1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2002 Doug Rabson 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 #include "opt_ffclock.h" 31 #include "opt_inet.h" 32 #include "opt_inet6.h" 33 #include "opt_ktrace.h" 34 35 #define __ELF_WORD_SIZE 32 36 37 #ifdef COMPAT_FREEBSD11 38 #define _WANT_FREEBSD11_KEVENT 39 #endif 40 41 #include <sys/param.h> 42 #include <sys/bus.h> 43 #include <sys/capsicum.h> 44 #include <sys/clock.h> 45 #include <sys/exec.h> 46 #include <sys/fcntl.h> 47 #include <sys/filedesc.h> 48 #include <sys/imgact.h> 49 #include <sys/jail.h> 50 #include <sys/kernel.h> 51 #include <sys/limits.h> 52 #include <sys/linker.h> 53 #include <sys/lock.h> 54 #include <sys/malloc.h> 55 #include <sys/file.h> /* Must come after sys/malloc.h */ 56 #include <sys/imgact.h> 57 #include <sys/mbuf.h> 58 #include <sys/mman.h> 59 #include <sys/module.h> 60 #include <sys/mount.h> 61 #include <sys/mutex.h> 62 #include <sys/namei.h> 63 #include <sys/priv.h> 64 #include <sys/proc.h> 65 #include <sys/procctl.h> 66 #include <sys/ptrace.h> 67 #include <sys/reboot.h> 68 #include <sys/resource.h> 69 #include <sys/resourcevar.h> 70 #include <sys/selinfo.h> 71 #include <sys/eventvar.h> /* Must come after sys/selinfo.h */ 72 #include <sys/pipe.h> /* Must come after sys/selinfo.h */ 73 #include <sys/signal.h> 74 #include <sys/signalvar.h> 75 #include <sys/socket.h> 76 #include <sys/socketvar.h> 77 #include <sys/stat.h> 78 #include <sys/syscall.h> 79 #include <sys/syscallsubr.h> 80 #include <sys/sysctl.h> 81 #include <sys/sysent.h> 82 #include <sys/sysproto.h> 83 #include <sys/systm.h> 84 #include <sys/thr.h> 85 #include <sys/timerfd.h> 86 #include <sys/timex.h> 87 #include <sys/unistd.h> 88 #include <sys/ucontext.h> 89 #include <sys/vnode.h> 90 #include <sys/wait.h> 91 #include <sys/ipc.h> 92 #include <sys/msg.h> 93 #include <sys/sem.h> 94 #include <sys/shm.h> 95 #include <sys/timeffc.h> 96 #ifdef KTRACE 97 #include <sys/ktrace.h> 98 #endif 99 100 #ifdef INET 101 #include <netinet/in.h> 102 #endif 103 104 #include <vm/vm.h> 105 #include <vm/vm_param.h> 106 #include <vm/pmap.h> 107 #include <vm/vm_map.h> 108 #include <vm/vm_object.h> 109 #include <vm/vm_extern.h> 110 111 #include <machine/cpu.h> 112 #include <machine/elf.h> 113 #ifdef __amd64__ 114 #include <machine/md_var.h> 115 #endif 116 117 #include <security/audit/audit.h> 118 119 #include <compat/freebsd32/freebsd32_util.h> 120 #include <compat/freebsd32/freebsd32.h> 121 #include <compat/freebsd32/freebsd32_ipc.h> 122 #include <compat/freebsd32/freebsd32_misc.h> 123 #include <compat/freebsd32/freebsd32_signal.h> 124 #include <compat/freebsd32/freebsd32_proto.h> 125 126 FEATURE(compat_freebsd_32bit, "Compatible with 32-bit FreeBSD"); 127 128 struct ptrace_io_desc32 { 129 int piod_op; 130 uint32_t piod_offs; 131 uint32_t piod_addr; 132 uint32_t piod_len; 133 }; 134 135 struct ptrace_vm_entry32 { 136 int pve_entry; 137 int pve_timestamp; 138 uint32_t pve_start; 139 uint32_t pve_end; 140 uint32_t pve_offset; 141 u_int pve_prot; 142 u_int pve_pathlen; 143 int32_t pve_fileid; 144 u_int pve_fsid; 145 uint32_t pve_path; 146 }; 147 148 #ifdef __amd64__ 149 CTASSERT(sizeof(struct timeval32) == 8); 150 CTASSERT(sizeof(struct timespec32) == 8); 151 CTASSERT(sizeof(struct itimerval32) == 16); 152 CTASSERT(sizeof(struct bintime32) == 12); 153 #else 154 CTASSERT(sizeof(struct timeval32) == 16); 155 CTASSERT(sizeof(struct timespec32) == 16); 156 CTASSERT(sizeof(struct itimerval32) == 32); 157 CTASSERT(sizeof(struct bintime32) == 16); 158 #endif 159 CTASSERT(sizeof(struct ostatfs32) == 256); 160 #ifdef __amd64__ 161 CTASSERT(sizeof(struct rusage32) == 72); 162 #else 163 CTASSERT(sizeof(struct rusage32) == 88); 164 #endif 165 CTASSERT(sizeof(struct sigaltstack32) == 12); 166 #ifdef __amd64__ 167 CTASSERT(sizeof(struct kevent32) == 56); 168 #else 169 CTASSERT(sizeof(struct kevent32) == 64); 170 #endif 171 CTASSERT(sizeof(struct iovec32) == 8); 172 CTASSERT(sizeof(struct msghdr32) == 28); 173 #ifdef __amd64__ 174 CTASSERT(sizeof(struct stat32) == 208); 175 CTASSERT(sizeof(struct freebsd11_stat32) == 96); 176 #else 177 CTASSERT(sizeof(struct stat32) == 224); 178 CTASSERT(sizeof(struct freebsd11_stat32) == 120); 179 #endif 180 CTASSERT(sizeof(struct sigaction32) == 24); 181 182 static int freebsd32_kevent_copyout(void *arg, struct kevent *kevp, int count); 183 static int freebsd32_kevent_copyin(void *arg, struct kevent *kevp, int count); 184 static int freebsd32_user_clock_nanosleep(struct thread *td, clockid_t clock_id, 185 int flags, const struct timespec32 *ua_rqtp, struct timespec32 *ua_rmtp); 186 187 void 188 freebsd32_rusage_out(const struct rusage *s, struct rusage32 *s32) 189 { 190 191 TV_CP(*s, *s32, ru_utime); 192 TV_CP(*s, *s32, ru_stime); 193 CP(*s, *s32, ru_maxrss); 194 CP(*s, *s32, ru_ixrss); 195 CP(*s, *s32, ru_idrss); 196 CP(*s, *s32, ru_isrss); 197 CP(*s, *s32, ru_minflt); 198 CP(*s, *s32, ru_majflt); 199 CP(*s, *s32, ru_nswap); 200 CP(*s, *s32, ru_inblock); 201 CP(*s, *s32, ru_oublock); 202 CP(*s, *s32, ru_msgsnd); 203 CP(*s, *s32, ru_msgrcv); 204 CP(*s, *s32, ru_nsignals); 205 CP(*s, *s32, ru_nvcsw); 206 CP(*s, *s32, ru_nivcsw); 207 } 208 209 int 210 freebsd32_wait4(struct thread *td, struct freebsd32_wait4_args *uap) 211 { 212 int error, status; 213 struct rusage32 ru32; 214 struct rusage ru, *rup; 215 216 if (uap->rusage != NULL) 217 rup = &ru; 218 else 219 rup = NULL; 220 error = kern_wait(td, uap->pid, &status, uap->options, rup); 221 if (error) 222 return (error); 223 if (uap->status != NULL) 224 error = copyout(&status, uap->status, sizeof(status)); 225 if (uap->rusage != NULL && error == 0) { 226 freebsd32_rusage_out(&ru, &ru32); 227 error = copyout(&ru32, uap->rusage, sizeof(ru32)); 228 } 229 return (error); 230 } 231 232 int 233 freebsd32_wait6(struct thread *td, struct freebsd32_wait6_args *uap) 234 { 235 struct __wrusage32 wru32; 236 struct __wrusage wru, *wrup; 237 struct siginfo32 si32; 238 struct __siginfo si, *sip; 239 int error, status; 240 241 if (uap->wrusage != NULL) 242 wrup = &wru; 243 else 244 wrup = NULL; 245 if (uap->info != NULL) { 246 sip = &si; 247 bzero(sip, sizeof(*sip)); 248 } else 249 sip = NULL; 250 error = kern_wait6(td, uap->idtype, PAIR32TO64(id_t, uap->id), 251 &status, uap->options, wrup, sip); 252 if (error != 0) 253 return (error); 254 if (uap->status != NULL) 255 error = copyout(&status, uap->status, sizeof(status)); 256 if (uap->wrusage != NULL && error == 0) { 257 freebsd32_rusage_out(&wru.wru_self, &wru32.wru_self); 258 freebsd32_rusage_out(&wru.wru_children, &wru32.wru_children); 259 error = copyout(&wru32, uap->wrusage, sizeof(wru32)); 260 } 261 if (uap->info != NULL && error == 0) { 262 siginfo_to_siginfo32 (&si, &si32); 263 error = copyout(&si32, uap->info, sizeof(si32)); 264 } 265 return (error); 266 } 267 268 #ifdef COMPAT_FREEBSD4 269 static void 270 copy_statfs(struct statfs *in, struct ostatfs32 *out) 271 { 272 273 statfs_scale_blocks(in, INT32_MAX); 274 bzero(out, sizeof(*out)); 275 CP(*in, *out, f_bsize); 276 out->f_iosize = MIN(in->f_iosize, INT32_MAX); 277 CP(*in, *out, f_blocks); 278 CP(*in, *out, f_bfree); 279 CP(*in, *out, f_bavail); 280 out->f_files = MIN(in->f_files, INT32_MAX); 281 out->f_ffree = MIN(in->f_ffree, INT32_MAX); 282 CP(*in, *out, f_fsid); 283 CP(*in, *out, f_owner); 284 CP(*in, *out, f_type); 285 CP(*in, *out, f_flags); 286 out->f_syncwrites = MIN(in->f_syncwrites, INT32_MAX); 287 out->f_asyncwrites = MIN(in->f_asyncwrites, INT32_MAX); 288 strlcpy(out->f_fstypename, 289 in->f_fstypename, MFSNAMELEN); 290 strlcpy(out->f_mntonname, 291 in->f_mntonname, min(MNAMELEN, FREEBSD4_OMNAMELEN)); 292 out->f_syncreads = MIN(in->f_syncreads, INT32_MAX); 293 out->f_asyncreads = MIN(in->f_asyncreads, INT32_MAX); 294 strlcpy(out->f_mntfromname, 295 in->f_mntfromname, min(MNAMELEN, FREEBSD4_OMNAMELEN)); 296 } 297 #endif 298 299 int 300 freebsd32_getfsstat(struct thread *td, struct freebsd32_getfsstat_args *uap) 301 { 302 size_t count; 303 int error; 304 305 if (uap->bufsize < 0 || uap->bufsize > SIZE_MAX) 306 return (EINVAL); 307 error = kern_getfsstat(td, &uap->buf, uap->bufsize, &count, 308 UIO_USERSPACE, uap->mode); 309 if (error == 0) 310 td->td_retval[0] = count; 311 return (error); 312 } 313 314 #ifdef COMPAT_FREEBSD4 315 int 316 freebsd4_freebsd32_getfsstat(struct thread *td, 317 struct freebsd4_freebsd32_getfsstat_args *uap) 318 { 319 struct statfs *buf, *sp; 320 struct ostatfs32 stat32; 321 size_t count, size, copycount; 322 int error; 323 324 count = uap->bufsize / sizeof(struct ostatfs32); 325 size = count * sizeof(struct statfs); 326 error = kern_getfsstat(td, &buf, size, &count, UIO_SYSSPACE, uap->mode); 327 if (size > 0) { 328 sp = buf; 329 copycount = count; 330 while (copycount > 0 && error == 0) { 331 copy_statfs(sp, &stat32); 332 error = copyout(&stat32, uap->buf, sizeof(stat32)); 333 sp++; 334 uap->buf++; 335 copycount--; 336 } 337 free(buf, M_STATFS); 338 } 339 if (error == 0) 340 td->td_retval[0] = count; 341 return (error); 342 } 343 #endif 344 345 #ifdef COMPAT_FREEBSD11 346 int 347 freebsd11_freebsd32_getfsstat(struct thread *td, 348 struct freebsd11_freebsd32_getfsstat_args *uap) 349 { 350 return(kern_freebsd11_getfsstat(td, uap->buf, uap->bufsize, 351 uap->mode)); 352 } 353 #endif 354 355 int 356 freebsd32_sigaltstack(struct thread *td, 357 struct freebsd32_sigaltstack_args *uap) 358 { 359 struct sigaltstack32 s32; 360 struct sigaltstack ss, oss, *ssp; 361 int error; 362 363 if (uap->ss != NULL) { 364 error = copyin(uap->ss, &s32, sizeof(s32)); 365 if (error) 366 return (error); 367 PTRIN_CP(s32, ss, ss_sp); 368 CP(s32, ss, ss_size); 369 CP(s32, ss, ss_flags); 370 ssp = &ss; 371 } else 372 ssp = NULL; 373 error = kern_sigaltstack(td, ssp, &oss); 374 if (error == 0 && uap->oss != NULL) { 375 PTROUT_CP(oss, s32, ss_sp); 376 CP(oss, s32, ss_size); 377 CP(oss, s32, ss_flags); 378 error = copyout(&s32, uap->oss, sizeof(s32)); 379 } 380 return (error); 381 } 382 383 /* 384 * Custom version of exec_copyin_args() so that we can translate 385 * the pointers. 386 */ 387 int 388 freebsd32_exec_copyin_args(struct image_args *args, const char *fname, 389 enum uio_seg segflg, uint32_t *argv, uint32_t *envv) 390 { 391 char *argp, *envp; 392 uint32_t *p32, arg; 393 int error; 394 395 bzero(args, sizeof(*args)); 396 if (argv == NULL) 397 return (EFAULT); 398 399 /* 400 * Allocate demand-paged memory for the file name, argument, and 401 * environment strings. 402 */ 403 error = exec_alloc_args(args); 404 if (error != 0) 405 return (error); 406 407 /* 408 * Copy the file name. 409 */ 410 error = exec_args_add_fname(args, fname, segflg); 411 if (error != 0) 412 goto err_exit; 413 414 /* 415 * extract arguments first 416 */ 417 p32 = argv; 418 for (;;) { 419 error = copyin(p32++, &arg, sizeof(arg)); 420 if (error) 421 goto err_exit; 422 if (arg == 0) 423 break; 424 argp = PTRIN(arg); 425 error = exec_args_add_arg(args, argp, UIO_USERSPACE); 426 if (error != 0) 427 goto err_exit; 428 } 429 430 /* 431 * extract environment strings 432 */ 433 if (envv) { 434 p32 = envv; 435 for (;;) { 436 error = copyin(p32++, &arg, sizeof(arg)); 437 if (error) 438 goto err_exit; 439 if (arg == 0) 440 break; 441 envp = PTRIN(arg); 442 error = exec_args_add_env(args, envp, UIO_USERSPACE); 443 if (error != 0) 444 goto err_exit; 445 } 446 } 447 448 return (0); 449 450 err_exit: 451 exec_free_args(args); 452 return (error); 453 } 454 455 int 456 freebsd32_execve(struct thread *td, struct freebsd32_execve_args *uap) 457 { 458 struct image_args eargs; 459 struct vmspace *oldvmspace; 460 int error; 461 462 error = pre_execve(td, &oldvmspace); 463 if (error != 0) 464 return (error); 465 error = freebsd32_exec_copyin_args(&eargs, uap->fname, UIO_USERSPACE, 466 uap->argv, uap->envv); 467 if (error == 0) 468 error = kern_execve(td, &eargs, NULL, oldvmspace); 469 post_execve(td, error, oldvmspace); 470 AUDIT_SYSCALL_EXIT(error == EJUSTRETURN ? 0 : error, td); 471 return (error); 472 } 473 474 int 475 freebsd32_fexecve(struct thread *td, struct freebsd32_fexecve_args *uap) 476 { 477 struct image_args eargs; 478 struct vmspace *oldvmspace; 479 int error; 480 481 error = pre_execve(td, &oldvmspace); 482 if (error != 0) 483 return (error); 484 error = freebsd32_exec_copyin_args(&eargs, NULL, UIO_SYSSPACE, 485 uap->argv, uap->envv); 486 if (error == 0) { 487 eargs.fd = uap->fd; 488 error = kern_execve(td, &eargs, NULL, oldvmspace); 489 } 490 post_execve(td, error, oldvmspace); 491 AUDIT_SYSCALL_EXIT(error == EJUSTRETURN ? 0 : error, td); 492 return (error); 493 } 494 495 int 496 freebsd32_mknodat(struct thread *td, struct freebsd32_mknodat_args *uap) 497 { 498 499 return (kern_mknodat(td, uap->fd, uap->path, UIO_USERSPACE, 500 uap->mode, PAIR32TO64(dev_t, uap->dev))); 501 } 502 503 int 504 freebsd32_mprotect(struct thread *td, struct freebsd32_mprotect_args *uap) 505 { 506 int prot; 507 508 prot = uap->prot; 509 #if defined(__amd64__) 510 if (i386_read_exec && (prot & PROT_READ) != 0) 511 prot |= PROT_EXEC; 512 #endif 513 return (kern_mprotect(td, (uintptr_t)PTRIN(uap->addr), uap->len, 514 prot, 0)); 515 } 516 517 int 518 freebsd32_mmap(struct thread *td, struct freebsd32_mmap_args *uap) 519 { 520 int prot; 521 522 prot = uap->prot; 523 #if defined(__amd64__) 524 if (i386_read_exec && (prot & PROT_READ)) 525 prot |= PROT_EXEC; 526 #endif 527 528 return (kern_mmap(td, &(struct mmap_req){ 529 .mr_hint = (uintptr_t)uap->addr, 530 .mr_len = uap->len, 531 .mr_prot = prot, 532 .mr_flags = uap->flags, 533 .mr_fd = uap->fd, 534 .mr_pos = PAIR32TO64(off_t, uap->pos), 535 })); 536 } 537 538 #ifdef COMPAT_FREEBSD6 539 int 540 freebsd6_freebsd32_mmap(struct thread *td, 541 struct freebsd6_freebsd32_mmap_args *uap) 542 { 543 int prot; 544 545 prot = uap->prot; 546 #if defined(__amd64__) 547 if (i386_read_exec && (prot & PROT_READ)) 548 prot |= PROT_EXEC; 549 #endif 550 551 return (kern_mmap(td, &(struct mmap_req){ 552 .mr_hint = (uintptr_t)uap->addr, 553 .mr_len = uap->len, 554 .mr_prot = prot, 555 .mr_flags = uap->flags, 556 .mr_fd = uap->fd, 557 .mr_pos = PAIR32TO64(off_t, uap->pos), 558 })); 559 } 560 #endif 561 562 #ifdef COMPAT_43 563 int 564 ofreebsd32_mmap(struct thread *td, struct ofreebsd32_mmap_args *uap) 565 { 566 return (kern_ommap(td, (uintptr_t)uap->addr, uap->len, uap->prot, 567 uap->flags, uap->fd, uap->pos)); 568 } 569 #endif 570 571 int 572 freebsd32_setitimer(struct thread *td, struct freebsd32_setitimer_args *uap) 573 { 574 struct itimerval itv, oitv, *itvp; 575 struct itimerval32 i32; 576 int error; 577 578 if (uap->itv != NULL) { 579 error = copyin(uap->itv, &i32, sizeof(i32)); 580 if (error) 581 return (error); 582 TV_CP(i32, itv, it_interval); 583 TV_CP(i32, itv, it_value); 584 itvp = &itv; 585 } else 586 itvp = NULL; 587 error = kern_setitimer(td, uap->which, itvp, &oitv); 588 if (error || uap->oitv == NULL) 589 return (error); 590 TV_CP(oitv, i32, it_interval); 591 TV_CP(oitv, i32, it_value); 592 return (copyout(&i32, uap->oitv, sizeof(i32))); 593 } 594 595 int 596 freebsd32_getitimer(struct thread *td, struct freebsd32_getitimer_args *uap) 597 { 598 struct itimerval itv; 599 struct itimerval32 i32; 600 int error; 601 602 error = kern_getitimer(td, uap->which, &itv); 603 if (error || uap->itv == NULL) 604 return (error); 605 TV_CP(itv, i32, it_interval); 606 TV_CP(itv, i32, it_value); 607 return (copyout(&i32, uap->itv, sizeof(i32))); 608 } 609 610 int 611 freebsd32_select(struct thread *td, struct freebsd32_select_args *uap) 612 { 613 struct timeval32 tv32; 614 struct timeval tv, *tvp; 615 int error; 616 617 if (uap->tv != NULL) { 618 error = copyin(uap->tv, &tv32, sizeof(tv32)); 619 if (error) 620 return (error); 621 CP(tv32, tv, tv_sec); 622 CP(tv32, tv, tv_usec); 623 tvp = &tv; 624 } else 625 tvp = NULL; 626 /* 627 * XXX Do pointers need PTRIN()? 628 */ 629 return (kern_select(td, uap->nd, uap->in, uap->ou, uap->ex, tvp, 630 sizeof(int32_t) * 8)); 631 } 632 633 int 634 freebsd32_pselect(struct thread *td, struct freebsd32_pselect_args *uap) 635 { 636 struct timespec32 ts32; 637 struct timespec ts; 638 struct timeval tv, *tvp; 639 sigset_t set, *uset; 640 int error; 641 642 if (uap->ts != NULL) { 643 error = copyin(uap->ts, &ts32, sizeof(ts32)); 644 if (error != 0) 645 return (error); 646 CP(ts32, ts, tv_sec); 647 CP(ts32, ts, tv_nsec); 648 TIMESPEC_TO_TIMEVAL(&tv, &ts); 649 tvp = &tv; 650 } else 651 tvp = NULL; 652 if (uap->sm != NULL) { 653 error = copyin(uap->sm, &set, sizeof(set)); 654 if (error != 0) 655 return (error); 656 uset = &set; 657 } else 658 uset = NULL; 659 /* 660 * XXX Do pointers need PTRIN()? 661 */ 662 error = kern_pselect(td, uap->nd, uap->in, uap->ou, uap->ex, tvp, 663 uset, sizeof(int32_t) * 8); 664 return (error); 665 } 666 667 /* 668 * Copy 'count' items into the destination list pointed to by uap->eventlist. 669 */ 670 static int 671 freebsd32_kevent_copyout(void *arg, struct kevent *kevp, int count) 672 { 673 struct freebsd32_kevent_args *uap; 674 struct kevent32 ks32[KQ_NEVENTS]; 675 uint64_t e; 676 int i, j, error; 677 678 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count)); 679 uap = (struct freebsd32_kevent_args *)arg; 680 681 for (i = 0; i < count; i++) { 682 CP(kevp[i], ks32[i], ident); 683 CP(kevp[i], ks32[i], filter); 684 CP(kevp[i], ks32[i], flags); 685 CP(kevp[i], ks32[i], fflags); 686 #if BYTE_ORDER == LITTLE_ENDIAN 687 ks32[i].data1 = kevp[i].data; 688 ks32[i].data2 = kevp[i].data >> 32; 689 #else 690 ks32[i].data1 = kevp[i].data >> 32; 691 ks32[i].data2 = kevp[i].data; 692 #endif 693 PTROUT_CP(kevp[i], ks32[i], udata); 694 for (j = 0; j < nitems(kevp->ext); j++) { 695 e = kevp[i].ext[j]; 696 #if BYTE_ORDER == LITTLE_ENDIAN 697 ks32[i].ext64[2 * j] = e; 698 ks32[i].ext64[2 * j + 1] = e >> 32; 699 #else 700 ks32[i].ext64[2 * j] = e >> 32; 701 ks32[i].ext64[2 * j + 1] = e; 702 #endif 703 } 704 } 705 error = copyout(ks32, uap->eventlist, count * sizeof *ks32); 706 if (error == 0) 707 uap->eventlist += count; 708 return (error); 709 } 710 711 /* 712 * Copy 'count' items from the list pointed to by uap->changelist. 713 */ 714 static int 715 freebsd32_kevent_copyin(void *arg, struct kevent *kevp, int count) 716 { 717 struct freebsd32_kevent_args *uap; 718 struct kevent32 ks32[KQ_NEVENTS]; 719 uint64_t e; 720 int i, j, error; 721 722 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count)); 723 uap = (struct freebsd32_kevent_args *)arg; 724 725 error = copyin(uap->changelist, ks32, count * sizeof *ks32); 726 if (error) 727 goto done; 728 uap->changelist += count; 729 730 for (i = 0; i < count; i++) { 731 CP(ks32[i], kevp[i], ident); 732 CP(ks32[i], kevp[i], filter); 733 CP(ks32[i], kevp[i], flags); 734 CP(ks32[i], kevp[i], fflags); 735 kevp[i].data = PAIR32TO64(uint64_t, ks32[i].data); 736 PTRIN_CP(ks32[i], kevp[i], udata); 737 for (j = 0; j < nitems(kevp->ext); j++) { 738 #if BYTE_ORDER == LITTLE_ENDIAN 739 e = ks32[i].ext64[2 * j + 1]; 740 e <<= 32; 741 e += ks32[i].ext64[2 * j]; 742 #else 743 e = ks32[i].ext64[2 * j]; 744 e <<= 32; 745 e += ks32[i].ext64[2 * j + 1]; 746 #endif 747 kevp[i].ext[j] = e; 748 } 749 } 750 done: 751 return (error); 752 } 753 754 int 755 freebsd32_kevent(struct thread *td, struct freebsd32_kevent_args *uap) 756 { 757 struct timespec32 ts32; 758 struct timespec ts, *tsp; 759 struct kevent_copyops k_ops = { 760 .arg = uap, 761 .k_copyout = freebsd32_kevent_copyout, 762 .k_copyin = freebsd32_kevent_copyin, 763 }; 764 #ifdef KTRACE 765 struct kevent32 *eventlist = uap->eventlist; 766 #endif 767 int error; 768 769 if (uap->timeout) { 770 error = copyin(uap->timeout, &ts32, sizeof(ts32)); 771 if (error) 772 return (error); 773 CP(ts32, ts, tv_sec); 774 CP(ts32, ts, tv_nsec); 775 tsp = &ts; 776 } else 777 tsp = NULL; 778 #ifdef KTRACE 779 if (KTRPOINT(td, KTR_STRUCT_ARRAY)) 780 ktrstructarray("kevent32", UIO_USERSPACE, uap->changelist, 781 uap->nchanges, sizeof(struct kevent32)); 782 #endif 783 error = kern_kevent(td, uap->fd, uap->nchanges, uap->nevents, 784 &k_ops, tsp); 785 #ifdef KTRACE 786 if (error == 0 && KTRPOINT(td, KTR_STRUCT_ARRAY)) 787 ktrstructarray("kevent32", UIO_USERSPACE, eventlist, 788 td->td_retval[0], sizeof(struct kevent32)); 789 #endif 790 return (error); 791 } 792 793 #ifdef COMPAT_FREEBSD11 794 static int 795 freebsd32_kevent11_copyout(void *arg, struct kevent *kevp, int count) 796 { 797 struct freebsd11_freebsd32_kevent_args *uap; 798 struct freebsd11_kevent32 ks32[KQ_NEVENTS]; 799 int i, error; 800 801 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count)); 802 uap = (struct freebsd11_freebsd32_kevent_args *)arg; 803 804 for (i = 0; i < count; i++) { 805 CP(kevp[i], ks32[i], ident); 806 CP(kevp[i], ks32[i], filter); 807 CP(kevp[i], ks32[i], flags); 808 CP(kevp[i], ks32[i], fflags); 809 CP(kevp[i], ks32[i], data); 810 PTROUT_CP(kevp[i], ks32[i], udata); 811 } 812 error = copyout(ks32, uap->eventlist, count * sizeof *ks32); 813 if (error == 0) 814 uap->eventlist += count; 815 return (error); 816 } 817 818 /* 819 * Copy 'count' items from the list pointed to by uap->changelist. 820 */ 821 static int 822 freebsd32_kevent11_copyin(void *arg, struct kevent *kevp, int count) 823 { 824 struct freebsd11_freebsd32_kevent_args *uap; 825 struct freebsd11_kevent32 ks32[KQ_NEVENTS]; 826 int i, j, error; 827 828 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count)); 829 uap = (struct freebsd11_freebsd32_kevent_args *)arg; 830 831 error = copyin(uap->changelist, ks32, count * sizeof *ks32); 832 if (error) 833 goto done; 834 uap->changelist += count; 835 836 for (i = 0; i < count; i++) { 837 CP(ks32[i], kevp[i], ident); 838 CP(ks32[i], kevp[i], filter); 839 CP(ks32[i], kevp[i], flags); 840 CP(ks32[i], kevp[i], fflags); 841 CP(ks32[i], kevp[i], data); 842 PTRIN_CP(ks32[i], kevp[i], udata); 843 for (j = 0; j < nitems(kevp->ext); j++) 844 kevp[i].ext[j] = 0; 845 } 846 done: 847 return (error); 848 } 849 850 int 851 freebsd11_freebsd32_kevent(struct thread *td, 852 struct freebsd11_freebsd32_kevent_args *uap) 853 { 854 struct timespec32 ts32; 855 struct timespec ts, *tsp; 856 struct kevent_copyops k_ops = { 857 .arg = uap, 858 .k_copyout = freebsd32_kevent11_copyout, 859 .k_copyin = freebsd32_kevent11_copyin, 860 }; 861 #ifdef KTRACE 862 struct freebsd11_kevent32 *eventlist = uap->eventlist; 863 #endif 864 int error; 865 866 if (uap->timeout) { 867 error = copyin(uap->timeout, &ts32, sizeof(ts32)); 868 if (error) 869 return (error); 870 CP(ts32, ts, tv_sec); 871 CP(ts32, ts, tv_nsec); 872 tsp = &ts; 873 } else 874 tsp = NULL; 875 #ifdef KTRACE 876 if (KTRPOINT(td, KTR_STRUCT_ARRAY)) 877 ktrstructarray("freebsd11_kevent32", UIO_USERSPACE, 878 uap->changelist, uap->nchanges, 879 sizeof(struct freebsd11_kevent32)); 880 #endif 881 error = kern_kevent(td, uap->fd, uap->nchanges, uap->nevents, 882 &k_ops, tsp); 883 #ifdef KTRACE 884 if (error == 0 && KTRPOINT(td, KTR_STRUCT_ARRAY)) 885 ktrstructarray("freebsd11_kevent32", UIO_USERSPACE, 886 eventlist, td->td_retval[0], 887 sizeof(struct freebsd11_kevent32)); 888 #endif 889 return (error); 890 } 891 #endif 892 893 int 894 freebsd32_gettimeofday(struct thread *td, 895 struct freebsd32_gettimeofday_args *uap) 896 { 897 struct timeval atv; 898 struct timeval32 atv32; 899 struct timezone rtz; 900 int error = 0; 901 902 if (uap->tp) { 903 microtime(&atv); 904 CP(atv, atv32, tv_sec); 905 CP(atv, atv32, tv_usec); 906 error = copyout(&atv32, uap->tp, sizeof (atv32)); 907 } 908 if (error == 0 && uap->tzp != NULL) { 909 rtz.tz_minuteswest = 0; 910 rtz.tz_dsttime = 0; 911 error = copyout(&rtz, uap->tzp, sizeof (rtz)); 912 } 913 return (error); 914 } 915 916 int 917 freebsd32_getrusage(struct thread *td, struct freebsd32_getrusage_args *uap) 918 { 919 struct rusage32 s32; 920 struct rusage s; 921 int error; 922 923 error = kern_getrusage(td, uap->who, &s); 924 if (error == 0) { 925 freebsd32_rusage_out(&s, &s32); 926 error = copyout(&s32, uap->rusage, sizeof(s32)); 927 } 928 return (error); 929 } 930 931 static void 932 ptrace_lwpinfo_to32(const struct ptrace_lwpinfo *pl, 933 struct ptrace_lwpinfo32 *pl32) 934 { 935 936 bzero(pl32, sizeof(*pl32)); 937 pl32->pl_lwpid = pl->pl_lwpid; 938 pl32->pl_event = pl->pl_event; 939 pl32->pl_flags = pl->pl_flags; 940 pl32->pl_sigmask = pl->pl_sigmask; 941 pl32->pl_siglist = pl->pl_siglist; 942 siginfo_to_siginfo32(&pl->pl_siginfo, &pl32->pl_siginfo); 943 strcpy(pl32->pl_tdname, pl->pl_tdname); 944 pl32->pl_child_pid = pl->pl_child_pid; 945 pl32->pl_syscall_code = pl->pl_syscall_code; 946 pl32->pl_syscall_narg = pl->pl_syscall_narg; 947 } 948 949 static void 950 ptrace_sc_ret_to32(const struct ptrace_sc_ret *psr, 951 struct ptrace_sc_ret32 *psr32) 952 { 953 954 bzero(psr32, sizeof(*psr32)); 955 psr32->sr_retval[0] = psr->sr_retval[0]; 956 psr32->sr_retval[1] = psr->sr_retval[1]; 957 psr32->sr_error = psr->sr_error; 958 } 959 960 int 961 freebsd32_ptrace(struct thread *td, struct freebsd32_ptrace_args *uap) 962 { 963 union { 964 struct ptrace_io_desc piod; 965 struct ptrace_lwpinfo pl; 966 struct ptrace_vm_entry pve; 967 struct ptrace_coredump pc; 968 struct ptrace_sc_remote sr; 969 struct dbreg32 dbreg; 970 struct fpreg32 fpreg; 971 struct reg32 reg; 972 struct iovec vec; 973 register_t args[nitems(td->td_sa.args)]; 974 struct ptrace_sc_ret psr; 975 int ptevents; 976 } r; 977 union { 978 struct ptrace_io_desc32 piod; 979 struct ptrace_lwpinfo32 pl; 980 struct ptrace_vm_entry32 pve; 981 struct ptrace_coredump32 pc; 982 struct ptrace_sc_remote32 sr; 983 uint32_t args[nitems(td->td_sa.args)]; 984 struct ptrace_sc_ret32 psr; 985 struct iovec32 vec; 986 } r32; 987 syscallarg_t pscr_args[nitems(td->td_sa.args)]; 988 u_int pscr_args32[nitems(td->td_sa.args)]; 989 void *addr; 990 int data, error, i; 991 992 if (!allow_ptrace) 993 return (ENOSYS); 994 error = 0; 995 996 AUDIT_ARG_PID(uap->pid); 997 AUDIT_ARG_CMD(uap->req); 998 AUDIT_ARG_VALUE(uap->data); 999 addr = &r; 1000 data = uap->data; 1001 switch (uap->req) { 1002 case PT_GET_EVENT_MASK: 1003 case PT_GET_SC_ARGS: 1004 case PT_GET_SC_RET: 1005 break; 1006 case PT_LWPINFO: 1007 if (uap->data > sizeof(r32.pl)) 1008 return (EINVAL); 1009 1010 /* 1011 * Pass size of native structure in 'data'. Truncate 1012 * if necessary to avoid siginfo. 1013 */ 1014 data = sizeof(r.pl); 1015 if (uap->data < offsetof(struct ptrace_lwpinfo32, pl_siginfo) + 1016 sizeof(struct siginfo32)) 1017 data = offsetof(struct ptrace_lwpinfo, pl_siginfo); 1018 break; 1019 case PT_GETREGS: 1020 bzero(&r.reg, sizeof(r.reg)); 1021 break; 1022 case PT_GETFPREGS: 1023 bzero(&r.fpreg, sizeof(r.fpreg)); 1024 break; 1025 case PT_GETDBREGS: 1026 bzero(&r.dbreg, sizeof(r.dbreg)); 1027 break; 1028 case PT_SETREGS: 1029 error = copyin(uap->addr, &r.reg, sizeof(r.reg)); 1030 break; 1031 case PT_SETFPREGS: 1032 error = copyin(uap->addr, &r.fpreg, sizeof(r.fpreg)); 1033 break; 1034 case PT_SETDBREGS: 1035 error = copyin(uap->addr, &r.dbreg, sizeof(r.dbreg)); 1036 break; 1037 case PT_GETREGSET: 1038 case PT_SETREGSET: 1039 error = copyin(uap->addr, &r32.vec, sizeof(r32.vec)); 1040 if (error != 0) 1041 break; 1042 1043 r.vec.iov_len = r32.vec.iov_len; 1044 r.vec.iov_base = PTRIN(r32.vec.iov_base); 1045 break; 1046 case PT_SET_EVENT_MASK: 1047 if (uap->data != sizeof(r.ptevents)) 1048 error = EINVAL; 1049 else 1050 error = copyin(uap->addr, &r.ptevents, uap->data); 1051 break; 1052 case PT_IO: 1053 error = copyin(uap->addr, &r32.piod, sizeof(r32.piod)); 1054 if (error) 1055 break; 1056 CP(r32.piod, r.piod, piod_op); 1057 PTRIN_CP(r32.piod, r.piod, piod_offs); 1058 PTRIN_CP(r32.piod, r.piod, piod_addr); 1059 CP(r32.piod, r.piod, piod_len); 1060 break; 1061 case PT_VM_ENTRY: 1062 error = copyin(uap->addr, &r32.pve, sizeof(r32.pve)); 1063 if (error) 1064 break; 1065 1066 CP(r32.pve, r.pve, pve_entry); 1067 CP(r32.pve, r.pve, pve_timestamp); 1068 CP(r32.pve, r.pve, pve_start); 1069 CP(r32.pve, r.pve, pve_end); 1070 CP(r32.pve, r.pve, pve_offset); 1071 CP(r32.pve, r.pve, pve_prot); 1072 CP(r32.pve, r.pve, pve_pathlen); 1073 CP(r32.pve, r.pve, pve_fileid); 1074 CP(r32.pve, r.pve, pve_fsid); 1075 PTRIN_CP(r32.pve, r.pve, pve_path); 1076 break; 1077 case PT_COREDUMP: 1078 if (uap->data != sizeof(r32.pc)) 1079 error = EINVAL; 1080 else 1081 error = copyin(uap->addr, &r32.pc, uap->data); 1082 CP(r32.pc, r.pc, pc_fd); 1083 CP(r32.pc, r.pc, pc_flags); 1084 r.pc.pc_limit = PAIR32TO64(off_t, r32.pc.pc_limit); 1085 data = sizeof(r.pc); 1086 break; 1087 case PT_SC_REMOTE: 1088 if (uap->data != sizeof(r32.sr)) { 1089 error = EINVAL; 1090 break; 1091 } 1092 error = copyin(uap->addr, &r32.sr, uap->data); 1093 if (error != 0) 1094 break; 1095 CP(r32.sr, r.sr, pscr_syscall); 1096 CP(r32.sr, r.sr, pscr_nargs); 1097 if (r.sr.pscr_nargs > nitems(td->td_sa.args)) { 1098 error = EINVAL; 1099 break; 1100 } 1101 error = copyin(PTRIN(r32.sr.pscr_args), pscr_args32, 1102 sizeof(u_int) * r32.sr.pscr_nargs); 1103 if (error != 0) 1104 break; 1105 for (i = 0; i < r32.sr.pscr_nargs; i++) 1106 pscr_args[i] = pscr_args32[i]; 1107 r.sr.pscr_args = pscr_args; 1108 break; 1109 default: 1110 addr = uap->addr; 1111 break; 1112 } 1113 if (error) 1114 return (error); 1115 1116 error = kern_ptrace(td, uap->req, uap->pid, addr, data); 1117 if (error) 1118 return (error); 1119 1120 switch (uap->req) { 1121 case PT_VM_ENTRY: 1122 CP(r.pve, r32.pve, pve_entry); 1123 CP(r.pve, r32.pve, pve_timestamp); 1124 CP(r.pve, r32.pve, pve_start); 1125 CP(r.pve, r32.pve, pve_end); 1126 CP(r.pve, r32.pve, pve_offset); 1127 CP(r.pve, r32.pve, pve_prot); 1128 CP(r.pve, r32.pve, pve_pathlen); 1129 CP(r.pve, r32.pve, pve_fileid); 1130 CP(r.pve, r32.pve, pve_fsid); 1131 error = copyout(&r32.pve, uap->addr, sizeof(r32.pve)); 1132 break; 1133 case PT_IO: 1134 CP(r.piod, r32.piod, piod_len); 1135 error = copyout(&r32.piod, uap->addr, sizeof(r32.piod)); 1136 break; 1137 case PT_GETREGS: 1138 error = copyout(&r.reg, uap->addr, sizeof(r.reg)); 1139 break; 1140 case PT_GETFPREGS: 1141 error = copyout(&r.fpreg, uap->addr, sizeof(r.fpreg)); 1142 break; 1143 case PT_GETDBREGS: 1144 error = copyout(&r.dbreg, uap->addr, sizeof(r.dbreg)); 1145 break; 1146 case PT_GETREGSET: 1147 r32.vec.iov_len = r.vec.iov_len; 1148 error = copyout(&r32.vec, uap->addr, sizeof(r32.vec)); 1149 break; 1150 case PT_GET_EVENT_MASK: 1151 /* NB: The size in uap->data is validated in kern_ptrace(). */ 1152 error = copyout(&r.ptevents, uap->addr, uap->data); 1153 break; 1154 case PT_LWPINFO: 1155 ptrace_lwpinfo_to32(&r.pl, &r32.pl); 1156 error = copyout(&r32.pl, uap->addr, uap->data); 1157 break; 1158 case PT_GET_SC_ARGS: 1159 for (i = 0; i < nitems(r.args); i++) 1160 r32.args[i] = (uint32_t)r.args[i]; 1161 error = copyout(r32.args, uap->addr, MIN(uap->data, 1162 sizeof(r32.args))); 1163 break; 1164 case PT_GET_SC_RET: 1165 ptrace_sc_ret_to32(&r.psr, &r32.psr); 1166 error = copyout(&r32.psr, uap->addr, MIN(uap->data, 1167 sizeof(r32.psr))); 1168 break; 1169 case PT_SC_REMOTE: 1170 ptrace_sc_ret_to32(&r.sr.pscr_ret, &r32.sr.pscr_ret); 1171 error = copyout(&r32.sr.pscr_ret, uap->addr + 1172 offsetof(struct ptrace_sc_remote32, pscr_ret), 1173 sizeof(r32.psr)); 1174 break; 1175 } 1176 1177 return (error); 1178 } 1179 1180 int 1181 freebsd32_copyinuio(struct iovec32 *iovp, u_int iovcnt, struct uio **uiop) 1182 { 1183 struct iovec32 iov32; 1184 struct iovec *iov; 1185 struct uio *uio; 1186 u_int iovlen; 1187 int error, i; 1188 1189 *uiop = NULL; 1190 if (iovcnt > UIO_MAXIOV) 1191 return (EINVAL); 1192 iovlen = iovcnt * sizeof(struct iovec); 1193 uio = malloc(iovlen + sizeof *uio, M_IOV, M_WAITOK); 1194 iov = (struct iovec *)(uio + 1); 1195 for (i = 0; i < iovcnt; i++) { 1196 error = copyin(&iovp[i], &iov32, sizeof(struct iovec32)); 1197 if (error) { 1198 free(uio, M_IOV); 1199 return (error); 1200 } 1201 iov[i].iov_base = PTRIN(iov32.iov_base); 1202 iov[i].iov_len = iov32.iov_len; 1203 } 1204 uio->uio_iov = iov; 1205 uio->uio_iovcnt = iovcnt; 1206 uio->uio_segflg = UIO_USERSPACE; 1207 uio->uio_offset = -1; 1208 uio->uio_resid = 0; 1209 for (i = 0; i < iovcnt; i++) { 1210 if (iov->iov_len > INT_MAX - uio->uio_resid) { 1211 free(uio, M_IOV); 1212 return (EINVAL); 1213 } 1214 uio->uio_resid += iov->iov_len; 1215 iov++; 1216 } 1217 *uiop = uio; 1218 return (0); 1219 } 1220 1221 int 1222 freebsd32_readv(struct thread *td, struct freebsd32_readv_args *uap) 1223 { 1224 struct uio *auio; 1225 int error; 1226 1227 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 1228 if (error) 1229 return (error); 1230 error = kern_readv(td, uap->fd, auio); 1231 free(auio, M_IOV); 1232 return (error); 1233 } 1234 1235 int 1236 freebsd32_writev(struct thread *td, struct freebsd32_writev_args *uap) 1237 { 1238 struct uio *auio; 1239 int error; 1240 1241 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 1242 if (error) 1243 return (error); 1244 error = kern_writev(td, uap->fd, auio); 1245 free(auio, M_IOV); 1246 return (error); 1247 } 1248 1249 int 1250 freebsd32_preadv(struct thread *td, struct freebsd32_preadv_args *uap) 1251 { 1252 struct uio *auio; 1253 int error; 1254 1255 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 1256 if (error) 1257 return (error); 1258 error = kern_preadv(td, uap->fd, auio, PAIR32TO64(off_t,uap->offset)); 1259 free(auio, M_IOV); 1260 return (error); 1261 } 1262 1263 int 1264 freebsd32_pwritev(struct thread *td, struct freebsd32_pwritev_args *uap) 1265 { 1266 struct uio *auio; 1267 int error; 1268 1269 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 1270 if (error) 1271 return (error); 1272 error = kern_pwritev(td, uap->fd, auio, PAIR32TO64(off_t,uap->offset)); 1273 free(auio, M_IOV); 1274 return (error); 1275 } 1276 1277 int 1278 freebsd32_copyiniov(struct iovec32 *iovp32, u_int iovcnt, struct iovec **iovp, 1279 int error) 1280 { 1281 struct iovec32 iov32; 1282 struct iovec *iov; 1283 u_int iovlen; 1284 int i; 1285 1286 *iovp = NULL; 1287 if (iovcnt > UIO_MAXIOV) 1288 return (error); 1289 iovlen = iovcnt * sizeof(struct iovec); 1290 iov = malloc(iovlen, M_IOV, M_WAITOK); 1291 for (i = 0; i < iovcnt; i++) { 1292 error = copyin(&iovp32[i], &iov32, sizeof(struct iovec32)); 1293 if (error) { 1294 free(iov, M_IOV); 1295 return (error); 1296 } 1297 iov[i].iov_base = PTRIN(iov32.iov_base); 1298 iov[i].iov_len = iov32.iov_len; 1299 } 1300 *iovp = iov; 1301 return (0); 1302 } 1303 1304 static int 1305 freebsd32_copyinmsghdr(const struct msghdr32 *msg32, struct msghdr *msg) 1306 { 1307 struct msghdr32 m32; 1308 int error; 1309 1310 error = copyin(msg32, &m32, sizeof(m32)); 1311 if (error) 1312 return (error); 1313 msg->msg_name = PTRIN(m32.msg_name); 1314 msg->msg_namelen = m32.msg_namelen; 1315 msg->msg_iov = PTRIN(m32.msg_iov); 1316 msg->msg_iovlen = m32.msg_iovlen; 1317 msg->msg_control = PTRIN(m32.msg_control); 1318 msg->msg_controllen = m32.msg_controllen; 1319 msg->msg_flags = m32.msg_flags; 1320 return (0); 1321 } 1322 1323 static int 1324 freebsd32_copyoutmsghdr(struct msghdr *msg, struct msghdr32 *msg32) 1325 { 1326 struct msghdr32 m32; 1327 int error; 1328 1329 m32.msg_name = PTROUT(msg->msg_name); 1330 m32.msg_namelen = msg->msg_namelen; 1331 m32.msg_iov = PTROUT(msg->msg_iov); 1332 m32.msg_iovlen = msg->msg_iovlen; 1333 m32.msg_control = PTROUT(msg->msg_control); 1334 m32.msg_controllen = msg->msg_controllen; 1335 m32.msg_flags = msg->msg_flags; 1336 error = copyout(&m32, msg32, sizeof(m32)); 1337 return (error); 1338 } 1339 1340 #define FREEBSD32_ALIGNBYTES (sizeof(int) - 1) 1341 #define FREEBSD32_ALIGN(p) \ 1342 (((u_long)(p) + FREEBSD32_ALIGNBYTES) & ~FREEBSD32_ALIGNBYTES) 1343 #define FREEBSD32_CMSG_SPACE(l) \ 1344 (FREEBSD32_ALIGN(sizeof(struct cmsghdr)) + FREEBSD32_ALIGN(l)) 1345 1346 #define FREEBSD32_CMSG_DATA(cmsg) ((unsigned char *)(cmsg) + \ 1347 FREEBSD32_ALIGN(sizeof(struct cmsghdr))) 1348 1349 static size_t 1350 freebsd32_cmsg_convert(const struct cmsghdr *cm, void *data, socklen_t datalen) 1351 { 1352 size_t copylen; 1353 union { 1354 struct timespec32 ts; 1355 struct timeval32 tv; 1356 struct bintime32 bt; 1357 } tmp32; 1358 1359 union { 1360 struct timespec ts; 1361 struct timeval tv; 1362 struct bintime bt; 1363 } *in; 1364 1365 in = data; 1366 copylen = 0; 1367 switch (cm->cmsg_level) { 1368 case SOL_SOCKET: 1369 switch (cm->cmsg_type) { 1370 case SCM_TIMESTAMP: 1371 TV_CP(*in, tmp32, tv); 1372 copylen = sizeof(tmp32.tv); 1373 break; 1374 1375 case SCM_BINTIME: 1376 BT_CP(*in, tmp32, bt); 1377 copylen = sizeof(tmp32.bt); 1378 break; 1379 1380 case SCM_REALTIME: 1381 case SCM_MONOTONIC: 1382 TS_CP(*in, tmp32, ts); 1383 copylen = sizeof(tmp32.ts); 1384 break; 1385 1386 default: 1387 break; 1388 } 1389 1390 default: 1391 break; 1392 } 1393 1394 if (copylen == 0) 1395 return (datalen); 1396 1397 KASSERT((datalen >= copylen), ("corrupted cmsghdr")); 1398 1399 bcopy(&tmp32, data, copylen); 1400 return (copylen); 1401 } 1402 1403 static int 1404 freebsd32_copy_msg_out(struct msghdr *msg, struct mbuf *control) 1405 { 1406 struct cmsghdr *cm; 1407 void *data; 1408 socklen_t clen, datalen, datalen_out, oldclen; 1409 int error; 1410 caddr_t ctlbuf; 1411 int len, copylen; 1412 struct mbuf *m; 1413 error = 0; 1414 1415 len = msg->msg_controllen; 1416 msg->msg_controllen = 0; 1417 1418 ctlbuf = msg->msg_control; 1419 for (m = control; m != NULL && len > 0; m = m->m_next) { 1420 cm = mtod(m, struct cmsghdr *); 1421 clen = m->m_len; 1422 while (cm != NULL) { 1423 if (sizeof(struct cmsghdr) > clen || 1424 cm->cmsg_len > clen) { 1425 error = EINVAL; 1426 break; 1427 } 1428 1429 data = CMSG_DATA(cm); 1430 datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data; 1431 datalen_out = freebsd32_cmsg_convert(cm, data, datalen); 1432 1433 /* 1434 * Copy out the message header. Preserve the native 1435 * message size in case we need to inspect the message 1436 * contents later. 1437 */ 1438 copylen = sizeof(struct cmsghdr); 1439 if (len < copylen) { 1440 msg->msg_flags |= MSG_CTRUNC; 1441 m_dispose_extcontrolm(m); 1442 goto exit; 1443 } 1444 oldclen = cm->cmsg_len; 1445 cm->cmsg_len = FREEBSD32_ALIGN(sizeof(struct cmsghdr)) + 1446 datalen_out; 1447 error = copyout(cm, ctlbuf, copylen); 1448 cm->cmsg_len = oldclen; 1449 if (error != 0) 1450 goto exit; 1451 1452 ctlbuf += FREEBSD32_ALIGN(copylen); 1453 len -= FREEBSD32_ALIGN(copylen); 1454 1455 copylen = datalen_out; 1456 if (len < copylen) { 1457 msg->msg_flags |= MSG_CTRUNC; 1458 m_dispose_extcontrolm(m); 1459 break; 1460 } 1461 1462 /* Copy out the message data. */ 1463 error = copyout(data, ctlbuf, copylen); 1464 if (error) 1465 goto exit; 1466 1467 ctlbuf += FREEBSD32_ALIGN(copylen); 1468 len -= FREEBSD32_ALIGN(copylen); 1469 1470 if (CMSG_SPACE(datalen) < clen) { 1471 clen -= CMSG_SPACE(datalen); 1472 cm = (struct cmsghdr *) 1473 ((caddr_t)cm + CMSG_SPACE(datalen)); 1474 } else { 1475 clen = 0; 1476 cm = NULL; 1477 } 1478 1479 msg->msg_controllen += 1480 FREEBSD32_CMSG_SPACE(datalen_out); 1481 } 1482 } 1483 if (len == 0 && m != NULL) { 1484 msg->msg_flags |= MSG_CTRUNC; 1485 m_dispose_extcontrolm(m); 1486 } 1487 1488 exit: 1489 return (error); 1490 } 1491 1492 int 1493 freebsd32_recvmsg(struct thread *td, struct freebsd32_recvmsg_args *uap) 1494 { 1495 struct msghdr msg; 1496 struct iovec *uiov, *iov; 1497 struct mbuf *control = NULL; 1498 struct mbuf **controlp; 1499 int error; 1500 1501 error = freebsd32_copyinmsghdr(uap->msg, &msg); 1502 if (error) 1503 return (error); 1504 error = freebsd32_copyiniov((void *)msg.msg_iov, msg.msg_iovlen, &iov, 1505 EMSGSIZE); 1506 if (error) 1507 return (error); 1508 msg.msg_flags = uap->flags; 1509 uiov = msg.msg_iov; 1510 msg.msg_iov = iov; 1511 1512 controlp = (msg.msg_control != NULL) ? &control : NULL; 1513 error = kern_recvit(td, uap->s, &msg, UIO_USERSPACE, controlp); 1514 if (error == 0) { 1515 msg.msg_iov = uiov; 1516 1517 if (control != NULL) 1518 error = freebsd32_copy_msg_out(&msg, control); 1519 else 1520 msg.msg_controllen = 0; 1521 1522 if (error == 0) 1523 error = freebsd32_copyoutmsghdr(&msg, uap->msg); 1524 } 1525 free(iov, M_IOV); 1526 1527 if (control != NULL) { 1528 if (error != 0) 1529 m_dispose_extcontrolm(control); 1530 m_freem(control); 1531 } 1532 1533 return (error); 1534 } 1535 1536 #ifdef COMPAT_43 1537 int 1538 ofreebsd32_recvmsg(struct thread *td, struct ofreebsd32_recvmsg_args *uap) 1539 { 1540 return (ENOSYS); 1541 } 1542 #endif 1543 1544 /* 1545 * Copy-in the array of control messages constructed using alignment 1546 * and padding suitable for a 32-bit environment and construct an 1547 * mbuf using alignment and padding suitable for a 64-bit kernel. 1548 * The alignment and padding are defined indirectly by CMSG_DATA(), 1549 * CMSG_SPACE() and CMSG_LEN(). 1550 */ 1551 static int 1552 freebsd32_copyin_control(struct mbuf **mp, caddr_t buf, u_int buflen) 1553 { 1554 struct cmsghdr *cm; 1555 struct mbuf *m; 1556 void *in, *in1, *md; 1557 u_int msglen, outlen; 1558 int error; 1559 1560 /* Enforce the size limit of the native implementation. */ 1561 if (buflen > MCLBYTES) 1562 return (EINVAL); 1563 1564 in = malloc(buflen, M_TEMP, M_WAITOK); 1565 error = copyin(buf, in, buflen); 1566 if (error != 0) 1567 goto out; 1568 1569 /* 1570 * Make a pass over the input buffer to determine the amount of space 1571 * required for 64 bit-aligned copies of the control messages. 1572 */ 1573 in1 = in; 1574 outlen = 0; 1575 while (buflen > 0) { 1576 if (buflen < sizeof(*cm)) { 1577 error = EINVAL; 1578 break; 1579 } 1580 cm = (struct cmsghdr *)in1; 1581 if (cm->cmsg_len < FREEBSD32_ALIGN(sizeof(*cm)) || 1582 cm->cmsg_len > buflen) { 1583 error = EINVAL; 1584 break; 1585 } 1586 msglen = FREEBSD32_ALIGN(cm->cmsg_len); 1587 if (msglen < cm->cmsg_len) { 1588 error = EINVAL; 1589 break; 1590 } 1591 /* The native ABI permits the final padding to be omitted. */ 1592 if (msglen > buflen) 1593 msglen = buflen; 1594 buflen -= msglen; 1595 1596 in1 = (char *)in1 + msglen; 1597 outlen += CMSG_ALIGN(sizeof(*cm)) + 1598 CMSG_ALIGN(msglen - FREEBSD32_ALIGN(sizeof(*cm))); 1599 } 1600 if (error != 0) 1601 goto out; 1602 1603 /* 1604 * Allocate up to MJUMPAGESIZE space for the re-aligned and 1605 * re-padded control messages. This allows a full MCLBYTES of 1606 * 32-bit sized and aligned messages to fit and avoids an ABI 1607 * mismatch with the native implementation. 1608 */ 1609 m = m_get2(outlen, M_WAITOK, MT_CONTROL, 0); 1610 if (m == NULL) { 1611 error = EINVAL; 1612 goto out; 1613 } 1614 m->m_len = outlen; 1615 md = mtod(m, void *); 1616 1617 /* 1618 * Make a second pass over input messages, copying them into the output 1619 * buffer. 1620 */ 1621 in1 = in; 1622 while (outlen > 0) { 1623 /* Copy the message header and align the length field. */ 1624 cm = md; 1625 memcpy(cm, in1, sizeof(*cm)); 1626 msglen = cm->cmsg_len - FREEBSD32_ALIGN(sizeof(*cm)); 1627 cm->cmsg_len = CMSG_ALIGN(sizeof(*cm)) + msglen; 1628 1629 /* Copy the message body. */ 1630 in1 = (char *)in1 + FREEBSD32_ALIGN(sizeof(*cm)); 1631 md = (char *)md + CMSG_ALIGN(sizeof(*cm)); 1632 memcpy(md, in1, msglen); 1633 in1 = (char *)in1 + FREEBSD32_ALIGN(msglen); 1634 md = (char *)md + CMSG_ALIGN(msglen); 1635 KASSERT(outlen >= CMSG_ALIGN(sizeof(*cm)) + CMSG_ALIGN(msglen), 1636 ("outlen %u underflow, msglen %u", outlen, msglen)); 1637 outlen -= CMSG_ALIGN(sizeof(*cm)) + CMSG_ALIGN(msglen); 1638 } 1639 1640 *mp = m; 1641 out: 1642 free(in, M_TEMP); 1643 return (error); 1644 } 1645 1646 int 1647 freebsd32_sendmsg(struct thread *td, struct freebsd32_sendmsg_args *uap) 1648 { 1649 struct msghdr msg; 1650 struct iovec *iov; 1651 struct mbuf *control = NULL; 1652 struct sockaddr *to = NULL; 1653 int error; 1654 1655 error = freebsd32_copyinmsghdr(uap->msg, &msg); 1656 if (error) 1657 return (error); 1658 error = freebsd32_copyiniov((void *)msg.msg_iov, msg.msg_iovlen, &iov, 1659 EMSGSIZE); 1660 if (error) 1661 return (error); 1662 msg.msg_iov = iov; 1663 if (msg.msg_name != NULL) { 1664 error = getsockaddr(&to, msg.msg_name, msg.msg_namelen); 1665 if (error) { 1666 to = NULL; 1667 goto out; 1668 } 1669 msg.msg_name = to; 1670 } 1671 1672 if (msg.msg_control) { 1673 if (msg.msg_controllen < sizeof(struct cmsghdr)) { 1674 error = EINVAL; 1675 goto out; 1676 } 1677 1678 error = freebsd32_copyin_control(&control, msg.msg_control, 1679 msg.msg_controllen); 1680 if (error) 1681 goto out; 1682 1683 msg.msg_control = NULL; 1684 msg.msg_controllen = 0; 1685 } 1686 1687 error = kern_sendit(td, uap->s, &msg, uap->flags, control, 1688 UIO_USERSPACE); 1689 1690 out: 1691 free(iov, M_IOV); 1692 if (to) 1693 free(to, M_SONAME); 1694 return (error); 1695 } 1696 1697 #ifdef COMPAT_43 1698 int 1699 ofreebsd32_sendmsg(struct thread *td, struct ofreebsd32_sendmsg_args *uap) 1700 { 1701 return (ENOSYS); 1702 } 1703 #endif 1704 1705 1706 int 1707 freebsd32_settimeofday(struct thread *td, 1708 struct freebsd32_settimeofday_args *uap) 1709 { 1710 struct timeval32 tv32; 1711 struct timeval tv, *tvp; 1712 struct timezone tz, *tzp; 1713 int error; 1714 1715 if (uap->tv) { 1716 error = copyin(uap->tv, &tv32, sizeof(tv32)); 1717 if (error) 1718 return (error); 1719 CP(tv32, tv, tv_sec); 1720 CP(tv32, tv, tv_usec); 1721 tvp = &tv; 1722 } else 1723 tvp = NULL; 1724 if (uap->tzp) { 1725 error = copyin(uap->tzp, &tz, sizeof(tz)); 1726 if (error) 1727 return (error); 1728 tzp = &tz; 1729 } else 1730 tzp = NULL; 1731 return (kern_settimeofday(td, tvp, tzp)); 1732 } 1733 1734 int 1735 freebsd32_utimes(struct thread *td, struct freebsd32_utimes_args *uap) 1736 { 1737 struct timeval32 s32[2]; 1738 struct timeval s[2], *sp; 1739 int error; 1740 1741 if (uap->tptr != NULL) { 1742 error = copyin(uap->tptr, s32, sizeof(s32)); 1743 if (error) 1744 return (error); 1745 CP(s32[0], s[0], tv_sec); 1746 CP(s32[0], s[0], tv_usec); 1747 CP(s32[1], s[1], tv_sec); 1748 CP(s32[1], s[1], tv_usec); 1749 sp = s; 1750 } else 1751 sp = NULL; 1752 return (kern_utimesat(td, AT_FDCWD, uap->path, UIO_USERSPACE, 1753 sp, UIO_SYSSPACE)); 1754 } 1755 1756 int 1757 freebsd32_lutimes(struct thread *td, struct freebsd32_lutimes_args *uap) 1758 { 1759 struct timeval32 s32[2]; 1760 struct timeval s[2], *sp; 1761 int error; 1762 1763 if (uap->tptr != NULL) { 1764 error = copyin(uap->tptr, s32, sizeof(s32)); 1765 if (error) 1766 return (error); 1767 CP(s32[0], s[0], tv_sec); 1768 CP(s32[0], s[0], tv_usec); 1769 CP(s32[1], s[1], tv_sec); 1770 CP(s32[1], s[1], tv_usec); 1771 sp = s; 1772 } else 1773 sp = NULL; 1774 return (kern_lutimes(td, uap->path, UIO_USERSPACE, sp, UIO_SYSSPACE)); 1775 } 1776 1777 int 1778 freebsd32_futimes(struct thread *td, struct freebsd32_futimes_args *uap) 1779 { 1780 struct timeval32 s32[2]; 1781 struct timeval s[2], *sp; 1782 int error; 1783 1784 if (uap->tptr != NULL) { 1785 error = copyin(uap->tptr, s32, sizeof(s32)); 1786 if (error) 1787 return (error); 1788 CP(s32[0], s[0], tv_sec); 1789 CP(s32[0], s[0], tv_usec); 1790 CP(s32[1], s[1], tv_sec); 1791 CP(s32[1], s[1], tv_usec); 1792 sp = s; 1793 } else 1794 sp = NULL; 1795 return (kern_futimes(td, uap->fd, sp, UIO_SYSSPACE)); 1796 } 1797 1798 int 1799 freebsd32_futimesat(struct thread *td, struct freebsd32_futimesat_args *uap) 1800 { 1801 struct timeval32 s32[2]; 1802 struct timeval s[2], *sp; 1803 int error; 1804 1805 if (uap->times != NULL) { 1806 error = copyin(uap->times, s32, sizeof(s32)); 1807 if (error) 1808 return (error); 1809 CP(s32[0], s[0], tv_sec); 1810 CP(s32[0], s[0], tv_usec); 1811 CP(s32[1], s[1], tv_sec); 1812 CP(s32[1], s[1], tv_usec); 1813 sp = s; 1814 } else 1815 sp = NULL; 1816 return (kern_utimesat(td, uap->fd, uap->path, UIO_USERSPACE, 1817 sp, UIO_SYSSPACE)); 1818 } 1819 1820 int 1821 freebsd32_futimens(struct thread *td, struct freebsd32_futimens_args *uap) 1822 { 1823 struct timespec32 ts32[2]; 1824 struct timespec ts[2], *tsp; 1825 int error; 1826 1827 if (uap->times != NULL) { 1828 error = copyin(uap->times, ts32, sizeof(ts32)); 1829 if (error) 1830 return (error); 1831 CP(ts32[0], ts[0], tv_sec); 1832 CP(ts32[0], ts[0], tv_nsec); 1833 CP(ts32[1], ts[1], tv_sec); 1834 CP(ts32[1], ts[1], tv_nsec); 1835 tsp = ts; 1836 } else 1837 tsp = NULL; 1838 return (kern_futimens(td, uap->fd, tsp, UIO_SYSSPACE)); 1839 } 1840 1841 int 1842 freebsd32_utimensat(struct thread *td, struct freebsd32_utimensat_args *uap) 1843 { 1844 struct timespec32 ts32[2]; 1845 struct timespec ts[2], *tsp; 1846 int error; 1847 1848 if (uap->times != NULL) { 1849 error = copyin(uap->times, ts32, sizeof(ts32)); 1850 if (error) 1851 return (error); 1852 CP(ts32[0], ts[0], tv_sec); 1853 CP(ts32[0], ts[0], tv_nsec); 1854 CP(ts32[1], ts[1], tv_sec); 1855 CP(ts32[1], ts[1], tv_nsec); 1856 tsp = ts; 1857 } else 1858 tsp = NULL; 1859 return (kern_utimensat(td, uap->fd, uap->path, UIO_USERSPACE, 1860 tsp, UIO_SYSSPACE, uap->flag)); 1861 } 1862 1863 int 1864 freebsd32_adjtime(struct thread *td, struct freebsd32_adjtime_args *uap) 1865 { 1866 struct timeval32 tv32; 1867 struct timeval delta, olddelta, *deltap; 1868 int error; 1869 1870 if (uap->delta) { 1871 error = copyin(uap->delta, &tv32, sizeof(tv32)); 1872 if (error) 1873 return (error); 1874 CP(tv32, delta, tv_sec); 1875 CP(tv32, delta, tv_usec); 1876 deltap = δ 1877 } else 1878 deltap = NULL; 1879 error = kern_adjtime(td, deltap, &olddelta); 1880 if (uap->olddelta && error == 0) { 1881 CP(olddelta, tv32, tv_sec); 1882 CP(olddelta, tv32, tv_usec); 1883 error = copyout(&tv32, uap->olddelta, sizeof(tv32)); 1884 } 1885 return (error); 1886 } 1887 1888 #ifdef COMPAT_FREEBSD4 1889 int 1890 freebsd4_freebsd32_statfs(struct thread *td, struct freebsd4_freebsd32_statfs_args *uap) 1891 { 1892 struct ostatfs32 s32; 1893 struct statfs *sp; 1894 int error; 1895 1896 sp = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK); 1897 error = kern_statfs(td, uap->path, UIO_USERSPACE, sp); 1898 if (error == 0) { 1899 copy_statfs(sp, &s32); 1900 error = copyout(&s32, uap->buf, sizeof(s32)); 1901 } 1902 free(sp, M_STATFS); 1903 return (error); 1904 } 1905 #endif 1906 1907 #ifdef COMPAT_FREEBSD4 1908 int 1909 freebsd4_freebsd32_fstatfs(struct thread *td, struct freebsd4_freebsd32_fstatfs_args *uap) 1910 { 1911 struct ostatfs32 s32; 1912 struct statfs *sp; 1913 int error; 1914 1915 sp = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK); 1916 error = kern_fstatfs(td, uap->fd, sp); 1917 if (error == 0) { 1918 copy_statfs(sp, &s32); 1919 error = copyout(&s32, uap->buf, sizeof(s32)); 1920 } 1921 free(sp, M_STATFS); 1922 return (error); 1923 } 1924 #endif 1925 1926 #ifdef COMPAT_FREEBSD4 1927 int 1928 freebsd4_freebsd32_fhstatfs(struct thread *td, struct freebsd4_freebsd32_fhstatfs_args *uap) 1929 { 1930 struct ostatfs32 s32; 1931 struct statfs *sp; 1932 fhandle_t fh; 1933 int error; 1934 1935 if ((error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t))) != 0) 1936 return (error); 1937 sp = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK); 1938 error = kern_fhstatfs(td, fh, sp); 1939 if (error == 0) { 1940 copy_statfs(sp, &s32); 1941 error = copyout(&s32, uap->buf, sizeof(s32)); 1942 } 1943 free(sp, M_STATFS); 1944 return (error); 1945 } 1946 #endif 1947 1948 int 1949 freebsd32_pread(struct thread *td, struct freebsd32_pread_args *uap) 1950 { 1951 1952 return (kern_pread(td, uap->fd, uap->buf, uap->nbyte, 1953 PAIR32TO64(off_t, uap->offset))); 1954 } 1955 1956 int 1957 freebsd32_pwrite(struct thread *td, struct freebsd32_pwrite_args *uap) 1958 { 1959 1960 return (kern_pwrite(td, uap->fd, uap->buf, uap->nbyte, 1961 PAIR32TO64(off_t, uap->offset))); 1962 } 1963 1964 #ifdef COMPAT_43 1965 int 1966 ofreebsd32_lseek(struct thread *td, struct ofreebsd32_lseek_args *uap) 1967 { 1968 1969 return (kern_lseek(td, uap->fd, uap->offset, uap->whence)); 1970 } 1971 #endif 1972 1973 int 1974 freebsd32_lseek(struct thread *td, struct freebsd32_lseek_args *uap) 1975 { 1976 int error; 1977 off_t pos; 1978 1979 error = kern_lseek(td, uap->fd, PAIR32TO64(off_t, uap->offset), 1980 uap->whence); 1981 /* Expand the quad return into two parts for eax and edx */ 1982 pos = td->td_uretoff.tdu_off; 1983 td->td_retval[RETVAL_LO] = pos & 0xffffffff; /* %eax */ 1984 td->td_retval[RETVAL_HI] = pos >> 32; /* %edx */ 1985 return error; 1986 } 1987 1988 int 1989 freebsd32_truncate(struct thread *td, struct freebsd32_truncate_args *uap) 1990 { 1991 1992 return (kern_truncate(td, uap->path, UIO_USERSPACE, 1993 PAIR32TO64(off_t, uap->length))); 1994 } 1995 1996 #ifdef COMPAT_43 1997 int 1998 ofreebsd32_truncate(struct thread *td, struct ofreebsd32_truncate_args *uap) 1999 { 2000 return (kern_truncate(td, uap->path, UIO_USERSPACE, uap->length)); 2001 } 2002 #endif 2003 2004 int 2005 freebsd32_ftruncate(struct thread *td, struct freebsd32_ftruncate_args *uap) 2006 { 2007 2008 return (kern_ftruncate(td, uap->fd, PAIR32TO64(off_t, uap->length))); 2009 } 2010 2011 #ifdef COMPAT_43 2012 int 2013 ofreebsd32_ftruncate(struct thread *td, struct ofreebsd32_ftruncate_args *uap) 2014 { 2015 return (kern_ftruncate(td, uap->fd, uap->length)); 2016 } 2017 2018 int 2019 ofreebsd32_getdirentries(struct thread *td, 2020 struct ofreebsd32_getdirentries_args *uap) 2021 { 2022 struct ogetdirentries_args ap; 2023 int error; 2024 long loff; 2025 int32_t loff_cut; 2026 2027 ap.fd = uap->fd; 2028 ap.buf = uap->buf; 2029 ap.count = uap->count; 2030 ap.basep = NULL; 2031 error = kern_ogetdirentries(td, &ap, &loff); 2032 if (error == 0) { 2033 loff_cut = loff; 2034 error = copyout(&loff_cut, uap->basep, sizeof(int32_t)); 2035 } 2036 return (error); 2037 } 2038 #endif 2039 2040 #if defined(COMPAT_FREEBSD11) 2041 int 2042 freebsd11_freebsd32_getdirentries(struct thread *td, 2043 struct freebsd11_freebsd32_getdirentries_args *uap) 2044 { 2045 long base; 2046 int32_t base32; 2047 int error; 2048 2049 error = freebsd11_kern_getdirentries(td, uap->fd, uap->buf, uap->count, 2050 &base, NULL); 2051 if (error) 2052 return (error); 2053 if (uap->basep != NULL) { 2054 base32 = base; 2055 error = copyout(&base32, uap->basep, sizeof(int32_t)); 2056 } 2057 return (error); 2058 } 2059 #endif /* COMPAT_FREEBSD11 */ 2060 2061 #ifdef COMPAT_FREEBSD6 2062 /* versions with the 'int pad' argument */ 2063 int 2064 freebsd6_freebsd32_pread(struct thread *td, struct freebsd6_freebsd32_pread_args *uap) 2065 { 2066 2067 return (kern_pread(td, uap->fd, uap->buf, uap->nbyte, 2068 PAIR32TO64(off_t, uap->offset))); 2069 } 2070 2071 int 2072 freebsd6_freebsd32_pwrite(struct thread *td, struct freebsd6_freebsd32_pwrite_args *uap) 2073 { 2074 2075 return (kern_pwrite(td, uap->fd, uap->buf, uap->nbyte, 2076 PAIR32TO64(off_t, uap->offset))); 2077 } 2078 2079 int 2080 freebsd6_freebsd32_lseek(struct thread *td, struct freebsd6_freebsd32_lseek_args *uap) 2081 { 2082 int error; 2083 off_t pos; 2084 2085 error = kern_lseek(td, uap->fd, PAIR32TO64(off_t, uap->offset), 2086 uap->whence); 2087 /* Expand the quad return into two parts for eax and edx */ 2088 pos = *(off_t *)(td->td_retval); 2089 td->td_retval[RETVAL_LO] = pos & 0xffffffff; /* %eax */ 2090 td->td_retval[RETVAL_HI] = pos >> 32; /* %edx */ 2091 return error; 2092 } 2093 2094 int 2095 freebsd6_freebsd32_truncate(struct thread *td, struct freebsd6_freebsd32_truncate_args *uap) 2096 { 2097 2098 return (kern_truncate(td, uap->path, UIO_USERSPACE, 2099 PAIR32TO64(off_t, uap->length))); 2100 } 2101 2102 int 2103 freebsd6_freebsd32_ftruncate(struct thread *td, struct freebsd6_freebsd32_ftruncate_args *uap) 2104 { 2105 2106 return (kern_ftruncate(td, uap->fd, PAIR32TO64(off_t, uap->length))); 2107 } 2108 #endif /* COMPAT_FREEBSD6 */ 2109 2110 struct sf_hdtr32 { 2111 uint32_t headers; 2112 int hdr_cnt; 2113 uint32_t trailers; 2114 int trl_cnt; 2115 }; 2116 2117 static int 2118 freebsd32_do_sendfile(struct thread *td, 2119 struct freebsd32_sendfile_args *uap, int compat) 2120 { 2121 struct sf_hdtr32 hdtr32; 2122 struct sf_hdtr hdtr; 2123 struct uio *hdr_uio, *trl_uio; 2124 struct file *fp; 2125 cap_rights_t rights; 2126 struct iovec32 *iov32; 2127 off_t offset, sbytes; 2128 int error; 2129 2130 offset = PAIR32TO64(off_t, uap->offset); 2131 if (offset < 0) 2132 return (EINVAL); 2133 2134 hdr_uio = trl_uio = NULL; 2135 2136 if (uap->hdtr != NULL) { 2137 error = copyin(uap->hdtr, &hdtr32, sizeof(hdtr32)); 2138 if (error) 2139 goto out; 2140 PTRIN_CP(hdtr32, hdtr, headers); 2141 CP(hdtr32, hdtr, hdr_cnt); 2142 PTRIN_CP(hdtr32, hdtr, trailers); 2143 CP(hdtr32, hdtr, trl_cnt); 2144 2145 if (hdtr.headers != NULL) { 2146 iov32 = PTRIN(hdtr32.headers); 2147 error = freebsd32_copyinuio(iov32, 2148 hdtr32.hdr_cnt, &hdr_uio); 2149 if (error) 2150 goto out; 2151 #ifdef COMPAT_FREEBSD4 2152 /* 2153 * In FreeBSD < 5.0 the nbytes to send also included 2154 * the header. If compat is specified subtract the 2155 * header size from nbytes. 2156 */ 2157 if (compat) { 2158 if (uap->nbytes > hdr_uio->uio_resid) 2159 uap->nbytes -= hdr_uio->uio_resid; 2160 else 2161 uap->nbytes = 0; 2162 } 2163 #endif 2164 } 2165 if (hdtr.trailers != NULL) { 2166 iov32 = PTRIN(hdtr32.trailers); 2167 error = freebsd32_copyinuio(iov32, 2168 hdtr32.trl_cnt, &trl_uio); 2169 if (error) 2170 goto out; 2171 } 2172 } 2173 2174 AUDIT_ARG_FD(uap->fd); 2175 2176 if ((error = fget_read(td, uap->fd, 2177 cap_rights_init_one(&rights, CAP_PREAD), &fp)) != 0) 2178 goto out; 2179 2180 error = fo_sendfile(fp, uap->s, hdr_uio, trl_uio, offset, 2181 uap->nbytes, &sbytes, uap->flags, td); 2182 fdrop(fp, td); 2183 2184 if (uap->sbytes != NULL) 2185 copyout(&sbytes, uap->sbytes, sizeof(off_t)); 2186 2187 out: 2188 if (hdr_uio) 2189 free(hdr_uio, M_IOV); 2190 if (trl_uio) 2191 free(trl_uio, M_IOV); 2192 return (error); 2193 } 2194 2195 #ifdef COMPAT_FREEBSD4 2196 int 2197 freebsd4_freebsd32_sendfile(struct thread *td, 2198 struct freebsd4_freebsd32_sendfile_args *uap) 2199 { 2200 return (freebsd32_do_sendfile(td, 2201 (struct freebsd32_sendfile_args *)uap, 1)); 2202 } 2203 #endif 2204 2205 int 2206 freebsd32_sendfile(struct thread *td, struct freebsd32_sendfile_args *uap) 2207 { 2208 2209 return (freebsd32_do_sendfile(td, uap, 0)); 2210 } 2211 2212 static void 2213 copy_stat(struct stat *in, struct stat32 *out) 2214 { 2215 2216 #ifndef __amd64__ 2217 /* 2218 * 32-bit architectures other than i386 have 64-bit time_t. This 2219 * results in struct timespec32 with 12 bytes for tv_sec and tv_nsec, 2220 * and 4 bytes of padding. Zero the padding holes in struct stat32. 2221 */ 2222 bzero(&out->st_atim, sizeof(out->st_atim)); 2223 bzero(&out->st_mtim, sizeof(out->st_mtim)); 2224 bzero(&out->st_ctim, sizeof(out->st_ctim)); 2225 bzero(&out->st_birthtim, sizeof(out->st_birthtim)); 2226 #endif 2227 CP(*in, *out, st_dev); 2228 CP(*in, *out, st_ino); 2229 CP(*in, *out, st_mode); 2230 CP(*in, *out, st_nlink); 2231 CP(*in, *out, st_uid); 2232 CP(*in, *out, st_gid); 2233 CP(*in, *out, st_rdev); 2234 TS_CP(*in, *out, st_atim); 2235 TS_CP(*in, *out, st_mtim); 2236 TS_CP(*in, *out, st_ctim); 2237 CP(*in, *out, st_size); 2238 CP(*in, *out, st_blocks); 2239 CP(*in, *out, st_blksize); 2240 CP(*in, *out, st_flags); 2241 CP(*in, *out, st_gen); 2242 TS_CP(*in, *out, st_birthtim); 2243 out->st_padding0 = 0; 2244 out->st_padding1 = 0; 2245 #ifdef __STAT32_TIME_T_EXT 2246 out->st_atim_ext = 0; 2247 out->st_mtim_ext = 0; 2248 out->st_ctim_ext = 0; 2249 out->st_btim_ext = 0; 2250 #endif 2251 bzero(out->st_spare, sizeof(out->st_spare)); 2252 } 2253 2254 #ifdef COMPAT_43 2255 static void 2256 copy_ostat(struct stat *in, struct ostat32 *out) 2257 { 2258 2259 bzero(out, sizeof(*out)); 2260 CP(*in, *out, st_dev); 2261 CP(*in, *out, st_ino); 2262 CP(*in, *out, st_mode); 2263 CP(*in, *out, st_nlink); 2264 CP(*in, *out, st_uid); 2265 CP(*in, *out, st_gid); 2266 CP(*in, *out, st_rdev); 2267 out->st_size = MIN(in->st_size, INT32_MAX); 2268 TS_CP(*in, *out, st_atim); 2269 TS_CP(*in, *out, st_mtim); 2270 TS_CP(*in, *out, st_ctim); 2271 CP(*in, *out, st_blksize); 2272 CP(*in, *out, st_blocks); 2273 CP(*in, *out, st_flags); 2274 CP(*in, *out, st_gen); 2275 } 2276 #endif 2277 2278 #ifdef COMPAT_43 2279 int 2280 ofreebsd32_stat(struct thread *td, struct ofreebsd32_stat_args *uap) 2281 { 2282 struct stat sb; 2283 struct ostat32 sb32; 2284 int error; 2285 2286 error = kern_statat(td, 0, AT_FDCWD, uap->path, UIO_USERSPACE, &sb); 2287 if (error) 2288 return (error); 2289 copy_ostat(&sb, &sb32); 2290 error = copyout(&sb32, uap->ub, sizeof (sb32)); 2291 return (error); 2292 } 2293 #endif 2294 2295 int 2296 freebsd32_fstat(struct thread *td, struct freebsd32_fstat_args *uap) 2297 { 2298 struct stat ub; 2299 struct stat32 ub32; 2300 int error; 2301 2302 error = kern_fstat(td, uap->fd, &ub); 2303 if (error) 2304 return (error); 2305 copy_stat(&ub, &ub32); 2306 error = copyout(&ub32, uap->sb, sizeof(ub32)); 2307 return (error); 2308 } 2309 2310 #ifdef COMPAT_43 2311 int 2312 ofreebsd32_fstat(struct thread *td, struct ofreebsd32_fstat_args *uap) 2313 { 2314 struct stat ub; 2315 struct ostat32 ub32; 2316 int error; 2317 2318 error = kern_fstat(td, uap->fd, &ub); 2319 if (error) 2320 return (error); 2321 copy_ostat(&ub, &ub32); 2322 error = copyout(&ub32, uap->sb, sizeof(ub32)); 2323 return (error); 2324 } 2325 #endif 2326 2327 int 2328 freebsd32_fstatat(struct thread *td, struct freebsd32_fstatat_args *uap) 2329 { 2330 struct stat ub; 2331 struct stat32 ub32; 2332 int error; 2333 2334 error = kern_statat(td, uap->flag, uap->fd, uap->path, UIO_USERSPACE, 2335 &ub); 2336 if (error) 2337 return (error); 2338 copy_stat(&ub, &ub32); 2339 error = copyout(&ub32, uap->buf, sizeof(ub32)); 2340 return (error); 2341 } 2342 2343 #ifdef COMPAT_43 2344 int 2345 ofreebsd32_lstat(struct thread *td, struct ofreebsd32_lstat_args *uap) 2346 { 2347 struct stat sb; 2348 struct ostat32 sb32; 2349 int error; 2350 2351 error = kern_statat(td, AT_SYMLINK_NOFOLLOW, AT_FDCWD, uap->path, 2352 UIO_USERSPACE, &sb); 2353 if (error) 2354 return (error); 2355 copy_ostat(&sb, &sb32); 2356 error = copyout(&sb32, uap->ub, sizeof (sb32)); 2357 return (error); 2358 } 2359 #endif 2360 2361 int 2362 freebsd32_fhstat(struct thread *td, struct freebsd32_fhstat_args *uap) 2363 { 2364 struct stat sb; 2365 struct stat32 sb32; 2366 struct fhandle fh; 2367 int error; 2368 2369 error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t)); 2370 if (error != 0) 2371 return (error); 2372 error = kern_fhstat(td, fh, &sb); 2373 if (error != 0) 2374 return (error); 2375 copy_stat(&sb, &sb32); 2376 error = copyout(&sb32, uap->sb, sizeof (sb32)); 2377 return (error); 2378 } 2379 2380 #if defined(COMPAT_FREEBSD11) 2381 extern int ino64_trunc_error; 2382 2383 static int 2384 freebsd11_cvtstat32(struct stat *in, struct freebsd11_stat32 *out) 2385 { 2386 2387 #ifndef __amd64__ 2388 /* 2389 * 32-bit architectures other than i386 have 64-bit time_t. This 2390 * results in struct timespec32 with 12 bytes for tv_sec and tv_nsec, 2391 * and 4 bytes of padding. Zero the padding holes in freebsd11_stat32. 2392 */ 2393 bzero(&out->st_atim, sizeof(out->st_atim)); 2394 bzero(&out->st_mtim, sizeof(out->st_mtim)); 2395 bzero(&out->st_ctim, sizeof(out->st_ctim)); 2396 bzero(&out->st_birthtim, sizeof(out->st_birthtim)); 2397 #endif 2398 2399 CP(*in, *out, st_ino); 2400 if (in->st_ino != out->st_ino) { 2401 switch (ino64_trunc_error) { 2402 default: 2403 case 0: 2404 break; 2405 case 1: 2406 return (EOVERFLOW); 2407 case 2: 2408 out->st_ino = UINT32_MAX; 2409 break; 2410 } 2411 } 2412 CP(*in, *out, st_nlink); 2413 if (in->st_nlink != out->st_nlink) { 2414 switch (ino64_trunc_error) { 2415 default: 2416 case 0: 2417 break; 2418 case 1: 2419 return (EOVERFLOW); 2420 case 2: 2421 out->st_nlink = UINT16_MAX; 2422 break; 2423 } 2424 } 2425 out->st_dev = in->st_dev; 2426 if (out->st_dev != in->st_dev) { 2427 switch (ino64_trunc_error) { 2428 default: 2429 break; 2430 case 1: 2431 return (EOVERFLOW); 2432 } 2433 } 2434 CP(*in, *out, st_mode); 2435 CP(*in, *out, st_uid); 2436 CP(*in, *out, st_gid); 2437 out->st_rdev = in->st_rdev; 2438 if (out->st_rdev != in->st_rdev) { 2439 switch (ino64_trunc_error) { 2440 default: 2441 break; 2442 case 1: 2443 return (EOVERFLOW); 2444 } 2445 } 2446 TS_CP(*in, *out, st_atim); 2447 TS_CP(*in, *out, st_mtim); 2448 TS_CP(*in, *out, st_ctim); 2449 CP(*in, *out, st_size); 2450 CP(*in, *out, st_blocks); 2451 CP(*in, *out, st_blksize); 2452 CP(*in, *out, st_flags); 2453 CP(*in, *out, st_gen); 2454 TS_CP(*in, *out, st_birthtim); 2455 out->st_lspare = 0; 2456 bzero((char *)&out->st_birthtim + sizeof(out->st_birthtim), 2457 sizeof(*out) - offsetof(struct freebsd11_stat32, 2458 st_birthtim) - sizeof(out->st_birthtim)); 2459 return (0); 2460 } 2461 2462 int 2463 freebsd11_freebsd32_stat(struct thread *td, 2464 struct freebsd11_freebsd32_stat_args *uap) 2465 { 2466 struct stat sb; 2467 struct freebsd11_stat32 sb32; 2468 int error; 2469 2470 error = kern_statat(td, 0, AT_FDCWD, uap->path, UIO_USERSPACE, &sb); 2471 if (error != 0) 2472 return (error); 2473 error = freebsd11_cvtstat32(&sb, &sb32); 2474 if (error == 0) 2475 error = copyout(&sb32, uap->ub, sizeof (sb32)); 2476 return (error); 2477 } 2478 2479 int 2480 freebsd11_freebsd32_fstat(struct thread *td, 2481 struct freebsd11_freebsd32_fstat_args *uap) 2482 { 2483 struct stat sb; 2484 struct freebsd11_stat32 sb32; 2485 int error; 2486 2487 error = kern_fstat(td, uap->fd, &sb); 2488 if (error != 0) 2489 return (error); 2490 error = freebsd11_cvtstat32(&sb, &sb32); 2491 if (error == 0) 2492 error = copyout(&sb32, uap->sb, sizeof (sb32)); 2493 return (error); 2494 } 2495 2496 int 2497 freebsd11_freebsd32_fstatat(struct thread *td, 2498 struct freebsd11_freebsd32_fstatat_args *uap) 2499 { 2500 struct stat sb; 2501 struct freebsd11_stat32 sb32; 2502 int error; 2503 2504 error = kern_statat(td, uap->flag, uap->fd, uap->path, UIO_USERSPACE, 2505 &sb); 2506 if (error != 0) 2507 return (error); 2508 error = freebsd11_cvtstat32(&sb, &sb32); 2509 if (error == 0) 2510 error = copyout(&sb32, uap->buf, sizeof (sb32)); 2511 return (error); 2512 } 2513 2514 int 2515 freebsd11_freebsd32_lstat(struct thread *td, 2516 struct freebsd11_freebsd32_lstat_args *uap) 2517 { 2518 struct stat sb; 2519 struct freebsd11_stat32 sb32; 2520 int error; 2521 2522 error = kern_statat(td, AT_SYMLINK_NOFOLLOW, AT_FDCWD, uap->path, 2523 UIO_USERSPACE, &sb); 2524 if (error != 0) 2525 return (error); 2526 error = freebsd11_cvtstat32(&sb, &sb32); 2527 if (error == 0) 2528 error = copyout(&sb32, uap->ub, sizeof (sb32)); 2529 return (error); 2530 } 2531 2532 int 2533 freebsd11_freebsd32_fhstat(struct thread *td, 2534 struct freebsd11_freebsd32_fhstat_args *uap) 2535 { 2536 struct stat sb; 2537 struct freebsd11_stat32 sb32; 2538 struct fhandle fh; 2539 int error; 2540 2541 error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t)); 2542 if (error != 0) 2543 return (error); 2544 error = kern_fhstat(td, fh, &sb); 2545 if (error != 0) 2546 return (error); 2547 error = freebsd11_cvtstat32(&sb, &sb32); 2548 if (error == 0) 2549 error = copyout(&sb32, uap->sb, sizeof (sb32)); 2550 return (error); 2551 } 2552 2553 static int 2554 freebsd11_cvtnstat32(struct stat *sb, struct nstat32 *nsb32) 2555 { 2556 struct nstat nsb; 2557 int error; 2558 2559 error = freebsd11_cvtnstat(sb, &nsb); 2560 if (error != 0) 2561 return (error); 2562 2563 bzero(nsb32, sizeof(*nsb32)); 2564 CP(nsb, *nsb32, st_dev); 2565 CP(nsb, *nsb32, st_ino); 2566 CP(nsb, *nsb32, st_mode); 2567 CP(nsb, *nsb32, st_nlink); 2568 CP(nsb, *nsb32, st_uid); 2569 CP(nsb, *nsb32, st_gid); 2570 CP(nsb, *nsb32, st_rdev); 2571 CP(nsb, *nsb32, st_atim.tv_sec); 2572 CP(nsb, *nsb32, st_atim.tv_nsec); 2573 CP(nsb, *nsb32, st_mtim.tv_sec); 2574 CP(nsb, *nsb32, st_mtim.tv_nsec); 2575 CP(nsb, *nsb32, st_ctim.tv_sec); 2576 CP(nsb, *nsb32, st_ctim.tv_nsec); 2577 CP(nsb, *nsb32, st_size); 2578 CP(nsb, *nsb32, st_blocks); 2579 CP(nsb, *nsb32, st_blksize); 2580 CP(nsb, *nsb32, st_flags); 2581 CP(nsb, *nsb32, st_gen); 2582 CP(nsb, *nsb32, st_birthtim.tv_sec); 2583 CP(nsb, *nsb32, st_birthtim.tv_nsec); 2584 return (0); 2585 } 2586 2587 int 2588 freebsd11_freebsd32_nstat(struct thread *td, 2589 struct freebsd11_freebsd32_nstat_args *uap) 2590 { 2591 struct stat sb; 2592 struct nstat32 nsb; 2593 int error; 2594 2595 error = kern_statat(td, 0, AT_FDCWD, uap->path, UIO_USERSPACE, &sb); 2596 if (error != 0) 2597 return (error); 2598 error = freebsd11_cvtnstat32(&sb, &nsb); 2599 if (error != 0) 2600 error = copyout(&nsb, uap->ub, sizeof (nsb)); 2601 return (error); 2602 } 2603 2604 int 2605 freebsd11_freebsd32_nlstat(struct thread *td, 2606 struct freebsd11_freebsd32_nlstat_args *uap) 2607 { 2608 struct stat sb; 2609 struct nstat32 nsb; 2610 int error; 2611 2612 error = kern_statat(td, AT_SYMLINK_NOFOLLOW, AT_FDCWD, uap->path, 2613 UIO_USERSPACE, &sb); 2614 if (error != 0) 2615 return (error); 2616 error = freebsd11_cvtnstat32(&sb, &nsb); 2617 if (error == 0) 2618 error = copyout(&nsb, uap->ub, sizeof (nsb)); 2619 return (error); 2620 } 2621 2622 int 2623 freebsd11_freebsd32_nfstat(struct thread *td, 2624 struct freebsd11_freebsd32_nfstat_args *uap) 2625 { 2626 struct nstat32 nub; 2627 struct stat ub; 2628 int error; 2629 2630 error = kern_fstat(td, uap->fd, &ub); 2631 if (error != 0) 2632 return (error); 2633 error = freebsd11_cvtnstat32(&ub, &nub); 2634 if (error == 0) 2635 error = copyout(&nub, uap->sb, sizeof(nub)); 2636 return (error); 2637 } 2638 #endif 2639 2640 int 2641 freebsd32___sysctl(struct thread *td, struct freebsd32___sysctl_args *uap) 2642 { 2643 int error, name[CTL_MAXNAME]; 2644 size_t j, oldlen; 2645 uint32_t tmp; 2646 2647 if (uap->namelen > CTL_MAXNAME || uap->namelen < 2) 2648 return (EINVAL); 2649 error = copyin(uap->name, name, uap->namelen * sizeof(int)); 2650 if (error) 2651 return (error); 2652 if (uap->oldlenp) { 2653 error = fueword32(uap->oldlenp, &tmp); 2654 oldlen = tmp; 2655 } else { 2656 oldlen = 0; 2657 } 2658 if (error != 0) 2659 return (EFAULT); 2660 error = userland_sysctl(td, name, uap->namelen, 2661 uap->old, &oldlen, 1, 2662 uap->new, uap->newlen, &j, SCTL_MASK32); 2663 if (error) 2664 return (error); 2665 if (uap->oldlenp) 2666 suword32(uap->oldlenp, j); 2667 return (0); 2668 } 2669 2670 int 2671 freebsd32___sysctlbyname(struct thread *td, 2672 struct freebsd32___sysctlbyname_args *uap) 2673 { 2674 size_t oldlen, rv; 2675 int error; 2676 uint32_t tmp; 2677 2678 if (uap->oldlenp != NULL) { 2679 error = fueword32(uap->oldlenp, &tmp); 2680 oldlen = tmp; 2681 } else { 2682 error = oldlen = 0; 2683 } 2684 if (error != 0) 2685 return (EFAULT); 2686 error = kern___sysctlbyname(td, uap->name, uap->namelen, uap->old, 2687 &oldlen, uap->new, uap->newlen, &rv, SCTL_MASK32, 1); 2688 if (error != 0) 2689 return (error); 2690 if (uap->oldlenp != NULL) 2691 error = suword32(uap->oldlenp, rv); 2692 2693 return (error); 2694 } 2695 2696 int 2697 freebsd32_jail(struct thread *td, struct freebsd32_jail_args *uap) 2698 { 2699 uint32_t version; 2700 int error; 2701 struct jail j; 2702 2703 error = copyin(uap->jail, &version, sizeof(uint32_t)); 2704 if (error) 2705 return (error); 2706 2707 switch (version) { 2708 case 0: 2709 { 2710 /* FreeBSD single IPv4 jails. */ 2711 struct jail32_v0 j32_v0; 2712 2713 bzero(&j, sizeof(struct jail)); 2714 error = copyin(uap->jail, &j32_v0, sizeof(struct jail32_v0)); 2715 if (error) 2716 return (error); 2717 CP(j32_v0, j, version); 2718 PTRIN_CP(j32_v0, j, path); 2719 PTRIN_CP(j32_v0, j, hostname); 2720 j.ip4s = htonl(j32_v0.ip_number); /* jail_v0 is host order */ 2721 break; 2722 } 2723 2724 case 1: 2725 /* 2726 * Version 1 was used by multi-IPv4 jail implementations 2727 * that never made it into the official kernel. 2728 */ 2729 return (EINVAL); 2730 2731 case 2: /* JAIL_API_VERSION */ 2732 { 2733 /* FreeBSD multi-IPv4/IPv6,noIP jails. */ 2734 struct jail32 j32; 2735 2736 error = copyin(uap->jail, &j32, sizeof(struct jail32)); 2737 if (error) 2738 return (error); 2739 CP(j32, j, version); 2740 PTRIN_CP(j32, j, path); 2741 PTRIN_CP(j32, j, hostname); 2742 PTRIN_CP(j32, j, jailname); 2743 CP(j32, j, ip4s); 2744 CP(j32, j, ip6s); 2745 PTRIN_CP(j32, j, ip4); 2746 PTRIN_CP(j32, j, ip6); 2747 break; 2748 } 2749 2750 default: 2751 /* Sci-Fi jails are not supported, sorry. */ 2752 return (EINVAL); 2753 } 2754 return (kern_jail(td, &j)); 2755 } 2756 2757 int 2758 freebsd32_jail_set(struct thread *td, struct freebsd32_jail_set_args *uap) 2759 { 2760 struct uio *auio; 2761 int error; 2762 2763 /* Check that we have an even number of iovecs. */ 2764 if (uap->iovcnt & 1) 2765 return (EINVAL); 2766 2767 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 2768 if (error) 2769 return (error); 2770 error = kern_jail_set(td, auio, uap->flags); 2771 free(auio, M_IOV); 2772 return (error); 2773 } 2774 2775 int 2776 freebsd32_jail_get(struct thread *td, struct freebsd32_jail_get_args *uap) 2777 { 2778 struct iovec32 iov32; 2779 struct uio *auio; 2780 int error, i; 2781 2782 /* Check that we have an even number of iovecs. */ 2783 if (uap->iovcnt & 1) 2784 return (EINVAL); 2785 2786 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 2787 if (error) 2788 return (error); 2789 error = kern_jail_get(td, auio, uap->flags); 2790 if (error == 0) 2791 for (i = 0; i < uap->iovcnt; i++) { 2792 PTROUT_CP(auio->uio_iov[i], iov32, iov_base); 2793 CP(auio->uio_iov[i], iov32, iov_len); 2794 error = copyout(&iov32, uap->iovp + i, sizeof(iov32)); 2795 if (error != 0) 2796 break; 2797 } 2798 free(auio, M_IOV); 2799 return (error); 2800 } 2801 2802 int 2803 freebsd32_sigaction(struct thread *td, struct freebsd32_sigaction_args *uap) 2804 { 2805 struct sigaction32 s32; 2806 struct sigaction sa, osa, *sap; 2807 int error; 2808 2809 if (uap->act) { 2810 error = copyin(uap->act, &s32, sizeof(s32)); 2811 if (error) 2812 return (error); 2813 sa.sa_handler = PTRIN(s32.sa_u); 2814 CP(s32, sa, sa_flags); 2815 CP(s32, sa, sa_mask); 2816 sap = &sa; 2817 } else 2818 sap = NULL; 2819 error = kern_sigaction(td, uap->sig, sap, &osa, 0); 2820 if (error == 0 && uap->oact != NULL) { 2821 s32.sa_u = PTROUT(osa.sa_handler); 2822 CP(osa, s32, sa_flags); 2823 CP(osa, s32, sa_mask); 2824 error = copyout(&s32, uap->oact, sizeof(s32)); 2825 } 2826 return (error); 2827 } 2828 2829 #ifdef COMPAT_FREEBSD4 2830 int 2831 freebsd4_freebsd32_sigaction(struct thread *td, 2832 struct freebsd4_freebsd32_sigaction_args *uap) 2833 { 2834 struct sigaction32 s32; 2835 struct sigaction sa, osa, *sap; 2836 int error; 2837 2838 if (uap->act) { 2839 error = copyin(uap->act, &s32, sizeof(s32)); 2840 if (error) 2841 return (error); 2842 sa.sa_handler = PTRIN(s32.sa_u); 2843 CP(s32, sa, sa_flags); 2844 CP(s32, sa, sa_mask); 2845 sap = &sa; 2846 } else 2847 sap = NULL; 2848 error = kern_sigaction(td, uap->sig, sap, &osa, KSA_FREEBSD4); 2849 if (error == 0 && uap->oact != NULL) { 2850 s32.sa_u = PTROUT(osa.sa_handler); 2851 CP(osa, s32, sa_flags); 2852 CP(osa, s32, sa_mask); 2853 error = copyout(&s32, uap->oact, sizeof(s32)); 2854 } 2855 return (error); 2856 } 2857 #endif 2858 2859 #ifdef COMPAT_43 2860 struct osigaction32 { 2861 uint32_t sa_u; 2862 osigset_t sa_mask; 2863 int sa_flags; 2864 }; 2865 2866 #define ONSIG 32 2867 2868 int 2869 ofreebsd32_sigaction(struct thread *td, 2870 struct ofreebsd32_sigaction_args *uap) 2871 { 2872 struct osigaction32 s32; 2873 struct sigaction sa, osa, *sap; 2874 int error; 2875 2876 if (uap->signum <= 0 || uap->signum >= ONSIG) 2877 return (EINVAL); 2878 2879 if (uap->nsa) { 2880 error = copyin(uap->nsa, &s32, sizeof(s32)); 2881 if (error) 2882 return (error); 2883 sa.sa_handler = PTRIN(s32.sa_u); 2884 CP(s32, sa, sa_flags); 2885 OSIG2SIG(s32.sa_mask, sa.sa_mask); 2886 sap = &sa; 2887 } else 2888 sap = NULL; 2889 error = kern_sigaction(td, uap->signum, sap, &osa, KSA_OSIGSET); 2890 if (error == 0 && uap->osa != NULL) { 2891 s32.sa_u = PTROUT(osa.sa_handler); 2892 CP(osa, s32, sa_flags); 2893 SIG2OSIG(osa.sa_mask, s32.sa_mask); 2894 error = copyout(&s32, uap->osa, sizeof(s32)); 2895 } 2896 return (error); 2897 } 2898 2899 struct sigvec32 { 2900 uint32_t sv_handler; 2901 int sv_mask; 2902 int sv_flags; 2903 }; 2904 2905 int 2906 ofreebsd32_sigvec(struct thread *td, 2907 struct ofreebsd32_sigvec_args *uap) 2908 { 2909 struct sigvec32 vec; 2910 struct sigaction sa, osa, *sap; 2911 int error; 2912 2913 if (uap->signum <= 0 || uap->signum >= ONSIG) 2914 return (EINVAL); 2915 2916 if (uap->nsv) { 2917 error = copyin(uap->nsv, &vec, sizeof(vec)); 2918 if (error) 2919 return (error); 2920 sa.sa_handler = PTRIN(vec.sv_handler); 2921 OSIG2SIG(vec.sv_mask, sa.sa_mask); 2922 sa.sa_flags = vec.sv_flags; 2923 sa.sa_flags ^= SA_RESTART; 2924 sap = &sa; 2925 } else 2926 sap = NULL; 2927 error = kern_sigaction(td, uap->signum, sap, &osa, KSA_OSIGSET); 2928 if (error == 0 && uap->osv != NULL) { 2929 vec.sv_handler = PTROUT(osa.sa_handler); 2930 SIG2OSIG(osa.sa_mask, vec.sv_mask); 2931 vec.sv_flags = osa.sa_flags; 2932 vec.sv_flags &= ~SA_NOCLDWAIT; 2933 vec.sv_flags ^= SA_RESTART; 2934 error = copyout(&vec, uap->osv, sizeof(vec)); 2935 } 2936 return (error); 2937 } 2938 2939 struct sigstack32 { 2940 uint32_t ss_sp; 2941 int ss_onstack; 2942 }; 2943 2944 int 2945 ofreebsd32_sigstack(struct thread *td, 2946 struct ofreebsd32_sigstack_args *uap) 2947 { 2948 struct sigstack32 s32; 2949 struct sigstack nss, oss; 2950 int error = 0, unss; 2951 2952 if (uap->nss != NULL) { 2953 error = copyin(uap->nss, &s32, sizeof(s32)); 2954 if (error) 2955 return (error); 2956 nss.ss_sp = PTRIN(s32.ss_sp); 2957 CP(s32, nss, ss_onstack); 2958 unss = 1; 2959 } else { 2960 unss = 0; 2961 } 2962 oss.ss_sp = td->td_sigstk.ss_sp; 2963 oss.ss_onstack = sigonstack(cpu_getstack(td)); 2964 if (unss) { 2965 td->td_sigstk.ss_sp = nss.ss_sp; 2966 td->td_sigstk.ss_size = 0; 2967 td->td_sigstk.ss_flags |= (nss.ss_onstack & SS_ONSTACK); 2968 td->td_pflags |= TDP_ALTSTACK; 2969 } 2970 if (uap->oss != NULL) { 2971 s32.ss_sp = PTROUT(oss.ss_sp); 2972 CP(oss, s32, ss_onstack); 2973 error = copyout(&s32, uap->oss, sizeof(s32)); 2974 } 2975 return (error); 2976 } 2977 #endif 2978 2979 int 2980 freebsd32_nanosleep(struct thread *td, struct freebsd32_nanosleep_args *uap) 2981 { 2982 2983 return (freebsd32_user_clock_nanosleep(td, CLOCK_REALTIME, 2984 TIMER_RELTIME, uap->rqtp, uap->rmtp)); 2985 } 2986 2987 int 2988 freebsd32_clock_nanosleep(struct thread *td, 2989 struct freebsd32_clock_nanosleep_args *uap) 2990 { 2991 int error; 2992 2993 error = freebsd32_user_clock_nanosleep(td, uap->clock_id, uap->flags, 2994 uap->rqtp, uap->rmtp); 2995 return (kern_posix_error(td, error)); 2996 } 2997 2998 static int 2999 freebsd32_user_clock_nanosleep(struct thread *td, clockid_t clock_id, 3000 int flags, const struct timespec32 *ua_rqtp, struct timespec32 *ua_rmtp) 3001 { 3002 struct timespec32 rmt32, rqt32; 3003 struct timespec rmt, rqt; 3004 int error, error2; 3005 3006 error = copyin(ua_rqtp, &rqt32, sizeof(rqt32)); 3007 if (error) 3008 return (error); 3009 3010 CP(rqt32, rqt, tv_sec); 3011 CP(rqt32, rqt, tv_nsec); 3012 3013 error = kern_clock_nanosleep(td, clock_id, flags, &rqt, &rmt); 3014 if (error == EINTR && ua_rmtp != NULL && (flags & TIMER_ABSTIME) == 0) { 3015 CP(rmt, rmt32, tv_sec); 3016 CP(rmt, rmt32, tv_nsec); 3017 3018 error2 = copyout(&rmt32, ua_rmtp, sizeof(rmt32)); 3019 if (error2 != 0) 3020 error = error2; 3021 } 3022 return (error); 3023 } 3024 3025 int 3026 freebsd32_clock_gettime(struct thread *td, 3027 struct freebsd32_clock_gettime_args *uap) 3028 { 3029 struct timespec ats; 3030 struct timespec32 ats32; 3031 int error; 3032 3033 error = kern_clock_gettime(td, uap->clock_id, &ats); 3034 if (error == 0) { 3035 CP(ats, ats32, tv_sec); 3036 CP(ats, ats32, tv_nsec); 3037 error = copyout(&ats32, uap->tp, sizeof(ats32)); 3038 } 3039 return (error); 3040 } 3041 3042 int 3043 freebsd32_clock_settime(struct thread *td, 3044 struct freebsd32_clock_settime_args *uap) 3045 { 3046 struct timespec ats; 3047 struct timespec32 ats32; 3048 int error; 3049 3050 error = copyin(uap->tp, &ats32, sizeof(ats32)); 3051 if (error) 3052 return (error); 3053 CP(ats32, ats, tv_sec); 3054 CP(ats32, ats, tv_nsec); 3055 3056 return (kern_clock_settime(td, uap->clock_id, &ats)); 3057 } 3058 3059 int 3060 freebsd32_clock_getres(struct thread *td, 3061 struct freebsd32_clock_getres_args *uap) 3062 { 3063 struct timespec ts; 3064 struct timespec32 ts32; 3065 int error; 3066 3067 if (uap->tp == NULL) 3068 return (0); 3069 error = kern_clock_getres(td, uap->clock_id, &ts); 3070 if (error == 0) { 3071 CP(ts, ts32, tv_sec); 3072 CP(ts, ts32, tv_nsec); 3073 error = copyout(&ts32, uap->tp, sizeof(ts32)); 3074 } 3075 return (error); 3076 } 3077 3078 int freebsd32_ktimer_create(struct thread *td, 3079 struct freebsd32_ktimer_create_args *uap) 3080 { 3081 struct sigevent32 ev32; 3082 struct sigevent ev, *evp; 3083 int error, id; 3084 3085 if (uap->evp == NULL) { 3086 evp = NULL; 3087 } else { 3088 evp = &ev; 3089 error = copyin(uap->evp, &ev32, sizeof(ev32)); 3090 if (error != 0) 3091 return (error); 3092 error = convert_sigevent32(&ev32, &ev); 3093 if (error != 0) 3094 return (error); 3095 } 3096 error = kern_ktimer_create(td, uap->clock_id, evp, &id, -1); 3097 if (error == 0) { 3098 error = copyout(&id, uap->timerid, sizeof(int)); 3099 if (error != 0) 3100 kern_ktimer_delete(td, id); 3101 } 3102 return (error); 3103 } 3104 3105 int 3106 freebsd32_ktimer_settime(struct thread *td, 3107 struct freebsd32_ktimer_settime_args *uap) 3108 { 3109 struct itimerspec32 val32, oval32; 3110 struct itimerspec val, oval, *ovalp; 3111 int error; 3112 3113 error = copyin(uap->value, &val32, sizeof(val32)); 3114 if (error != 0) 3115 return (error); 3116 ITS_CP(val32, val); 3117 ovalp = uap->ovalue != NULL ? &oval : NULL; 3118 error = kern_ktimer_settime(td, uap->timerid, uap->flags, &val, ovalp); 3119 if (error == 0 && uap->ovalue != NULL) { 3120 ITS_CP(oval, oval32); 3121 error = copyout(&oval32, uap->ovalue, sizeof(oval32)); 3122 } 3123 return (error); 3124 } 3125 3126 int 3127 freebsd32_ktimer_gettime(struct thread *td, 3128 struct freebsd32_ktimer_gettime_args *uap) 3129 { 3130 struct itimerspec32 val32; 3131 struct itimerspec val; 3132 int error; 3133 3134 error = kern_ktimer_gettime(td, uap->timerid, &val); 3135 if (error == 0) { 3136 ITS_CP(val, val32); 3137 error = copyout(&val32, uap->value, sizeof(val32)); 3138 } 3139 return (error); 3140 } 3141 3142 int 3143 freebsd32_timerfd_gettime(struct thread *td, 3144 struct freebsd32_timerfd_gettime_args *uap) 3145 { 3146 struct itimerspec curr_value; 3147 struct itimerspec32 curr_value32; 3148 int error; 3149 3150 error = kern_timerfd_gettime(td, uap->fd, &curr_value); 3151 if (error == 0) { 3152 CP(curr_value, curr_value32, it_value.tv_sec); 3153 CP(curr_value, curr_value32, it_value.tv_nsec); 3154 CP(curr_value, curr_value32, it_interval.tv_sec); 3155 CP(curr_value, curr_value32, it_interval.tv_nsec); 3156 error = copyout(&curr_value32, uap->curr_value, 3157 sizeof(curr_value32)); 3158 } 3159 3160 return (error); 3161 } 3162 3163 int 3164 freebsd32_timerfd_settime(struct thread *td, 3165 struct freebsd32_timerfd_settime_args *uap) 3166 { 3167 struct itimerspec new_value, old_value; 3168 struct itimerspec32 new_value32, old_value32; 3169 int error; 3170 3171 error = copyin(uap->new_value, &new_value32, sizeof(new_value32)); 3172 if (error != 0) 3173 return (error); 3174 CP(new_value32, new_value, it_value.tv_sec); 3175 CP(new_value32, new_value, it_value.tv_nsec); 3176 CP(new_value32, new_value, it_interval.tv_sec); 3177 CP(new_value32, new_value, it_interval.tv_nsec); 3178 if (uap->old_value == NULL) { 3179 error = kern_timerfd_settime(td, uap->fd, uap->flags, 3180 &new_value, NULL); 3181 } else { 3182 error = kern_timerfd_settime(td, uap->fd, uap->flags, 3183 &new_value, &old_value); 3184 if (error == 0) { 3185 CP(old_value, old_value32, it_value.tv_sec); 3186 CP(old_value, old_value32, it_value.tv_nsec); 3187 CP(old_value, old_value32, it_interval.tv_sec); 3188 CP(old_value, old_value32, it_interval.tv_nsec); 3189 error = copyout(&old_value32, uap->old_value, 3190 sizeof(old_value32)); 3191 } 3192 } 3193 return (error); 3194 } 3195 3196 int 3197 freebsd32_clock_getcpuclockid2(struct thread *td, 3198 struct freebsd32_clock_getcpuclockid2_args *uap) 3199 { 3200 clockid_t clk_id; 3201 int error; 3202 3203 error = kern_clock_getcpuclockid2(td, PAIR32TO64(id_t, uap->id), 3204 uap->which, &clk_id); 3205 if (error == 0) 3206 error = copyout(&clk_id, uap->clock_id, sizeof(clockid_t)); 3207 return (error); 3208 } 3209 3210 int 3211 freebsd32_thr_new(struct thread *td, 3212 struct freebsd32_thr_new_args *uap) 3213 { 3214 struct thr_param32 param32; 3215 struct thr_param param; 3216 int error; 3217 3218 if (uap->param_size < 0 || 3219 uap->param_size > sizeof(struct thr_param32)) 3220 return (EINVAL); 3221 bzero(¶m, sizeof(struct thr_param)); 3222 bzero(¶m32, sizeof(struct thr_param32)); 3223 error = copyin(uap->param, ¶m32, uap->param_size); 3224 if (error != 0) 3225 return (error); 3226 param.start_func = PTRIN(param32.start_func); 3227 param.arg = PTRIN(param32.arg); 3228 param.stack_base = PTRIN(param32.stack_base); 3229 param.stack_size = param32.stack_size; 3230 param.tls_base = PTRIN(param32.tls_base); 3231 param.tls_size = param32.tls_size; 3232 param.child_tid = PTRIN(param32.child_tid); 3233 param.parent_tid = PTRIN(param32.parent_tid); 3234 param.flags = param32.flags; 3235 param.rtp = PTRIN(param32.rtp); 3236 param.spare[0] = PTRIN(param32.spare[0]); 3237 param.spare[1] = PTRIN(param32.spare[1]); 3238 param.spare[2] = PTRIN(param32.spare[2]); 3239 3240 return (kern_thr_new(td, ¶m)); 3241 } 3242 3243 int 3244 freebsd32_thr_suspend(struct thread *td, struct freebsd32_thr_suspend_args *uap) 3245 { 3246 struct timespec32 ts32; 3247 struct timespec ts, *tsp; 3248 int error; 3249 3250 error = 0; 3251 tsp = NULL; 3252 if (uap->timeout != NULL) { 3253 error = copyin((const void *)uap->timeout, (void *)&ts32, 3254 sizeof(struct timespec32)); 3255 if (error != 0) 3256 return (error); 3257 ts.tv_sec = ts32.tv_sec; 3258 ts.tv_nsec = ts32.tv_nsec; 3259 tsp = &ts; 3260 } 3261 return (kern_thr_suspend(td, tsp)); 3262 } 3263 3264 void 3265 siginfo_to_siginfo32(const siginfo_t *src, struct siginfo32 *dst) 3266 { 3267 bzero(dst, sizeof(*dst)); 3268 dst->si_signo = src->si_signo; 3269 dst->si_errno = src->si_errno; 3270 dst->si_code = src->si_code; 3271 dst->si_pid = src->si_pid; 3272 dst->si_uid = src->si_uid; 3273 dst->si_status = src->si_status; 3274 dst->si_addr = (uintptr_t)src->si_addr; 3275 dst->si_value.sival_int = src->si_value.sival_int; 3276 dst->si_timerid = src->si_timerid; 3277 dst->si_overrun = src->si_overrun; 3278 } 3279 3280 #ifndef _FREEBSD32_SYSPROTO_H_ 3281 struct freebsd32_sigqueue_args { 3282 pid_t pid; 3283 int signum; 3284 /* union sigval32 */ int value; 3285 }; 3286 #endif 3287 int 3288 freebsd32_sigqueue(struct thread *td, struct freebsd32_sigqueue_args *uap) 3289 { 3290 union sigval sv; 3291 3292 /* 3293 * On 32-bit ABIs, sival_int and sival_ptr are the same. 3294 * On 64-bit little-endian ABIs, the low bits are the same. 3295 * In 64-bit big-endian ABIs, sival_int overlaps with 3296 * sival_ptr's HIGH bits. We choose to support sival_int 3297 * rather than sival_ptr in this case as it seems to be 3298 * more common. 3299 */ 3300 bzero(&sv, sizeof(sv)); 3301 sv.sival_int = (uint32_t)(uint64_t)uap->value; 3302 3303 return (kern_sigqueue(td, uap->pid, uap->signum, &sv)); 3304 } 3305 3306 int 3307 freebsd32_sigtimedwait(struct thread *td, struct freebsd32_sigtimedwait_args *uap) 3308 { 3309 struct timespec32 ts32; 3310 struct timespec ts; 3311 struct timespec *timeout; 3312 sigset_t set; 3313 ksiginfo_t ksi; 3314 struct siginfo32 si32; 3315 int error; 3316 3317 if (uap->timeout) { 3318 error = copyin(uap->timeout, &ts32, sizeof(ts32)); 3319 if (error) 3320 return (error); 3321 ts.tv_sec = ts32.tv_sec; 3322 ts.tv_nsec = ts32.tv_nsec; 3323 timeout = &ts; 3324 } else 3325 timeout = NULL; 3326 3327 error = copyin(uap->set, &set, sizeof(set)); 3328 if (error) 3329 return (error); 3330 3331 error = kern_sigtimedwait(td, set, &ksi, timeout); 3332 if (error) 3333 return (error); 3334 3335 if (uap->info) { 3336 siginfo_to_siginfo32(&ksi.ksi_info, &si32); 3337 error = copyout(&si32, uap->info, sizeof(struct siginfo32)); 3338 } 3339 3340 if (error == 0) 3341 td->td_retval[0] = ksi.ksi_signo; 3342 return (error); 3343 } 3344 3345 /* 3346 * MPSAFE 3347 */ 3348 int 3349 freebsd32_sigwaitinfo(struct thread *td, struct freebsd32_sigwaitinfo_args *uap) 3350 { 3351 ksiginfo_t ksi; 3352 struct siginfo32 si32; 3353 sigset_t set; 3354 int error; 3355 3356 error = copyin(uap->set, &set, sizeof(set)); 3357 if (error) 3358 return (error); 3359 3360 error = kern_sigtimedwait(td, set, &ksi, NULL); 3361 if (error) 3362 return (error); 3363 3364 if (uap->info) { 3365 siginfo_to_siginfo32(&ksi.ksi_info, &si32); 3366 error = copyout(&si32, uap->info, sizeof(struct siginfo32)); 3367 } 3368 if (error == 0) 3369 td->td_retval[0] = ksi.ksi_signo; 3370 return (error); 3371 } 3372 3373 int 3374 freebsd32_cpuset_setid(struct thread *td, 3375 struct freebsd32_cpuset_setid_args *uap) 3376 { 3377 3378 return (kern_cpuset_setid(td, uap->which, 3379 PAIR32TO64(id_t, uap->id), uap->setid)); 3380 } 3381 3382 int 3383 freebsd32_cpuset_getid(struct thread *td, 3384 struct freebsd32_cpuset_getid_args *uap) 3385 { 3386 3387 return (kern_cpuset_getid(td, uap->level, uap->which, 3388 PAIR32TO64(id_t, uap->id), uap->setid)); 3389 } 3390 3391 static int 3392 copyin32_set(const void *u, void *k, size_t size) 3393 { 3394 #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 3395 int rv; 3396 struct bitset *kb = k; 3397 int *p; 3398 3399 rv = copyin(u, k, size); 3400 if (rv != 0) 3401 return (rv); 3402 3403 p = (int *)kb->__bits; 3404 /* Loop through swapping words. 3405 * `size' is in bytes, we need bits. */ 3406 for (int i = 0; i < __bitset_words(size * 8); i++) { 3407 int tmp = p[0]; 3408 p[0] = p[1]; 3409 p[1] = tmp; 3410 p += 2; 3411 } 3412 return (0); 3413 #else 3414 return (copyin(u, k, size)); 3415 #endif 3416 } 3417 3418 static int 3419 copyout32_set(const void *k, void *u, size_t size) 3420 { 3421 #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 3422 const struct bitset *kb = k; 3423 struct bitset *ub = u; 3424 const int *kp = (const int *)kb->__bits; 3425 int *up = (int *)ub->__bits; 3426 int rv; 3427 3428 for (int i = 0; i < __bitset_words(CPU_SETSIZE); i++) { 3429 /* `size' is in bytes, we need bits. */ 3430 for (int i = 0; i < __bitset_words(size * 8); i++) { 3431 rv = suword32(up, kp[1]); 3432 if (rv == 0) 3433 rv = suword32(up + 1, kp[0]); 3434 if (rv != 0) 3435 return (EFAULT); 3436 } 3437 } 3438 return (0); 3439 #else 3440 return (copyout(k, u, size)); 3441 #endif 3442 } 3443 3444 static const struct cpuset_copy_cb cpuset_copy32_cb = { 3445 .cpuset_copyin = copyin32_set, 3446 .cpuset_copyout = copyout32_set 3447 }; 3448 3449 int 3450 freebsd32_cpuset_getaffinity(struct thread *td, 3451 struct freebsd32_cpuset_getaffinity_args *uap) 3452 { 3453 3454 return (user_cpuset_getaffinity(td, uap->level, uap->which, 3455 PAIR32TO64(id_t,uap->id), uap->cpusetsize, uap->mask, 3456 &cpuset_copy32_cb)); 3457 } 3458 3459 int 3460 freebsd32_cpuset_setaffinity(struct thread *td, 3461 struct freebsd32_cpuset_setaffinity_args *uap) 3462 { 3463 3464 return (user_cpuset_setaffinity(td, uap->level, uap->which, 3465 PAIR32TO64(id_t,uap->id), uap->cpusetsize, uap->mask, 3466 &cpuset_copy32_cb)); 3467 } 3468 3469 int 3470 freebsd32_cpuset_getdomain(struct thread *td, 3471 struct freebsd32_cpuset_getdomain_args *uap) 3472 { 3473 3474 return (kern_cpuset_getdomain(td, uap->level, uap->which, 3475 PAIR32TO64(id_t,uap->id), uap->domainsetsize, uap->mask, uap->policy, 3476 &cpuset_copy32_cb)); 3477 } 3478 3479 int 3480 freebsd32_cpuset_setdomain(struct thread *td, 3481 struct freebsd32_cpuset_setdomain_args *uap) 3482 { 3483 3484 return (kern_cpuset_setdomain(td, uap->level, uap->which, 3485 PAIR32TO64(id_t,uap->id), uap->domainsetsize, uap->mask, uap->policy, 3486 &cpuset_copy32_cb)); 3487 } 3488 3489 int 3490 freebsd32_nmount(struct thread *td, 3491 struct freebsd32_nmount_args /* { 3492 struct iovec *iovp; 3493 unsigned int iovcnt; 3494 int flags; 3495 } */ *uap) 3496 { 3497 struct uio *auio; 3498 uint64_t flags; 3499 int error; 3500 3501 /* 3502 * Mount flags are now 64-bits. On 32-bit archtectures only 3503 * 32-bits are passed in, but from here on everything handles 3504 * 64-bit flags correctly. 3505 */ 3506 flags = uap->flags; 3507 3508 AUDIT_ARG_FFLAGS(flags); 3509 3510 /* 3511 * Filter out MNT_ROOTFS. We do not want clients of nmount() in 3512 * userspace to set this flag, but we must filter it out if we want 3513 * MNT_UPDATE on the root file system to work. 3514 * MNT_ROOTFS should only be set by the kernel when mounting its 3515 * root file system. 3516 */ 3517 flags &= ~MNT_ROOTFS; 3518 3519 /* 3520 * check that we have an even number of iovec's 3521 * and that we have at least two options. 3522 */ 3523 if ((uap->iovcnt & 1) || (uap->iovcnt < 4)) 3524 return (EINVAL); 3525 3526 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 3527 if (error) 3528 return (error); 3529 error = vfs_donmount(td, flags, auio); 3530 3531 free(auio, M_IOV); 3532 return error; 3533 } 3534 3535 #if 0 3536 int 3537 freebsd32_xxx(struct thread *td, struct freebsd32_xxx_args *uap) 3538 { 3539 struct yyy32 *p32, s32; 3540 struct yyy *p = NULL, s; 3541 struct xxx_arg ap; 3542 int error; 3543 3544 if (uap->zzz) { 3545 error = copyin(uap->zzz, &s32, sizeof(s32)); 3546 if (error) 3547 return (error); 3548 /* translate in */ 3549 p = &s; 3550 } 3551 error = kern_xxx(td, p); 3552 if (error) 3553 return (error); 3554 if (uap->zzz) { 3555 /* translate out */ 3556 error = copyout(&s32, p32, sizeof(s32)); 3557 } 3558 return (error); 3559 } 3560 #endif 3561 3562 int 3563 syscall32_module_handler(struct module *mod, int what, void *arg) 3564 { 3565 3566 return (kern_syscall_module_handler(freebsd32_sysent, mod, what, arg)); 3567 } 3568 3569 int 3570 syscall32_helper_register(struct syscall_helper_data *sd, int flags) 3571 { 3572 3573 return (kern_syscall_helper_register(freebsd32_sysent, sd, flags)); 3574 } 3575 3576 int 3577 syscall32_helper_unregister(struct syscall_helper_data *sd) 3578 { 3579 3580 return (kern_syscall_helper_unregister(freebsd32_sysent, sd)); 3581 } 3582 3583 int 3584 freebsd32_copyout_strings(struct image_params *imgp, uintptr_t *stack_base) 3585 { 3586 struct sysentvec *sysent; 3587 int argc, envc, i; 3588 uint32_t *vectp; 3589 char *stringp; 3590 uintptr_t destp, ustringp; 3591 struct freebsd32_ps_strings *arginfo; 3592 char canary[sizeof(long) * 8]; 3593 int32_t pagesizes32[MAXPAGESIZES]; 3594 size_t execpath_len; 3595 int error, szsigcode; 3596 3597 sysent = imgp->sysent; 3598 3599 arginfo = (struct freebsd32_ps_strings *)PROC_PS_STRINGS(imgp->proc); 3600 imgp->ps_strings = arginfo; 3601 destp = (uintptr_t)arginfo; 3602 3603 /* 3604 * Install sigcode. 3605 */ 3606 if (!PROC_HAS_SHP(imgp->proc)) { 3607 szsigcode = *sysent->sv_szsigcode; 3608 destp -= szsigcode; 3609 destp = rounddown2(destp, sizeof(uint32_t)); 3610 error = copyout(sysent->sv_sigcode, (void *)destp, 3611 szsigcode); 3612 if (error != 0) 3613 return (error); 3614 } 3615 3616 /* 3617 * Copy the image path for the rtld. 3618 */ 3619 if (imgp->execpath != NULL && imgp->auxargs != NULL) { 3620 execpath_len = strlen(imgp->execpath) + 1; 3621 destp -= execpath_len; 3622 imgp->execpathp = (void *)destp; 3623 error = copyout(imgp->execpath, imgp->execpathp, execpath_len); 3624 if (error != 0) 3625 return (error); 3626 } 3627 3628 /* 3629 * Prepare the canary for SSP. 3630 */ 3631 arc4rand(canary, sizeof(canary), 0); 3632 destp -= sizeof(canary); 3633 imgp->canary = (void *)destp; 3634 error = copyout(canary, imgp->canary, sizeof(canary)); 3635 if (error != 0) 3636 return (error); 3637 imgp->canarylen = sizeof(canary); 3638 3639 /* 3640 * Prepare the pagesizes array. 3641 */ 3642 for (i = 0; i < MAXPAGESIZES; i++) 3643 pagesizes32[i] = (uint32_t)pagesizes[i]; 3644 destp -= sizeof(pagesizes32); 3645 destp = rounddown2(destp, sizeof(uint32_t)); 3646 imgp->pagesizes = (void *)destp; 3647 error = copyout(pagesizes32, imgp->pagesizes, sizeof(pagesizes32)); 3648 if (error != 0) 3649 return (error); 3650 imgp->pagesizeslen = sizeof(pagesizes32); 3651 3652 /* 3653 * Allocate room for the argument and environment strings. 3654 */ 3655 destp -= ARG_MAX - imgp->args->stringspace; 3656 destp = rounddown2(destp, sizeof(uint32_t)); 3657 ustringp = destp; 3658 3659 if (imgp->auxargs) { 3660 /* 3661 * Allocate room on the stack for the ELF auxargs 3662 * array. It has up to AT_COUNT entries. 3663 */ 3664 destp -= AT_COUNT * sizeof(Elf32_Auxinfo); 3665 destp = rounddown2(destp, sizeof(uint32_t)); 3666 } 3667 3668 vectp = (uint32_t *)destp; 3669 3670 /* 3671 * Allocate room for the argv[] and env vectors including the 3672 * terminating NULL pointers. 3673 */ 3674 vectp -= imgp->args->argc + 1 + imgp->args->envc + 1; 3675 3676 /* 3677 * vectp also becomes our initial stack base 3678 */ 3679 *stack_base = (uintptr_t)vectp; 3680 3681 stringp = imgp->args->begin_argv; 3682 argc = imgp->args->argc; 3683 envc = imgp->args->envc; 3684 /* 3685 * Copy out strings - arguments and environment. 3686 */ 3687 error = copyout(stringp, (void *)ustringp, 3688 ARG_MAX - imgp->args->stringspace); 3689 if (error != 0) 3690 return (error); 3691 3692 /* 3693 * Fill in "ps_strings" struct for ps, w, etc. 3694 */ 3695 imgp->argv = vectp; 3696 if (suword32(&arginfo->ps_argvstr, (uint32_t)(intptr_t)vectp) != 0 || 3697 suword32(&arginfo->ps_nargvstr, argc) != 0) 3698 return (EFAULT); 3699 3700 /* 3701 * Fill in argument portion of vector table. 3702 */ 3703 for (; argc > 0; --argc) { 3704 if (suword32(vectp++, ustringp) != 0) 3705 return (EFAULT); 3706 while (*stringp++ != 0) 3707 ustringp++; 3708 ustringp++; 3709 } 3710 3711 /* a null vector table pointer separates the argp's from the envp's */ 3712 if (suword32(vectp++, 0) != 0) 3713 return (EFAULT); 3714 3715 imgp->envv = vectp; 3716 if (suword32(&arginfo->ps_envstr, (uint32_t)(intptr_t)vectp) != 0 || 3717 suword32(&arginfo->ps_nenvstr, envc) != 0) 3718 return (EFAULT); 3719 3720 /* 3721 * Fill in environment portion of vector table. 3722 */ 3723 for (; envc > 0; --envc) { 3724 if (suword32(vectp++, ustringp) != 0) 3725 return (EFAULT); 3726 while (*stringp++ != 0) 3727 ustringp++; 3728 ustringp++; 3729 } 3730 3731 /* end of vector table is a null pointer */ 3732 if (suword32(vectp, 0) != 0) 3733 return (EFAULT); 3734 3735 if (imgp->auxargs) { 3736 vectp++; 3737 error = imgp->sysent->sv_copyout_auxargs(imgp, 3738 (uintptr_t)vectp); 3739 if (error != 0) 3740 return (error); 3741 } 3742 3743 return (0); 3744 } 3745 3746 int 3747 freebsd32_kldstat(struct thread *td, struct freebsd32_kldstat_args *uap) 3748 { 3749 struct kld_file_stat *stat; 3750 struct kld_file_stat32 *stat32; 3751 int error, version; 3752 3753 if ((error = copyin(&uap->stat->version, &version, sizeof(version))) 3754 != 0) 3755 return (error); 3756 if (version != sizeof(struct kld_file_stat_1_32) && 3757 version != sizeof(struct kld_file_stat32)) 3758 return (EINVAL); 3759 3760 stat = malloc(sizeof(*stat), M_TEMP, M_WAITOK | M_ZERO); 3761 stat32 = malloc(sizeof(*stat32), M_TEMP, M_WAITOK | M_ZERO); 3762 error = kern_kldstat(td, uap->fileid, stat); 3763 if (error == 0) { 3764 bcopy(&stat->name[0], &stat32->name[0], sizeof(stat->name)); 3765 CP(*stat, *stat32, refs); 3766 CP(*stat, *stat32, id); 3767 PTROUT_CP(*stat, *stat32, address); 3768 CP(*stat, *stat32, size); 3769 bcopy(&stat->pathname[0], &stat32->pathname[0], 3770 sizeof(stat->pathname)); 3771 stat32->version = version; 3772 error = copyout(stat32, uap->stat, version); 3773 } 3774 free(stat, M_TEMP); 3775 free(stat32, M_TEMP); 3776 return (error); 3777 } 3778 3779 int 3780 freebsd32_posix_fallocate(struct thread *td, 3781 struct freebsd32_posix_fallocate_args *uap) 3782 { 3783 int error; 3784 3785 error = kern_posix_fallocate(td, uap->fd, 3786 PAIR32TO64(off_t, uap->offset), PAIR32TO64(off_t, uap->len)); 3787 return (kern_posix_error(td, error)); 3788 } 3789 3790 int 3791 freebsd32_posix_fadvise(struct thread *td, 3792 struct freebsd32_posix_fadvise_args *uap) 3793 { 3794 int error; 3795 3796 error = kern_posix_fadvise(td, uap->fd, PAIR32TO64(off_t, uap->offset), 3797 PAIR32TO64(off_t, uap->len), uap->advice); 3798 return (kern_posix_error(td, error)); 3799 } 3800 3801 int 3802 convert_sigevent32(struct sigevent32 *sig32, struct sigevent *sig) 3803 { 3804 3805 CP(*sig32, *sig, sigev_notify); 3806 switch (sig->sigev_notify) { 3807 case SIGEV_NONE: 3808 break; 3809 case SIGEV_THREAD_ID: 3810 CP(*sig32, *sig, sigev_notify_thread_id); 3811 /* FALLTHROUGH */ 3812 case SIGEV_SIGNAL: 3813 CP(*sig32, *sig, sigev_signo); 3814 PTRIN_CP(*sig32, *sig, sigev_value.sival_ptr); 3815 break; 3816 case SIGEV_KEVENT: 3817 CP(*sig32, *sig, sigev_notify_kqueue); 3818 CP(*sig32, *sig, sigev_notify_kevent_flags); 3819 PTRIN_CP(*sig32, *sig, sigev_value.sival_ptr); 3820 break; 3821 default: 3822 return (EINVAL); 3823 } 3824 return (0); 3825 } 3826 3827 int 3828 freebsd32_procctl(struct thread *td, struct freebsd32_procctl_args *uap) 3829 { 3830 void *data; 3831 union { 3832 struct procctl_reaper_status rs; 3833 struct procctl_reaper_pids rp; 3834 struct procctl_reaper_kill rk; 3835 } x; 3836 union { 3837 struct procctl_reaper_pids32 rp; 3838 } x32; 3839 int error, error1, flags, signum; 3840 3841 if (uap->com >= PROC_PROCCTL_MD_MIN) 3842 return (cpu_procctl(td, uap->idtype, PAIR32TO64(id_t, uap->id), 3843 uap->com, PTRIN(uap->data))); 3844 3845 switch (uap->com) { 3846 case PROC_ASLR_CTL: 3847 case PROC_PROTMAX_CTL: 3848 case PROC_SPROTECT: 3849 case PROC_STACKGAP_CTL: 3850 case PROC_TRACE_CTL: 3851 case PROC_TRAPCAP_CTL: 3852 case PROC_NO_NEW_PRIVS_CTL: 3853 case PROC_WXMAP_CTL: 3854 error = copyin(PTRIN(uap->data), &flags, sizeof(flags)); 3855 if (error != 0) 3856 return (error); 3857 data = &flags; 3858 break; 3859 case PROC_REAP_ACQUIRE: 3860 case PROC_REAP_RELEASE: 3861 if (uap->data != NULL) 3862 return (EINVAL); 3863 data = NULL; 3864 break; 3865 case PROC_REAP_STATUS: 3866 data = &x.rs; 3867 break; 3868 case PROC_REAP_GETPIDS: 3869 error = copyin(uap->data, &x32.rp, sizeof(x32.rp)); 3870 if (error != 0) 3871 return (error); 3872 CP(x32.rp, x.rp, rp_count); 3873 PTRIN_CP(x32.rp, x.rp, rp_pids); 3874 data = &x.rp; 3875 break; 3876 case PROC_REAP_KILL: 3877 error = copyin(uap->data, &x.rk, sizeof(x.rk)); 3878 if (error != 0) 3879 return (error); 3880 data = &x.rk; 3881 break; 3882 case PROC_ASLR_STATUS: 3883 case PROC_PROTMAX_STATUS: 3884 case PROC_STACKGAP_STATUS: 3885 case PROC_TRACE_STATUS: 3886 case PROC_TRAPCAP_STATUS: 3887 case PROC_NO_NEW_PRIVS_STATUS: 3888 case PROC_WXMAP_STATUS: 3889 data = &flags; 3890 break; 3891 case PROC_PDEATHSIG_CTL: 3892 error = copyin(uap->data, &signum, sizeof(signum)); 3893 if (error != 0) 3894 return (error); 3895 data = &signum; 3896 break; 3897 case PROC_PDEATHSIG_STATUS: 3898 data = &signum; 3899 break; 3900 default: 3901 return (EINVAL); 3902 } 3903 error = kern_procctl(td, uap->idtype, PAIR32TO64(id_t, uap->id), 3904 uap->com, data); 3905 switch (uap->com) { 3906 case PROC_REAP_STATUS: 3907 if (error == 0) 3908 error = copyout(&x.rs, uap->data, sizeof(x.rs)); 3909 break; 3910 case PROC_REAP_KILL: 3911 error1 = copyout(&x.rk, uap->data, sizeof(x.rk)); 3912 if (error == 0) 3913 error = error1; 3914 break; 3915 case PROC_ASLR_STATUS: 3916 case PROC_PROTMAX_STATUS: 3917 case PROC_STACKGAP_STATUS: 3918 case PROC_TRACE_STATUS: 3919 case PROC_TRAPCAP_STATUS: 3920 case PROC_NO_NEW_PRIVS_STATUS: 3921 case PROC_WXMAP_STATUS: 3922 if (error == 0) 3923 error = copyout(&flags, uap->data, sizeof(flags)); 3924 break; 3925 case PROC_PDEATHSIG_STATUS: 3926 if (error == 0) 3927 error = copyout(&signum, uap->data, sizeof(signum)); 3928 break; 3929 } 3930 return (error); 3931 } 3932 3933 int 3934 freebsd32_fcntl(struct thread *td, struct freebsd32_fcntl_args *uap) 3935 { 3936 long tmp; 3937 3938 switch (uap->cmd) { 3939 /* 3940 * Do unsigned conversion for arg when operation 3941 * interprets it as flags or pointer. 3942 */ 3943 case F_SETLK_REMOTE: 3944 case F_SETLKW: 3945 case F_SETLK: 3946 case F_GETLK: 3947 case F_SETFD: 3948 case F_SETFL: 3949 case F_OGETLK: 3950 case F_OSETLK: 3951 case F_OSETLKW: 3952 case F_KINFO: 3953 tmp = (unsigned int)(uap->arg); 3954 break; 3955 default: 3956 tmp = uap->arg; 3957 break; 3958 } 3959 return (kern_fcntl_freebsd(td, uap->fd, uap->cmd, tmp)); 3960 } 3961 3962 int 3963 freebsd32_ppoll(struct thread *td, struct freebsd32_ppoll_args *uap) 3964 { 3965 struct timespec32 ts32; 3966 struct timespec ts, *tsp; 3967 sigset_t set, *ssp; 3968 int error; 3969 3970 if (uap->ts != NULL) { 3971 error = copyin(uap->ts, &ts32, sizeof(ts32)); 3972 if (error != 0) 3973 return (error); 3974 CP(ts32, ts, tv_sec); 3975 CP(ts32, ts, tv_nsec); 3976 tsp = &ts; 3977 } else 3978 tsp = NULL; 3979 if (uap->set != NULL) { 3980 error = copyin(uap->set, &set, sizeof(set)); 3981 if (error != 0) 3982 return (error); 3983 ssp = &set; 3984 } else 3985 ssp = NULL; 3986 3987 return (kern_poll(td, uap->fds, uap->nfds, tsp, ssp)); 3988 } 3989 3990 int 3991 freebsd32_sched_rr_get_interval(struct thread *td, 3992 struct freebsd32_sched_rr_get_interval_args *uap) 3993 { 3994 struct timespec ts; 3995 struct timespec32 ts32; 3996 int error; 3997 3998 error = kern_sched_rr_get_interval(td, uap->pid, &ts); 3999 if (error == 0) { 4000 CP(ts, ts32, tv_sec); 4001 CP(ts, ts32, tv_nsec); 4002 error = copyout(&ts32, uap->interval, sizeof(ts32)); 4003 } 4004 return (error); 4005 } 4006 4007 static void 4008 timex_to_32(struct timex32 *dst, struct timex *src) 4009 { 4010 CP(*src, *dst, modes); 4011 CP(*src, *dst, offset); 4012 CP(*src, *dst, freq); 4013 CP(*src, *dst, maxerror); 4014 CP(*src, *dst, esterror); 4015 CP(*src, *dst, status); 4016 CP(*src, *dst, constant); 4017 CP(*src, *dst, precision); 4018 CP(*src, *dst, tolerance); 4019 CP(*src, *dst, ppsfreq); 4020 CP(*src, *dst, jitter); 4021 CP(*src, *dst, shift); 4022 CP(*src, *dst, stabil); 4023 CP(*src, *dst, jitcnt); 4024 CP(*src, *dst, calcnt); 4025 CP(*src, *dst, errcnt); 4026 CP(*src, *dst, stbcnt); 4027 } 4028 4029 static void 4030 timex_from_32(struct timex *dst, struct timex32 *src) 4031 { 4032 CP(*src, *dst, modes); 4033 CP(*src, *dst, offset); 4034 CP(*src, *dst, freq); 4035 CP(*src, *dst, maxerror); 4036 CP(*src, *dst, esterror); 4037 CP(*src, *dst, status); 4038 CP(*src, *dst, constant); 4039 CP(*src, *dst, precision); 4040 CP(*src, *dst, tolerance); 4041 CP(*src, *dst, ppsfreq); 4042 CP(*src, *dst, jitter); 4043 CP(*src, *dst, shift); 4044 CP(*src, *dst, stabil); 4045 CP(*src, *dst, jitcnt); 4046 CP(*src, *dst, calcnt); 4047 CP(*src, *dst, errcnt); 4048 CP(*src, *dst, stbcnt); 4049 } 4050 4051 int 4052 freebsd32_ntp_adjtime(struct thread *td, struct freebsd32_ntp_adjtime_args *uap) 4053 { 4054 struct timex tx; 4055 struct timex32 tx32; 4056 int error, retval; 4057 4058 error = copyin(uap->tp, &tx32, sizeof(tx32)); 4059 if (error == 0) { 4060 timex_from_32(&tx, &tx32); 4061 error = kern_ntp_adjtime(td, &tx, &retval); 4062 if (error == 0) { 4063 timex_to_32(&tx32, &tx); 4064 error = copyout(&tx32, uap->tp, sizeof(tx32)); 4065 if (error == 0) 4066 td->td_retval[0] = retval; 4067 } 4068 } 4069 return (error); 4070 } 4071 4072 #ifdef FFCLOCK 4073 extern struct mtx ffclock_mtx; 4074 extern struct ffclock_estimate ffclock_estimate; 4075 extern int8_t ffclock_updated; 4076 4077 int 4078 freebsd32_ffclock_setestimate(struct thread *td, 4079 struct freebsd32_ffclock_setestimate_args *uap) 4080 { 4081 struct ffclock_estimate cest; 4082 struct ffclock_estimate32 cest32; 4083 int error; 4084 4085 /* Reuse of PRIV_CLOCK_SETTIME. */ 4086 if ((error = priv_check(td, PRIV_CLOCK_SETTIME)) != 0) 4087 return (error); 4088 4089 if ((error = copyin(uap->cest, &cest32, 4090 sizeof(struct ffclock_estimate32))) != 0) 4091 return (error); 4092 4093 CP(cest.update_time, cest32.update_time, sec); 4094 memcpy(&cest.update_time.frac, &cest32.update_time.frac, sizeof(uint64_t)); 4095 CP(cest, cest32, update_ffcount); 4096 CP(cest, cest32, leapsec_next); 4097 CP(cest, cest32, period); 4098 CP(cest, cest32, errb_abs); 4099 CP(cest, cest32, errb_rate); 4100 CP(cest, cest32, status); 4101 CP(cest, cest32, leapsec_total); 4102 CP(cest, cest32, leapsec); 4103 4104 mtx_lock(&ffclock_mtx); 4105 memcpy(&ffclock_estimate, &cest, sizeof(struct ffclock_estimate)); 4106 ffclock_updated++; 4107 mtx_unlock(&ffclock_mtx); 4108 return (error); 4109 } 4110 4111 int 4112 freebsd32_ffclock_getestimate(struct thread *td, 4113 struct freebsd32_ffclock_getestimate_args *uap) 4114 { 4115 struct ffclock_estimate cest; 4116 struct ffclock_estimate32 cest32; 4117 int error; 4118 4119 mtx_lock(&ffclock_mtx); 4120 memcpy(&cest, &ffclock_estimate, sizeof(struct ffclock_estimate)); 4121 mtx_unlock(&ffclock_mtx); 4122 4123 CP(cest32.update_time, cest.update_time, sec); 4124 memcpy(&cest32.update_time.frac, &cest.update_time.frac, sizeof(uint64_t)); 4125 CP(cest32, cest, update_ffcount); 4126 CP(cest32, cest, leapsec_next); 4127 CP(cest32, cest, period); 4128 CP(cest32, cest, errb_abs); 4129 CP(cest32, cest, errb_rate); 4130 CP(cest32, cest, status); 4131 CP(cest32, cest, leapsec_total); 4132 CP(cest32, cest, leapsec); 4133 4134 error = copyout(&cest32, uap->cest, sizeof(struct ffclock_estimate32)); 4135 return (error); 4136 } 4137 #else /* !FFCLOCK */ 4138 int 4139 freebsd32_ffclock_setestimate(struct thread *td, 4140 struct freebsd32_ffclock_setestimate_args *uap) 4141 { 4142 return (ENOSYS); 4143 } 4144 4145 int 4146 freebsd32_ffclock_getestimate(struct thread *td, 4147 struct freebsd32_ffclock_getestimate_args *uap) 4148 { 4149 return (ENOSYS); 4150 } 4151 #endif /* FFCLOCK */ 4152 4153 #ifdef COMPAT_43 4154 int 4155 ofreebsd32_sethostid(struct thread *td, struct ofreebsd32_sethostid_args *uap) 4156 { 4157 int name[] = { CTL_KERN, KERN_HOSTID }; 4158 long hostid; 4159 4160 hostid = uap->hostid; 4161 return (kernel_sysctl(td, name, nitems(name), NULL, NULL, &hostid, 4162 sizeof(hostid), NULL, 0)); 4163 } 4164 #endif 4165