1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2002 Doug Rabson 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include "opt_inet.h" 33 #include "opt_inet6.h" 34 #include "opt_ktrace.h" 35 36 #define __ELF_WORD_SIZE 32 37 38 #ifdef COMPAT_FREEBSD11 39 #define _WANT_FREEBSD11_KEVENT 40 #endif 41 42 #include <sys/param.h> 43 #include <sys/bus.h> 44 #include <sys/capsicum.h> 45 #include <sys/clock.h> 46 #include <sys/exec.h> 47 #include <sys/fcntl.h> 48 #include <sys/filedesc.h> 49 #include <sys/imgact.h> 50 #include <sys/jail.h> 51 #include <sys/kernel.h> 52 #include <sys/limits.h> 53 #include <sys/linker.h> 54 #include <sys/lock.h> 55 #include <sys/malloc.h> 56 #include <sys/file.h> /* Must come after sys/malloc.h */ 57 #include <sys/imgact.h> 58 #include <sys/mbuf.h> 59 #include <sys/mman.h> 60 #include <sys/module.h> 61 #include <sys/mount.h> 62 #include <sys/mutex.h> 63 #include <sys/namei.h> 64 #include <sys/proc.h> 65 #include <sys/procctl.h> 66 #include <sys/ptrace.h> 67 #include <sys/reboot.h> 68 #include <sys/resource.h> 69 #include <sys/resourcevar.h> 70 #include <sys/selinfo.h> 71 #include <sys/eventvar.h> /* Must come after sys/selinfo.h */ 72 #include <sys/pipe.h> /* Must come after sys/selinfo.h */ 73 #include <sys/signal.h> 74 #include <sys/signalvar.h> 75 #include <sys/socket.h> 76 #include <sys/socketvar.h> 77 #include <sys/stat.h> 78 #include <sys/syscall.h> 79 #include <sys/syscallsubr.h> 80 #include <sys/sysctl.h> 81 #include <sys/sysent.h> 82 #include <sys/sysproto.h> 83 #include <sys/systm.h> 84 #include <sys/thr.h> 85 #include <sys/timex.h> 86 #include <sys/unistd.h> 87 #include <sys/ucontext.h> 88 #include <sys/vnode.h> 89 #include <sys/wait.h> 90 #include <sys/ipc.h> 91 #include <sys/msg.h> 92 #include <sys/sem.h> 93 #include <sys/shm.h> 94 #ifdef KTRACE 95 #include <sys/ktrace.h> 96 #endif 97 98 #ifdef INET 99 #include <netinet/in.h> 100 #endif 101 102 #include <vm/vm.h> 103 #include <vm/vm_param.h> 104 #include <vm/pmap.h> 105 #include <vm/vm_map.h> 106 #include <vm/vm_object.h> 107 #include <vm/vm_extern.h> 108 109 #include <machine/cpu.h> 110 #include <machine/elf.h> 111 #ifdef __amd64__ 112 #include <machine/md_var.h> 113 #endif 114 115 #include <security/audit/audit.h> 116 117 #include <compat/freebsd32/freebsd32_util.h> 118 #include <compat/freebsd32/freebsd32.h> 119 #include <compat/freebsd32/freebsd32_ipc.h> 120 #include <compat/freebsd32/freebsd32_misc.h> 121 #include <compat/freebsd32/freebsd32_signal.h> 122 #include <compat/freebsd32/freebsd32_proto.h> 123 124 FEATURE(compat_freebsd_32bit, "Compatible with 32-bit FreeBSD"); 125 126 struct ptrace_io_desc32 { 127 int piod_op; 128 uint32_t piod_offs; 129 uint32_t piod_addr; 130 uint32_t piod_len; 131 }; 132 133 struct ptrace_sc_ret32 { 134 uint32_t sr_retval[2]; 135 int sr_error; 136 }; 137 138 struct ptrace_vm_entry32 { 139 int pve_entry; 140 int pve_timestamp; 141 uint32_t pve_start; 142 uint32_t pve_end; 143 uint32_t pve_offset; 144 u_int pve_prot; 145 u_int pve_pathlen; 146 int32_t pve_fileid; 147 u_int pve_fsid; 148 uint32_t pve_path; 149 }; 150 151 #ifdef __amd64__ 152 CTASSERT(sizeof(struct timeval32) == 8); 153 CTASSERT(sizeof(struct timespec32) == 8); 154 CTASSERT(sizeof(struct itimerval32) == 16); 155 CTASSERT(sizeof(struct bintime32) == 12); 156 #endif 157 CTASSERT(sizeof(struct statfs32) == 256); 158 #ifdef __amd64__ 159 CTASSERT(sizeof(struct rusage32) == 72); 160 #endif 161 CTASSERT(sizeof(struct sigaltstack32) == 12); 162 #ifdef __amd64__ 163 CTASSERT(sizeof(struct kevent32) == 56); 164 #else 165 CTASSERT(sizeof(struct kevent32) == 64); 166 #endif 167 CTASSERT(sizeof(struct iovec32) == 8); 168 CTASSERT(sizeof(struct msghdr32) == 28); 169 #ifdef __amd64__ 170 CTASSERT(sizeof(struct stat32) == 208); 171 CTASSERT(sizeof(struct freebsd11_stat32) == 96); 172 #endif 173 CTASSERT(sizeof(struct sigaction32) == 24); 174 175 static int freebsd32_kevent_copyout(void *arg, struct kevent *kevp, int count); 176 static int freebsd32_kevent_copyin(void *arg, struct kevent *kevp, int count); 177 static int freebsd32_user_clock_nanosleep(struct thread *td, clockid_t clock_id, 178 int flags, const struct timespec32 *ua_rqtp, struct timespec32 *ua_rmtp); 179 180 void 181 freebsd32_rusage_out(const struct rusage *s, struct rusage32 *s32) 182 { 183 184 TV_CP(*s, *s32, ru_utime); 185 TV_CP(*s, *s32, ru_stime); 186 CP(*s, *s32, ru_maxrss); 187 CP(*s, *s32, ru_ixrss); 188 CP(*s, *s32, ru_idrss); 189 CP(*s, *s32, ru_isrss); 190 CP(*s, *s32, ru_minflt); 191 CP(*s, *s32, ru_majflt); 192 CP(*s, *s32, ru_nswap); 193 CP(*s, *s32, ru_inblock); 194 CP(*s, *s32, ru_oublock); 195 CP(*s, *s32, ru_msgsnd); 196 CP(*s, *s32, ru_msgrcv); 197 CP(*s, *s32, ru_nsignals); 198 CP(*s, *s32, ru_nvcsw); 199 CP(*s, *s32, ru_nivcsw); 200 } 201 202 int 203 freebsd32_wait4(struct thread *td, struct freebsd32_wait4_args *uap) 204 { 205 int error, status; 206 struct rusage32 ru32; 207 struct rusage ru, *rup; 208 209 if (uap->rusage != NULL) 210 rup = &ru; 211 else 212 rup = NULL; 213 error = kern_wait(td, uap->pid, &status, uap->options, rup); 214 if (error) 215 return (error); 216 if (uap->status != NULL) 217 error = copyout(&status, uap->status, sizeof(status)); 218 if (uap->rusage != NULL && error == 0) { 219 freebsd32_rusage_out(&ru, &ru32); 220 error = copyout(&ru32, uap->rusage, sizeof(ru32)); 221 } 222 return (error); 223 } 224 225 int 226 freebsd32_wait6(struct thread *td, struct freebsd32_wait6_args *uap) 227 { 228 struct wrusage32 wru32; 229 struct __wrusage wru, *wrup; 230 struct siginfo32 si32; 231 struct __siginfo si, *sip; 232 int error, status; 233 234 if (uap->wrusage != NULL) 235 wrup = &wru; 236 else 237 wrup = NULL; 238 if (uap->info != NULL) { 239 sip = &si; 240 bzero(sip, sizeof(*sip)); 241 } else 242 sip = NULL; 243 error = kern_wait6(td, uap->idtype, PAIR32TO64(id_t, uap->id), 244 &status, uap->options, wrup, sip); 245 if (error != 0) 246 return (error); 247 if (uap->status != NULL) 248 error = copyout(&status, uap->status, sizeof(status)); 249 if (uap->wrusage != NULL && error == 0) { 250 freebsd32_rusage_out(&wru.wru_self, &wru32.wru_self); 251 freebsd32_rusage_out(&wru.wru_children, &wru32.wru_children); 252 error = copyout(&wru32, uap->wrusage, sizeof(wru32)); 253 } 254 if (uap->info != NULL && error == 0) { 255 siginfo_to_siginfo32 (&si, &si32); 256 error = copyout(&si32, uap->info, sizeof(si32)); 257 } 258 return (error); 259 } 260 261 #ifdef COMPAT_FREEBSD4 262 static void 263 copy_statfs(struct statfs *in, struct statfs32 *out) 264 { 265 266 statfs_scale_blocks(in, INT32_MAX); 267 bzero(out, sizeof(*out)); 268 CP(*in, *out, f_bsize); 269 out->f_iosize = MIN(in->f_iosize, INT32_MAX); 270 CP(*in, *out, f_blocks); 271 CP(*in, *out, f_bfree); 272 CP(*in, *out, f_bavail); 273 out->f_files = MIN(in->f_files, INT32_MAX); 274 out->f_ffree = MIN(in->f_ffree, INT32_MAX); 275 CP(*in, *out, f_fsid); 276 CP(*in, *out, f_owner); 277 CP(*in, *out, f_type); 278 CP(*in, *out, f_flags); 279 out->f_syncwrites = MIN(in->f_syncwrites, INT32_MAX); 280 out->f_asyncwrites = MIN(in->f_asyncwrites, INT32_MAX); 281 strlcpy(out->f_fstypename, 282 in->f_fstypename, MFSNAMELEN); 283 strlcpy(out->f_mntonname, 284 in->f_mntonname, min(MNAMELEN, FREEBSD4_MNAMELEN)); 285 out->f_syncreads = MIN(in->f_syncreads, INT32_MAX); 286 out->f_asyncreads = MIN(in->f_asyncreads, INT32_MAX); 287 strlcpy(out->f_mntfromname, 288 in->f_mntfromname, min(MNAMELEN, FREEBSD4_MNAMELEN)); 289 } 290 #endif 291 292 #ifdef COMPAT_FREEBSD4 293 int 294 freebsd4_freebsd32_getfsstat(struct thread *td, 295 struct freebsd4_freebsd32_getfsstat_args *uap) 296 { 297 struct statfs *buf, *sp; 298 struct statfs32 stat32; 299 size_t count, size, copycount; 300 int error; 301 302 count = uap->bufsize / sizeof(struct statfs32); 303 size = count * sizeof(struct statfs); 304 error = kern_getfsstat(td, &buf, size, &count, UIO_SYSSPACE, uap->mode); 305 if (size > 0) { 306 sp = buf; 307 copycount = count; 308 while (copycount > 0 && error == 0) { 309 copy_statfs(sp, &stat32); 310 error = copyout(&stat32, uap->buf, sizeof(stat32)); 311 sp++; 312 uap->buf++; 313 copycount--; 314 } 315 free(buf, M_STATFS); 316 } 317 if (error == 0) 318 td->td_retval[0] = count; 319 return (error); 320 } 321 #endif 322 323 #ifdef COMPAT_FREEBSD10 324 int 325 freebsd10_freebsd32_pipe(struct thread *td, 326 struct freebsd10_freebsd32_pipe_args *uap) { 327 return (freebsd10_pipe(td, (struct freebsd10_pipe_args*)uap)); 328 } 329 #endif 330 331 int 332 freebsd32_sigaltstack(struct thread *td, 333 struct freebsd32_sigaltstack_args *uap) 334 { 335 struct sigaltstack32 s32; 336 struct sigaltstack ss, oss, *ssp; 337 int error; 338 339 if (uap->ss != NULL) { 340 error = copyin(uap->ss, &s32, sizeof(s32)); 341 if (error) 342 return (error); 343 PTRIN_CP(s32, ss, ss_sp); 344 CP(s32, ss, ss_size); 345 CP(s32, ss, ss_flags); 346 ssp = &ss; 347 } else 348 ssp = NULL; 349 error = kern_sigaltstack(td, ssp, &oss); 350 if (error == 0 && uap->oss != NULL) { 351 PTROUT_CP(oss, s32, ss_sp); 352 CP(oss, s32, ss_size); 353 CP(oss, s32, ss_flags); 354 error = copyout(&s32, uap->oss, sizeof(s32)); 355 } 356 return (error); 357 } 358 359 /* 360 * Custom version of exec_copyin_args() so that we can translate 361 * the pointers. 362 */ 363 int 364 freebsd32_exec_copyin_args(struct image_args *args, const char *fname, 365 enum uio_seg segflg, u_int32_t *argv, u_int32_t *envv) 366 { 367 char *argp, *envp; 368 u_int32_t *p32, arg; 369 int error; 370 371 bzero(args, sizeof(*args)); 372 if (argv == NULL) 373 return (EFAULT); 374 375 /* 376 * Allocate demand-paged memory for the file name, argument, and 377 * environment strings. 378 */ 379 error = exec_alloc_args(args); 380 if (error != 0) 381 return (error); 382 383 /* 384 * Copy the file name. 385 */ 386 error = exec_args_add_fname(args, fname, segflg); 387 if (error != 0) 388 goto err_exit; 389 390 /* 391 * extract arguments first 392 */ 393 p32 = argv; 394 for (;;) { 395 error = copyin(p32++, &arg, sizeof(arg)); 396 if (error) 397 goto err_exit; 398 if (arg == 0) 399 break; 400 argp = PTRIN(arg); 401 error = exec_args_add_arg(args, argp, UIO_USERSPACE); 402 if (error != 0) 403 goto err_exit; 404 } 405 406 /* 407 * extract environment strings 408 */ 409 if (envv) { 410 p32 = envv; 411 for (;;) { 412 error = copyin(p32++, &arg, sizeof(arg)); 413 if (error) 414 goto err_exit; 415 if (arg == 0) 416 break; 417 envp = PTRIN(arg); 418 error = exec_args_add_env(args, envp, UIO_USERSPACE); 419 if (error != 0) 420 goto err_exit; 421 } 422 } 423 424 return (0); 425 426 err_exit: 427 exec_free_args(args); 428 return (error); 429 } 430 431 int 432 freebsd32_execve(struct thread *td, struct freebsd32_execve_args *uap) 433 { 434 struct image_args eargs; 435 struct vmspace *oldvmspace; 436 int error; 437 438 error = pre_execve(td, &oldvmspace); 439 if (error != 0) 440 return (error); 441 error = freebsd32_exec_copyin_args(&eargs, uap->fname, UIO_USERSPACE, 442 uap->argv, uap->envv); 443 if (error == 0) 444 error = kern_execve(td, &eargs, NULL, oldvmspace); 445 post_execve(td, error, oldvmspace); 446 AUDIT_SYSCALL_EXIT(error == EJUSTRETURN ? 0 : error, td); 447 return (error); 448 } 449 450 int 451 freebsd32_fexecve(struct thread *td, struct freebsd32_fexecve_args *uap) 452 { 453 struct image_args eargs; 454 struct vmspace *oldvmspace; 455 int error; 456 457 error = pre_execve(td, &oldvmspace); 458 if (error != 0) 459 return (error); 460 error = freebsd32_exec_copyin_args(&eargs, NULL, UIO_SYSSPACE, 461 uap->argv, uap->envv); 462 if (error == 0) { 463 eargs.fd = uap->fd; 464 error = kern_execve(td, &eargs, NULL, oldvmspace); 465 } 466 post_execve(td, error, oldvmspace); 467 AUDIT_SYSCALL_EXIT(error == EJUSTRETURN ? 0 : error, td); 468 return (error); 469 } 470 471 int 472 freebsd32_mknodat(struct thread *td, struct freebsd32_mknodat_args *uap) 473 { 474 475 return (kern_mknodat(td, uap->fd, uap->path, UIO_USERSPACE, 476 uap->mode, PAIR32TO64(dev_t, uap->dev))); 477 } 478 479 int 480 freebsd32_mprotect(struct thread *td, struct freebsd32_mprotect_args *uap) 481 { 482 int prot; 483 484 prot = uap->prot; 485 #if defined(__amd64__) 486 if (i386_read_exec && (prot & PROT_READ) != 0) 487 prot |= PROT_EXEC; 488 #endif 489 return (kern_mprotect(td, (uintptr_t)PTRIN(uap->addr), uap->len, 490 prot)); 491 } 492 493 int 494 freebsd32_mmap(struct thread *td, struct freebsd32_mmap_args *uap) 495 { 496 int prot; 497 498 prot = uap->prot; 499 #if defined(__amd64__) 500 if (i386_read_exec && (prot & PROT_READ)) 501 prot |= PROT_EXEC; 502 #endif 503 504 return (kern_mmap(td, &(struct mmap_req){ 505 .mr_hint = (uintptr_t)uap->addr, 506 .mr_len = uap->len, 507 .mr_prot = prot, 508 .mr_flags = uap->flags, 509 .mr_fd = uap->fd, 510 .mr_pos = PAIR32TO64(off_t, uap->pos), 511 })); 512 } 513 514 #ifdef COMPAT_FREEBSD6 515 int 516 freebsd6_freebsd32_mmap(struct thread *td, 517 struct freebsd6_freebsd32_mmap_args *uap) 518 { 519 int prot; 520 521 prot = uap->prot; 522 #if defined(__amd64__) 523 if (i386_read_exec && (prot & PROT_READ)) 524 prot |= PROT_EXEC; 525 #endif 526 527 return (kern_mmap(td, &(struct mmap_req){ 528 .mr_hint = (uintptr_t)uap->addr, 529 .mr_len = uap->len, 530 .mr_prot = prot, 531 .mr_flags = uap->flags, 532 .mr_fd = uap->fd, 533 .mr_pos = PAIR32TO64(off_t, uap->pos), 534 })); 535 } 536 #endif 537 538 int 539 freebsd32_setitimer(struct thread *td, struct freebsd32_setitimer_args *uap) 540 { 541 struct itimerval itv, oitv, *itvp; 542 struct itimerval32 i32; 543 int error; 544 545 if (uap->itv != NULL) { 546 error = copyin(uap->itv, &i32, sizeof(i32)); 547 if (error) 548 return (error); 549 TV_CP(i32, itv, it_interval); 550 TV_CP(i32, itv, it_value); 551 itvp = &itv; 552 } else 553 itvp = NULL; 554 error = kern_setitimer(td, uap->which, itvp, &oitv); 555 if (error || uap->oitv == NULL) 556 return (error); 557 TV_CP(oitv, i32, it_interval); 558 TV_CP(oitv, i32, it_value); 559 return (copyout(&i32, uap->oitv, sizeof(i32))); 560 } 561 562 int 563 freebsd32_getitimer(struct thread *td, struct freebsd32_getitimer_args *uap) 564 { 565 struct itimerval itv; 566 struct itimerval32 i32; 567 int error; 568 569 error = kern_getitimer(td, uap->which, &itv); 570 if (error || uap->itv == NULL) 571 return (error); 572 TV_CP(itv, i32, it_interval); 573 TV_CP(itv, i32, it_value); 574 return (copyout(&i32, uap->itv, sizeof(i32))); 575 } 576 577 int 578 freebsd32_select(struct thread *td, struct freebsd32_select_args *uap) 579 { 580 struct timeval32 tv32; 581 struct timeval tv, *tvp; 582 int error; 583 584 if (uap->tv != NULL) { 585 error = copyin(uap->tv, &tv32, sizeof(tv32)); 586 if (error) 587 return (error); 588 CP(tv32, tv, tv_sec); 589 CP(tv32, tv, tv_usec); 590 tvp = &tv; 591 } else 592 tvp = NULL; 593 /* 594 * XXX Do pointers need PTRIN()? 595 */ 596 return (kern_select(td, uap->nd, uap->in, uap->ou, uap->ex, tvp, 597 sizeof(int32_t) * 8)); 598 } 599 600 int 601 freebsd32_pselect(struct thread *td, struct freebsd32_pselect_args *uap) 602 { 603 struct timespec32 ts32; 604 struct timespec ts; 605 struct timeval tv, *tvp; 606 sigset_t set, *uset; 607 int error; 608 609 if (uap->ts != NULL) { 610 error = copyin(uap->ts, &ts32, sizeof(ts32)); 611 if (error != 0) 612 return (error); 613 CP(ts32, ts, tv_sec); 614 CP(ts32, ts, tv_nsec); 615 TIMESPEC_TO_TIMEVAL(&tv, &ts); 616 tvp = &tv; 617 } else 618 tvp = NULL; 619 if (uap->sm != NULL) { 620 error = copyin(uap->sm, &set, sizeof(set)); 621 if (error != 0) 622 return (error); 623 uset = &set; 624 } else 625 uset = NULL; 626 /* 627 * XXX Do pointers need PTRIN()? 628 */ 629 error = kern_pselect(td, uap->nd, uap->in, uap->ou, uap->ex, tvp, 630 uset, sizeof(int32_t) * 8); 631 return (error); 632 } 633 634 /* 635 * Copy 'count' items into the destination list pointed to by uap->eventlist. 636 */ 637 static int 638 freebsd32_kevent_copyout(void *arg, struct kevent *kevp, int count) 639 { 640 struct freebsd32_kevent_args *uap; 641 struct kevent32 ks32[KQ_NEVENTS]; 642 uint64_t e; 643 int i, j, error; 644 645 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count)); 646 uap = (struct freebsd32_kevent_args *)arg; 647 648 for (i = 0; i < count; i++) { 649 CP(kevp[i], ks32[i], ident); 650 CP(kevp[i], ks32[i], filter); 651 CP(kevp[i], ks32[i], flags); 652 CP(kevp[i], ks32[i], fflags); 653 #if BYTE_ORDER == LITTLE_ENDIAN 654 ks32[i].data1 = kevp[i].data; 655 ks32[i].data2 = kevp[i].data >> 32; 656 #else 657 ks32[i].data1 = kevp[i].data >> 32; 658 ks32[i].data2 = kevp[i].data; 659 #endif 660 PTROUT_CP(kevp[i], ks32[i], udata); 661 for (j = 0; j < nitems(kevp->ext); j++) { 662 e = kevp[i].ext[j]; 663 #if BYTE_ORDER == LITTLE_ENDIAN 664 ks32[i].ext64[2 * j] = e; 665 ks32[i].ext64[2 * j + 1] = e >> 32; 666 #else 667 ks32[i].ext64[2 * j] = e >> 32; 668 ks32[i].ext64[2 * j + 1] = e; 669 #endif 670 } 671 } 672 error = copyout(ks32, uap->eventlist, count * sizeof *ks32); 673 if (error == 0) 674 uap->eventlist += count; 675 return (error); 676 } 677 678 /* 679 * Copy 'count' items from the list pointed to by uap->changelist. 680 */ 681 static int 682 freebsd32_kevent_copyin(void *arg, struct kevent *kevp, int count) 683 { 684 struct freebsd32_kevent_args *uap; 685 struct kevent32 ks32[KQ_NEVENTS]; 686 uint64_t e; 687 int i, j, error; 688 689 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count)); 690 uap = (struct freebsd32_kevent_args *)arg; 691 692 error = copyin(uap->changelist, ks32, count * sizeof *ks32); 693 if (error) 694 goto done; 695 uap->changelist += count; 696 697 for (i = 0; i < count; i++) { 698 CP(ks32[i], kevp[i], ident); 699 CP(ks32[i], kevp[i], filter); 700 CP(ks32[i], kevp[i], flags); 701 CP(ks32[i], kevp[i], fflags); 702 kevp[i].data = PAIR32TO64(uint64_t, ks32[i].data); 703 PTRIN_CP(ks32[i], kevp[i], udata); 704 for (j = 0; j < nitems(kevp->ext); j++) { 705 #if BYTE_ORDER == LITTLE_ENDIAN 706 e = ks32[i].ext64[2 * j + 1]; 707 e <<= 32; 708 e += ks32[i].ext64[2 * j]; 709 #else 710 e = ks32[i].ext64[2 * j]; 711 e <<= 32; 712 e += ks32[i].ext64[2 * j + 1]; 713 #endif 714 kevp[i].ext[j] = e; 715 } 716 } 717 done: 718 return (error); 719 } 720 721 int 722 freebsd32_kevent(struct thread *td, struct freebsd32_kevent_args *uap) 723 { 724 struct timespec32 ts32; 725 struct timespec ts, *tsp; 726 struct kevent_copyops k_ops = { 727 .arg = uap, 728 .k_copyout = freebsd32_kevent_copyout, 729 .k_copyin = freebsd32_kevent_copyin, 730 }; 731 #ifdef KTRACE 732 struct kevent32 *eventlist = uap->eventlist; 733 #endif 734 int error; 735 736 if (uap->timeout) { 737 error = copyin(uap->timeout, &ts32, sizeof(ts32)); 738 if (error) 739 return (error); 740 CP(ts32, ts, tv_sec); 741 CP(ts32, ts, tv_nsec); 742 tsp = &ts; 743 } else 744 tsp = NULL; 745 #ifdef KTRACE 746 if (KTRPOINT(td, KTR_STRUCT_ARRAY)) 747 ktrstructarray("kevent32", UIO_USERSPACE, uap->changelist, 748 uap->nchanges, sizeof(struct kevent32)); 749 #endif 750 error = kern_kevent(td, uap->fd, uap->nchanges, uap->nevents, 751 &k_ops, tsp); 752 #ifdef KTRACE 753 if (error == 0 && KTRPOINT(td, KTR_STRUCT_ARRAY)) 754 ktrstructarray("kevent32", UIO_USERSPACE, eventlist, 755 td->td_retval[0], sizeof(struct kevent32)); 756 #endif 757 return (error); 758 } 759 760 #ifdef COMPAT_FREEBSD11 761 static int 762 freebsd32_kevent11_copyout(void *arg, struct kevent *kevp, int count) 763 { 764 struct freebsd11_freebsd32_kevent_args *uap; 765 struct kevent32_freebsd11 ks32[KQ_NEVENTS]; 766 int i, error; 767 768 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count)); 769 uap = (struct freebsd11_freebsd32_kevent_args *)arg; 770 771 for (i = 0; i < count; i++) { 772 CP(kevp[i], ks32[i], ident); 773 CP(kevp[i], ks32[i], filter); 774 CP(kevp[i], ks32[i], flags); 775 CP(kevp[i], ks32[i], fflags); 776 CP(kevp[i], ks32[i], data); 777 PTROUT_CP(kevp[i], ks32[i], udata); 778 } 779 error = copyout(ks32, uap->eventlist, count * sizeof *ks32); 780 if (error == 0) 781 uap->eventlist += count; 782 return (error); 783 } 784 785 /* 786 * Copy 'count' items from the list pointed to by uap->changelist. 787 */ 788 static int 789 freebsd32_kevent11_copyin(void *arg, struct kevent *kevp, int count) 790 { 791 struct freebsd11_freebsd32_kevent_args *uap; 792 struct kevent32_freebsd11 ks32[KQ_NEVENTS]; 793 int i, j, error; 794 795 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count)); 796 uap = (struct freebsd11_freebsd32_kevent_args *)arg; 797 798 error = copyin(uap->changelist, ks32, count * sizeof *ks32); 799 if (error) 800 goto done; 801 uap->changelist += count; 802 803 for (i = 0; i < count; i++) { 804 CP(ks32[i], kevp[i], ident); 805 CP(ks32[i], kevp[i], filter); 806 CP(ks32[i], kevp[i], flags); 807 CP(ks32[i], kevp[i], fflags); 808 CP(ks32[i], kevp[i], data); 809 PTRIN_CP(ks32[i], kevp[i], udata); 810 for (j = 0; j < nitems(kevp->ext); j++) 811 kevp[i].ext[j] = 0; 812 } 813 done: 814 return (error); 815 } 816 817 int 818 freebsd11_freebsd32_kevent(struct thread *td, 819 struct freebsd11_freebsd32_kevent_args *uap) 820 { 821 struct timespec32 ts32; 822 struct timespec ts, *tsp; 823 struct kevent_copyops k_ops = { 824 .arg = uap, 825 .k_copyout = freebsd32_kevent11_copyout, 826 .k_copyin = freebsd32_kevent11_copyin, 827 }; 828 #ifdef KTRACE 829 struct kevent32_freebsd11 *eventlist = uap->eventlist; 830 #endif 831 int error; 832 833 if (uap->timeout) { 834 error = copyin(uap->timeout, &ts32, sizeof(ts32)); 835 if (error) 836 return (error); 837 CP(ts32, ts, tv_sec); 838 CP(ts32, ts, tv_nsec); 839 tsp = &ts; 840 } else 841 tsp = NULL; 842 #ifdef KTRACE 843 if (KTRPOINT(td, KTR_STRUCT_ARRAY)) 844 ktrstructarray("kevent32_freebsd11", UIO_USERSPACE, 845 uap->changelist, uap->nchanges, 846 sizeof(struct kevent32_freebsd11)); 847 #endif 848 error = kern_kevent(td, uap->fd, uap->nchanges, uap->nevents, 849 &k_ops, tsp); 850 #ifdef KTRACE 851 if (error == 0 && KTRPOINT(td, KTR_STRUCT_ARRAY)) 852 ktrstructarray("kevent32_freebsd11", UIO_USERSPACE, 853 eventlist, td->td_retval[0], 854 sizeof(struct kevent32_freebsd11)); 855 #endif 856 return (error); 857 } 858 #endif 859 860 int 861 freebsd32_gettimeofday(struct thread *td, 862 struct freebsd32_gettimeofday_args *uap) 863 { 864 struct timeval atv; 865 struct timeval32 atv32; 866 struct timezone rtz; 867 int error = 0; 868 869 if (uap->tp) { 870 microtime(&atv); 871 CP(atv, atv32, tv_sec); 872 CP(atv, atv32, tv_usec); 873 error = copyout(&atv32, uap->tp, sizeof (atv32)); 874 } 875 if (error == 0 && uap->tzp != NULL) { 876 rtz.tz_minuteswest = 0; 877 rtz.tz_dsttime = 0; 878 error = copyout(&rtz, uap->tzp, sizeof (rtz)); 879 } 880 return (error); 881 } 882 883 int 884 freebsd32_getrusage(struct thread *td, struct freebsd32_getrusage_args *uap) 885 { 886 struct rusage32 s32; 887 struct rusage s; 888 int error; 889 890 error = kern_getrusage(td, uap->who, &s); 891 if (error == 0) { 892 freebsd32_rusage_out(&s, &s32); 893 error = copyout(&s32, uap->rusage, sizeof(s32)); 894 } 895 return (error); 896 } 897 898 static void 899 ptrace_lwpinfo_to32(const struct ptrace_lwpinfo *pl, 900 struct ptrace_lwpinfo32 *pl32) 901 { 902 903 bzero(pl32, sizeof(*pl32)); 904 pl32->pl_lwpid = pl->pl_lwpid; 905 pl32->pl_event = pl->pl_event; 906 pl32->pl_flags = pl->pl_flags; 907 pl32->pl_sigmask = pl->pl_sigmask; 908 pl32->pl_siglist = pl->pl_siglist; 909 siginfo_to_siginfo32(&pl->pl_siginfo, &pl32->pl_siginfo); 910 strcpy(pl32->pl_tdname, pl->pl_tdname); 911 pl32->pl_child_pid = pl->pl_child_pid; 912 pl32->pl_syscall_code = pl->pl_syscall_code; 913 pl32->pl_syscall_narg = pl->pl_syscall_narg; 914 } 915 916 static void 917 ptrace_sc_ret_to32(const struct ptrace_sc_ret *psr, 918 struct ptrace_sc_ret32 *psr32) 919 { 920 921 bzero(psr32, sizeof(*psr32)); 922 psr32->sr_retval[0] = psr->sr_retval[0]; 923 psr32->sr_retval[1] = psr->sr_retval[1]; 924 psr32->sr_error = psr->sr_error; 925 } 926 927 int 928 freebsd32_ptrace(struct thread *td, struct freebsd32_ptrace_args *uap) 929 { 930 union { 931 struct ptrace_io_desc piod; 932 struct ptrace_lwpinfo pl; 933 struct ptrace_vm_entry pve; 934 struct ptrace_coredump pc; 935 struct dbreg32 dbreg; 936 struct fpreg32 fpreg; 937 struct reg32 reg; 938 register_t args[nitems(td->td_sa.args)]; 939 struct ptrace_sc_ret psr; 940 int ptevents; 941 } r; 942 union { 943 struct ptrace_io_desc32 piod; 944 struct ptrace_lwpinfo32 pl; 945 struct ptrace_vm_entry32 pve; 946 struct ptrace_coredump32 pc; 947 uint32_t args[nitems(td->td_sa.args)]; 948 struct ptrace_sc_ret32 psr; 949 } r32; 950 void *addr; 951 int data, error = 0, i; 952 953 AUDIT_ARG_PID(uap->pid); 954 AUDIT_ARG_CMD(uap->req); 955 AUDIT_ARG_VALUE(uap->data); 956 addr = &r; 957 data = uap->data; 958 switch (uap->req) { 959 case PT_GET_EVENT_MASK: 960 case PT_GET_SC_ARGS: 961 case PT_GET_SC_RET: 962 break; 963 case PT_LWPINFO: 964 if (uap->data > sizeof(r32.pl)) 965 return (EINVAL); 966 967 /* 968 * Pass size of native structure in 'data'. Truncate 969 * if necessary to avoid siginfo. 970 */ 971 data = sizeof(r.pl); 972 if (uap->data < offsetof(struct ptrace_lwpinfo32, pl_siginfo) + 973 sizeof(struct siginfo32)) 974 data = offsetof(struct ptrace_lwpinfo, pl_siginfo); 975 break; 976 case PT_GETREGS: 977 bzero(&r.reg, sizeof(r.reg)); 978 break; 979 case PT_GETFPREGS: 980 bzero(&r.fpreg, sizeof(r.fpreg)); 981 break; 982 case PT_GETDBREGS: 983 bzero(&r.dbreg, sizeof(r.dbreg)); 984 break; 985 case PT_SETREGS: 986 error = copyin(uap->addr, &r.reg, sizeof(r.reg)); 987 break; 988 case PT_SETFPREGS: 989 error = copyin(uap->addr, &r.fpreg, sizeof(r.fpreg)); 990 break; 991 case PT_SETDBREGS: 992 error = copyin(uap->addr, &r.dbreg, sizeof(r.dbreg)); 993 break; 994 case PT_SET_EVENT_MASK: 995 if (uap->data != sizeof(r.ptevents)) 996 error = EINVAL; 997 else 998 error = copyin(uap->addr, &r.ptevents, uap->data); 999 break; 1000 case PT_IO: 1001 error = copyin(uap->addr, &r32.piod, sizeof(r32.piod)); 1002 if (error) 1003 break; 1004 CP(r32.piod, r.piod, piod_op); 1005 PTRIN_CP(r32.piod, r.piod, piod_offs); 1006 PTRIN_CP(r32.piod, r.piod, piod_addr); 1007 CP(r32.piod, r.piod, piod_len); 1008 break; 1009 case PT_VM_ENTRY: 1010 error = copyin(uap->addr, &r32.pve, sizeof(r32.pve)); 1011 if (error) 1012 break; 1013 1014 CP(r32.pve, r.pve, pve_entry); 1015 CP(r32.pve, r.pve, pve_timestamp); 1016 CP(r32.pve, r.pve, pve_start); 1017 CP(r32.pve, r.pve, pve_end); 1018 CP(r32.pve, r.pve, pve_offset); 1019 CP(r32.pve, r.pve, pve_prot); 1020 CP(r32.pve, r.pve, pve_pathlen); 1021 CP(r32.pve, r.pve, pve_fileid); 1022 CP(r32.pve, r.pve, pve_fsid); 1023 PTRIN_CP(r32.pve, r.pve, pve_path); 1024 break; 1025 case PT_COREDUMP: 1026 if (uap->data != sizeof(r32.pc)) 1027 error = EINVAL; 1028 else 1029 error = copyin(uap->addr, &r32.pc, uap->data); 1030 CP(r32.pc, r.pc, pc_fd); 1031 CP(r32.pc, r.pc, pc_flags); 1032 r.pc.pc_limit = PAIR32TO64(off_t, r32.pc.pc_limit); 1033 data = sizeof(r.pc); 1034 break; 1035 default: 1036 addr = uap->addr; 1037 break; 1038 } 1039 if (error) 1040 return (error); 1041 1042 error = kern_ptrace(td, uap->req, uap->pid, addr, data); 1043 if (error) 1044 return (error); 1045 1046 switch (uap->req) { 1047 case PT_VM_ENTRY: 1048 CP(r.pve, r32.pve, pve_entry); 1049 CP(r.pve, r32.pve, pve_timestamp); 1050 CP(r.pve, r32.pve, pve_start); 1051 CP(r.pve, r32.pve, pve_end); 1052 CP(r.pve, r32.pve, pve_offset); 1053 CP(r.pve, r32.pve, pve_prot); 1054 CP(r.pve, r32.pve, pve_pathlen); 1055 CP(r.pve, r32.pve, pve_fileid); 1056 CP(r.pve, r32.pve, pve_fsid); 1057 error = copyout(&r32.pve, uap->addr, sizeof(r32.pve)); 1058 break; 1059 case PT_IO: 1060 CP(r.piod, r32.piod, piod_len); 1061 error = copyout(&r32.piod, uap->addr, sizeof(r32.piod)); 1062 break; 1063 case PT_GETREGS: 1064 error = copyout(&r.reg, uap->addr, sizeof(r.reg)); 1065 break; 1066 case PT_GETFPREGS: 1067 error = copyout(&r.fpreg, uap->addr, sizeof(r.fpreg)); 1068 break; 1069 case PT_GETDBREGS: 1070 error = copyout(&r.dbreg, uap->addr, sizeof(r.dbreg)); 1071 break; 1072 case PT_GET_EVENT_MASK: 1073 /* NB: The size in uap->data is validated in kern_ptrace(). */ 1074 error = copyout(&r.ptevents, uap->addr, uap->data); 1075 break; 1076 case PT_LWPINFO: 1077 ptrace_lwpinfo_to32(&r.pl, &r32.pl); 1078 error = copyout(&r32.pl, uap->addr, uap->data); 1079 break; 1080 case PT_GET_SC_ARGS: 1081 for (i = 0; i < nitems(r.args); i++) 1082 r32.args[i] = (uint32_t)r.args[i]; 1083 error = copyout(r32.args, uap->addr, MIN(uap->data, 1084 sizeof(r32.args))); 1085 break; 1086 case PT_GET_SC_RET: 1087 ptrace_sc_ret_to32(&r.psr, &r32.psr); 1088 error = copyout(&r32.psr, uap->addr, MIN(uap->data, 1089 sizeof(r32.psr))); 1090 break; 1091 } 1092 1093 return (error); 1094 } 1095 1096 int 1097 freebsd32_copyinuio(struct iovec32 *iovp, u_int iovcnt, struct uio **uiop) 1098 { 1099 struct iovec32 iov32; 1100 struct iovec *iov; 1101 struct uio *uio; 1102 u_int iovlen; 1103 int error, i; 1104 1105 *uiop = NULL; 1106 if (iovcnt > UIO_MAXIOV) 1107 return (EINVAL); 1108 iovlen = iovcnt * sizeof(struct iovec); 1109 uio = malloc(iovlen + sizeof *uio, M_IOV, M_WAITOK); 1110 iov = (struct iovec *)(uio + 1); 1111 for (i = 0; i < iovcnt; i++) { 1112 error = copyin(&iovp[i], &iov32, sizeof(struct iovec32)); 1113 if (error) { 1114 free(uio, M_IOV); 1115 return (error); 1116 } 1117 iov[i].iov_base = PTRIN(iov32.iov_base); 1118 iov[i].iov_len = iov32.iov_len; 1119 } 1120 uio->uio_iov = iov; 1121 uio->uio_iovcnt = iovcnt; 1122 uio->uio_segflg = UIO_USERSPACE; 1123 uio->uio_offset = -1; 1124 uio->uio_resid = 0; 1125 for (i = 0; i < iovcnt; i++) { 1126 if (iov->iov_len > INT_MAX - uio->uio_resid) { 1127 free(uio, M_IOV); 1128 return (EINVAL); 1129 } 1130 uio->uio_resid += iov->iov_len; 1131 iov++; 1132 } 1133 *uiop = uio; 1134 return (0); 1135 } 1136 1137 int 1138 freebsd32_readv(struct thread *td, struct freebsd32_readv_args *uap) 1139 { 1140 struct uio *auio; 1141 int error; 1142 1143 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 1144 if (error) 1145 return (error); 1146 error = kern_readv(td, uap->fd, auio); 1147 free(auio, M_IOV); 1148 return (error); 1149 } 1150 1151 int 1152 freebsd32_writev(struct thread *td, struct freebsd32_writev_args *uap) 1153 { 1154 struct uio *auio; 1155 int error; 1156 1157 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 1158 if (error) 1159 return (error); 1160 error = kern_writev(td, uap->fd, auio); 1161 free(auio, M_IOV); 1162 return (error); 1163 } 1164 1165 int 1166 freebsd32_preadv(struct thread *td, struct freebsd32_preadv_args *uap) 1167 { 1168 struct uio *auio; 1169 int error; 1170 1171 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 1172 if (error) 1173 return (error); 1174 error = kern_preadv(td, uap->fd, auio, PAIR32TO64(off_t,uap->offset)); 1175 free(auio, M_IOV); 1176 return (error); 1177 } 1178 1179 int 1180 freebsd32_pwritev(struct thread *td, struct freebsd32_pwritev_args *uap) 1181 { 1182 struct uio *auio; 1183 int error; 1184 1185 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 1186 if (error) 1187 return (error); 1188 error = kern_pwritev(td, uap->fd, auio, PAIR32TO64(off_t,uap->offset)); 1189 free(auio, M_IOV); 1190 return (error); 1191 } 1192 1193 int 1194 freebsd32_copyiniov(struct iovec32 *iovp32, u_int iovcnt, struct iovec **iovp, 1195 int error) 1196 { 1197 struct iovec32 iov32; 1198 struct iovec *iov; 1199 u_int iovlen; 1200 int i; 1201 1202 *iovp = NULL; 1203 if (iovcnt > UIO_MAXIOV) 1204 return (error); 1205 iovlen = iovcnt * sizeof(struct iovec); 1206 iov = malloc(iovlen, M_IOV, M_WAITOK); 1207 for (i = 0; i < iovcnt; i++) { 1208 error = copyin(&iovp32[i], &iov32, sizeof(struct iovec32)); 1209 if (error) { 1210 free(iov, M_IOV); 1211 return (error); 1212 } 1213 iov[i].iov_base = PTRIN(iov32.iov_base); 1214 iov[i].iov_len = iov32.iov_len; 1215 } 1216 *iovp = iov; 1217 return (0); 1218 } 1219 1220 static int 1221 freebsd32_copyinmsghdr(struct msghdr32 *msg32, struct msghdr *msg) 1222 { 1223 struct msghdr32 m32; 1224 int error; 1225 1226 error = copyin(msg32, &m32, sizeof(m32)); 1227 if (error) 1228 return (error); 1229 msg->msg_name = PTRIN(m32.msg_name); 1230 msg->msg_namelen = m32.msg_namelen; 1231 msg->msg_iov = PTRIN(m32.msg_iov); 1232 msg->msg_iovlen = m32.msg_iovlen; 1233 msg->msg_control = PTRIN(m32.msg_control); 1234 msg->msg_controllen = m32.msg_controllen; 1235 msg->msg_flags = m32.msg_flags; 1236 return (0); 1237 } 1238 1239 static int 1240 freebsd32_copyoutmsghdr(struct msghdr *msg, struct msghdr32 *msg32) 1241 { 1242 struct msghdr32 m32; 1243 int error; 1244 1245 m32.msg_name = PTROUT(msg->msg_name); 1246 m32.msg_namelen = msg->msg_namelen; 1247 m32.msg_iov = PTROUT(msg->msg_iov); 1248 m32.msg_iovlen = msg->msg_iovlen; 1249 m32.msg_control = PTROUT(msg->msg_control); 1250 m32.msg_controllen = msg->msg_controllen; 1251 m32.msg_flags = msg->msg_flags; 1252 error = copyout(&m32, msg32, sizeof(m32)); 1253 return (error); 1254 } 1255 1256 #ifndef __mips__ 1257 #define FREEBSD32_ALIGNBYTES (sizeof(int) - 1) 1258 #else 1259 #define FREEBSD32_ALIGNBYTES (sizeof(long) - 1) 1260 #endif 1261 #define FREEBSD32_ALIGN(p) \ 1262 (((u_long)(p) + FREEBSD32_ALIGNBYTES) & ~FREEBSD32_ALIGNBYTES) 1263 #define FREEBSD32_CMSG_SPACE(l) \ 1264 (FREEBSD32_ALIGN(sizeof(struct cmsghdr)) + FREEBSD32_ALIGN(l)) 1265 1266 #define FREEBSD32_CMSG_DATA(cmsg) ((unsigned char *)(cmsg) + \ 1267 FREEBSD32_ALIGN(sizeof(struct cmsghdr))) 1268 1269 static size_t 1270 freebsd32_cmsg_convert(const struct cmsghdr *cm, void *data, socklen_t datalen) 1271 { 1272 size_t copylen; 1273 union { 1274 struct timespec32 ts; 1275 struct timeval32 tv; 1276 struct bintime32 bt; 1277 } tmp32; 1278 1279 union { 1280 struct timespec ts; 1281 struct timeval tv; 1282 struct bintime bt; 1283 } *in; 1284 1285 in = data; 1286 copylen = 0; 1287 switch (cm->cmsg_level) { 1288 case SOL_SOCKET: 1289 switch (cm->cmsg_type) { 1290 case SCM_TIMESTAMP: 1291 TV_CP(*in, tmp32, tv); 1292 copylen = sizeof(tmp32.tv); 1293 break; 1294 1295 case SCM_BINTIME: 1296 BT_CP(*in, tmp32, bt); 1297 copylen = sizeof(tmp32.bt); 1298 break; 1299 1300 case SCM_REALTIME: 1301 case SCM_MONOTONIC: 1302 TS_CP(*in, tmp32, ts); 1303 copylen = sizeof(tmp32.ts); 1304 break; 1305 1306 default: 1307 break; 1308 } 1309 1310 default: 1311 break; 1312 } 1313 1314 if (copylen == 0) 1315 return (datalen); 1316 1317 KASSERT((datalen >= copylen), ("corrupted cmsghdr")); 1318 1319 bcopy(&tmp32, data, copylen); 1320 return (copylen); 1321 } 1322 1323 static int 1324 freebsd32_copy_msg_out(struct msghdr *msg, struct mbuf *control) 1325 { 1326 struct cmsghdr *cm; 1327 void *data; 1328 socklen_t clen, datalen, datalen_out, oldclen; 1329 int error; 1330 caddr_t ctlbuf; 1331 int len, maxlen, copylen; 1332 struct mbuf *m; 1333 error = 0; 1334 1335 len = msg->msg_controllen; 1336 maxlen = msg->msg_controllen; 1337 msg->msg_controllen = 0; 1338 1339 ctlbuf = msg->msg_control; 1340 for (m = control; m != NULL && len > 0; m = m->m_next) { 1341 cm = mtod(m, struct cmsghdr *); 1342 clen = m->m_len; 1343 while (cm != NULL) { 1344 if (sizeof(struct cmsghdr) > clen || 1345 cm->cmsg_len > clen) { 1346 error = EINVAL; 1347 break; 1348 } 1349 1350 data = CMSG_DATA(cm); 1351 datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data; 1352 datalen_out = freebsd32_cmsg_convert(cm, data, datalen); 1353 1354 /* 1355 * Copy out the message header. Preserve the native 1356 * message size in case we need to inspect the message 1357 * contents later. 1358 */ 1359 copylen = sizeof(struct cmsghdr); 1360 if (len < copylen) { 1361 msg->msg_flags |= MSG_CTRUNC; 1362 m_dispose_extcontrolm(m); 1363 goto exit; 1364 } 1365 oldclen = cm->cmsg_len; 1366 cm->cmsg_len = FREEBSD32_ALIGN(sizeof(struct cmsghdr)) + 1367 datalen_out; 1368 error = copyout(cm, ctlbuf, copylen); 1369 cm->cmsg_len = oldclen; 1370 if (error != 0) 1371 goto exit; 1372 1373 ctlbuf += FREEBSD32_ALIGN(copylen); 1374 len -= FREEBSD32_ALIGN(copylen); 1375 1376 copylen = datalen_out; 1377 if (len < copylen) { 1378 msg->msg_flags |= MSG_CTRUNC; 1379 m_dispose_extcontrolm(m); 1380 break; 1381 } 1382 1383 /* Copy out the message data. */ 1384 error = copyout(data, ctlbuf, copylen); 1385 if (error) 1386 goto exit; 1387 1388 ctlbuf += FREEBSD32_ALIGN(copylen); 1389 len -= FREEBSD32_ALIGN(copylen); 1390 1391 if (CMSG_SPACE(datalen) < clen) { 1392 clen -= CMSG_SPACE(datalen); 1393 cm = (struct cmsghdr *) 1394 ((caddr_t)cm + CMSG_SPACE(datalen)); 1395 } else { 1396 clen = 0; 1397 cm = NULL; 1398 } 1399 1400 msg->msg_controllen += 1401 FREEBSD32_CMSG_SPACE(datalen_out); 1402 } 1403 } 1404 if (len == 0 && m != NULL) { 1405 msg->msg_flags |= MSG_CTRUNC; 1406 m_dispose_extcontrolm(m); 1407 } 1408 1409 exit: 1410 return (error); 1411 } 1412 1413 int 1414 freebsd32_recvmsg(struct thread *td, struct freebsd32_recvmsg_args *uap) 1415 { 1416 struct msghdr msg; 1417 struct iovec *uiov, *iov; 1418 struct mbuf *control = NULL; 1419 struct mbuf **controlp; 1420 int error; 1421 1422 error = freebsd32_copyinmsghdr(uap->msg, &msg); 1423 if (error) 1424 return (error); 1425 error = freebsd32_copyiniov((void *)msg.msg_iov, msg.msg_iovlen, &iov, 1426 EMSGSIZE); 1427 if (error) 1428 return (error); 1429 msg.msg_flags = uap->flags; 1430 uiov = msg.msg_iov; 1431 msg.msg_iov = iov; 1432 1433 controlp = (msg.msg_control != NULL) ? &control : NULL; 1434 error = kern_recvit(td, uap->s, &msg, UIO_USERSPACE, controlp); 1435 if (error == 0) { 1436 msg.msg_iov = uiov; 1437 1438 if (control != NULL) 1439 error = freebsd32_copy_msg_out(&msg, control); 1440 else 1441 msg.msg_controllen = 0; 1442 1443 if (error == 0) 1444 error = freebsd32_copyoutmsghdr(&msg, uap->msg); 1445 } 1446 free(iov, M_IOV); 1447 1448 if (control != NULL) { 1449 if (error != 0) 1450 m_dispose_extcontrolm(control); 1451 m_freem(control); 1452 } 1453 1454 return (error); 1455 } 1456 1457 /* 1458 * Copy-in the array of control messages constructed using alignment 1459 * and padding suitable for a 32-bit environment and construct an 1460 * mbuf using alignment and padding suitable for a 64-bit kernel. 1461 * The alignment and padding are defined indirectly by CMSG_DATA(), 1462 * CMSG_SPACE() and CMSG_LEN(). 1463 */ 1464 static int 1465 freebsd32_copyin_control(struct mbuf **mp, caddr_t buf, u_int buflen) 1466 { 1467 struct cmsghdr *cm; 1468 struct mbuf *m; 1469 void *in, *in1, *md; 1470 u_int msglen, outlen; 1471 int error; 1472 1473 if (buflen > MCLBYTES) 1474 return (EINVAL); 1475 1476 in = malloc(buflen, M_TEMP, M_WAITOK); 1477 error = copyin(buf, in, buflen); 1478 if (error != 0) 1479 goto out; 1480 1481 /* 1482 * Make a pass over the input buffer to determine the amount of space 1483 * required for 64 bit-aligned copies of the control messages. 1484 */ 1485 in1 = in; 1486 outlen = 0; 1487 while (buflen > 0) { 1488 if (buflen < sizeof(*cm)) { 1489 error = EINVAL; 1490 break; 1491 } 1492 cm = (struct cmsghdr *)in1; 1493 if (cm->cmsg_len < FREEBSD32_ALIGN(sizeof(*cm))) { 1494 error = EINVAL; 1495 break; 1496 } 1497 msglen = FREEBSD32_ALIGN(cm->cmsg_len); 1498 if (msglen > buflen || msglen < cm->cmsg_len) { 1499 error = EINVAL; 1500 break; 1501 } 1502 buflen -= msglen; 1503 1504 in1 = (char *)in1 + msglen; 1505 outlen += CMSG_ALIGN(sizeof(*cm)) + 1506 CMSG_ALIGN(msglen - FREEBSD32_ALIGN(sizeof(*cm))); 1507 } 1508 if (error == 0 && outlen > MCLBYTES) { 1509 /* 1510 * XXXMJ This implies that the upper limit on 32-bit aligned 1511 * control messages is less than MCLBYTES, and so we are not 1512 * perfectly compatible. However, there is no platform 1513 * guarantee that mbuf clusters larger than MCLBYTES can be 1514 * allocated. 1515 */ 1516 error = EINVAL; 1517 } 1518 if (error != 0) 1519 goto out; 1520 1521 m = m_get2(outlen, M_WAITOK, MT_CONTROL, 0); 1522 m->m_len = outlen; 1523 md = mtod(m, void *); 1524 1525 /* 1526 * Make a second pass over input messages, copying them into the output 1527 * buffer. 1528 */ 1529 in1 = in; 1530 while (outlen > 0) { 1531 /* Copy the message header and align the length field. */ 1532 cm = md; 1533 memcpy(cm, in1, sizeof(*cm)); 1534 msglen = cm->cmsg_len - FREEBSD32_ALIGN(sizeof(*cm)); 1535 cm->cmsg_len = CMSG_ALIGN(sizeof(*cm)) + msglen; 1536 1537 /* Copy the message body. */ 1538 in1 = (char *)in1 + FREEBSD32_ALIGN(sizeof(*cm)); 1539 md = (char *)md + CMSG_ALIGN(sizeof(*cm)); 1540 memcpy(md, in1, msglen); 1541 in1 = (char *)in1 + FREEBSD32_ALIGN(msglen); 1542 md = (char *)md + CMSG_ALIGN(msglen); 1543 KASSERT(outlen >= CMSG_ALIGN(sizeof(*cm)) + CMSG_ALIGN(msglen), 1544 ("outlen %u underflow, msglen %u", outlen, msglen)); 1545 outlen -= CMSG_ALIGN(sizeof(*cm)) + CMSG_ALIGN(msglen); 1546 } 1547 1548 *mp = m; 1549 out: 1550 free(in, M_TEMP); 1551 return (error); 1552 } 1553 1554 int 1555 freebsd32_sendmsg(struct thread *td, struct freebsd32_sendmsg_args *uap) 1556 { 1557 struct msghdr msg; 1558 struct iovec *iov; 1559 struct mbuf *control = NULL; 1560 struct sockaddr *to = NULL; 1561 int error; 1562 1563 error = freebsd32_copyinmsghdr(uap->msg, &msg); 1564 if (error) 1565 return (error); 1566 error = freebsd32_copyiniov((void *)msg.msg_iov, msg.msg_iovlen, &iov, 1567 EMSGSIZE); 1568 if (error) 1569 return (error); 1570 msg.msg_iov = iov; 1571 if (msg.msg_name != NULL) { 1572 error = getsockaddr(&to, msg.msg_name, msg.msg_namelen); 1573 if (error) { 1574 to = NULL; 1575 goto out; 1576 } 1577 msg.msg_name = to; 1578 } 1579 1580 if (msg.msg_control) { 1581 if (msg.msg_controllen < sizeof(struct cmsghdr)) { 1582 error = EINVAL; 1583 goto out; 1584 } 1585 1586 error = freebsd32_copyin_control(&control, msg.msg_control, 1587 msg.msg_controllen); 1588 if (error) 1589 goto out; 1590 1591 msg.msg_control = NULL; 1592 msg.msg_controllen = 0; 1593 } 1594 1595 error = kern_sendit(td, uap->s, &msg, uap->flags, control, 1596 UIO_USERSPACE); 1597 1598 out: 1599 free(iov, M_IOV); 1600 if (to) 1601 free(to, M_SONAME); 1602 return (error); 1603 } 1604 1605 int 1606 freebsd32_recvfrom(struct thread *td, 1607 struct freebsd32_recvfrom_args *uap) 1608 { 1609 struct msghdr msg; 1610 struct iovec aiov; 1611 int error; 1612 1613 if (uap->fromlenaddr) { 1614 error = copyin(PTRIN(uap->fromlenaddr), &msg.msg_namelen, 1615 sizeof(msg.msg_namelen)); 1616 if (error) 1617 return (error); 1618 } else { 1619 msg.msg_namelen = 0; 1620 } 1621 1622 msg.msg_name = PTRIN(uap->from); 1623 msg.msg_iov = &aiov; 1624 msg.msg_iovlen = 1; 1625 aiov.iov_base = PTRIN(uap->buf); 1626 aiov.iov_len = uap->len; 1627 msg.msg_control = NULL; 1628 msg.msg_flags = uap->flags; 1629 error = kern_recvit(td, uap->s, &msg, UIO_USERSPACE, NULL); 1630 if (error == 0 && uap->fromlenaddr) 1631 error = copyout(&msg.msg_namelen, PTRIN(uap->fromlenaddr), 1632 sizeof (msg.msg_namelen)); 1633 return (error); 1634 } 1635 1636 int 1637 freebsd32_settimeofday(struct thread *td, 1638 struct freebsd32_settimeofday_args *uap) 1639 { 1640 struct timeval32 tv32; 1641 struct timeval tv, *tvp; 1642 struct timezone tz, *tzp; 1643 int error; 1644 1645 if (uap->tv) { 1646 error = copyin(uap->tv, &tv32, sizeof(tv32)); 1647 if (error) 1648 return (error); 1649 CP(tv32, tv, tv_sec); 1650 CP(tv32, tv, tv_usec); 1651 tvp = &tv; 1652 } else 1653 tvp = NULL; 1654 if (uap->tzp) { 1655 error = copyin(uap->tzp, &tz, sizeof(tz)); 1656 if (error) 1657 return (error); 1658 tzp = &tz; 1659 } else 1660 tzp = NULL; 1661 return (kern_settimeofday(td, tvp, tzp)); 1662 } 1663 1664 int 1665 freebsd32_utimes(struct thread *td, struct freebsd32_utimes_args *uap) 1666 { 1667 struct timeval32 s32[2]; 1668 struct timeval s[2], *sp; 1669 int error; 1670 1671 if (uap->tptr != NULL) { 1672 error = copyin(uap->tptr, s32, sizeof(s32)); 1673 if (error) 1674 return (error); 1675 CP(s32[0], s[0], tv_sec); 1676 CP(s32[0], s[0], tv_usec); 1677 CP(s32[1], s[1], tv_sec); 1678 CP(s32[1], s[1], tv_usec); 1679 sp = s; 1680 } else 1681 sp = NULL; 1682 return (kern_utimesat(td, AT_FDCWD, uap->path, UIO_USERSPACE, 1683 sp, UIO_SYSSPACE)); 1684 } 1685 1686 int 1687 freebsd32_lutimes(struct thread *td, struct freebsd32_lutimes_args *uap) 1688 { 1689 struct timeval32 s32[2]; 1690 struct timeval s[2], *sp; 1691 int error; 1692 1693 if (uap->tptr != NULL) { 1694 error = copyin(uap->tptr, s32, sizeof(s32)); 1695 if (error) 1696 return (error); 1697 CP(s32[0], s[0], tv_sec); 1698 CP(s32[0], s[0], tv_usec); 1699 CP(s32[1], s[1], tv_sec); 1700 CP(s32[1], s[1], tv_usec); 1701 sp = s; 1702 } else 1703 sp = NULL; 1704 return (kern_lutimes(td, uap->path, UIO_USERSPACE, sp, UIO_SYSSPACE)); 1705 } 1706 1707 int 1708 freebsd32_futimes(struct thread *td, struct freebsd32_futimes_args *uap) 1709 { 1710 struct timeval32 s32[2]; 1711 struct timeval s[2], *sp; 1712 int error; 1713 1714 if (uap->tptr != NULL) { 1715 error = copyin(uap->tptr, s32, sizeof(s32)); 1716 if (error) 1717 return (error); 1718 CP(s32[0], s[0], tv_sec); 1719 CP(s32[0], s[0], tv_usec); 1720 CP(s32[1], s[1], tv_sec); 1721 CP(s32[1], s[1], tv_usec); 1722 sp = s; 1723 } else 1724 sp = NULL; 1725 return (kern_futimes(td, uap->fd, sp, UIO_SYSSPACE)); 1726 } 1727 1728 int 1729 freebsd32_futimesat(struct thread *td, struct freebsd32_futimesat_args *uap) 1730 { 1731 struct timeval32 s32[2]; 1732 struct timeval s[2], *sp; 1733 int error; 1734 1735 if (uap->times != NULL) { 1736 error = copyin(uap->times, s32, sizeof(s32)); 1737 if (error) 1738 return (error); 1739 CP(s32[0], s[0], tv_sec); 1740 CP(s32[0], s[0], tv_usec); 1741 CP(s32[1], s[1], tv_sec); 1742 CP(s32[1], s[1], tv_usec); 1743 sp = s; 1744 } else 1745 sp = NULL; 1746 return (kern_utimesat(td, uap->fd, uap->path, UIO_USERSPACE, 1747 sp, UIO_SYSSPACE)); 1748 } 1749 1750 int 1751 freebsd32_futimens(struct thread *td, struct freebsd32_futimens_args *uap) 1752 { 1753 struct timespec32 ts32[2]; 1754 struct timespec ts[2], *tsp; 1755 int error; 1756 1757 if (uap->times != NULL) { 1758 error = copyin(uap->times, ts32, sizeof(ts32)); 1759 if (error) 1760 return (error); 1761 CP(ts32[0], ts[0], tv_sec); 1762 CP(ts32[0], ts[0], tv_nsec); 1763 CP(ts32[1], ts[1], tv_sec); 1764 CP(ts32[1], ts[1], tv_nsec); 1765 tsp = ts; 1766 } else 1767 tsp = NULL; 1768 return (kern_futimens(td, uap->fd, tsp, UIO_SYSSPACE)); 1769 } 1770 1771 int 1772 freebsd32_utimensat(struct thread *td, struct freebsd32_utimensat_args *uap) 1773 { 1774 struct timespec32 ts32[2]; 1775 struct timespec ts[2], *tsp; 1776 int error; 1777 1778 if (uap->times != NULL) { 1779 error = copyin(uap->times, ts32, sizeof(ts32)); 1780 if (error) 1781 return (error); 1782 CP(ts32[0], ts[0], tv_sec); 1783 CP(ts32[0], ts[0], tv_nsec); 1784 CP(ts32[1], ts[1], tv_sec); 1785 CP(ts32[1], ts[1], tv_nsec); 1786 tsp = ts; 1787 } else 1788 tsp = NULL; 1789 return (kern_utimensat(td, uap->fd, uap->path, UIO_USERSPACE, 1790 tsp, UIO_SYSSPACE, uap->flag)); 1791 } 1792 1793 int 1794 freebsd32_adjtime(struct thread *td, struct freebsd32_adjtime_args *uap) 1795 { 1796 struct timeval32 tv32; 1797 struct timeval delta, olddelta, *deltap; 1798 int error; 1799 1800 if (uap->delta) { 1801 error = copyin(uap->delta, &tv32, sizeof(tv32)); 1802 if (error) 1803 return (error); 1804 CP(tv32, delta, tv_sec); 1805 CP(tv32, delta, tv_usec); 1806 deltap = δ 1807 } else 1808 deltap = NULL; 1809 error = kern_adjtime(td, deltap, &olddelta); 1810 if (uap->olddelta && error == 0) { 1811 CP(olddelta, tv32, tv_sec); 1812 CP(olddelta, tv32, tv_usec); 1813 error = copyout(&tv32, uap->olddelta, sizeof(tv32)); 1814 } 1815 return (error); 1816 } 1817 1818 #ifdef COMPAT_FREEBSD4 1819 int 1820 freebsd4_freebsd32_statfs(struct thread *td, struct freebsd4_freebsd32_statfs_args *uap) 1821 { 1822 struct statfs32 s32; 1823 struct statfs *sp; 1824 int error; 1825 1826 sp = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK); 1827 error = kern_statfs(td, uap->path, UIO_USERSPACE, sp); 1828 if (error == 0) { 1829 copy_statfs(sp, &s32); 1830 error = copyout(&s32, uap->buf, sizeof(s32)); 1831 } 1832 free(sp, M_STATFS); 1833 return (error); 1834 } 1835 #endif 1836 1837 #ifdef COMPAT_FREEBSD4 1838 int 1839 freebsd4_freebsd32_fstatfs(struct thread *td, struct freebsd4_freebsd32_fstatfs_args *uap) 1840 { 1841 struct statfs32 s32; 1842 struct statfs *sp; 1843 int error; 1844 1845 sp = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK); 1846 error = kern_fstatfs(td, uap->fd, sp); 1847 if (error == 0) { 1848 copy_statfs(sp, &s32); 1849 error = copyout(&s32, uap->buf, sizeof(s32)); 1850 } 1851 free(sp, M_STATFS); 1852 return (error); 1853 } 1854 #endif 1855 1856 #ifdef COMPAT_FREEBSD4 1857 int 1858 freebsd4_freebsd32_fhstatfs(struct thread *td, struct freebsd4_freebsd32_fhstatfs_args *uap) 1859 { 1860 struct statfs32 s32; 1861 struct statfs *sp; 1862 fhandle_t fh; 1863 int error; 1864 1865 if ((error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t))) != 0) 1866 return (error); 1867 sp = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK); 1868 error = kern_fhstatfs(td, fh, sp); 1869 if (error == 0) { 1870 copy_statfs(sp, &s32); 1871 error = copyout(&s32, uap->buf, sizeof(s32)); 1872 } 1873 free(sp, M_STATFS); 1874 return (error); 1875 } 1876 #endif 1877 1878 int 1879 freebsd32_pread(struct thread *td, struct freebsd32_pread_args *uap) 1880 { 1881 1882 return (kern_pread(td, uap->fd, uap->buf, uap->nbyte, 1883 PAIR32TO64(off_t, uap->offset))); 1884 } 1885 1886 int 1887 freebsd32_pwrite(struct thread *td, struct freebsd32_pwrite_args *uap) 1888 { 1889 1890 return (kern_pwrite(td, uap->fd, uap->buf, uap->nbyte, 1891 PAIR32TO64(off_t, uap->offset))); 1892 } 1893 1894 #ifdef COMPAT_43 1895 int 1896 ofreebsd32_lseek(struct thread *td, struct ofreebsd32_lseek_args *uap) 1897 { 1898 1899 return (kern_lseek(td, uap->fd, uap->offset, uap->whence)); 1900 } 1901 #endif 1902 1903 int 1904 freebsd32_lseek(struct thread *td, struct freebsd32_lseek_args *uap) 1905 { 1906 int error; 1907 off_t pos; 1908 1909 error = kern_lseek(td, uap->fd, PAIR32TO64(off_t, uap->offset), 1910 uap->whence); 1911 /* Expand the quad return into two parts for eax and edx */ 1912 pos = td->td_uretoff.tdu_off; 1913 td->td_retval[RETVAL_LO] = pos & 0xffffffff; /* %eax */ 1914 td->td_retval[RETVAL_HI] = pos >> 32; /* %edx */ 1915 return error; 1916 } 1917 1918 int 1919 freebsd32_truncate(struct thread *td, struct freebsd32_truncate_args *uap) 1920 { 1921 1922 return (kern_truncate(td, uap->path, UIO_USERSPACE, 1923 PAIR32TO64(off_t, uap->length))); 1924 } 1925 1926 int 1927 freebsd32_ftruncate(struct thread *td, struct freebsd32_ftruncate_args *uap) 1928 { 1929 1930 return (kern_ftruncate(td, uap->fd, PAIR32TO64(off_t, uap->length))); 1931 } 1932 1933 #ifdef COMPAT_43 1934 int 1935 ofreebsd32_getdirentries(struct thread *td, 1936 struct ofreebsd32_getdirentries_args *uap) 1937 { 1938 struct ogetdirentries_args ap; 1939 int error; 1940 long loff; 1941 int32_t loff_cut; 1942 1943 ap.fd = uap->fd; 1944 ap.buf = uap->buf; 1945 ap.count = uap->count; 1946 ap.basep = NULL; 1947 error = kern_ogetdirentries(td, &ap, &loff); 1948 if (error == 0) { 1949 loff_cut = loff; 1950 error = copyout(&loff_cut, uap->basep, sizeof(int32_t)); 1951 } 1952 return (error); 1953 } 1954 #endif 1955 1956 #if defined(COMPAT_FREEBSD11) 1957 int 1958 freebsd11_freebsd32_getdirentries(struct thread *td, 1959 struct freebsd11_freebsd32_getdirentries_args *uap) 1960 { 1961 long base; 1962 int32_t base32; 1963 int error; 1964 1965 error = freebsd11_kern_getdirentries(td, uap->fd, uap->buf, uap->count, 1966 &base, NULL); 1967 if (error) 1968 return (error); 1969 if (uap->basep != NULL) { 1970 base32 = base; 1971 error = copyout(&base32, uap->basep, sizeof(int32_t)); 1972 } 1973 return (error); 1974 } 1975 1976 int 1977 freebsd11_freebsd32_getdents(struct thread *td, 1978 struct freebsd11_freebsd32_getdents_args *uap) 1979 { 1980 struct freebsd11_freebsd32_getdirentries_args ap; 1981 1982 ap.fd = uap->fd; 1983 ap.buf = uap->buf; 1984 ap.count = uap->count; 1985 ap.basep = NULL; 1986 return (freebsd11_freebsd32_getdirentries(td, &ap)); 1987 } 1988 #endif /* COMPAT_FREEBSD11 */ 1989 1990 #ifdef COMPAT_FREEBSD6 1991 /* versions with the 'int pad' argument */ 1992 int 1993 freebsd6_freebsd32_pread(struct thread *td, struct freebsd6_freebsd32_pread_args *uap) 1994 { 1995 1996 return (kern_pread(td, uap->fd, uap->buf, uap->nbyte, 1997 PAIR32TO64(off_t, uap->offset))); 1998 } 1999 2000 int 2001 freebsd6_freebsd32_pwrite(struct thread *td, struct freebsd6_freebsd32_pwrite_args *uap) 2002 { 2003 2004 return (kern_pwrite(td, uap->fd, uap->buf, uap->nbyte, 2005 PAIR32TO64(off_t, uap->offset))); 2006 } 2007 2008 int 2009 freebsd6_freebsd32_lseek(struct thread *td, struct freebsd6_freebsd32_lseek_args *uap) 2010 { 2011 int error; 2012 off_t pos; 2013 2014 error = kern_lseek(td, uap->fd, PAIR32TO64(off_t, uap->offset), 2015 uap->whence); 2016 /* Expand the quad return into two parts for eax and edx */ 2017 pos = *(off_t *)(td->td_retval); 2018 td->td_retval[RETVAL_LO] = pos & 0xffffffff; /* %eax */ 2019 td->td_retval[RETVAL_HI] = pos >> 32; /* %edx */ 2020 return error; 2021 } 2022 2023 int 2024 freebsd6_freebsd32_truncate(struct thread *td, struct freebsd6_freebsd32_truncate_args *uap) 2025 { 2026 2027 return (kern_truncate(td, uap->path, UIO_USERSPACE, 2028 PAIR32TO64(off_t, uap->length))); 2029 } 2030 2031 int 2032 freebsd6_freebsd32_ftruncate(struct thread *td, struct freebsd6_freebsd32_ftruncate_args *uap) 2033 { 2034 2035 return (kern_ftruncate(td, uap->fd, PAIR32TO64(off_t, uap->length))); 2036 } 2037 #endif /* COMPAT_FREEBSD6 */ 2038 2039 struct sf_hdtr32 { 2040 uint32_t headers; 2041 int hdr_cnt; 2042 uint32_t trailers; 2043 int trl_cnt; 2044 }; 2045 2046 static int 2047 freebsd32_do_sendfile(struct thread *td, 2048 struct freebsd32_sendfile_args *uap, int compat) 2049 { 2050 struct sf_hdtr32 hdtr32; 2051 struct sf_hdtr hdtr; 2052 struct uio *hdr_uio, *trl_uio; 2053 struct file *fp; 2054 cap_rights_t rights; 2055 struct iovec32 *iov32; 2056 off_t offset, sbytes; 2057 int error; 2058 2059 offset = PAIR32TO64(off_t, uap->offset); 2060 if (offset < 0) 2061 return (EINVAL); 2062 2063 hdr_uio = trl_uio = NULL; 2064 2065 if (uap->hdtr != NULL) { 2066 error = copyin(uap->hdtr, &hdtr32, sizeof(hdtr32)); 2067 if (error) 2068 goto out; 2069 PTRIN_CP(hdtr32, hdtr, headers); 2070 CP(hdtr32, hdtr, hdr_cnt); 2071 PTRIN_CP(hdtr32, hdtr, trailers); 2072 CP(hdtr32, hdtr, trl_cnt); 2073 2074 if (hdtr.headers != NULL) { 2075 iov32 = PTRIN(hdtr32.headers); 2076 error = freebsd32_copyinuio(iov32, 2077 hdtr32.hdr_cnt, &hdr_uio); 2078 if (error) 2079 goto out; 2080 #ifdef COMPAT_FREEBSD4 2081 /* 2082 * In FreeBSD < 5.0 the nbytes to send also included 2083 * the header. If compat is specified subtract the 2084 * header size from nbytes. 2085 */ 2086 if (compat) { 2087 if (uap->nbytes > hdr_uio->uio_resid) 2088 uap->nbytes -= hdr_uio->uio_resid; 2089 else 2090 uap->nbytes = 0; 2091 } 2092 #endif 2093 } 2094 if (hdtr.trailers != NULL) { 2095 iov32 = PTRIN(hdtr32.trailers); 2096 error = freebsd32_copyinuio(iov32, 2097 hdtr32.trl_cnt, &trl_uio); 2098 if (error) 2099 goto out; 2100 } 2101 } 2102 2103 AUDIT_ARG_FD(uap->fd); 2104 2105 if ((error = fget_read(td, uap->fd, 2106 cap_rights_init_one(&rights, CAP_PREAD), &fp)) != 0) 2107 goto out; 2108 2109 error = fo_sendfile(fp, uap->s, hdr_uio, trl_uio, offset, 2110 uap->nbytes, &sbytes, uap->flags, td); 2111 fdrop(fp, td); 2112 2113 if (uap->sbytes != NULL) 2114 copyout(&sbytes, uap->sbytes, sizeof(off_t)); 2115 2116 out: 2117 if (hdr_uio) 2118 free(hdr_uio, M_IOV); 2119 if (trl_uio) 2120 free(trl_uio, M_IOV); 2121 return (error); 2122 } 2123 2124 #ifdef COMPAT_FREEBSD4 2125 int 2126 freebsd4_freebsd32_sendfile(struct thread *td, 2127 struct freebsd4_freebsd32_sendfile_args *uap) 2128 { 2129 return (freebsd32_do_sendfile(td, 2130 (struct freebsd32_sendfile_args *)uap, 1)); 2131 } 2132 #endif 2133 2134 int 2135 freebsd32_sendfile(struct thread *td, struct freebsd32_sendfile_args *uap) 2136 { 2137 2138 return (freebsd32_do_sendfile(td, uap, 0)); 2139 } 2140 2141 static void 2142 copy_stat(struct stat *in, struct stat32 *out) 2143 { 2144 2145 CP(*in, *out, st_dev); 2146 CP(*in, *out, st_ino); 2147 CP(*in, *out, st_mode); 2148 CP(*in, *out, st_nlink); 2149 CP(*in, *out, st_uid); 2150 CP(*in, *out, st_gid); 2151 CP(*in, *out, st_rdev); 2152 TS_CP(*in, *out, st_atim); 2153 TS_CP(*in, *out, st_mtim); 2154 TS_CP(*in, *out, st_ctim); 2155 CP(*in, *out, st_size); 2156 CP(*in, *out, st_blocks); 2157 CP(*in, *out, st_blksize); 2158 CP(*in, *out, st_flags); 2159 CP(*in, *out, st_gen); 2160 TS_CP(*in, *out, st_birthtim); 2161 out->st_padding0 = 0; 2162 out->st_padding1 = 0; 2163 #ifdef __STAT32_TIME_T_EXT 2164 out->st_atim_ext = 0; 2165 out->st_mtim_ext = 0; 2166 out->st_ctim_ext = 0; 2167 out->st_btim_ext = 0; 2168 #endif 2169 bzero(out->st_spare, sizeof(out->st_spare)); 2170 } 2171 2172 #ifdef COMPAT_43 2173 static void 2174 copy_ostat(struct stat *in, struct ostat32 *out) 2175 { 2176 2177 bzero(out, sizeof(*out)); 2178 CP(*in, *out, st_dev); 2179 CP(*in, *out, st_ino); 2180 CP(*in, *out, st_mode); 2181 CP(*in, *out, st_nlink); 2182 CP(*in, *out, st_uid); 2183 CP(*in, *out, st_gid); 2184 CP(*in, *out, st_rdev); 2185 out->st_size = MIN(in->st_size, INT32_MAX); 2186 TS_CP(*in, *out, st_atim); 2187 TS_CP(*in, *out, st_mtim); 2188 TS_CP(*in, *out, st_ctim); 2189 CP(*in, *out, st_blksize); 2190 CP(*in, *out, st_blocks); 2191 CP(*in, *out, st_flags); 2192 CP(*in, *out, st_gen); 2193 } 2194 #endif 2195 2196 #ifdef COMPAT_43 2197 int 2198 ofreebsd32_stat(struct thread *td, struct ofreebsd32_stat_args *uap) 2199 { 2200 struct stat sb; 2201 struct ostat32 sb32; 2202 int error; 2203 2204 error = kern_statat(td, 0, AT_FDCWD, uap->path, UIO_USERSPACE, 2205 &sb, NULL); 2206 if (error) 2207 return (error); 2208 copy_ostat(&sb, &sb32); 2209 error = copyout(&sb32, uap->ub, sizeof (sb32)); 2210 return (error); 2211 } 2212 #endif 2213 2214 int 2215 freebsd32_fstat(struct thread *td, struct freebsd32_fstat_args *uap) 2216 { 2217 struct stat ub; 2218 struct stat32 ub32; 2219 int error; 2220 2221 error = kern_fstat(td, uap->fd, &ub); 2222 if (error) 2223 return (error); 2224 copy_stat(&ub, &ub32); 2225 error = copyout(&ub32, uap->ub, sizeof(ub32)); 2226 return (error); 2227 } 2228 2229 #ifdef COMPAT_43 2230 int 2231 ofreebsd32_fstat(struct thread *td, struct ofreebsd32_fstat_args *uap) 2232 { 2233 struct stat ub; 2234 struct ostat32 ub32; 2235 int error; 2236 2237 error = kern_fstat(td, uap->fd, &ub); 2238 if (error) 2239 return (error); 2240 copy_ostat(&ub, &ub32); 2241 error = copyout(&ub32, uap->ub, sizeof(ub32)); 2242 return (error); 2243 } 2244 #endif 2245 2246 int 2247 freebsd32_fstatat(struct thread *td, struct freebsd32_fstatat_args *uap) 2248 { 2249 struct stat ub; 2250 struct stat32 ub32; 2251 int error; 2252 2253 error = kern_statat(td, uap->flag, uap->fd, uap->path, UIO_USERSPACE, 2254 &ub, NULL); 2255 if (error) 2256 return (error); 2257 copy_stat(&ub, &ub32); 2258 error = copyout(&ub32, uap->buf, sizeof(ub32)); 2259 return (error); 2260 } 2261 2262 #ifdef COMPAT_43 2263 int 2264 ofreebsd32_lstat(struct thread *td, struct ofreebsd32_lstat_args *uap) 2265 { 2266 struct stat sb; 2267 struct ostat32 sb32; 2268 int error; 2269 2270 error = kern_statat(td, AT_SYMLINK_NOFOLLOW, AT_FDCWD, uap->path, 2271 UIO_USERSPACE, &sb, NULL); 2272 if (error) 2273 return (error); 2274 copy_ostat(&sb, &sb32); 2275 error = copyout(&sb32, uap->ub, sizeof (sb32)); 2276 return (error); 2277 } 2278 #endif 2279 2280 int 2281 freebsd32_fhstat(struct thread *td, struct freebsd32_fhstat_args *uap) 2282 { 2283 struct stat sb; 2284 struct stat32 sb32; 2285 struct fhandle fh; 2286 int error; 2287 2288 error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t)); 2289 if (error != 0) 2290 return (error); 2291 error = kern_fhstat(td, fh, &sb); 2292 if (error != 0) 2293 return (error); 2294 copy_stat(&sb, &sb32); 2295 error = copyout(&sb32, uap->sb, sizeof (sb32)); 2296 return (error); 2297 } 2298 2299 #if defined(COMPAT_FREEBSD11) 2300 extern int ino64_trunc_error; 2301 2302 static int 2303 freebsd11_cvtstat32(struct stat *in, struct freebsd11_stat32 *out) 2304 { 2305 2306 CP(*in, *out, st_ino); 2307 if (in->st_ino != out->st_ino) { 2308 switch (ino64_trunc_error) { 2309 default: 2310 case 0: 2311 break; 2312 case 1: 2313 return (EOVERFLOW); 2314 case 2: 2315 out->st_ino = UINT32_MAX; 2316 break; 2317 } 2318 } 2319 CP(*in, *out, st_nlink); 2320 if (in->st_nlink != out->st_nlink) { 2321 switch (ino64_trunc_error) { 2322 default: 2323 case 0: 2324 break; 2325 case 1: 2326 return (EOVERFLOW); 2327 case 2: 2328 out->st_nlink = UINT16_MAX; 2329 break; 2330 } 2331 } 2332 out->st_dev = in->st_dev; 2333 if (out->st_dev != in->st_dev) { 2334 switch (ino64_trunc_error) { 2335 default: 2336 break; 2337 case 1: 2338 return (EOVERFLOW); 2339 } 2340 } 2341 CP(*in, *out, st_mode); 2342 CP(*in, *out, st_uid); 2343 CP(*in, *out, st_gid); 2344 out->st_rdev = in->st_rdev; 2345 if (out->st_rdev != in->st_rdev) { 2346 switch (ino64_trunc_error) { 2347 default: 2348 break; 2349 case 1: 2350 return (EOVERFLOW); 2351 } 2352 } 2353 TS_CP(*in, *out, st_atim); 2354 TS_CP(*in, *out, st_mtim); 2355 TS_CP(*in, *out, st_ctim); 2356 CP(*in, *out, st_size); 2357 CP(*in, *out, st_blocks); 2358 CP(*in, *out, st_blksize); 2359 CP(*in, *out, st_flags); 2360 CP(*in, *out, st_gen); 2361 TS_CP(*in, *out, st_birthtim); 2362 out->st_lspare = 0; 2363 bzero((char *)&out->st_birthtim + sizeof(out->st_birthtim), 2364 sizeof(*out) - offsetof(struct freebsd11_stat32, 2365 st_birthtim) - sizeof(out->st_birthtim)); 2366 return (0); 2367 } 2368 2369 int 2370 freebsd11_freebsd32_stat(struct thread *td, 2371 struct freebsd11_freebsd32_stat_args *uap) 2372 { 2373 struct stat sb; 2374 struct freebsd11_stat32 sb32; 2375 int error; 2376 2377 error = kern_statat(td, 0, AT_FDCWD, uap->path, UIO_USERSPACE, 2378 &sb, NULL); 2379 if (error != 0) 2380 return (error); 2381 error = freebsd11_cvtstat32(&sb, &sb32); 2382 if (error == 0) 2383 error = copyout(&sb32, uap->ub, sizeof (sb32)); 2384 return (error); 2385 } 2386 2387 int 2388 freebsd11_freebsd32_fstat(struct thread *td, 2389 struct freebsd11_freebsd32_fstat_args *uap) 2390 { 2391 struct stat sb; 2392 struct freebsd11_stat32 sb32; 2393 int error; 2394 2395 error = kern_fstat(td, uap->fd, &sb); 2396 if (error != 0) 2397 return (error); 2398 error = freebsd11_cvtstat32(&sb, &sb32); 2399 if (error == 0) 2400 error = copyout(&sb32, uap->ub, sizeof (sb32)); 2401 return (error); 2402 } 2403 2404 int 2405 freebsd11_freebsd32_fstatat(struct thread *td, 2406 struct freebsd11_freebsd32_fstatat_args *uap) 2407 { 2408 struct stat sb; 2409 struct freebsd11_stat32 sb32; 2410 int error; 2411 2412 error = kern_statat(td, uap->flag, uap->fd, uap->path, UIO_USERSPACE, 2413 &sb, NULL); 2414 if (error != 0) 2415 return (error); 2416 error = freebsd11_cvtstat32(&sb, &sb32); 2417 if (error == 0) 2418 error = copyout(&sb32, uap->buf, sizeof (sb32)); 2419 return (error); 2420 } 2421 2422 int 2423 freebsd11_freebsd32_lstat(struct thread *td, 2424 struct freebsd11_freebsd32_lstat_args *uap) 2425 { 2426 struct stat sb; 2427 struct freebsd11_stat32 sb32; 2428 int error; 2429 2430 error = kern_statat(td, AT_SYMLINK_NOFOLLOW, AT_FDCWD, uap->path, 2431 UIO_USERSPACE, &sb, NULL); 2432 if (error != 0) 2433 return (error); 2434 error = freebsd11_cvtstat32(&sb, &sb32); 2435 if (error == 0) 2436 error = copyout(&sb32, uap->ub, sizeof (sb32)); 2437 return (error); 2438 } 2439 2440 int 2441 freebsd11_freebsd32_fhstat(struct thread *td, 2442 struct freebsd11_freebsd32_fhstat_args *uap) 2443 { 2444 struct stat sb; 2445 struct freebsd11_stat32 sb32; 2446 struct fhandle fh; 2447 int error; 2448 2449 error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t)); 2450 if (error != 0) 2451 return (error); 2452 error = kern_fhstat(td, fh, &sb); 2453 if (error != 0) 2454 return (error); 2455 error = freebsd11_cvtstat32(&sb, &sb32); 2456 if (error == 0) 2457 error = copyout(&sb32, uap->sb, sizeof (sb32)); 2458 return (error); 2459 } 2460 #endif 2461 2462 int 2463 freebsd32___sysctl(struct thread *td, struct freebsd32___sysctl_args *uap) 2464 { 2465 int error, name[CTL_MAXNAME]; 2466 size_t j, oldlen; 2467 uint32_t tmp; 2468 2469 if (uap->namelen > CTL_MAXNAME || uap->namelen < 2) 2470 return (EINVAL); 2471 error = copyin(uap->name, name, uap->namelen * sizeof(int)); 2472 if (error) 2473 return (error); 2474 if (uap->oldlenp) { 2475 error = fueword32(uap->oldlenp, &tmp); 2476 oldlen = tmp; 2477 } else { 2478 oldlen = 0; 2479 } 2480 if (error != 0) 2481 return (EFAULT); 2482 error = userland_sysctl(td, name, uap->namelen, 2483 uap->old, &oldlen, 1, 2484 uap->new, uap->newlen, &j, SCTL_MASK32); 2485 if (error) 2486 return (error); 2487 if (uap->oldlenp) 2488 suword32(uap->oldlenp, j); 2489 return (0); 2490 } 2491 2492 int 2493 freebsd32___sysctlbyname(struct thread *td, 2494 struct freebsd32___sysctlbyname_args *uap) 2495 { 2496 size_t oldlen, rv; 2497 int error; 2498 uint32_t tmp; 2499 2500 if (uap->oldlenp != NULL) { 2501 error = fueword32(uap->oldlenp, &tmp); 2502 oldlen = tmp; 2503 } else { 2504 error = oldlen = 0; 2505 } 2506 if (error != 0) 2507 return (EFAULT); 2508 error = kern___sysctlbyname(td, uap->name, uap->namelen, uap->old, 2509 &oldlen, uap->new, uap->newlen, &rv, SCTL_MASK32, 1); 2510 if (error != 0) 2511 return (error); 2512 if (uap->oldlenp != NULL) 2513 error = suword32(uap->oldlenp, rv); 2514 2515 return (error); 2516 } 2517 2518 int 2519 freebsd32_jail(struct thread *td, struct freebsd32_jail_args *uap) 2520 { 2521 uint32_t version; 2522 int error; 2523 struct jail j; 2524 2525 error = copyin(uap->jail, &version, sizeof(uint32_t)); 2526 if (error) 2527 return (error); 2528 2529 switch (version) { 2530 case 0: 2531 { 2532 /* FreeBSD single IPv4 jails. */ 2533 struct jail32_v0 j32_v0; 2534 2535 bzero(&j, sizeof(struct jail)); 2536 error = copyin(uap->jail, &j32_v0, sizeof(struct jail32_v0)); 2537 if (error) 2538 return (error); 2539 CP(j32_v0, j, version); 2540 PTRIN_CP(j32_v0, j, path); 2541 PTRIN_CP(j32_v0, j, hostname); 2542 j.ip4s = htonl(j32_v0.ip_number); /* jail_v0 is host order */ 2543 break; 2544 } 2545 2546 case 1: 2547 /* 2548 * Version 1 was used by multi-IPv4 jail implementations 2549 * that never made it into the official kernel. 2550 */ 2551 return (EINVAL); 2552 2553 case 2: /* JAIL_API_VERSION */ 2554 { 2555 /* FreeBSD multi-IPv4/IPv6,noIP jails. */ 2556 struct jail32 j32; 2557 2558 error = copyin(uap->jail, &j32, sizeof(struct jail32)); 2559 if (error) 2560 return (error); 2561 CP(j32, j, version); 2562 PTRIN_CP(j32, j, path); 2563 PTRIN_CP(j32, j, hostname); 2564 PTRIN_CP(j32, j, jailname); 2565 CP(j32, j, ip4s); 2566 CP(j32, j, ip6s); 2567 PTRIN_CP(j32, j, ip4); 2568 PTRIN_CP(j32, j, ip6); 2569 break; 2570 } 2571 2572 default: 2573 /* Sci-Fi jails are not supported, sorry. */ 2574 return (EINVAL); 2575 } 2576 return (kern_jail(td, &j)); 2577 } 2578 2579 int 2580 freebsd32_jail_set(struct thread *td, struct freebsd32_jail_set_args *uap) 2581 { 2582 struct uio *auio; 2583 int error; 2584 2585 /* Check that we have an even number of iovecs. */ 2586 if (uap->iovcnt & 1) 2587 return (EINVAL); 2588 2589 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 2590 if (error) 2591 return (error); 2592 error = kern_jail_set(td, auio, uap->flags); 2593 free(auio, M_IOV); 2594 return (error); 2595 } 2596 2597 int 2598 freebsd32_jail_get(struct thread *td, struct freebsd32_jail_get_args *uap) 2599 { 2600 struct iovec32 iov32; 2601 struct uio *auio; 2602 int error, i; 2603 2604 /* Check that we have an even number of iovecs. */ 2605 if (uap->iovcnt & 1) 2606 return (EINVAL); 2607 2608 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 2609 if (error) 2610 return (error); 2611 error = kern_jail_get(td, auio, uap->flags); 2612 if (error == 0) 2613 for (i = 0; i < uap->iovcnt; i++) { 2614 PTROUT_CP(auio->uio_iov[i], iov32, iov_base); 2615 CP(auio->uio_iov[i], iov32, iov_len); 2616 error = copyout(&iov32, uap->iovp + i, sizeof(iov32)); 2617 if (error != 0) 2618 break; 2619 } 2620 free(auio, M_IOV); 2621 return (error); 2622 } 2623 2624 int 2625 freebsd32_sigaction(struct thread *td, struct freebsd32_sigaction_args *uap) 2626 { 2627 struct sigaction32 s32; 2628 struct sigaction sa, osa, *sap; 2629 int error; 2630 2631 if (uap->act) { 2632 error = copyin(uap->act, &s32, sizeof(s32)); 2633 if (error) 2634 return (error); 2635 sa.sa_handler = PTRIN(s32.sa_u); 2636 CP(s32, sa, sa_flags); 2637 CP(s32, sa, sa_mask); 2638 sap = &sa; 2639 } else 2640 sap = NULL; 2641 error = kern_sigaction(td, uap->sig, sap, &osa, 0); 2642 if (error == 0 && uap->oact != NULL) { 2643 s32.sa_u = PTROUT(osa.sa_handler); 2644 CP(osa, s32, sa_flags); 2645 CP(osa, s32, sa_mask); 2646 error = copyout(&s32, uap->oact, sizeof(s32)); 2647 } 2648 return (error); 2649 } 2650 2651 #ifdef COMPAT_FREEBSD4 2652 int 2653 freebsd4_freebsd32_sigaction(struct thread *td, 2654 struct freebsd4_freebsd32_sigaction_args *uap) 2655 { 2656 struct sigaction32 s32; 2657 struct sigaction sa, osa, *sap; 2658 int error; 2659 2660 if (uap->act) { 2661 error = copyin(uap->act, &s32, sizeof(s32)); 2662 if (error) 2663 return (error); 2664 sa.sa_handler = PTRIN(s32.sa_u); 2665 CP(s32, sa, sa_flags); 2666 CP(s32, sa, sa_mask); 2667 sap = &sa; 2668 } else 2669 sap = NULL; 2670 error = kern_sigaction(td, uap->sig, sap, &osa, KSA_FREEBSD4); 2671 if (error == 0 && uap->oact != NULL) { 2672 s32.sa_u = PTROUT(osa.sa_handler); 2673 CP(osa, s32, sa_flags); 2674 CP(osa, s32, sa_mask); 2675 error = copyout(&s32, uap->oact, sizeof(s32)); 2676 } 2677 return (error); 2678 } 2679 #endif 2680 2681 #ifdef COMPAT_43 2682 struct osigaction32 { 2683 u_int32_t sa_u; 2684 osigset_t sa_mask; 2685 int sa_flags; 2686 }; 2687 2688 #define ONSIG 32 2689 2690 int 2691 ofreebsd32_sigaction(struct thread *td, 2692 struct ofreebsd32_sigaction_args *uap) 2693 { 2694 struct osigaction32 s32; 2695 struct sigaction sa, osa, *sap; 2696 int error; 2697 2698 if (uap->signum <= 0 || uap->signum >= ONSIG) 2699 return (EINVAL); 2700 2701 if (uap->nsa) { 2702 error = copyin(uap->nsa, &s32, sizeof(s32)); 2703 if (error) 2704 return (error); 2705 sa.sa_handler = PTRIN(s32.sa_u); 2706 CP(s32, sa, sa_flags); 2707 OSIG2SIG(s32.sa_mask, sa.sa_mask); 2708 sap = &sa; 2709 } else 2710 sap = NULL; 2711 error = kern_sigaction(td, uap->signum, sap, &osa, KSA_OSIGSET); 2712 if (error == 0 && uap->osa != NULL) { 2713 s32.sa_u = PTROUT(osa.sa_handler); 2714 CP(osa, s32, sa_flags); 2715 SIG2OSIG(osa.sa_mask, s32.sa_mask); 2716 error = copyout(&s32, uap->osa, sizeof(s32)); 2717 } 2718 return (error); 2719 } 2720 2721 int 2722 ofreebsd32_sigprocmask(struct thread *td, 2723 struct ofreebsd32_sigprocmask_args *uap) 2724 { 2725 sigset_t set, oset; 2726 int error; 2727 2728 OSIG2SIG(uap->mask, set); 2729 error = kern_sigprocmask(td, uap->how, &set, &oset, SIGPROCMASK_OLD); 2730 SIG2OSIG(oset, td->td_retval[0]); 2731 return (error); 2732 } 2733 2734 int 2735 ofreebsd32_sigpending(struct thread *td, 2736 struct ofreebsd32_sigpending_args *uap) 2737 { 2738 struct proc *p = td->td_proc; 2739 sigset_t siglist; 2740 2741 PROC_LOCK(p); 2742 siglist = p->p_siglist; 2743 SIGSETOR(siglist, td->td_siglist); 2744 PROC_UNLOCK(p); 2745 SIG2OSIG(siglist, td->td_retval[0]); 2746 return (0); 2747 } 2748 2749 struct sigvec32 { 2750 u_int32_t sv_handler; 2751 int sv_mask; 2752 int sv_flags; 2753 }; 2754 2755 int 2756 ofreebsd32_sigvec(struct thread *td, 2757 struct ofreebsd32_sigvec_args *uap) 2758 { 2759 struct sigvec32 vec; 2760 struct sigaction sa, osa, *sap; 2761 int error; 2762 2763 if (uap->signum <= 0 || uap->signum >= ONSIG) 2764 return (EINVAL); 2765 2766 if (uap->nsv) { 2767 error = copyin(uap->nsv, &vec, sizeof(vec)); 2768 if (error) 2769 return (error); 2770 sa.sa_handler = PTRIN(vec.sv_handler); 2771 OSIG2SIG(vec.sv_mask, sa.sa_mask); 2772 sa.sa_flags = vec.sv_flags; 2773 sa.sa_flags ^= SA_RESTART; 2774 sap = &sa; 2775 } else 2776 sap = NULL; 2777 error = kern_sigaction(td, uap->signum, sap, &osa, KSA_OSIGSET); 2778 if (error == 0 && uap->osv != NULL) { 2779 vec.sv_handler = PTROUT(osa.sa_handler); 2780 SIG2OSIG(osa.sa_mask, vec.sv_mask); 2781 vec.sv_flags = osa.sa_flags; 2782 vec.sv_flags &= ~SA_NOCLDWAIT; 2783 vec.sv_flags ^= SA_RESTART; 2784 error = copyout(&vec, uap->osv, sizeof(vec)); 2785 } 2786 return (error); 2787 } 2788 2789 int 2790 ofreebsd32_sigblock(struct thread *td, 2791 struct ofreebsd32_sigblock_args *uap) 2792 { 2793 sigset_t set, oset; 2794 2795 OSIG2SIG(uap->mask, set); 2796 kern_sigprocmask(td, SIG_BLOCK, &set, &oset, 0); 2797 SIG2OSIG(oset, td->td_retval[0]); 2798 return (0); 2799 } 2800 2801 int 2802 ofreebsd32_sigsetmask(struct thread *td, 2803 struct ofreebsd32_sigsetmask_args *uap) 2804 { 2805 sigset_t set, oset; 2806 2807 OSIG2SIG(uap->mask, set); 2808 kern_sigprocmask(td, SIG_SETMASK, &set, &oset, 0); 2809 SIG2OSIG(oset, td->td_retval[0]); 2810 return (0); 2811 } 2812 2813 int 2814 ofreebsd32_sigsuspend(struct thread *td, 2815 struct ofreebsd32_sigsuspend_args *uap) 2816 { 2817 sigset_t mask; 2818 2819 OSIG2SIG(uap->mask, mask); 2820 return (kern_sigsuspend(td, mask)); 2821 } 2822 2823 struct sigstack32 { 2824 u_int32_t ss_sp; 2825 int ss_onstack; 2826 }; 2827 2828 int 2829 ofreebsd32_sigstack(struct thread *td, 2830 struct ofreebsd32_sigstack_args *uap) 2831 { 2832 struct sigstack32 s32; 2833 struct sigstack nss, oss; 2834 int error = 0, unss; 2835 2836 if (uap->nss != NULL) { 2837 error = copyin(uap->nss, &s32, sizeof(s32)); 2838 if (error) 2839 return (error); 2840 nss.ss_sp = PTRIN(s32.ss_sp); 2841 CP(s32, nss, ss_onstack); 2842 unss = 1; 2843 } else { 2844 unss = 0; 2845 } 2846 oss.ss_sp = td->td_sigstk.ss_sp; 2847 oss.ss_onstack = sigonstack(cpu_getstack(td)); 2848 if (unss) { 2849 td->td_sigstk.ss_sp = nss.ss_sp; 2850 td->td_sigstk.ss_size = 0; 2851 td->td_sigstk.ss_flags |= (nss.ss_onstack & SS_ONSTACK); 2852 td->td_pflags |= TDP_ALTSTACK; 2853 } 2854 if (uap->oss != NULL) { 2855 s32.ss_sp = PTROUT(oss.ss_sp); 2856 CP(oss, s32, ss_onstack); 2857 error = copyout(&s32, uap->oss, sizeof(s32)); 2858 } 2859 return (error); 2860 } 2861 #endif 2862 2863 int 2864 freebsd32_nanosleep(struct thread *td, struct freebsd32_nanosleep_args *uap) 2865 { 2866 2867 return (freebsd32_user_clock_nanosleep(td, CLOCK_REALTIME, 2868 TIMER_RELTIME, uap->rqtp, uap->rmtp)); 2869 } 2870 2871 int 2872 freebsd32_clock_nanosleep(struct thread *td, 2873 struct freebsd32_clock_nanosleep_args *uap) 2874 { 2875 int error; 2876 2877 error = freebsd32_user_clock_nanosleep(td, uap->clock_id, uap->flags, 2878 uap->rqtp, uap->rmtp); 2879 return (kern_posix_error(td, error)); 2880 } 2881 2882 static int 2883 freebsd32_user_clock_nanosleep(struct thread *td, clockid_t clock_id, 2884 int flags, const struct timespec32 *ua_rqtp, struct timespec32 *ua_rmtp) 2885 { 2886 struct timespec32 rmt32, rqt32; 2887 struct timespec rmt, rqt; 2888 int error, error2; 2889 2890 error = copyin(ua_rqtp, &rqt32, sizeof(rqt32)); 2891 if (error) 2892 return (error); 2893 2894 CP(rqt32, rqt, tv_sec); 2895 CP(rqt32, rqt, tv_nsec); 2896 2897 error = kern_clock_nanosleep(td, clock_id, flags, &rqt, &rmt); 2898 if (error == EINTR && ua_rmtp != NULL && (flags & TIMER_ABSTIME) == 0) { 2899 CP(rmt, rmt32, tv_sec); 2900 CP(rmt, rmt32, tv_nsec); 2901 2902 error2 = copyout(&rmt32, ua_rmtp, sizeof(rmt32)); 2903 if (error2 != 0) 2904 error = error2; 2905 } 2906 return (error); 2907 } 2908 2909 int 2910 freebsd32_clock_gettime(struct thread *td, 2911 struct freebsd32_clock_gettime_args *uap) 2912 { 2913 struct timespec ats; 2914 struct timespec32 ats32; 2915 int error; 2916 2917 error = kern_clock_gettime(td, uap->clock_id, &ats); 2918 if (error == 0) { 2919 CP(ats, ats32, tv_sec); 2920 CP(ats, ats32, tv_nsec); 2921 error = copyout(&ats32, uap->tp, sizeof(ats32)); 2922 } 2923 return (error); 2924 } 2925 2926 int 2927 freebsd32_clock_settime(struct thread *td, 2928 struct freebsd32_clock_settime_args *uap) 2929 { 2930 struct timespec ats; 2931 struct timespec32 ats32; 2932 int error; 2933 2934 error = copyin(uap->tp, &ats32, sizeof(ats32)); 2935 if (error) 2936 return (error); 2937 CP(ats32, ats, tv_sec); 2938 CP(ats32, ats, tv_nsec); 2939 2940 return (kern_clock_settime(td, uap->clock_id, &ats)); 2941 } 2942 2943 int 2944 freebsd32_clock_getres(struct thread *td, 2945 struct freebsd32_clock_getres_args *uap) 2946 { 2947 struct timespec ts; 2948 struct timespec32 ts32; 2949 int error; 2950 2951 if (uap->tp == NULL) 2952 return (0); 2953 error = kern_clock_getres(td, uap->clock_id, &ts); 2954 if (error == 0) { 2955 CP(ts, ts32, tv_sec); 2956 CP(ts, ts32, tv_nsec); 2957 error = copyout(&ts32, uap->tp, sizeof(ts32)); 2958 } 2959 return (error); 2960 } 2961 2962 int freebsd32_ktimer_create(struct thread *td, 2963 struct freebsd32_ktimer_create_args *uap) 2964 { 2965 struct sigevent32 ev32; 2966 struct sigevent ev, *evp; 2967 int error, id; 2968 2969 if (uap->evp == NULL) { 2970 evp = NULL; 2971 } else { 2972 evp = &ev; 2973 error = copyin(uap->evp, &ev32, sizeof(ev32)); 2974 if (error != 0) 2975 return (error); 2976 error = convert_sigevent32(&ev32, &ev); 2977 if (error != 0) 2978 return (error); 2979 } 2980 error = kern_ktimer_create(td, uap->clock_id, evp, &id, -1); 2981 if (error == 0) { 2982 error = copyout(&id, uap->timerid, sizeof(int)); 2983 if (error != 0) 2984 kern_ktimer_delete(td, id); 2985 } 2986 return (error); 2987 } 2988 2989 int 2990 freebsd32_ktimer_settime(struct thread *td, 2991 struct freebsd32_ktimer_settime_args *uap) 2992 { 2993 struct itimerspec32 val32, oval32; 2994 struct itimerspec val, oval, *ovalp; 2995 int error; 2996 2997 error = copyin(uap->value, &val32, sizeof(val32)); 2998 if (error != 0) 2999 return (error); 3000 ITS_CP(val32, val); 3001 ovalp = uap->ovalue != NULL ? &oval : NULL; 3002 error = kern_ktimer_settime(td, uap->timerid, uap->flags, &val, ovalp); 3003 if (error == 0 && uap->ovalue != NULL) { 3004 ITS_CP(oval, oval32); 3005 error = copyout(&oval32, uap->ovalue, sizeof(oval32)); 3006 } 3007 return (error); 3008 } 3009 3010 int 3011 freebsd32_ktimer_gettime(struct thread *td, 3012 struct freebsd32_ktimer_gettime_args *uap) 3013 { 3014 struct itimerspec32 val32; 3015 struct itimerspec val; 3016 int error; 3017 3018 error = kern_ktimer_gettime(td, uap->timerid, &val); 3019 if (error == 0) { 3020 ITS_CP(val, val32); 3021 error = copyout(&val32, uap->value, sizeof(val32)); 3022 } 3023 return (error); 3024 } 3025 3026 int 3027 freebsd32_clock_getcpuclockid2(struct thread *td, 3028 struct freebsd32_clock_getcpuclockid2_args *uap) 3029 { 3030 clockid_t clk_id; 3031 int error; 3032 3033 error = kern_clock_getcpuclockid2(td, PAIR32TO64(id_t, uap->id), 3034 uap->which, &clk_id); 3035 if (error == 0) 3036 error = copyout(&clk_id, uap->clock_id, sizeof(clockid_t)); 3037 return (error); 3038 } 3039 3040 int 3041 freebsd32_thr_new(struct thread *td, 3042 struct freebsd32_thr_new_args *uap) 3043 { 3044 struct thr_param32 param32; 3045 struct thr_param param; 3046 int error; 3047 3048 if (uap->param_size < 0 || 3049 uap->param_size > sizeof(struct thr_param32)) 3050 return (EINVAL); 3051 bzero(¶m, sizeof(struct thr_param)); 3052 bzero(¶m32, sizeof(struct thr_param32)); 3053 error = copyin(uap->param, ¶m32, uap->param_size); 3054 if (error != 0) 3055 return (error); 3056 param.start_func = PTRIN(param32.start_func); 3057 param.arg = PTRIN(param32.arg); 3058 param.stack_base = PTRIN(param32.stack_base); 3059 param.stack_size = param32.stack_size; 3060 param.tls_base = PTRIN(param32.tls_base); 3061 param.tls_size = param32.tls_size; 3062 param.child_tid = PTRIN(param32.child_tid); 3063 param.parent_tid = PTRIN(param32.parent_tid); 3064 param.flags = param32.flags; 3065 param.rtp = PTRIN(param32.rtp); 3066 param.spare[0] = PTRIN(param32.spare[0]); 3067 param.spare[1] = PTRIN(param32.spare[1]); 3068 param.spare[2] = PTRIN(param32.spare[2]); 3069 3070 return (kern_thr_new(td, ¶m)); 3071 } 3072 3073 int 3074 freebsd32_thr_suspend(struct thread *td, struct freebsd32_thr_suspend_args *uap) 3075 { 3076 struct timespec32 ts32; 3077 struct timespec ts, *tsp; 3078 int error; 3079 3080 error = 0; 3081 tsp = NULL; 3082 if (uap->timeout != NULL) { 3083 error = copyin((const void *)uap->timeout, (void *)&ts32, 3084 sizeof(struct timespec32)); 3085 if (error != 0) 3086 return (error); 3087 ts.tv_sec = ts32.tv_sec; 3088 ts.tv_nsec = ts32.tv_nsec; 3089 tsp = &ts; 3090 } 3091 return (kern_thr_suspend(td, tsp)); 3092 } 3093 3094 void 3095 siginfo_to_siginfo32(const siginfo_t *src, struct siginfo32 *dst) 3096 { 3097 bzero(dst, sizeof(*dst)); 3098 dst->si_signo = src->si_signo; 3099 dst->si_errno = src->si_errno; 3100 dst->si_code = src->si_code; 3101 dst->si_pid = src->si_pid; 3102 dst->si_uid = src->si_uid; 3103 dst->si_status = src->si_status; 3104 dst->si_addr = (uintptr_t)src->si_addr; 3105 dst->si_value.sival_int = src->si_value.sival_int; 3106 dst->si_timerid = src->si_timerid; 3107 dst->si_overrun = src->si_overrun; 3108 } 3109 3110 #ifndef _FREEBSD32_SYSPROTO_H_ 3111 struct freebsd32_sigqueue_args { 3112 pid_t pid; 3113 int signum; 3114 /* union sigval32 */ int value; 3115 }; 3116 #endif 3117 int 3118 freebsd32_sigqueue(struct thread *td, struct freebsd32_sigqueue_args *uap) 3119 { 3120 union sigval sv; 3121 3122 /* 3123 * On 32-bit ABIs, sival_int and sival_ptr are the same. 3124 * On 64-bit little-endian ABIs, the low bits are the same. 3125 * In 64-bit big-endian ABIs, sival_int overlaps with 3126 * sival_ptr's HIGH bits. We choose to support sival_int 3127 * rather than sival_ptr in this case as it seems to be 3128 * more common. 3129 */ 3130 bzero(&sv, sizeof(sv)); 3131 sv.sival_int = uap->value; 3132 3133 return (kern_sigqueue(td, uap->pid, uap->signum, &sv)); 3134 } 3135 3136 int 3137 freebsd32_sigtimedwait(struct thread *td, struct freebsd32_sigtimedwait_args *uap) 3138 { 3139 struct timespec32 ts32; 3140 struct timespec ts; 3141 struct timespec *timeout; 3142 sigset_t set; 3143 ksiginfo_t ksi; 3144 struct siginfo32 si32; 3145 int error; 3146 3147 if (uap->timeout) { 3148 error = copyin(uap->timeout, &ts32, sizeof(ts32)); 3149 if (error) 3150 return (error); 3151 ts.tv_sec = ts32.tv_sec; 3152 ts.tv_nsec = ts32.tv_nsec; 3153 timeout = &ts; 3154 } else 3155 timeout = NULL; 3156 3157 error = copyin(uap->set, &set, sizeof(set)); 3158 if (error) 3159 return (error); 3160 3161 error = kern_sigtimedwait(td, set, &ksi, timeout); 3162 if (error) 3163 return (error); 3164 3165 if (uap->info) { 3166 siginfo_to_siginfo32(&ksi.ksi_info, &si32); 3167 error = copyout(&si32, uap->info, sizeof(struct siginfo32)); 3168 } 3169 3170 if (error == 0) 3171 td->td_retval[0] = ksi.ksi_signo; 3172 return (error); 3173 } 3174 3175 /* 3176 * MPSAFE 3177 */ 3178 int 3179 freebsd32_sigwaitinfo(struct thread *td, struct freebsd32_sigwaitinfo_args *uap) 3180 { 3181 ksiginfo_t ksi; 3182 struct siginfo32 si32; 3183 sigset_t set; 3184 int error; 3185 3186 error = copyin(uap->set, &set, sizeof(set)); 3187 if (error) 3188 return (error); 3189 3190 error = kern_sigtimedwait(td, set, &ksi, NULL); 3191 if (error) 3192 return (error); 3193 3194 if (uap->info) { 3195 siginfo_to_siginfo32(&ksi.ksi_info, &si32); 3196 error = copyout(&si32, uap->info, sizeof(struct siginfo32)); 3197 } 3198 if (error == 0) 3199 td->td_retval[0] = ksi.ksi_signo; 3200 return (error); 3201 } 3202 3203 int 3204 freebsd32_cpuset_setid(struct thread *td, 3205 struct freebsd32_cpuset_setid_args *uap) 3206 { 3207 3208 return (kern_cpuset_setid(td, uap->which, 3209 PAIR32TO64(id_t, uap->id), uap->setid)); 3210 } 3211 3212 int 3213 freebsd32_cpuset_getid(struct thread *td, 3214 struct freebsd32_cpuset_getid_args *uap) 3215 { 3216 3217 return (kern_cpuset_getid(td, uap->level, uap->which, 3218 PAIR32TO64(id_t, uap->id), uap->setid)); 3219 } 3220 3221 int 3222 freebsd32_cpuset_getaffinity(struct thread *td, 3223 struct freebsd32_cpuset_getaffinity_args *uap) 3224 { 3225 3226 return (kern_cpuset_getaffinity(td, uap->level, uap->which, 3227 PAIR32TO64(id_t,uap->id), uap->cpusetsize, uap->mask)); 3228 } 3229 3230 int 3231 freebsd32_cpuset_setaffinity(struct thread *td, 3232 struct freebsd32_cpuset_setaffinity_args *uap) 3233 { 3234 3235 return (kern_cpuset_setaffinity(td, uap->level, uap->which, 3236 PAIR32TO64(id_t,uap->id), uap->cpusetsize, uap->mask)); 3237 } 3238 3239 int 3240 freebsd32_cpuset_getdomain(struct thread *td, 3241 struct freebsd32_cpuset_getdomain_args *uap) 3242 { 3243 3244 return (kern_cpuset_getdomain(td, uap->level, uap->which, 3245 PAIR32TO64(id_t,uap->id), uap->domainsetsize, uap->mask, uap->policy)); 3246 } 3247 3248 int 3249 freebsd32_cpuset_setdomain(struct thread *td, 3250 struct freebsd32_cpuset_setdomain_args *uap) 3251 { 3252 3253 return (kern_cpuset_setdomain(td, uap->level, uap->which, 3254 PAIR32TO64(id_t,uap->id), uap->domainsetsize, uap->mask, uap->policy)); 3255 } 3256 3257 int 3258 freebsd32_nmount(struct thread *td, 3259 struct freebsd32_nmount_args /* { 3260 struct iovec *iovp; 3261 unsigned int iovcnt; 3262 int flags; 3263 } */ *uap) 3264 { 3265 struct uio *auio; 3266 uint64_t flags; 3267 int error; 3268 3269 /* 3270 * Mount flags are now 64-bits. On 32-bit archtectures only 3271 * 32-bits are passed in, but from here on everything handles 3272 * 64-bit flags correctly. 3273 */ 3274 flags = uap->flags; 3275 3276 AUDIT_ARG_FFLAGS(flags); 3277 3278 /* 3279 * Filter out MNT_ROOTFS. We do not want clients of nmount() in 3280 * userspace to set this flag, but we must filter it out if we want 3281 * MNT_UPDATE on the root file system to work. 3282 * MNT_ROOTFS should only be set by the kernel when mounting its 3283 * root file system. 3284 */ 3285 flags &= ~MNT_ROOTFS; 3286 3287 /* 3288 * check that we have an even number of iovec's 3289 * and that we have at least two options. 3290 */ 3291 if ((uap->iovcnt & 1) || (uap->iovcnt < 4)) 3292 return (EINVAL); 3293 3294 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 3295 if (error) 3296 return (error); 3297 error = vfs_donmount(td, flags, auio); 3298 3299 free(auio, M_IOV); 3300 return error; 3301 } 3302 3303 #if 0 3304 int 3305 freebsd32_xxx(struct thread *td, struct freebsd32_xxx_args *uap) 3306 { 3307 struct yyy32 *p32, s32; 3308 struct yyy *p = NULL, s; 3309 struct xxx_arg ap; 3310 int error; 3311 3312 if (uap->zzz) { 3313 error = copyin(uap->zzz, &s32, sizeof(s32)); 3314 if (error) 3315 return (error); 3316 /* translate in */ 3317 p = &s; 3318 } 3319 error = kern_xxx(td, p); 3320 if (error) 3321 return (error); 3322 if (uap->zzz) { 3323 /* translate out */ 3324 error = copyout(&s32, p32, sizeof(s32)); 3325 } 3326 return (error); 3327 } 3328 #endif 3329 3330 int 3331 syscall32_module_handler(struct module *mod, int what, void *arg) 3332 { 3333 3334 return (kern_syscall_module_handler(freebsd32_sysent, mod, what, arg)); 3335 } 3336 3337 int 3338 syscall32_helper_register(struct syscall_helper_data *sd, int flags) 3339 { 3340 3341 return (kern_syscall_helper_register(freebsd32_sysent, sd, flags)); 3342 } 3343 3344 int 3345 syscall32_helper_unregister(struct syscall_helper_data *sd) 3346 { 3347 3348 return (kern_syscall_helper_unregister(freebsd32_sysent, sd)); 3349 } 3350 3351 int 3352 freebsd32_copyout_strings(struct image_params *imgp, uintptr_t *stack_base) 3353 { 3354 int argc, envc, i; 3355 u_int32_t *vectp; 3356 char *stringp; 3357 uintptr_t destp, ustringp; 3358 struct freebsd32_ps_strings *arginfo; 3359 char canary[sizeof(long) * 8]; 3360 int32_t pagesizes32[MAXPAGESIZES]; 3361 size_t execpath_len; 3362 int error, szsigcode; 3363 3364 /* 3365 * Calculate string base and vector table pointers. 3366 * Also deal with signal trampoline code for this exec type. 3367 */ 3368 if (imgp->execpath != NULL && imgp->auxargs != NULL) 3369 execpath_len = strlen(imgp->execpath) + 1; 3370 else 3371 execpath_len = 0; 3372 arginfo = (struct freebsd32_ps_strings *)curproc->p_sysent-> 3373 sv_psstrings; 3374 imgp->ps_strings = arginfo; 3375 if (imgp->proc->p_sysent->sv_sigcode_base == 0) 3376 szsigcode = *(imgp->proc->p_sysent->sv_szsigcode); 3377 else 3378 szsigcode = 0; 3379 destp = (uintptr_t)arginfo; 3380 3381 /* 3382 * install sigcode 3383 */ 3384 if (szsigcode != 0) { 3385 destp -= szsigcode; 3386 destp = rounddown2(destp, sizeof(uint32_t)); 3387 error = copyout(imgp->proc->p_sysent->sv_sigcode, (void *)destp, 3388 szsigcode); 3389 if (error != 0) 3390 return (error); 3391 } 3392 3393 /* 3394 * Copy the image path for the rtld. 3395 */ 3396 if (execpath_len != 0) { 3397 destp -= execpath_len; 3398 imgp->execpathp = (void *)destp; 3399 error = copyout(imgp->execpath, imgp->execpathp, execpath_len); 3400 if (error != 0) 3401 return (error); 3402 } 3403 3404 /* 3405 * Prepare the canary for SSP. 3406 */ 3407 arc4rand(canary, sizeof(canary), 0); 3408 destp -= sizeof(canary); 3409 imgp->canary = (void *)destp; 3410 error = copyout(canary, imgp->canary, sizeof(canary)); 3411 if (error != 0) 3412 return (error); 3413 imgp->canarylen = sizeof(canary); 3414 3415 /* 3416 * Prepare the pagesizes array. 3417 */ 3418 for (i = 0; i < MAXPAGESIZES; i++) 3419 pagesizes32[i] = (uint32_t)pagesizes[i]; 3420 destp -= sizeof(pagesizes32); 3421 destp = rounddown2(destp, sizeof(uint32_t)); 3422 imgp->pagesizes = (void *)destp; 3423 error = copyout(pagesizes32, imgp->pagesizes, sizeof(pagesizes32)); 3424 if (error != 0) 3425 return (error); 3426 imgp->pagesizeslen = sizeof(pagesizes32); 3427 3428 /* 3429 * Allocate room for the argument and environment strings. 3430 */ 3431 destp -= ARG_MAX - imgp->args->stringspace; 3432 destp = rounddown2(destp, sizeof(uint32_t)); 3433 ustringp = destp; 3434 3435 exec_stackgap(imgp, &destp); 3436 3437 if (imgp->auxargs) { 3438 /* 3439 * Allocate room on the stack for the ELF auxargs 3440 * array. It has up to AT_COUNT entries. 3441 */ 3442 destp -= AT_COUNT * sizeof(Elf32_Auxinfo); 3443 destp = rounddown2(destp, sizeof(uint32_t)); 3444 } 3445 3446 vectp = (uint32_t *)destp; 3447 3448 /* 3449 * Allocate room for the argv[] and env vectors including the 3450 * terminating NULL pointers. 3451 */ 3452 vectp -= imgp->args->argc + 1 + imgp->args->envc + 1; 3453 3454 /* 3455 * vectp also becomes our initial stack base 3456 */ 3457 *stack_base = (uintptr_t)vectp; 3458 3459 stringp = imgp->args->begin_argv; 3460 argc = imgp->args->argc; 3461 envc = imgp->args->envc; 3462 /* 3463 * Copy out strings - arguments and environment. 3464 */ 3465 error = copyout(stringp, (void *)ustringp, 3466 ARG_MAX - imgp->args->stringspace); 3467 if (error != 0) 3468 return (error); 3469 3470 /* 3471 * Fill in "ps_strings" struct for ps, w, etc. 3472 */ 3473 imgp->argv = vectp; 3474 if (suword32(&arginfo->ps_argvstr, (u_int32_t)(intptr_t)vectp) != 0 || 3475 suword32(&arginfo->ps_nargvstr, argc) != 0) 3476 return (EFAULT); 3477 3478 /* 3479 * Fill in argument portion of vector table. 3480 */ 3481 for (; argc > 0; --argc) { 3482 if (suword32(vectp++, ustringp) != 0) 3483 return (EFAULT); 3484 while (*stringp++ != 0) 3485 ustringp++; 3486 ustringp++; 3487 } 3488 3489 /* a null vector table pointer separates the argp's from the envp's */ 3490 if (suword32(vectp++, 0) != 0) 3491 return (EFAULT); 3492 3493 imgp->envv = vectp; 3494 if (suword32(&arginfo->ps_envstr, (u_int32_t)(intptr_t)vectp) != 0 || 3495 suword32(&arginfo->ps_nenvstr, envc) != 0) 3496 return (EFAULT); 3497 3498 /* 3499 * Fill in environment portion of vector table. 3500 */ 3501 for (; envc > 0; --envc) { 3502 if (suword32(vectp++, ustringp) != 0) 3503 return (EFAULT); 3504 while (*stringp++ != 0) 3505 ustringp++; 3506 ustringp++; 3507 } 3508 3509 /* end of vector table is a null pointer */ 3510 if (suword32(vectp, 0) != 0) 3511 return (EFAULT); 3512 3513 if (imgp->auxargs) { 3514 vectp++; 3515 error = imgp->sysent->sv_copyout_auxargs(imgp, 3516 (uintptr_t)vectp); 3517 if (error != 0) 3518 return (error); 3519 } 3520 3521 return (0); 3522 } 3523 3524 int 3525 freebsd32_kldstat(struct thread *td, struct freebsd32_kldstat_args *uap) 3526 { 3527 struct kld_file_stat *stat; 3528 struct kld32_file_stat *stat32; 3529 int error, version; 3530 3531 if ((error = copyin(&uap->stat->version, &version, sizeof(version))) 3532 != 0) 3533 return (error); 3534 if (version != sizeof(struct kld32_file_stat_1) && 3535 version != sizeof(struct kld32_file_stat)) 3536 return (EINVAL); 3537 3538 stat = malloc(sizeof(*stat), M_TEMP, M_WAITOK | M_ZERO); 3539 stat32 = malloc(sizeof(*stat32), M_TEMP, M_WAITOK | M_ZERO); 3540 error = kern_kldstat(td, uap->fileid, stat); 3541 if (error == 0) { 3542 bcopy(&stat->name[0], &stat32->name[0], sizeof(stat->name)); 3543 CP(*stat, *stat32, refs); 3544 CP(*stat, *stat32, id); 3545 PTROUT_CP(*stat, *stat32, address); 3546 CP(*stat, *stat32, size); 3547 bcopy(&stat->pathname[0], &stat32->pathname[0], 3548 sizeof(stat->pathname)); 3549 stat32->version = version; 3550 error = copyout(stat32, uap->stat, version); 3551 } 3552 free(stat, M_TEMP); 3553 free(stat32, M_TEMP); 3554 return (error); 3555 } 3556 3557 int 3558 freebsd32_posix_fallocate(struct thread *td, 3559 struct freebsd32_posix_fallocate_args *uap) 3560 { 3561 int error; 3562 3563 error = kern_posix_fallocate(td, uap->fd, 3564 PAIR32TO64(off_t, uap->offset), PAIR32TO64(off_t, uap->len)); 3565 return (kern_posix_error(td, error)); 3566 } 3567 3568 int 3569 freebsd32_posix_fadvise(struct thread *td, 3570 struct freebsd32_posix_fadvise_args *uap) 3571 { 3572 int error; 3573 3574 error = kern_posix_fadvise(td, uap->fd, PAIR32TO64(off_t, uap->offset), 3575 PAIR32TO64(off_t, uap->len), uap->advice); 3576 return (kern_posix_error(td, error)); 3577 } 3578 3579 int 3580 convert_sigevent32(struct sigevent32 *sig32, struct sigevent *sig) 3581 { 3582 3583 CP(*sig32, *sig, sigev_notify); 3584 switch (sig->sigev_notify) { 3585 case SIGEV_NONE: 3586 break; 3587 case SIGEV_THREAD_ID: 3588 CP(*sig32, *sig, sigev_notify_thread_id); 3589 /* FALLTHROUGH */ 3590 case SIGEV_SIGNAL: 3591 CP(*sig32, *sig, sigev_signo); 3592 PTRIN_CP(*sig32, *sig, sigev_value.sival_ptr); 3593 break; 3594 case SIGEV_KEVENT: 3595 CP(*sig32, *sig, sigev_notify_kqueue); 3596 CP(*sig32, *sig, sigev_notify_kevent_flags); 3597 PTRIN_CP(*sig32, *sig, sigev_value.sival_ptr); 3598 break; 3599 default: 3600 return (EINVAL); 3601 } 3602 return (0); 3603 } 3604 3605 int 3606 freebsd32_procctl(struct thread *td, struct freebsd32_procctl_args *uap) 3607 { 3608 void *data; 3609 union { 3610 struct procctl_reaper_status rs; 3611 struct procctl_reaper_pids rp; 3612 struct procctl_reaper_kill rk; 3613 } x; 3614 union { 3615 struct procctl_reaper_pids32 rp; 3616 } x32; 3617 int error, error1, flags, signum; 3618 3619 if (uap->com >= PROC_PROCCTL_MD_MIN) 3620 return (cpu_procctl(td, uap->idtype, PAIR32TO64(id_t, uap->id), 3621 uap->com, PTRIN(uap->data))); 3622 3623 switch (uap->com) { 3624 case PROC_ASLR_CTL: 3625 case PROC_PROTMAX_CTL: 3626 case PROC_SPROTECT: 3627 case PROC_STACKGAP_CTL: 3628 case PROC_TRACE_CTL: 3629 case PROC_TRAPCAP_CTL: 3630 case PROC_NO_NEW_PRIVS_CTL: 3631 case PROC_WXMAP_CTL: 3632 error = copyin(PTRIN(uap->data), &flags, sizeof(flags)); 3633 if (error != 0) 3634 return (error); 3635 data = &flags; 3636 break; 3637 case PROC_REAP_ACQUIRE: 3638 case PROC_REAP_RELEASE: 3639 if (uap->data != NULL) 3640 return (EINVAL); 3641 data = NULL; 3642 break; 3643 case PROC_REAP_STATUS: 3644 data = &x.rs; 3645 break; 3646 case PROC_REAP_GETPIDS: 3647 error = copyin(uap->data, &x32.rp, sizeof(x32.rp)); 3648 if (error != 0) 3649 return (error); 3650 CP(x32.rp, x.rp, rp_count); 3651 PTRIN_CP(x32.rp, x.rp, rp_pids); 3652 data = &x.rp; 3653 break; 3654 case PROC_REAP_KILL: 3655 error = copyin(uap->data, &x.rk, sizeof(x.rk)); 3656 if (error != 0) 3657 return (error); 3658 data = &x.rk; 3659 break; 3660 case PROC_ASLR_STATUS: 3661 case PROC_PROTMAX_STATUS: 3662 case PROC_STACKGAP_STATUS: 3663 case PROC_TRACE_STATUS: 3664 case PROC_TRAPCAP_STATUS: 3665 case PROC_NO_NEW_PRIVS_STATUS: 3666 case PROC_WXMAP_STATUS: 3667 data = &flags; 3668 break; 3669 case PROC_PDEATHSIG_CTL: 3670 error = copyin(uap->data, &signum, sizeof(signum)); 3671 if (error != 0) 3672 return (error); 3673 data = &signum; 3674 break; 3675 case PROC_PDEATHSIG_STATUS: 3676 data = &signum; 3677 break; 3678 default: 3679 return (EINVAL); 3680 } 3681 error = kern_procctl(td, uap->idtype, PAIR32TO64(id_t, uap->id), 3682 uap->com, data); 3683 switch (uap->com) { 3684 case PROC_REAP_STATUS: 3685 if (error == 0) 3686 error = copyout(&x.rs, uap->data, sizeof(x.rs)); 3687 break; 3688 case PROC_REAP_KILL: 3689 error1 = copyout(&x.rk, uap->data, sizeof(x.rk)); 3690 if (error == 0) 3691 error = error1; 3692 break; 3693 case PROC_ASLR_STATUS: 3694 case PROC_PROTMAX_STATUS: 3695 case PROC_STACKGAP_STATUS: 3696 case PROC_TRACE_STATUS: 3697 case PROC_TRAPCAP_STATUS: 3698 case PROC_NO_NEW_PRIVS_STATUS: 3699 case PROC_WXMAP_STATUS: 3700 if (error == 0) 3701 error = copyout(&flags, uap->data, sizeof(flags)); 3702 break; 3703 case PROC_PDEATHSIG_STATUS: 3704 if (error == 0) 3705 error = copyout(&signum, uap->data, sizeof(signum)); 3706 break; 3707 } 3708 return (error); 3709 } 3710 3711 int 3712 freebsd32_fcntl(struct thread *td, struct freebsd32_fcntl_args *uap) 3713 { 3714 long tmp; 3715 3716 switch (uap->cmd) { 3717 /* 3718 * Do unsigned conversion for arg when operation 3719 * interprets it as flags or pointer. 3720 */ 3721 case F_SETLK_REMOTE: 3722 case F_SETLKW: 3723 case F_SETLK: 3724 case F_GETLK: 3725 case F_SETFD: 3726 case F_SETFL: 3727 case F_OGETLK: 3728 case F_OSETLK: 3729 case F_OSETLKW: 3730 tmp = (unsigned int)(uap->arg); 3731 break; 3732 default: 3733 tmp = uap->arg; 3734 break; 3735 } 3736 return (kern_fcntl_freebsd(td, uap->fd, uap->cmd, tmp)); 3737 } 3738 3739 int 3740 freebsd32_ppoll(struct thread *td, struct freebsd32_ppoll_args *uap) 3741 { 3742 struct timespec32 ts32; 3743 struct timespec ts, *tsp; 3744 sigset_t set, *ssp; 3745 int error; 3746 3747 if (uap->ts != NULL) { 3748 error = copyin(uap->ts, &ts32, sizeof(ts32)); 3749 if (error != 0) 3750 return (error); 3751 CP(ts32, ts, tv_sec); 3752 CP(ts32, ts, tv_nsec); 3753 tsp = &ts; 3754 } else 3755 tsp = NULL; 3756 if (uap->set != NULL) { 3757 error = copyin(uap->set, &set, sizeof(set)); 3758 if (error != 0) 3759 return (error); 3760 ssp = &set; 3761 } else 3762 ssp = NULL; 3763 3764 return (kern_poll(td, uap->fds, uap->nfds, tsp, ssp)); 3765 } 3766 3767 int 3768 freebsd32_sched_rr_get_interval(struct thread *td, 3769 struct freebsd32_sched_rr_get_interval_args *uap) 3770 { 3771 struct timespec ts; 3772 struct timespec32 ts32; 3773 int error; 3774 3775 error = kern_sched_rr_get_interval(td, uap->pid, &ts); 3776 if (error == 0) { 3777 CP(ts, ts32, tv_sec); 3778 CP(ts, ts32, tv_nsec); 3779 error = copyout(&ts32, uap->interval, sizeof(ts32)); 3780 } 3781 return (error); 3782 } 3783 3784 static void 3785 timex_to_32(struct timex32 *dst, struct timex *src) 3786 { 3787 CP(*src, *dst, modes); 3788 CP(*src, *dst, offset); 3789 CP(*src, *dst, freq); 3790 CP(*src, *dst, maxerror); 3791 CP(*src, *dst, esterror); 3792 CP(*src, *dst, status); 3793 CP(*src, *dst, constant); 3794 CP(*src, *dst, precision); 3795 CP(*src, *dst, tolerance); 3796 CP(*src, *dst, ppsfreq); 3797 CP(*src, *dst, jitter); 3798 CP(*src, *dst, shift); 3799 CP(*src, *dst, stabil); 3800 CP(*src, *dst, jitcnt); 3801 CP(*src, *dst, calcnt); 3802 CP(*src, *dst, errcnt); 3803 CP(*src, *dst, stbcnt); 3804 } 3805 3806 static void 3807 timex_from_32(struct timex *dst, struct timex32 *src) 3808 { 3809 CP(*src, *dst, modes); 3810 CP(*src, *dst, offset); 3811 CP(*src, *dst, freq); 3812 CP(*src, *dst, maxerror); 3813 CP(*src, *dst, esterror); 3814 CP(*src, *dst, status); 3815 CP(*src, *dst, constant); 3816 CP(*src, *dst, precision); 3817 CP(*src, *dst, tolerance); 3818 CP(*src, *dst, ppsfreq); 3819 CP(*src, *dst, jitter); 3820 CP(*src, *dst, shift); 3821 CP(*src, *dst, stabil); 3822 CP(*src, *dst, jitcnt); 3823 CP(*src, *dst, calcnt); 3824 CP(*src, *dst, errcnt); 3825 CP(*src, *dst, stbcnt); 3826 } 3827 3828 int 3829 freebsd32_ntp_adjtime(struct thread *td, struct freebsd32_ntp_adjtime_args *uap) 3830 { 3831 struct timex tx; 3832 struct timex32 tx32; 3833 int error, retval; 3834 3835 error = copyin(uap->tp, &tx32, sizeof(tx32)); 3836 if (error == 0) { 3837 timex_from_32(&tx, &tx32); 3838 error = kern_ntp_adjtime(td, &tx, &retval); 3839 if (error == 0) { 3840 timex_to_32(&tx32, &tx); 3841 error = copyout(&tx32, uap->tp, sizeof(tx32)); 3842 if (error == 0) 3843 td->td_retval[0] = retval; 3844 } 3845 } 3846 return (error); 3847 } 3848 3849 int 3850 freebsd32_fspacectl(struct thread *td, struct freebsd32_fspacectl_args *uap) 3851 { 3852 struct spacectl_range rqsr, rmsr; 3853 struct spacectl_range32 rqsr32, rmsr32; 3854 int error, cerror; 3855 3856 error = copyin(uap->rqsr, &rqsr32, sizeof(rqsr32)); 3857 if (error != 0) 3858 return (error); 3859 rqsr.r_offset = PAIR32TO64(off_t, rqsr32.r_offset); 3860 rqsr.r_len = PAIR32TO64(off_t, rqsr32.r_len); 3861 3862 error = kern_fspacectl(td, uap->fd, uap->cmd, &rqsr, uap->flags, 3863 &rmsr); 3864 if (uap->rmsr != NULL) { 3865 #if BYTE_ORDER == LITTLE_ENDIAN 3866 rmsr32.r_offset1 = rmsr.r_offset; 3867 rmsr32.r_offset2 = rmsr.r_offset >> 32; 3868 rmsr32.r_len1 = rmsr.r_len; 3869 rmsr32.r_len2 = rmsr.r_len >> 32; 3870 #else 3871 rmsr32.r_offset1 = rmsr.r_offset >> 32; 3872 rmsr32.r_offset2 = rmsr.r_offset; 3873 rmsr32.r_len1 = rmsr.r_len >> 32; 3874 rmsr32.r_len2 = rmsr.r_len; 3875 #endif 3876 cerror = copyout(&rmsr32, uap->rmsr, sizeof(rmsr32)); 3877 if (error == 0) 3878 error = cerror; 3879 } 3880 return (error); 3881 } 3882