xref: /freebsd/sys/compat/freebsd32/freebsd32_misc.c (revision 13ec1e3155c7e9bf037b12af186351b7fa9b9450)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2002 Doug Rabson
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include "opt_ffclock.h"
33 #include "opt_inet.h"
34 #include "opt_inet6.h"
35 #include "opt_ktrace.h"
36 
37 #define __ELF_WORD_SIZE 32
38 
39 #ifdef COMPAT_FREEBSD11
40 #define	_WANT_FREEBSD11_KEVENT
41 #endif
42 
43 #include <sys/param.h>
44 #include <sys/bus.h>
45 #include <sys/capsicum.h>
46 #include <sys/clock.h>
47 #include <sys/exec.h>
48 #include <sys/fcntl.h>
49 #include <sys/filedesc.h>
50 #include <sys/imgact.h>
51 #include <sys/jail.h>
52 #include <sys/kernel.h>
53 #include <sys/limits.h>
54 #include <sys/linker.h>
55 #include <sys/lock.h>
56 #include <sys/malloc.h>
57 #include <sys/file.h>		/* Must come after sys/malloc.h */
58 #include <sys/imgact.h>
59 #include <sys/mbuf.h>
60 #include <sys/mman.h>
61 #include <sys/module.h>
62 #include <sys/mount.h>
63 #include <sys/mutex.h>
64 #include <sys/namei.h>
65 #include <sys/priv.h>
66 #include <sys/proc.h>
67 #include <sys/procctl.h>
68 #include <sys/ptrace.h>
69 #include <sys/reboot.h>
70 #include <sys/resource.h>
71 #include <sys/resourcevar.h>
72 #include <sys/selinfo.h>
73 #include <sys/eventvar.h>	/* Must come after sys/selinfo.h */
74 #include <sys/pipe.h>		/* Must come after sys/selinfo.h */
75 #include <sys/signal.h>
76 #include <sys/signalvar.h>
77 #include <sys/socket.h>
78 #include <sys/socketvar.h>
79 #include <sys/stat.h>
80 #include <sys/syscall.h>
81 #include <sys/syscallsubr.h>
82 #include <sys/sysctl.h>
83 #include <sys/sysent.h>
84 #include <sys/sysproto.h>
85 #include <sys/systm.h>
86 #include <sys/thr.h>
87 #include <sys/timex.h>
88 #include <sys/unistd.h>
89 #include <sys/ucontext.h>
90 #include <sys/vnode.h>
91 #include <sys/wait.h>
92 #include <sys/ipc.h>
93 #include <sys/msg.h>
94 #include <sys/sem.h>
95 #include <sys/shm.h>
96 #include <sys/timeffc.h>
97 #ifdef KTRACE
98 #include <sys/ktrace.h>
99 #endif
100 
101 #ifdef INET
102 #include <netinet/in.h>
103 #endif
104 
105 #include <vm/vm.h>
106 #include <vm/vm_param.h>
107 #include <vm/pmap.h>
108 #include <vm/vm_map.h>
109 #include <vm/vm_object.h>
110 #include <vm/vm_extern.h>
111 
112 #include <machine/cpu.h>
113 #include <machine/elf.h>
114 #ifdef __amd64__
115 #include <machine/md_var.h>
116 #endif
117 
118 #include <security/audit/audit.h>
119 
120 #include <compat/freebsd32/freebsd32_util.h>
121 #include <compat/freebsd32/freebsd32.h>
122 #include <compat/freebsd32/freebsd32_ipc.h>
123 #include <compat/freebsd32/freebsd32_misc.h>
124 #include <compat/freebsd32/freebsd32_signal.h>
125 #include <compat/freebsd32/freebsd32_proto.h>
126 
127 FEATURE(compat_freebsd_32bit, "Compatible with 32-bit FreeBSD");
128 
129 struct ptrace_io_desc32 {
130 	int		piod_op;
131 	uint32_t	piod_offs;
132 	uint32_t	piod_addr;
133 	uint32_t	piod_len;
134 };
135 
136 struct ptrace_sc_ret32 {
137 	uint32_t	sr_retval[2];
138 	int		sr_error;
139 };
140 
141 struct ptrace_vm_entry32 {
142 	int		pve_entry;
143 	int		pve_timestamp;
144 	uint32_t	pve_start;
145 	uint32_t	pve_end;
146 	uint32_t	pve_offset;
147 	u_int		pve_prot;
148 	u_int		pve_pathlen;
149 	int32_t		pve_fileid;
150 	u_int		pve_fsid;
151 	uint32_t	pve_path;
152 };
153 
154 #ifdef __amd64__
155 CTASSERT(sizeof(struct timeval32) == 8);
156 CTASSERT(sizeof(struct timespec32) == 8);
157 CTASSERT(sizeof(struct itimerval32) == 16);
158 CTASSERT(sizeof(struct bintime32) == 12);
159 #endif
160 CTASSERT(sizeof(struct ostatfs32) == 256);
161 #ifdef __amd64__
162 CTASSERT(sizeof(struct rusage32) == 72);
163 #endif
164 CTASSERT(sizeof(struct sigaltstack32) == 12);
165 #ifdef __amd64__
166 CTASSERT(sizeof(struct kevent32) == 56);
167 #else
168 CTASSERT(sizeof(struct kevent32) == 64);
169 #endif
170 CTASSERT(sizeof(struct iovec32) == 8);
171 CTASSERT(sizeof(struct msghdr32) == 28);
172 #ifdef __amd64__
173 CTASSERT(sizeof(struct stat32) == 208);
174 CTASSERT(sizeof(struct freebsd11_stat32) == 96);
175 #endif
176 CTASSERT(sizeof(struct sigaction32) == 24);
177 
178 static int freebsd32_kevent_copyout(void *arg, struct kevent *kevp, int count);
179 static int freebsd32_kevent_copyin(void *arg, struct kevent *kevp, int count);
180 static int freebsd32_user_clock_nanosleep(struct thread *td, clockid_t clock_id,
181     int flags, const struct timespec32 *ua_rqtp, struct timespec32 *ua_rmtp);
182 
183 void
184 freebsd32_rusage_out(const struct rusage *s, struct rusage32 *s32)
185 {
186 
187 	TV_CP(*s, *s32, ru_utime);
188 	TV_CP(*s, *s32, ru_stime);
189 	CP(*s, *s32, ru_maxrss);
190 	CP(*s, *s32, ru_ixrss);
191 	CP(*s, *s32, ru_idrss);
192 	CP(*s, *s32, ru_isrss);
193 	CP(*s, *s32, ru_minflt);
194 	CP(*s, *s32, ru_majflt);
195 	CP(*s, *s32, ru_nswap);
196 	CP(*s, *s32, ru_inblock);
197 	CP(*s, *s32, ru_oublock);
198 	CP(*s, *s32, ru_msgsnd);
199 	CP(*s, *s32, ru_msgrcv);
200 	CP(*s, *s32, ru_nsignals);
201 	CP(*s, *s32, ru_nvcsw);
202 	CP(*s, *s32, ru_nivcsw);
203 }
204 
205 int
206 freebsd32_wait4(struct thread *td, struct freebsd32_wait4_args *uap)
207 {
208 	int error, status;
209 	struct rusage32 ru32;
210 	struct rusage ru, *rup;
211 
212 	if (uap->rusage != NULL)
213 		rup = &ru;
214 	else
215 		rup = NULL;
216 	error = kern_wait(td, uap->pid, &status, uap->options, rup);
217 	if (error)
218 		return (error);
219 	if (uap->status != NULL)
220 		error = copyout(&status, uap->status, sizeof(status));
221 	if (uap->rusage != NULL && error == 0) {
222 		freebsd32_rusage_out(&ru, &ru32);
223 		error = copyout(&ru32, uap->rusage, sizeof(ru32));
224 	}
225 	return (error);
226 }
227 
228 int
229 freebsd32_wait6(struct thread *td, struct freebsd32_wait6_args *uap)
230 {
231 	struct __wrusage32 wru32;
232 	struct __wrusage wru, *wrup;
233 	struct siginfo32 si32;
234 	struct __siginfo si, *sip;
235 	int error, status;
236 
237 	if (uap->wrusage != NULL)
238 		wrup = &wru;
239 	else
240 		wrup = NULL;
241 	if (uap->info != NULL) {
242 		sip = &si;
243 		bzero(sip, sizeof(*sip));
244 	} else
245 		sip = NULL;
246 	error = kern_wait6(td, uap->idtype, PAIR32TO64(id_t, uap->id),
247 	    &status, uap->options, wrup, sip);
248 	if (error != 0)
249 		return (error);
250 	if (uap->status != NULL)
251 		error = copyout(&status, uap->status, sizeof(status));
252 	if (uap->wrusage != NULL && error == 0) {
253 		freebsd32_rusage_out(&wru.wru_self, &wru32.wru_self);
254 		freebsd32_rusage_out(&wru.wru_children, &wru32.wru_children);
255 		error = copyout(&wru32, uap->wrusage, sizeof(wru32));
256 	}
257 	if (uap->info != NULL && error == 0) {
258 		siginfo_to_siginfo32 (&si, &si32);
259 		error = copyout(&si32, uap->info, sizeof(si32));
260 	}
261 	return (error);
262 }
263 
264 #ifdef COMPAT_FREEBSD4
265 static void
266 copy_statfs(struct statfs *in, struct ostatfs32 *out)
267 {
268 
269 	statfs_scale_blocks(in, INT32_MAX);
270 	bzero(out, sizeof(*out));
271 	CP(*in, *out, f_bsize);
272 	out->f_iosize = MIN(in->f_iosize, INT32_MAX);
273 	CP(*in, *out, f_blocks);
274 	CP(*in, *out, f_bfree);
275 	CP(*in, *out, f_bavail);
276 	out->f_files = MIN(in->f_files, INT32_MAX);
277 	out->f_ffree = MIN(in->f_ffree, INT32_MAX);
278 	CP(*in, *out, f_fsid);
279 	CP(*in, *out, f_owner);
280 	CP(*in, *out, f_type);
281 	CP(*in, *out, f_flags);
282 	out->f_syncwrites = MIN(in->f_syncwrites, INT32_MAX);
283 	out->f_asyncwrites = MIN(in->f_asyncwrites, INT32_MAX);
284 	strlcpy(out->f_fstypename,
285 	      in->f_fstypename, MFSNAMELEN);
286 	strlcpy(out->f_mntonname,
287 	      in->f_mntonname, min(MNAMELEN, FREEBSD4_OMNAMELEN));
288 	out->f_syncreads = MIN(in->f_syncreads, INT32_MAX);
289 	out->f_asyncreads = MIN(in->f_asyncreads, INT32_MAX);
290 	strlcpy(out->f_mntfromname,
291 	      in->f_mntfromname, min(MNAMELEN, FREEBSD4_OMNAMELEN));
292 }
293 #endif
294 
295 int
296 freebsd32_getfsstat(struct thread *td, struct freebsd32_getfsstat_args *uap)
297 {
298 	size_t count;
299 	int error;
300 
301 	if (uap->bufsize < 0 || uap->bufsize > SIZE_MAX)
302 		return (EINVAL);
303 	error = kern_getfsstat(td, &uap->buf, uap->bufsize, &count,
304 	    UIO_USERSPACE, uap->mode);
305 	if (error == 0)
306 		td->td_retval[0] = count;
307 	return (error);
308 }
309 
310 #ifdef COMPAT_FREEBSD4
311 int
312 freebsd4_freebsd32_getfsstat(struct thread *td,
313     struct freebsd4_freebsd32_getfsstat_args *uap)
314 {
315 	struct statfs *buf, *sp;
316 	struct ostatfs32 stat32;
317 	size_t count, size, copycount;
318 	int error;
319 
320 	count = uap->bufsize / sizeof(struct ostatfs32);
321 	size = count * sizeof(struct statfs);
322 	error = kern_getfsstat(td, &buf, size, &count, UIO_SYSSPACE, uap->mode);
323 	if (size > 0) {
324 		sp = buf;
325 		copycount = count;
326 		while (copycount > 0 && error == 0) {
327 			copy_statfs(sp, &stat32);
328 			error = copyout(&stat32, uap->buf, sizeof(stat32));
329 			sp++;
330 			uap->buf++;
331 			copycount--;
332 		}
333 		free(buf, M_STATFS);
334 	}
335 	if (error == 0)
336 		td->td_retval[0] = count;
337 	return (error);
338 }
339 #endif
340 
341 #ifdef COMPAT_FREEBSD11
342 int
343 freebsd11_freebsd32_getfsstat(struct thread *td,
344     struct freebsd11_freebsd32_getfsstat_args *uap)
345 {
346 	return(kern_freebsd11_getfsstat(td, uap->buf, uap->bufsize,
347 	    uap->mode));
348 }
349 #endif
350 
351 int
352 freebsd32_sigaltstack(struct thread *td,
353 		      struct freebsd32_sigaltstack_args *uap)
354 {
355 	struct sigaltstack32 s32;
356 	struct sigaltstack ss, oss, *ssp;
357 	int error;
358 
359 	if (uap->ss != NULL) {
360 		error = copyin(uap->ss, &s32, sizeof(s32));
361 		if (error)
362 			return (error);
363 		PTRIN_CP(s32, ss, ss_sp);
364 		CP(s32, ss, ss_size);
365 		CP(s32, ss, ss_flags);
366 		ssp = &ss;
367 	} else
368 		ssp = NULL;
369 	error = kern_sigaltstack(td, ssp, &oss);
370 	if (error == 0 && uap->oss != NULL) {
371 		PTROUT_CP(oss, s32, ss_sp);
372 		CP(oss, s32, ss_size);
373 		CP(oss, s32, ss_flags);
374 		error = copyout(&s32, uap->oss, sizeof(s32));
375 	}
376 	return (error);
377 }
378 
379 /*
380  * Custom version of exec_copyin_args() so that we can translate
381  * the pointers.
382  */
383 int
384 freebsd32_exec_copyin_args(struct image_args *args, const char *fname,
385     enum uio_seg segflg, uint32_t *argv, uint32_t *envv)
386 {
387 	char *argp, *envp;
388 	uint32_t *p32, arg;
389 	int error;
390 
391 	bzero(args, sizeof(*args));
392 	if (argv == NULL)
393 		return (EFAULT);
394 
395 	/*
396 	 * Allocate demand-paged memory for the file name, argument, and
397 	 * environment strings.
398 	 */
399 	error = exec_alloc_args(args);
400 	if (error != 0)
401 		return (error);
402 
403 	/*
404 	 * Copy the file name.
405 	 */
406 	error = exec_args_add_fname(args, fname, segflg);
407 	if (error != 0)
408 		goto err_exit;
409 
410 	/*
411 	 * extract arguments first
412 	 */
413 	p32 = argv;
414 	for (;;) {
415 		error = copyin(p32++, &arg, sizeof(arg));
416 		if (error)
417 			goto err_exit;
418 		if (arg == 0)
419 			break;
420 		argp = PTRIN(arg);
421 		error = exec_args_add_arg(args, argp, UIO_USERSPACE);
422 		if (error != 0)
423 			goto err_exit;
424 	}
425 
426 	/*
427 	 * extract environment strings
428 	 */
429 	if (envv) {
430 		p32 = envv;
431 		for (;;) {
432 			error = copyin(p32++, &arg, sizeof(arg));
433 			if (error)
434 				goto err_exit;
435 			if (arg == 0)
436 				break;
437 			envp = PTRIN(arg);
438 			error = exec_args_add_env(args, envp, UIO_USERSPACE);
439 			if (error != 0)
440 				goto err_exit;
441 		}
442 	}
443 
444 	return (0);
445 
446 err_exit:
447 	exec_free_args(args);
448 	return (error);
449 }
450 
451 int
452 freebsd32_execve(struct thread *td, struct freebsd32_execve_args *uap)
453 {
454 	struct image_args eargs;
455 	struct vmspace *oldvmspace;
456 	int error;
457 
458 	error = pre_execve(td, &oldvmspace);
459 	if (error != 0)
460 		return (error);
461 	error = freebsd32_exec_copyin_args(&eargs, uap->fname, UIO_USERSPACE,
462 	    uap->argv, uap->envv);
463 	if (error == 0)
464 		error = kern_execve(td, &eargs, NULL, oldvmspace);
465 	post_execve(td, error, oldvmspace);
466 	AUDIT_SYSCALL_EXIT(error == EJUSTRETURN ? 0 : error, td);
467 	return (error);
468 }
469 
470 int
471 freebsd32_fexecve(struct thread *td, struct freebsd32_fexecve_args *uap)
472 {
473 	struct image_args eargs;
474 	struct vmspace *oldvmspace;
475 	int error;
476 
477 	error = pre_execve(td, &oldvmspace);
478 	if (error != 0)
479 		return (error);
480 	error = freebsd32_exec_copyin_args(&eargs, NULL, UIO_SYSSPACE,
481 	    uap->argv, uap->envv);
482 	if (error == 0) {
483 		eargs.fd = uap->fd;
484 		error = kern_execve(td, &eargs, NULL, oldvmspace);
485 	}
486 	post_execve(td, error, oldvmspace);
487 	AUDIT_SYSCALL_EXIT(error == EJUSTRETURN ? 0 : error, td);
488 	return (error);
489 }
490 
491 int
492 freebsd32_mknodat(struct thread *td, struct freebsd32_mknodat_args *uap)
493 {
494 
495 	return (kern_mknodat(td, uap->fd, uap->path, UIO_USERSPACE,
496 	    uap->mode, PAIR32TO64(dev_t, uap->dev)));
497 }
498 
499 int
500 freebsd32_mprotect(struct thread *td, struct freebsd32_mprotect_args *uap)
501 {
502 	int prot;
503 
504 	prot = uap->prot;
505 #if defined(__amd64__)
506 	if (i386_read_exec && (prot & PROT_READ) != 0)
507 		prot |= PROT_EXEC;
508 #endif
509 	return (kern_mprotect(td, (uintptr_t)PTRIN(uap->addr), uap->len,
510 	    prot));
511 }
512 
513 int
514 freebsd32_mmap(struct thread *td, struct freebsd32_mmap_args *uap)
515 {
516 	int prot;
517 
518 	prot = uap->prot;
519 #if defined(__amd64__)
520 	if (i386_read_exec && (prot & PROT_READ))
521 		prot |= PROT_EXEC;
522 #endif
523 
524 	return (kern_mmap(td, &(struct mmap_req){
525 		.mr_hint = (uintptr_t)uap->addr,
526 		.mr_len = uap->len,
527 		.mr_prot = prot,
528 		.mr_flags = uap->flags,
529 		.mr_fd = uap->fd,
530 		.mr_pos = PAIR32TO64(off_t, uap->pos),
531 	    }));
532 }
533 
534 #ifdef COMPAT_FREEBSD6
535 int
536 freebsd6_freebsd32_mmap(struct thread *td,
537     struct freebsd6_freebsd32_mmap_args *uap)
538 {
539 	int prot;
540 
541 	prot = uap->prot;
542 #if defined(__amd64__)
543 	if (i386_read_exec && (prot & PROT_READ))
544 		prot |= PROT_EXEC;
545 #endif
546 
547 	return (kern_mmap(td, &(struct mmap_req){
548 		.mr_hint = (uintptr_t)uap->addr,
549 		.mr_len = uap->len,
550 		.mr_prot = prot,
551 		.mr_flags = uap->flags,
552 		.mr_fd = uap->fd,
553 		.mr_pos = PAIR32TO64(off_t, uap->pos),
554 	    }));
555 }
556 #endif
557 
558 #ifdef COMPAT_43
559 int
560 ofreebsd32_mmap(struct thread *td, struct ofreebsd32_mmap_args *uap)
561 {
562 	return (kern_ommap(td, (uintptr_t)uap->addr, uap->len, uap->prot,
563 	    uap->flags, uap->fd, uap->pos));
564 }
565 #endif
566 
567 int
568 freebsd32_setitimer(struct thread *td, struct freebsd32_setitimer_args *uap)
569 {
570 	struct itimerval itv, oitv, *itvp;
571 	struct itimerval32 i32;
572 	int error;
573 
574 	if (uap->itv != NULL) {
575 		error = copyin(uap->itv, &i32, sizeof(i32));
576 		if (error)
577 			return (error);
578 		TV_CP(i32, itv, it_interval);
579 		TV_CP(i32, itv, it_value);
580 		itvp = &itv;
581 	} else
582 		itvp = NULL;
583 	error = kern_setitimer(td, uap->which, itvp, &oitv);
584 	if (error || uap->oitv == NULL)
585 		return (error);
586 	TV_CP(oitv, i32, it_interval);
587 	TV_CP(oitv, i32, it_value);
588 	return (copyout(&i32, uap->oitv, sizeof(i32)));
589 }
590 
591 int
592 freebsd32_getitimer(struct thread *td, struct freebsd32_getitimer_args *uap)
593 {
594 	struct itimerval itv;
595 	struct itimerval32 i32;
596 	int error;
597 
598 	error = kern_getitimer(td, uap->which, &itv);
599 	if (error || uap->itv == NULL)
600 		return (error);
601 	TV_CP(itv, i32, it_interval);
602 	TV_CP(itv, i32, it_value);
603 	return (copyout(&i32, uap->itv, sizeof(i32)));
604 }
605 
606 int
607 freebsd32_select(struct thread *td, struct freebsd32_select_args *uap)
608 {
609 	struct timeval32 tv32;
610 	struct timeval tv, *tvp;
611 	int error;
612 
613 	if (uap->tv != NULL) {
614 		error = copyin(uap->tv, &tv32, sizeof(tv32));
615 		if (error)
616 			return (error);
617 		CP(tv32, tv, tv_sec);
618 		CP(tv32, tv, tv_usec);
619 		tvp = &tv;
620 	} else
621 		tvp = NULL;
622 	/*
623 	 * XXX Do pointers need PTRIN()?
624 	 */
625 	return (kern_select(td, uap->nd, uap->in, uap->ou, uap->ex, tvp,
626 	    sizeof(int32_t) * 8));
627 }
628 
629 int
630 freebsd32_pselect(struct thread *td, struct freebsd32_pselect_args *uap)
631 {
632 	struct timespec32 ts32;
633 	struct timespec ts;
634 	struct timeval tv, *tvp;
635 	sigset_t set, *uset;
636 	int error;
637 
638 	if (uap->ts != NULL) {
639 		error = copyin(uap->ts, &ts32, sizeof(ts32));
640 		if (error != 0)
641 			return (error);
642 		CP(ts32, ts, tv_sec);
643 		CP(ts32, ts, tv_nsec);
644 		TIMESPEC_TO_TIMEVAL(&tv, &ts);
645 		tvp = &tv;
646 	} else
647 		tvp = NULL;
648 	if (uap->sm != NULL) {
649 		error = copyin(uap->sm, &set, sizeof(set));
650 		if (error != 0)
651 			return (error);
652 		uset = &set;
653 	} else
654 		uset = NULL;
655 	/*
656 	 * XXX Do pointers need PTRIN()?
657 	 */
658 	error = kern_pselect(td, uap->nd, uap->in, uap->ou, uap->ex, tvp,
659 	    uset, sizeof(int32_t) * 8);
660 	return (error);
661 }
662 
663 /*
664  * Copy 'count' items into the destination list pointed to by uap->eventlist.
665  */
666 static int
667 freebsd32_kevent_copyout(void *arg, struct kevent *kevp, int count)
668 {
669 	struct freebsd32_kevent_args *uap;
670 	struct kevent32	ks32[KQ_NEVENTS];
671 	uint64_t e;
672 	int i, j, error;
673 
674 	KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
675 	uap = (struct freebsd32_kevent_args *)arg;
676 
677 	for (i = 0; i < count; i++) {
678 		CP(kevp[i], ks32[i], ident);
679 		CP(kevp[i], ks32[i], filter);
680 		CP(kevp[i], ks32[i], flags);
681 		CP(kevp[i], ks32[i], fflags);
682 #if BYTE_ORDER == LITTLE_ENDIAN
683 		ks32[i].data1 = kevp[i].data;
684 		ks32[i].data2 = kevp[i].data >> 32;
685 #else
686 		ks32[i].data1 = kevp[i].data >> 32;
687 		ks32[i].data2 = kevp[i].data;
688 #endif
689 		PTROUT_CP(kevp[i], ks32[i], udata);
690 		for (j = 0; j < nitems(kevp->ext); j++) {
691 			e = kevp[i].ext[j];
692 #if BYTE_ORDER == LITTLE_ENDIAN
693 			ks32[i].ext64[2 * j] = e;
694 			ks32[i].ext64[2 * j + 1] = e >> 32;
695 #else
696 			ks32[i].ext64[2 * j] = e >> 32;
697 			ks32[i].ext64[2 * j + 1] = e;
698 #endif
699 		}
700 	}
701 	error = copyout(ks32, uap->eventlist, count * sizeof *ks32);
702 	if (error == 0)
703 		uap->eventlist += count;
704 	return (error);
705 }
706 
707 /*
708  * Copy 'count' items from the list pointed to by uap->changelist.
709  */
710 static int
711 freebsd32_kevent_copyin(void *arg, struct kevent *kevp, int count)
712 {
713 	struct freebsd32_kevent_args *uap;
714 	struct kevent32	ks32[KQ_NEVENTS];
715 	uint64_t e;
716 	int i, j, error;
717 
718 	KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
719 	uap = (struct freebsd32_kevent_args *)arg;
720 
721 	error = copyin(uap->changelist, ks32, count * sizeof *ks32);
722 	if (error)
723 		goto done;
724 	uap->changelist += count;
725 
726 	for (i = 0; i < count; i++) {
727 		CP(ks32[i], kevp[i], ident);
728 		CP(ks32[i], kevp[i], filter);
729 		CP(ks32[i], kevp[i], flags);
730 		CP(ks32[i], kevp[i], fflags);
731 		kevp[i].data = PAIR32TO64(uint64_t, ks32[i].data);
732 		PTRIN_CP(ks32[i], kevp[i], udata);
733 		for (j = 0; j < nitems(kevp->ext); j++) {
734 #if BYTE_ORDER == LITTLE_ENDIAN
735 			e = ks32[i].ext64[2 * j + 1];
736 			e <<= 32;
737 			e += ks32[i].ext64[2 * j];
738 #else
739 			e = ks32[i].ext64[2 * j];
740 			e <<= 32;
741 			e += ks32[i].ext64[2 * j + 1];
742 #endif
743 			kevp[i].ext[j] = e;
744 		}
745 	}
746 done:
747 	return (error);
748 }
749 
750 int
751 freebsd32_kevent(struct thread *td, struct freebsd32_kevent_args *uap)
752 {
753 	struct timespec32 ts32;
754 	struct timespec ts, *tsp;
755 	struct kevent_copyops k_ops = {
756 		.arg = uap,
757 		.k_copyout = freebsd32_kevent_copyout,
758 		.k_copyin = freebsd32_kevent_copyin,
759 	};
760 #ifdef KTRACE
761 	struct kevent32 *eventlist = uap->eventlist;
762 #endif
763 	int error;
764 
765 	if (uap->timeout) {
766 		error = copyin(uap->timeout, &ts32, sizeof(ts32));
767 		if (error)
768 			return (error);
769 		CP(ts32, ts, tv_sec);
770 		CP(ts32, ts, tv_nsec);
771 		tsp = &ts;
772 	} else
773 		tsp = NULL;
774 #ifdef KTRACE
775 	if (KTRPOINT(td, KTR_STRUCT_ARRAY))
776 		ktrstructarray("kevent32", UIO_USERSPACE, uap->changelist,
777 		    uap->nchanges, sizeof(struct kevent32));
778 #endif
779 	error = kern_kevent(td, uap->fd, uap->nchanges, uap->nevents,
780 	    &k_ops, tsp);
781 #ifdef KTRACE
782 	if (error == 0 && KTRPOINT(td, KTR_STRUCT_ARRAY))
783 		ktrstructarray("kevent32", UIO_USERSPACE, eventlist,
784 		    td->td_retval[0], sizeof(struct kevent32));
785 #endif
786 	return (error);
787 }
788 
789 #ifdef COMPAT_FREEBSD11
790 static int
791 freebsd32_kevent11_copyout(void *arg, struct kevent *kevp, int count)
792 {
793 	struct freebsd11_freebsd32_kevent_args *uap;
794 	struct freebsd11_kevent32 ks32[KQ_NEVENTS];
795 	int i, error;
796 
797 	KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
798 	uap = (struct freebsd11_freebsd32_kevent_args *)arg;
799 
800 	for (i = 0; i < count; i++) {
801 		CP(kevp[i], ks32[i], ident);
802 		CP(kevp[i], ks32[i], filter);
803 		CP(kevp[i], ks32[i], flags);
804 		CP(kevp[i], ks32[i], fflags);
805 		CP(kevp[i], ks32[i], data);
806 		PTROUT_CP(kevp[i], ks32[i], udata);
807 	}
808 	error = copyout(ks32, uap->eventlist, count * sizeof *ks32);
809 	if (error == 0)
810 		uap->eventlist += count;
811 	return (error);
812 }
813 
814 /*
815  * Copy 'count' items from the list pointed to by uap->changelist.
816  */
817 static int
818 freebsd32_kevent11_copyin(void *arg, struct kevent *kevp, int count)
819 {
820 	struct freebsd11_freebsd32_kevent_args *uap;
821 	struct freebsd11_kevent32 ks32[KQ_NEVENTS];
822 	int i, j, error;
823 
824 	KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
825 	uap = (struct freebsd11_freebsd32_kevent_args *)arg;
826 
827 	error = copyin(uap->changelist, ks32, count * sizeof *ks32);
828 	if (error)
829 		goto done;
830 	uap->changelist += count;
831 
832 	for (i = 0; i < count; i++) {
833 		CP(ks32[i], kevp[i], ident);
834 		CP(ks32[i], kevp[i], filter);
835 		CP(ks32[i], kevp[i], flags);
836 		CP(ks32[i], kevp[i], fflags);
837 		CP(ks32[i], kevp[i], data);
838 		PTRIN_CP(ks32[i], kevp[i], udata);
839 		for (j = 0; j < nitems(kevp->ext); j++)
840 			kevp[i].ext[j] = 0;
841 	}
842 done:
843 	return (error);
844 }
845 
846 int
847 freebsd11_freebsd32_kevent(struct thread *td,
848     struct freebsd11_freebsd32_kevent_args *uap)
849 {
850 	struct timespec32 ts32;
851 	struct timespec ts, *tsp;
852 	struct kevent_copyops k_ops = {
853 		.arg = uap,
854 		.k_copyout = freebsd32_kevent11_copyout,
855 		.k_copyin = freebsd32_kevent11_copyin,
856 	};
857 #ifdef KTRACE
858 	struct freebsd11_kevent32 *eventlist = uap->eventlist;
859 #endif
860 	int error;
861 
862 	if (uap->timeout) {
863 		error = copyin(uap->timeout, &ts32, sizeof(ts32));
864 		if (error)
865 			return (error);
866 		CP(ts32, ts, tv_sec);
867 		CP(ts32, ts, tv_nsec);
868 		tsp = &ts;
869 	} else
870 		tsp = NULL;
871 #ifdef KTRACE
872 	if (KTRPOINT(td, KTR_STRUCT_ARRAY))
873 		ktrstructarray("freebsd11_kevent32", UIO_USERSPACE,
874 		    uap->changelist, uap->nchanges,
875 		    sizeof(struct freebsd11_kevent32));
876 #endif
877 	error = kern_kevent(td, uap->fd, uap->nchanges, uap->nevents,
878 	    &k_ops, tsp);
879 #ifdef KTRACE
880 	if (error == 0 && KTRPOINT(td, KTR_STRUCT_ARRAY))
881 		ktrstructarray("freebsd11_kevent32", UIO_USERSPACE,
882 		    eventlist, td->td_retval[0],
883 		    sizeof(struct freebsd11_kevent32));
884 #endif
885 	return (error);
886 }
887 #endif
888 
889 int
890 freebsd32_gettimeofday(struct thread *td,
891 		       struct freebsd32_gettimeofday_args *uap)
892 {
893 	struct timeval atv;
894 	struct timeval32 atv32;
895 	struct timezone rtz;
896 	int error = 0;
897 
898 	if (uap->tp) {
899 		microtime(&atv);
900 		CP(atv, atv32, tv_sec);
901 		CP(atv, atv32, tv_usec);
902 		error = copyout(&atv32, uap->tp, sizeof (atv32));
903 	}
904 	if (error == 0 && uap->tzp != NULL) {
905 		rtz.tz_minuteswest = 0;
906 		rtz.tz_dsttime = 0;
907 		error = copyout(&rtz, uap->tzp, sizeof (rtz));
908 	}
909 	return (error);
910 }
911 
912 int
913 freebsd32_getrusage(struct thread *td, struct freebsd32_getrusage_args *uap)
914 {
915 	struct rusage32 s32;
916 	struct rusage s;
917 	int error;
918 
919 	error = kern_getrusage(td, uap->who, &s);
920 	if (error == 0) {
921 		freebsd32_rusage_out(&s, &s32);
922 		error = copyout(&s32, uap->rusage, sizeof(s32));
923 	}
924 	return (error);
925 }
926 
927 static void
928 ptrace_lwpinfo_to32(const struct ptrace_lwpinfo *pl,
929     struct ptrace_lwpinfo32 *pl32)
930 {
931 
932 	bzero(pl32, sizeof(*pl32));
933 	pl32->pl_lwpid = pl->pl_lwpid;
934 	pl32->pl_event = pl->pl_event;
935 	pl32->pl_flags = pl->pl_flags;
936 	pl32->pl_sigmask = pl->pl_sigmask;
937 	pl32->pl_siglist = pl->pl_siglist;
938 	siginfo_to_siginfo32(&pl->pl_siginfo, &pl32->pl_siginfo);
939 	strcpy(pl32->pl_tdname, pl->pl_tdname);
940 	pl32->pl_child_pid = pl->pl_child_pid;
941 	pl32->pl_syscall_code = pl->pl_syscall_code;
942 	pl32->pl_syscall_narg = pl->pl_syscall_narg;
943 }
944 
945 static void
946 ptrace_sc_ret_to32(const struct ptrace_sc_ret *psr,
947     struct ptrace_sc_ret32 *psr32)
948 {
949 
950 	bzero(psr32, sizeof(*psr32));
951 	psr32->sr_retval[0] = psr->sr_retval[0];
952 	psr32->sr_retval[1] = psr->sr_retval[1];
953 	psr32->sr_error = psr->sr_error;
954 }
955 
956 int
957 freebsd32_ptrace(struct thread *td, struct freebsd32_ptrace_args *uap)
958 {
959 	union {
960 		struct ptrace_io_desc piod;
961 		struct ptrace_lwpinfo pl;
962 		struct ptrace_vm_entry pve;
963 		struct ptrace_coredump pc;
964 		struct dbreg32 dbreg;
965 		struct fpreg32 fpreg;
966 		struct reg32 reg;
967 		struct iovec vec;
968 		register_t args[nitems(td->td_sa.args)];
969 		struct ptrace_sc_ret psr;
970 		int ptevents;
971 	} r;
972 	union {
973 		struct ptrace_io_desc32 piod;
974 		struct ptrace_lwpinfo32 pl;
975 		struct ptrace_vm_entry32 pve;
976 		struct ptrace_coredump32 pc;
977 		uint32_t args[nitems(td->td_sa.args)];
978 		struct ptrace_sc_ret32 psr;
979 		struct iovec32 vec;
980 	} r32;
981 	void *addr;
982 	int data, error, i;
983 
984 	if (!allow_ptrace)
985 		return (ENOSYS);
986 	error = 0;
987 
988 	AUDIT_ARG_PID(uap->pid);
989 	AUDIT_ARG_CMD(uap->req);
990 	AUDIT_ARG_VALUE(uap->data);
991 	addr = &r;
992 	data = uap->data;
993 	switch (uap->req) {
994 	case PT_GET_EVENT_MASK:
995 	case PT_GET_SC_ARGS:
996 	case PT_GET_SC_RET:
997 		break;
998 	case PT_LWPINFO:
999 		if (uap->data > sizeof(r32.pl))
1000 			return (EINVAL);
1001 
1002 		/*
1003 		 * Pass size of native structure in 'data'.  Truncate
1004 		 * if necessary to avoid siginfo.
1005 		 */
1006 		data = sizeof(r.pl);
1007 		if (uap->data < offsetof(struct ptrace_lwpinfo32, pl_siginfo) +
1008 		    sizeof(struct siginfo32))
1009 			data = offsetof(struct ptrace_lwpinfo, pl_siginfo);
1010 		break;
1011 	case PT_GETREGS:
1012 		bzero(&r.reg, sizeof(r.reg));
1013 		break;
1014 	case PT_GETFPREGS:
1015 		bzero(&r.fpreg, sizeof(r.fpreg));
1016 		break;
1017 	case PT_GETDBREGS:
1018 		bzero(&r.dbreg, sizeof(r.dbreg));
1019 		break;
1020 	case PT_SETREGS:
1021 		error = copyin(uap->addr, &r.reg, sizeof(r.reg));
1022 		break;
1023 	case PT_SETFPREGS:
1024 		error = copyin(uap->addr, &r.fpreg, sizeof(r.fpreg));
1025 		break;
1026 	case PT_SETDBREGS:
1027 		error = copyin(uap->addr, &r.dbreg, sizeof(r.dbreg));
1028 		break;
1029 	case PT_GETREGSET:
1030 	case PT_SETREGSET:
1031 		error = copyin(uap->addr, &r32.vec, sizeof(r32.vec));
1032 		if (error != 0)
1033 			break;
1034 
1035 		r.vec.iov_len = r32.vec.iov_len;
1036 		r.vec.iov_base = PTRIN(r32.vec.iov_base);
1037 		break;
1038 	case PT_SET_EVENT_MASK:
1039 		if (uap->data != sizeof(r.ptevents))
1040 			error = EINVAL;
1041 		else
1042 			error = copyin(uap->addr, &r.ptevents, uap->data);
1043 		break;
1044 	case PT_IO:
1045 		error = copyin(uap->addr, &r32.piod, sizeof(r32.piod));
1046 		if (error)
1047 			break;
1048 		CP(r32.piod, r.piod, piod_op);
1049 		PTRIN_CP(r32.piod, r.piod, piod_offs);
1050 		PTRIN_CP(r32.piod, r.piod, piod_addr);
1051 		CP(r32.piod, r.piod, piod_len);
1052 		break;
1053 	case PT_VM_ENTRY:
1054 		error = copyin(uap->addr, &r32.pve, sizeof(r32.pve));
1055 		if (error)
1056 			break;
1057 
1058 		CP(r32.pve, r.pve, pve_entry);
1059 		CP(r32.pve, r.pve, pve_timestamp);
1060 		CP(r32.pve, r.pve, pve_start);
1061 		CP(r32.pve, r.pve, pve_end);
1062 		CP(r32.pve, r.pve, pve_offset);
1063 		CP(r32.pve, r.pve, pve_prot);
1064 		CP(r32.pve, r.pve, pve_pathlen);
1065 		CP(r32.pve, r.pve, pve_fileid);
1066 		CP(r32.pve, r.pve, pve_fsid);
1067 		PTRIN_CP(r32.pve, r.pve, pve_path);
1068 		break;
1069 	case PT_COREDUMP:
1070 		if (uap->data != sizeof(r32.pc))
1071 			error = EINVAL;
1072 		else
1073 			error = copyin(uap->addr, &r32.pc, uap->data);
1074 		CP(r32.pc, r.pc, pc_fd);
1075 		CP(r32.pc, r.pc, pc_flags);
1076 		r.pc.pc_limit = PAIR32TO64(off_t, r32.pc.pc_limit);
1077 		data = sizeof(r.pc);
1078 		break;
1079 	default:
1080 		addr = uap->addr;
1081 		break;
1082 	}
1083 	if (error)
1084 		return (error);
1085 
1086 	error = kern_ptrace(td, uap->req, uap->pid, addr, data);
1087 	if (error)
1088 		return (error);
1089 
1090 	switch (uap->req) {
1091 	case PT_VM_ENTRY:
1092 		CP(r.pve, r32.pve, pve_entry);
1093 		CP(r.pve, r32.pve, pve_timestamp);
1094 		CP(r.pve, r32.pve, pve_start);
1095 		CP(r.pve, r32.pve, pve_end);
1096 		CP(r.pve, r32.pve, pve_offset);
1097 		CP(r.pve, r32.pve, pve_prot);
1098 		CP(r.pve, r32.pve, pve_pathlen);
1099 		CP(r.pve, r32.pve, pve_fileid);
1100 		CP(r.pve, r32.pve, pve_fsid);
1101 		error = copyout(&r32.pve, uap->addr, sizeof(r32.pve));
1102 		break;
1103 	case PT_IO:
1104 		CP(r.piod, r32.piod, piod_len);
1105 		error = copyout(&r32.piod, uap->addr, sizeof(r32.piod));
1106 		break;
1107 	case PT_GETREGS:
1108 		error = copyout(&r.reg, uap->addr, sizeof(r.reg));
1109 		break;
1110 	case PT_GETFPREGS:
1111 		error = copyout(&r.fpreg, uap->addr, sizeof(r.fpreg));
1112 		break;
1113 	case PT_GETDBREGS:
1114 		error = copyout(&r.dbreg, uap->addr, sizeof(r.dbreg));
1115 		break;
1116 	case PT_GETREGSET:
1117 		r32.vec.iov_len = r.vec.iov_len;
1118 		error = copyout(&r32.vec, uap->addr, sizeof(r32.vec));
1119 		break;
1120 	case PT_GET_EVENT_MASK:
1121 		/* NB: The size in uap->data is validated in kern_ptrace(). */
1122 		error = copyout(&r.ptevents, uap->addr, uap->data);
1123 		break;
1124 	case PT_LWPINFO:
1125 		ptrace_lwpinfo_to32(&r.pl, &r32.pl);
1126 		error = copyout(&r32.pl, uap->addr, uap->data);
1127 		break;
1128 	case PT_GET_SC_ARGS:
1129 		for (i = 0; i < nitems(r.args); i++)
1130 			r32.args[i] = (uint32_t)r.args[i];
1131 		error = copyout(r32.args, uap->addr, MIN(uap->data,
1132 		    sizeof(r32.args)));
1133 		break;
1134 	case PT_GET_SC_RET:
1135 		ptrace_sc_ret_to32(&r.psr, &r32.psr);
1136 		error = copyout(&r32.psr, uap->addr, MIN(uap->data,
1137 		    sizeof(r32.psr)));
1138 		break;
1139 	}
1140 
1141 	return (error);
1142 }
1143 
1144 int
1145 freebsd32_copyinuio(struct iovec32 *iovp, u_int iovcnt, struct uio **uiop)
1146 {
1147 	struct iovec32 iov32;
1148 	struct iovec *iov;
1149 	struct uio *uio;
1150 	u_int iovlen;
1151 	int error, i;
1152 
1153 	*uiop = NULL;
1154 	if (iovcnt > UIO_MAXIOV)
1155 		return (EINVAL);
1156 	iovlen = iovcnt * sizeof(struct iovec);
1157 	uio = malloc(iovlen + sizeof *uio, M_IOV, M_WAITOK);
1158 	iov = (struct iovec *)(uio + 1);
1159 	for (i = 0; i < iovcnt; i++) {
1160 		error = copyin(&iovp[i], &iov32, sizeof(struct iovec32));
1161 		if (error) {
1162 			free(uio, M_IOV);
1163 			return (error);
1164 		}
1165 		iov[i].iov_base = PTRIN(iov32.iov_base);
1166 		iov[i].iov_len = iov32.iov_len;
1167 	}
1168 	uio->uio_iov = iov;
1169 	uio->uio_iovcnt = iovcnt;
1170 	uio->uio_segflg = UIO_USERSPACE;
1171 	uio->uio_offset = -1;
1172 	uio->uio_resid = 0;
1173 	for (i = 0; i < iovcnt; i++) {
1174 		if (iov->iov_len > INT_MAX - uio->uio_resid) {
1175 			free(uio, M_IOV);
1176 			return (EINVAL);
1177 		}
1178 		uio->uio_resid += iov->iov_len;
1179 		iov++;
1180 	}
1181 	*uiop = uio;
1182 	return (0);
1183 }
1184 
1185 int
1186 freebsd32_readv(struct thread *td, struct freebsd32_readv_args *uap)
1187 {
1188 	struct uio *auio;
1189 	int error;
1190 
1191 	error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio);
1192 	if (error)
1193 		return (error);
1194 	error = kern_readv(td, uap->fd, auio);
1195 	free(auio, M_IOV);
1196 	return (error);
1197 }
1198 
1199 int
1200 freebsd32_writev(struct thread *td, struct freebsd32_writev_args *uap)
1201 {
1202 	struct uio *auio;
1203 	int error;
1204 
1205 	error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio);
1206 	if (error)
1207 		return (error);
1208 	error = kern_writev(td, uap->fd, auio);
1209 	free(auio, M_IOV);
1210 	return (error);
1211 }
1212 
1213 int
1214 freebsd32_preadv(struct thread *td, struct freebsd32_preadv_args *uap)
1215 {
1216 	struct uio *auio;
1217 	int error;
1218 
1219 	error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio);
1220 	if (error)
1221 		return (error);
1222 	error = kern_preadv(td, uap->fd, auio, PAIR32TO64(off_t,uap->offset));
1223 	free(auio, M_IOV);
1224 	return (error);
1225 }
1226 
1227 int
1228 freebsd32_pwritev(struct thread *td, struct freebsd32_pwritev_args *uap)
1229 {
1230 	struct uio *auio;
1231 	int error;
1232 
1233 	error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio);
1234 	if (error)
1235 		return (error);
1236 	error = kern_pwritev(td, uap->fd, auio, PAIR32TO64(off_t,uap->offset));
1237 	free(auio, M_IOV);
1238 	return (error);
1239 }
1240 
1241 int
1242 freebsd32_copyiniov(struct iovec32 *iovp32, u_int iovcnt, struct iovec **iovp,
1243     int error)
1244 {
1245 	struct iovec32 iov32;
1246 	struct iovec *iov;
1247 	u_int iovlen;
1248 	int i;
1249 
1250 	*iovp = NULL;
1251 	if (iovcnt > UIO_MAXIOV)
1252 		return (error);
1253 	iovlen = iovcnt * sizeof(struct iovec);
1254 	iov = malloc(iovlen, M_IOV, M_WAITOK);
1255 	for (i = 0; i < iovcnt; i++) {
1256 		error = copyin(&iovp32[i], &iov32, sizeof(struct iovec32));
1257 		if (error) {
1258 			free(iov, M_IOV);
1259 			return (error);
1260 		}
1261 		iov[i].iov_base = PTRIN(iov32.iov_base);
1262 		iov[i].iov_len = iov32.iov_len;
1263 	}
1264 	*iovp = iov;
1265 	return (0);
1266 }
1267 
1268 static int
1269 freebsd32_copyinmsghdr(const struct msghdr32 *msg32, struct msghdr *msg)
1270 {
1271 	struct msghdr32 m32;
1272 	int error;
1273 
1274 	error = copyin(msg32, &m32, sizeof(m32));
1275 	if (error)
1276 		return (error);
1277 	msg->msg_name = PTRIN(m32.msg_name);
1278 	msg->msg_namelen = m32.msg_namelen;
1279 	msg->msg_iov = PTRIN(m32.msg_iov);
1280 	msg->msg_iovlen = m32.msg_iovlen;
1281 	msg->msg_control = PTRIN(m32.msg_control);
1282 	msg->msg_controllen = m32.msg_controllen;
1283 	msg->msg_flags = m32.msg_flags;
1284 	return (0);
1285 }
1286 
1287 static int
1288 freebsd32_copyoutmsghdr(struct msghdr *msg, struct msghdr32 *msg32)
1289 {
1290 	struct msghdr32 m32;
1291 	int error;
1292 
1293 	m32.msg_name = PTROUT(msg->msg_name);
1294 	m32.msg_namelen = msg->msg_namelen;
1295 	m32.msg_iov = PTROUT(msg->msg_iov);
1296 	m32.msg_iovlen = msg->msg_iovlen;
1297 	m32.msg_control = PTROUT(msg->msg_control);
1298 	m32.msg_controllen = msg->msg_controllen;
1299 	m32.msg_flags = msg->msg_flags;
1300 	error = copyout(&m32, msg32, sizeof(m32));
1301 	return (error);
1302 }
1303 
1304 #ifndef __mips__
1305 #define FREEBSD32_ALIGNBYTES	(sizeof(int) - 1)
1306 #else
1307 #define FREEBSD32_ALIGNBYTES	(sizeof(long) - 1)
1308 #endif
1309 #define FREEBSD32_ALIGN(p)	\
1310 	(((u_long)(p) + FREEBSD32_ALIGNBYTES) & ~FREEBSD32_ALIGNBYTES)
1311 #define	FREEBSD32_CMSG_SPACE(l)	\
1312 	(FREEBSD32_ALIGN(sizeof(struct cmsghdr)) + FREEBSD32_ALIGN(l))
1313 
1314 #define	FREEBSD32_CMSG_DATA(cmsg)	((unsigned char *)(cmsg) + \
1315 				 FREEBSD32_ALIGN(sizeof(struct cmsghdr)))
1316 
1317 static size_t
1318 freebsd32_cmsg_convert(const struct cmsghdr *cm, void *data, socklen_t datalen)
1319 {
1320 	size_t copylen;
1321 	union {
1322 		struct timespec32 ts;
1323 		struct timeval32 tv;
1324 		struct bintime32 bt;
1325 	} tmp32;
1326 
1327 	union {
1328 		struct timespec ts;
1329 		struct timeval tv;
1330 		struct bintime bt;
1331 	} *in;
1332 
1333 	in = data;
1334 	copylen = 0;
1335 	switch (cm->cmsg_level) {
1336 	case SOL_SOCKET:
1337 		switch (cm->cmsg_type) {
1338 		case SCM_TIMESTAMP:
1339 			TV_CP(*in, tmp32, tv);
1340 			copylen = sizeof(tmp32.tv);
1341 			break;
1342 
1343 		case SCM_BINTIME:
1344 			BT_CP(*in, tmp32, bt);
1345 			copylen = sizeof(tmp32.bt);
1346 			break;
1347 
1348 		case SCM_REALTIME:
1349 		case SCM_MONOTONIC:
1350 			TS_CP(*in, tmp32, ts);
1351 			copylen = sizeof(tmp32.ts);
1352 			break;
1353 
1354 		default:
1355 			break;
1356 		}
1357 
1358 	default:
1359 		break;
1360 	}
1361 
1362 	if (copylen == 0)
1363 		return (datalen);
1364 
1365 	KASSERT((datalen >= copylen), ("corrupted cmsghdr"));
1366 
1367 	bcopy(&tmp32, data, copylen);
1368 	return (copylen);
1369 }
1370 
1371 static int
1372 freebsd32_copy_msg_out(struct msghdr *msg, struct mbuf *control)
1373 {
1374 	struct cmsghdr *cm;
1375 	void *data;
1376 	socklen_t clen, datalen, datalen_out, oldclen;
1377 	int error;
1378 	caddr_t ctlbuf;
1379 	int len, copylen;
1380 	struct mbuf *m;
1381 	error = 0;
1382 
1383 	len    = msg->msg_controllen;
1384 	msg->msg_controllen = 0;
1385 
1386 	ctlbuf = msg->msg_control;
1387 	for (m = control; m != NULL && len > 0; m = m->m_next) {
1388 		cm = mtod(m, struct cmsghdr *);
1389 		clen = m->m_len;
1390 		while (cm != NULL) {
1391 			if (sizeof(struct cmsghdr) > clen ||
1392 			    cm->cmsg_len > clen) {
1393 				error = EINVAL;
1394 				break;
1395 			}
1396 
1397 			data   = CMSG_DATA(cm);
1398 			datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data;
1399 			datalen_out = freebsd32_cmsg_convert(cm, data, datalen);
1400 
1401 			/*
1402 			 * Copy out the message header.  Preserve the native
1403 			 * message size in case we need to inspect the message
1404 			 * contents later.
1405 			 */
1406 			copylen = sizeof(struct cmsghdr);
1407 			if (len < copylen) {
1408 				msg->msg_flags |= MSG_CTRUNC;
1409 				m_dispose_extcontrolm(m);
1410 				goto exit;
1411 			}
1412 			oldclen = cm->cmsg_len;
1413 			cm->cmsg_len = FREEBSD32_ALIGN(sizeof(struct cmsghdr)) +
1414 			    datalen_out;
1415 			error = copyout(cm, ctlbuf, copylen);
1416 			cm->cmsg_len = oldclen;
1417 			if (error != 0)
1418 				goto exit;
1419 
1420 			ctlbuf += FREEBSD32_ALIGN(copylen);
1421 			len    -= FREEBSD32_ALIGN(copylen);
1422 
1423 			copylen = datalen_out;
1424 			if (len < copylen) {
1425 				msg->msg_flags |= MSG_CTRUNC;
1426 				m_dispose_extcontrolm(m);
1427 				break;
1428 			}
1429 
1430 			/* Copy out the message data. */
1431 			error = copyout(data, ctlbuf, copylen);
1432 			if (error)
1433 				goto exit;
1434 
1435 			ctlbuf += FREEBSD32_ALIGN(copylen);
1436 			len    -= FREEBSD32_ALIGN(copylen);
1437 
1438 			if (CMSG_SPACE(datalen) < clen) {
1439 				clen -= CMSG_SPACE(datalen);
1440 				cm = (struct cmsghdr *)
1441 				    ((caddr_t)cm + CMSG_SPACE(datalen));
1442 			} else {
1443 				clen = 0;
1444 				cm = NULL;
1445 			}
1446 
1447 			msg->msg_controllen +=
1448 			    FREEBSD32_CMSG_SPACE(datalen_out);
1449 		}
1450 	}
1451 	if (len == 0 && m != NULL) {
1452 		msg->msg_flags |= MSG_CTRUNC;
1453 		m_dispose_extcontrolm(m);
1454 	}
1455 
1456 exit:
1457 	return (error);
1458 }
1459 
1460 int
1461 freebsd32_recvmsg(struct thread *td, struct freebsd32_recvmsg_args *uap)
1462 {
1463 	struct msghdr msg;
1464 	struct iovec *uiov, *iov;
1465 	struct mbuf *control = NULL;
1466 	struct mbuf **controlp;
1467 	int error;
1468 
1469 	error = freebsd32_copyinmsghdr(uap->msg, &msg);
1470 	if (error)
1471 		return (error);
1472 	error = freebsd32_copyiniov((void *)msg.msg_iov, msg.msg_iovlen, &iov,
1473 	    EMSGSIZE);
1474 	if (error)
1475 		return (error);
1476 	msg.msg_flags = uap->flags;
1477 	uiov = msg.msg_iov;
1478 	msg.msg_iov = iov;
1479 
1480 	controlp = (msg.msg_control != NULL) ?  &control : NULL;
1481 	error = kern_recvit(td, uap->s, &msg, UIO_USERSPACE, controlp);
1482 	if (error == 0) {
1483 		msg.msg_iov = uiov;
1484 
1485 		if (control != NULL)
1486 			error = freebsd32_copy_msg_out(&msg, control);
1487 		else
1488 			msg.msg_controllen = 0;
1489 
1490 		if (error == 0)
1491 			error = freebsd32_copyoutmsghdr(&msg, uap->msg);
1492 	}
1493 	free(iov, M_IOV);
1494 
1495 	if (control != NULL) {
1496 		if (error != 0)
1497 			m_dispose_extcontrolm(control);
1498 		m_freem(control);
1499 	}
1500 
1501 	return (error);
1502 }
1503 
1504 #ifdef COMPAT_43
1505 int
1506 ofreebsd32_recvmsg(struct thread *td, struct ofreebsd32_recvmsg_args *uap)
1507 {
1508 	return (ENOSYS);
1509 }
1510 #endif
1511 
1512 /*
1513  * Copy-in the array of control messages constructed using alignment
1514  * and padding suitable for a 32-bit environment and construct an
1515  * mbuf using alignment and padding suitable for a 64-bit kernel.
1516  * The alignment and padding are defined indirectly by CMSG_DATA(),
1517  * CMSG_SPACE() and CMSG_LEN().
1518  */
1519 static int
1520 freebsd32_copyin_control(struct mbuf **mp, caddr_t buf, u_int buflen)
1521 {
1522 	struct cmsghdr *cm;
1523 	struct mbuf *m;
1524 	void *in, *in1, *md;
1525 	u_int msglen, outlen;
1526 	int error;
1527 
1528 	if (buflen > MCLBYTES)
1529 		return (EINVAL);
1530 
1531 	in = malloc(buflen, M_TEMP, M_WAITOK);
1532 	error = copyin(buf, in, buflen);
1533 	if (error != 0)
1534 		goto out;
1535 
1536 	/*
1537 	 * Make a pass over the input buffer to determine the amount of space
1538 	 * required for 64 bit-aligned copies of the control messages.
1539 	 */
1540 	in1 = in;
1541 	outlen = 0;
1542 	while (buflen > 0) {
1543 		if (buflen < sizeof(*cm)) {
1544 			error = EINVAL;
1545 			break;
1546 		}
1547 		cm = (struct cmsghdr *)in1;
1548 		if (cm->cmsg_len < FREEBSD32_ALIGN(sizeof(*cm))) {
1549 			error = EINVAL;
1550 			break;
1551 		}
1552 		msglen = FREEBSD32_ALIGN(cm->cmsg_len);
1553 		if (msglen > buflen || msglen < cm->cmsg_len) {
1554 			error = EINVAL;
1555 			break;
1556 		}
1557 		buflen -= msglen;
1558 
1559 		in1 = (char *)in1 + msglen;
1560 		outlen += CMSG_ALIGN(sizeof(*cm)) +
1561 		    CMSG_ALIGN(msglen - FREEBSD32_ALIGN(sizeof(*cm)));
1562 	}
1563 	if (error == 0 && outlen > MCLBYTES) {
1564 		/*
1565 		 * XXXMJ This implies that the upper limit on 32-bit aligned
1566 		 * control messages is less than MCLBYTES, and so we are not
1567 		 * perfectly compatible.  However, there is no platform
1568 		 * guarantee that mbuf clusters larger than MCLBYTES can be
1569 		 * allocated.
1570 		 */
1571 		error = EINVAL;
1572 	}
1573 	if (error != 0)
1574 		goto out;
1575 
1576 	m = m_get2(outlen, M_WAITOK, MT_CONTROL, 0);
1577 	m->m_len = outlen;
1578 	md = mtod(m, void *);
1579 
1580 	/*
1581 	 * Make a second pass over input messages, copying them into the output
1582 	 * buffer.
1583 	 */
1584 	in1 = in;
1585 	while (outlen > 0) {
1586 		/* Copy the message header and align the length field. */
1587 		cm = md;
1588 		memcpy(cm, in1, sizeof(*cm));
1589 		msglen = cm->cmsg_len - FREEBSD32_ALIGN(sizeof(*cm));
1590 		cm->cmsg_len = CMSG_ALIGN(sizeof(*cm)) + msglen;
1591 
1592 		/* Copy the message body. */
1593 		in1 = (char *)in1 + FREEBSD32_ALIGN(sizeof(*cm));
1594 		md = (char *)md + CMSG_ALIGN(sizeof(*cm));
1595 		memcpy(md, in1, msglen);
1596 		in1 = (char *)in1 + FREEBSD32_ALIGN(msglen);
1597 		md = (char *)md + CMSG_ALIGN(msglen);
1598 		KASSERT(outlen >= CMSG_ALIGN(sizeof(*cm)) + CMSG_ALIGN(msglen),
1599 		    ("outlen %u underflow, msglen %u", outlen, msglen));
1600 		outlen -= CMSG_ALIGN(sizeof(*cm)) + CMSG_ALIGN(msglen);
1601 	}
1602 
1603 	*mp = m;
1604 out:
1605 	free(in, M_TEMP);
1606 	return (error);
1607 }
1608 
1609 int
1610 freebsd32_sendmsg(struct thread *td, struct freebsd32_sendmsg_args *uap)
1611 {
1612 	struct msghdr msg;
1613 	struct iovec *iov;
1614 	struct mbuf *control = NULL;
1615 	struct sockaddr *to = NULL;
1616 	int error;
1617 
1618 	error = freebsd32_copyinmsghdr(uap->msg, &msg);
1619 	if (error)
1620 		return (error);
1621 	error = freebsd32_copyiniov((void *)msg.msg_iov, msg.msg_iovlen, &iov,
1622 	    EMSGSIZE);
1623 	if (error)
1624 		return (error);
1625 	msg.msg_iov = iov;
1626 	if (msg.msg_name != NULL) {
1627 		error = getsockaddr(&to, msg.msg_name, msg.msg_namelen);
1628 		if (error) {
1629 			to = NULL;
1630 			goto out;
1631 		}
1632 		msg.msg_name = to;
1633 	}
1634 
1635 	if (msg.msg_control) {
1636 		if (msg.msg_controllen < sizeof(struct cmsghdr)) {
1637 			error = EINVAL;
1638 			goto out;
1639 		}
1640 
1641 		error = freebsd32_copyin_control(&control, msg.msg_control,
1642 		    msg.msg_controllen);
1643 		if (error)
1644 			goto out;
1645 
1646 		msg.msg_control = NULL;
1647 		msg.msg_controllen = 0;
1648 	}
1649 
1650 	error = kern_sendit(td, uap->s, &msg, uap->flags, control,
1651 	    UIO_USERSPACE);
1652 
1653 out:
1654 	free(iov, M_IOV);
1655 	if (to)
1656 		free(to, M_SONAME);
1657 	return (error);
1658 }
1659 
1660 #ifdef COMPAT_43
1661 int
1662 ofreebsd32_sendmsg(struct thread *td, struct ofreebsd32_sendmsg_args *uap)
1663 {
1664 	return (ENOSYS);
1665 }
1666 #endif
1667 
1668 
1669 int
1670 freebsd32_settimeofday(struct thread *td,
1671 		       struct freebsd32_settimeofday_args *uap)
1672 {
1673 	struct timeval32 tv32;
1674 	struct timeval tv, *tvp;
1675 	struct timezone tz, *tzp;
1676 	int error;
1677 
1678 	if (uap->tv) {
1679 		error = copyin(uap->tv, &tv32, sizeof(tv32));
1680 		if (error)
1681 			return (error);
1682 		CP(tv32, tv, tv_sec);
1683 		CP(tv32, tv, tv_usec);
1684 		tvp = &tv;
1685 	} else
1686 		tvp = NULL;
1687 	if (uap->tzp) {
1688 		error = copyin(uap->tzp, &tz, sizeof(tz));
1689 		if (error)
1690 			return (error);
1691 		tzp = &tz;
1692 	} else
1693 		tzp = NULL;
1694 	return (kern_settimeofday(td, tvp, tzp));
1695 }
1696 
1697 int
1698 freebsd32_utimes(struct thread *td, struct freebsd32_utimes_args *uap)
1699 {
1700 	struct timeval32 s32[2];
1701 	struct timeval s[2], *sp;
1702 	int error;
1703 
1704 	if (uap->tptr != NULL) {
1705 		error = copyin(uap->tptr, s32, sizeof(s32));
1706 		if (error)
1707 			return (error);
1708 		CP(s32[0], s[0], tv_sec);
1709 		CP(s32[0], s[0], tv_usec);
1710 		CP(s32[1], s[1], tv_sec);
1711 		CP(s32[1], s[1], tv_usec);
1712 		sp = s;
1713 	} else
1714 		sp = NULL;
1715 	return (kern_utimesat(td, AT_FDCWD, uap->path, UIO_USERSPACE,
1716 	    sp, UIO_SYSSPACE));
1717 }
1718 
1719 int
1720 freebsd32_lutimes(struct thread *td, struct freebsd32_lutimes_args *uap)
1721 {
1722 	struct timeval32 s32[2];
1723 	struct timeval s[2], *sp;
1724 	int error;
1725 
1726 	if (uap->tptr != NULL) {
1727 		error = copyin(uap->tptr, s32, sizeof(s32));
1728 		if (error)
1729 			return (error);
1730 		CP(s32[0], s[0], tv_sec);
1731 		CP(s32[0], s[0], tv_usec);
1732 		CP(s32[1], s[1], tv_sec);
1733 		CP(s32[1], s[1], tv_usec);
1734 		sp = s;
1735 	} else
1736 		sp = NULL;
1737 	return (kern_lutimes(td, uap->path, UIO_USERSPACE, sp, UIO_SYSSPACE));
1738 }
1739 
1740 int
1741 freebsd32_futimes(struct thread *td, struct freebsd32_futimes_args *uap)
1742 {
1743 	struct timeval32 s32[2];
1744 	struct timeval s[2], *sp;
1745 	int error;
1746 
1747 	if (uap->tptr != NULL) {
1748 		error = copyin(uap->tptr, s32, sizeof(s32));
1749 		if (error)
1750 			return (error);
1751 		CP(s32[0], s[0], tv_sec);
1752 		CP(s32[0], s[0], tv_usec);
1753 		CP(s32[1], s[1], tv_sec);
1754 		CP(s32[1], s[1], tv_usec);
1755 		sp = s;
1756 	} else
1757 		sp = NULL;
1758 	return (kern_futimes(td, uap->fd, sp, UIO_SYSSPACE));
1759 }
1760 
1761 int
1762 freebsd32_futimesat(struct thread *td, struct freebsd32_futimesat_args *uap)
1763 {
1764 	struct timeval32 s32[2];
1765 	struct timeval s[2], *sp;
1766 	int error;
1767 
1768 	if (uap->times != NULL) {
1769 		error = copyin(uap->times, s32, sizeof(s32));
1770 		if (error)
1771 			return (error);
1772 		CP(s32[0], s[0], tv_sec);
1773 		CP(s32[0], s[0], tv_usec);
1774 		CP(s32[1], s[1], tv_sec);
1775 		CP(s32[1], s[1], tv_usec);
1776 		sp = s;
1777 	} else
1778 		sp = NULL;
1779 	return (kern_utimesat(td, uap->fd, uap->path, UIO_USERSPACE,
1780 		sp, UIO_SYSSPACE));
1781 }
1782 
1783 int
1784 freebsd32_futimens(struct thread *td, struct freebsd32_futimens_args *uap)
1785 {
1786 	struct timespec32 ts32[2];
1787 	struct timespec ts[2], *tsp;
1788 	int error;
1789 
1790 	if (uap->times != NULL) {
1791 		error = copyin(uap->times, ts32, sizeof(ts32));
1792 		if (error)
1793 			return (error);
1794 		CP(ts32[0], ts[0], tv_sec);
1795 		CP(ts32[0], ts[0], tv_nsec);
1796 		CP(ts32[1], ts[1], tv_sec);
1797 		CP(ts32[1], ts[1], tv_nsec);
1798 		tsp = ts;
1799 	} else
1800 		tsp = NULL;
1801 	return (kern_futimens(td, uap->fd, tsp, UIO_SYSSPACE));
1802 }
1803 
1804 int
1805 freebsd32_utimensat(struct thread *td, struct freebsd32_utimensat_args *uap)
1806 {
1807 	struct timespec32 ts32[2];
1808 	struct timespec ts[2], *tsp;
1809 	int error;
1810 
1811 	if (uap->times != NULL) {
1812 		error = copyin(uap->times, ts32, sizeof(ts32));
1813 		if (error)
1814 			return (error);
1815 		CP(ts32[0], ts[0], tv_sec);
1816 		CP(ts32[0], ts[0], tv_nsec);
1817 		CP(ts32[1], ts[1], tv_sec);
1818 		CP(ts32[1], ts[1], tv_nsec);
1819 		tsp = ts;
1820 	} else
1821 		tsp = NULL;
1822 	return (kern_utimensat(td, uap->fd, uap->path, UIO_USERSPACE,
1823 	    tsp, UIO_SYSSPACE, uap->flag));
1824 }
1825 
1826 int
1827 freebsd32_adjtime(struct thread *td, struct freebsd32_adjtime_args *uap)
1828 {
1829 	struct timeval32 tv32;
1830 	struct timeval delta, olddelta, *deltap;
1831 	int error;
1832 
1833 	if (uap->delta) {
1834 		error = copyin(uap->delta, &tv32, sizeof(tv32));
1835 		if (error)
1836 			return (error);
1837 		CP(tv32, delta, tv_sec);
1838 		CP(tv32, delta, tv_usec);
1839 		deltap = &delta;
1840 	} else
1841 		deltap = NULL;
1842 	error = kern_adjtime(td, deltap, &olddelta);
1843 	if (uap->olddelta && error == 0) {
1844 		CP(olddelta, tv32, tv_sec);
1845 		CP(olddelta, tv32, tv_usec);
1846 		error = copyout(&tv32, uap->olddelta, sizeof(tv32));
1847 	}
1848 	return (error);
1849 }
1850 
1851 #ifdef COMPAT_FREEBSD4
1852 int
1853 freebsd4_freebsd32_statfs(struct thread *td, struct freebsd4_freebsd32_statfs_args *uap)
1854 {
1855 	struct ostatfs32 s32;
1856 	struct statfs *sp;
1857 	int error;
1858 
1859 	sp = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK);
1860 	error = kern_statfs(td, uap->path, UIO_USERSPACE, sp);
1861 	if (error == 0) {
1862 		copy_statfs(sp, &s32);
1863 		error = copyout(&s32, uap->buf, sizeof(s32));
1864 	}
1865 	free(sp, M_STATFS);
1866 	return (error);
1867 }
1868 #endif
1869 
1870 #ifdef COMPAT_FREEBSD4
1871 int
1872 freebsd4_freebsd32_fstatfs(struct thread *td, struct freebsd4_freebsd32_fstatfs_args *uap)
1873 {
1874 	struct ostatfs32 s32;
1875 	struct statfs *sp;
1876 	int error;
1877 
1878 	sp = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK);
1879 	error = kern_fstatfs(td, uap->fd, sp);
1880 	if (error == 0) {
1881 		copy_statfs(sp, &s32);
1882 		error = copyout(&s32, uap->buf, sizeof(s32));
1883 	}
1884 	free(sp, M_STATFS);
1885 	return (error);
1886 }
1887 #endif
1888 
1889 #ifdef COMPAT_FREEBSD4
1890 int
1891 freebsd4_freebsd32_fhstatfs(struct thread *td, struct freebsd4_freebsd32_fhstatfs_args *uap)
1892 {
1893 	struct ostatfs32 s32;
1894 	struct statfs *sp;
1895 	fhandle_t fh;
1896 	int error;
1897 
1898 	if ((error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t))) != 0)
1899 		return (error);
1900 	sp = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK);
1901 	error = kern_fhstatfs(td, fh, sp);
1902 	if (error == 0) {
1903 		copy_statfs(sp, &s32);
1904 		error = copyout(&s32, uap->buf, sizeof(s32));
1905 	}
1906 	free(sp, M_STATFS);
1907 	return (error);
1908 }
1909 #endif
1910 
1911 int
1912 freebsd32_pread(struct thread *td, struct freebsd32_pread_args *uap)
1913 {
1914 
1915 	return (kern_pread(td, uap->fd, uap->buf, uap->nbyte,
1916 	    PAIR32TO64(off_t, uap->offset)));
1917 }
1918 
1919 int
1920 freebsd32_pwrite(struct thread *td, struct freebsd32_pwrite_args *uap)
1921 {
1922 
1923 	return (kern_pwrite(td, uap->fd, uap->buf, uap->nbyte,
1924 	    PAIR32TO64(off_t, uap->offset)));
1925 }
1926 
1927 #ifdef COMPAT_43
1928 int
1929 ofreebsd32_lseek(struct thread *td, struct ofreebsd32_lseek_args *uap)
1930 {
1931 
1932 	return (kern_lseek(td, uap->fd, uap->offset, uap->whence));
1933 }
1934 #endif
1935 
1936 int
1937 freebsd32_lseek(struct thread *td, struct freebsd32_lseek_args *uap)
1938 {
1939 	int error;
1940 	off_t pos;
1941 
1942 	error = kern_lseek(td, uap->fd, PAIR32TO64(off_t, uap->offset),
1943 	    uap->whence);
1944 	/* Expand the quad return into two parts for eax and edx */
1945 	pos = td->td_uretoff.tdu_off;
1946 	td->td_retval[RETVAL_LO] = pos & 0xffffffff;	/* %eax */
1947 	td->td_retval[RETVAL_HI] = pos >> 32;		/* %edx */
1948 	return error;
1949 }
1950 
1951 int
1952 freebsd32_truncate(struct thread *td, struct freebsd32_truncate_args *uap)
1953 {
1954 
1955 	return (kern_truncate(td, uap->path, UIO_USERSPACE,
1956 	    PAIR32TO64(off_t, uap->length)));
1957 }
1958 
1959 #ifdef COMPAT_43
1960 int
1961 ofreebsd32_truncate(struct thread *td, struct ofreebsd32_truncate_args *uap)
1962 {
1963 	return (kern_truncate(td, uap->path, UIO_USERSPACE, uap->length));
1964 }
1965 #endif
1966 
1967 int
1968 freebsd32_ftruncate(struct thread *td, struct freebsd32_ftruncate_args *uap)
1969 {
1970 
1971 	return (kern_ftruncate(td, uap->fd, PAIR32TO64(off_t, uap->length)));
1972 }
1973 
1974 #ifdef COMPAT_43
1975 int
1976 ofreebsd32_ftruncate(struct thread *td, struct ofreebsd32_ftruncate_args *uap)
1977 {
1978 	return (kern_ftruncate(td, uap->fd, uap->length));
1979 }
1980 
1981 int
1982 ofreebsd32_getdirentries(struct thread *td,
1983     struct ofreebsd32_getdirentries_args *uap)
1984 {
1985 	struct ogetdirentries_args ap;
1986 	int error;
1987 	long loff;
1988 	int32_t loff_cut;
1989 
1990 	ap.fd = uap->fd;
1991 	ap.buf = uap->buf;
1992 	ap.count = uap->count;
1993 	ap.basep = NULL;
1994 	error = kern_ogetdirentries(td, &ap, &loff);
1995 	if (error == 0) {
1996 		loff_cut = loff;
1997 		error = copyout(&loff_cut, uap->basep, sizeof(int32_t));
1998 	}
1999 	return (error);
2000 }
2001 #endif
2002 
2003 #if defined(COMPAT_FREEBSD11)
2004 int
2005 freebsd11_freebsd32_getdirentries(struct thread *td,
2006     struct freebsd11_freebsd32_getdirentries_args *uap)
2007 {
2008 	long base;
2009 	int32_t base32;
2010 	int error;
2011 
2012 	error = freebsd11_kern_getdirentries(td, uap->fd, uap->buf, uap->count,
2013 	    &base, NULL);
2014 	if (error)
2015 		return (error);
2016 	if (uap->basep != NULL) {
2017 		base32 = base;
2018 		error = copyout(&base32, uap->basep, sizeof(int32_t));
2019 	}
2020 	return (error);
2021 }
2022 #endif /* COMPAT_FREEBSD11 */
2023 
2024 #ifdef COMPAT_FREEBSD6
2025 /* versions with the 'int pad' argument */
2026 int
2027 freebsd6_freebsd32_pread(struct thread *td, struct freebsd6_freebsd32_pread_args *uap)
2028 {
2029 
2030 	return (kern_pread(td, uap->fd, uap->buf, uap->nbyte,
2031 	    PAIR32TO64(off_t, uap->offset)));
2032 }
2033 
2034 int
2035 freebsd6_freebsd32_pwrite(struct thread *td, struct freebsd6_freebsd32_pwrite_args *uap)
2036 {
2037 
2038 	return (kern_pwrite(td, uap->fd, uap->buf, uap->nbyte,
2039 	    PAIR32TO64(off_t, uap->offset)));
2040 }
2041 
2042 int
2043 freebsd6_freebsd32_lseek(struct thread *td, struct freebsd6_freebsd32_lseek_args *uap)
2044 {
2045 	int error;
2046 	off_t pos;
2047 
2048 	error = kern_lseek(td, uap->fd, PAIR32TO64(off_t, uap->offset),
2049 	    uap->whence);
2050 	/* Expand the quad return into two parts for eax and edx */
2051 	pos = *(off_t *)(td->td_retval);
2052 	td->td_retval[RETVAL_LO] = pos & 0xffffffff;	/* %eax */
2053 	td->td_retval[RETVAL_HI] = pos >> 32;		/* %edx */
2054 	return error;
2055 }
2056 
2057 int
2058 freebsd6_freebsd32_truncate(struct thread *td, struct freebsd6_freebsd32_truncate_args *uap)
2059 {
2060 
2061 	return (kern_truncate(td, uap->path, UIO_USERSPACE,
2062 	    PAIR32TO64(off_t, uap->length)));
2063 }
2064 
2065 int
2066 freebsd6_freebsd32_ftruncate(struct thread *td, struct freebsd6_freebsd32_ftruncate_args *uap)
2067 {
2068 
2069 	return (kern_ftruncate(td, uap->fd, PAIR32TO64(off_t, uap->length)));
2070 }
2071 #endif /* COMPAT_FREEBSD6 */
2072 
2073 struct sf_hdtr32 {
2074 	uint32_t headers;
2075 	int hdr_cnt;
2076 	uint32_t trailers;
2077 	int trl_cnt;
2078 };
2079 
2080 static int
2081 freebsd32_do_sendfile(struct thread *td,
2082     struct freebsd32_sendfile_args *uap, int compat)
2083 {
2084 	struct sf_hdtr32 hdtr32;
2085 	struct sf_hdtr hdtr;
2086 	struct uio *hdr_uio, *trl_uio;
2087 	struct file *fp;
2088 	cap_rights_t rights;
2089 	struct iovec32 *iov32;
2090 	off_t offset, sbytes;
2091 	int error;
2092 
2093 	offset = PAIR32TO64(off_t, uap->offset);
2094 	if (offset < 0)
2095 		return (EINVAL);
2096 
2097 	hdr_uio = trl_uio = NULL;
2098 
2099 	if (uap->hdtr != NULL) {
2100 		error = copyin(uap->hdtr, &hdtr32, sizeof(hdtr32));
2101 		if (error)
2102 			goto out;
2103 		PTRIN_CP(hdtr32, hdtr, headers);
2104 		CP(hdtr32, hdtr, hdr_cnt);
2105 		PTRIN_CP(hdtr32, hdtr, trailers);
2106 		CP(hdtr32, hdtr, trl_cnt);
2107 
2108 		if (hdtr.headers != NULL) {
2109 			iov32 = PTRIN(hdtr32.headers);
2110 			error = freebsd32_copyinuio(iov32,
2111 			    hdtr32.hdr_cnt, &hdr_uio);
2112 			if (error)
2113 				goto out;
2114 #ifdef COMPAT_FREEBSD4
2115 			/*
2116 			 * In FreeBSD < 5.0 the nbytes to send also included
2117 			 * the header.  If compat is specified subtract the
2118 			 * header size from nbytes.
2119 			 */
2120 			if (compat) {
2121 				if (uap->nbytes > hdr_uio->uio_resid)
2122 					uap->nbytes -= hdr_uio->uio_resid;
2123 				else
2124 					uap->nbytes = 0;
2125 			}
2126 #endif
2127 		}
2128 		if (hdtr.trailers != NULL) {
2129 			iov32 = PTRIN(hdtr32.trailers);
2130 			error = freebsd32_copyinuio(iov32,
2131 			    hdtr32.trl_cnt, &trl_uio);
2132 			if (error)
2133 				goto out;
2134 		}
2135 	}
2136 
2137 	AUDIT_ARG_FD(uap->fd);
2138 
2139 	if ((error = fget_read(td, uap->fd,
2140 	    cap_rights_init_one(&rights, CAP_PREAD), &fp)) != 0)
2141 		goto out;
2142 
2143 	error = fo_sendfile(fp, uap->s, hdr_uio, trl_uio, offset,
2144 	    uap->nbytes, &sbytes, uap->flags, td);
2145 	fdrop(fp, td);
2146 
2147 	if (uap->sbytes != NULL)
2148 		copyout(&sbytes, uap->sbytes, sizeof(off_t));
2149 
2150 out:
2151 	if (hdr_uio)
2152 		free(hdr_uio, M_IOV);
2153 	if (trl_uio)
2154 		free(trl_uio, M_IOV);
2155 	return (error);
2156 }
2157 
2158 #ifdef COMPAT_FREEBSD4
2159 int
2160 freebsd4_freebsd32_sendfile(struct thread *td,
2161     struct freebsd4_freebsd32_sendfile_args *uap)
2162 {
2163 	return (freebsd32_do_sendfile(td,
2164 	    (struct freebsd32_sendfile_args *)uap, 1));
2165 }
2166 #endif
2167 
2168 int
2169 freebsd32_sendfile(struct thread *td, struct freebsd32_sendfile_args *uap)
2170 {
2171 
2172 	return (freebsd32_do_sendfile(td, uap, 0));
2173 }
2174 
2175 static void
2176 copy_stat(struct stat *in, struct stat32 *out)
2177 {
2178 
2179 	CP(*in, *out, st_dev);
2180 	CP(*in, *out, st_ino);
2181 	CP(*in, *out, st_mode);
2182 	CP(*in, *out, st_nlink);
2183 	CP(*in, *out, st_uid);
2184 	CP(*in, *out, st_gid);
2185 	CP(*in, *out, st_rdev);
2186 	TS_CP(*in, *out, st_atim);
2187 	TS_CP(*in, *out, st_mtim);
2188 	TS_CP(*in, *out, st_ctim);
2189 	CP(*in, *out, st_size);
2190 	CP(*in, *out, st_blocks);
2191 	CP(*in, *out, st_blksize);
2192 	CP(*in, *out, st_flags);
2193 	CP(*in, *out, st_gen);
2194 	TS_CP(*in, *out, st_birthtim);
2195 	out->st_padding0 = 0;
2196 	out->st_padding1 = 0;
2197 #ifdef __STAT32_TIME_T_EXT
2198 	out->st_atim_ext = 0;
2199 	out->st_mtim_ext = 0;
2200 	out->st_ctim_ext = 0;
2201 	out->st_btim_ext = 0;
2202 #endif
2203 	bzero(out->st_spare, sizeof(out->st_spare));
2204 }
2205 
2206 #ifdef COMPAT_43
2207 static void
2208 copy_ostat(struct stat *in, struct ostat32 *out)
2209 {
2210 
2211 	bzero(out, sizeof(*out));
2212 	CP(*in, *out, st_dev);
2213 	CP(*in, *out, st_ino);
2214 	CP(*in, *out, st_mode);
2215 	CP(*in, *out, st_nlink);
2216 	CP(*in, *out, st_uid);
2217 	CP(*in, *out, st_gid);
2218 	CP(*in, *out, st_rdev);
2219 	out->st_size = MIN(in->st_size, INT32_MAX);
2220 	TS_CP(*in, *out, st_atim);
2221 	TS_CP(*in, *out, st_mtim);
2222 	TS_CP(*in, *out, st_ctim);
2223 	CP(*in, *out, st_blksize);
2224 	CP(*in, *out, st_blocks);
2225 	CP(*in, *out, st_flags);
2226 	CP(*in, *out, st_gen);
2227 }
2228 #endif
2229 
2230 #ifdef COMPAT_43
2231 int
2232 ofreebsd32_stat(struct thread *td, struct ofreebsd32_stat_args *uap)
2233 {
2234 	struct stat sb;
2235 	struct ostat32 sb32;
2236 	int error;
2237 
2238 	error = kern_statat(td, 0, AT_FDCWD, uap->path, UIO_USERSPACE,
2239 	    &sb, NULL);
2240 	if (error)
2241 		return (error);
2242 	copy_ostat(&sb, &sb32);
2243 	error = copyout(&sb32, uap->ub, sizeof (sb32));
2244 	return (error);
2245 }
2246 #endif
2247 
2248 int
2249 freebsd32_fstat(struct thread *td, struct freebsd32_fstat_args *uap)
2250 {
2251 	struct stat ub;
2252 	struct stat32 ub32;
2253 	int error;
2254 
2255 	error = kern_fstat(td, uap->fd, &ub);
2256 	if (error)
2257 		return (error);
2258 	copy_stat(&ub, &ub32);
2259 	error = copyout(&ub32, uap->sb, sizeof(ub32));
2260 	return (error);
2261 }
2262 
2263 #ifdef COMPAT_43
2264 int
2265 ofreebsd32_fstat(struct thread *td, struct ofreebsd32_fstat_args *uap)
2266 {
2267 	struct stat ub;
2268 	struct ostat32 ub32;
2269 	int error;
2270 
2271 	error = kern_fstat(td, uap->fd, &ub);
2272 	if (error)
2273 		return (error);
2274 	copy_ostat(&ub, &ub32);
2275 	error = copyout(&ub32, uap->sb, sizeof(ub32));
2276 	return (error);
2277 }
2278 #endif
2279 
2280 int
2281 freebsd32_fstatat(struct thread *td, struct freebsd32_fstatat_args *uap)
2282 {
2283 	struct stat ub;
2284 	struct stat32 ub32;
2285 	int error;
2286 
2287 	error = kern_statat(td, uap->flag, uap->fd, uap->path, UIO_USERSPACE,
2288 	    &ub, NULL);
2289 	if (error)
2290 		return (error);
2291 	copy_stat(&ub, &ub32);
2292 	error = copyout(&ub32, uap->buf, sizeof(ub32));
2293 	return (error);
2294 }
2295 
2296 #ifdef COMPAT_43
2297 int
2298 ofreebsd32_lstat(struct thread *td, struct ofreebsd32_lstat_args *uap)
2299 {
2300 	struct stat sb;
2301 	struct ostat32 sb32;
2302 	int error;
2303 
2304 	error = kern_statat(td, AT_SYMLINK_NOFOLLOW, AT_FDCWD, uap->path,
2305 	    UIO_USERSPACE, &sb, NULL);
2306 	if (error)
2307 		return (error);
2308 	copy_ostat(&sb, &sb32);
2309 	error = copyout(&sb32, uap->ub, sizeof (sb32));
2310 	return (error);
2311 }
2312 #endif
2313 
2314 int
2315 freebsd32_fhstat(struct thread *td, struct freebsd32_fhstat_args *uap)
2316 {
2317 	struct stat sb;
2318 	struct stat32 sb32;
2319 	struct fhandle fh;
2320 	int error;
2321 
2322 	error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t));
2323         if (error != 0)
2324                 return (error);
2325 	error = kern_fhstat(td, fh, &sb);
2326 	if (error != 0)
2327 		return (error);
2328 	copy_stat(&sb, &sb32);
2329 	error = copyout(&sb32, uap->sb, sizeof (sb32));
2330 	return (error);
2331 }
2332 
2333 #if defined(COMPAT_FREEBSD11)
2334 extern int ino64_trunc_error;
2335 
2336 static int
2337 freebsd11_cvtstat32(struct stat *in, struct freebsd11_stat32 *out)
2338 {
2339 
2340 	CP(*in, *out, st_ino);
2341 	if (in->st_ino != out->st_ino) {
2342 		switch (ino64_trunc_error) {
2343 		default:
2344 		case 0:
2345 			break;
2346 		case 1:
2347 			return (EOVERFLOW);
2348 		case 2:
2349 			out->st_ino = UINT32_MAX;
2350 			break;
2351 		}
2352 	}
2353 	CP(*in, *out, st_nlink);
2354 	if (in->st_nlink != out->st_nlink) {
2355 		switch (ino64_trunc_error) {
2356 		default:
2357 		case 0:
2358 			break;
2359 		case 1:
2360 			return (EOVERFLOW);
2361 		case 2:
2362 			out->st_nlink = UINT16_MAX;
2363 			break;
2364 		}
2365 	}
2366 	out->st_dev = in->st_dev;
2367 	if (out->st_dev != in->st_dev) {
2368 		switch (ino64_trunc_error) {
2369 		default:
2370 			break;
2371 		case 1:
2372 			return (EOVERFLOW);
2373 		}
2374 	}
2375 	CP(*in, *out, st_mode);
2376 	CP(*in, *out, st_uid);
2377 	CP(*in, *out, st_gid);
2378 	out->st_rdev = in->st_rdev;
2379 	if (out->st_rdev != in->st_rdev) {
2380 		switch (ino64_trunc_error) {
2381 		default:
2382 			break;
2383 		case 1:
2384 			return (EOVERFLOW);
2385 		}
2386 	}
2387 	TS_CP(*in, *out, st_atim);
2388 	TS_CP(*in, *out, st_mtim);
2389 	TS_CP(*in, *out, st_ctim);
2390 	CP(*in, *out, st_size);
2391 	CP(*in, *out, st_blocks);
2392 	CP(*in, *out, st_blksize);
2393 	CP(*in, *out, st_flags);
2394 	CP(*in, *out, st_gen);
2395 	TS_CP(*in, *out, st_birthtim);
2396 	out->st_lspare = 0;
2397 	bzero((char *)&out->st_birthtim + sizeof(out->st_birthtim),
2398 	    sizeof(*out) - offsetof(struct freebsd11_stat32,
2399 	    st_birthtim) - sizeof(out->st_birthtim));
2400 	return (0);
2401 }
2402 
2403 int
2404 freebsd11_freebsd32_stat(struct thread *td,
2405     struct freebsd11_freebsd32_stat_args *uap)
2406 {
2407 	struct stat sb;
2408 	struct freebsd11_stat32 sb32;
2409 	int error;
2410 
2411 	error = kern_statat(td, 0, AT_FDCWD, uap->path, UIO_USERSPACE,
2412 	    &sb, NULL);
2413 	if (error != 0)
2414 		return (error);
2415 	error = freebsd11_cvtstat32(&sb, &sb32);
2416 	if (error == 0)
2417 		error = copyout(&sb32, uap->ub, sizeof (sb32));
2418 	return (error);
2419 }
2420 
2421 int
2422 freebsd11_freebsd32_fstat(struct thread *td,
2423     struct freebsd11_freebsd32_fstat_args *uap)
2424 {
2425 	struct stat sb;
2426 	struct freebsd11_stat32 sb32;
2427 	int error;
2428 
2429 	error = kern_fstat(td, uap->fd, &sb);
2430 	if (error != 0)
2431 		return (error);
2432 	error = freebsd11_cvtstat32(&sb, &sb32);
2433 	if (error == 0)
2434 		error = copyout(&sb32, uap->sb, sizeof (sb32));
2435 	return (error);
2436 }
2437 
2438 int
2439 freebsd11_freebsd32_fstatat(struct thread *td,
2440     struct freebsd11_freebsd32_fstatat_args *uap)
2441 {
2442 	struct stat sb;
2443 	struct freebsd11_stat32 sb32;
2444 	int error;
2445 
2446 	error = kern_statat(td, uap->flag, uap->fd, uap->path, UIO_USERSPACE,
2447 	    &sb, NULL);
2448 	if (error != 0)
2449 		return (error);
2450 	error = freebsd11_cvtstat32(&sb, &sb32);
2451 	if (error == 0)
2452 		error = copyout(&sb32, uap->buf, sizeof (sb32));
2453 	return (error);
2454 }
2455 
2456 int
2457 freebsd11_freebsd32_lstat(struct thread *td,
2458     struct freebsd11_freebsd32_lstat_args *uap)
2459 {
2460 	struct stat sb;
2461 	struct freebsd11_stat32 sb32;
2462 	int error;
2463 
2464 	error = kern_statat(td, AT_SYMLINK_NOFOLLOW, AT_FDCWD, uap->path,
2465 	    UIO_USERSPACE, &sb, NULL);
2466 	if (error != 0)
2467 		return (error);
2468 	error = freebsd11_cvtstat32(&sb, &sb32);
2469 	if (error == 0)
2470 		error = copyout(&sb32, uap->ub, sizeof (sb32));
2471 	return (error);
2472 }
2473 
2474 int
2475 freebsd11_freebsd32_fhstat(struct thread *td,
2476     struct freebsd11_freebsd32_fhstat_args *uap)
2477 {
2478 	struct stat sb;
2479 	struct freebsd11_stat32 sb32;
2480 	struct fhandle fh;
2481 	int error;
2482 
2483 	error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t));
2484         if (error != 0)
2485                 return (error);
2486 	error = kern_fhstat(td, fh, &sb);
2487 	if (error != 0)
2488 		return (error);
2489 	error = freebsd11_cvtstat32(&sb, &sb32);
2490 	if (error == 0)
2491 		error = copyout(&sb32, uap->sb, sizeof (sb32));
2492 	return (error);
2493 }
2494 
2495 static int
2496 freebsd11_cvtnstat32(struct stat *sb, struct nstat32 *nsb32)
2497 {
2498 	struct nstat nsb;
2499 	int error;
2500 
2501 	error = freebsd11_cvtnstat(sb, &nsb);
2502 	if (error != 0)
2503 		return (error);
2504 
2505 	bzero(nsb32, sizeof(*nsb32));
2506 	CP(nsb, *nsb32, st_dev);
2507 	CP(nsb, *nsb32, st_ino);
2508 	CP(nsb, *nsb32, st_mode);
2509 	CP(nsb, *nsb32, st_nlink);
2510 	CP(nsb, *nsb32, st_uid);
2511 	CP(nsb, *nsb32, st_gid);
2512 	CP(nsb, *nsb32, st_rdev);
2513 	CP(nsb, *nsb32, st_atim.tv_sec);
2514 	CP(nsb, *nsb32, st_atim.tv_nsec);
2515 	CP(nsb, *nsb32, st_mtim.tv_sec);
2516 	CP(nsb, *nsb32, st_mtim.tv_nsec);
2517 	CP(nsb, *nsb32, st_ctim.tv_sec);
2518 	CP(nsb, *nsb32, st_ctim.tv_nsec);
2519 	CP(nsb, *nsb32, st_size);
2520 	CP(nsb, *nsb32, st_blocks);
2521 	CP(nsb, *nsb32, st_blksize);
2522 	CP(nsb, *nsb32, st_flags);
2523 	CP(nsb, *nsb32, st_gen);
2524 	CP(nsb, *nsb32, st_birthtim.tv_sec);
2525 	CP(nsb, *nsb32, st_birthtim.tv_nsec);
2526 	return (0);
2527 }
2528 
2529 int
2530 freebsd11_freebsd32_nstat(struct thread *td,
2531     struct freebsd11_freebsd32_nstat_args *uap)
2532 {
2533 	struct stat sb;
2534 	struct nstat32 nsb;
2535 	int error;
2536 
2537 	error = kern_statat(td, 0, AT_FDCWD, uap->path, UIO_USERSPACE,
2538 	    &sb, NULL);
2539 	if (error != 0)
2540 		return (error);
2541 	error = freebsd11_cvtnstat32(&sb, &nsb);
2542 	if (error != 0)
2543 		error = copyout(&nsb, uap->ub, sizeof (nsb));
2544 	return (error);
2545 }
2546 
2547 int
2548 freebsd11_freebsd32_nlstat(struct thread *td,
2549     struct freebsd11_freebsd32_nlstat_args *uap)
2550 {
2551 	struct stat sb;
2552 	struct nstat32 nsb;
2553 	int error;
2554 
2555 	error = kern_statat(td, AT_SYMLINK_NOFOLLOW, AT_FDCWD, uap->path,
2556 	    UIO_USERSPACE, &sb, NULL);
2557 	if (error != 0)
2558 		return (error);
2559 	error = freebsd11_cvtnstat32(&sb, &nsb);
2560 	if (error == 0)
2561 		error = copyout(&nsb, uap->ub, sizeof (nsb));
2562 	return (error);
2563 }
2564 
2565 int
2566 freebsd11_freebsd32_nfstat(struct thread *td,
2567     struct freebsd11_freebsd32_nfstat_args *uap)
2568 {
2569 	struct nstat32 nub;
2570 	struct stat ub;
2571 	int error;
2572 
2573 	error = kern_fstat(td, uap->fd, &ub);
2574 	if (error != 0)
2575 		return (error);
2576 	error = freebsd11_cvtnstat32(&ub, &nub);
2577 	if (error == 0)
2578 		error = copyout(&nub, uap->sb, sizeof(nub));
2579 	return (error);
2580 }
2581 #endif
2582 
2583 int
2584 freebsd32___sysctl(struct thread *td, struct freebsd32___sysctl_args *uap)
2585 {
2586 	int error, name[CTL_MAXNAME];
2587 	size_t j, oldlen;
2588 	uint32_t tmp;
2589 
2590 	if (uap->namelen > CTL_MAXNAME || uap->namelen < 2)
2591 		return (EINVAL);
2592  	error = copyin(uap->name, name, uap->namelen * sizeof(int));
2593  	if (error)
2594 		return (error);
2595 	if (uap->oldlenp) {
2596 		error = fueword32(uap->oldlenp, &tmp);
2597 		oldlen = tmp;
2598 	} else {
2599 		oldlen = 0;
2600 	}
2601 	if (error != 0)
2602 		return (EFAULT);
2603 	error = userland_sysctl(td, name, uap->namelen,
2604 		uap->old, &oldlen, 1,
2605 		uap->new, uap->newlen, &j, SCTL_MASK32);
2606 	if (error)
2607 		return (error);
2608 	if (uap->oldlenp)
2609 		suword32(uap->oldlenp, j);
2610 	return (0);
2611 }
2612 
2613 int
2614 freebsd32___sysctlbyname(struct thread *td,
2615     struct freebsd32___sysctlbyname_args *uap)
2616 {
2617 	size_t oldlen, rv;
2618 	int error;
2619 	uint32_t tmp;
2620 
2621 	if (uap->oldlenp != NULL) {
2622 		error = fueword32(uap->oldlenp, &tmp);
2623 		oldlen = tmp;
2624 	} else {
2625 		error = oldlen = 0;
2626 	}
2627 	if (error != 0)
2628 		return (EFAULT);
2629 	error = kern___sysctlbyname(td, uap->name, uap->namelen, uap->old,
2630 	    &oldlen, uap->new, uap->newlen, &rv, SCTL_MASK32, 1);
2631 	if (error != 0)
2632 		return (error);
2633 	if (uap->oldlenp != NULL)
2634 		error = suword32(uap->oldlenp, rv);
2635 
2636 	return (error);
2637 }
2638 
2639 int
2640 freebsd32_jail(struct thread *td, struct freebsd32_jail_args *uap)
2641 {
2642 	uint32_t version;
2643 	int error;
2644 	struct jail j;
2645 
2646 	error = copyin(uap->jail, &version, sizeof(uint32_t));
2647 	if (error)
2648 		return (error);
2649 
2650 	switch (version) {
2651 	case 0:
2652 	{
2653 		/* FreeBSD single IPv4 jails. */
2654 		struct jail32_v0 j32_v0;
2655 
2656 		bzero(&j, sizeof(struct jail));
2657 		error = copyin(uap->jail, &j32_v0, sizeof(struct jail32_v0));
2658 		if (error)
2659 			return (error);
2660 		CP(j32_v0, j, version);
2661 		PTRIN_CP(j32_v0, j, path);
2662 		PTRIN_CP(j32_v0, j, hostname);
2663 		j.ip4s = htonl(j32_v0.ip_number);	/* jail_v0 is host order */
2664 		break;
2665 	}
2666 
2667 	case 1:
2668 		/*
2669 		 * Version 1 was used by multi-IPv4 jail implementations
2670 		 * that never made it into the official kernel.
2671 		 */
2672 		return (EINVAL);
2673 
2674 	case 2:	/* JAIL_API_VERSION */
2675 	{
2676 		/* FreeBSD multi-IPv4/IPv6,noIP jails. */
2677 		struct jail32 j32;
2678 
2679 		error = copyin(uap->jail, &j32, sizeof(struct jail32));
2680 		if (error)
2681 			return (error);
2682 		CP(j32, j, version);
2683 		PTRIN_CP(j32, j, path);
2684 		PTRIN_CP(j32, j, hostname);
2685 		PTRIN_CP(j32, j, jailname);
2686 		CP(j32, j, ip4s);
2687 		CP(j32, j, ip6s);
2688 		PTRIN_CP(j32, j, ip4);
2689 		PTRIN_CP(j32, j, ip6);
2690 		break;
2691 	}
2692 
2693 	default:
2694 		/* Sci-Fi jails are not supported, sorry. */
2695 		return (EINVAL);
2696 	}
2697 	return (kern_jail(td, &j));
2698 }
2699 
2700 int
2701 freebsd32_jail_set(struct thread *td, struct freebsd32_jail_set_args *uap)
2702 {
2703 	struct uio *auio;
2704 	int error;
2705 
2706 	/* Check that we have an even number of iovecs. */
2707 	if (uap->iovcnt & 1)
2708 		return (EINVAL);
2709 
2710 	error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio);
2711 	if (error)
2712 		return (error);
2713 	error = kern_jail_set(td, auio, uap->flags);
2714 	free(auio, M_IOV);
2715 	return (error);
2716 }
2717 
2718 int
2719 freebsd32_jail_get(struct thread *td, struct freebsd32_jail_get_args *uap)
2720 {
2721 	struct iovec32 iov32;
2722 	struct uio *auio;
2723 	int error, i;
2724 
2725 	/* Check that we have an even number of iovecs. */
2726 	if (uap->iovcnt & 1)
2727 		return (EINVAL);
2728 
2729 	error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio);
2730 	if (error)
2731 		return (error);
2732 	error = kern_jail_get(td, auio, uap->flags);
2733 	if (error == 0)
2734 		for (i = 0; i < uap->iovcnt; i++) {
2735 			PTROUT_CP(auio->uio_iov[i], iov32, iov_base);
2736 			CP(auio->uio_iov[i], iov32, iov_len);
2737 			error = copyout(&iov32, uap->iovp + i, sizeof(iov32));
2738 			if (error != 0)
2739 				break;
2740 		}
2741 	free(auio, M_IOV);
2742 	return (error);
2743 }
2744 
2745 int
2746 freebsd32_sigaction(struct thread *td, struct freebsd32_sigaction_args *uap)
2747 {
2748 	struct sigaction32 s32;
2749 	struct sigaction sa, osa, *sap;
2750 	int error;
2751 
2752 	if (uap->act) {
2753 		error = copyin(uap->act, &s32, sizeof(s32));
2754 		if (error)
2755 			return (error);
2756 		sa.sa_handler = PTRIN(s32.sa_u);
2757 		CP(s32, sa, sa_flags);
2758 		CP(s32, sa, sa_mask);
2759 		sap = &sa;
2760 	} else
2761 		sap = NULL;
2762 	error = kern_sigaction(td, uap->sig, sap, &osa, 0);
2763 	if (error == 0 && uap->oact != NULL) {
2764 		s32.sa_u = PTROUT(osa.sa_handler);
2765 		CP(osa, s32, sa_flags);
2766 		CP(osa, s32, sa_mask);
2767 		error = copyout(&s32, uap->oact, sizeof(s32));
2768 	}
2769 	return (error);
2770 }
2771 
2772 #ifdef COMPAT_FREEBSD4
2773 int
2774 freebsd4_freebsd32_sigaction(struct thread *td,
2775 			     struct freebsd4_freebsd32_sigaction_args *uap)
2776 {
2777 	struct sigaction32 s32;
2778 	struct sigaction sa, osa, *sap;
2779 	int error;
2780 
2781 	if (uap->act) {
2782 		error = copyin(uap->act, &s32, sizeof(s32));
2783 		if (error)
2784 			return (error);
2785 		sa.sa_handler = PTRIN(s32.sa_u);
2786 		CP(s32, sa, sa_flags);
2787 		CP(s32, sa, sa_mask);
2788 		sap = &sa;
2789 	} else
2790 		sap = NULL;
2791 	error = kern_sigaction(td, uap->sig, sap, &osa, KSA_FREEBSD4);
2792 	if (error == 0 && uap->oact != NULL) {
2793 		s32.sa_u = PTROUT(osa.sa_handler);
2794 		CP(osa, s32, sa_flags);
2795 		CP(osa, s32, sa_mask);
2796 		error = copyout(&s32, uap->oact, sizeof(s32));
2797 	}
2798 	return (error);
2799 }
2800 #endif
2801 
2802 #ifdef COMPAT_43
2803 struct osigaction32 {
2804 	uint32_t	sa_u;
2805 	osigset_t	sa_mask;
2806 	int		sa_flags;
2807 };
2808 
2809 #define	ONSIG	32
2810 
2811 int
2812 ofreebsd32_sigaction(struct thread *td,
2813 			     struct ofreebsd32_sigaction_args *uap)
2814 {
2815 	struct osigaction32 s32;
2816 	struct sigaction sa, osa, *sap;
2817 	int error;
2818 
2819 	if (uap->signum <= 0 || uap->signum >= ONSIG)
2820 		return (EINVAL);
2821 
2822 	if (uap->nsa) {
2823 		error = copyin(uap->nsa, &s32, sizeof(s32));
2824 		if (error)
2825 			return (error);
2826 		sa.sa_handler = PTRIN(s32.sa_u);
2827 		CP(s32, sa, sa_flags);
2828 		OSIG2SIG(s32.sa_mask, sa.sa_mask);
2829 		sap = &sa;
2830 	} else
2831 		sap = NULL;
2832 	error = kern_sigaction(td, uap->signum, sap, &osa, KSA_OSIGSET);
2833 	if (error == 0 && uap->osa != NULL) {
2834 		s32.sa_u = PTROUT(osa.sa_handler);
2835 		CP(osa, s32, sa_flags);
2836 		SIG2OSIG(osa.sa_mask, s32.sa_mask);
2837 		error = copyout(&s32, uap->osa, sizeof(s32));
2838 	}
2839 	return (error);
2840 }
2841 
2842 struct sigvec32 {
2843 	uint32_t	sv_handler;
2844 	int		sv_mask;
2845 	int		sv_flags;
2846 };
2847 
2848 int
2849 ofreebsd32_sigvec(struct thread *td,
2850 			  struct ofreebsd32_sigvec_args *uap)
2851 {
2852 	struct sigvec32 vec;
2853 	struct sigaction sa, osa, *sap;
2854 	int error;
2855 
2856 	if (uap->signum <= 0 || uap->signum >= ONSIG)
2857 		return (EINVAL);
2858 
2859 	if (uap->nsv) {
2860 		error = copyin(uap->nsv, &vec, sizeof(vec));
2861 		if (error)
2862 			return (error);
2863 		sa.sa_handler = PTRIN(vec.sv_handler);
2864 		OSIG2SIG(vec.sv_mask, sa.sa_mask);
2865 		sa.sa_flags = vec.sv_flags;
2866 		sa.sa_flags ^= SA_RESTART;
2867 		sap = &sa;
2868 	} else
2869 		sap = NULL;
2870 	error = kern_sigaction(td, uap->signum, sap, &osa, KSA_OSIGSET);
2871 	if (error == 0 && uap->osv != NULL) {
2872 		vec.sv_handler = PTROUT(osa.sa_handler);
2873 		SIG2OSIG(osa.sa_mask, vec.sv_mask);
2874 		vec.sv_flags = osa.sa_flags;
2875 		vec.sv_flags &= ~SA_NOCLDWAIT;
2876 		vec.sv_flags ^= SA_RESTART;
2877 		error = copyout(&vec, uap->osv, sizeof(vec));
2878 	}
2879 	return (error);
2880 }
2881 
2882 struct sigstack32 {
2883 	uint32_t	ss_sp;
2884 	int		ss_onstack;
2885 };
2886 
2887 int
2888 ofreebsd32_sigstack(struct thread *td,
2889 			    struct ofreebsd32_sigstack_args *uap)
2890 {
2891 	struct sigstack32 s32;
2892 	struct sigstack nss, oss;
2893 	int error = 0, unss;
2894 
2895 	if (uap->nss != NULL) {
2896 		error = copyin(uap->nss, &s32, sizeof(s32));
2897 		if (error)
2898 			return (error);
2899 		nss.ss_sp = PTRIN(s32.ss_sp);
2900 		CP(s32, nss, ss_onstack);
2901 		unss = 1;
2902 	} else {
2903 		unss = 0;
2904 	}
2905 	oss.ss_sp = td->td_sigstk.ss_sp;
2906 	oss.ss_onstack = sigonstack(cpu_getstack(td));
2907 	if (unss) {
2908 		td->td_sigstk.ss_sp = nss.ss_sp;
2909 		td->td_sigstk.ss_size = 0;
2910 		td->td_sigstk.ss_flags |= (nss.ss_onstack & SS_ONSTACK);
2911 		td->td_pflags |= TDP_ALTSTACK;
2912 	}
2913 	if (uap->oss != NULL) {
2914 		s32.ss_sp = PTROUT(oss.ss_sp);
2915 		CP(oss, s32, ss_onstack);
2916 		error = copyout(&s32, uap->oss, sizeof(s32));
2917 	}
2918 	return (error);
2919 }
2920 #endif
2921 
2922 int
2923 freebsd32_nanosleep(struct thread *td, struct freebsd32_nanosleep_args *uap)
2924 {
2925 
2926 	return (freebsd32_user_clock_nanosleep(td, CLOCK_REALTIME,
2927 	    TIMER_RELTIME, uap->rqtp, uap->rmtp));
2928 }
2929 
2930 int
2931 freebsd32_clock_nanosleep(struct thread *td,
2932     struct freebsd32_clock_nanosleep_args *uap)
2933 {
2934 	int error;
2935 
2936 	error = freebsd32_user_clock_nanosleep(td, uap->clock_id, uap->flags,
2937 	    uap->rqtp, uap->rmtp);
2938 	return (kern_posix_error(td, error));
2939 }
2940 
2941 static int
2942 freebsd32_user_clock_nanosleep(struct thread *td, clockid_t clock_id,
2943     int flags, const struct timespec32 *ua_rqtp, struct timespec32 *ua_rmtp)
2944 {
2945 	struct timespec32 rmt32, rqt32;
2946 	struct timespec rmt, rqt;
2947 	int error, error2;
2948 
2949 	error = copyin(ua_rqtp, &rqt32, sizeof(rqt32));
2950 	if (error)
2951 		return (error);
2952 
2953 	CP(rqt32, rqt, tv_sec);
2954 	CP(rqt32, rqt, tv_nsec);
2955 
2956 	error = kern_clock_nanosleep(td, clock_id, flags, &rqt, &rmt);
2957 	if (error == EINTR && ua_rmtp != NULL && (flags & TIMER_ABSTIME) == 0) {
2958 		CP(rmt, rmt32, tv_sec);
2959 		CP(rmt, rmt32, tv_nsec);
2960 
2961 		error2 = copyout(&rmt32, ua_rmtp, sizeof(rmt32));
2962 		if (error2 != 0)
2963 			error = error2;
2964 	}
2965 	return (error);
2966 }
2967 
2968 int
2969 freebsd32_clock_gettime(struct thread *td,
2970 			struct freebsd32_clock_gettime_args *uap)
2971 {
2972 	struct timespec	ats;
2973 	struct timespec32 ats32;
2974 	int error;
2975 
2976 	error = kern_clock_gettime(td, uap->clock_id, &ats);
2977 	if (error == 0) {
2978 		CP(ats, ats32, tv_sec);
2979 		CP(ats, ats32, tv_nsec);
2980 		error = copyout(&ats32, uap->tp, sizeof(ats32));
2981 	}
2982 	return (error);
2983 }
2984 
2985 int
2986 freebsd32_clock_settime(struct thread *td,
2987 			struct freebsd32_clock_settime_args *uap)
2988 {
2989 	struct timespec	ats;
2990 	struct timespec32 ats32;
2991 	int error;
2992 
2993 	error = copyin(uap->tp, &ats32, sizeof(ats32));
2994 	if (error)
2995 		return (error);
2996 	CP(ats32, ats, tv_sec);
2997 	CP(ats32, ats, tv_nsec);
2998 
2999 	return (kern_clock_settime(td, uap->clock_id, &ats));
3000 }
3001 
3002 int
3003 freebsd32_clock_getres(struct thread *td,
3004 		       struct freebsd32_clock_getres_args *uap)
3005 {
3006 	struct timespec	ts;
3007 	struct timespec32 ts32;
3008 	int error;
3009 
3010 	if (uap->tp == NULL)
3011 		return (0);
3012 	error = kern_clock_getres(td, uap->clock_id, &ts);
3013 	if (error == 0) {
3014 		CP(ts, ts32, tv_sec);
3015 		CP(ts, ts32, tv_nsec);
3016 		error = copyout(&ts32, uap->tp, sizeof(ts32));
3017 	}
3018 	return (error);
3019 }
3020 
3021 int freebsd32_ktimer_create(struct thread *td,
3022     struct freebsd32_ktimer_create_args *uap)
3023 {
3024 	struct sigevent32 ev32;
3025 	struct sigevent ev, *evp;
3026 	int error, id;
3027 
3028 	if (uap->evp == NULL) {
3029 		evp = NULL;
3030 	} else {
3031 		evp = &ev;
3032 		error = copyin(uap->evp, &ev32, sizeof(ev32));
3033 		if (error != 0)
3034 			return (error);
3035 		error = convert_sigevent32(&ev32, &ev);
3036 		if (error != 0)
3037 			return (error);
3038 	}
3039 	error = kern_ktimer_create(td, uap->clock_id, evp, &id, -1);
3040 	if (error == 0) {
3041 		error = copyout(&id, uap->timerid, sizeof(int));
3042 		if (error != 0)
3043 			kern_ktimer_delete(td, id);
3044 	}
3045 	return (error);
3046 }
3047 
3048 int
3049 freebsd32_ktimer_settime(struct thread *td,
3050     struct freebsd32_ktimer_settime_args *uap)
3051 {
3052 	struct itimerspec32 val32, oval32;
3053 	struct itimerspec val, oval, *ovalp;
3054 	int error;
3055 
3056 	error = copyin(uap->value, &val32, sizeof(val32));
3057 	if (error != 0)
3058 		return (error);
3059 	ITS_CP(val32, val);
3060 	ovalp = uap->ovalue != NULL ? &oval : NULL;
3061 	error = kern_ktimer_settime(td, uap->timerid, uap->flags, &val, ovalp);
3062 	if (error == 0 && uap->ovalue != NULL) {
3063 		ITS_CP(oval, oval32);
3064 		error = copyout(&oval32, uap->ovalue, sizeof(oval32));
3065 	}
3066 	return (error);
3067 }
3068 
3069 int
3070 freebsd32_ktimer_gettime(struct thread *td,
3071     struct freebsd32_ktimer_gettime_args *uap)
3072 {
3073 	struct itimerspec32 val32;
3074 	struct itimerspec val;
3075 	int error;
3076 
3077 	error = kern_ktimer_gettime(td, uap->timerid, &val);
3078 	if (error == 0) {
3079 		ITS_CP(val, val32);
3080 		error = copyout(&val32, uap->value, sizeof(val32));
3081 	}
3082 	return (error);
3083 }
3084 
3085 int
3086 freebsd32_clock_getcpuclockid2(struct thread *td,
3087     struct freebsd32_clock_getcpuclockid2_args *uap)
3088 {
3089 	clockid_t clk_id;
3090 	int error;
3091 
3092 	error = kern_clock_getcpuclockid2(td, PAIR32TO64(id_t, uap->id),
3093 	    uap->which, &clk_id);
3094 	if (error == 0)
3095 		error = copyout(&clk_id, uap->clock_id, sizeof(clockid_t));
3096 	return (error);
3097 }
3098 
3099 int
3100 freebsd32_thr_new(struct thread *td,
3101 		  struct freebsd32_thr_new_args *uap)
3102 {
3103 	struct thr_param32 param32;
3104 	struct thr_param param;
3105 	int error;
3106 
3107 	if (uap->param_size < 0 ||
3108 	    uap->param_size > sizeof(struct thr_param32))
3109 		return (EINVAL);
3110 	bzero(&param, sizeof(struct thr_param));
3111 	bzero(&param32, sizeof(struct thr_param32));
3112 	error = copyin(uap->param, &param32, uap->param_size);
3113 	if (error != 0)
3114 		return (error);
3115 	param.start_func = PTRIN(param32.start_func);
3116 	param.arg = PTRIN(param32.arg);
3117 	param.stack_base = PTRIN(param32.stack_base);
3118 	param.stack_size = param32.stack_size;
3119 	param.tls_base = PTRIN(param32.tls_base);
3120 	param.tls_size = param32.tls_size;
3121 	param.child_tid = PTRIN(param32.child_tid);
3122 	param.parent_tid = PTRIN(param32.parent_tid);
3123 	param.flags = param32.flags;
3124 	param.rtp = PTRIN(param32.rtp);
3125 	param.spare[0] = PTRIN(param32.spare[0]);
3126 	param.spare[1] = PTRIN(param32.spare[1]);
3127 	param.spare[2] = PTRIN(param32.spare[2]);
3128 
3129 	return (kern_thr_new(td, &param));
3130 }
3131 
3132 int
3133 freebsd32_thr_suspend(struct thread *td, struct freebsd32_thr_suspend_args *uap)
3134 {
3135 	struct timespec32 ts32;
3136 	struct timespec ts, *tsp;
3137 	int error;
3138 
3139 	error = 0;
3140 	tsp = NULL;
3141 	if (uap->timeout != NULL) {
3142 		error = copyin((const void *)uap->timeout, (void *)&ts32,
3143 		    sizeof(struct timespec32));
3144 		if (error != 0)
3145 			return (error);
3146 		ts.tv_sec = ts32.tv_sec;
3147 		ts.tv_nsec = ts32.tv_nsec;
3148 		tsp = &ts;
3149 	}
3150 	return (kern_thr_suspend(td, tsp));
3151 }
3152 
3153 void
3154 siginfo_to_siginfo32(const siginfo_t *src, struct siginfo32 *dst)
3155 {
3156 	bzero(dst, sizeof(*dst));
3157 	dst->si_signo = src->si_signo;
3158 	dst->si_errno = src->si_errno;
3159 	dst->si_code = src->si_code;
3160 	dst->si_pid = src->si_pid;
3161 	dst->si_uid = src->si_uid;
3162 	dst->si_status = src->si_status;
3163 	dst->si_addr = (uintptr_t)src->si_addr;
3164 	dst->si_value.sival_int = src->si_value.sival_int;
3165 	dst->si_timerid = src->si_timerid;
3166 	dst->si_overrun = src->si_overrun;
3167 }
3168 
3169 #ifndef _FREEBSD32_SYSPROTO_H_
3170 struct freebsd32_sigqueue_args {
3171         pid_t pid;
3172         int signum;
3173         /* union sigval32 */ int value;
3174 };
3175 #endif
3176 int
3177 freebsd32_sigqueue(struct thread *td, struct freebsd32_sigqueue_args *uap)
3178 {
3179 	union sigval sv;
3180 
3181 	/*
3182 	 * On 32-bit ABIs, sival_int and sival_ptr are the same.
3183 	 * On 64-bit little-endian ABIs, the low bits are the same.
3184 	 * In 64-bit big-endian ABIs, sival_int overlaps with
3185 	 * sival_ptr's HIGH bits.  We choose to support sival_int
3186 	 * rather than sival_ptr in this case as it seems to be
3187 	 * more common.
3188 	 */
3189 	bzero(&sv, sizeof(sv));
3190 	sv.sival_int = (uint32_t)(uint64_t)uap->value;
3191 
3192 	return (kern_sigqueue(td, uap->pid, uap->signum, &sv));
3193 }
3194 
3195 int
3196 freebsd32_sigtimedwait(struct thread *td, struct freebsd32_sigtimedwait_args *uap)
3197 {
3198 	struct timespec32 ts32;
3199 	struct timespec ts;
3200 	struct timespec *timeout;
3201 	sigset_t set;
3202 	ksiginfo_t ksi;
3203 	struct siginfo32 si32;
3204 	int error;
3205 
3206 	if (uap->timeout) {
3207 		error = copyin(uap->timeout, &ts32, sizeof(ts32));
3208 		if (error)
3209 			return (error);
3210 		ts.tv_sec = ts32.tv_sec;
3211 		ts.tv_nsec = ts32.tv_nsec;
3212 		timeout = &ts;
3213 	} else
3214 		timeout = NULL;
3215 
3216 	error = copyin(uap->set, &set, sizeof(set));
3217 	if (error)
3218 		return (error);
3219 
3220 	error = kern_sigtimedwait(td, set, &ksi, timeout);
3221 	if (error)
3222 		return (error);
3223 
3224 	if (uap->info) {
3225 		siginfo_to_siginfo32(&ksi.ksi_info, &si32);
3226 		error = copyout(&si32, uap->info, sizeof(struct siginfo32));
3227 	}
3228 
3229 	if (error == 0)
3230 		td->td_retval[0] = ksi.ksi_signo;
3231 	return (error);
3232 }
3233 
3234 /*
3235  * MPSAFE
3236  */
3237 int
3238 freebsd32_sigwaitinfo(struct thread *td, struct freebsd32_sigwaitinfo_args *uap)
3239 {
3240 	ksiginfo_t ksi;
3241 	struct siginfo32 si32;
3242 	sigset_t set;
3243 	int error;
3244 
3245 	error = copyin(uap->set, &set, sizeof(set));
3246 	if (error)
3247 		return (error);
3248 
3249 	error = kern_sigtimedwait(td, set, &ksi, NULL);
3250 	if (error)
3251 		return (error);
3252 
3253 	if (uap->info) {
3254 		siginfo_to_siginfo32(&ksi.ksi_info, &si32);
3255 		error = copyout(&si32, uap->info, sizeof(struct siginfo32));
3256 	}
3257 	if (error == 0)
3258 		td->td_retval[0] = ksi.ksi_signo;
3259 	return (error);
3260 }
3261 
3262 int
3263 freebsd32_cpuset_setid(struct thread *td,
3264     struct freebsd32_cpuset_setid_args *uap)
3265 {
3266 
3267 	return (kern_cpuset_setid(td, uap->which,
3268 	    PAIR32TO64(id_t, uap->id), uap->setid));
3269 }
3270 
3271 int
3272 freebsd32_cpuset_getid(struct thread *td,
3273     struct freebsd32_cpuset_getid_args *uap)
3274 {
3275 
3276 	return (kern_cpuset_getid(td, uap->level, uap->which,
3277 	    PAIR32TO64(id_t, uap->id), uap->setid));
3278 }
3279 
3280 int
3281 freebsd32_cpuset_getaffinity(struct thread *td,
3282     struct freebsd32_cpuset_getaffinity_args *uap)
3283 {
3284 
3285 	return (kern_cpuset_getaffinity(td, uap->level, uap->which,
3286 	    PAIR32TO64(id_t,uap->id), uap->cpusetsize, uap->mask));
3287 }
3288 
3289 int
3290 freebsd32_cpuset_setaffinity(struct thread *td,
3291     struct freebsd32_cpuset_setaffinity_args *uap)
3292 {
3293 
3294 	return (kern_cpuset_setaffinity(td, uap->level, uap->which,
3295 	    PAIR32TO64(id_t,uap->id), uap->cpusetsize, uap->mask));
3296 }
3297 
3298 int
3299 freebsd32_cpuset_getdomain(struct thread *td,
3300     struct freebsd32_cpuset_getdomain_args *uap)
3301 {
3302 
3303 	return (kern_cpuset_getdomain(td, uap->level, uap->which,
3304 	    PAIR32TO64(id_t,uap->id), uap->domainsetsize, uap->mask, uap->policy));
3305 }
3306 
3307 int
3308 freebsd32_cpuset_setdomain(struct thread *td,
3309     struct freebsd32_cpuset_setdomain_args *uap)
3310 {
3311 
3312 	return (kern_cpuset_setdomain(td, uap->level, uap->which,
3313 	    PAIR32TO64(id_t,uap->id), uap->domainsetsize, uap->mask, uap->policy));
3314 }
3315 
3316 int
3317 freebsd32_nmount(struct thread *td,
3318     struct freebsd32_nmount_args /* {
3319     	struct iovec *iovp;
3320     	unsigned int iovcnt;
3321     	int flags;
3322     } */ *uap)
3323 {
3324 	struct uio *auio;
3325 	uint64_t flags;
3326 	int error;
3327 
3328 	/*
3329 	 * Mount flags are now 64-bits. On 32-bit archtectures only
3330 	 * 32-bits are passed in, but from here on everything handles
3331 	 * 64-bit flags correctly.
3332 	 */
3333 	flags = uap->flags;
3334 
3335 	AUDIT_ARG_FFLAGS(flags);
3336 
3337 	/*
3338 	 * Filter out MNT_ROOTFS.  We do not want clients of nmount() in
3339 	 * userspace to set this flag, but we must filter it out if we want
3340 	 * MNT_UPDATE on the root file system to work.
3341 	 * MNT_ROOTFS should only be set by the kernel when mounting its
3342 	 * root file system.
3343 	 */
3344 	flags &= ~MNT_ROOTFS;
3345 
3346 	/*
3347 	 * check that we have an even number of iovec's
3348 	 * and that we have at least two options.
3349 	 */
3350 	if ((uap->iovcnt & 1) || (uap->iovcnt < 4))
3351 		return (EINVAL);
3352 
3353 	error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio);
3354 	if (error)
3355 		return (error);
3356 	error = vfs_donmount(td, flags, auio);
3357 
3358 	free(auio, M_IOV);
3359 	return error;
3360 }
3361 
3362 #if 0
3363 int
3364 freebsd32_xxx(struct thread *td, struct freebsd32_xxx_args *uap)
3365 {
3366 	struct yyy32 *p32, s32;
3367 	struct yyy *p = NULL, s;
3368 	struct xxx_arg ap;
3369 	int error;
3370 
3371 	if (uap->zzz) {
3372 		error = copyin(uap->zzz, &s32, sizeof(s32));
3373 		if (error)
3374 			return (error);
3375 		/* translate in */
3376 		p = &s;
3377 	}
3378 	error = kern_xxx(td, p);
3379 	if (error)
3380 		return (error);
3381 	if (uap->zzz) {
3382 		/* translate out */
3383 		error = copyout(&s32, p32, sizeof(s32));
3384 	}
3385 	return (error);
3386 }
3387 #endif
3388 
3389 int
3390 syscall32_module_handler(struct module *mod, int what, void *arg)
3391 {
3392 
3393 	return (kern_syscall_module_handler(freebsd32_sysent, mod, what, arg));
3394 }
3395 
3396 int
3397 syscall32_helper_register(struct syscall_helper_data *sd, int flags)
3398 {
3399 
3400 	return (kern_syscall_helper_register(freebsd32_sysent, sd, flags));
3401 }
3402 
3403 int
3404 syscall32_helper_unregister(struct syscall_helper_data *sd)
3405 {
3406 
3407 	return (kern_syscall_helper_unregister(freebsd32_sysent, sd));
3408 }
3409 
3410 int
3411 freebsd32_copyout_strings(struct image_params *imgp, uintptr_t *stack_base)
3412 {
3413 	struct sysentvec *sysent;
3414 	int argc, envc, i;
3415 	uint32_t *vectp;
3416 	char *stringp;
3417 	uintptr_t destp, ustringp;
3418 	struct freebsd32_ps_strings *arginfo;
3419 	char canary[sizeof(long) * 8];
3420 	int32_t pagesizes32[MAXPAGESIZES];
3421 	size_t execpath_len;
3422 	int error, szsigcode;
3423 
3424 	sysent = imgp->sysent;
3425 
3426 	arginfo = (struct freebsd32_ps_strings *)PROC_PS_STRINGS(imgp->proc);
3427 	imgp->ps_strings = arginfo;
3428 	destp =	(uintptr_t)arginfo;
3429 
3430 	/*
3431 	 * Install sigcode.
3432 	 */
3433 	if (sysent->sv_sigcode_base == 0) {
3434 		szsigcode = *sysent->sv_szsigcode;
3435 		destp -= szsigcode;
3436 		destp = rounddown2(destp, sizeof(uint32_t));
3437 		error = copyout(sysent->sv_sigcode, (void *)destp,
3438 		    szsigcode);
3439 		if (error != 0)
3440 			return (error);
3441 	}
3442 
3443 	/*
3444 	 * Copy the image path for the rtld.
3445 	 */
3446 	if (imgp->execpath != NULL && imgp->auxargs != NULL) {
3447 		execpath_len = strlen(imgp->execpath) + 1;
3448 		destp -= execpath_len;
3449 		imgp->execpathp = (void *)destp;
3450 		error = copyout(imgp->execpath, imgp->execpathp, execpath_len);
3451 		if (error != 0)
3452 			return (error);
3453 	}
3454 
3455 	/*
3456 	 * Prepare the canary for SSP.
3457 	 */
3458 	arc4rand(canary, sizeof(canary), 0);
3459 	destp -= sizeof(canary);
3460 	imgp->canary = (void *)destp;
3461 	error = copyout(canary, imgp->canary, sizeof(canary));
3462 	if (error != 0)
3463 		return (error);
3464 	imgp->canarylen = sizeof(canary);
3465 
3466 	/*
3467 	 * Prepare the pagesizes array.
3468 	 */
3469 	for (i = 0; i < MAXPAGESIZES; i++)
3470 		pagesizes32[i] = (uint32_t)pagesizes[i];
3471 	destp -= sizeof(pagesizes32);
3472 	destp = rounddown2(destp, sizeof(uint32_t));
3473 	imgp->pagesizes = (void *)destp;
3474 	error = copyout(pagesizes32, imgp->pagesizes, sizeof(pagesizes32));
3475 	if (error != 0)
3476 		return (error);
3477 	imgp->pagesizeslen = sizeof(pagesizes32);
3478 
3479 	/*
3480 	 * Allocate room for the argument and environment strings.
3481 	 */
3482 	destp -= ARG_MAX - imgp->args->stringspace;
3483 	destp = rounddown2(destp, sizeof(uint32_t));
3484 	ustringp = destp;
3485 
3486 	if (imgp->auxargs) {
3487 		/*
3488 		 * Allocate room on the stack for the ELF auxargs
3489 		 * array.  It has up to AT_COUNT entries.
3490 		 */
3491 		destp -= AT_COUNT * sizeof(Elf32_Auxinfo);
3492 		destp = rounddown2(destp, sizeof(uint32_t));
3493 	}
3494 
3495 	vectp = (uint32_t *)destp;
3496 
3497 	/*
3498 	 * Allocate room for the argv[] and env vectors including the
3499 	 * terminating NULL pointers.
3500 	 */
3501 	vectp -= imgp->args->argc + 1 + imgp->args->envc + 1;
3502 
3503 	/*
3504 	 * vectp also becomes our initial stack base
3505 	 */
3506 	*stack_base = (uintptr_t)vectp;
3507 
3508 	stringp = imgp->args->begin_argv;
3509 	argc = imgp->args->argc;
3510 	envc = imgp->args->envc;
3511 	/*
3512 	 * Copy out strings - arguments and environment.
3513 	 */
3514 	error = copyout(stringp, (void *)ustringp,
3515 	    ARG_MAX - imgp->args->stringspace);
3516 	if (error != 0)
3517 		return (error);
3518 
3519 	/*
3520 	 * Fill in "ps_strings" struct for ps, w, etc.
3521 	 */
3522 	imgp->argv = vectp;
3523 	if (suword32(&arginfo->ps_argvstr, (uint32_t)(intptr_t)vectp) != 0 ||
3524 	    suword32(&arginfo->ps_nargvstr, argc) != 0)
3525 		return (EFAULT);
3526 
3527 	/*
3528 	 * Fill in argument portion of vector table.
3529 	 */
3530 	for (; argc > 0; --argc) {
3531 		if (suword32(vectp++, ustringp) != 0)
3532 			return (EFAULT);
3533 		while (*stringp++ != 0)
3534 			ustringp++;
3535 		ustringp++;
3536 	}
3537 
3538 	/* a null vector table pointer separates the argp's from the envp's */
3539 	if (suword32(vectp++, 0) != 0)
3540 		return (EFAULT);
3541 
3542 	imgp->envv = vectp;
3543 	if (suword32(&arginfo->ps_envstr, (uint32_t)(intptr_t)vectp) != 0 ||
3544 	    suword32(&arginfo->ps_nenvstr, envc) != 0)
3545 		return (EFAULT);
3546 
3547 	/*
3548 	 * Fill in environment portion of vector table.
3549 	 */
3550 	for (; envc > 0; --envc) {
3551 		if (suword32(vectp++, ustringp) != 0)
3552 			return (EFAULT);
3553 		while (*stringp++ != 0)
3554 			ustringp++;
3555 		ustringp++;
3556 	}
3557 
3558 	/* end of vector table is a null pointer */
3559 	if (suword32(vectp, 0) != 0)
3560 		return (EFAULT);
3561 
3562 	if (imgp->auxargs) {
3563 		vectp++;
3564 		error = imgp->sysent->sv_copyout_auxargs(imgp,
3565 		    (uintptr_t)vectp);
3566 		if (error != 0)
3567 			return (error);
3568 	}
3569 
3570 	return (0);
3571 }
3572 
3573 int
3574 freebsd32_kldstat(struct thread *td, struct freebsd32_kldstat_args *uap)
3575 {
3576 	struct kld_file_stat *stat;
3577 	struct kld_file_stat32 *stat32;
3578 	int error, version;
3579 
3580 	if ((error = copyin(&uap->stat->version, &version, sizeof(version)))
3581 	    != 0)
3582 		return (error);
3583 	if (version != sizeof(struct kld_file_stat_1_32) &&
3584 	    version != sizeof(struct kld_file_stat32))
3585 		return (EINVAL);
3586 
3587 	stat = malloc(sizeof(*stat), M_TEMP, M_WAITOK | M_ZERO);
3588 	stat32 = malloc(sizeof(*stat32), M_TEMP, M_WAITOK | M_ZERO);
3589 	error = kern_kldstat(td, uap->fileid, stat);
3590 	if (error == 0) {
3591 		bcopy(&stat->name[0], &stat32->name[0], sizeof(stat->name));
3592 		CP(*stat, *stat32, refs);
3593 		CP(*stat, *stat32, id);
3594 		PTROUT_CP(*stat, *stat32, address);
3595 		CP(*stat, *stat32, size);
3596 		bcopy(&stat->pathname[0], &stat32->pathname[0],
3597 		    sizeof(stat->pathname));
3598 		stat32->version  = version;
3599 		error = copyout(stat32, uap->stat, version);
3600 	}
3601 	free(stat, M_TEMP);
3602 	free(stat32, M_TEMP);
3603 	return (error);
3604 }
3605 
3606 int
3607 freebsd32_posix_fallocate(struct thread *td,
3608     struct freebsd32_posix_fallocate_args *uap)
3609 {
3610 	int error;
3611 
3612 	error = kern_posix_fallocate(td, uap->fd,
3613 	    PAIR32TO64(off_t, uap->offset), PAIR32TO64(off_t, uap->len));
3614 	return (kern_posix_error(td, error));
3615 }
3616 
3617 int
3618 freebsd32_posix_fadvise(struct thread *td,
3619     struct freebsd32_posix_fadvise_args *uap)
3620 {
3621 	int error;
3622 
3623 	error = kern_posix_fadvise(td, uap->fd, PAIR32TO64(off_t, uap->offset),
3624 	    PAIR32TO64(off_t, uap->len), uap->advice);
3625 	return (kern_posix_error(td, error));
3626 }
3627 
3628 int
3629 convert_sigevent32(struct sigevent32 *sig32, struct sigevent *sig)
3630 {
3631 
3632 	CP(*sig32, *sig, sigev_notify);
3633 	switch (sig->sigev_notify) {
3634 	case SIGEV_NONE:
3635 		break;
3636 	case SIGEV_THREAD_ID:
3637 		CP(*sig32, *sig, sigev_notify_thread_id);
3638 		/* FALLTHROUGH */
3639 	case SIGEV_SIGNAL:
3640 		CP(*sig32, *sig, sigev_signo);
3641 		PTRIN_CP(*sig32, *sig, sigev_value.sival_ptr);
3642 		break;
3643 	case SIGEV_KEVENT:
3644 		CP(*sig32, *sig, sigev_notify_kqueue);
3645 		CP(*sig32, *sig, sigev_notify_kevent_flags);
3646 		PTRIN_CP(*sig32, *sig, sigev_value.sival_ptr);
3647 		break;
3648 	default:
3649 		return (EINVAL);
3650 	}
3651 	return (0);
3652 }
3653 
3654 int
3655 freebsd32_procctl(struct thread *td, struct freebsd32_procctl_args *uap)
3656 {
3657 	void *data;
3658 	union {
3659 		struct procctl_reaper_status rs;
3660 		struct procctl_reaper_pids rp;
3661 		struct procctl_reaper_kill rk;
3662 	} x;
3663 	union {
3664 		struct procctl_reaper_pids32 rp;
3665 	} x32;
3666 	int error, error1, flags, signum;
3667 
3668 	if (uap->com >= PROC_PROCCTL_MD_MIN)
3669 		return (cpu_procctl(td, uap->idtype, PAIR32TO64(id_t, uap->id),
3670 		    uap->com, PTRIN(uap->data)));
3671 
3672 	switch (uap->com) {
3673 	case PROC_ASLR_CTL:
3674 	case PROC_PROTMAX_CTL:
3675 	case PROC_SPROTECT:
3676 	case PROC_STACKGAP_CTL:
3677 	case PROC_TRACE_CTL:
3678 	case PROC_TRAPCAP_CTL:
3679 	case PROC_NO_NEW_PRIVS_CTL:
3680 	case PROC_WXMAP_CTL:
3681 		error = copyin(PTRIN(uap->data), &flags, sizeof(flags));
3682 		if (error != 0)
3683 			return (error);
3684 		data = &flags;
3685 		break;
3686 	case PROC_REAP_ACQUIRE:
3687 	case PROC_REAP_RELEASE:
3688 		if (uap->data != NULL)
3689 			return (EINVAL);
3690 		data = NULL;
3691 		break;
3692 	case PROC_REAP_STATUS:
3693 		data = &x.rs;
3694 		break;
3695 	case PROC_REAP_GETPIDS:
3696 		error = copyin(uap->data, &x32.rp, sizeof(x32.rp));
3697 		if (error != 0)
3698 			return (error);
3699 		CP(x32.rp, x.rp, rp_count);
3700 		PTRIN_CP(x32.rp, x.rp, rp_pids);
3701 		data = &x.rp;
3702 		break;
3703 	case PROC_REAP_KILL:
3704 		error = copyin(uap->data, &x.rk, sizeof(x.rk));
3705 		if (error != 0)
3706 			return (error);
3707 		data = &x.rk;
3708 		break;
3709 	case PROC_ASLR_STATUS:
3710 	case PROC_PROTMAX_STATUS:
3711 	case PROC_STACKGAP_STATUS:
3712 	case PROC_TRACE_STATUS:
3713 	case PROC_TRAPCAP_STATUS:
3714 	case PROC_NO_NEW_PRIVS_STATUS:
3715 	case PROC_WXMAP_STATUS:
3716 		data = &flags;
3717 		break;
3718 	case PROC_PDEATHSIG_CTL:
3719 		error = copyin(uap->data, &signum, sizeof(signum));
3720 		if (error != 0)
3721 			return (error);
3722 		data = &signum;
3723 		break;
3724 	case PROC_PDEATHSIG_STATUS:
3725 		data = &signum;
3726 		break;
3727 	default:
3728 		return (EINVAL);
3729 	}
3730 	error = kern_procctl(td, uap->idtype, PAIR32TO64(id_t, uap->id),
3731 	    uap->com, data);
3732 	switch (uap->com) {
3733 	case PROC_REAP_STATUS:
3734 		if (error == 0)
3735 			error = copyout(&x.rs, uap->data, sizeof(x.rs));
3736 		break;
3737 	case PROC_REAP_KILL:
3738 		error1 = copyout(&x.rk, uap->data, sizeof(x.rk));
3739 		if (error == 0)
3740 			error = error1;
3741 		break;
3742 	case PROC_ASLR_STATUS:
3743 	case PROC_PROTMAX_STATUS:
3744 	case PROC_STACKGAP_STATUS:
3745 	case PROC_TRACE_STATUS:
3746 	case PROC_TRAPCAP_STATUS:
3747 	case PROC_NO_NEW_PRIVS_STATUS:
3748 	case PROC_WXMAP_STATUS:
3749 		if (error == 0)
3750 			error = copyout(&flags, uap->data, sizeof(flags));
3751 		break;
3752 	case PROC_PDEATHSIG_STATUS:
3753 		if (error == 0)
3754 			error = copyout(&signum, uap->data, sizeof(signum));
3755 		break;
3756 	}
3757 	return (error);
3758 }
3759 
3760 int
3761 freebsd32_fcntl(struct thread *td, struct freebsd32_fcntl_args *uap)
3762 {
3763 	long tmp;
3764 
3765 	switch (uap->cmd) {
3766 	/*
3767 	 * Do unsigned conversion for arg when operation
3768 	 * interprets it as flags or pointer.
3769 	 */
3770 	case F_SETLK_REMOTE:
3771 	case F_SETLKW:
3772 	case F_SETLK:
3773 	case F_GETLK:
3774 	case F_SETFD:
3775 	case F_SETFL:
3776 	case F_OGETLK:
3777 	case F_OSETLK:
3778 	case F_OSETLKW:
3779 	case F_KINFO:
3780 		tmp = (unsigned int)(uap->arg);
3781 		break;
3782 	default:
3783 		tmp = uap->arg;
3784 		break;
3785 	}
3786 	return (kern_fcntl_freebsd(td, uap->fd, uap->cmd, tmp));
3787 }
3788 
3789 int
3790 freebsd32_ppoll(struct thread *td, struct freebsd32_ppoll_args *uap)
3791 {
3792 	struct timespec32 ts32;
3793 	struct timespec ts, *tsp;
3794 	sigset_t set, *ssp;
3795 	int error;
3796 
3797 	if (uap->ts != NULL) {
3798 		error = copyin(uap->ts, &ts32, sizeof(ts32));
3799 		if (error != 0)
3800 			return (error);
3801 		CP(ts32, ts, tv_sec);
3802 		CP(ts32, ts, tv_nsec);
3803 		tsp = &ts;
3804 	} else
3805 		tsp = NULL;
3806 	if (uap->set != NULL) {
3807 		error = copyin(uap->set, &set, sizeof(set));
3808 		if (error != 0)
3809 			return (error);
3810 		ssp = &set;
3811 	} else
3812 		ssp = NULL;
3813 
3814 	return (kern_poll(td, uap->fds, uap->nfds, tsp, ssp));
3815 }
3816 
3817 int
3818 freebsd32_sched_rr_get_interval(struct thread *td,
3819     struct freebsd32_sched_rr_get_interval_args *uap)
3820 {
3821 	struct timespec ts;
3822 	struct timespec32 ts32;
3823 	int error;
3824 
3825 	error = kern_sched_rr_get_interval(td, uap->pid, &ts);
3826 	if (error == 0) {
3827 		CP(ts, ts32, tv_sec);
3828 		CP(ts, ts32, tv_nsec);
3829 		error = copyout(&ts32, uap->interval, sizeof(ts32));
3830 	}
3831 	return (error);
3832 }
3833 
3834 static void
3835 timex_to_32(struct timex32 *dst, struct timex *src)
3836 {
3837 	CP(*src, *dst, modes);
3838 	CP(*src, *dst, offset);
3839 	CP(*src, *dst, freq);
3840 	CP(*src, *dst, maxerror);
3841 	CP(*src, *dst, esterror);
3842 	CP(*src, *dst, status);
3843 	CP(*src, *dst, constant);
3844 	CP(*src, *dst, precision);
3845 	CP(*src, *dst, tolerance);
3846 	CP(*src, *dst, ppsfreq);
3847 	CP(*src, *dst, jitter);
3848 	CP(*src, *dst, shift);
3849 	CP(*src, *dst, stabil);
3850 	CP(*src, *dst, jitcnt);
3851 	CP(*src, *dst, calcnt);
3852 	CP(*src, *dst, errcnt);
3853 	CP(*src, *dst, stbcnt);
3854 }
3855 
3856 static void
3857 timex_from_32(struct timex *dst, struct timex32 *src)
3858 {
3859 	CP(*src, *dst, modes);
3860 	CP(*src, *dst, offset);
3861 	CP(*src, *dst, freq);
3862 	CP(*src, *dst, maxerror);
3863 	CP(*src, *dst, esterror);
3864 	CP(*src, *dst, status);
3865 	CP(*src, *dst, constant);
3866 	CP(*src, *dst, precision);
3867 	CP(*src, *dst, tolerance);
3868 	CP(*src, *dst, ppsfreq);
3869 	CP(*src, *dst, jitter);
3870 	CP(*src, *dst, shift);
3871 	CP(*src, *dst, stabil);
3872 	CP(*src, *dst, jitcnt);
3873 	CP(*src, *dst, calcnt);
3874 	CP(*src, *dst, errcnt);
3875 	CP(*src, *dst, stbcnt);
3876 }
3877 
3878 int
3879 freebsd32_ntp_adjtime(struct thread *td, struct freebsd32_ntp_adjtime_args *uap)
3880 {
3881 	struct timex tx;
3882 	struct timex32 tx32;
3883 	int error, retval;
3884 
3885 	error = copyin(uap->tp, &tx32, sizeof(tx32));
3886 	if (error == 0) {
3887 		timex_from_32(&tx, &tx32);
3888 		error = kern_ntp_adjtime(td, &tx, &retval);
3889 		if (error == 0) {
3890 			timex_to_32(&tx32, &tx);
3891 			error = copyout(&tx32, uap->tp, sizeof(tx32));
3892 			if (error == 0)
3893 				td->td_retval[0] = retval;
3894 		}
3895 	}
3896 	return (error);
3897 }
3898 
3899 #ifdef FFCLOCK
3900 extern struct mtx ffclock_mtx;
3901 extern struct ffclock_estimate ffclock_estimate;
3902 extern int8_t ffclock_updated;
3903 
3904 int
3905 freebsd32_ffclock_setestimate(struct thread *td,
3906     struct freebsd32_ffclock_setestimate_args *uap)
3907 {
3908 	struct ffclock_estimate cest;
3909 	struct ffclock_estimate32 cest32;
3910 	int error;
3911 
3912 	/* Reuse of PRIV_CLOCK_SETTIME. */
3913 	if ((error = priv_check(td, PRIV_CLOCK_SETTIME)) != 0)
3914 		return (error);
3915 
3916 	if ((error = copyin(uap->cest, &cest32,
3917 	    sizeof(struct ffclock_estimate32))) != 0)
3918 		return (error);
3919 
3920 	CP(cest.update_time, cest32.update_time, sec);
3921 	memcpy(&cest.update_time.frac, &cest32.update_time.frac, sizeof(uint64_t));
3922 	CP(cest, cest32, update_ffcount);
3923 	CP(cest, cest32, leapsec_next);
3924 	CP(cest, cest32, period);
3925 	CP(cest, cest32, errb_abs);
3926 	CP(cest, cest32, errb_rate);
3927 	CP(cest, cest32, status);
3928 	CP(cest, cest32, leapsec_total);
3929 	CP(cest, cest32, leapsec);
3930 
3931 	mtx_lock(&ffclock_mtx);
3932 	memcpy(&ffclock_estimate, &cest, sizeof(struct ffclock_estimate));
3933 	ffclock_updated++;
3934 	mtx_unlock(&ffclock_mtx);
3935 	return (error);
3936 }
3937 
3938 int
3939 freebsd32_ffclock_getestimate(struct thread *td,
3940     struct freebsd32_ffclock_getestimate_args *uap)
3941 {
3942 	struct ffclock_estimate cest;
3943 	struct ffclock_estimate32 cest32;
3944 	int error;
3945 
3946 	mtx_lock(&ffclock_mtx);
3947 	memcpy(&cest, &ffclock_estimate, sizeof(struct ffclock_estimate));
3948 	mtx_unlock(&ffclock_mtx);
3949 
3950 	CP(cest32.update_time, cest.update_time, sec);
3951 	memcpy(&cest32.update_time.frac, &cest.update_time.frac, sizeof(uint64_t));
3952 	CP(cest32, cest, update_ffcount);
3953 	CP(cest32, cest, leapsec_next);
3954 	CP(cest32, cest, period);
3955 	CP(cest32, cest, errb_abs);
3956 	CP(cest32, cest, errb_rate);
3957 	CP(cest32, cest, status);
3958 	CP(cest32, cest, leapsec_total);
3959 	CP(cest32, cest, leapsec);
3960 
3961 	error = copyout(&cest32, uap->cest, sizeof(struct ffclock_estimate32));
3962 	return (error);
3963 }
3964 #else /* !FFCLOCK */
3965 int
3966 freebsd32_ffclock_setestimate(struct thread *td,
3967     struct freebsd32_ffclock_setestimate_args *uap)
3968 {
3969 	return (ENOSYS);
3970 }
3971 
3972 int
3973 freebsd32_ffclock_getestimate(struct thread *td,
3974     struct freebsd32_ffclock_getestimate_args *uap)
3975 {
3976 	return (ENOSYS);
3977 }
3978 #endif /* FFCLOCK */
3979 
3980 #ifdef COMPAT_43
3981 int
3982 ofreebsd32_sethostid(struct thread *td, struct ofreebsd32_sethostid_args *uap)
3983 {
3984 	int name[] = { CTL_KERN, KERN_HOSTID };
3985 	long hostid;
3986 
3987 	hostid = uap->hostid;
3988 	return (kernel_sysctl(td, name, nitems(name), NULL, NULL, &hostid,
3989 	    sizeof(hostid), NULL, 0));
3990 }
3991 #endif
3992