115 1116 error = copyin(uap->msg, &m32, sizeof(m32)); 1117 if (error) 1118 return (error); 1119 error = freebsd32_copyinmsghdr(uap->msg, &msg); 1120 if (error) 1121 return (error); 1122 error = freebsd32_copyiniov(PTRIN(m32.msg_iov), m32.msg_iovlen, &iov, 1123 EMSGSIZE); 1124 if (error) 1125 return (error); 1126 msg.msg_iov = iov; 1127 if (msg.msg_name != NULL) { 1128 error = getsockaddr(&to, msg.msg_name, msg.msg_namelen); 1129 if (error) { 1130 to = NULL; 1131 goto out; 1132 } 1133 msg.msg_name = to; 1134 } 1135 1136 if (msg.msg_control) { 1137 if (msg.msg_controllen < sizeof(struct cmsghdr)) { 1138 error = EINVAL; 1139 goto out; 1140 } 1141 1142 error = freebsd32_copyin_control(&control, msg.msg_control, 1143 msg.msg_controllen); 1144 if (error) 1145 goto out; 1146 1147 msg.msg_control = NULL; 1148 msg.msg_controllen = 0; 1149 } 1150 1151 error = kern_sendit(td, uap->s, &msg, uap->flags, control, 1152 UIO_USERSPACE); 1153 1154 out: 1155 free(iov, M_IOV); 1156 if (to) 1157 free(to, M_SONAME); 1158 return (error); 1159 } 1160 1161 int 1162 freebsd32_recvfrom(struct thread *td, 1163 struct freebsd32_recvfrom_args *uap) 1164 { 1165 struct msghdr msg; 1166 struct iovec aiov; 1167 int error; 1168 1169 if (uap->fromlenaddr) { 1170 error = copyin(PTRIN(uap->fromlenaddr), &msg.msg_namelen, 1171 sizeof(msg.msg_namelen)); 1172 if (error) 1173 return (error); 1174 } else { 1175 msg.msg_namelen = 0; 1176 } 1177 1178 msg.msg_name = PTRIN(uap->from); 1179 msg.msg_iov = &aiov; 1180 msg.msg_iovlen = 1; 1181 aiov.iov_base = PTRIN(uap->buf); 1182 aiov.iov_len = uap->len; 1183 msg.msg_control = NULL; 1184 msg.msg_flags = uap->flags; 1185 error = kern_recvit(td, uap->s, &msg, UIO_USERSPACE, NULL); 1186 if (error == 0 && uap->fromlenaddr) 1187 error = copyout(&msg.msg_namelen, PTRIN(uap->fromlenaddr), 1188 sizeof (msg.msg_namelen)); 1189 return (error); 1190 } 1191 1192 int 1193 freebsd32_settimeofday(struct thread *td, 1194 struct freebsd32_settimeofday_args *uap) 1195 { 1196 struct timeval32 tv32; 1197 struct timeval tv, *tvp; 1198 struct timezone tz, *tzp; 1199 int error; 1200 1201 if (uap->tv) { 1202 error = copyin(uap->tv, &tv32, sizeof(tv32)); 1203 if (error) 1204 return (error); 1205 CP(tv32, tv, tv_sec); 1206 CP(tv32, tv, tv_usec); 1207 tvp = &tv; 1208 } else 1209 tvp = NULL; 1210 if (uap->tzp) { 1211 error = copyin(uap->tzp, &tz, sizeof(tz)); 1212 if (error) 1213 return (error); 1214 tzp = &tz; 1215 } else 1216 tzp = NULL; 1217 return (kern_settimeofday(td, tvp, tzp)); 1218 } 1219 1220 int 1221 freebsd32_utimes(struct thread *td, struct freebsd32_utimes_args *uap) 1222 { 1223 struct timeval32 s32[2]; 1224 struct timeval s[2], *sp; 1225 int error; 1226 1227 if (uap->tptr != NULL) { 1228 error = copyin(uap->tptr, s32, sizeof(s32)); 1229 if (error) 1230 return (error); 1231 CP(s32[0], s[0], tv_sec); 1232 CP(s32[0], s[0], tv_usec); 1233 CP(s32[1], s[1], tv_sec); 1234 CP(s32[1], s[1], tv_usec); 1235 sp = s; 1236 } else 1237 sp = NULL; 1238 return (kern_utimes(td, uap->path, UIO_USERSPACE, sp, UIO_SYSSPACE)); 1239 } 1240 1241 int 1242 freebsd32_lutimes(struct thread *td, struct freebsd32_lutimes_args *uap) 1243 { 1244 struct timeval32 s32[2]; 1245 struct timeval s[2], *sp; 1246 int error; 1247 1248 if (uap->tptr != NULL) { 1249 error = copyin(uap->tptr, s32, sizeof(s32)); 1250 if (error) 1251 return (error); 1252 CP(s32[0], s[0], tv_sec); 1253 CP(s32[0], s[0], tv_usec); 1254 CP(s32[1], s[1], tv_sec); 1255 CP(s32[1], s[1], tv_usec); 1256 sp = s; 1257 } else 1258 sp = NULL; 1259 return (kern_lutimes(td, uap->path, UIO_USERSPACE, sp, UIO_SYSSPACE)); 1260 } 1261 1262 int 1263 freebsd32_futimes(struct thread *td, struct freebsd32_futimes_args *uap) 1264 { 1265 struct timeval32 s32[2]; 1266 struct timeval s[2], *sp; 1267 int error; 1268 1269 if (uap->tptr != NULL) { 1270 error = copyin(uap->tptr, s32, sizeof(s32)); 1271 if (error) 1272 return (error); 1273 CP(s32[0], s[0], tv_sec); 1274 CP(s32[0], s[0], tv_usec); 1275 CP(s32[1], s[1], tv_sec); 1276 CP(s32[1], s[1], tv_usec); 1277 sp = s; 1278 } else 1279 sp = NULL; 1280 return (kern_futimes(td, uap->fd, sp, UIO_SYSSPACE)); 1281 } 1282 1283 int 1284 freebsd32_futimesat(struct thread *td, struct freebsd32_futimesat_args *uap) 1285 { 1286 struct timeval32 s32[2]; 1287 struct timeval s[2], *sp; 1288 int error; 1289 1290 if (uap->times != NULL) { 1291 error = copyin(uap->times, s32, sizeof(s32)); 1292 if (error) 1293 return (error); 1294 CP(s32[0], s[0], tv_sec); 1295 CP(s32[0], s[0], tv_usec); 1296 CP(s32[1], s[1], tv_sec); 1297 CP(s32[1], s[1], tv_usec); 1298 sp = s; 1299 } else 1300 sp = NULL; 1301 return (kern_utimesat(td, uap->fd, uap->path, UIO_USERSPACE, 1302 sp, UIO_SYSSPACE)); 1303 } 1304 1305 int 1306 freebsd32_adjtime(struct thread *td, struct freebsd32_adjtime_args *uap) 1307 { 1308 struct timeval32 tv32; 1309 struct timeval delta, olddelta, *deltap; 1310 int error; 1311 1312 if (uap->delta) { 1313 error = copyin(uap->delta, &tv32, sizeof(tv32)); 1314 if (error) 1315 return (error); 1316 CP(tv32, delta, tv_sec); 1317 CP(tv32, delta, tv_usec); 1318 deltap = δ 1319 } else 1320 deltap = NULL; 1321 error = kern_adjtime(td, deltap, &olddelta); 1322 if (uap->olddelta && error == 0) { 1323 CP(olddelta, tv32, tv_sec); 1324 CP(olddelta, tv32, tv_usec); 1325 error = copyout(&tv32, uap->olddelta, sizeof(tv32)); 1326 } 1327 return (error); 1328 } 1329 1330 #ifdef COMPAT_FREEBSD4 1331 int 1332 freebsd4_freebsd32_statfs(struct thread *td, struct freebsd4_freebsd32_statfs_args *uap) 1333 { 1334 struct statfs32 s32; 1335 struct statfs s; 1336 int error; 1337 1338 error = kern_statfs(td, uap->path, UIO_USERSPACE, &s); 1339 if (error) 1340 return (error); 1341 copy_statfs(&s, &s32); 1342 return (copyout(&s32, uap->buf, sizeof(s32))); 1343 } 1344 #endif 1345 1346 #ifdef COMPAT_FREEBSD4 1347 int 1348 freebsd4_freebsd32_fstatfs(struct thread *td, struct freebsd4_freebsd32_fstatfs_args *uap) 1349 { 1350 struct statfs32 s32; 1351 struct statfs s; 1352 int error; 1353 1354 error = kern_fstatfs(td, uap->fd, &s); 1355 if (error) 1356 return (error); 1357 copy_statfs(&s, &s32); 1358 return (copyout(&s32, uap->buf, sizeof(s32))); 1359 } 1360 #endif 1361 1362 #ifdef COMPAT_FREEBSD4 1363 int 1364 freebsd4_freebsd32_fhstatfs(struct thread *td, struct freebsd4_freebsd32_fhstatfs_args *uap) 1365 { 1366 struct statfs32 s32; 1367 struct statfs s; 1368 fhandle_t fh; 1369 int error; 1370 1371 if ((error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t))) != 0) 1372 return (error); 1373 error = kern_fhstatfs(td, fh, &s); 1374 if (error) 1375 return (error); 1376 copy_statfs(&s, &s32); 1377 return (copyout(&s32, uap->buf, sizeof(s32))); 1378 } 1379 #endif 1380 1381 int 1382 freebsd32_pread(struct thread *td, struct freebsd32_pread_args *uap) 1383 { 1384 struct pread_args ap; 1385 1386 ap.fd = uap->fd; 1387 ap.buf = uap->buf; 1388 ap.nbyte = uap->nbyte; 1389 ap.offset = PAIR32TO64(off_t,uap->offset); 1390 return (sys_pread(td, &ap)); 1391 } 1392 1393 int 1394 freebsd32_pwrite(struct thread *td, struct freebsd32_pwrite_args *uap) 1395 { 1396 struct pwrite_args ap; 1397 1398 ap.fd = uap->fd; 1399 ap.buf = uap->buf; 1400 ap.nbyte = uap->nbyte; 1401 ap.offset = PAIR32TO64(off_t,uap->offset); 1402 return (sys_pwrite(td, &ap)); 1403 } 1404 1405 #ifdef COMPAT_43 1406 int 1407 ofreebsd32_lseek(struct thread *td, struct ofreebsd32_lseek_args *uap) 1408 { 1409 struct lseek_args nuap; 1410 1411 nuap.fd = uap->fd; 1412 nuap.offset = uap->offset; 1413 nuap.whence = uap->whence; 1414 return (sys_lseek(td, &nuap)); 1415 } 1416 #endif 1417 1418 int 1419 freebsd32_lseek(struct thread *td, struct freebsd32_lseek_args *uap) 1420 { 1421 int error; 1422 struct lseek_args ap; 1423 off_t pos; 1424 1425 ap.fd = uap->fd; 1426 ap.offset = PAIR32TO64(off_t,uap->offset); 1427 ap.whence = uap->whence; 1428 error = sys_lseek(td, &ap); 1429 /* Expand the quad return into two parts for eax and edx */ 1430 pos = td->td_uretoff.tdu_off; 1431 td->td_retval[RETVAL_LO] = pos & 0xffffffff; /* %eax */ 1432 td->td_retval[RETVAL_HI] = pos >> 32; /* %edx */ 1433 return error; 1434 } 1435 1436 int 1437 freebsd32_truncate(struct thread *td, struct freebsd32_truncate_args *uap) 1438 { 1439 struct truncate_args ap; 1440 1441 ap.path = uap->path; 1442 ap.length = PAIR32TO64(off_t,uap->length); 1443 return (sys_truncate(td, &ap)); 1444 } 1445 1446 int 1447 freebsd32_ftruncate(struct thread *td, struct freebsd32_ftruncate_args *uap) 1448 { 1449 struct ftruncate_args ap; 1450 1451 ap.fd = uap->fd; 1452 ap.length = PAIR32TO64(off_t,uap->length); 1453 return (sys_ftruncate(td, &ap)); 1454 } 1455 1456 #ifdef COMPAT_43 1457 int 1458 ofreebsd32_getdirentries(struct thread *td, 1459 struct ofreebsd32_getdirentries_args *uap) 1460 { 1461 struct ogetdirentries_args ap; 1462 int error; 1463 long loff; 1464 int32_t loff_cut; 1465 1466 ap.fd = uap->fd; 1467 ap.buf = uap->buf; 1468 ap.count = uap->count; 1469 ap.basep = NULL; 1470 error = kern_ogetdirentries(td, &ap, &loff); 1471 if (error == 0) { 1472 loff_cut = loff; 1473 error = copyout(&loff_cut, uap->basep, sizeof(int32_t)); 1474 } 1475 return (error); 1476 } 1477 #endif 1478 1479 int 1480 freebsd32_getdirentries(struct thread *td, 1481 struct freebsd32_getdirentries_args *uap) 1482 { 1483 long base; 1484 int32_t base32; 1485 int error; 1486 1487 error = kern_getdirentries(td, uap->fd, uap->buf, uap->count, &base, 1488 NULL, UIO_USERSPACE); 1489 if (error) 1490 return (error); 1491 if (uap->basep != NULL) { 1492 base32 = base; 1493 error = copyout(&base32, uap->basep, sizeof(int32_t)); 1494 } 1495 return (error); 1496 } 1497 1498 #ifdef COMPAT_FREEBSD6 1499 /* versions with the 'int pad' argument */ 1500 int 1501 freebsd6_freebsd32_pread(struct thread *td, struct freebsd6_freebsd32_pread_args *uap) 1502 { 1503 struct pread_args ap; 1504 1505 ap.fd = uap->fd; 1506 ap.buf = uap->buf; 1507 ap.nbyte = uap->nbyte; 1508 ap.offset = PAIR32TO64(off_t,uap->offset); 1509 return (sys_pread(td, &ap)); 1510 } 1511 1512 int 1513 freebsd6_freebsd32_pwrite(struct thread *td, struct freebsd6_freebsd32_pwrite_args *uap) 1514 { 1515 struct pwrite_args ap; 1516 1517 ap.fd = uap->fd; 1518 ap.buf = uap->buf; 1519 ap.nbyte = uap->nbyte; 1520 ap.offset = PAIR32TO64(off_t,uap->offset); 1521 return (sys_pwrite(td, &ap)); 1522 } 1523 1524 int 1525 freebsd6_freebsd32_lseek(struct thread *td, struct freebsd6_freebsd32_lseek_args *uap) 1526 { 1527 int error; 1528 struct lseek_args ap; 1529 off_t pos; 1530 1531 ap.fd = uap->fd; 1532 ap.offset = PAIR32TO64(off_t,uap->offset); 1533 ap.whence = uap->whence; 1534 error = sys_lseek(td, &ap); 1535 /* Expand the quad return into two parts for eax and edx */ 1536 pos = *(off_t *)(td->td_retval); 1537 td->td_retval[RETVAL_LO] = pos & 0xffffffff; /* %eax */ 1538 td->td_retval[RETVAL_HI] = pos >> 32; /* %edx */ 1539 return error; 1540 } 1541 1542 int 1543 freebsd6_freebsd32_truncate(struct thread *td, struct freebsd6_freebsd32_truncate_args *uap) 1544 { 1545 struct truncate_args ap; 1546 1547 ap.path = uap->path; 1548 ap.length = PAIR32TO64(off_t,uap->length); 1549 return (sys_truncate(td, &ap)); 1550 } 1551 1552 int 1553 freebsd6_freebsd32_ftruncate(struct thread *td, struct freebsd6_freebsd32_ftruncate_args *uap) 1554 { 1555 struct ftruncate_args ap; 1556 1557 ap.fd = uap->fd; 1558 ap.length = PAIR32TO64(off_t,uap->length); 1559 return (sys_ftruncate(td, &ap)); 1560 } 1561 #endif /* COMPAT_FREEBSD6 */ 1562 1563 struct sf_hdtr32 { 1564 uint32_t headers; 1565 int hdr_cnt; 1566 uint32_t trailers; 1567 int trl_cnt; 1568 }; 1569 1570 struct sf_hdtr_kq32 { 1571 int kq_fd; 1572 uint32_t kq_flags; 1573 uint32_t kq_udata; /* 32-bit void ptr */ 1574 uint32_t kq_ident; /* 32-bit uintptr_t */ 1575 }; 1576 1577 static int 1578 freebsd32_do_sendfile(struct thread *td, 1579 struct freebsd32_sendfile_args *uap, int compat) 1580 { 1581 struct sf_hdtr32 hdtr32; 1582 struct sf_hdtr hdtr; 1583 struct sf_hdtr_kq32 hdtr_kq32; 1584 struct sf_hdtr_kq hdtr_kq; 1585 struct uio *hdr_uio, *trl_uio; 1586 struct iovec32 *iov32; 1587 off_t offset; 1588 int error; 1589 off_t sbytes; 1590 1591 offset = PAIR32TO64(off_t, uap->offset); 1592 if (offset < 0) 1593 return (EINVAL); 1594 1595 hdr_uio = trl_uio = NULL; 1596 1597 if (uap->hdtr != NULL) { 1598 error = copyin(uap->hdtr, &hdtr32, sizeof(hdtr32)); 1599 if (error) 1600 goto out; 1601 PTRIN_CP(hdtr32, hdtr, headers); 1602 CP(hdtr32, hdtr, hdr_cnt); 1603 PTRIN_CP(hdtr32, hdtr, trailers); 1604 CP(hdtr32, hdtr, trl_cnt); 1605 1606 if (hdtr.headers != NULL) { 1607 iov32 = PTRIN(hdtr32.headers); 1608 error = freebsd32_copyinuio(iov32, 1609 hdtr32.hdr_cnt, &hdr_uio); 1610 if (error) 1611 goto out; 1612 } 1613 if (hdtr.trailers != NULL) { 1614 iov32 = PTRIN(hdtr32.trailers); 1615 error = freebsd32_copyinuio(iov32, 1616 hdtr32.trl_cnt, &trl_uio); 1617 if (error) 1618 goto out; 1619 } 1620 1621 /* 1622 * If SF_KQUEUE is set, then we need to also copy in 1623 * the kqueue data after the normal hdtr set and set do_kqueue=1. 1624 */ 1625 if (uap->flags & SF_KQUEUE) { 1626 error = copyin(((char *) uap->hdtr) + sizeof(hdtr32), 1627 &hdtr_kq32, 1628 sizeof(hdtr_kq32)); 1629 if (error != 0) 1630 goto out; 1631 1632 /* 32->64 bit fields */ 1633 CP(hdtr_kq32, hdtr_kq, kq_fd); 1634 CP(hdtr_kq32, hdtr_kq, kq_flags); 1635 PTRIN_CP(hdtr_kq32, hdtr_kq, kq_udata); 1636 CP(hdtr_kq32, hdtr_kq, kq_ident); 1637 } 1638 } 1639 1640 1641 /* Call sendfile */ 1642 /* XXX stack depth! */ 1643 error = _do_sendfile(td, uap->fd, uap->s, uap->flags, compat, 1644 offset, uap->nbytes, &sbytes, hdr_uio, trl_uio, &hdtr_kq); 1645 1646 if (uap->sbytes != NULL) 1647 copyout(&sbytes, uap->sbytes, sizeof(off_t)); 1648 1649 out: 1650 if (hdr_uio) 1651 free(hdr_uio, M_IOV); 1652 if (trl_uio) 1653 free(trl_uio, M_IOV); 1654 return (error); 1655 } 1656 1657 #ifdef COMPAT_FREEBSD4 1658 int 1659 freebsd4_freebsd32_sendfile(struct thread *td, 1660 struct freebsd4_freebsd32_sendfile_args *uap) 1661 { 1662 return (freebsd32_do_sendfile(td, 1663 (struct freebsd32_sendfile_args *)uap, 1)); 1664 } 1665 #endif 1666 1667 int 1668 freebsd32_sendfile(struct thread *td, struct freebsd32_sendfile_args *uap) 1669 { 1670 1671 return (freebsd32_do_sendfile(td, uap, 0)); 1672 } 1673 1674 static void 1675 copy_stat(struct stat *in, struct stat32 *out) 1676 { 1677 1678 CP(*in, *out, st_dev); 1679 CP(*in, *out, st_ino); 1680 CP(*in, *out, st_mode); 1681 CP(*in, *out, st_nlink); 1682 CP(*in, *out, st_uid); 1683 CP(*in, *out, st_gid); 1684 CP(*in, *out, st_rdev); 1685 TS_CP(*in, *out, st_atim); 1686 TS_CP(*in, *out, st_mtim); 1687 TS_CP(*in, *out, st_ctim); 1688 CP(*in, *out, st_size); 1689 CP(*in, *out, st_blocks); 1690 CP(*in, *out, st_blksize); 1691 CP(*in, *out, st_flags); 1692 CP(*in, *out, st_gen); 1693 TS_CP(*in, *out, st_birthtim); 1694 } 1695 1696 #ifdef COMPAT_43 1697 static void 1698 copy_ostat(struct stat *in, struct ostat32 *out) 1699 { 1700 1701 CP(*in, *out, st_dev); 1702 CP(*in, *out, st_ino); 1703 CP(*in, *out, st_mode); 1704 CP(*in, *out, st_nlink); 1705 CP(*in, *out, st_uid); 1706 CP(*in, *out, st_gid); 1707 CP(*in, *out, st_rdev); 1708 CP(*in, *out, st_size); 1709 TS_CP(*in, *out, st_atim); 1710 TS_CP(*in, *out, st_mtim); 1711 TS_CP(*in, *out, st_ctim); 1712 CP(*in, *out, st_blksize); 1713 CP(*in, *out, st_blocks); 1714 CP(*in, *out, st_flags); 1715 CP(*in, *out, st_gen); 1716 } 1717 #endif 1718 1719 int 1720 freebsd32_stat(struct thread *td, struct freebsd32_stat_args *uap) 1721 { 1722 struct stat sb; 1723 struct stat32 sb32; 1724 int error; 1725 1726 error = kern_stat(td, uap->path, UIO_USERSPACE, &sb); 1727 if (error) 1728 return (error); 1729 copy_stat(&sb, &sb32); 1730 error = copyout(&sb32, uap->ub, sizeof (sb32)); 1731 return (error); 1732 } 1733 1734 #ifdef COMPAT_43 1735 int 1736 ofreebsd32_stat(struct thread *td, struct ofreebsd32_stat_args *uap) 1737 { 1738 struct stat sb; 1739 struct ostat32 sb32; 1740 int error; 1741 1742 error = kern_stat(td, uap->path, UIO_USERSPACE, &sb); 1743 if (error) 1744 return (error); 1745 copy_ostat(&sb, &sb32); 1746 error = copyout(&sb32, uap->ub, sizeof (sb32)); 1747 return (error); 1748 } 1749 #endif 1750 1751 int 1752 freebsd32_fstat(struct thread *td, struct freebsd32_fstat_args *uap) 1753 { 1754 struct stat ub; 1755 struct stat32 ub32; 1756 int error; 1757 1758 error = kern_fstat(td, uap->fd, &ub); 1759 if (error) 1760 return (error); 1761 copy_stat(&ub, &ub32); 1762 error = copyout(&ub32, uap->ub, sizeof(ub32)); 1763 return (error); 1764 } 1765 1766 #ifdef COMPAT_43 1767 int 1768 ofreebsd32_fstat(struct thread *td, struct ofreebsd32_fstat_args *uap) 1769 { 1770 struct stat ub; 1771 struct ostat32 ub32; 1772 int error; 1773 1774 error = kern_fstat(td, uap->fd, &ub); 1775 if (error) 1776 return (error); 1777 copy_ostat(&ub, &ub32); 1778 error = copyout(&ub32, uap->ub, sizeof(ub32)); 1779 return (error); 1780 } 1781 #endif 1782 1783 int 1784 freebsd32_fstatat(struct thread *td, struct freebsd32_fstatat_args *uap) 1785 { 1786 struct stat ub; 1787 struct stat32 ub32; 1788 int error; 1789 1790 error = kern_statat(td, uap->flag, uap->fd, uap->path, UIO_USERSPACE, &ub); 1791 if (error) 1792 return (error); 1793 copy_stat(&ub, &ub32); 1794 error = copyout(&ub32, uap->buf, sizeof(ub32)); 1795 return (error); 1796 } 1797 1798 int 1799 freebsd32_lstat(struct thread *td, struct freebsd32_lstat_args *uap) 1800 { 1801 struct stat sb; 1802 struct stat32 sb32; 1803 int error; 1804 1805 error = kern_lstat(td, uap->path, UIO_USERSPACE, &sb); 1806 if (error) 1807 return (error); 1808 copy_stat(&sb, &sb32); 1809 error = copyout(&sb32, uap->ub, sizeof (sb32)); 1810 return (error); 1811 } 1812 1813 #ifdef COMPAT_43 1814 int 1815 ofreebsd32_lstat(struct thread *td, struct ofreebsd32_lstat_args *uap) 1816 { 1817 struct stat sb; 1818 struct ostat32 sb32; 1819 int error; 1820 1821 error = kern_lstat(td, uap->path, UIO_USERSPACE, &sb); 1822 if (error) 1823 return (error); 1824 copy_ostat(&sb, &sb32); 1825 error = copyout(&sb32, uap->ub, sizeof (sb32)); 1826 return (error); 1827 } 1828 #endif 1829 1830 int 1831 freebsd32_sysctl(struct thread *td, struct freebsd32_sysctl_args *uap) 1832 { 1833 int error, name[CTL_MAXNAME]; 1834 size_t j, oldlen; 1835 1836 if (uap->namelen > CTL_MAXNAME || uap->namelen < 2) 1837 return (EINVAL); 1838 error = copyin(uap->name, name, uap->namelen * sizeof(int)); 1839 if (error) 1840 return (error); 1841 if (uap->oldlenp) 1842 oldlen = fuword32(uap->oldlenp); 1843 else 1844 oldlen = 0; 1845 error = userland_sysctl(td, name, uap->namelen, 1846 uap->old, &oldlen, 1, 1847 uap->new, uap->newlen, &j, SCTL_MASK32); 1848 if (error && error != ENOMEM) 1849 return (error); 1850 if (uap->oldlenp) 1851 suword32(uap->oldlenp, j); 1852 return (0); 1853 } 1854 1855 int 1856 freebsd32_jail(struct thread *td, struct freebsd32_jail_args *uap) 1857 { 1858 uint32_t version; 1859 int error; 1860 struct jail j; 1861 1862 error = copyin(uap->jail, &version, sizeof(uint32_t)); 1863 if (error) 1864 return (error); 1865 1866 switch (version) { 1867 case 0: 1868 { 1869 /* FreeBSD single IPv4 jails. */ 1870 struct jail32_v0 j32_v0; 1871 1872 bzero(&j, sizeof(struct jail)); 1873 error = copyin(uap->jail, &j32_v0, sizeof(struct jail32_v0)); 1874 if (error) 1875 return (error); 1876 CP(j32_v0, j, version); 1877 PTRIN_CP(j32_v0, j, path); 1878 PTRIN_CP(j32_v0, j, hostname); 1879 j.ip4s = htonl(j32_v0.ip_number); /* jail_v0 is host order */ 1880 break; 1881 } 1882 1883 case 1: 1884 /* 1885 * Version 1 was used by multi-IPv4 jail implementations 1886 * that never made it into the official kernel. 1887 */ 1888 return (EINVAL); 1889 1890 case 2: /* JAIL_API_VERSION */ 1891 { 1892 /* FreeBSD multi-IPv4/IPv6,noIP jails. */ 1893 struct jail32 j32; 1894 1895 error = copyin(uap->jail, &j32, sizeof(struct jail32)); 1896 if (error) 1897 return (error); 1898 CP(j32, j, version); 1899 PTRIN_CP(j32, j, path); 1900 PTRIN_CP(j32, j, hostname); 1901 PTRIN_CP(j32, j, jailname); 1902 CP(j32, j, ip4s); 1903 CP(j32, j, ip6s); 1904 PTRIN_CP(j32, j, ip4); 1905 PTRIN_CP(j32, j, ip6); 1906 break; 1907 } 1908 1909 default: 1910 /* Sci-Fi jails are not supported, sorry. */ 1911 return (EINVAL); 1912 } 1913 return (kern_jail(td, &j)); 1914 } 1915 1916 int 1917 freebsd32_jail_set(struct thread *td, struct freebsd32_jail_set_args *uap) 1918 { 1919 struct uio *auio; 1920 int error; 1921 1922 /* Check that we have an even number of iovecs. */ 1923 if (uap->iovcnt & 1) 1924 return (EINVAL); 1925 1926 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 1927 if (error) 1928 return (error); 1929 error = kern_jail_set(td, auio, uap->flags); 1930 free(auio, M_IOV); 1931 return (error); 1932 } 1933 1934 int 1935 freebsd32_jail_get(struct thread *td, struct freebsd32_jail_get_args *uap) 1936 { 1937 struct iovec32 iov32; 1938 struct uio *auio; 1939 int error, i; 1940 1941 /* Check that we have an even number of iovecs. */ 1942 if (uap->iovcnt & 1) 1943 return (EINVAL); 1944 1945 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 1946 if (error) 1947 return (error); 1948 error = kern_jail_get(td, auio, uap->flags); 1949 if (error == 0) 1950 for (i = 0; i < uap->iovcnt; i++) { 1951 PTROUT_CP(auio->uio_iov[i], iov32, iov_base); 1952 CP(auio->uio_iov[i], iov32, iov_len); 1953 error = copyout(&iov32, uap->iovp + i, sizeof(iov32)); 1954 if (error != 0) 1955 break; 1956 } 1957 free(auio, M_IOV); 1958 return (error); 1959 } 1960 1961 int 1962 freebsd32_sigaction(struct thread *td, struct freebsd32_sigaction_args *uap) 1963 { 1964 struct sigaction32 s32; 1965 struct sigaction sa, osa, *sap; 1966 int error; 1967 1968 if (uap->act) { 1969 error = copyin(uap->act, &s32, sizeof(s32)); 1970 if (error) 1971 return (error); 1972 sa.sa_handler = PTRIN(s32.sa_u); 1973 CP(s32, sa, sa_flags); 1974 CP(s32, sa, sa_mask); 1975 sap = &sa; 1976 } else 1977 sap = NULL; 1978 error = kern_sigaction(td, uap->sig, sap, &osa, 0); 1979 if (error == 0 && uap->oact != NULL) { 1980 s32.sa_u = PTROUT(osa.sa_handler); 1981 CP(osa, s32, sa_flags); 1982 CP(osa, s32, sa_mask); 1983 error = copyout(&s32, uap->oact, sizeof(s32)); 1984 } 1985 return (error); 1986 } 1987 1988 #ifdef COMPAT_FREEBSD4 1989 int 1990 freebsd4_freebsd32_sigaction(struct thread *td, 1991 struct freebsd4_freebsd32_sigaction_args *uap) 1992 { 1993 struct sigaction32 s32; 1994 struct sigaction sa, osa, *sap; 1995 int error; 1996 1997 if (uap->act) { 1998 error = copyin(uap->act, &s32, sizeof(s32)); 1999 if (error) 2000 return (error); 2001 sa.sa_handler = PTRIN(s32.sa_u); 2002 CP(s32, sa, sa_flags); 2003 CP(s32, sa, sa_mask); 2004 sap = &sa; 2005 } else 2006 sap = NULL; 2007 error = kern_sigaction(td, uap->sig, sap, &osa, KSA_FREEBSD4); 2008 if (error == 0 && uap->oact != NULL) { 2009 s32.sa_u = PTROUT(osa.sa_handler); 2010 CP(osa, s32, sa_flags); 2011 CP(osa, s32, sa_mask); 2012 error = copyout(&s32, uap->oact, sizeof(s32)); 2013 } 2014 return (error); 2015 } 2016 #endif 2017 2018 #ifdef COMPAT_43 2019 struct osigaction32 { 2020 u_int32_t sa_u; 2021 osigset_t sa_mask; 2022 int sa_flags; 2023 }; 2024 2025 #define ONSIG 32 2026 2027 int 2028 ofreebsd32_sigaction(struct thread *td, 2029 struct ofreebsd32_sigaction_args *uap) 2030 { 2031 struct osigaction32 s32; 2032 struct sigaction sa, osa, *sap; 2033 int error; 2034 2035 if (uap->signum <= 0 || uap->signum >= ONSIG) 2036 return (EINVAL); 2037 2038 if (uap->nsa) { 2039 error = copyin(uap->nsa, &s32, sizeof(s32)); 2040 if (error) 2041 return (error); 2042 sa.sa_handler = PTRIN(s32.sa_u); 2043 CP(s32, sa, sa_flags); 2044 OSIG2SIG(s32.sa_mask, sa.sa_mask); 2045 sap = &sa; 2046 } else 2047 sap = NULL; 2048 error = kern_sigaction(td, uap->signum, sap, &osa, KSA_OSIGSET); 2049 if (error == 0 && uap->osa != NULL) { 2050 s32.sa_u = PTROUT(osa.sa_handler); 2051 CP(osa, s32, sa_flags); 2052 SIG2OSIG(osa.sa_mask, s32.sa_mask); 2053 error = copyout(&s32, uap->osa, sizeof(s32)); 2054 } 2055 return (error); 2056 } 2057 2058 int 2059 ofreebsd32_sigprocmask(struct thread *td, 2060 struct ofreebsd32_sigprocmask_args *uap) 2061 { 2062 sigset_t set, oset; 2063 int error; 2064 2065 OSIG2SIG(uap->mask, set); 2066 error = kern_sigprocmask(td, uap->how, &set, &oset, SIGPROCMASK_OLD); 2067 SIG2OSIG(oset, td->td_retval[0]); 2068 return (error); 2069 } 2070 2071 int 2072 ofreebsd32_sigpending(struct thread *td, 2073 struct ofreebsd32_sigpending_args *uap) 2074 { 2075 struct proc *p = td->td_proc; 2076 sigset_t siglist; 2077 2078 PROC_LOCK(p); 2079 siglist = p->p_siglist; 2080 SIGSETOR(siglist, td->td_siglist); 2081 PROC_UNLOCK(p); 2082 SIG2OSIG(siglist, td->td_retval[0]); 2083 return (0); 2084 } 2085 2086 struct sigvec32 { 2087 u_int32_t sv_handler; 2088 int sv_mask; 2089 int sv_flags; 2090 }; 2091 2092 int 2093 ofreebsd32_sigvec(struct thread *td, 2094 struct ofreebsd32_sigvec_args *uap) 2095 { 2096 struct sigvec32 vec; 2097 struct sigaction sa, osa, *sap; 2098 int error; 2099 2100 if (uap->signum <= 0 || uap->signum >= ONSIG) 2101 return (EINVAL); 2102 2103 if (uap->nsv) { 2104 error = copyin(uap->nsv, &vec, sizeof(vec)); 2105 if (error) 2106 return (error); 2107 sa.sa_handler = PTRIN(vec.sv_handler); 2108 OSIG2SIG(vec.sv_mask, sa.sa_mask); 2109 sa.sa_flags = vec.sv_flags; 2110 sa.sa_flags ^= SA_RESTART; 2111 sap = &sa; 2112 } else 2113 sap = NULL; 2114 error = kern_sigaction(td, uap->signum, sap, &osa, KSA_OSIGSET); 2115 if (error == 0 && uap->osv != NULL) { 2116 vec.sv_handler = PTROUT(osa.sa_handler); 2117 SIG2OSIG(osa.sa_mask, vec.sv_mask); 2118 vec.sv_flags = osa.sa_flags; 2119 vec.sv_flags &= ~SA_NOCLDWAIT; 2120 vec.sv_flags ^= SA_RESTART; 2121 error = copyout(&vec, uap->osv, sizeof(vec)); 2122 } 2123 return (error); 2124 } 2125 2126 int 2127 ofreebsd32_sigblock(struct thread *td, 2128 struct ofreebsd32_sigblock_args *uap) 2129 { 2130 sigset_t set, oset; 2131 2132 OSIG2SIG(uap->mask, set); 2133 kern_sigprocmask(td, SIG_BLOCK, &set, &oset, 0); 2134 SIG2OSIG(oset, td->td_retval[0]); 2135 return (0); 2136 } 2137 2138 int 2139 ofreebsd32_sigsetmask(struct thread *td, 2140 struct ofreebsd32_sigsetmask_args *uap) 2141 { 2142 sigset_t set, oset; 2143 2144 OSIG2SIG(uap->mask, set); 2145 kern_sigprocmask(td, SIG_SETMASK, &set, &oset, 0); 2146 SIG2OSIG(oset, td->td_retval[0]); 2147 return (0); 2148 } 2149 2150 int 2151 ofreebsd32_sigsuspend(struct thread *td, 2152 struct ofreebsd32_sigsuspend_args *uap) 2153 { 2154 sigset_t mask; 2155 2156 OSIG2SIG(uap->mask, mask); 2157 return (kern_sigsuspend(td, mask)); 2158 } 2159 2160 struct sigstack32 { 2161 u_int32_t ss_sp; 2162 int ss_onstack; 2163 }; 2164 2165 int 2166 ofreebsd32_sigstack(struct thread *td, 2167 struct ofreebsd32_sigstack_args *uap) 2168 { 2169 struct sigstack32 s32; 2170 struct sigstack nss, oss; 2171 int error = 0, unss; 2172 2173 if (uap->nss != NULL) { 2174 error = copyin(uap->nss, &s32, sizeof(s32)); 2175 if (error) 2176 return (error); 2177 nss.ss_sp = PTRIN(s32.ss_sp); 2178 CP(s32, nss, ss_onstack); 2179 unss = 1; 2180 } else { 2181 unss = 0; 2182 } 2183 oss.ss_sp = td->td_sigstk.ss_sp; 2184 oss.ss_onstack = sigonstack(cpu_getstack(td)); 2185 if (unss) { 2186 td->td_sigstk.ss_sp = nss.ss_sp; 2187 td->td_sigstk.ss_size = 0; 2188 td->td_sigstk.ss_flags |= (nss.ss_onstack & SS_ONSTACK); 2189 td->td_pflags |= TDP_ALTSTACK; 2190 } 2191 if (uap->oss != NULL) { 2192 s32.ss_sp = PTROUT(oss.ss_sp); 2193 CP(oss, s32, ss_onstack); 2194 error = copyout(&s32, uap->oss, sizeof(s32)); 2195 } 2196 return (error); 2197 } 2198 #endif 2199 2200 int 2201 freebsd32_nanosleep(struct thread *td, struct freebsd32_nanosleep_args *uap) 2202 { 2203 struct timespec32 rmt32, rqt32; 2204 struct timespec rmt, rqt; 2205 int error; 2206 2207 error = copyin(uap->rqtp, &rqt32, sizeof(rqt32)); 2208 if (error) 2209 return (error); 2210 2211 CP(rqt32, rqt, tv_sec); 2212 CP(rqt32, rqt, tv_nsec); 2213 2214 if (uap->rmtp && 2215 !useracc((caddr_t)uap->rmtp, sizeof(rmt), VM_PROT_WRITE)) 2216 return (EFAULT); 2217 error = kern_nanosleep(td, &rqt, &rmt); 2218 if (error && uap->rmtp) { 2219 int error2; 2220 2221 CP(rmt, rmt32, tv_sec); 2222 CP(rmt, rmt32, tv_nsec); 2223 2224 error2 = copyout(&rmt32, uap->rmtp, sizeof(rmt32)); 2225 if (error2) 2226 error = error2; 2227 } 2228 return (error); 2229 } 2230 2231 int 2232 freebsd32_clock_gettime(struct thread *td, 2233 struct freebsd32_clock_gettime_args *uap) 2234 { 2235 struct timespec ats; 2236 struct timespec32 ats32; 2237 int error; 2238 2239 error = kern_clock_gettime(td, uap->clock_id, &ats); 2240 if (error == 0) { 2241 CP(ats, ats32, tv_sec); 2242 CP(ats, ats32, tv_nsec); 2243 error = copyout(&ats32, uap->tp, sizeof(ats32)); 2244 } 2245 return (error); 2246 } 2247 2248 int 2249 freebsd32_clock_settime(struct thread *td, 2250 struct freebsd32_clock_settime_args *uap) 2251 { 2252 struct timespec ats; 2253 struct timespec32 ats32; 2254 int error; 2255 2256 error = copyin(uap->tp, &ats32, sizeof(ats32)); 2257 if (error) 2258 return (error); 2259 CP(ats32, ats, tv_sec); 2260 CP(ats32, ats, tv_nsec); 2261 2262 return (kern_clock_settime(td, uap->clock_id, &ats)); 2263 } 2264 2265 int 2266 freebsd32_clock_getres(struct thread *td, 2267 struct freebsd32_clock_getres_args *uap) 2268 { 2269 struct timespec ts; 2270 struct timespec32 ts32; 2271 int error; 2272 2273 if (uap->tp == NULL) 2274 return (0); 2275 error = kern_clock_getres(td, uap->clock_id, &ts); 2276 if (error == 0) { 2277 CP(ts, ts32, tv_sec); 2278 CP(ts, ts32, tv_nsec); 2279 error = copyout(&ts32, uap->tp, sizeof(ts32)); 2280 } 2281 return (error); 2282 } 2283 2284 int freebsd32_ktimer_create(struct thread *td, 2285 struct freebsd32_ktimer_create_args *uap) 2286 { 2287 struct sigevent32 ev32; 2288 struct sigevent ev, *evp; 2289 int error, id; 2290 2291 if (uap->evp == NULL) { 2292 evp = NULL; 2293 } else { 2294 evp = &ev; 2295 error = copyin(uap->evp, &ev32, sizeof(ev32)); 2296 if (error != 0) 2297 return (error); 2298 error = convert_sigevent32(&ev32, &ev); 2299 if (error != 0) 2300 return (error); 2301 } 2302 error = kern_ktimer_create(td, uap->clock_id, evp, &id, -1); 2303 if (error == 0) { 2304 error = copyout(&id, uap->timerid, sizeof(int)); 2305 if (error != 0) 2306 kern_ktimer_delete(td, id); 2307 } 2308 return (error); 2309 } 2310 2311 int 2312 freebsd32_ktimer_settime(struct thread *td, 2313 struct freebsd32_ktimer_settime_args *uap) 2314 { 2315 struct itimerspec32 val32, oval32; 2316 struct itimerspec val, oval, *ovalp; 2317 int error; 2318 2319 error = copyin(uap->value, &val32, sizeof(val32)); 2320 if (error != 0) 2321 return (error); 2322 ITS_CP(val32, val); 2323 ovalp = uap->ovalue != NULL ? &oval : NULL; 2324 error = kern_ktimer_settime(td, uap->timerid, uap->flags, &val, ovalp); 2325 if (error == 0 && uap->ovalue != NULL) { 2326 ITS_CP(oval, oval32); 2327 error = copyout(&oval32, uap->ovalue, sizeof(oval32)); 2328 } 2329 return (error); 2330 } 2331 2332 int 2333 freebsd32_ktimer_gettime(struct thread *td, 2334 struct freebsd32_ktimer_gettime_args *uap) 2335 { 2336 struct itimerspec32 val32; 2337 struct itimerspec val; 2338 int error; 2339 2340 error = kern_ktimer_gettime(td, uap->timerid, &val); 2341 if (error == 0) { 2342 ITS_CP(val, val32); 2343 error = copyout(&val32, uap->value, sizeof(val32)); 2344 } 2345 return (error); 2346 } 2347 2348 int 2349 freebsd32_clock_getcpuclockid2(struct thread *td, 2350 struct freebsd32_clock_getcpuclockid2_args *uap) 2351 { 2352 clockid_t clk_id; 2353 int error; 2354 2355 error = kern_clock_getcpuclockid2(td, PAIR32TO64(id_t, uap->id), 2356 uap->which, &clk_id); 2357 if (error == 0) 2358 error = copyout(&clk_id, uap->clock_id, sizeof(clockid_t)); 2359 return (error); 2360 } 2361 2362 int 2363 freebsd32_thr_new(struct thread *td, 2364 struct freebsd32_thr_new_args *uap) 2365 { 2366 struct thr_param32 param32; 2367 struct thr_param param; 2368 int error; 2369 2370 if (uap->param_size < 0 || 2371 uap->param_size > sizeof(struct thr_param32)) 2372 return (EINVAL); 2373 bzero(¶m, sizeof(struct thr_param)); 2374 bzero(¶m32, sizeof(struct thr_param32)); 2375 error = copyin(uap->param, ¶m32, uap->param_size); 2376 if (error != 0) 2377 return (error); 2378 param.start_func = PTRIN(param32.start_func); 2379 param.arg = PTRIN(param32.arg); 2380 param.stack_base = PTRIN(param32.stack_base); 2381 param.stack_size = param32.stack_size; 2382 param.tls_base = PTRIN(param32.tls_base); 2383 param.tls_size = param32.tls_size; 2384 param.child_tid = PTRIN(param32.child_tid); 2385 param.parent_tid = PTRIN(param32.parent_tid); 2386 param.flags = param32.flags; 2387 param.rtp = PTRIN(param32.rtp); 2388 param.spare[0] = PTRIN(param32.spare[0]); 2389 param.spare[1] = PTRIN(param32.spare[1]); 2390 param.spare[2] = PTRIN(param32.spare[2]); 2391 2392 return (kern_thr_new(td, ¶m)); 2393 } 2394 2395 int 2396 freebsd32_thr_suspend(struct thread *td, struct freebsd32_thr_suspend_args *uap) 2397 { 2398 struct timespec32 ts32; 2399 struct timespec ts, *tsp; 2400 int error; 2401 2402 error = 0; 2403 tsp = NULL; 2404 if (uap->timeout != NULL) { 2405 error = copyin((const void *)uap->timeout, (void *)&ts32, 2406 sizeof(struct timespec32)); 2407 if (error != 0) 2408 return (error); 2409 ts.tv_sec = ts32.tv_sec; 2410 ts.tv_nsec = ts32.tv_nsec; 2411 tsp = &ts; 2412 } 2413 return (kern_thr_suspend(td, tsp)); 2414 } 2415 2416 void 2417 siginfo_to_siginfo32(const siginfo_t *src, struct siginfo32 *dst) 2418 { 2419 bzero(dst, sizeof(*dst)); 2420 dst->si_signo = src->si_signo; 2421 dst->si_errno = src->si_errno; 2422 dst->si_code = src->si_code; 2423 dst->si_pid = src->si_pid; 2424 dst->si_uid = src->si_uid; 2425 dst->si_status = src->si_status; 2426 dst->si_addr = (uintptr_t)src->si_addr; 2427 dst->si_value.sival_int = src->si_value.sival_int; 2428 dst->si_timerid = src->si_timerid; 2429 dst->si_overrun = src->si_overrun; 2430 } 2431 2432 int 2433 freebsd32_sigtimedwait(struct thread *td, struct freebsd32_sigtimedwait_args *uap) 2434 { 2435 struct timespec32 ts32; 2436 struct timespec ts; 2437 struct timespec *timeout; 2438 sigset_t set; 2439 ksiginfo_t ksi; 2440 struct siginfo32 si32; 2441 int error; 2442 2443 if (uap->timeout) { 2444 error = copyin(uap->timeout, &ts32, sizeof(ts32)); 2445 if (error) 2446 return (error); 2447 ts.tv_sec = ts32.tv_sec; 2448 ts.tv_nsec = ts32.tv_nsec; 2449 timeout = &ts; 2450 } else 2451 timeout = NULL; 2452 2453 error = copyin(uap->set, &set, sizeof(set)); 2454 if (error) 2455 return (error); 2456 2457 error = kern_sigtimedwait(td, set, &ksi, timeout); 2458 if (error) 2459 return (error); 2460 2461 if (uap->info) { 2462 siginfo_to_siginfo32(&ksi.ksi_info, &si32); 2463 error = copyout(&si32, uap->info, sizeof(struct siginfo32)); 2464 } 2465 2466 if (error == 0) 2467 td->td_retval[0] = ksi.ksi_signo; 2468 return (error); 2469 } 2470 2471 /* 2472 * MPSAFE 2473 */ 2474 int 2475 freebsd32_sigwaitinfo(struct thread *td, struct freebsd32_sigwaitinfo_args *uap) 2476 { 2477 ksiginfo_t ksi; 2478 struct siginfo32 si32; 2479 sigset_t set; 2480 int error; 2481 2482 error = copyin(uap->set, &set, sizeof(set)); 2483 if (error) 2484 return (error); 2485 2486 error = kern_sigtimedwait(td, set, &ksi, NULL); 2487 if (error) 2488 return (error); 2489 2490 if (uap->info) { 2491 siginfo_to_siginfo32(&ksi.ksi_info, &si32); 2492 error = copyout(&si32, uap->info, sizeof(struct siginfo32)); 2493 } 2494 if (error == 0) 2495 td->td_retval[0] = ksi.ksi_signo; 2496 return (error); 2497 } 2498 2499 int 2500 freebsd32_cpuset_setid(struct thread *td, 2501 struct freebsd32_cpuset_setid_args *uap) 2502 { 2503 struct cpuset_setid_args ap; 2504 2505 ap.which = uap->which; 2506 ap.id = PAIR32TO64(id_t,uap->id); 2507 ap.setid = uap->setid; 2508 2509 return (sys_cpuset_setid(td, &ap)); 2510 } 2511 2512 int 2513 freebsd32_cpuset_getid(struct thread *td, 2514 struct freebsd32_cpuset_getid_args *uap) 2515 { 2516 struct cpuset_getid_args ap; 2517 2518 ap.level = uap->level; 2519 ap.which = uap->which; 2520 ap.id = PAIR32TO64(id_t,uap->id); 2521 ap.setid = uap->setid; 2522 2523 return (sys_cpuset_getid(td, &ap)); 2524 } 2525 2526 int 2527 freebsd32_cpuset_getaffinity(struct thread *td, 2528 struct freebsd32_cpuset_getaffinity_args *uap) 2529 { 2530 struct cpuset_getaffinity_args ap; 2531 2532 ap.level = uap->level; 2533 ap.which = uap->which; 2534 ap.id = PAIR32TO64(id_t,uap->id); 2535 ap.cpusetsize = uap->cpusetsize; 2536 ap.mask = uap->mask; 2537 2538 return (sys_cpuset_getaffinity(td, &ap)); 2539 } 2540 2541 int 2542 freebsd32_cpuset_setaffinity(struct thread *td, 2543 struct freebsd32_cpuset_setaffinity_args *uap) 2544 { 2545 struct cpuset_setaffinity_args ap; 2546 2547 ap.level = uap->level; 2548 ap.which = uap->which; 2549 ap.id = PAIR32TO64(id_t,uap->id); 2550 ap.cpusetsize = uap->cpusetsize; 2551 ap.mask = uap->mask; 2552 2553 return (sys_cpuset_setaffinity(td, &ap)); 2554 } 2555 2556 int 2557 freebsd32_nmount(struct thread *td, 2558 struct freebsd32_nmount_args /* { 2559 struct iovec *iovp; 2560 unsigned int iovcnt; 2561 int flags; 2562 } */ *uap) 2563 { 2564 struct uio *auio; 2565 uint64_t flags; 2566 int error; 2567 2568 /* 2569 * Mount flags are now 64-bits. On 32-bit archtectures only 2570 * 32-bits are passed in, but from here on everything handles 2571 * 64-bit flags correctly. 2572 */ 2573 flags = uap->flags; 2574 2575 AUDIT_ARG_FFLAGS(flags); 2576 2577 /* 2578 * Filter out MNT_ROOTFS. We do not want clients of nmount() in 2579 * userspace to set this flag, but we must filter it out if we want 2580 * MNT_UPDATE on the root file system to work. 2581 * MNT_ROOTFS should only be set by the kernel when mounting its 2582 * root file system. 2583 */ 2584 flags &= ~MNT_ROOTFS; 2585 2586 /* 2587 * check that we have an even number of iovec's 2588 * and that we have at least two options. 2589 */ 2590 if ((uap->iovcnt & 1) || (uap->iovcnt < 4)) 2591 return (EINVAL); 2592 2593 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 2594 if (error) 2595 return (error); 2596 error = vfs_donmount(td, flags, auio); 2597 2598 free(auio, M_IOV); 2599 return error; 2600 } 2601 2602 #if 0 2603 int 2604 freebsd32_xxx(struct thread *td, struct freebsd32_xxx_args *uap) 2605 { 2606 struct yyy32 *p32, s32; 2607 struct yyy *p = NULL, s; 2608 struct xxx_arg ap; 2609 int error; 2610 2611 if (uap->zzz) { 2612 error = copyin(uap->zzz, &s32, sizeof(s32)); 2613 if (error) 2614 return (error); 2615 /* translate in */ 2616 p = &s; 2617 } 2618 error = kern_xxx(td, p); 2619 if (error) 2620 return (error); 2621 if (uap->zzz) { 2622 /* translate out */ 2623 error = copyout(&s32, p32, sizeof(s32)); 2624 } 2625 return (error); 2626 } 2627 #endif 2628 2629 int 2630 syscall32_register(int *offset, struct sysent *new_sysent, 2631 struct sysent *old_sysent, int flags) 2632 { 2633 2634 if ((flags & ~SY_THR_STATIC) != 0) 2635 return (EINVAL); 2636 2637 if (*offset == NO_SYSCALL) { 2638 int i; 2639 2640 for (i = 1; i < SYS_MAXSYSCALL; ++i) 2641 if (freebsd32_sysent[i].sy_call == 2642 (sy_call_t *)lkmnosys) 2643 break; 2644 if (i == SYS_MAXSYSCALL) 2645 return (ENFILE); 2646 *offset = i; 2647 } else if (*offset < 0 || *offset >= SYS_MAXSYSCALL) 2648 return (EINVAL); 2649 else if (freebsd32_sysent[*offset].sy_call != (sy_call_t *)lkmnosys && 2650 freebsd32_sysent[*offset].sy_call != (sy_call_t *)lkmressys) 2651 return (EEXIST); 2652 2653 *old_sysent = freebsd32_sysent[*offset]; 2654 freebsd32_sysent[*offset] = *new_sysent; 2655 atomic_store_rel_32(&freebsd32_sysent[*offset].sy_thrcnt, flags); 2656 return (0); 2657 } 2658 2659 int 2660 syscall32_deregister(int *offset, struct sysent *old_sysent) 2661 { 2662 2663 if (*offset == 0) 2664 return (0); 2665 2666 freebsd32_sysent[*offset] = *old_sysent; 2667 return (0); 2668 } 2669 2670 int 2671 syscall32_module_handler(struct module *mod, int what, void *arg) 2672 { 2673 struct syscall_module_data *data = (struct syscall_module_data*)arg; 2674 modspecific_t ms; 2675 int error; 2676 2677 switch (what) { 2678 case MOD_LOAD: 2679 error = syscall32_register(data->offset, data->new_sysent, 2680 &data->old_sysent, SY_THR_STATIC_KLD); 2681 if (error) { 2682 /* Leave a mark so we know to safely unload below. */ 2683 data->offset = NULL; 2684 return error; 2685 } 2686 ms.intval = *data->offset; 2687 MOD_XLOCK; 2688 module_setspecific(mod, &ms); 2689 MOD_XUNLOCK; 2690 if (data->chainevh) 2691 error = data->chainevh(mod, what, data->chainarg); 2692 return (error); 2693 case MOD_UNLOAD: 2694 /* 2695 * MOD_LOAD failed, so just return without calling the 2696 * chained handler since we didn't pass along the MOD_LOAD 2697 * event. 2698 */ 2699 if (data->offset == NULL) 2700 return (0); 2701 if (data->chainevh) { 2702 error = data->chainevh(mod, what, data->chainarg); 2703 if (error) 2704 return (error); 2705 } 2706 error = syscall32_deregister(data->offset, &data->old_sysent); 2707 return (error); 2708 default: 2709 error = EOPNOTSUPP; 2710 if (data->chainevh) 2711 error = data->chainevh(mod, what, data->chainarg); 2712 return (error); 2713 } 2714 } 2715 2716 int 2717 syscall32_helper_register(struct syscall_helper_data *sd, int flags) 2718 { 2719 struct syscall_helper_data *sd1; 2720 int error; 2721 2722 for (sd1 = sd; sd1->syscall_no != NO_SYSCALL; sd1++) { 2723 error = syscall32_register(&sd1->syscall_no, &sd1->new_sysent, 2724 &sd1->old_sysent, flags); 2725 if (error != 0) { 2726 syscall32_helper_unregister(sd); 2727 return (error); 2728 } 2729 sd1->registered = 1; 2730 } 2731 return (0); 2732 } 2733 2734 int 2735 syscall32_helper_unregister(struct syscall_helper_data *sd) 2736 { 2737 struct syscall_helper_data *sd1; 2738 2739 for (sd1 = sd; sd1->registered != 0; sd1++) { 2740 syscall32_deregister(&sd1->syscall_no, &sd1->old_sysent); 2741 sd1->registered = 0; 2742 } 2743 return (0); 2744 } 2745 2746 register_t * 2747 freebsd32_copyout_strings(struct image_params *imgp) 2748 { 2749 int argc, envc, i; 2750 u_int32_t *vectp; 2751 char *stringp; 2752 uintptr_t destp; 2753 u_int32_t *stack_base; 2754 struct freebsd32_ps_strings *arginfo; 2755 char canary[sizeof(long) * 8]; 2756 int32_t pagesizes32[MAXPAGESIZES]; 2757 size_t execpath_len; 2758 int szsigcode; 2759 2760 /* 2761 * Calculate string base and vector table pointers. 2762 * Also deal with signal trampoline code for this exec type. 2763 */ 2764 if (imgp->execpath != NULL && imgp->auxargs != NULL) 2765 execpath_len = strlen(imgp->execpath) + 1; 2766 else 2767 execpath_len = 0; 2768 arginfo = (struct freebsd32_ps_strings *)curproc->p_sysent-> 2769 sv_psstrings; 2770 if (imgp->proc->p_sysent->sv_sigcode_base == 0) 2771 szsigcode = *(imgp->proc->p_sysent->sv_szsigcode); 2772 else 2773 szsigcode = 0; 2774 destp = (uintptr_t)arginfo; 2775 2776 /* 2777 * install sigcode 2778 */ 2779 if (szsigcode != 0) { 2780 destp -= szsigcode; 2781 destp = rounddown2(destp, sizeof(uint32_t)); 2782 copyout(imgp->proc->p_sysent->sv_sigcode, (void *)destp, 2783 szsigcode); 2784 } 2785 2786 /* 2787 * Copy the image path for the rtld. 2788 */ 2789 if (execpath_len != 0) { 2790 destp -= execpath_len; 2791 imgp->execpathp = destp; 2792 copyout(imgp->execpath, (void *)destp, execpath_len); 2793 } 2794 2795 /* 2796 * Prepare the canary for SSP. 2797 */ 2798 arc4rand(canary, sizeof(canary), 0); 2799 destp -= sizeof(canary); 2800 imgp->canary = destp; 2801 copyout(canary, (void *)destp, sizeof(canary)); 2802 imgp->canarylen = sizeof(canary); 2803 2804 /* 2805 * Prepare the pagesizes array. 2806 */ 2807 for (i = 0; i < MAXPAGESIZES; i++) 2808 pagesizes32[i] = (uint32_t)pagesizes[i]; 2809 destp -= sizeof(pagesizes32); 2810 destp = rounddown2(destp, sizeof(uint32_t)); 2811 imgp->pagesizes = destp; 2812 copyout(pagesizes32, (void *)destp, sizeof(pagesizes32)); 2813 imgp->pagesizeslen = sizeof(pagesizes32); 2814 2815 destp -= ARG_MAX - imgp->args->stringspace; 2816 destp = rounddown2(destp, sizeof(uint32_t)); 2817 2818 /* 2819 * If we have a valid auxargs ptr, prepare some room 2820 * on the stack. 2821 */ 2822 if (imgp->auxargs) { 2823 /* 2824 * 'AT_COUNT*2' is size for the ELF Auxargs data. This is for 2825 * lower compatibility. 2826 */ 2827 imgp->auxarg_size = (imgp->auxarg_size) ? imgp->auxarg_size 2828 : (AT_COUNT * 2); 2829 /* 2830 * The '+ 2' is for the null pointers at the end of each of 2831 * the arg and env vector sets,and imgp->auxarg_size is room 2832 * for argument of Runtime loader. 2833 */ 2834 vectp = (u_int32_t *) (destp - (imgp->args->argc + 2835 imgp->args->envc + 2 + imgp->auxarg_size + execpath_len) * 2836 sizeof(u_int32_t)); 2837 } else { 2838 /* 2839 * The '+ 2' is for the null pointers at the end of each of 2840 * the arg and env vector sets 2841 */ 2842 vectp = (u_int32_t *)(destp - (imgp->args->argc + 2843 imgp->args->envc + 2) * sizeof(u_int32_t)); 2844 } 2845 2846 /* 2847 * vectp also becomes our initial stack base 2848 */ 2849 stack_base = vectp; 2850 2851 stringp = imgp->args->begin_argv; 2852 argc = imgp->args->argc; 2853 envc = imgp->args->envc; 2854 /* 2855 * Copy out strings - arguments and environment. 2856 */ 2857 copyout(stringp, (void *)destp, ARG_MAX - imgp->args->stringspace); 2858 2859 /* 2860 * Fill in "ps_strings" struct for ps, w, etc. 2861 */ 2862 suword32(&arginfo->ps_argvstr, (u_int32_t)(intptr_t)vectp); 2863 suword32(&arginfo->ps_nargvstr, argc); 2864 2865 /* 2866 * Fill in argument portion of vector table. 2867 */ 2868 for (; argc > 0; --argc) { 2869 suword32(vectp++, (u_int32_t)(intptr_t)destp); 2870 while (*stringp++ != 0) 2871 destp++; 2872 destp++; 2873 } 2874 2875 /* a null vector table pointer separates the argp's from the envp's */ 2876 suword32(vectp++, 0); 2877 2878 suword32(&arginfo->ps_envstr, (u_int32_t)(intptr_t)vectp); 2879 suword32(&arginfo->ps_nenvstr, envc); 2880 2881 /* 2882 * Fill in environment portion of vector table. 2883 */ 2884 for (; envc > 0; --envc) { 2885 suword32(vectp++, (u_int32_t)(intptr_t)destp); 2886 while (*stringp++ != 0) 2887 destp++; 2888 destp++; 2889 } 2890 2891 /* end of vector table is a null pointer */ 2892 suword32(vectp, 0); 2893 2894 return ((register_t *)stack_base); 2895 } 2896 2897 int 2898 freebsd32_kldstat(struct thread *td, struct freebsd32_kldstat_args *uap) 2899 { 2900 struct kld_file_stat stat; 2901 struct kld32_file_stat stat32; 2902 int error, version; 2903 2904 if ((error = copyin(&uap->stat->version, &version, sizeof(version))) 2905 != 0) 2906 return (error); 2907 if (version != sizeof(struct kld32_file_stat_1) && 2908 version != sizeof(struct kld32_file_stat)) 2909 return (EINVAL); 2910 2911 error = kern_kldstat(td, uap->fileid, &stat); 2912 if (error != 0) 2913 return (error); 2914 2915 bcopy(&stat.name[0], &stat32.name[0], sizeof(stat.name)); 2916 CP(stat, stat32, refs); 2917 CP(stat, stat32, id); 2918 PTROUT_CP(stat, stat32, address); 2919 CP(stat, stat32, size); 2920 bcopy(&stat.pathname[0], &stat32.pathname[0], sizeof(stat.pathname)); 2921 return (copyout(&stat32, uap->stat, version)); 2922 } 2923 2924 int 2925 freebsd32_posix_fallocate(struct thread *td, 2926 struct freebsd32_posix_fallocate_args *uap) 2927 { 2928 2929 td->td_retval[0] = kern_posix_fallocate(td, uap->fd, 2930 PAIR32TO64(off_t, uap->offset), PAIR32TO64(off_t, uap->len)); 2931 return (0); 2932 } 2933 2934 int 2935 freebsd32_posix_fadvise(struct thread *td, 2936 struct freebsd32_posix_fadvise_args *uap) 2937 { 2938 2939 td->td_retval[0] = kern_posix_fadvise(td, uap->fd, 2940 PAIR32TO64(off_t, uap->offset), PAIR32TO64(off_t, uap->len), 2941 uap->advice); 2942 return (0); 2943 } 2944 2945 int 2946 convert_sigevent32(struct sigevent32 *sig32, struct sigevent *sig) 2947 { 2948 2949 CP(*sig32, *sig, sigev_notify); 2950 switch (sig->sigev_notify) { 2951 case SIGEV_NONE: 2952 break; 2953 case SIGEV_THREAD_ID: 2954 CP(*sig32, *sig, sigev_notify_thread_id); 2955 /* FALLTHROUGH */ 2956 case SIGEV_SIGNAL: 2957 CP(*sig32, *sig, sigev_signo); 2958 PTRIN_CP(*sig32, *sig, sigev_value.sival_ptr); 2959 break; 2960 case SIGEV_KEVENT: 2961 CP(*sig32, *sig, sigev_notify_kqueue); 2962 CP(*sig32, *sig, sigev_notify_kevent_flags); 2963 PTRIN_CP(*sig32, *sig, sigev_value.sival_ptr); 2964 break; 2965 default: 2966 return (EINVAL); 2967 } 2968 return (0); 2969 } 2970 2971 int 2972 freebsd32_procctl(struct thread *td, struct freebsd32_procctl_args *uap) 2973 { 2974 void *data; 2975 int error, flags; 2976 2977 switch (uap->com) { 2978 case PROC_SPROTECT: 2979 error = copyin(PTRIN(uap->data), &flags, sizeof(flags)); 2980 if (error) 2981 return (error); 2982 data = &flags; 2983 break; 2984 default: 2985 return (EINVAL); 2986 } 2987 return (kern_procctl(td, uap->idtype, PAIR32TO64(id_t, uap->id), 2988 uap->com, data)); 2989 } 2990 2991 int 2992 freebsd32_fcntl(struct thread *td, struct freebsd32_fcntl_args *uap) 2993 { 2994 long tmp; 2995 2996 switch (uap->cmd) { 2997 /* 2998 * Do unsigned conversion for arg when operation 2999 * interprets it as flags or pointer. 3000 */ 3001 case F_SETLK_REMOTE: 3002 case F_SETLKW: 3003 case F_SETLK: 3004 case F_GETLK: 3005 case F_SETFD: 3006 case F_SETFL: 3007 tmp = (unsigned int)(uap->arg); 3008 break; 3009 default: 3010 tmp = uap->arg; 3011 break; 3012 } 3013 return (kern_fcntl_freebsd(td, uap->fd, uap->cmd, tmp)); 3014 } 3015