1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2002 Doug Rabson 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include "opt_compat.h" 33 #include "opt_inet.h" 34 #include "opt_inet6.h" 35 #include "opt_ktrace.h" 36 37 #define __ELF_WORD_SIZE 32 38 39 #ifdef COMPAT_FREEBSD11 40 #define _WANT_FREEBSD11_KEVENT 41 #endif 42 43 #include <sys/param.h> 44 #include <sys/bus.h> 45 #include <sys/capsicum.h> 46 #include <sys/clock.h> 47 #include <sys/exec.h> 48 #include <sys/fcntl.h> 49 #include <sys/filedesc.h> 50 #include <sys/imgact.h> 51 #include <sys/jail.h> 52 #include <sys/kernel.h> 53 #include <sys/limits.h> 54 #include <sys/linker.h> 55 #include <sys/lock.h> 56 #include <sys/malloc.h> 57 #include <sys/file.h> /* Must come after sys/malloc.h */ 58 #include <sys/imgact.h> 59 #include <sys/mbuf.h> 60 #include <sys/mman.h> 61 #include <sys/module.h> 62 #include <sys/mount.h> 63 #include <sys/mutex.h> 64 #include <sys/namei.h> 65 #include <sys/proc.h> 66 #include <sys/procctl.h> 67 #include <sys/reboot.h> 68 #include <sys/resource.h> 69 #include <sys/resourcevar.h> 70 #include <sys/selinfo.h> 71 #include <sys/eventvar.h> /* Must come after sys/selinfo.h */ 72 #include <sys/pipe.h> /* Must come after sys/selinfo.h */ 73 #include <sys/signal.h> 74 #include <sys/signalvar.h> 75 #include <sys/socket.h> 76 #include <sys/socketvar.h> 77 #include <sys/stat.h> 78 #include <sys/syscall.h> 79 #include <sys/syscallsubr.h> 80 #include <sys/sysctl.h> 81 #include <sys/sysent.h> 82 #include <sys/sysproto.h> 83 #include <sys/systm.h> 84 #include <sys/thr.h> 85 #include <sys/unistd.h> 86 #include <sys/ucontext.h> 87 #include <sys/vnode.h> 88 #include <sys/wait.h> 89 #include <sys/ipc.h> 90 #include <sys/msg.h> 91 #include <sys/sem.h> 92 #include <sys/shm.h> 93 #ifdef KTRACE 94 #include <sys/ktrace.h> 95 #endif 96 97 #ifdef INET 98 #include <netinet/in.h> 99 #endif 100 101 #include <vm/vm.h> 102 #include <vm/vm_param.h> 103 #include <vm/pmap.h> 104 #include <vm/vm_map.h> 105 #include <vm/vm_object.h> 106 #include <vm/vm_extern.h> 107 108 #include <machine/cpu.h> 109 #include <machine/elf.h> 110 111 #include <security/audit/audit.h> 112 113 #include <compat/freebsd32/freebsd32_util.h> 114 #include <compat/freebsd32/freebsd32.h> 115 #include <compat/freebsd32/freebsd32_ipc.h> 116 #include <compat/freebsd32/freebsd32_misc.h> 117 #include <compat/freebsd32/freebsd32_signal.h> 118 #include <compat/freebsd32/freebsd32_proto.h> 119 120 FEATURE(compat_freebsd_32bit, "Compatible with 32-bit FreeBSD"); 121 122 #ifdef __amd64__ 123 CTASSERT(sizeof(struct timeval32) == 8); 124 CTASSERT(sizeof(struct timespec32) == 8); 125 CTASSERT(sizeof(struct itimerval32) == 16); 126 CTASSERT(sizeof(struct bintime32) == 12); 127 #endif 128 CTASSERT(sizeof(struct statfs32) == 256); 129 #ifdef __amd64__ 130 CTASSERT(sizeof(struct rusage32) == 72); 131 #endif 132 CTASSERT(sizeof(struct sigaltstack32) == 12); 133 #ifdef __amd64__ 134 CTASSERT(sizeof(struct kevent32) == 56); 135 #else 136 CTASSERT(sizeof(struct kevent32) == 64); 137 #endif 138 CTASSERT(sizeof(struct iovec32) == 8); 139 CTASSERT(sizeof(struct msghdr32) == 28); 140 #ifdef __amd64__ 141 CTASSERT(sizeof(struct stat32) == 208); 142 CTASSERT(sizeof(struct freebsd11_stat32) == 96); 143 #endif 144 CTASSERT(sizeof(struct sigaction32) == 24); 145 146 static int freebsd32_kevent_copyout(void *arg, struct kevent *kevp, int count); 147 static int freebsd32_kevent_copyin(void *arg, struct kevent *kevp, int count); 148 static int freebsd32_user_clock_nanosleep(struct thread *td, clockid_t clock_id, 149 int flags, const struct timespec32 *ua_rqtp, struct timespec32 *ua_rmtp); 150 151 void 152 freebsd32_rusage_out(const struct rusage *s, struct rusage32 *s32) 153 { 154 155 TV_CP(*s, *s32, ru_utime); 156 TV_CP(*s, *s32, ru_stime); 157 CP(*s, *s32, ru_maxrss); 158 CP(*s, *s32, ru_ixrss); 159 CP(*s, *s32, ru_idrss); 160 CP(*s, *s32, ru_isrss); 161 CP(*s, *s32, ru_minflt); 162 CP(*s, *s32, ru_majflt); 163 CP(*s, *s32, ru_nswap); 164 CP(*s, *s32, ru_inblock); 165 CP(*s, *s32, ru_oublock); 166 CP(*s, *s32, ru_msgsnd); 167 CP(*s, *s32, ru_msgrcv); 168 CP(*s, *s32, ru_nsignals); 169 CP(*s, *s32, ru_nvcsw); 170 CP(*s, *s32, ru_nivcsw); 171 } 172 173 int 174 freebsd32_wait4(struct thread *td, struct freebsd32_wait4_args *uap) 175 { 176 int error, status; 177 struct rusage32 ru32; 178 struct rusage ru, *rup; 179 180 if (uap->rusage != NULL) 181 rup = &ru; 182 else 183 rup = NULL; 184 error = kern_wait(td, uap->pid, &status, uap->options, rup); 185 if (error) 186 return (error); 187 if (uap->status != NULL) 188 error = copyout(&status, uap->status, sizeof(status)); 189 if (uap->rusage != NULL && error == 0) { 190 freebsd32_rusage_out(&ru, &ru32); 191 error = copyout(&ru32, uap->rusage, sizeof(ru32)); 192 } 193 return (error); 194 } 195 196 int 197 freebsd32_wait6(struct thread *td, struct freebsd32_wait6_args *uap) 198 { 199 struct wrusage32 wru32; 200 struct __wrusage wru, *wrup; 201 struct siginfo32 si32; 202 struct __siginfo si, *sip; 203 int error, status; 204 205 if (uap->wrusage != NULL) 206 wrup = &wru; 207 else 208 wrup = NULL; 209 if (uap->info != NULL) { 210 sip = &si; 211 bzero(sip, sizeof(*sip)); 212 } else 213 sip = NULL; 214 error = kern_wait6(td, uap->idtype, PAIR32TO64(id_t, uap->id), 215 &status, uap->options, wrup, sip); 216 if (error != 0) 217 return (error); 218 if (uap->status != NULL) 219 error = copyout(&status, uap->status, sizeof(status)); 220 if (uap->wrusage != NULL && error == 0) { 221 freebsd32_rusage_out(&wru.wru_self, &wru32.wru_self); 222 freebsd32_rusage_out(&wru.wru_children, &wru32.wru_children); 223 error = copyout(&wru32, uap->wrusage, sizeof(wru32)); 224 } 225 if (uap->info != NULL && error == 0) { 226 siginfo_to_siginfo32 (&si, &si32); 227 error = copyout(&si32, uap->info, sizeof(si32)); 228 } 229 return (error); 230 } 231 232 #ifdef COMPAT_FREEBSD4 233 static void 234 copy_statfs(struct statfs *in, struct statfs32 *out) 235 { 236 237 statfs_scale_blocks(in, INT32_MAX); 238 bzero(out, sizeof(*out)); 239 CP(*in, *out, f_bsize); 240 out->f_iosize = MIN(in->f_iosize, INT32_MAX); 241 CP(*in, *out, f_blocks); 242 CP(*in, *out, f_bfree); 243 CP(*in, *out, f_bavail); 244 out->f_files = MIN(in->f_files, INT32_MAX); 245 out->f_ffree = MIN(in->f_ffree, INT32_MAX); 246 CP(*in, *out, f_fsid); 247 CP(*in, *out, f_owner); 248 CP(*in, *out, f_type); 249 CP(*in, *out, f_flags); 250 out->f_syncwrites = MIN(in->f_syncwrites, INT32_MAX); 251 out->f_asyncwrites = MIN(in->f_asyncwrites, INT32_MAX); 252 strlcpy(out->f_fstypename, 253 in->f_fstypename, MFSNAMELEN); 254 strlcpy(out->f_mntonname, 255 in->f_mntonname, min(MNAMELEN, FREEBSD4_MNAMELEN)); 256 out->f_syncreads = MIN(in->f_syncreads, INT32_MAX); 257 out->f_asyncreads = MIN(in->f_asyncreads, INT32_MAX); 258 strlcpy(out->f_mntfromname, 259 in->f_mntfromname, min(MNAMELEN, FREEBSD4_MNAMELEN)); 260 } 261 #endif 262 263 #ifdef COMPAT_FREEBSD4 264 int 265 freebsd4_freebsd32_getfsstat(struct thread *td, 266 struct freebsd4_freebsd32_getfsstat_args *uap) 267 { 268 struct statfs *buf, *sp; 269 struct statfs32 stat32; 270 size_t count, size, copycount; 271 int error; 272 273 count = uap->bufsize / sizeof(struct statfs32); 274 size = count * sizeof(struct statfs); 275 error = kern_getfsstat(td, &buf, size, &count, UIO_SYSSPACE, uap->mode); 276 if (size > 0) { 277 sp = buf; 278 copycount = count; 279 while (copycount > 0 && error == 0) { 280 copy_statfs(sp, &stat32); 281 error = copyout(&stat32, uap->buf, sizeof(stat32)); 282 sp++; 283 uap->buf++; 284 copycount--; 285 } 286 free(buf, M_STATFS); 287 } 288 if (error == 0) 289 td->td_retval[0] = count; 290 return (error); 291 } 292 #endif 293 294 #ifdef COMPAT_FREEBSD10 295 int 296 freebsd10_freebsd32_pipe(struct thread *td, 297 struct freebsd10_freebsd32_pipe_args *uap) { 298 299 return (freebsd10_pipe(td, (struct freebsd10_pipe_args*)uap)); 300 } 301 #endif 302 303 int 304 freebsd32_sigaltstack(struct thread *td, 305 struct freebsd32_sigaltstack_args *uap) 306 { 307 struct sigaltstack32 s32; 308 struct sigaltstack ss, oss, *ssp; 309 int error; 310 311 if (uap->ss != NULL) { 312 error = copyin(uap->ss, &s32, sizeof(s32)); 313 if (error) 314 return (error); 315 PTRIN_CP(s32, ss, ss_sp); 316 CP(s32, ss, ss_size); 317 CP(s32, ss, ss_flags); 318 ssp = &ss; 319 } else 320 ssp = NULL; 321 error = kern_sigaltstack(td, ssp, &oss); 322 if (error == 0 && uap->oss != NULL) { 323 PTROUT_CP(oss, s32, ss_sp); 324 CP(oss, s32, ss_size); 325 CP(oss, s32, ss_flags); 326 error = copyout(&s32, uap->oss, sizeof(s32)); 327 } 328 return (error); 329 } 330 331 /* 332 * Custom version of exec_copyin_args() so that we can translate 333 * the pointers. 334 */ 335 int 336 freebsd32_exec_copyin_args(struct image_args *args, char *fname, 337 enum uio_seg segflg, u_int32_t *argv, u_int32_t *envv) 338 { 339 char *argp, *envp; 340 u_int32_t *p32, arg; 341 size_t length; 342 int error; 343 344 bzero(args, sizeof(*args)); 345 if (argv == NULL) 346 return (EFAULT); 347 348 /* 349 * Allocate demand-paged memory for the file name, argument, and 350 * environment strings. 351 */ 352 error = exec_alloc_args(args); 353 if (error != 0) 354 return (error); 355 356 /* 357 * Copy the file name. 358 */ 359 if (fname != NULL) { 360 args->fname = args->buf; 361 error = (segflg == UIO_SYSSPACE) ? 362 copystr(fname, args->fname, PATH_MAX, &length) : 363 copyinstr(fname, args->fname, PATH_MAX, &length); 364 if (error != 0) 365 goto err_exit; 366 } else 367 length = 0; 368 369 args->begin_argv = args->buf + length; 370 args->endp = args->begin_argv; 371 args->stringspace = ARG_MAX; 372 373 /* 374 * extract arguments first 375 */ 376 p32 = argv; 377 for (;;) { 378 error = copyin(p32++, &arg, sizeof(arg)); 379 if (error) 380 goto err_exit; 381 if (arg == 0) 382 break; 383 argp = PTRIN(arg); 384 error = copyinstr(argp, args->endp, args->stringspace, &length); 385 if (error) { 386 if (error == ENAMETOOLONG) 387 error = E2BIG; 388 goto err_exit; 389 } 390 args->stringspace -= length; 391 args->endp += length; 392 args->argc++; 393 } 394 395 args->begin_envv = args->endp; 396 397 /* 398 * extract environment strings 399 */ 400 if (envv) { 401 p32 = envv; 402 for (;;) { 403 error = copyin(p32++, &arg, sizeof(arg)); 404 if (error) 405 goto err_exit; 406 if (arg == 0) 407 break; 408 envp = PTRIN(arg); 409 error = copyinstr(envp, args->endp, args->stringspace, 410 &length); 411 if (error) { 412 if (error == ENAMETOOLONG) 413 error = E2BIG; 414 goto err_exit; 415 } 416 args->stringspace -= length; 417 args->endp += length; 418 args->envc++; 419 } 420 } 421 422 return (0); 423 424 err_exit: 425 exec_free_args(args); 426 return (error); 427 } 428 429 int 430 freebsd32_execve(struct thread *td, struct freebsd32_execve_args *uap) 431 { 432 struct image_args eargs; 433 struct vmspace *oldvmspace; 434 int error; 435 436 error = pre_execve(td, &oldvmspace); 437 if (error != 0) 438 return (error); 439 error = freebsd32_exec_copyin_args(&eargs, uap->fname, UIO_USERSPACE, 440 uap->argv, uap->envv); 441 if (error == 0) 442 error = kern_execve(td, &eargs, NULL); 443 post_execve(td, error, oldvmspace); 444 return (error); 445 } 446 447 int 448 freebsd32_fexecve(struct thread *td, struct freebsd32_fexecve_args *uap) 449 { 450 struct image_args eargs; 451 struct vmspace *oldvmspace; 452 int error; 453 454 error = pre_execve(td, &oldvmspace); 455 if (error != 0) 456 return (error); 457 error = freebsd32_exec_copyin_args(&eargs, NULL, UIO_SYSSPACE, 458 uap->argv, uap->envv); 459 if (error == 0) { 460 eargs.fd = uap->fd; 461 error = kern_execve(td, &eargs, NULL); 462 } 463 post_execve(td, error, oldvmspace); 464 return (error); 465 } 466 467 #if defined(COMPAT_FREEBSD11) 468 int 469 freebsd11_freebsd32_mknod(struct thread *td, 470 struct freebsd11_freebsd32_mknod_args *uap) 471 { 472 473 return (kern_mknodat(td, AT_FDCWD, uap->path, UIO_USERSPACE, uap->mode, 474 uap->dev)); 475 } 476 477 int 478 freebsd11_freebsd32_mknodat(struct thread *td, 479 struct freebsd11_freebsd32_mknodat_args *uap) 480 { 481 482 return (kern_mknodat(td, uap->fd, uap->path, UIO_USERSPACE, uap->mode, 483 uap->dev)); 484 } 485 #endif /* COMPAT_FREEBSD11 */ 486 487 int 488 freebsd32_mprotect(struct thread *td, struct freebsd32_mprotect_args *uap) 489 { 490 int prot; 491 492 prot = uap->prot; 493 #if defined(__amd64__) 494 if (i386_read_exec && (prot & PROT_READ) != 0) 495 prot |= PROT_EXEC; 496 #endif 497 return (kern_mprotect(td, (uintptr_t)PTRIN(uap->addr), uap->len, 498 prot)); 499 } 500 501 int 502 freebsd32_mmap(struct thread *td, struct freebsd32_mmap_args *uap) 503 { 504 int prot; 505 506 prot = uap->prot; 507 #if defined(__amd64__) 508 if (i386_read_exec && (prot & PROT_READ)) 509 prot |= PROT_EXEC; 510 #endif 511 512 return (kern_mmap(td, (uintptr_t)uap->addr, uap->len, prot, 513 uap->flags, uap->fd, PAIR32TO64(off_t, uap->pos))); 514 } 515 516 #ifdef COMPAT_FREEBSD6 517 int 518 freebsd6_freebsd32_mmap(struct thread *td, 519 struct freebsd6_freebsd32_mmap_args *uap) 520 { 521 int prot; 522 523 prot = uap->prot; 524 #if defined(__amd64__) 525 if (i386_read_exec && (prot & PROT_READ)) 526 prot |= PROT_EXEC; 527 #endif 528 529 return (kern_mmap(td, (uintptr_t)uap->addr, uap->len, prot, 530 uap->flags, uap->fd, PAIR32TO64(off_t, uap->pos))); 531 } 532 #endif 533 534 int 535 freebsd32_setitimer(struct thread *td, struct freebsd32_setitimer_args *uap) 536 { 537 struct itimerval itv, oitv, *itvp; 538 struct itimerval32 i32; 539 int error; 540 541 if (uap->itv != NULL) { 542 error = copyin(uap->itv, &i32, sizeof(i32)); 543 if (error) 544 return (error); 545 TV_CP(i32, itv, it_interval); 546 TV_CP(i32, itv, it_value); 547 itvp = &itv; 548 } else 549 itvp = NULL; 550 error = kern_setitimer(td, uap->which, itvp, &oitv); 551 if (error || uap->oitv == NULL) 552 return (error); 553 TV_CP(oitv, i32, it_interval); 554 TV_CP(oitv, i32, it_value); 555 return (copyout(&i32, uap->oitv, sizeof(i32))); 556 } 557 558 int 559 freebsd32_getitimer(struct thread *td, struct freebsd32_getitimer_args *uap) 560 { 561 struct itimerval itv; 562 struct itimerval32 i32; 563 int error; 564 565 error = kern_getitimer(td, uap->which, &itv); 566 if (error || uap->itv == NULL) 567 return (error); 568 TV_CP(itv, i32, it_interval); 569 TV_CP(itv, i32, it_value); 570 return (copyout(&i32, uap->itv, sizeof(i32))); 571 } 572 573 int 574 freebsd32_select(struct thread *td, struct freebsd32_select_args *uap) 575 { 576 struct timeval32 tv32; 577 struct timeval tv, *tvp; 578 int error; 579 580 if (uap->tv != NULL) { 581 error = copyin(uap->tv, &tv32, sizeof(tv32)); 582 if (error) 583 return (error); 584 CP(tv32, tv, tv_sec); 585 CP(tv32, tv, tv_usec); 586 tvp = &tv; 587 } else 588 tvp = NULL; 589 /* 590 * XXX Do pointers need PTRIN()? 591 */ 592 return (kern_select(td, uap->nd, uap->in, uap->ou, uap->ex, tvp, 593 sizeof(int32_t) * 8)); 594 } 595 596 int 597 freebsd32_pselect(struct thread *td, struct freebsd32_pselect_args *uap) 598 { 599 struct timespec32 ts32; 600 struct timespec ts; 601 struct timeval tv, *tvp; 602 sigset_t set, *uset; 603 int error; 604 605 if (uap->ts != NULL) { 606 error = copyin(uap->ts, &ts32, sizeof(ts32)); 607 if (error != 0) 608 return (error); 609 CP(ts32, ts, tv_sec); 610 CP(ts32, ts, tv_nsec); 611 TIMESPEC_TO_TIMEVAL(&tv, &ts); 612 tvp = &tv; 613 } else 614 tvp = NULL; 615 if (uap->sm != NULL) { 616 error = copyin(uap->sm, &set, sizeof(set)); 617 if (error != 0) 618 return (error); 619 uset = &set; 620 } else 621 uset = NULL; 622 /* 623 * XXX Do pointers need PTRIN()? 624 */ 625 error = kern_pselect(td, uap->nd, uap->in, uap->ou, uap->ex, tvp, 626 uset, sizeof(int32_t) * 8); 627 return (error); 628 } 629 630 /* 631 * Copy 'count' items into the destination list pointed to by uap->eventlist. 632 */ 633 static int 634 freebsd32_kevent_copyout(void *arg, struct kevent *kevp, int count) 635 { 636 struct freebsd32_kevent_args *uap; 637 struct kevent32 ks32[KQ_NEVENTS]; 638 uint64_t e; 639 int i, j, error; 640 641 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count)); 642 uap = (struct freebsd32_kevent_args *)arg; 643 644 for (i = 0; i < count; i++) { 645 CP(kevp[i], ks32[i], ident); 646 CP(kevp[i], ks32[i], filter); 647 CP(kevp[i], ks32[i], flags); 648 CP(kevp[i], ks32[i], fflags); 649 #if BYTE_ORDER == LITTLE_ENDIAN 650 ks32[i].data1 = kevp[i].data; 651 ks32[i].data2 = kevp[i].data >> 32; 652 #else 653 ks32[i].data1 = kevp[i].data >> 32; 654 ks32[i].data2 = kevp[i].data; 655 #endif 656 PTROUT_CP(kevp[i], ks32[i], udata); 657 for (j = 0; j < nitems(kevp->ext); j++) { 658 e = kevp[i].ext[j]; 659 #if BYTE_ORDER == LITTLE_ENDIAN 660 ks32[i].ext64[2 * j] = e; 661 ks32[i].ext64[2 * j + 1] = e >> 32; 662 #else 663 ks32[i].ext64[2 * j] = e >> 32; 664 ks32[i].ext64[2 * j + 1] = e; 665 #endif 666 } 667 } 668 error = copyout(ks32, uap->eventlist, count * sizeof *ks32); 669 if (error == 0) 670 uap->eventlist += count; 671 return (error); 672 } 673 674 /* 675 * Copy 'count' items from the list pointed to by uap->changelist. 676 */ 677 static int 678 freebsd32_kevent_copyin(void *arg, struct kevent *kevp, int count) 679 { 680 struct freebsd32_kevent_args *uap; 681 struct kevent32 ks32[KQ_NEVENTS]; 682 uint64_t e; 683 int i, j, error; 684 685 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count)); 686 uap = (struct freebsd32_kevent_args *)arg; 687 688 error = copyin(uap->changelist, ks32, count * sizeof *ks32); 689 if (error) 690 goto done; 691 uap->changelist += count; 692 693 for (i = 0; i < count; i++) { 694 CP(ks32[i], kevp[i], ident); 695 CP(ks32[i], kevp[i], filter); 696 CP(ks32[i], kevp[i], flags); 697 CP(ks32[i], kevp[i], fflags); 698 kevp[i].data = PAIR32TO64(uint64_t, ks32[i].data); 699 PTRIN_CP(ks32[i], kevp[i], udata); 700 for (j = 0; j < nitems(kevp->ext); j++) { 701 #if BYTE_ORDER == LITTLE_ENDIAN 702 e = ks32[i].ext64[2 * j + 1]; 703 e <<= 32; 704 e += ks32[i].ext64[2 * j]; 705 #else 706 e = ks32[i].ext64[2 * j]; 707 e <<= 32; 708 e += ks32[i].ext64[2 * j + 1]; 709 #endif 710 kevp[i].ext[j] = e; 711 } 712 } 713 done: 714 return (error); 715 } 716 717 int 718 freebsd32_kevent(struct thread *td, struct freebsd32_kevent_args *uap) 719 { 720 struct timespec32 ts32; 721 struct timespec ts, *tsp; 722 struct kevent_copyops k_ops = { 723 .arg = uap, 724 .k_copyout = freebsd32_kevent_copyout, 725 .k_copyin = freebsd32_kevent_copyin, 726 }; 727 #ifdef KTRACE 728 struct kevent32 *eventlist = uap->eventlist; 729 #endif 730 int error; 731 732 if (uap->timeout) { 733 error = copyin(uap->timeout, &ts32, sizeof(ts32)); 734 if (error) 735 return (error); 736 CP(ts32, ts, tv_sec); 737 CP(ts32, ts, tv_nsec); 738 tsp = &ts; 739 } else 740 tsp = NULL; 741 #ifdef KTRACE 742 if (KTRPOINT(td, KTR_STRUCT_ARRAY)) 743 ktrstructarray("kevent32", UIO_USERSPACE, uap->changelist, 744 uap->nchanges, sizeof(struct kevent32)); 745 #endif 746 error = kern_kevent(td, uap->fd, uap->nchanges, uap->nevents, 747 &k_ops, tsp); 748 #ifdef KTRACE 749 if (error == 0 && KTRPOINT(td, KTR_STRUCT_ARRAY)) 750 ktrstructarray("kevent32", UIO_USERSPACE, eventlist, 751 td->td_retval[0], sizeof(struct kevent32)); 752 #endif 753 return (error); 754 } 755 756 #ifdef COMPAT_FREEBSD11 757 static int 758 freebsd32_kevent11_copyout(void *arg, struct kevent *kevp, int count) 759 { 760 struct freebsd11_freebsd32_kevent_args *uap; 761 struct kevent32_freebsd11 ks32[KQ_NEVENTS]; 762 int i, error; 763 764 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count)); 765 uap = (struct freebsd11_freebsd32_kevent_args *)arg; 766 767 for (i = 0; i < count; i++) { 768 CP(kevp[i], ks32[i], ident); 769 CP(kevp[i], ks32[i], filter); 770 CP(kevp[i], ks32[i], flags); 771 CP(kevp[i], ks32[i], fflags); 772 CP(kevp[i], ks32[i], data); 773 PTROUT_CP(kevp[i], ks32[i], udata); 774 } 775 error = copyout(ks32, uap->eventlist, count * sizeof *ks32); 776 if (error == 0) 777 uap->eventlist += count; 778 return (error); 779 } 780 781 /* 782 * Copy 'count' items from the list pointed to by uap->changelist. 783 */ 784 static int 785 freebsd32_kevent11_copyin(void *arg, struct kevent *kevp, int count) 786 { 787 struct freebsd11_freebsd32_kevent_args *uap; 788 struct kevent32_freebsd11 ks32[KQ_NEVENTS]; 789 int i, j, error; 790 791 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count)); 792 uap = (struct freebsd11_freebsd32_kevent_args *)arg; 793 794 error = copyin(uap->changelist, ks32, count * sizeof *ks32); 795 if (error) 796 goto done; 797 uap->changelist += count; 798 799 for (i = 0; i < count; i++) { 800 CP(ks32[i], kevp[i], ident); 801 CP(ks32[i], kevp[i], filter); 802 CP(ks32[i], kevp[i], flags); 803 CP(ks32[i], kevp[i], fflags); 804 CP(ks32[i], kevp[i], data); 805 PTRIN_CP(ks32[i], kevp[i], udata); 806 for (j = 0; j < nitems(kevp->ext); j++) 807 kevp[i].ext[j] = 0; 808 } 809 done: 810 return (error); 811 } 812 813 int 814 freebsd11_freebsd32_kevent(struct thread *td, 815 struct freebsd11_freebsd32_kevent_args *uap) 816 { 817 struct timespec32 ts32; 818 struct timespec ts, *tsp; 819 struct kevent_copyops k_ops = { 820 .arg = uap, 821 .k_copyout = freebsd32_kevent11_copyout, 822 .k_copyin = freebsd32_kevent11_copyin, 823 }; 824 #ifdef KTRACE 825 struct kevent32_freebsd11 *eventlist = uap->eventlist; 826 #endif 827 int error; 828 829 if (uap->timeout) { 830 error = copyin(uap->timeout, &ts32, sizeof(ts32)); 831 if (error) 832 return (error); 833 CP(ts32, ts, tv_sec); 834 CP(ts32, ts, tv_nsec); 835 tsp = &ts; 836 } else 837 tsp = NULL; 838 #ifdef KTRACE 839 if (KTRPOINT(td, KTR_STRUCT_ARRAY)) 840 ktrstructarray("kevent32_freebsd11", UIO_USERSPACE, 841 uap->changelist, uap->nchanges, 842 sizeof(struct kevent32_freebsd11)); 843 #endif 844 error = kern_kevent(td, uap->fd, uap->nchanges, uap->nevents, 845 &k_ops, tsp); 846 #ifdef KTRACE 847 if (error == 0 && KTRPOINT(td, KTR_STRUCT_ARRAY)) 848 ktrstructarray("kevent32_freebsd11", UIO_USERSPACE, 849 eventlist, td->td_retval[0], 850 sizeof(struct kevent32_freebsd11)); 851 #endif 852 return (error); 853 } 854 #endif 855 856 int 857 freebsd32_gettimeofday(struct thread *td, 858 struct freebsd32_gettimeofday_args *uap) 859 { 860 struct timeval atv; 861 struct timeval32 atv32; 862 struct timezone rtz; 863 int error = 0; 864 865 if (uap->tp) { 866 microtime(&atv); 867 CP(atv, atv32, tv_sec); 868 CP(atv, atv32, tv_usec); 869 error = copyout(&atv32, uap->tp, sizeof (atv32)); 870 } 871 if (error == 0 && uap->tzp != NULL) { 872 rtz.tz_minuteswest = tz_minuteswest; 873 rtz.tz_dsttime = tz_dsttime; 874 error = copyout(&rtz, uap->tzp, sizeof (rtz)); 875 } 876 return (error); 877 } 878 879 int 880 freebsd32_getrusage(struct thread *td, struct freebsd32_getrusage_args *uap) 881 { 882 struct rusage32 s32; 883 struct rusage s; 884 int error; 885 886 error = kern_getrusage(td, uap->who, &s); 887 if (error) 888 return (error); 889 if (uap->rusage != NULL) { 890 freebsd32_rusage_out(&s, &s32); 891 error = copyout(&s32, uap->rusage, sizeof(s32)); 892 } 893 return (error); 894 } 895 896 static int 897 freebsd32_copyinuio(struct iovec32 *iovp, u_int iovcnt, struct uio **uiop) 898 { 899 struct iovec32 iov32; 900 struct iovec *iov; 901 struct uio *uio; 902 u_int iovlen; 903 int error, i; 904 905 *uiop = NULL; 906 if (iovcnt > UIO_MAXIOV) 907 return (EINVAL); 908 iovlen = iovcnt * sizeof(struct iovec); 909 uio = malloc(iovlen + sizeof *uio, M_IOV, M_WAITOK); 910 iov = (struct iovec *)(uio + 1); 911 for (i = 0; i < iovcnt; i++) { 912 error = copyin(&iovp[i], &iov32, sizeof(struct iovec32)); 913 if (error) { 914 free(uio, M_IOV); 915 return (error); 916 } 917 iov[i].iov_base = PTRIN(iov32.iov_base); 918 iov[i].iov_len = iov32.iov_len; 919 } 920 uio->uio_iov = iov; 921 uio->uio_iovcnt = iovcnt; 922 uio->uio_segflg = UIO_USERSPACE; 923 uio->uio_offset = -1; 924 uio->uio_resid = 0; 925 for (i = 0; i < iovcnt; i++) { 926 if (iov->iov_len > INT_MAX - uio->uio_resid) { 927 free(uio, M_IOV); 928 return (EINVAL); 929 } 930 uio->uio_resid += iov->iov_len; 931 iov++; 932 } 933 *uiop = uio; 934 return (0); 935 } 936 937 int 938 freebsd32_readv(struct thread *td, struct freebsd32_readv_args *uap) 939 { 940 struct uio *auio; 941 int error; 942 943 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 944 if (error) 945 return (error); 946 error = kern_readv(td, uap->fd, auio); 947 free(auio, M_IOV); 948 return (error); 949 } 950 951 int 952 freebsd32_writev(struct thread *td, struct freebsd32_writev_args *uap) 953 { 954 struct uio *auio; 955 int error; 956 957 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 958 if (error) 959 return (error); 960 error = kern_writev(td, uap->fd, auio); 961 free(auio, M_IOV); 962 return (error); 963 } 964 965 int 966 freebsd32_preadv(struct thread *td, struct freebsd32_preadv_args *uap) 967 { 968 struct uio *auio; 969 int error; 970 971 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 972 if (error) 973 return (error); 974 error = kern_preadv(td, uap->fd, auio, PAIR32TO64(off_t,uap->offset)); 975 free(auio, M_IOV); 976 return (error); 977 } 978 979 int 980 freebsd32_pwritev(struct thread *td, struct freebsd32_pwritev_args *uap) 981 { 982 struct uio *auio; 983 int error; 984 985 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 986 if (error) 987 return (error); 988 error = kern_pwritev(td, uap->fd, auio, PAIR32TO64(off_t,uap->offset)); 989 free(auio, M_IOV); 990 return (error); 991 } 992 993 int 994 freebsd32_copyiniov(struct iovec32 *iovp32, u_int iovcnt, struct iovec **iovp, 995 int error) 996 { 997 struct iovec32 iov32; 998 struct iovec *iov; 999 u_int iovlen; 1000 int i; 1001 1002 *iovp = NULL; 1003 if (iovcnt > UIO_MAXIOV) 1004 return (error); 1005 iovlen = iovcnt * sizeof(struct iovec); 1006 iov = malloc(iovlen, M_IOV, M_WAITOK); 1007 for (i = 0; i < iovcnt; i++) { 1008 error = copyin(&iovp32[i], &iov32, sizeof(struct iovec32)); 1009 if (error) { 1010 free(iov, M_IOV); 1011 return (error); 1012 } 1013 iov[i].iov_base = PTRIN(iov32.iov_base); 1014 iov[i].iov_len = iov32.iov_len; 1015 } 1016 *iovp = iov; 1017 return (0); 1018 } 1019 1020 static int 1021 freebsd32_copyinmsghdr(struct msghdr32 *msg32, struct msghdr *msg) 1022 { 1023 struct msghdr32 m32; 1024 int error; 1025 1026 error = copyin(msg32, &m32, sizeof(m32)); 1027 if (error) 1028 return (error); 1029 msg->msg_name = PTRIN(m32.msg_name); 1030 msg->msg_namelen = m32.msg_namelen; 1031 msg->msg_iov = PTRIN(m32.msg_iov); 1032 msg->msg_iovlen = m32.msg_iovlen; 1033 msg->msg_control = PTRIN(m32.msg_control); 1034 msg->msg_controllen = m32.msg_controllen; 1035 msg->msg_flags = m32.msg_flags; 1036 return (0); 1037 } 1038 1039 static int 1040 freebsd32_copyoutmsghdr(struct msghdr *msg, struct msghdr32 *msg32) 1041 { 1042 struct msghdr32 m32; 1043 int error; 1044 1045 m32.msg_name = PTROUT(msg->msg_name); 1046 m32.msg_namelen = msg->msg_namelen; 1047 m32.msg_iov = PTROUT(msg->msg_iov); 1048 m32.msg_iovlen = msg->msg_iovlen; 1049 m32.msg_control = PTROUT(msg->msg_control); 1050 m32.msg_controllen = msg->msg_controllen; 1051 m32.msg_flags = msg->msg_flags; 1052 error = copyout(&m32, msg32, sizeof(m32)); 1053 return (error); 1054 } 1055 1056 #ifndef __mips__ 1057 #define FREEBSD32_ALIGNBYTES (sizeof(int) - 1) 1058 #else 1059 #define FREEBSD32_ALIGNBYTES (sizeof(long) - 1) 1060 #endif 1061 #define FREEBSD32_ALIGN(p) \ 1062 (((u_long)(p) + FREEBSD32_ALIGNBYTES) & ~FREEBSD32_ALIGNBYTES) 1063 #define FREEBSD32_CMSG_SPACE(l) \ 1064 (FREEBSD32_ALIGN(sizeof(struct cmsghdr)) + FREEBSD32_ALIGN(l)) 1065 1066 #define FREEBSD32_CMSG_DATA(cmsg) ((unsigned char *)(cmsg) + \ 1067 FREEBSD32_ALIGN(sizeof(struct cmsghdr))) 1068 1069 static size_t 1070 freebsd32_cmsg_convert(struct cmsghdr *cm, void *data, socklen_t datalen) 1071 { 1072 size_t copylen; 1073 union { 1074 struct timespec32 ts; 1075 struct timeval32 tv; 1076 struct bintime32 bt; 1077 } tmp32; 1078 1079 union { 1080 struct timespec ts; 1081 struct timeval tv; 1082 struct bintime bt; 1083 } *in; 1084 1085 in = data; 1086 copylen = 0; 1087 switch (cm->cmsg_level) { 1088 case SOL_SOCKET: 1089 switch (cm->cmsg_type) { 1090 case SCM_TIMESTAMP: 1091 TV_CP(*in, tmp32, tv); 1092 copylen = sizeof(tmp32.tv); 1093 break; 1094 1095 case SCM_BINTIME: 1096 BT_CP(*in, tmp32, bt); 1097 copylen = sizeof(tmp32.bt); 1098 break; 1099 1100 case SCM_REALTIME: 1101 case SCM_MONOTONIC: 1102 TS_CP(*in, tmp32, ts); 1103 copylen = sizeof(tmp32.ts); 1104 break; 1105 1106 default: 1107 break; 1108 } 1109 1110 default: 1111 break; 1112 } 1113 1114 if (copylen == 0) 1115 return (datalen); 1116 1117 KASSERT((datalen >= copylen), ("corrupted cmsghdr")); 1118 1119 bcopy(&tmp32, data, copylen); 1120 return (copylen); 1121 } 1122 1123 static int 1124 freebsd32_copy_msg_out(struct msghdr *msg, struct mbuf *control) 1125 { 1126 struct cmsghdr *cm; 1127 void *data; 1128 socklen_t clen, datalen, datalen_out; 1129 int error; 1130 caddr_t ctlbuf; 1131 int len, maxlen, copylen; 1132 struct mbuf *m; 1133 error = 0; 1134 1135 len = msg->msg_controllen; 1136 maxlen = msg->msg_controllen; 1137 msg->msg_controllen = 0; 1138 1139 m = control; 1140 ctlbuf = msg->msg_control; 1141 1142 while (m && len > 0) { 1143 cm = mtod(m, struct cmsghdr *); 1144 clen = m->m_len; 1145 1146 while (cm != NULL) { 1147 1148 if (sizeof(struct cmsghdr) > clen || 1149 cm->cmsg_len > clen) { 1150 error = EINVAL; 1151 break; 1152 } 1153 1154 data = CMSG_DATA(cm); 1155 datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data; 1156 datalen_out = freebsd32_cmsg_convert(cm, data, datalen); 1157 1158 /* Adjust message length */ 1159 cm->cmsg_len = FREEBSD32_ALIGN(sizeof(struct cmsghdr)) + 1160 datalen_out; 1161 1162 /* Copy cmsghdr */ 1163 copylen = sizeof(struct cmsghdr); 1164 if (len < copylen) { 1165 msg->msg_flags |= MSG_CTRUNC; 1166 copylen = len; 1167 } 1168 1169 error = copyout(cm, ctlbuf, copylen); 1170 if (error) 1171 goto exit; 1172 1173 ctlbuf += FREEBSD32_ALIGN(copylen); 1174 len -= FREEBSD32_ALIGN(copylen); 1175 1176 if (len <= 0) 1177 break; 1178 1179 /* Copy data */ 1180 copylen = datalen_out; 1181 if (len < copylen) { 1182 msg->msg_flags |= MSG_CTRUNC; 1183 copylen = len; 1184 } 1185 1186 error = copyout(data, ctlbuf, copylen); 1187 if (error) 1188 goto exit; 1189 1190 ctlbuf += FREEBSD32_ALIGN(copylen); 1191 len -= FREEBSD32_ALIGN(copylen); 1192 1193 if (CMSG_SPACE(datalen) < clen) { 1194 clen -= CMSG_SPACE(datalen); 1195 cm = (struct cmsghdr *) 1196 ((caddr_t)cm + CMSG_SPACE(datalen)); 1197 } else { 1198 clen = 0; 1199 cm = NULL; 1200 } 1201 } 1202 m = m->m_next; 1203 } 1204 1205 msg->msg_controllen = (len <= 0) ? maxlen : ctlbuf - (caddr_t)msg->msg_control; 1206 1207 exit: 1208 return (error); 1209 1210 } 1211 1212 int 1213 freebsd32_recvmsg(td, uap) 1214 struct thread *td; 1215 struct freebsd32_recvmsg_args /* { 1216 int s; 1217 struct msghdr32 *msg; 1218 int flags; 1219 } */ *uap; 1220 { 1221 struct msghdr msg; 1222 struct msghdr32 m32; 1223 struct iovec *uiov, *iov; 1224 struct mbuf *control = NULL; 1225 struct mbuf **controlp; 1226 1227 int error; 1228 error = copyin(uap->msg, &m32, sizeof(m32)); 1229 if (error) 1230 return (error); 1231 error = freebsd32_copyinmsghdr(uap->msg, &msg); 1232 if (error) 1233 return (error); 1234 error = freebsd32_copyiniov(PTRIN(m32.msg_iov), m32.msg_iovlen, &iov, 1235 EMSGSIZE); 1236 if (error) 1237 return (error); 1238 msg.msg_flags = uap->flags; 1239 uiov = msg.msg_iov; 1240 msg.msg_iov = iov; 1241 1242 controlp = (msg.msg_control != NULL) ? &control : NULL; 1243 error = kern_recvit(td, uap->s, &msg, UIO_USERSPACE, controlp); 1244 if (error == 0) { 1245 msg.msg_iov = uiov; 1246 1247 if (control != NULL) 1248 error = freebsd32_copy_msg_out(&msg, control); 1249 else 1250 msg.msg_controllen = 0; 1251 1252 if (error == 0) 1253 error = freebsd32_copyoutmsghdr(&msg, uap->msg); 1254 } 1255 free(iov, M_IOV); 1256 1257 if (control != NULL) 1258 m_freem(control); 1259 1260 return (error); 1261 } 1262 1263 /* 1264 * Copy-in the array of control messages constructed using alignment 1265 * and padding suitable for a 32-bit environment and construct an 1266 * mbuf using alignment and padding suitable for a 64-bit kernel. 1267 * The alignment and padding are defined indirectly by CMSG_DATA(), 1268 * CMSG_SPACE() and CMSG_LEN(). 1269 */ 1270 static int 1271 freebsd32_copyin_control(struct mbuf **mp, caddr_t buf, u_int buflen) 1272 { 1273 struct mbuf *m; 1274 void *md; 1275 u_int idx, len, msglen; 1276 int error; 1277 1278 buflen = FREEBSD32_ALIGN(buflen); 1279 1280 if (buflen > MCLBYTES) 1281 return (EINVAL); 1282 1283 /* 1284 * Iterate over the buffer and get the length of each message 1285 * in there. This has 32-bit alignment and padding. Use it to 1286 * determine the length of these messages when using 64-bit 1287 * alignment and padding. 1288 */ 1289 idx = 0; 1290 len = 0; 1291 while (idx < buflen) { 1292 error = copyin(buf + idx, &msglen, sizeof(msglen)); 1293 if (error) 1294 return (error); 1295 if (msglen < sizeof(struct cmsghdr)) 1296 return (EINVAL); 1297 msglen = FREEBSD32_ALIGN(msglen); 1298 if (idx + msglen > buflen) 1299 return (EINVAL); 1300 idx += msglen; 1301 msglen += CMSG_ALIGN(sizeof(struct cmsghdr)) - 1302 FREEBSD32_ALIGN(sizeof(struct cmsghdr)); 1303 len += CMSG_ALIGN(msglen); 1304 } 1305 1306 if (len > MCLBYTES) 1307 return (EINVAL); 1308 1309 m = m_get(M_WAITOK, MT_CONTROL); 1310 if (len > MLEN) 1311 MCLGET(m, M_WAITOK); 1312 m->m_len = len; 1313 1314 md = mtod(m, void *); 1315 while (buflen > 0) { 1316 error = copyin(buf, md, sizeof(struct cmsghdr)); 1317 if (error) 1318 break; 1319 msglen = *(u_int *)md; 1320 msglen = FREEBSD32_ALIGN(msglen); 1321 1322 /* Modify the message length to account for alignment. */ 1323 *(u_int *)md = msglen + CMSG_ALIGN(sizeof(struct cmsghdr)) - 1324 FREEBSD32_ALIGN(sizeof(struct cmsghdr)); 1325 1326 md = (char *)md + CMSG_ALIGN(sizeof(struct cmsghdr)); 1327 buf += FREEBSD32_ALIGN(sizeof(struct cmsghdr)); 1328 buflen -= FREEBSD32_ALIGN(sizeof(struct cmsghdr)); 1329 1330 msglen -= FREEBSD32_ALIGN(sizeof(struct cmsghdr)); 1331 if (msglen > 0) { 1332 error = copyin(buf, md, msglen); 1333 if (error) 1334 break; 1335 md = (char *)md + CMSG_ALIGN(msglen); 1336 buf += msglen; 1337 buflen -= msglen; 1338 } 1339 } 1340 1341 if (error) 1342 m_free(m); 1343 else 1344 *mp = m; 1345 return (error); 1346 } 1347 1348 int 1349 freebsd32_sendmsg(struct thread *td, 1350 struct freebsd32_sendmsg_args *uap) 1351 { 1352 struct msghdr msg; 1353 struct msghdr32 m32; 1354 struct iovec *iov; 1355 struct mbuf *control = NULL; 1356 struct sockaddr *to = NULL; 1357 int error; 1358 1359 error = copyin(uap->msg, &m32, sizeof(m32)); 1360 if (error) 1361 return (error); 1362 error = freebsd32_copyinmsghdr(uap->msg, &msg); 1363 if (error) 1364 return (error); 1365 error = freebsd32_copyiniov(PTRIN(m32.msg_iov), m32.msg_iovlen, &iov, 1366 EMSGSIZE); 1367 if (error) 1368 return (error); 1369 msg.msg_iov = iov; 1370 if (msg.msg_name != NULL) { 1371 error = getsockaddr(&to, msg.msg_name, msg.msg_namelen); 1372 if (error) { 1373 to = NULL; 1374 goto out; 1375 } 1376 msg.msg_name = to; 1377 } 1378 1379 if (msg.msg_control) { 1380 if (msg.msg_controllen < sizeof(struct cmsghdr)) { 1381 error = EINVAL; 1382 goto out; 1383 } 1384 1385 error = freebsd32_copyin_control(&control, msg.msg_control, 1386 msg.msg_controllen); 1387 if (error) 1388 goto out; 1389 1390 msg.msg_control = NULL; 1391 msg.msg_controllen = 0; 1392 } 1393 1394 error = kern_sendit(td, uap->s, &msg, uap->flags, control, 1395 UIO_USERSPACE); 1396 1397 out: 1398 free(iov, M_IOV); 1399 if (to) 1400 free(to, M_SONAME); 1401 return (error); 1402 } 1403 1404 int 1405 freebsd32_recvfrom(struct thread *td, 1406 struct freebsd32_recvfrom_args *uap) 1407 { 1408 struct msghdr msg; 1409 struct iovec aiov; 1410 int error; 1411 1412 if (uap->fromlenaddr) { 1413 error = copyin(PTRIN(uap->fromlenaddr), &msg.msg_namelen, 1414 sizeof(msg.msg_namelen)); 1415 if (error) 1416 return (error); 1417 } else { 1418 msg.msg_namelen = 0; 1419 } 1420 1421 msg.msg_name = PTRIN(uap->from); 1422 msg.msg_iov = &aiov; 1423 msg.msg_iovlen = 1; 1424 aiov.iov_base = PTRIN(uap->buf); 1425 aiov.iov_len = uap->len; 1426 msg.msg_control = NULL; 1427 msg.msg_flags = uap->flags; 1428 error = kern_recvit(td, uap->s, &msg, UIO_USERSPACE, NULL); 1429 if (error == 0 && uap->fromlenaddr) 1430 error = copyout(&msg.msg_namelen, PTRIN(uap->fromlenaddr), 1431 sizeof (msg.msg_namelen)); 1432 return (error); 1433 } 1434 1435 int 1436 freebsd32_settimeofday(struct thread *td, 1437 struct freebsd32_settimeofday_args *uap) 1438 { 1439 struct timeval32 tv32; 1440 struct timeval tv, *tvp; 1441 struct timezone tz, *tzp; 1442 int error; 1443 1444 if (uap->tv) { 1445 error = copyin(uap->tv, &tv32, sizeof(tv32)); 1446 if (error) 1447 return (error); 1448 CP(tv32, tv, tv_sec); 1449 CP(tv32, tv, tv_usec); 1450 tvp = &tv; 1451 } else 1452 tvp = NULL; 1453 if (uap->tzp) { 1454 error = copyin(uap->tzp, &tz, sizeof(tz)); 1455 if (error) 1456 return (error); 1457 tzp = &tz; 1458 } else 1459 tzp = NULL; 1460 return (kern_settimeofday(td, tvp, tzp)); 1461 } 1462 1463 int 1464 freebsd32_utimes(struct thread *td, struct freebsd32_utimes_args *uap) 1465 { 1466 struct timeval32 s32[2]; 1467 struct timeval s[2], *sp; 1468 int error; 1469 1470 if (uap->tptr != NULL) { 1471 error = copyin(uap->tptr, s32, sizeof(s32)); 1472 if (error) 1473 return (error); 1474 CP(s32[0], s[0], tv_sec); 1475 CP(s32[0], s[0], tv_usec); 1476 CP(s32[1], s[1], tv_sec); 1477 CP(s32[1], s[1], tv_usec); 1478 sp = s; 1479 } else 1480 sp = NULL; 1481 return (kern_utimesat(td, AT_FDCWD, uap->path, UIO_USERSPACE, 1482 sp, UIO_SYSSPACE)); 1483 } 1484 1485 int 1486 freebsd32_lutimes(struct thread *td, struct freebsd32_lutimes_args *uap) 1487 { 1488 struct timeval32 s32[2]; 1489 struct timeval s[2], *sp; 1490 int error; 1491 1492 if (uap->tptr != NULL) { 1493 error = copyin(uap->tptr, s32, sizeof(s32)); 1494 if (error) 1495 return (error); 1496 CP(s32[0], s[0], tv_sec); 1497 CP(s32[0], s[0], tv_usec); 1498 CP(s32[1], s[1], tv_sec); 1499 CP(s32[1], s[1], tv_usec); 1500 sp = s; 1501 } else 1502 sp = NULL; 1503 return (kern_lutimes(td, uap->path, UIO_USERSPACE, sp, UIO_SYSSPACE)); 1504 } 1505 1506 int 1507 freebsd32_futimes(struct thread *td, struct freebsd32_futimes_args *uap) 1508 { 1509 struct timeval32 s32[2]; 1510 struct timeval s[2], *sp; 1511 int error; 1512 1513 if (uap->tptr != NULL) { 1514 error = copyin(uap->tptr, s32, sizeof(s32)); 1515 if (error) 1516 return (error); 1517 CP(s32[0], s[0], tv_sec); 1518 CP(s32[0], s[0], tv_usec); 1519 CP(s32[1], s[1], tv_sec); 1520 CP(s32[1], s[1], tv_usec); 1521 sp = s; 1522 } else 1523 sp = NULL; 1524 return (kern_futimes(td, uap->fd, sp, UIO_SYSSPACE)); 1525 } 1526 1527 int 1528 freebsd32_futimesat(struct thread *td, struct freebsd32_futimesat_args *uap) 1529 { 1530 struct timeval32 s32[2]; 1531 struct timeval s[2], *sp; 1532 int error; 1533 1534 if (uap->times != NULL) { 1535 error = copyin(uap->times, s32, sizeof(s32)); 1536 if (error) 1537 return (error); 1538 CP(s32[0], s[0], tv_sec); 1539 CP(s32[0], s[0], tv_usec); 1540 CP(s32[1], s[1], tv_sec); 1541 CP(s32[1], s[1], tv_usec); 1542 sp = s; 1543 } else 1544 sp = NULL; 1545 return (kern_utimesat(td, uap->fd, uap->path, UIO_USERSPACE, 1546 sp, UIO_SYSSPACE)); 1547 } 1548 1549 int 1550 freebsd32_futimens(struct thread *td, struct freebsd32_futimens_args *uap) 1551 { 1552 struct timespec32 ts32[2]; 1553 struct timespec ts[2], *tsp; 1554 int error; 1555 1556 if (uap->times != NULL) { 1557 error = copyin(uap->times, ts32, sizeof(ts32)); 1558 if (error) 1559 return (error); 1560 CP(ts32[0], ts[0], tv_sec); 1561 CP(ts32[0], ts[0], tv_nsec); 1562 CP(ts32[1], ts[1], tv_sec); 1563 CP(ts32[1], ts[1], tv_nsec); 1564 tsp = ts; 1565 } else 1566 tsp = NULL; 1567 return (kern_futimens(td, uap->fd, tsp, UIO_SYSSPACE)); 1568 } 1569 1570 int 1571 freebsd32_utimensat(struct thread *td, struct freebsd32_utimensat_args *uap) 1572 { 1573 struct timespec32 ts32[2]; 1574 struct timespec ts[2], *tsp; 1575 int error; 1576 1577 if (uap->times != NULL) { 1578 error = copyin(uap->times, ts32, sizeof(ts32)); 1579 if (error) 1580 return (error); 1581 CP(ts32[0], ts[0], tv_sec); 1582 CP(ts32[0], ts[0], tv_nsec); 1583 CP(ts32[1], ts[1], tv_sec); 1584 CP(ts32[1], ts[1], tv_nsec); 1585 tsp = ts; 1586 } else 1587 tsp = NULL; 1588 return (kern_utimensat(td, uap->fd, uap->path, UIO_USERSPACE, 1589 tsp, UIO_SYSSPACE, uap->flag)); 1590 } 1591 1592 int 1593 freebsd32_adjtime(struct thread *td, struct freebsd32_adjtime_args *uap) 1594 { 1595 struct timeval32 tv32; 1596 struct timeval delta, olddelta, *deltap; 1597 int error; 1598 1599 if (uap->delta) { 1600 error = copyin(uap->delta, &tv32, sizeof(tv32)); 1601 if (error) 1602 return (error); 1603 CP(tv32, delta, tv_sec); 1604 CP(tv32, delta, tv_usec); 1605 deltap = δ 1606 } else 1607 deltap = NULL; 1608 error = kern_adjtime(td, deltap, &olddelta); 1609 if (uap->olddelta && error == 0) { 1610 CP(olddelta, tv32, tv_sec); 1611 CP(olddelta, tv32, tv_usec); 1612 error = copyout(&tv32, uap->olddelta, sizeof(tv32)); 1613 } 1614 return (error); 1615 } 1616 1617 #ifdef COMPAT_FREEBSD4 1618 int 1619 freebsd4_freebsd32_statfs(struct thread *td, struct freebsd4_freebsd32_statfs_args *uap) 1620 { 1621 struct statfs32 s32; 1622 struct statfs *sp; 1623 int error; 1624 1625 sp = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK); 1626 error = kern_statfs(td, uap->path, UIO_USERSPACE, sp); 1627 if (error == 0) { 1628 copy_statfs(sp, &s32); 1629 error = copyout(&s32, uap->buf, sizeof(s32)); 1630 } 1631 free(sp, M_STATFS); 1632 return (error); 1633 } 1634 #endif 1635 1636 #ifdef COMPAT_FREEBSD4 1637 int 1638 freebsd4_freebsd32_fstatfs(struct thread *td, struct freebsd4_freebsd32_fstatfs_args *uap) 1639 { 1640 struct statfs32 s32; 1641 struct statfs *sp; 1642 int error; 1643 1644 sp = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK); 1645 error = kern_fstatfs(td, uap->fd, sp); 1646 if (error == 0) { 1647 copy_statfs(sp, &s32); 1648 error = copyout(&s32, uap->buf, sizeof(s32)); 1649 } 1650 free(sp, M_STATFS); 1651 return (error); 1652 } 1653 #endif 1654 1655 #ifdef COMPAT_FREEBSD4 1656 int 1657 freebsd4_freebsd32_fhstatfs(struct thread *td, struct freebsd4_freebsd32_fhstatfs_args *uap) 1658 { 1659 struct statfs32 s32; 1660 struct statfs *sp; 1661 fhandle_t fh; 1662 int error; 1663 1664 if ((error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t))) != 0) 1665 return (error); 1666 sp = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK); 1667 error = kern_fhstatfs(td, fh, sp); 1668 if (error == 0) { 1669 copy_statfs(sp, &s32); 1670 error = copyout(&s32, uap->buf, sizeof(s32)); 1671 } 1672 free(sp, M_STATFS); 1673 return (error); 1674 } 1675 #endif 1676 1677 int 1678 freebsd32_pread(struct thread *td, struct freebsd32_pread_args *uap) 1679 { 1680 1681 return (kern_pread(td, uap->fd, uap->buf, uap->nbyte, 1682 PAIR32TO64(off_t, uap->offset))); 1683 } 1684 1685 int 1686 freebsd32_pwrite(struct thread *td, struct freebsd32_pwrite_args *uap) 1687 { 1688 1689 return (kern_pwrite(td, uap->fd, uap->buf, uap->nbyte, 1690 PAIR32TO64(off_t, uap->offset))); 1691 } 1692 1693 #ifdef COMPAT_43 1694 int 1695 ofreebsd32_lseek(struct thread *td, struct ofreebsd32_lseek_args *uap) 1696 { 1697 1698 return (kern_lseek(td, uap->fd, uap->offset, uap->whence)); 1699 } 1700 #endif 1701 1702 int 1703 freebsd32_lseek(struct thread *td, struct freebsd32_lseek_args *uap) 1704 { 1705 int error; 1706 off_t pos; 1707 1708 error = kern_lseek(td, uap->fd, PAIR32TO64(off_t, uap->offset), 1709 uap->whence); 1710 /* Expand the quad return into two parts for eax and edx */ 1711 pos = td->td_uretoff.tdu_off; 1712 td->td_retval[RETVAL_LO] = pos & 0xffffffff; /* %eax */ 1713 td->td_retval[RETVAL_HI] = pos >> 32; /* %edx */ 1714 return error; 1715 } 1716 1717 int 1718 freebsd32_truncate(struct thread *td, struct freebsd32_truncate_args *uap) 1719 { 1720 1721 return (kern_truncate(td, uap->path, UIO_USERSPACE, 1722 PAIR32TO64(off_t, uap->length))); 1723 } 1724 1725 int 1726 freebsd32_ftruncate(struct thread *td, struct freebsd32_ftruncate_args *uap) 1727 { 1728 1729 return (kern_ftruncate(td, uap->fd, PAIR32TO64(off_t, uap->length))); 1730 } 1731 1732 #ifdef COMPAT_43 1733 int 1734 ofreebsd32_getdirentries(struct thread *td, 1735 struct ofreebsd32_getdirentries_args *uap) 1736 { 1737 struct ogetdirentries_args ap; 1738 int error; 1739 long loff; 1740 int32_t loff_cut; 1741 1742 ap.fd = uap->fd; 1743 ap.buf = uap->buf; 1744 ap.count = uap->count; 1745 ap.basep = NULL; 1746 error = kern_ogetdirentries(td, &ap, &loff); 1747 if (error == 0) { 1748 loff_cut = loff; 1749 error = copyout(&loff_cut, uap->basep, sizeof(int32_t)); 1750 } 1751 return (error); 1752 } 1753 #endif 1754 1755 #if defined(COMPAT_FREEBSD11) 1756 int 1757 freebsd11_freebsd32_getdirentries(struct thread *td, 1758 struct freebsd11_freebsd32_getdirentries_args *uap) 1759 { 1760 long base; 1761 int32_t base32; 1762 int error; 1763 1764 error = freebsd11_kern_getdirentries(td, uap->fd, uap->buf, uap->count, 1765 &base, NULL); 1766 if (error) 1767 return (error); 1768 if (uap->basep != NULL) { 1769 base32 = base; 1770 error = copyout(&base32, uap->basep, sizeof(int32_t)); 1771 } 1772 return (error); 1773 } 1774 1775 int 1776 freebsd11_freebsd32_getdents(struct thread *td, 1777 struct freebsd11_freebsd32_getdents_args *uap) 1778 { 1779 struct freebsd11_freebsd32_getdirentries_args ap; 1780 1781 ap.fd = uap->fd; 1782 ap.buf = uap->buf; 1783 ap.count = uap->count; 1784 ap.basep = NULL; 1785 return (freebsd11_freebsd32_getdirentries(td, &ap)); 1786 } 1787 #endif /* COMPAT_FREEBSD11 */ 1788 1789 #ifdef COMPAT_FREEBSD6 1790 /* versions with the 'int pad' argument */ 1791 int 1792 freebsd6_freebsd32_pread(struct thread *td, struct freebsd6_freebsd32_pread_args *uap) 1793 { 1794 1795 return (kern_pread(td, uap->fd, uap->buf, uap->nbyte, 1796 PAIR32TO64(off_t, uap->offset))); 1797 } 1798 1799 int 1800 freebsd6_freebsd32_pwrite(struct thread *td, struct freebsd6_freebsd32_pwrite_args *uap) 1801 { 1802 1803 return (kern_pwrite(td, uap->fd, uap->buf, uap->nbyte, 1804 PAIR32TO64(off_t, uap->offset))); 1805 } 1806 1807 int 1808 freebsd6_freebsd32_lseek(struct thread *td, struct freebsd6_freebsd32_lseek_args *uap) 1809 { 1810 int error; 1811 off_t pos; 1812 1813 error = kern_lseek(td, uap->fd, PAIR32TO64(off_t, uap->offset), 1814 uap->whence); 1815 /* Expand the quad return into two parts for eax and edx */ 1816 pos = *(off_t *)(td->td_retval); 1817 td->td_retval[RETVAL_LO] = pos & 0xffffffff; /* %eax */ 1818 td->td_retval[RETVAL_HI] = pos >> 32; /* %edx */ 1819 return error; 1820 } 1821 1822 int 1823 freebsd6_freebsd32_truncate(struct thread *td, struct freebsd6_freebsd32_truncate_args *uap) 1824 { 1825 1826 return (kern_truncate(td, uap->path, UIO_USERSPACE, 1827 PAIR32TO64(off_t, uap->length))); 1828 } 1829 1830 int 1831 freebsd6_freebsd32_ftruncate(struct thread *td, struct freebsd6_freebsd32_ftruncate_args *uap) 1832 { 1833 1834 return (kern_ftruncate(td, uap->fd, PAIR32TO64(off_t, uap->length))); 1835 } 1836 #endif /* COMPAT_FREEBSD6 */ 1837 1838 struct sf_hdtr32 { 1839 uint32_t headers; 1840 int hdr_cnt; 1841 uint32_t trailers; 1842 int trl_cnt; 1843 }; 1844 1845 static int 1846 freebsd32_do_sendfile(struct thread *td, 1847 struct freebsd32_sendfile_args *uap, int compat) 1848 { 1849 struct sf_hdtr32 hdtr32; 1850 struct sf_hdtr hdtr; 1851 struct uio *hdr_uio, *trl_uio; 1852 struct file *fp; 1853 cap_rights_t rights; 1854 struct iovec32 *iov32; 1855 off_t offset, sbytes; 1856 int error; 1857 1858 offset = PAIR32TO64(off_t, uap->offset); 1859 if (offset < 0) 1860 return (EINVAL); 1861 1862 hdr_uio = trl_uio = NULL; 1863 1864 if (uap->hdtr != NULL) { 1865 error = copyin(uap->hdtr, &hdtr32, sizeof(hdtr32)); 1866 if (error) 1867 goto out; 1868 PTRIN_CP(hdtr32, hdtr, headers); 1869 CP(hdtr32, hdtr, hdr_cnt); 1870 PTRIN_CP(hdtr32, hdtr, trailers); 1871 CP(hdtr32, hdtr, trl_cnt); 1872 1873 if (hdtr.headers != NULL) { 1874 iov32 = PTRIN(hdtr32.headers); 1875 error = freebsd32_copyinuio(iov32, 1876 hdtr32.hdr_cnt, &hdr_uio); 1877 if (error) 1878 goto out; 1879 #ifdef COMPAT_FREEBSD4 1880 /* 1881 * In FreeBSD < 5.0 the nbytes to send also included 1882 * the header. If compat is specified subtract the 1883 * header size from nbytes. 1884 */ 1885 if (compat) { 1886 if (uap->nbytes > hdr_uio->uio_resid) 1887 uap->nbytes -= hdr_uio->uio_resid; 1888 else 1889 uap->nbytes = 0; 1890 } 1891 #endif 1892 } 1893 if (hdtr.trailers != NULL) { 1894 iov32 = PTRIN(hdtr32.trailers); 1895 error = freebsd32_copyinuio(iov32, 1896 hdtr32.trl_cnt, &trl_uio); 1897 if (error) 1898 goto out; 1899 } 1900 } 1901 1902 AUDIT_ARG_FD(uap->fd); 1903 1904 if ((error = fget_read(td, uap->fd, 1905 cap_rights_init(&rights, CAP_PREAD), &fp)) != 0) 1906 goto out; 1907 1908 error = fo_sendfile(fp, uap->s, hdr_uio, trl_uio, offset, 1909 uap->nbytes, &sbytes, uap->flags, td); 1910 fdrop(fp, td); 1911 1912 if (uap->sbytes != NULL) 1913 copyout(&sbytes, uap->sbytes, sizeof(off_t)); 1914 1915 out: 1916 if (hdr_uio) 1917 free(hdr_uio, M_IOV); 1918 if (trl_uio) 1919 free(trl_uio, M_IOV); 1920 return (error); 1921 } 1922 1923 #ifdef COMPAT_FREEBSD4 1924 int 1925 freebsd4_freebsd32_sendfile(struct thread *td, 1926 struct freebsd4_freebsd32_sendfile_args *uap) 1927 { 1928 return (freebsd32_do_sendfile(td, 1929 (struct freebsd32_sendfile_args *)uap, 1)); 1930 } 1931 #endif 1932 1933 int 1934 freebsd32_sendfile(struct thread *td, struct freebsd32_sendfile_args *uap) 1935 { 1936 1937 return (freebsd32_do_sendfile(td, uap, 0)); 1938 } 1939 1940 static void 1941 copy_stat(struct stat *in, struct stat32 *out) 1942 { 1943 1944 CP(*in, *out, st_dev); 1945 CP(*in, *out, st_ino); 1946 CP(*in, *out, st_mode); 1947 CP(*in, *out, st_nlink); 1948 CP(*in, *out, st_uid); 1949 CP(*in, *out, st_gid); 1950 CP(*in, *out, st_rdev); 1951 TS_CP(*in, *out, st_atim); 1952 TS_CP(*in, *out, st_mtim); 1953 TS_CP(*in, *out, st_ctim); 1954 CP(*in, *out, st_size); 1955 CP(*in, *out, st_blocks); 1956 CP(*in, *out, st_blksize); 1957 CP(*in, *out, st_flags); 1958 CP(*in, *out, st_gen); 1959 TS_CP(*in, *out, st_birthtim); 1960 out->st_padding0 = 0; 1961 out->st_padding1 = 0; 1962 #ifdef __STAT32_TIME_T_EXT 1963 out->st_atim_ext = 0; 1964 out->st_mtim_ext = 0; 1965 out->st_ctim_ext = 0; 1966 out->st_btim_ext = 0; 1967 #endif 1968 bzero(out->st_spare, sizeof(out->st_spare)); 1969 } 1970 1971 #ifdef COMPAT_43 1972 static void 1973 copy_ostat(struct stat *in, struct ostat32 *out) 1974 { 1975 1976 CP(*in, *out, st_dev); 1977 CP(*in, *out, st_ino); 1978 CP(*in, *out, st_mode); 1979 CP(*in, *out, st_nlink); 1980 CP(*in, *out, st_uid); 1981 CP(*in, *out, st_gid); 1982 CP(*in, *out, st_rdev); 1983 CP(*in, *out, st_size); 1984 TS_CP(*in, *out, st_atim); 1985 TS_CP(*in, *out, st_mtim); 1986 TS_CP(*in, *out, st_ctim); 1987 CP(*in, *out, st_blksize); 1988 CP(*in, *out, st_blocks); 1989 CP(*in, *out, st_flags); 1990 CP(*in, *out, st_gen); 1991 } 1992 #endif 1993 1994 #ifdef COMPAT_43 1995 int 1996 ofreebsd32_stat(struct thread *td, struct ofreebsd32_stat_args *uap) 1997 { 1998 struct stat sb; 1999 struct ostat32 sb32; 2000 int error; 2001 2002 error = kern_statat(td, 0, AT_FDCWD, uap->path, UIO_USERSPACE, 2003 &sb, NULL); 2004 if (error) 2005 return (error); 2006 copy_ostat(&sb, &sb32); 2007 error = copyout(&sb32, uap->ub, sizeof (sb32)); 2008 return (error); 2009 } 2010 #endif 2011 2012 int 2013 freebsd32_fstat(struct thread *td, struct freebsd32_fstat_args *uap) 2014 { 2015 struct stat ub; 2016 struct stat32 ub32; 2017 int error; 2018 2019 error = kern_fstat(td, uap->fd, &ub); 2020 if (error) 2021 return (error); 2022 copy_stat(&ub, &ub32); 2023 error = copyout(&ub32, uap->ub, sizeof(ub32)); 2024 return (error); 2025 } 2026 2027 #ifdef COMPAT_43 2028 int 2029 ofreebsd32_fstat(struct thread *td, struct ofreebsd32_fstat_args *uap) 2030 { 2031 struct stat ub; 2032 struct ostat32 ub32; 2033 int error; 2034 2035 error = kern_fstat(td, uap->fd, &ub); 2036 if (error) 2037 return (error); 2038 copy_ostat(&ub, &ub32); 2039 error = copyout(&ub32, uap->ub, sizeof(ub32)); 2040 return (error); 2041 } 2042 #endif 2043 2044 int 2045 freebsd32_fstatat(struct thread *td, struct freebsd32_fstatat_args *uap) 2046 { 2047 struct stat ub; 2048 struct stat32 ub32; 2049 int error; 2050 2051 error = kern_statat(td, uap->flag, uap->fd, uap->path, UIO_USERSPACE, 2052 &ub, NULL); 2053 if (error) 2054 return (error); 2055 copy_stat(&ub, &ub32); 2056 error = copyout(&ub32, uap->buf, sizeof(ub32)); 2057 return (error); 2058 } 2059 2060 #ifdef COMPAT_43 2061 int 2062 ofreebsd32_lstat(struct thread *td, struct ofreebsd32_lstat_args *uap) 2063 { 2064 struct stat sb; 2065 struct ostat32 sb32; 2066 int error; 2067 2068 error = kern_statat(td, AT_SYMLINK_NOFOLLOW, AT_FDCWD, uap->path, 2069 UIO_USERSPACE, &sb, NULL); 2070 if (error) 2071 return (error); 2072 copy_ostat(&sb, &sb32); 2073 error = copyout(&sb32, uap->ub, sizeof (sb32)); 2074 return (error); 2075 } 2076 #endif 2077 2078 int 2079 freebsd32_fhstat(struct thread *td, struct freebsd32_fhstat_args *uap) 2080 { 2081 struct stat sb; 2082 struct stat32 sb32; 2083 struct fhandle fh; 2084 int error; 2085 2086 error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t)); 2087 if (error != 0) 2088 return (error); 2089 error = kern_fhstat(td, fh, &sb); 2090 if (error != 0) 2091 return (error); 2092 copy_stat(&sb, &sb32); 2093 error = copyout(&sb32, uap->sb, sizeof (sb32)); 2094 return (error); 2095 } 2096 2097 #if defined(COMPAT_FREEBSD11) 2098 extern int ino64_trunc_error; 2099 2100 static int 2101 freebsd11_cvtstat32(struct stat *in, struct freebsd11_stat32 *out) 2102 { 2103 2104 CP(*in, *out, st_ino); 2105 if (in->st_ino != out->st_ino) { 2106 switch (ino64_trunc_error) { 2107 default: 2108 case 0: 2109 break; 2110 case 1: 2111 return (EOVERFLOW); 2112 case 2: 2113 out->st_ino = UINT32_MAX; 2114 break; 2115 } 2116 } 2117 CP(*in, *out, st_nlink); 2118 if (in->st_nlink != out->st_nlink) { 2119 switch (ino64_trunc_error) { 2120 default: 2121 case 0: 2122 break; 2123 case 1: 2124 return (EOVERFLOW); 2125 case 2: 2126 out->st_nlink = UINT16_MAX; 2127 break; 2128 } 2129 } 2130 CP(*in, *out, st_dev); 2131 CP(*in, *out, st_mode); 2132 CP(*in, *out, st_uid); 2133 CP(*in, *out, st_gid); 2134 CP(*in, *out, st_rdev); 2135 TS_CP(*in, *out, st_atim); 2136 TS_CP(*in, *out, st_mtim); 2137 TS_CP(*in, *out, st_ctim); 2138 CP(*in, *out, st_size); 2139 CP(*in, *out, st_blocks); 2140 CP(*in, *out, st_blksize); 2141 CP(*in, *out, st_flags); 2142 CP(*in, *out, st_gen); 2143 TS_CP(*in, *out, st_birthtim); 2144 out->st_lspare = 0; 2145 bzero((char *)&out->st_birthtim + sizeof(out->st_birthtim), 2146 sizeof(*out) - offsetof(struct freebsd11_stat32, 2147 st_birthtim) - sizeof(out->st_birthtim)); 2148 return (0); 2149 } 2150 2151 int 2152 freebsd11_freebsd32_stat(struct thread *td, 2153 struct freebsd11_freebsd32_stat_args *uap) 2154 { 2155 struct stat sb; 2156 struct freebsd11_stat32 sb32; 2157 int error; 2158 2159 error = kern_statat(td, 0, AT_FDCWD, uap->path, UIO_USERSPACE, 2160 &sb, NULL); 2161 if (error != 0) 2162 return (error); 2163 error = freebsd11_cvtstat32(&sb, &sb32); 2164 if (error == 0) 2165 error = copyout(&sb32, uap->ub, sizeof (sb32)); 2166 return (error); 2167 } 2168 2169 int 2170 freebsd11_freebsd32_fstat(struct thread *td, 2171 struct freebsd11_freebsd32_fstat_args *uap) 2172 { 2173 struct stat sb; 2174 struct freebsd11_stat32 sb32; 2175 int error; 2176 2177 error = kern_fstat(td, uap->fd, &sb); 2178 if (error != 0) 2179 return (error); 2180 error = freebsd11_cvtstat32(&sb, &sb32); 2181 if (error == 0) 2182 error = copyout(&sb32, uap->ub, sizeof (sb32)); 2183 return (error); 2184 } 2185 2186 int 2187 freebsd11_freebsd32_fstatat(struct thread *td, 2188 struct freebsd11_freebsd32_fstatat_args *uap) 2189 { 2190 struct stat sb; 2191 struct freebsd11_stat32 sb32; 2192 int error; 2193 2194 error = kern_statat(td, uap->flag, uap->fd, uap->path, UIO_USERSPACE, 2195 &sb, NULL); 2196 if (error != 0) 2197 return (error); 2198 error = freebsd11_cvtstat32(&sb, &sb32); 2199 if (error == 0) 2200 error = copyout(&sb32, uap->buf, sizeof (sb32)); 2201 return (error); 2202 } 2203 2204 int 2205 freebsd11_freebsd32_lstat(struct thread *td, 2206 struct freebsd11_freebsd32_lstat_args *uap) 2207 { 2208 struct stat sb; 2209 struct freebsd11_stat32 sb32; 2210 int error; 2211 2212 error = kern_statat(td, AT_SYMLINK_NOFOLLOW, AT_FDCWD, uap->path, 2213 UIO_USERSPACE, &sb, NULL); 2214 if (error != 0) 2215 return (error); 2216 error = freebsd11_cvtstat32(&sb, &sb32); 2217 if (error == 0) 2218 error = copyout(&sb32, uap->ub, sizeof (sb32)); 2219 return (error); 2220 } 2221 2222 int 2223 freebsd11_freebsd32_fhstat(struct thread *td, 2224 struct freebsd11_freebsd32_fhstat_args *uap) 2225 { 2226 struct stat sb; 2227 struct freebsd11_stat32 sb32; 2228 struct fhandle fh; 2229 int error; 2230 2231 error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t)); 2232 if (error != 0) 2233 return (error); 2234 error = kern_fhstat(td, fh, &sb); 2235 if (error != 0) 2236 return (error); 2237 error = freebsd11_cvtstat32(&sb, &sb32); 2238 if (error == 0) 2239 error = copyout(&sb32, uap->sb, sizeof (sb32)); 2240 return (error); 2241 } 2242 #endif 2243 2244 int 2245 freebsd32_sysctl(struct thread *td, struct freebsd32_sysctl_args *uap) 2246 { 2247 int error, name[CTL_MAXNAME]; 2248 size_t j, oldlen; 2249 uint32_t tmp; 2250 2251 if (uap->namelen > CTL_MAXNAME || uap->namelen < 2) 2252 return (EINVAL); 2253 error = copyin(uap->name, name, uap->namelen * sizeof(int)); 2254 if (error) 2255 return (error); 2256 if (uap->oldlenp) { 2257 error = fueword32(uap->oldlenp, &tmp); 2258 oldlen = tmp; 2259 } else { 2260 oldlen = 0; 2261 } 2262 if (error != 0) 2263 return (EFAULT); 2264 error = userland_sysctl(td, name, uap->namelen, 2265 uap->old, &oldlen, 1, 2266 uap->new, uap->newlen, &j, SCTL_MASK32); 2267 if (error && error != ENOMEM) 2268 return (error); 2269 if (uap->oldlenp) 2270 suword32(uap->oldlenp, j); 2271 return (0); 2272 } 2273 2274 int 2275 freebsd32_jail(struct thread *td, struct freebsd32_jail_args *uap) 2276 { 2277 uint32_t version; 2278 int error; 2279 struct jail j; 2280 2281 error = copyin(uap->jail, &version, sizeof(uint32_t)); 2282 if (error) 2283 return (error); 2284 2285 switch (version) { 2286 case 0: 2287 { 2288 /* FreeBSD single IPv4 jails. */ 2289 struct jail32_v0 j32_v0; 2290 2291 bzero(&j, sizeof(struct jail)); 2292 error = copyin(uap->jail, &j32_v0, sizeof(struct jail32_v0)); 2293 if (error) 2294 return (error); 2295 CP(j32_v0, j, version); 2296 PTRIN_CP(j32_v0, j, path); 2297 PTRIN_CP(j32_v0, j, hostname); 2298 j.ip4s = htonl(j32_v0.ip_number); /* jail_v0 is host order */ 2299 break; 2300 } 2301 2302 case 1: 2303 /* 2304 * Version 1 was used by multi-IPv4 jail implementations 2305 * that never made it into the official kernel. 2306 */ 2307 return (EINVAL); 2308 2309 case 2: /* JAIL_API_VERSION */ 2310 { 2311 /* FreeBSD multi-IPv4/IPv6,noIP jails. */ 2312 struct jail32 j32; 2313 2314 error = copyin(uap->jail, &j32, sizeof(struct jail32)); 2315 if (error) 2316 return (error); 2317 CP(j32, j, version); 2318 PTRIN_CP(j32, j, path); 2319 PTRIN_CP(j32, j, hostname); 2320 PTRIN_CP(j32, j, jailname); 2321 CP(j32, j, ip4s); 2322 CP(j32, j, ip6s); 2323 PTRIN_CP(j32, j, ip4); 2324 PTRIN_CP(j32, j, ip6); 2325 break; 2326 } 2327 2328 default: 2329 /* Sci-Fi jails are not supported, sorry. */ 2330 return (EINVAL); 2331 } 2332 return (kern_jail(td, &j)); 2333 } 2334 2335 int 2336 freebsd32_jail_set(struct thread *td, struct freebsd32_jail_set_args *uap) 2337 { 2338 struct uio *auio; 2339 int error; 2340 2341 /* Check that we have an even number of iovecs. */ 2342 if (uap->iovcnt & 1) 2343 return (EINVAL); 2344 2345 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 2346 if (error) 2347 return (error); 2348 error = kern_jail_set(td, auio, uap->flags); 2349 free(auio, M_IOV); 2350 return (error); 2351 } 2352 2353 int 2354 freebsd32_jail_get(struct thread *td, struct freebsd32_jail_get_args *uap) 2355 { 2356 struct iovec32 iov32; 2357 struct uio *auio; 2358 int error, i; 2359 2360 /* Check that we have an even number of iovecs. */ 2361 if (uap->iovcnt & 1) 2362 return (EINVAL); 2363 2364 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 2365 if (error) 2366 return (error); 2367 error = kern_jail_get(td, auio, uap->flags); 2368 if (error == 0) 2369 for (i = 0; i < uap->iovcnt; i++) { 2370 PTROUT_CP(auio->uio_iov[i], iov32, iov_base); 2371 CP(auio->uio_iov[i], iov32, iov_len); 2372 error = copyout(&iov32, uap->iovp + i, sizeof(iov32)); 2373 if (error != 0) 2374 break; 2375 } 2376 free(auio, M_IOV); 2377 return (error); 2378 } 2379 2380 int 2381 freebsd32_sigaction(struct thread *td, struct freebsd32_sigaction_args *uap) 2382 { 2383 struct sigaction32 s32; 2384 struct sigaction sa, osa, *sap; 2385 int error; 2386 2387 if (uap->act) { 2388 error = copyin(uap->act, &s32, sizeof(s32)); 2389 if (error) 2390 return (error); 2391 sa.sa_handler = PTRIN(s32.sa_u); 2392 CP(s32, sa, sa_flags); 2393 CP(s32, sa, sa_mask); 2394 sap = &sa; 2395 } else 2396 sap = NULL; 2397 error = kern_sigaction(td, uap->sig, sap, &osa, 0); 2398 if (error == 0 && uap->oact != NULL) { 2399 s32.sa_u = PTROUT(osa.sa_handler); 2400 CP(osa, s32, sa_flags); 2401 CP(osa, s32, sa_mask); 2402 error = copyout(&s32, uap->oact, sizeof(s32)); 2403 } 2404 return (error); 2405 } 2406 2407 #ifdef COMPAT_FREEBSD4 2408 int 2409 freebsd4_freebsd32_sigaction(struct thread *td, 2410 struct freebsd4_freebsd32_sigaction_args *uap) 2411 { 2412 struct sigaction32 s32; 2413 struct sigaction sa, osa, *sap; 2414 int error; 2415 2416 if (uap->act) { 2417 error = copyin(uap->act, &s32, sizeof(s32)); 2418 if (error) 2419 return (error); 2420 sa.sa_handler = PTRIN(s32.sa_u); 2421 CP(s32, sa, sa_flags); 2422 CP(s32, sa, sa_mask); 2423 sap = &sa; 2424 } else 2425 sap = NULL; 2426 error = kern_sigaction(td, uap->sig, sap, &osa, KSA_FREEBSD4); 2427 if (error == 0 && uap->oact != NULL) { 2428 s32.sa_u = PTROUT(osa.sa_handler); 2429 CP(osa, s32, sa_flags); 2430 CP(osa, s32, sa_mask); 2431 error = copyout(&s32, uap->oact, sizeof(s32)); 2432 } 2433 return (error); 2434 } 2435 #endif 2436 2437 #ifdef COMPAT_43 2438 struct osigaction32 { 2439 u_int32_t sa_u; 2440 osigset_t sa_mask; 2441 int sa_flags; 2442 }; 2443 2444 #define ONSIG 32 2445 2446 int 2447 ofreebsd32_sigaction(struct thread *td, 2448 struct ofreebsd32_sigaction_args *uap) 2449 { 2450 struct osigaction32 s32; 2451 struct sigaction sa, osa, *sap; 2452 int error; 2453 2454 if (uap->signum <= 0 || uap->signum >= ONSIG) 2455 return (EINVAL); 2456 2457 if (uap->nsa) { 2458 error = copyin(uap->nsa, &s32, sizeof(s32)); 2459 if (error) 2460 return (error); 2461 sa.sa_handler = PTRIN(s32.sa_u); 2462 CP(s32, sa, sa_flags); 2463 OSIG2SIG(s32.sa_mask, sa.sa_mask); 2464 sap = &sa; 2465 } else 2466 sap = NULL; 2467 error = kern_sigaction(td, uap->signum, sap, &osa, KSA_OSIGSET); 2468 if (error == 0 && uap->osa != NULL) { 2469 s32.sa_u = PTROUT(osa.sa_handler); 2470 CP(osa, s32, sa_flags); 2471 SIG2OSIG(osa.sa_mask, s32.sa_mask); 2472 error = copyout(&s32, uap->osa, sizeof(s32)); 2473 } 2474 return (error); 2475 } 2476 2477 int 2478 ofreebsd32_sigprocmask(struct thread *td, 2479 struct ofreebsd32_sigprocmask_args *uap) 2480 { 2481 sigset_t set, oset; 2482 int error; 2483 2484 OSIG2SIG(uap->mask, set); 2485 error = kern_sigprocmask(td, uap->how, &set, &oset, SIGPROCMASK_OLD); 2486 SIG2OSIG(oset, td->td_retval[0]); 2487 return (error); 2488 } 2489 2490 int 2491 ofreebsd32_sigpending(struct thread *td, 2492 struct ofreebsd32_sigpending_args *uap) 2493 { 2494 struct proc *p = td->td_proc; 2495 sigset_t siglist; 2496 2497 PROC_LOCK(p); 2498 siglist = p->p_siglist; 2499 SIGSETOR(siglist, td->td_siglist); 2500 PROC_UNLOCK(p); 2501 SIG2OSIG(siglist, td->td_retval[0]); 2502 return (0); 2503 } 2504 2505 struct sigvec32 { 2506 u_int32_t sv_handler; 2507 int sv_mask; 2508 int sv_flags; 2509 }; 2510 2511 int 2512 ofreebsd32_sigvec(struct thread *td, 2513 struct ofreebsd32_sigvec_args *uap) 2514 { 2515 struct sigvec32 vec; 2516 struct sigaction sa, osa, *sap; 2517 int error; 2518 2519 if (uap->signum <= 0 || uap->signum >= ONSIG) 2520 return (EINVAL); 2521 2522 if (uap->nsv) { 2523 error = copyin(uap->nsv, &vec, sizeof(vec)); 2524 if (error) 2525 return (error); 2526 sa.sa_handler = PTRIN(vec.sv_handler); 2527 OSIG2SIG(vec.sv_mask, sa.sa_mask); 2528 sa.sa_flags = vec.sv_flags; 2529 sa.sa_flags ^= SA_RESTART; 2530 sap = &sa; 2531 } else 2532 sap = NULL; 2533 error = kern_sigaction(td, uap->signum, sap, &osa, KSA_OSIGSET); 2534 if (error == 0 && uap->osv != NULL) { 2535 vec.sv_handler = PTROUT(osa.sa_handler); 2536 SIG2OSIG(osa.sa_mask, vec.sv_mask); 2537 vec.sv_flags = osa.sa_flags; 2538 vec.sv_flags &= ~SA_NOCLDWAIT; 2539 vec.sv_flags ^= SA_RESTART; 2540 error = copyout(&vec, uap->osv, sizeof(vec)); 2541 } 2542 return (error); 2543 } 2544 2545 int 2546 ofreebsd32_sigblock(struct thread *td, 2547 struct ofreebsd32_sigblock_args *uap) 2548 { 2549 sigset_t set, oset; 2550 2551 OSIG2SIG(uap->mask, set); 2552 kern_sigprocmask(td, SIG_BLOCK, &set, &oset, 0); 2553 SIG2OSIG(oset, td->td_retval[0]); 2554 return (0); 2555 } 2556 2557 int 2558 ofreebsd32_sigsetmask(struct thread *td, 2559 struct ofreebsd32_sigsetmask_args *uap) 2560 { 2561 sigset_t set, oset; 2562 2563 OSIG2SIG(uap->mask, set); 2564 kern_sigprocmask(td, SIG_SETMASK, &set, &oset, 0); 2565 SIG2OSIG(oset, td->td_retval[0]); 2566 return (0); 2567 } 2568 2569 int 2570 ofreebsd32_sigsuspend(struct thread *td, 2571 struct ofreebsd32_sigsuspend_args *uap) 2572 { 2573 sigset_t mask; 2574 2575 OSIG2SIG(uap->mask, mask); 2576 return (kern_sigsuspend(td, mask)); 2577 } 2578 2579 struct sigstack32 { 2580 u_int32_t ss_sp; 2581 int ss_onstack; 2582 }; 2583 2584 int 2585 ofreebsd32_sigstack(struct thread *td, 2586 struct ofreebsd32_sigstack_args *uap) 2587 { 2588 struct sigstack32 s32; 2589 struct sigstack nss, oss; 2590 int error = 0, unss; 2591 2592 if (uap->nss != NULL) { 2593 error = copyin(uap->nss, &s32, sizeof(s32)); 2594 if (error) 2595 return (error); 2596 nss.ss_sp = PTRIN(s32.ss_sp); 2597 CP(s32, nss, ss_onstack); 2598 unss = 1; 2599 } else { 2600 unss = 0; 2601 } 2602 oss.ss_sp = td->td_sigstk.ss_sp; 2603 oss.ss_onstack = sigonstack(cpu_getstack(td)); 2604 if (unss) { 2605 td->td_sigstk.ss_sp = nss.ss_sp; 2606 td->td_sigstk.ss_size = 0; 2607 td->td_sigstk.ss_flags |= (nss.ss_onstack & SS_ONSTACK); 2608 td->td_pflags |= TDP_ALTSTACK; 2609 } 2610 if (uap->oss != NULL) { 2611 s32.ss_sp = PTROUT(oss.ss_sp); 2612 CP(oss, s32, ss_onstack); 2613 error = copyout(&s32, uap->oss, sizeof(s32)); 2614 } 2615 return (error); 2616 } 2617 #endif 2618 2619 int 2620 freebsd32_nanosleep(struct thread *td, struct freebsd32_nanosleep_args *uap) 2621 { 2622 2623 return (freebsd32_user_clock_nanosleep(td, CLOCK_REALTIME, 2624 TIMER_RELTIME, uap->rqtp, uap->rmtp)); 2625 } 2626 2627 int 2628 freebsd32_clock_nanosleep(struct thread *td, 2629 struct freebsd32_clock_nanosleep_args *uap) 2630 { 2631 int error; 2632 2633 error = freebsd32_user_clock_nanosleep(td, uap->clock_id, uap->flags, 2634 uap->rqtp, uap->rmtp); 2635 return (kern_posix_error(td, error)); 2636 } 2637 2638 static int 2639 freebsd32_user_clock_nanosleep(struct thread *td, clockid_t clock_id, 2640 int flags, const struct timespec32 *ua_rqtp, struct timespec32 *ua_rmtp) 2641 { 2642 struct timespec32 rmt32, rqt32; 2643 struct timespec rmt, rqt; 2644 int error; 2645 2646 error = copyin(ua_rqtp, &rqt32, sizeof(rqt32)); 2647 if (error) 2648 return (error); 2649 2650 CP(rqt32, rqt, tv_sec); 2651 CP(rqt32, rqt, tv_nsec); 2652 2653 if (ua_rmtp != NULL && (flags & TIMER_ABSTIME) == 0 && 2654 !useracc(ua_rmtp, sizeof(rmt32), VM_PROT_WRITE)) 2655 return (EFAULT); 2656 error = kern_clock_nanosleep(td, clock_id, flags, &rqt, &rmt); 2657 if (error == EINTR && ua_rmtp != NULL && (flags & TIMER_ABSTIME) == 0) { 2658 int error2; 2659 2660 CP(rmt, rmt32, tv_sec); 2661 CP(rmt, rmt32, tv_nsec); 2662 2663 error2 = copyout(&rmt32, ua_rmtp, sizeof(rmt32)); 2664 if (error2) 2665 error = error2; 2666 } 2667 return (error); 2668 } 2669 2670 int 2671 freebsd32_clock_gettime(struct thread *td, 2672 struct freebsd32_clock_gettime_args *uap) 2673 { 2674 struct timespec ats; 2675 struct timespec32 ats32; 2676 int error; 2677 2678 error = kern_clock_gettime(td, uap->clock_id, &ats); 2679 if (error == 0) { 2680 CP(ats, ats32, tv_sec); 2681 CP(ats, ats32, tv_nsec); 2682 error = copyout(&ats32, uap->tp, sizeof(ats32)); 2683 } 2684 return (error); 2685 } 2686 2687 int 2688 freebsd32_clock_settime(struct thread *td, 2689 struct freebsd32_clock_settime_args *uap) 2690 { 2691 struct timespec ats; 2692 struct timespec32 ats32; 2693 int error; 2694 2695 error = copyin(uap->tp, &ats32, sizeof(ats32)); 2696 if (error) 2697 return (error); 2698 CP(ats32, ats, tv_sec); 2699 CP(ats32, ats, tv_nsec); 2700 2701 return (kern_clock_settime(td, uap->clock_id, &ats)); 2702 } 2703 2704 int 2705 freebsd32_clock_getres(struct thread *td, 2706 struct freebsd32_clock_getres_args *uap) 2707 { 2708 struct timespec ts; 2709 struct timespec32 ts32; 2710 int error; 2711 2712 if (uap->tp == NULL) 2713 return (0); 2714 error = kern_clock_getres(td, uap->clock_id, &ts); 2715 if (error == 0) { 2716 CP(ts, ts32, tv_sec); 2717 CP(ts, ts32, tv_nsec); 2718 error = copyout(&ts32, uap->tp, sizeof(ts32)); 2719 } 2720 return (error); 2721 } 2722 2723 int freebsd32_ktimer_create(struct thread *td, 2724 struct freebsd32_ktimer_create_args *uap) 2725 { 2726 struct sigevent32 ev32; 2727 struct sigevent ev, *evp; 2728 int error, id; 2729 2730 if (uap->evp == NULL) { 2731 evp = NULL; 2732 } else { 2733 evp = &ev; 2734 error = copyin(uap->evp, &ev32, sizeof(ev32)); 2735 if (error != 0) 2736 return (error); 2737 error = convert_sigevent32(&ev32, &ev); 2738 if (error != 0) 2739 return (error); 2740 } 2741 error = kern_ktimer_create(td, uap->clock_id, evp, &id, -1); 2742 if (error == 0) { 2743 error = copyout(&id, uap->timerid, sizeof(int)); 2744 if (error != 0) 2745 kern_ktimer_delete(td, id); 2746 } 2747 return (error); 2748 } 2749 2750 int 2751 freebsd32_ktimer_settime(struct thread *td, 2752 struct freebsd32_ktimer_settime_args *uap) 2753 { 2754 struct itimerspec32 val32, oval32; 2755 struct itimerspec val, oval, *ovalp; 2756 int error; 2757 2758 error = copyin(uap->value, &val32, sizeof(val32)); 2759 if (error != 0) 2760 return (error); 2761 ITS_CP(val32, val); 2762 ovalp = uap->ovalue != NULL ? &oval : NULL; 2763 error = kern_ktimer_settime(td, uap->timerid, uap->flags, &val, ovalp); 2764 if (error == 0 && uap->ovalue != NULL) { 2765 ITS_CP(oval, oval32); 2766 error = copyout(&oval32, uap->ovalue, sizeof(oval32)); 2767 } 2768 return (error); 2769 } 2770 2771 int 2772 freebsd32_ktimer_gettime(struct thread *td, 2773 struct freebsd32_ktimer_gettime_args *uap) 2774 { 2775 struct itimerspec32 val32; 2776 struct itimerspec val; 2777 int error; 2778 2779 error = kern_ktimer_gettime(td, uap->timerid, &val); 2780 if (error == 0) { 2781 ITS_CP(val, val32); 2782 error = copyout(&val32, uap->value, sizeof(val32)); 2783 } 2784 return (error); 2785 } 2786 2787 int 2788 freebsd32_clock_getcpuclockid2(struct thread *td, 2789 struct freebsd32_clock_getcpuclockid2_args *uap) 2790 { 2791 clockid_t clk_id; 2792 int error; 2793 2794 error = kern_clock_getcpuclockid2(td, PAIR32TO64(id_t, uap->id), 2795 uap->which, &clk_id); 2796 if (error == 0) 2797 error = copyout(&clk_id, uap->clock_id, sizeof(clockid_t)); 2798 return (error); 2799 } 2800 2801 int 2802 freebsd32_thr_new(struct thread *td, 2803 struct freebsd32_thr_new_args *uap) 2804 { 2805 struct thr_param32 param32; 2806 struct thr_param param; 2807 int error; 2808 2809 if (uap->param_size < 0 || 2810 uap->param_size > sizeof(struct thr_param32)) 2811 return (EINVAL); 2812 bzero(¶m, sizeof(struct thr_param)); 2813 bzero(¶m32, sizeof(struct thr_param32)); 2814 error = copyin(uap->param, ¶m32, uap->param_size); 2815 if (error != 0) 2816 return (error); 2817 param.start_func = PTRIN(param32.start_func); 2818 param.arg = PTRIN(param32.arg); 2819 param.stack_base = PTRIN(param32.stack_base); 2820 param.stack_size = param32.stack_size; 2821 param.tls_base = PTRIN(param32.tls_base); 2822 param.tls_size = param32.tls_size; 2823 param.child_tid = PTRIN(param32.child_tid); 2824 param.parent_tid = PTRIN(param32.parent_tid); 2825 param.flags = param32.flags; 2826 param.rtp = PTRIN(param32.rtp); 2827 param.spare[0] = PTRIN(param32.spare[0]); 2828 param.spare[1] = PTRIN(param32.spare[1]); 2829 param.spare[2] = PTRIN(param32.spare[2]); 2830 2831 return (kern_thr_new(td, ¶m)); 2832 } 2833 2834 int 2835 freebsd32_thr_suspend(struct thread *td, struct freebsd32_thr_suspend_args *uap) 2836 { 2837 struct timespec32 ts32; 2838 struct timespec ts, *tsp; 2839 int error; 2840 2841 error = 0; 2842 tsp = NULL; 2843 if (uap->timeout != NULL) { 2844 error = copyin((const void *)uap->timeout, (void *)&ts32, 2845 sizeof(struct timespec32)); 2846 if (error != 0) 2847 return (error); 2848 ts.tv_sec = ts32.tv_sec; 2849 ts.tv_nsec = ts32.tv_nsec; 2850 tsp = &ts; 2851 } 2852 return (kern_thr_suspend(td, tsp)); 2853 } 2854 2855 void 2856 siginfo_to_siginfo32(const siginfo_t *src, struct siginfo32 *dst) 2857 { 2858 bzero(dst, sizeof(*dst)); 2859 dst->si_signo = src->si_signo; 2860 dst->si_errno = src->si_errno; 2861 dst->si_code = src->si_code; 2862 dst->si_pid = src->si_pid; 2863 dst->si_uid = src->si_uid; 2864 dst->si_status = src->si_status; 2865 dst->si_addr = (uintptr_t)src->si_addr; 2866 dst->si_value.sival_int = src->si_value.sival_int; 2867 dst->si_timerid = src->si_timerid; 2868 dst->si_overrun = src->si_overrun; 2869 } 2870 2871 #ifndef _FREEBSD32_SYSPROTO_H_ 2872 struct freebsd32_sigqueue_args { 2873 pid_t pid; 2874 int signum; 2875 /* union sigval32 */ int value; 2876 }; 2877 #endif 2878 int 2879 freebsd32_sigqueue(struct thread *td, struct freebsd32_sigqueue_args *uap) 2880 { 2881 union sigval sv; 2882 2883 /* 2884 * On 32-bit ABIs, sival_int and sival_ptr are the same. 2885 * On 64-bit little-endian ABIs, the low bits are the same. 2886 * In 64-bit big-endian ABIs, sival_int overlaps with 2887 * sival_ptr's HIGH bits. We choose to support sival_int 2888 * rather than sival_ptr in this case as it seems to be 2889 * more common. 2890 */ 2891 bzero(&sv, sizeof(sv)); 2892 sv.sival_int = uap->value; 2893 2894 return (kern_sigqueue(td, uap->pid, uap->signum, &sv)); 2895 } 2896 2897 int 2898 freebsd32_sigtimedwait(struct thread *td, struct freebsd32_sigtimedwait_args *uap) 2899 { 2900 struct timespec32 ts32; 2901 struct timespec ts; 2902 struct timespec *timeout; 2903 sigset_t set; 2904 ksiginfo_t ksi; 2905 struct siginfo32 si32; 2906 int error; 2907 2908 if (uap->timeout) { 2909 error = copyin(uap->timeout, &ts32, sizeof(ts32)); 2910 if (error) 2911 return (error); 2912 ts.tv_sec = ts32.tv_sec; 2913 ts.tv_nsec = ts32.tv_nsec; 2914 timeout = &ts; 2915 } else 2916 timeout = NULL; 2917 2918 error = copyin(uap->set, &set, sizeof(set)); 2919 if (error) 2920 return (error); 2921 2922 error = kern_sigtimedwait(td, set, &ksi, timeout); 2923 if (error) 2924 return (error); 2925 2926 if (uap->info) { 2927 siginfo_to_siginfo32(&ksi.ksi_info, &si32); 2928 error = copyout(&si32, uap->info, sizeof(struct siginfo32)); 2929 } 2930 2931 if (error == 0) 2932 td->td_retval[0] = ksi.ksi_signo; 2933 return (error); 2934 } 2935 2936 /* 2937 * MPSAFE 2938 */ 2939 int 2940 freebsd32_sigwaitinfo(struct thread *td, struct freebsd32_sigwaitinfo_args *uap) 2941 { 2942 ksiginfo_t ksi; 2943 struct siginfo32 si32; 2944 sigset_t set; 2945 int error; 2946 2947 error = copyin(uap->set, &set, sizeof(set)); 2948 if (error) 2949 return (error); 2950 2951 error = kern_sigtimedwait(td, set, &ksi, NULL); 2952 if (error) 2953 return (error); 2954 2955 if (uap->info) { 2956 siginfo_to_siginfo32(&ksi.ksi_info, &si32); 2957 error = copyout(&si32, uap->info, sizeof(struct siginfo32)); 2958 } 2959 if (error == 0) 2960 td->td_retval[0] = ksi.ksi_signo; 2961 return (error); 2962 } 2963 2964 int 2965 freebsd32_cpuset_setid(struct thread *td, 2966 struct freebsd32_cpuset_setid_args *uap) 2967 { 2968 2969 return (kern_cpuset_setid(td, uap->which, 2970 PAIR32TO64(id_t, uap->id), uap->setid)); 2971 } 2972 2973 int 2974 freebsd32_cpuset_getid(struct thread *td, 2975 struct freebsd32_cpuset_getid_args *uap) 2976 { 2977 2978 return (kern_cpuset_getid(td, uap->level, uap->which, 2979 PAIR32TO64(id_t, uap->id), uap->setid)); 2980 } 2981 2982 int 2983 freebsd32_cpuset_getaffinity(struct thread *td, 2984 struct freebsd32_cpuset_getaffinity_args *uap) 2985 { 2986 2987 return (kern_cpuset_getaffinity(td, uap->level, uap->which, 2988 PAIR32TO64(id_t,uap->id), uap->cpusetsize, uap->mask)); 2989 } 2990 2991 int 2992 freebsd32_cpuset_setaffinity(struct thread *td, 2993 struct freebsd32_cpuset_setaffinity_args *uap) 2994 { 2995 2996 return (kern_cpuset_setaffinity(td, uap->level, uap->which, 2997 PAIR32TO64(id_t,uap->id), uap->cpusetsize, uap->mask)); 2998 } 2999 3000 int 3001 freebsd32_cpuset_getdomain(struct thread *td, 3002 struct freebsd32_cpuset_getdomain_args *uap) 3003 { 3004 3005 return (kern_cpuset_getdomain(td, uap->level, uap->which, 3006 PAIR32TO64(id_t,uap->id), uap->domainsetsize, uap->mask, uap->policy)); 3007 } 3008 3009 int 3010 freebsd32_cpuset_setdomain(struct thread *td, 3011 struct freebsd32_cpuset_setdomain_args *uap) 3012 { 3013 3014 return (kern_cpuset_setdomain(td, uap->level, uap->which, 3015 PAIR32TO64(id_t,uap->id), uap->domainsetsize, uap->mask, uap->policy)); 3016 } 3017 3018 int 3019 freebsd32_nmount(struct thread *td, 3020 struct freebsd32_nmount_args /* { 3021 struct iovec *iovp; 3022 unsigned int iovcnt; 3023 int flags; 3024 } */ *uap) 3025 { 3026 struct uio *auio; 3027 uint64_t flags; 3028 int error; 3029 3030 /* 3031 * Mount flags are now 64-bits. On 32-bit archtectures only 3032 * 32-bits are passed in, but from here on everything handles 3033 * 64-bit flags correctly. 3034 */ 3035 flags = uap->flags; 3036 3037 AUDIT_ARG_FFLAGS(flags); 3038 3039 /* 3040 * Filter out MNT_ROOTFS. We do not want clients of nmount() in 3041 * userspace to set this flag, but we must filter it out if we want 3042 * MNT_UPDATE on the root file system to work. 3043 * MNT_ROOTFS should only be set by the kernel when mounting its 3044 * root file system. 3045 */ 3046 flags &= ~MNT_ROOTFS; 3047 3048 /* 3049 * check that we have an even number of iovec's 3050 * and that we have at least two options. 3051 */ 3052 if ((uap->iovcnt & 1) || (uap->iovcnt < 4)) 3053 return (EINVAL); 3054 3055 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 3056 if (error) 3057 return (error); 3058 error = vfs_donmount(td, flags, auio); 3059 3060 free(auio, M_IOV); 3061 return error; 3062 } 3063 3064 #if 0 3065 int 3066 freebsd32_xxx(struct thread *td, struct freebsd32_xxx_args *uap) 3067 { 3068 struct yyy32 *p32, s32; 3069 struct yyy *p = NULL, s; 3070 struct xxx_arg ap; 3071 int error; 3072 3073 if (uap->zzz) { 3074 error = copyin(uap->zzz, &s32, sizeof(s32)); 3075 if (error) 3076 return (error); 3077 /* translate in */ 3078 p = &s; 3079 } 3080 error = kern_xxx(td, p); 3081 if (error) 3082 return (error); 3083 if (uap->zzz) { 3084 /* translate out */ 3085 error = copyout(&s32, p32, sizeof(s32)); 3086 } 3087 return (error); 3088 } 3089 #endif 3090 3091 int 3092 syscall32_module_handler(struct module *mod, int what, void *arg) 3093 { 3094 3095 return (kern_syscall_module_handler(freebsd32_sysent, mod, what, arg)); 3096 } 3097 3098 int 3099 syscall32_helper_register(struct syscall_helper_data *sd, int flags) 3100 { 3101 3102 return (kern_syscall_helper_register(freebsd32_sysent, sd, flags)); 3103 } 3104 3105 int 3106 syscall32_helper_unregister(struct syscall_helper_data *sd) 3107 { 3108 3109 return (kern_syscall_helper_unregister(freebsd32_sysent, sd)); 3110 } 3111 3112 register_t * 3113 freebsd32_copyout_strings(struct image_params *imgp) 3114 { 3115 int argc, envc, i; 3116 u_int32_t *vectp; 3117 char *stringp; 3118 uintptr_t destp; 3119 u_int32_t *stack_base; 3120 struct freebsd32_ps_strings *arginfo; 3121 char canary[sizeof(long) * 8]; 3122 int32_t pagesizes32[MAXPAGESIZES]; 3123 size_t execpath_len; 3124 int szsigcode; 3125 3126 /* 3127 * Calculate string base and vector table pointers. 3128 * Also deal with signal trampoline code for this exec type. 3129 */ 3130 if (imgp->execpath != NULL && imgp->auxargs != NULL) 3131 execpath_len = strlen(imgp->execpath) + 1; 3132 else 3133 execpath_len = 0; 3134 arginfo = (struct freebsd32_ps_strings *)curproc->p_sysent-> 3135 sv_psstrings; 3136 if (imgp->proc->p_sysent->sv_sigcode_base == 0) 3137 szsigcode = *(imgp->proc->p_sysent->sv_szsigcode); 3138 else 3139 szsigcode = 0; 3140 destp = (uintptr_t)arginfo; 3141 3142 /* 3143 * install sigcode 3144 */ 3145 if (szsigcode != 0) { 3146 destp -= szsigcode; 3147 destp = rounddown2(destp, sizeof(uint32_t)); 3148 copyout(imgp->proc->p_sysent->sv_sigcode, (void *)destp, 3149 szsigcode); 3150 } 3151 3152 /* 3153 * Copy the image path for the rtld. 3154 */ 3155 if (execpath_len != 0) { 3156 destp -= execpath_len; 3157 imgp->execpathp = destp; 3158 copyout(imgp->execpath, (void *)destp, execpath_len); 3159 } 3160 3161 /* 3162 * Prepare the canary for SSP. 3163 */ 3164 arc4rand(canary, sizeof(canary), 0); 3165 destp -= sizeof(canary); 3166 imgp->canary = destp; 3167 copyout(canary, (void *)destp, sizeof(canary)); 3168 imgp->canarylen = sizeof(canary); 3169 3170 /* 3171 * Prepare the pagesizes array. 3172 */ 3173 for (i = 0; i < MAXPAGESIZES; i++) 3174 pagesizes32[i] = (uint32_t)pagesizes[i]; 3175 destp -= sizeof(pagesizes32); 3176 destp = rounddown2(destp, sizeof(uint32_t)); 3177 imgp->pagesizes = destp; 3178 copyout(pagesizes32, (void *)destp, sizeof(pagesizes32)); 3179 imgp->pagesizeslen = sizeof(pagesizes32); 3180 3181 destp -= ARG_MAX - imgp->args->stringspace; 3182 destp = rounddown2(destp, sizeof(uint32_t)); 3183 3184 /* 3185 * If we have a valid auxargs ptr, prepare some room 3186 * on the stack. 3187 */ 3188 if (imgp->auxargs) { 3189 /* 3190 * 'AT_COUNT*2' is size for the ELF Auxargs data. This is for 3191 * lower compatibility. 3192 */ 3193 imgp->auxarg_size = (imgp->auxarg_size) ? imgp->auxarg_size 3194 : (AT_COUNT * 2); 3195 /* 3196 * The '+ 2' is for the null pointers at the end of each of 3197 * the arg and env vector sets,and imgp->auxarg_size is room 3198 * for argument of Runtime loader. 3199 */ 3200 vectp = (u_int32_t *) (destp - (imgp->args->argc + 3201 imgp->args->envc + 2 + imgp->auxarg_size + execpath_len) * 3202 sizeof(u_int32_t)); 3203 } else { 3204 /* 3205 * The '+ 2' is for the null pointers at the end of each of 3206 * the arg and env vector sets 3207 */ 3208 vectp = (u_int32_t *)(destp - (imgp->args->argc + 3209 imgp->args->envc + 2) * sizeof(u_int32_t)); 3210 } 3211 3212 /* 3213 * vectp also becomes our initial stack base 3214 */ 3215 stack_base = vectp; 3216 3217 stringp = imgp->args->begin_argv; 3218 argc = imgp->args->argc; 3219 envc = imgp->args->envc; 3220 /* 3221 * Copy out strings - arguments and environment. 3222 */ 3223 copyout(stringp, (void *)destp, ARG_MAX - imgp->args->stringspace); 3224 3225 /* 3226 * Fill in "ps_strings" struct for ps, w, etc. 3227 */ 3228 suword32(&arginfo->ps_argvstr, (u_int32_t)(intptr_t)vectp); 3229 suword32(&arginfo->ps_nargvstr, argc); 3230 3231 /* 3232 * Fill in argument portion of vector table. 3233 */ 3234 for (; argc > 0; --argc) { 3235 suword32(vectp++, (u_int32_t)(intptr_t)destp); 3236 while (*stringp++ != 0) 3237 destp++; 3238 destp++; 3239 } 3240 3241 /* a null vector table pointer separates the argp's from the envp's */ 3242 suword32(vectp++, 0); 3243 3244 suword32(&arginfo->ps_envstr, (u_int32_t)(intptr_t)vectp); 3245 suword32(&arginfo->ps_nenvstr, envc); 3246 3247 /* 3248 * Fill in environment portion of vector table. 3249 */ 3250 for (; envc > 0; --envc) { 3251 suword32(vectp++, (u_int32_t)(intptr_t)destp); 3252 while (*stringp++ != 0) 3253 destp++; 3254 destp++; 3255 } 3256 3257 /* end of vector table is a null pointer */ 3258 suword32(vectp, 0); 3259 3260 return ((register_t *)stack_base); 3261 } 3262 3263 int 3264 freebsd32_kldstat(struct thread *td, struct freebsd32_kldstat_args *uap) 3265 { 3266 struct kld_file_stat *stat; 3267 struct kld32_file_stat *stat32; 3268 int error, version; 3269 3270 if ((error = copyin(&uap->stat->version, &version, sizeof(version))) 3271 != 0) 3272 return (error); 3273 if (version != sizeof(struct kld32_file_stat_1) && 3274 version != sizeof(struct kld32_file_stat)) 3275 return (EINVAL); 3276 3277 stat = malloc(sizeof(*stat), M_TEMP, M_WAITOK | M_ZERO); 3278 stat32 = malloc(sizeof(*stat32), M_TEMP, M_WAITOK | M_ZERO); 3279 error = kern_kldstat(td, uap->fileid, stat); 3280 if (error == 0) { 3281 bcopy(&stat->name[0], &stat32->name[0], sizeof(stat->name)); 3282 CP(*stat, *stat32, refs); 3283 CP(*stat, *stat32, id); 3284 PTROUT_CP(*stat, *stat32, address); 3285 CP(*stat, *stat32, size); 3286 bcopy(&stat->pathname[0], &stat32->pathname[0], 3287 sizeof(stat->pathname)); 3288 stat32->version = version; 3289 error = copyout(stat32, uap->stat, version); 3290 } 3291 free(stat, M_TEMP); 3292 free(stat32, M_TEMP); 3293 return (error); 3294 } 3295 3296 int 3297 freebsd32_posix_fallocate(struct thread *td, 3298 struct freebsd32_posix_fallocate_args *uap) 3299 { 3300 int error; 3301 3302 error = kern_posix_fallocate(td, uap->fd, 3303 PAIR32TO64(off_t, uap->offset), PAIR32TO64(off_t, uap->len)); 3304 return (kern_posix_error(td, error)); 3305 } 3306 3307 int 3308 freebsd32_posix_fadvise(struct thread *td, 3309 struct freebsd32_posix_fadvise_args *uap) 3310 { 3311 int error; 3312 3313 error = kern_posix_fadvise(td, uap->fd, PAIR32TO64(off_t, uap->offset), 3314 PAIR32TO64(off_t, uap->len), uap->advice); 3315 return (kern_posix_error(td, error)); 3316 } 3317 3318 int 3319 convert_sigevent32(struct sigevent32 *sig32, struct sigevent *sig) 3320 { 3321 3322 CP(*sig32, *sig, sigev_notify); 3323 switch (sig->sigev_notify) { 3324 case SIGEV_NONE: 3325 break; 3326 case SIGEV_THREAD_ID: 3327 CP(*sig32, *sig, sigev_notify_thread_id); 3328 /* FALLTHROUGH */ 3329 case SIGEV_SIGNAL: 3330 CP(*sig32, *sig, sigev_signo); 3331 PTRIN_CP(*sig32, *sig, sigev_value.sival_ptr); 3332 break; 3333 case SIGEV_KEVENT: 3334 CP(*sig32, *sig, sigev_notify_kqueue); 3335 CP(*sig32, *sig, sigev_notify_kevent_flags); 3336 PTRIN_CP(*sig32, *sig, sigev_value.sival_ptr); 3337 break; 3338 default: 3339 return (EINVAL); 3340 } 3341 return (0); 3342 } 3343 3344 int 3345 freebsd32_procctl(struct thread *td, struct freebsd32_procctl_args *uap) 3346 { 3347 void *data; 3348 union { 3349 struct procctl_reaper_status rs; 3350 struct procctl_reaper_pids rp; 3351 struct procctl_reaper_kill rk; 3352 } x; 3353 union { 3354 struct procctl_reaper_pids32 rp; 3355 } x32; 3356 int error, error1, flags; 3357 3358 switch (uap->com) { 3359 case PROC_SPROTECT: 3360 case PROC_TRACE_CTL: 3361 case PROC_TRAPCAP_CTL: 3362 error = copyin(PTRIN(uap->data), &flags, sizeof(flags)); 3363 if (error != 0) 3364 return (error); 3365 data = &flags; 3366 break; 3367 case PROC_REAP_ACQUIRE: 3368 case PROC_REAP_RELEASE: 3369 if (uap->data != NULL) 3370 return (EINVAL); 3371 data = NULL; 3372 break; 3373 case PROC_REAP_STATUS: 3374 data = &x.rs; 3375 break; 3376 case PROC_REAP_GETPIDS: 3377 error = copyin(uap->data, &x32.rp, sizeof(x32.rp)); 3378 if (error != 0) 3379 return (error); 3380 CP(x32.rp, x.rp, rp_count); 3381 PTRIN_CP(x32.rp, x.rp, rp_pids); 3382 data = &x.rp; 3383 break; 3384 case PROC_REAP_KILL: 3385 error = copyin(uap->data, &x.rk, sizeof(x.rk)); 3386 if (error != 0) 3387 return (error); 3388 data = &x.rk; 3389 break; 3390 case PROC_TRACE_STATUS: 3391 case PROC_TRAPCAP_STATUS: 3392 data = &flags; 3393 break; 3394 default: 3395 return (EINVAL); 3396 } 3397 error = kern_procctl(td, uap->idtype, PAIR32TO64(id_t, uap->id), 3398 uap->com, data); 3399 switch (uap->com) { 3400 case PROC_REAP_STATUS: 3401 if (error == 0) 3402 error = copyout(&x.rs, uap->data, sizeof(x.rs)); 3403 break; 3404 case PROC_REAP_KILL: 3405 error1 = copyout(&x.rk, uap->data, sizeof(x.rk)); 3406 if (error == 0) 3407 error = error1; 3408 break; 3409 case PROC_TRACE_STATUS: 3410 case PROC_TRAPCAP_STATUS: 3411 if (error == 0) 3412 error = copyout(&flags, uap->data, sizeof(flags)); 3413 break; 3414 } 3415 return (error); 3416 } 3417 3418 int 3419 freebsd32_fcntl(struct thread *td, struct freebsd32_fcntl_args *uap) 3420 { 3421 long tmp; 3422 3423 switch (uap->cmd) { 3424 /* 3425 * Do unsigned conversion for arg when operation 3426 * interprets it as flags or pointer. 3427 */ 3428 case F_SETLK_REMOTE: 3429 case F_SETLKW: 3430 case F_SETLK: 3431 case F_GETLK: 3432 case F_SETFD: 3433 case F_SETFL: 3434 case F_OGETLK: 3435 case F_OSETLK: 3436 case F_OSETLKW: 3437 tmp = (unsigned int)(uap->arg); 3438 break; 3439 default: 3440 tmp = uap->arg; 3441 break; 3442 } 3443 return (kern_fcntl_freebsd(td, uap->fd, uap->cmd, tmp)); 3444 } 3445 3446 int 3447 freebsd32_ppoll(struct thread *td, struct freebsd32_ppoll_args *uap) 3448 { 3449 struct timespec32 ts32; 3450 struct timespec ts, *tsp; 3451 sigset_t set, *ssp; 3452 int error; 3453 3454 if (uap->ts != NULL) { 3455 error = copyin(uap->ts, &ts32, sizeof(ts32)); 3456 if (error != 0) 3457 return (error); 3458 CP(ts32, ts, tv_sec); 3459 CP(ts32, ts, tv_nsec); 3460 tsp = &ts; 3461 } else 3462 tsp = NULL; 3463 if (uap->set != NULL) { 3464 error = copyin(uap->set, &set, sizeof(set)); 3465 if (error != 0) 3466 return (error); 3467 ssp = &set; 3468 } else 3469 ssp = NULL; 3470 3471 return (kern_poll(td, uap->fds, uap->nfds, tsp, ssp)); 3472 } 3473