xref: /freebsd/sys/compat/freebsd32/freebsd32_misc.c (revision 0f2bd1e89db1a2f09268edea21e0ead329e092df)
1 /*-
2  * Copyright (c) 2002 Doug Rabson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include "opt_compat.h"
31 #include "opt_inet.h"
32 #include "opt_inet6.h"
33 
34 #define __ELF_WORD_SIZE 32
35 
36 #include <sys/param.h>
37 #include <sys/bus.h>
38 #include <sys/clock.h>
39 #include <sys/exec.h>
40 #include <sys/fcntl.h>
41 #include <sys/filedesc.h>
42 #include <sys/imgact.h>
43 #include <sys/jail.h>
44 #include <sys/kernel.h>
45 #include <sys/limits.h>
46 #include <sys/lock.h>
47 #include <sys/malloc.h>
48 #include <sys/file.h>		/* Must come after sys/malloc.h */
49 #include <sys/imgact.h>
50 #include <sys/mbuf.h>
51 #include <sys/mman.h>
52 #include <sys/module.h>
53 #include <sys/mount.h>
54 #include <sys/mutex.h>
55 #include <sys/namei.h>
56 #include <sys/proc.h>
57 #include <sys/reboot.h>
58 #include <sys/resource.h>
59 #include <sys/resourcevar.h>
60 #include <sys/selinfo.h>
61 #include <sys/eventvar.h>	/* Must come after sys/selinfo.h */
62 #include <sys/pipe.h>		/* Must come after sys/selinfo.h */
63 #include <sys/signal.h>
64 #include <sys/signalvar.h>
65 #include <sys/socket.h>
66 #include <sys/socketvar.h>
67 #include <sys/stat.h>
68 #include <sys/syscall.h>
69 #include <sys/syscallsubr.h>
70 #include <sys/sysctl.h>
71 #include <sys/sysent.h>
72 #include <sys/sysproto.h>
73 #include <sys/systm.h>
74 #include <sys/thr.h>
75 #include <sys/unistd.h>
76 #include <sys/ucontext.h>
77 #include <sys/vnode.h>
78 #include <sys/wait.h>
79 #include <sys/ipc.h>
80 #include <sys/msg.h>
81 #include <sys/sem.h>
82 #include <sys/shm.h>
83 
84 #ifdef INET
85 #include <netinet/in.h>
86 #endif
87 
88 #include <vm/vm.h>
89 #include <vm/vm_param.h>
90 #include <vm/pmap.h>
91 #include <vm/vm_map.h>
92 #include <vm/vm_object.h>
93 #include <vm/vm_extern.h>
94 
95 #include <machine/cpu.h>
96 #include <machine/elf.h>
97 
98 #include <security/audit/audit.h>
99 
100 #include <compat/freebsd32/freebsd32_util.h>
101 #include <compat/freebsd32/freebsd32.h>
102 #include <compat/freebsd32/freebsd32_ipc.h>
103 #include <compat/freebsd32/freebsd32_signal.h>
104 #include <compat/freebsd32/freebsd32_proto.h>
105 
106 CTASSERT(sizeof(struct timeval32) == 8);
107 CTASSERT(sizeof(struct timespec32) == 8);
108 CTASSERT(sizeof(struct itimerval32) == 16);
109 CTASSERT(sizeof(struct statfs32) == 256);
110 CTASSERT(sizeof(struct rusage32) == 72);
111 CTASSERT(sizeof(struct sigaltstack32) == 12);
112 CTASSERT(sizeof(struct kevent32) == 20);
113 CTASSERT(sizeof(struct iovec32) == 8);
114 CTASSERT(sizeof(struct msghdr32) == 28);
115 CTASSERT(sizeof(struct stat32) == 96);
116 CTASSERT(sizeof(struct sigaction32) == 24);
117 
118 static int freebsd32_kevent_copyout(void *arg, struct kevent *kevp, int count);
119 static int freebsd32_kevent_copyin(void *arg, struct kevent *kevp, int count);
120 
121 #if BYTE_ORDER == BIG_ENDIAN
122 #define PAIR32TO64(type, name) ((name ## 2) | ((type)(name ## 1) << 32))
123 #define RETVAL_HI 0
124 #define RETVAL_LO 1
125 #else
126 #define PAIR32TO64(type, name) ((name ## 1) | ((type)(name ## 2) << 32))
127 #define RETVAL_HI 1
128 #define RETVAL_LO 0
129 #endif
130 
131 void
132 freebsd32_rusage_out(const struct rusage *s, struct rusage32 *s32)
133 {
134 
135 	TV_CP(*s, *s32, ru_utime);
136 	TV_CP(*s, *s32, ru_stime);
137 	CP(*s, *s32, ru_maxrss);
138 	CP(*s, *s32, ru_ixrss);
139 	CP(*s, *s32, ru_idrss);
140 	CP(*s, *s32, ru_isrss);
141 	CP(*s, *s32, ru_minflt);
142 	CP(*s, *s32, ru_majflt);
143 	CP(*s, *s32, ru_nswap);
144 	CP(*s, *s32, ru_inblock);
145 	CP(*s, *s32, ru_oublock);
146 	CP(*s, *s32, ru_msgsnd);
147 	CP(*s, *s32, ru_msgrcv);
148 	CP(*s, *s32, ru_nsignals);
149 	CP(*s, *s32, ru_nvcsw);
150 	CP(*s, *s32, ru_nivcsw);
151 }
152 
153 int
154 freebsd32_wait4(struct thread *td, struct freebsd32_wait4_args *uap)
155 {
156 	int error, status;
157 	struct rusage32 ru32;
158 	struct rusage ru, *rup;
159 
160 	if (uap->rusage != NULL)
161 		rup = &ru;
162 	else
163 		rup = NULL;
164 	error = kern_wait(td, uap->pid, &status, uap->options, rup);
165 	if (error)
166 		return (error);
167 	if (uap->status != NULL)
168 		error = copyout(&status, uap->status, sizeof(status));
169 	if (uap->rusage != NULL && error == 0) {
170 		freebsd32_rusage_out(&ru, &ru32);
171 		error = copyout(&ru32, uap->rusage, sizeof(ru32));
172 	}
173 	return (error);
174 }
175 
176 #ifdef COMPAT_FREEBSD4
177 static void
178 copy_statfs(struct statfs *in, struct statfs32 *out)
179 {
180 
181 	statfs_scale_blocks(in, INT32_MAX);
182 	bzero(out, sizeof(*out));
183 	CP(*in, *out, f_bsize);
184 	out->f_iosize = MIN(in->f_iosize, INT32_MAX);
185 	CP(*in, *out, f_blocks);
186 	CP(*in, *out, f_bfree);
187 	CP(*in, *out, f_bavail);
188 	out->f_files = MIN(in->f_files, INT32_MAX);
189 	out->f_ffree = MIN(in->f_ffree, INT32_MAX);
190 	CP(*in, *out, f_fsid);
191 	CP(*in, *out, f_owner);
192 	CP(*in, *out, f_type);
193 	CP(*in, *out, f_flags);
194 	out->f_syncwrites = MIN(in->f_syncwrites, INT32_MAX);
195 	out->f_asyncwrites = MIN(in->f_asyncwrites, INT32_MAX);
196 	strlcpy(out->f_fstypename,
197 	      in->f_fstypename, MFSNAMELEN);
198 	strlcpy(out->f_mntonname,
199 	      in->f_mntonname, min(MNAMELEN, FREEBSD4_MNAMELEN));
200 	out->f_syncreads = MIN(in->f_syncreads, INT32_MAX);
201 	out->f_asyncreads = MIN(in->f_asyncreads, INT32_MAX);
202 	strlcpy(out->f_mntfromname,
203 	      in->f_mntfromname, min(MNAMELEN, FREEBSD4_MNAMELEN));
204 }
205 #endif
206 
207 #ifdef COMPAT_FREEBSD4
208 int
209 freebsd4_freebsd32_getfsstat(struct thread *td, struct freebsd4_freebsd32_getfsstat_args *uap)
210 {
211 	struct statfs *buf, *sp;
212 	struct statfs32 stat32;
213 	size_t count, size;
214 	int error;
215 
216 	count = uap->bufsize / sizeof(struct statfs32);
217 	size = count * sizeof(struct statfs);
218 	error = kern_getfsstat(td, &buf, size, UIO_SYSSPACE, uap->flags);
219 	if (size > 0) {
220 		count = td->td_retval[0];
221 		sp = buf;
222 		while (count > 0 && error == 0) {
223 			copy_statfs(sp, &stat32);
224 			error = copyout(&stat32, uap->buf, sizeof(stat32));
225 			sp++;
226 			uap->buf++;
227 			count--;
228 		}
229 		free(buf, M_TEMP);
230 	}
231 	return (error);
232 }
233 #endif
234 
235 int
236 freebsd32_sigaltstack(struct thread *td,
237 		      struct freebsd32_sigaltstack_args *uap)
238 {
239 	struct sigaltstack32 s32;
240 	struct sigaltstack ss, oss, *ssp;
241 	int error;
242 
243 	if (uap->ss != NULL) {
244 		error = copyin(uap->ss, &s32, sizeof(s32));
245 		if (error)
246 			return (error);
247 		PTRIN_CP(s32, ss, ss_sp);
248 		CP(s32, ss, ss_size);
249 		CP(s32, ss, ss_flags);
250 		ssp = &ss;
251 	} else
252 		ssp = NULL;
253 	error = kern_sigaltstack(td, ssp, &oss);
254 	if (error == 0 && uap->oss != NULL) {
255 		PTROUT_CP(oss, s32, ss_sp);
256 		CP(oss, s32, ss_size);
257 		CP(oss, s32, ss_flags);
258 		error = copyout(&s32, uap->oss, sizeof(s32));
259 	}
260 	return (error);
261 }
262 
263 /*
264  * Custom version of exec_copyin_args() so that we can translate
265  * the pointers.
266  */
267 int
268 freebsd32_exec_copyin_args(struct image_args *args, char *fname,
269     enum uio_seg segflg, u_int32_t *argv, u_int32_t *envv)
270 {
271 	char *argp, *envp;
272 	u_int32_t *p32, arg;
273 	size_t length;
274 	int error;
275 
276 	bzero(args, sizeof(*args));
277 	if (argv == NULL)
278 		return (EFAULT);
279 
280 	/*
281 	 * Allocate demand-paged memory for the file name, argument, and
282 	 * environment strings.
283 	 */
284 	error = exec_alloc_args(args);
285 	if (error != 0)
286 		return (error);
287 
288 	/*
289 	 * Copy the file name.
290 	 */
291 	if (fname != NULL) {
292 		args->fname = args->buf;
293 		error = (segflg == UIO_SYSSPACE) ?
294 		    copystr(fname, args->fname, PATH_MAX, &length) :
295 		    copyinstr(fname, args->fname, PATH_MAX, &length);
296 		if (error != 0)
297 			goto err_exit;
298 	} else
299 		length = 0;
300 
301 	args->begin_argv = args->buf + length;
302 	args->endp = args->begin_argv;
303 	args->stringspace = ARG_MAX;
304 
305 	/*
306 	 * extract arguments first
307 	 */
308 	p32 = argv;
309 	for (;;) {
310 		error = copyin(p32++, &arg, sizeof(arg));
311 		if (error)
312 			goto err_exit;
313 		if (arg == 0)
314 			break;
315 		argp = PTRIN(arg);
316 		error = copyinstr(argp, args->endp, args->stringspace, &length);
317 		if (error) {
318 			if (error == ENAMETOOLONG)
319 				error = E2BIG;
320 			goto err_exit;
321 		}
322 		args->stringspace -= length;
323 		args->endp += length;
324 		args->argc++;
325 	}
326 
327 	args->begin_envv = args->endp;
328 
329 	/*
330 	 * extract environment strings
331 	 */
332 	if (envv) {
333 		p32 = envv;
334 		for (;;) {
335 			error = copyin(p32++, &arg, sizeof(arg));
336 			if (error)
337 				goto err_exit;
338 			if (arg == 0)
339 				break;
340 			envp = PTRIN(arg);
341 			error = copyinstr(envp, args->endp, args->stringspace,
342 			    &length);
343 			if (error) {
344 				if (error == ENAMETOOLONG)
345 					error = E2BIG;
346 				goto err_exit;
347 			}
348 			args->stringspace -= length;
349 			args->endp += length;
350 			args->envc++;
351 		}
352 	}
353 
354 	return (0);
355 
356 err_exit:
357 	exec_free_args(args);
358 	return (error);
359 }
360 
361 int
362 freebsd32_execve(struct thread *td, struct freebsd32_execve_args *uap)
363 {
364 	struct image_args eargs;
365 	int error;
366 
367 	error = freebsd32_exec_copyin_args(&eargs, uap->fname, UIO_USERSPACE,
368 	    uap->argv, uap->envv);
369 	if (error == 0)
370 		error = kern_execve(td, &eargs, NULL);
371 	return (error);
372 }
373 
374 int
375 freebsd32_fexecve(struct thread *td, struct freebsd32_fexecve_args *uap)
376 {
377 	struct image_args eargs;
378 	int error;
379 
380 	error = freebsd32_exec_copyin_args(&eargs, NULL, UIO_SYSSPACE,
381 	    uap->argv, uap->envv);
382 	if (error == 0) {
383 		eargs.fd = uap->fd;
384 		error = kern_execve(td, &eargs, NULL);
385 	}
386 	return (error);
387 }
388 
389 #ifdef __ia64__
390 static int
391 freebsd32_mmap_partial(struct thread *td, vm_offset_t start, vm_offset_t end,
392 		       int prot, int fd, off_t pos)
393 {
394 	vm_map_t map;
395 	vm_map_entry_t entry;
396 	int rv;
397 
398 	map = &td->td_proc->p_vmspace->vm_map;
399 	if (fd != -1)
400 		prot |= VM_PROT_WRITE;
401 
402 	if (vm_map_lookup_entry(map, start, &entry)) {
403 		if ((entry->protection & prot) != prot) {
404 			rv = vm_map_protect(map,
405 					    trunc_page(start),
406 					    round_page(end),
407 					    entry->protection | prot,
408 					    FALSE);
409 			if (rv != KERN_SUCCESS)
410 				return (EINVAL);
411 		}
412 	} else {
413 		vm_offset_t addr = trunc_page(start);
414 		rv = vm_map_find(map, 0, 0,
415 				 &addr, PAGE_SIZE, FALSE, prot,
416 				 VM_PROT_ALL, 0);
417 		if (rv != KERN_SUCCESS)
418 			return (EINVAL);
419 	}
420 
421 	if (fd != -1) {
422 		struct pread_args r;
423 		r.fd = fd;
424 		r.buf = (void *) start;
425 		r.nbyte = end - start;
426 		r.offset = pos;
427 		return (pread(td, &r));
428 	} else {
429 		while (start < end) {
430 			subyte((void *) start, 0);
431 			start++;
432 		}
433 		return (0);
434 	}
435 }
436 #endif
437 
438 int
439 freebsd32_mmap(struct thread *td, struct freebsd32_mmap_args *uap)
440 {
441 	struct mmap_args ap;
442 	vm_offset_t addr = (vm_offset_t) uap->addr;
443 	vm_size_t len	 = uap->len;
444 	int prot	 = uap->prot;
445 	int flags	 = uap->flags;
446 	int fd		 = uap->fd;
447 	off_t pos	 = PAIR32TO64(off_t,uap->pos);
448 #ifdef __ia64__
449 	vm_size_t pageoff;
450 	int error;
451 
452 	/*
453 	 * Attempt to handle page size hassles.
454 	 */
455 	pageoff = (pos & PAGE_MASK);
456 	if (flags & MAP_FIXED) {
457 		vm_offset_t start, end;
458 		start = addr;
459 		end = addr + len;
460 
461 		if (start != trunc_page(start)) {
462 			error = freebsd32_mmap_partial(td, start,
463 						       round_page(start), prot,
464 						       fd, pos);
465 			if (fd != -1)
466 				pos += round_page(start) - start;
467 			start = round_page(start);
468 		}
469 		if (end != round_page(end)) {
470 			vm_offset_t t = trunc_page(end);
471 			error = freebsd32_mmap_partial(td, t, end,
472 						  prot, fd,
473 						  pos + t - start);
474 			end = trunc_page(end);
475 		}
476 		if (end > start && fd != -1 && (pos & PAGE_MASK)) {
477 			/*
478 			 * We can't map this region at all. The specified
479 			 * address doesn't have the same alignment as the file
480 			 * position. Fake the mapping by simply reading the
481 			 * entire region into memory. First we need to make
482 			 * sure the region exists.
483 			 */
484 			vm_map_t map;
485 			struct pread_args r;
486 			int rv;
487 
488 			prot |= VM_PROT_WRITE;
489 			map = &td->td_proc->p_vmspace->vm_map;
490 			rv = vm_map_remove(map, start, end);
491 			if (rv != KERN_SUCCESS)
492 				return (EINVAL);
493 			rv = vm_map_find(map, 0, 0,
494 					 &start, end - start, FALSE,
495 					 prot, VM_PROT_ALL, 0);
496 			if (rv != KERN_SUCCESS)
497 				return (EINVAL);
498 			r.fd = fd;
499 			r.buf = (void *) start;
500 			r.nbyte = end - start;
501 			r.offset = pos;
502 			error = pread(td, &r);
503 			if (error)
504 				return (error);
505 
506 			td->td_retval[0] = addr;
507 			return (0);
508 		}
509 		if (end == start) {
510 			/*
511 			 * After dealing with the ragged ends, there
512 			 * might be none left.
513 			 */
514 			td->td_retval[0] = addr;
515 			return (0);
516 		}
517 		addr = start;
518 		len = end - start;
519 	}
520 #endif
521 
522 	ap.addr = (void *) addr;
523 	ap.len = len;
524 	ap.prot = prot;
525 	ap.flags = flags;
526 	ap.fd = fd;
527 	ap.pos = pos;
528 
529 	return (mmap(td, &ap));
530 }
531 
532 #ifdef COMPAT_FREEBSD6
533 int
534 freebsd6_freebsd32_mmap(struct thread *td, struct freebsd6_freebsd32_mmap_args *uap)
535 {
536 	struct freebsd32_mmap_args ap;
537 
538 	ap.addr = uap->addr;
539 	ap.len = uap->len;
540 	ap.prot = uap->prot;
541 	ap.flags = uap->flags;
542 	ap.fd = uap->fd;
543 	ap.pos1 = uap->pos1;
544 	ap.pos2 = uap->pos2;
545 
546 	return (freebsd32_mmap(td, &ap));
547 }
548 #endif
549 
550 int
551 freebsd32_setitimer(struct thread *td, struct freebsd32_setitimer_args *uap)
552 {
553 	struct itimerval itv, oitv, *itvp;
554 	struct itimerval32 i32;
555 	int error;
556 
557 	if (uap->itv != NULL) {
558 		error = copyin(uap->itv, &i32, sizeof(i32));
559 		if (error)
560 			return (error);
561 		TV_CP(i32, itv, it_interval);
562 		TV_CP(i32, itv, it_value);
563 		itvp = &itv;
564 	} else
565 		itvp = NULL;
566 	error = kern_setitimer(td, uap->which, itvp, &oitv);
567 	if (error || uap->oitv == NULL)
568 		return (error);
569 	TV_CP(oitv, i32, it_interval);
570 	TV_CP(oitv, i32, it_value);
571 	return (copyout(&i32, uap->oitv, sizeof(i32)));
572 }
573 
574 int
575 freebsd32_getitimer(struct thread *td, struct freebsd32_getitimer_args *uap)
576 {
577 	struct itimerval itv;
578 	struct itimerval32 i32;
579 	int error;
580 
581 	error = kern_getitimer(td, uap->which, &itv);
582 	if (error || uap->itv == NULL)
583 		return (error);
584 	TV_CP(itv, i32, it_interval);
585 	TV_CP(itv, i32, it_value);
586 	return (copyout(&i32, uap->itv, sizeof(i32)));
587 }
588 
589 int
590 freebsd32_select(struct thread *td, struct freebsd32_select_args *uap)
591 {
592 	struct timeval32 tv32;
593 	struct timeval tv, *tvp;
594 	int error;
595 
596 	if (uap->tv != NULL) {
597 		error = copyin(uap->tv, &tv32, sizeof(tv32));
598 		if (error)
599 			return (error);
600 		CP(tv32, tv, tv_sec);
601 		CP(tv32, tv, tv_usec);
602 		tvp = &tv;
603 	} else
604 		tvp = NULL;
605 	/*
606 	 * XXX Do pointers need PTRIN()?
607 	 */
608 	return (kern_select(td, uap->nd, uap->in, uap->ou, uap->ex, tvp,
609 	    sizeof(int32_t) * 8));
610 }
611 
612 int
613 freebsd32_pselect(struct thread *td, struct freebsd32_pselect_args *uap)
614 {
615 	struct timespec32 ts32;
616 	struct timespec ts;
617 	struct timeval tv, *tvp;
618 	sigset_t set, *uset;
619 	int error;
620 
621 	if (uap->ts != NULL) {
622 		error = copyin(uap->ts, &ts32, sizeof(ts32));
623 		if (error != 0)
624 			return (error);
625 		CP(ts32, ts, tv_sec);
626 		CP(ts32, ts, tv_nsec);
627 		TIMESPEC_TO_TIMEVAL(&tv, &ts);
628 		tvp = &tv;
629 	} else
630 		tvp = NULL;
631 	if (uap->sm != NULL) {
632 		error = copyin(uap->sm, &set, sizeof(set));
633 		if (error != 0)
634 			return (error);
635 		uset = &set;
636 	} else
637 		uset = NULL;
638 	/*
639 	 * XXX Do pointers need PTRIN()?
640 	 */
641 	error = kern_pselect(td, uap->nd, uap->in, uap->ou, uap->ex, tvp,
642 	    uset, sizeof(int32_t) * 8);
643 	return (error);
644 }
645 
646 /*
647  * Copy 'count' items into the destination list pointed to by uap->eventlist.
648  */
649 static int
650 freebsd32_kevent_copyout(void *arg, struct kevent *kevp, int count)
651 {
652 	struct freebsd32_kevent_args *uap;
653 	struct kevent32	ks32[KQ_NEVENTS];
654 	int i, error = 0;
655 
656 	KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
657 	uap = (struct freebsd32_kevent_args *)arg;
658 
659 	for (i = 0; i < count; i++) {
660 		CP(kevp[i], ks32[i], ident);
661 		CP(kevp[i], ks32[i], filter);
662 		CP(kevp[i], ks32[i], flags);
663 		CP(kevp[i], ks32[i], fflags);
664 		CP(kevp[i], ks32[i], data);
665 		PTROUT_CP(kevp[i], ks32[i], udata);
666 	}
667 	error = copyout(ks32, uap->eventlist, count * sizeof *ks32);
668 	if (error == 0)
669 		uap->eventlist += count;
670 	return (error);
671 }
672 
673 /*
674  * Copy 'count' items from the list pointed to by uap->changelist.
675  */
676 static int
677 freebsd32_kevent_copyin(void *arg, struct kevent *kevp, int count)
678 {
679 	struct freebsd32_kevent_args *uap;
680 	struct kevent32	ks32[KQ_NEVENTS];
681 	int i, error = 0;
682 
683 	KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
684 	uap = (struct freebsd32_kevent_args *)arg;
685 
686 	error = copyin(uap->changelist, ks32, count * sizeof *ks32);
687 	if (error)
688 		goto done;
689 	uap->changelist += count;
690 
691 	for (i = 0; i < count; i++) {
692 		CP(ks32[i], kevp[i], ident);
693 		CP(ks32[i], kevp[i], filter);
694 		CP(ks32[i], kevp[i], flags);
695 		CP(ks32[i], kevp[i], fflags);
696 		CP(ks32[i], kevp[i], data);
697 		PTRIN_CP(ks32[i], kevp[i], udata);
698 	}
699 done:
700 	return (error);
701 }
702 
703 int
704 freebsd32_kevent(struct thread *td, struct freebsd32_kevent_args *uap)
705 {
706 	struct timespec32 ts32;
707 	struct timespec ts, *tsp;
708 	struct kevent_copyops k_ops = { uap,
709 					freebsd32_kevent_copyout,
710 					freebsd32_kevent_copyin};
711 	int error;
712 
713 
714 	if (uap->timeout) {
715 		error = copyin(uap->timeout, &ts32, sizeof(ts32));
716 		if (error)
717 			return (error);
718 		CP(ts32, ts, tv_sec);
719 		CP(ts32, ts, tv_nsec);
720 		tsp = &ts;
721 	} else
722 		tsp = NULL;
723 	error = kern_kevent(td, uap->fd, uap->nchanges, uap->nevents,
724 	    &k_ops, tsp);
725 	return (error);
726 }
727 
728 int
729 freebsd32_gettimeofday(struct thread *td,
730 		       struct freebsd32_gettimeofday_args *uap)
731 {
732 	struct timeval atv;
733 	struct timeval32 atv32;
734 	struct timezone rtz;
735 	int error = 0;
736 
737 	if (uap->tp) {
738 		microtime(&atv);
739 		CP(atv, atv32, tv_sec);
740 		CP(atv, atv32, tv_usec);
741 		error = copyout(&atv32, uap->tp, sizeof (atv32));
742 	}
743 	if (error == 0 && uap->tzp != NULL) {
744 		rtz.tz_minuteswest = tz_minuteswest;
745 		rtz.tz_dsttime = tz_dsttime;
746 		error = copyout(&rtz, uap->tzp, sizeof (rtz));
747 	}
748 	return (error);
749 }
750 
751 int
752 freebsd32_getrusage(struct thread *td, struct freebsd32_getrusage_args *uap)
753 {
754 	struct rusage32 s32;
755 	struct rusage s;
756 	int error;
757 
758 	error = kern_getrusage(td, uap->who, &s);
759 	if (error)
760 		return (error);
761 	if (uap->rusage != NULL) {
762 		freebsd32_rusage_out(&s, &s32);
763 		error = copyout(&s32, uap->rusage, sizeof(s32));
764 	}
765 	return (error);
766 }
767 
768 static int
769 freebsd32_copyinuio(struct iovec32 *iovp, u_int iovcnt, struct uio **uiop)
770 {
771 	struct iovec32 iov32;
772 	struct iovec *iov;
773 	struct uio *uio;
774 	u_int iovlen;
775 	int error, i;
776 
777 	*uiop = NULL;
778 	if (iovcnt > UIO_MAXIOV)
779 		return (EINVAL);
780 	iovlen = iovcnt * sizeof(struct iovec);
781 	uio = malloc(iovlen + sizeof *uio, M_IOV, M_WAITOK);
782 	iov = (struct iovec *)(uio + 1);
783 	for (i = 0; i < iovcnt; i++) {
784 		error = copyin(&iovp[i], &iov32, sizeof(struct iovec32));
785 		if (error) {
786 			free(uio, M_IOV);
787 			return (error);
788 		}
789 		iov[i].iov_base = PTRIN(iov32.iov_base);
790 		iov[i].iov_len = iov32.iov_len;
791 	}
792 	uio->uio_iov = iov;
793 	uio->uio_iovcnt = iovcnt;
794 	uio->uio_segflg = UIO_USERSPACE;
795 	uio->uio_offset = -1;
796 	uio->uio_resid = 0;
797 	for (i = 0; i < iovcnt; i++) {
798 		if (iov->iov_len > INT_MAX - uio->uio_resid) {
799 			free(uio, M_IOV);
800 			return (EINVAL);
801 		}
802 		uio->uio_resid += iov->iov_len;
803 		iov++;
804 	}
805 	*uiop = uio;
806 	return (0);
807 }
808 
809 int
810 freebsd32_readv(struct thread *td, struct freebsd32_readv_args *uap)
811 {
812 	struct uio *auio;
813 	int error;
814 
815 	error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio);
816 	if (error)
817 		return (error);
818 	error = kern_readv(td, uap->fd, auio);
819 	free(auio, M_IOV);
820 	return (error);
821 }
822 
823 int
824 freebsd32_writev(struct thread *td, struct freebsd32_writev_args *uap)
825 {
826 	struct uio *auio;
827 	int error;
828 
829 	error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio);
830 	if (error)
831 		return (error);
832 	error = kern_writev(td, uap->fd, auio);
833 	free(auio, M_IOV);
834 	return (error);
835 }
836 
837 int
838 freebsd32_preadv(struct thread *td, struct freebsd32_preadv_args *uap)
839 {
840 	struct uio *auio;
841 	int error;
842 
843 	error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio);
844 	if (error)
845 		return (error);
846 	error = kern_preadv(td, uap->fd, auio, PAIR32TO64(off_t,uap->offset));
847 	free(auio, M_IOV);
848 	return (error);
849 }
850 
851 int
852 freebsd32_pwritev(struct thread *td, struct freebsd32_pwritev_args *uap)
853 {
854 	struct uio *auio;
855 	int error;
856 
857 	error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio);
858 	if (error)
859 		return (error);
860 	error = kern_pwritev(td, uap->fd, auio, PAIR32TO64(off_t,uap->offset));
861 	free(auio, M_IOV);
862 	return (error);
863 }
864 
865 int
866 freebsd32_copyiniov(struct iovec32 *iovp32, u_int iovcnt, struct iovec **iovp,
867     int error)
868 {
869 	struct iovec32 iov32;
870 	struct iovec *iov;
871 	u_int iovlen;
872 	int i;
873 
874 	*iovp = NULL;
875 	if (iovcnt > UIO_MAXIOV)
876 		return (error);
877 	iovlen = iovcnt * sizeof(struct iovec);
878 	iov = malloc(iovlen, M_IOV, M_WAITOK);
879 	for (i = 0; i < iovcnt; i++) {
880 		error = copyin(&iovp32[i], &iov32, sizeof(struct iovec32));
881 		if (error) {
882 			free(iov, M_IOV);
883 			return (error);
884 		}
885 		iov[i].iov_base = PTRIN(iov32.iov_base);
886 		iov[i].iov_len = iov32.iov_len;
887 	}
888 	*iovp = iov;
889 	return (0);
890 }
891 
892 static int
893 freebsd32_copyinmsghdr(struct msghdr32 *msg32, struct msghdr *msg)
894 {
895 	struct msghdr32 m32;
896 	int error;
897 
898 	error = copyin(msg32, &m32, sizeof(m32));
899 	if (error)
900 		return (error);
901 	msg->msg_name = PTRIN(m32.msg_name);
902 	msg->msg_namelen = m32.msg_namelen;
903 	msg->msg_iov = PTRIN(m32.msg_iov);
904 	msg->msg_iovlen = m32.msg_iovlen;
905 	msg->msg_control = PTRIN(m32.msg_control);
906 	msg->msg_controllen = m32.msg_controllen;
907 	msg->msg_flags = m32.msg_flags;
908 	return (0);
909 }
910 
911 static int
912 freebsd32_copyoutmsghdr(struct msghdr *msg, struct msghdr32 *msg32)
913 {
914 	struct msghdr32 m32;
915 	int error;
916 
917 	m32.msg_name = PTROUT(msg->msg_name);
918 	m32.msg_namelen = msg->msg_namelen;
919 	m32.msg_iov = PTROUT(msg->msg_iov);
920 	m32.msg_iovlen = msg->msg_iovlen;
921 	m32.msg_control = PTROUT(msg->msg_control);
922 	m32.msg_controllen = msg->msg_controllen;
923 	m32.msg_flags = msg->msg_flags;
924 	error = copyout(&m32, msg32, sizeof(m32));
925 	return (error);
926 }
927 
928 #define FREEBSD32_ALIGNBYTES	(sizeof(int) - 1)
929 #define FREEBSD32_ALIGN(p)	\
930 	(((u_long)(p) + FREEBSD32_ALIGNBYTES) & ~FREEBSD32_ALIGNBYTES)
931 #define	FREEBSD32_CMSG_SPACE(l)	\
932 	(FREEBSD32_ALIGN(sizeof(struct cmsghdr)) + FREEBSD32_ALIGN(l))
933 
934 #define	FREEBSD32_CMSG_DATA(cmsg)	((unsigned char *)(cmsg) + \
935 				 FREEBSD32_ALIGN(sizeof(struct cmsghdr)))
936 static int
937 freebsd32_copy_msg_out(struct msghdr *msg, struct mbuf *control)
938 {
939 	struct cmsghdr *cm;
940 	void *data;
941 	socklen_t clen, datalen;
942 	int error;
943 	caddr_t ctlbuf;
944 	int len, maxlen, copylen;
945 	struct mbuf *m;
946 	error = 0;
947 
948 	len    = msg->msg_controllen;
949 	maxlen = msg->msg_controllen;
950 	msg->msg_controllen = 0;
951 
952 	m = control;
953 	ctlbuf = msg->msg_control;
954 
955 	while (m && len > 0) {
956 		cm = mtod(m, struct cmsghdr *);
957 		clen = m->m_len;
958 
959 		while (cm != NULL) {
960 
961 			if (sizeof(struct cmsghdr) > clen ||
962 			    cm->cmsg_len > clen) {
963 				error = EINVAL;
964 				break;
965 			}
966 
967 			data   = CMSG_DATA(cm);
968 			datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data;
969 
970 			/* Adjust message length */
971 			cm->cmsg_len = FREEBSD32_ALIGN(sizeof(struct cmsghdr)) +
972 			    datalen;
973 
974 
975 			/* Copy cmsghdr */
976 			copylen = sizeof(struct cmsghdr);
977 			if (len < copylen) {
978 				msg->msg_flags |= MSG_CTRUNC;
979 				copylen = len;
980 			}
981 
982 			error = copyout(cm,ctlbuf,copylen);
983 			if (error)
984 				goto exit;
985 
986 			ctlbuf += FREEBSD32_ALIGN(copylen);
987 			len    -= FREEBSD32_ALIGN(copylen);
988 
989 			if (len <= 0)
990 				break;
991 
992 			/* Copy data */
993 			copylen = datalen;
994 			if (len < copylen) {
995 				msg->msg_flags |= MSG_CTRUNC;
996 				copylen = len;
997 			}
998 
999 			error = copyout(data,ctlbuf,copylen);
1000 			if (error)
1001 				goto exit;
1002 
1003 			ctlbuf += FREEBSD32_ALIGN(copylen);
1004 			len    -= FREEBSD32_ALIGN(copylen);
1005 
1006 			if (CMSG_SPACE(datalen) < clen) {
1007 				clen -= CMSG_SPACE(datalen);
1008 				cm = (struct cmsghdr *)
1009 					((caddr_t)cm + CMSG_SPACE(datalen));
1010 			} else {
1011 				clen = 0;
1012 				cm = NULL;
1013 			}
1014 		}
1015 		m = m->m_next;
1016 	}
1017 
1018 	msg->msg_controllen = (len <= 0) ? maxlen :  ctlbuf - (caddr_t)msg->msg_control;
1019 
1020 exit:
1021 	return (error);
1022 
1023 }
1024 
1025 int
1026 freebsd32_recvmsg(td, uap)
1027 	struct thread *td;
1028 	struct freebsd32_recvmsg_args /* {
1029 		int	s;
1030 		struct	msghdr32 *msg;
1031 		int	flags;
1032 	} */ *uap;
1033 {
1034 	struct msghdr msg;
1035 	struct msghdr32 m32;
1036 	struct iovec *uiov, *iov;
1037 	struct mbuf *control = NULL;
1038 	struct mbuf **controlp;
1039 
1040 	int error;
1041 	error = copyin(uap->msg, &m32, sizeof(m32));
1042 	if (error)
1043 		return (error);
1044 	error = freebsd32_copyinmsghdr(uap->msg, &msg);
1045 	if (error)
1046 		return (error);
1047 	error = freebsd32_copyiniov(PTRIN(m32.msg_iov), m32.msg_iovlen, &iov,
1048 	    EMSGSIZE);
1049 	if (error)
1050 		return (error);
1051 	msg.msg_flags = uap->flags;
1052 	uiov = msg.msg_iov;
1053 	msg.msg_iov = iov;
1054 
1055 	controlp = (msg.msg_control != NULL) ?  &control : NULL;
1056 	error = kern_recvit(td, uap->s, &msg, UIO_USERSPACE, controlp);
1057 	if (error == 0) {
1058 		msg.msg_iov = uiov;
1059 
1060 		if (control != NULL)
1061 			error = freebsd32_copy_msg_out(&msg, control);
1062 		else
1063 			msg.msg_controllen = 0;
1064 
1065 		if (error == 0)
1066 			error = freebsd32_copyoutmsghdr(&msg, uap->msg);
1067 	}
1068 	free(iov, M_IOV);
1069 
1070 	if (control != NULL)
1071 		m_freem(control);
1072 
1073 	return (error);
1074 }
1075 
1076 
1077 static int
1078 freebsd32_convert_msg_in(struct mbuf **controlp)
1079 {
1080 	struct mbuf *control = *controlp;
1081 	struct cmsghdr *cm = mtod(control, struct cmsghdr *);
1082 	void *data;
1083 	socklen_t clen = control->m_len, datalen;
1084 	int error;
1085 
1086 	error = 0;
1087 	*controlp = NULL;
1088 
1089 	while (cm != NULL) {
1090 		if (sizeof(struct cmsghdr) > clen || cm->cmsg_len > clen) {
1091 			error = EINVAL;
1092 			break;
1093 		}
1094 
1095 		data = FREEBSD32_CMSG_DATA(cm);
1096 		datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data;
1097 
1098 		*controlp = sbcreatecontrol(data, datalen, cm->cmsg_type,
1099 		    cm->cmsg_level);
1100 		controlp = &(*controlp)->m_next;
1101 
1102 		if (FREEBSD32_CMSG_SPACE(datalen) < clen) {
1103 			clen -= FREEBSD32_CMSG_SPACE(datalen);
1104 			cm = (struct cmsghdr *)
1105 				((caddr_t)cm + FREEBSD32_CMSG_SPACE(datalen));
1106 		} else {
1107 			clen = 0;
1108 			cm = NULL;
1109 		}
1110 	}
1111 
1112 	m_freem(control);
1113 	return (error);
1114 }
1115 
1116 
1117 int
1118 freebsd32_sendmsg(struct thread *td,
1119 		  struct freebsd32_sendmsg_args *uap)
1120 {
1121 	struct msghdr msg;
1122 	struct msghdr32 m32;
1123 	struct iovec *iov;
1124 	struct mbuf *control = NULL;
1125 	struct sockaddr *to = NULL;
1126 	int error;
1127 
1128 	error = copyin(uap->msg, &m32, sizeof(m32));
1129 	if (error)
1130 		return (error);
1131 	error = freebsd32_copyinmsghdr(uap->msg, &msg);
1132 	if (error)
1133 		return (error);
1134 	error = freebsd32_copyiniov(PTRIN(m32.msg_iov), m32.msg_iovlen, &iov,
1135 	    EMSGSIZE);
1136 	if (error)
1137 		return (error);
1138 	msg.msg_iov = iov;
1139 	if (msg.msg_name != NULL) {
1140 		error = getsockaddr(&to, msg.msg_name, msg.msg_namelen);
1141 		if (error) {
1142 			to = NULL;
1143 			goto out;
1144 		}
1145 		msg.msg_name = to;
1146 	}
1147 
1148 	if (msg.msg_control) {
1149 		if (msg.msg_controllen < sizeof(struct cmsghdr)) {
1150 			error = EINVAL;
1151 			goto out;
1152 		}
1153 
1154 		error = sockargs(&control, msg.msg_control,
1155 		    msg.msg_controllen, MT_CONTROL);
1156 		if (error)
1157 			goto out;
1158 
1159 		error = freebsd32_convert_msg_in(&control);
1160 		if (error)
1161 			goto out;
1162 	}
1163 
1164 	error = kern_sendit(td, uap->s, &msg, uap->flags, control,
1165 	    UIO_USERSPACE);
1166 
1167 out:
1168 	free(iov, M_IOV);
1169 	if (to)
1170 		free(to, M_SONAME);
1171 	return (error);
1172 }
1173 
1174 int
1175 freebsd32_recvfrom(struct thread *td,
1176 		   struct freebsd32_recvfrom_args *uap)
1177 {
1178 	struct msghdr msg;
1179 	struct iovec aiov;
1180 	int error;
1181 
1182 	if (uap->fromlenaddr) {
1183 		error = copyin(PTRIN(uap->fromlenaddr), &msg.msg_namelen,
1184 		    sizeof(msg.msg_namelen));
1185 		if (error)
1186 			return (error);
1187 	} else {
1188 		msg.msg_namelen = 0;
1189 	}
1190 
1191 	msg.msg_name = PTRIN(uap->from);
1192 	msg.msg_iov = &aiov;
1193 	msg.msg_iovlen = 1;
1194 	aiov.iov_base = PTRIN(uap->buf);
1195 	aiov.iov_len = uap->len;
1196 	msg.msg_control = NULL;
1197 	msg.msg_flags = uap->flags;
1198 	error = kern_recvit(td, uap->s, &msg, UIO_USERSPACE, NULL);
1199 	if (error == 0 && uap->fromlenaddr)
1200 		error = copyout(&msg.msg_namelen, PTRIN(uap->fromlenaddr),
1201 		    sizeof (msg.msg_namelen));
1202 	return (error);
1203 }
1204 
1205 int
1206 freebsd32_settimeofday(struct thread *td,
1207 		       struct freebsd32_settimeofday_args *uap)
1208 {
1209 	struct timeval32 tv32;
1210 	struct timeval tv, *tvp;
1211 	struct timezone tz, *tzp;
1212 	int error;
1213 
1214 	if (uap->tv) {
1215 		error = copyin(uap->tv, &tv32, sizeof(tv32));
1216 		if (error)
1217 			return (error);
1218 		CP(tv32, tv, tv_sec);
1219 		CP(tv32, tv, tv_usec);
1220 		tvp = &tv;
1221 	} else
1222 		tvp = NULL;
1223 	if (uap->tzp) {
1224 		error = copyin(uap->tzp, &tz, sizeof(tz));
1225 		if (error)
1226 			return (error);
1227 		tzp = &tz;
1228 	} else
1229 		tzp = NULL;
1230 	return (kern_settimeofday(td, tvp, tzp));
1231 }
1232 
1233 int
1234 freebsd32_utimes(struct thread *td, struct freebsd32_utimes_args *uap)
1235 {
1236 	struct timeval32 s32[2];
1237 	struct timeval s[2], *sp;
1238 	int error;
1239 
1240 	if (uap->tptr != NULL) {
1241 		error = copyin(uap->tptr, s32, sizeof(s32));
1242 		if (error)
1243 			return (error);
1244 		CP(s32[0], s[0], tv_sec);
1245 		CP(s32[0], s[0], tv_usec);
1246 		CP(s32[1], s[1], tv_sec);
1247 		CP(s32[1], s[1], tv_usec);
1248 		sp = s;
1249 	} else
1250 		sp = NULL;
1251 	return (kern_utimes(td, uap->path, UIO_USERSPACE, sp, UIO_SYSSPACE));
1252 }
1253 
1254 int
1255 freebsd32_lutimes(struct thread *td, struct freebsd32_lutimes_args *uap)
1256 {
1257 	struct timeval32 s32[2];
1258 	struct timeval s[2], *sp;
1259 	int error;
1260 
1261 	if (uap->tptr != NULL) {
1262 		error = copyin(uap->tptr, s32, sizeof(s32));
1263 		if (error)
1264 			return (error);
1265 		CP(s32[0], s[0], tv_sec);
1266 		CP(s32[0], s[0], tv_usec);
1267 		CP(s32[1], s[1], tv_sec);
1268 		CP(s32[1], s[1], tv_usec);
1269 		sp = s;
1270 	} else
1271 		sp = NULL;
1272 	return (kern_lutimes(td, uap->path, UIO_USERSPACE, sp, UIO_SYSSPACE));
1273 }
1274 
1275 int
1276 freebsd32_futimes(struct thread *td, struct freebsd32_futimes_args *uap)
1277 {
1278 	struct timeval32 s32[2];
1279 	struct timeval s[2], *sp;
1280 	int error;
1281 
1282 	if (uap->tptr != NULL) {
1283 		error = copyin(uap->tptr, s32, sizeof(s32));
1284 		if (error)
1285 			return (error);
1286 		CP(s32[0], s[0], tv_sec);
1287 		CP(s32[0], s[0], tv_usec);
1288 		CP(s32[1], s[1], tv_sec);
1289 		CP(s32[1], s[1], tv_usec);
1290 		sp = s;
1291 	} else
1292 		sp = NULL;
1293 	return (kern_futimes(td, uap->fd, sp, UIO_SYSSPACE));
1294 }
1295 
1296 int
1297 freebsd32_futimesat(struct thread *td, struct freebsd32_futimesat_args *uap)
1298 {
1299 	struct timeval32 s32[2];
1300 	struct timeval s[2], *sp;
1301 	int error;
1302 
1303 	if (uap->times != NULL) {
1304 		error = copyin(uap->times, s32, sizeof(s32));
1305 		if (error)
1306 			return (error);
1307 		CP(s32[0], s[0], tv_sec);
1308 		CP(s32[0], s[0], tv_usec);
1309 		CP(s32[1], s[1], tv_sec);
1310 		CP(s32[1], s[1], tv_usec);
1311 		sp = s;
1312 	} else
1313 		sp = NULL;
1314 	return (kern_utimesat(td, uap->fd, uap->path, UIO_USERSPACE,
1315 		sp, UIO_SYSSPACE));
1316 }
1317 
1318 int
1319 freebsd32_adjtime(struct thread *td, struct freebsd32_adjtime_args *uap)
1320 {
1321 	struct timeval32 tv32;
1322 	struct timeval delta, olddelta, *deltap;
1323 	int error;
1324 
1325 	if (uap->delta) {
1326 		error = copyin(uap->delta, &tv32, sizeof(tv32));
1327 		if (error)
1328 			return (error);
1329 		CP(tv32, delta, tv_sec);
1330 		CP(tv32, delta, tv_usec);
1331 		deltap = &delta;
1332 	} else
1333 		deltap = NULL;
1334 	error = kern_adjtime(td, deltap, &olddelta);
1335 	if (uap->olddelta && error == 0) {
1336 		CP(olddelta, tv32, tv_sec);
1337 		CP(olddelta, tv32, tv_usec);
1338 		error = copyout(&tv32, uap->olddelta, sizeof(tv32));
1339 	}
1340 	return (error);
1341 }
1342 
1343 #ifdef COMPAT_FREEBSD4
1344 int
1345 freebsd4_freebsd32_statfs(struct thread *td, struct freebsd4_freebsd32_statfs_args *uap)
1346 {
1347 	struct statfs32 s32;
1348 	struct statfs s;
1349 	int error;
1350 
1351 	error = kern_statfs(td, uap->path, UIO_USERSPACE, &s);
1352 	if (error)
1353 		return (error);
1354 	copy_statfs(&s, &s32);
1355 	return (copyout(&s32, uap->buf, sizeof(s32)));
1356 }
1357 #endif
1358 
1359 #ifdef COMPAT_FREEBSD4
1360 int
1361 freebsd4_freebsd32_fstatfs(struct thread *td, struct freebsd4_freebsd32_fstatfs_args *uap)
1362 {
1363 	struct statfs32 s32;
1364 	struct statfs s;
1365 	int error;
1366 
1367 	error = kern_fstatfs(td, uap->fd, &s);
1368 	if (error)
1369 		return (error);
1370 	copy_statfs(&s, &s32);
1371 	return (copyout(&s32, uap->buf, sizeof(s32)));
1372 }
1373 #endif
1374 
1375 #ifdef COMPAT_FREEBSD4
1376 int
1377 freebsd4_freebsd32_fhstatfs(struct thread *td, struct freebsd4_freebsd32_fhstatfs_args *uap)
1378 {
1379 	struct statfs32 s32;
1380 	struct statfs s;
1381 	fhandle_t fh;
1382 	int error;
1383 
1384 	if ((error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t))) != 0)
1385 		return (error);
1386 	error = kern_fhstatfs(td, fh, &s);
1387 	if (error)
1388 		return (error);
1389 	copy_statfs(&s, &s32);
1390 	return (copyout(&s32, uap->buf, sizeof(s32)));
1391 }
1392 #endif
1393 
1394 int
1395 freebsd32_pread(struct thread *td, struct freebsd32_pread_args *uap)
1396 {
1397 	struct pread_args ap;
1398 
1399 	ap.fd = uap->fd;
1400 	ap.buf = uap->buf;
1401 	ap.nbyte = uap->nbyte;
1402 	ap.offset = PAIR32TO64(off_t,uap->offset);
1403 	return (pread(td, &ap));
1404 }
1405 
1406 int
1407 freebsd32_pwrite(struct thread *td, struct freebsd32_pwrite_args *uap)
1408 {
1409 	struct pwrite_args ap;
1410 
1411 	ap.fd = uap->fd;
1412 	ap.buf = uap->buf;
1413 	ap.nbyte = uap->nbyte;
1414 	ap.offset = PAIR32TO64(off_t,uap->offset);
1415 	return (pwrite(td, &ap));
1416 }
1417 
1418 int
1419 freebsd32_lseek(struct thread *td, struct freebsd32_lseek_args *uap)
1420 {
1421 	int error;
1422 	struct lseek_args ap;
1423 	off_t pos;
1424 
1425 	ap.fd = uap->fd;
1426 	ap.offset = PAIR32TO64(off_t,uap->offset);
1427 	ap.whence = uap->whence;
1428 	error = lseek(td, &ap);
1429 	/* Expand the quad return into two parts for eax and edx */
1430 	pos = *(off_t *)(td->td_retval);
1431 	td->td_retval[RETVAL_LO] = pos & 0xffffffff;	/* %eax */
1432 	td->td_retval[RETVAL_HI] = pos >> 32;		/* %edx */
1433 	return error;
1434 }
1435 
1436 int
1437 freebsd32_truncate(struct thread *td, struct freebsd32_truncate_args *uap)
1438 {
1439 	struct truncate_args ap;
1440 
1441 	ap.path = uap->path;
1442 	ap.length = PAIR32TO64(off_t,uap->length);
1443 	return (truncate(td, &ap));
1444 }
1445 
1446 int
1447 freebsd32_ftruncate(struct thread *td, struct freebsd32_ftruncate_args *uap)
1448 {
1449 	struct ftruncate_args ap;
1450 
1451 	ap.fd = uap->fd;
1452 	ap.length = PAIR32TO64(off_t,uap->length);
1453 	return (ftruncate(td, &ap));
1454 }
1455 
1456 int
1457 freebsd32_getdirentries(struct thread *td,
1458     struct freebsd32_getdirentries_args *uap)
1459 {
1460 	long base;
1461 	int32_t base32;
1462 	int error;
1463 
1464 	error = kern_getdirentries(td, uap->fd, uap->buf, uap->count, &base);
1465 	if (error)
1466 		return (error);
1467 	if (uap->basep != NULL) {
1468 		base32 = base;
1469 		error = copyout(&base32, uap->basep, sizeof(int32_t));
1470 	}
1471 	return (error);
1472 }
1473 
1474 #ifdef COMPAT_FREEBSD6
1475 /* versions with the 'int pad' argument */
1476 int
1477 freebsd6_freebsd32_pread(struct thread *td, struct freebsd6_freebsd32_pread_args *uap)
1478 {
1479 	struct pread_args ap;
1480 
1481 	ap.fd = uap->fd;
1482 	ap.buf = uap->buf;
1483 	ap.nbyte = uap->nbyte;
1484 	ap.offset = PAIR32TO64(off_t,uap->offset);
1485 	return (pread(td, &ap));
1486 }
1487 
1488 int
1489 freebsd6_freebsd32_pwrite(struct thread *td, struct freebsd6_freebsd32_pwrite_args *uap)
1490 {
1491 	struct pwrite_args ap;
1492 
1493 	ap.fd = uap->fd;
1494 	ap.buf = uap->buf;
1495 	ap.nbyte = uap->nbyte;
1496 	ap.offset = PAIR32TO64(off_t,uap->offset);
1497 	return (pwrite(td, &ap));
1498 }
1499 
1500 int
1501 freebsd6_freebsd32_lseek(struct thread *td, struct freebsd6_freebsd32_lseek_args *uap)
1502 {
1503 	int error;
1504 	struct lseek_args ap;
1505 	off_t pos;
1506 
1507 	ap.fd = uap->fd;
1508 	ap.offset = PAIR32TO64(off_t,uap->offset);
1509 	ap.whence = uap->whence;
1510 	error = lseek(td, &ap);
1511 	/* Expand the quad return into two parts for eax and edx */
1512 	pos = *(off_t *)(td->td_retval);
1513 	td->td_retval[RETVAL_LO] = pos & 0xffffffff;	/* %eax */
1514 	td->td_retval[RETVAL_HI] = pos >> 32;		/* %edx */
1515 	return error;
1516 }
1517 
1518 int
1519 freebsd6_freebsd32_truncate(struct thread *td, struct freebsd6_freebsd32_truncate_args *uap)
1520 {
1521 	struct truncate_args ap;
1522 
1523 	ap.path = uap->path;
1524 	ap.length = PAIR32TO64(off_t,uap->length);
1525 	return (truncate(td, &ap));
1526 }
1527 
1528 int
1529 freebsd6_freebsd32_ftruncate(struct thread *td, struct freebsd6_freebsd32_ftruncate_args *uap)
1530 {
1531 	struct ftruncate_args ap;
1532 
1533 	ap.fd = uap->fd;
1534 	ap.length = PAIR32TO64(off_t,uap->length);
1535 	return (ftruncate(td, &ap));
1536 }
1537 #endif /* COMPAT_FREEBSD6 */
1538 
1539 struct sf_hdtr32 {
1540 	uint32_t headers;
1541 	int hdr_cnt;
1542 	uint32_t trailers;
1543 	int trl_cnt;
1544 };
1545 
1546 static int
1547 freebsd32_do_sendfile(struct thread *td,
1548     struct freebsd32_sendfile_args *uap, int compat)
1549 {
1550 	struct sendfile_args ap;
1551 	struct sf_hdtr32 hdtr32;
1552 	struct sf_hdtr hdtr;
1553 	struct uio *hdr_uio, *trl_uio;
1554 	struct iovec32 *iov32;
1555 	int error;
1556 
1557 	hdr_uio = trl_uio = NULL;
1558 
1559 	ap.fd = uap->fd;
1560 	ap.s = uap->s;
1561 	ap.offset = PAIR32TO64(off_t,uap->offset);
1562 	ap.nbytes = uap->nbytes;
1563 	ap.hdtr = (struct sf_hdtr *)uap->hdtr;		/* XXX not used */
1564 	ap.sbytes = uap->sbytes;
1565 	ap.flags = uap->flags;
1566 
1567 	if (uap->hdtr != NULL) {
1568 		error = copyin(uap->hdtr, &hdtr32, sizeof(hdtr32));
1569 		if (error)
1570 			goto out;
1571 		PTRIN_CP(hdtr32, hdtr, headers);
1572 		CP(hdtr32, hdtr, hdr_cnt);
1573 		PTRIN_CP(hdtr32, hdtr, trailers);
1574 		CP(hdtr32, hdtr, trl_cnt);
1575 
1576 		if (hdtr.headers != NULL) {
1577 			iov32 = PTRIN(hdtr32.headers);
1578 			error = freebsd32_copyinuio(iov32,
1579 			    hdtr32.hdr_cnt, &hdr_uio);
1580 			if (error)
1581 				goto out;
1582 		}
1583 		if (hdtr.trailers != NULL) {
1584 			iov32 = PTRIN(hdtr32.trailers);
1585 			error = freebsd32_copyinuio(iov32,
1586 			    hdtr32.trl_cnt, &trl_uio);
1587 			if (error)
1588 				goto out;
1589 		}
1590 	}
1591 
1592 	error = kern_sendfile(td, &ap, hdr_uio, trl_uio, compat);
1593 out:
1594 	if (hdr_uio)
1595 		free(hdr_uio, M_IOV);
1596 	if (trl_uio)
1597 		free(trl_uio, M_IOV);
1598 	return (error);
1599 }
1600 
1601 #ifdef COMPAT_FREEBSD4
1602 int
1603 freebsd4_freebsd32_sendfile(struct thread *td,
1604     struct freebsd4_freebsd32_sendfile_args *uap)
1605 {
1606 	return (freebsd32_do_sendfile(td,
1607 	    (struct freebsd32_sendfile_args *)uap, 1));
1608 }
1609 #endif
1610 
1611 int
1612 freebsd32_sendfile(struct thread *td, struct freebsd32_sendfile_args *uap)
1613 {
1614 
1615 	return (freebsd32_do_sendfile(td, uap, 0));
1616 }
1617 
1618 static void
1619 copy_stat(struct stat *in, struct stat32 *out)
1620 {
1621 
1622 	CP(*in, *out, st_dev);
1623 	CP(*in, *out, st_ino);
1624 	CP(*in, *out, st_mode);
1625 	CP(*in, *out, st_nlink);
1626 	CP(*in, *out, st_uid);
1627 	CP(*in, *out, st_gid);
1628 	CP(*in, *out, st_rdev);
1629 	TS_CP(*in, *out, st_atim);
1630 	TS_CP(*in, *out, st_mtim);
1631 	TS_CP(*in, *out, st_ctim);
1632 	CP(*in, *out, st_size);
1633 	CP(*in, *out, st_blocks);
1634 	CP(*in, *out, st_blksize);
1635 	CP(*in, *out, st_flags);
1636 	CP(*in, *out, st_gen);
1637 	TS_CP(*in, *out, st_birthtim);
1638 }
1639 
1640 int
1641 freebsd32_stat(struct thread *td, struct freebsd32_stat_args *uap)
1642 {
1643 	struct stat sb;
1644 	struct stat32 sb32;
1645 	int error;
1646 
1647 	error = kern_stat(td, uap->path, UIO_USERSPACE, &sb);
1648 	if (error)
1649 		return (error);
1650 	copy_stat(&sb, &sb32);
1651 	error = copyout(&sb32, uap->ub, sizeof (sb32));
1652 	return (error);
1653 }
1654 
1655 int
1656 freebsd32_fstat(struct thread *td, struct freebsd32_fstat_args *uap)
1657 {
1658 	struct stat ub;
1659 	struct stat32 ub32;
1660 	int error;
1661 
1662 	error = kern_fstat(td, uap->fd, &ub);
1663 	if (error)
1664 		return (error);
1665 	copy_stat(&ub, &ub32);
1666 	error = copyout(&ub32, uap->ub, sizeof(ub32));
1667 	return (error);
1668 }
1669 
1670 int
1671 freebsd32_fstatat(struct thread *td, struct freebsd32_fstatat_args *uap)
1672 {
1673 	struct stat ub;
1674 	struct stat32 ub32;
1675 	int error;
1676 
1677 	error = kern_statat(td, uap->flag, uap->fd, uap->path, UIO_USERSPACE, &ub);
1678 	if (error)
1679 		return (error);
1680 	copy_stat(&ub, &ub32);
1681 	error = copyout(&ub32, uap->buf, sizeof(ub32));
1682 	return (error);
1683 }
1684 
1685 int
1686 freebsd32_lstat(struct thread *td, struct freebsd32_lstat_args *uap)
1687 {
1688 	struct stat sb;
1689 	struct stat32 sb32;
1690 	int error;
1691 
1692 	error = kern_lstat(td, uap->path, UIO_USERSPACE, &sb);
1693 	if (error)
1694 		return (error);
1695 	copy_stat(&sb, &sb32);
1696 	error = copyout(&sb32, uap->ub, sizeof (sb32));
1697 	return (error);
1698 }
1699 
1700 /*
1701  * MPSAFE
1702  */
1703 int
1704 freebsd32_sysctl(struct thread *td, struct freebsd32_sysctl_args *uap)
1705 {
1706 	int error, name[CTL_MAXNAME];
1707 	size_t j, oldlen;
1708 
1709 	if (uap->namelen > CTL_MAXNAME || uap->namelen < 2)
1710 		return (EINVAL);
1711  	error = copyin(uap->name, name, uap->namelen * sizeof(int));
1712  	if (error)
1713 		return (error);
1714 	if (uap->oldlenp)
1715 		oldlen = fuword32(uap->oldlenp);
1716 	else
1717 		oldlen = 0;
1718 	error = userland_sysctl(td, name, uap->namelen,
1719 		uap->old, &oldlen, 1,
1720 		uap->new, uap->newlen, &j, SCTL_MASK32);
1721 	if (error && error != ENOMEM)
1722 		return (error);
1723 	if (uap->oldlenp)
1724 		suword32(uap->oldlenp, j);
1725 	return (0);
1726 }
1727 
1728 int
1729 freebsd32_jail(struct thread *td, struct freebsd32_jail_args *uap)
1730 {
1731 	uint32_t version;
1732 	int error;
1733 	struct jail j;
1734 
1735 	error = copyin(uap->jail, &version, sizeof(uint32_t));
1736 	if (error)
1737 		return (error);
1738 
1739 	switch (version) {
1740 	case 0:
1741 	{
1742 		/* FreeBSD single IPv4 jails. */
1743 		struct jail32_v0 j32_v0;
1744 
1745 		bzero(&j, sizeof(struct jail));
1746 		error = copyin(uap->jail, &j32_v0, sizeof(struct jail32_v0));
1747 		if (error)
1748 			return (error);
1749 		CP(j32_v0, j, version);
1750 		PTRIN_CP(j32_v0, j, path);
1751 		PTRIN_CP(j32_v0, j, hostname);
1752 		j.ip4s = j32_v0.ip_number;
1753 		break;
1754 	}
1755 
1756 	case 1:
1757 		/*
1758 		 * Version 1 was used by multi-IPv4 jail implementations
1759 		 * that never made it into the official kernel.
1760 		 */
1761 		return (EINVAL);
1762 
1763 	case 2:	/* JAIL_API_VERSION */
1764 	{
1765 		/* FreeBSD multi-IPv4/IPv6,noIP jails. */
1766 		struct jail32 j32;
1767 
1768 		error = copyin(uap->jail, &j32, sizeof(struct jail32));
1769 		if (error)
1770 			return (error);
1771 		CP(j32, j, version);
1772 		PTRIN_CP(j32, j, path);
1773 		PTRIN_CP(j32, j, hostname);
1774 		PTRIN_CP(j32, j, jailname);
1775 		CP(j32, j, ip4s);
1776 		CP(j32, j, ip6s);
1777 		PTRIN_CP(j32, j, ip4);
1778 		PTRIN_CP(j32, j, ip6);
1779 		break;
1780 	}
1781 
1782 	default:
1783 		/* Sci-Fi jails are not supported, sorry. */
1784 		return (EINVAL);
1785 	}
1786 	return (kern_jail(td, &j));
1787 }
1788 
1789 int
1790 freebsd32_jail_set(struct thread *td, struct freebsd32_jail_set_args *uap)
1791 {
1792 	struct uio *auio;
1793 	int error;
1794 
1795 	/* Check that we have an even number of iovecs. */
1796 	if (uap->iovcnt & 1)
1797 		return (EINVAL);
1798 
1799 	error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio);
1800 	if (error)
1801 		return (error);
1802 	error = kern_jail_set(td, auio, uap->flags);
1803 	free(auio, M_IOV);
1804 	return (error);
1805 }
1806 
1807 int
1808 freebsd32_jail_get(struct thread *td, struct freebsd32_jail_get_args *uap)
1809 {
1810 	struct iovec32 iov32;
1811 	struct uio *auio;
1812 	int error, i;
1813 
1814 	/* Check that we have an even number of iovecs. */
1815 	if (uap->iovcnt & 1)
1816 		return (EINVAL);
1817 
1818 	error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio);
1819 	if (error)
1820 		return (error);
1821 	error = kern_jail_get(td, auio, uap->flags);
1822 	if (error == 0)
1823 		for (i = 0; i < uap->iovcnt; i++) {
1824 			PTROUT_CP(auio->uio_iov[i], iov32, iov_base);
1825 			CP(auio->uio_iov[i], iov32, iov_len);
1826 			error = copyout(&iov32, uap->iovp + i, sizeof(iov32));
1827 			if (error != 0)
1828 				break;
1829 		}
1830 	free(auio, M_IOV);
1831 	return (error);
1832 }
1833 
1834 int
1835 freebsd32_sigaction(struct thread *td, struct freebsd32_sigaction_args *uap)
1836 {
1837 	struct sigaction32 s32;
1838 	struct sigaction sa, osa, *sap;
1839 	int error;
1840 
1841 	if (uap->act) {
1842 		error = copyin(uap->act, &s32, sizeof(s32));
1843 		if (error)
1844 			return (error);
1845 		sa.sa_handler = PTRIN(s32.sa_u);
1846 		CP(s32, sa, sa_flags);
1847 		CP(s32, sa, sa_mask);
1848 		sap = &sa;
1849 	} else
1850 		sap = NULL;
1851 	error = kern_sigaction(td, uap->sig, sap, &osa, 0);
1852 	if (error == 0 && uap->oact != NULL) {
1853 		s32.sa_u = PTROUT(osa.sa_handler);
1854 		CP(osa, s32, sa_flags);
1855 		CP(osa, s32, sa_mask);
1856 		error = copyout(&s32, uap->oact, sizeof(s32));
1857 	}
1858 	return (error);
1859 }
1860 
1861 #ifdef COMPAT_FREEBSD4
1862 int
1863 freebsd4_freebsd32_sigaction(struct thread *td,
1864 			     struct freebsd4_freebsd32_sigaction_args *uap)
1865 {
1866 	struct sigaction32 s32;
1867 	struct sigaction sa, osa, *sap;
1868 	int error;
1869 
1870 	if (uap->act) {
1871 		error = copyin(uap->act, &s32, sizeof(s32));
1872 		if (error)
1873 			return (error);
1874 		sa.sa_handler = PTRIN(s32.sa_u);
1875 		CP(s32, sa, sa_flags);
1876 		CP(s32, sa, sa_mask);
1877 		sap = &sa;
1878 	} else
1879 		sap = NULL;
1880 	error = kern_sigaction(td, uap->sig, sap, &osa, KSA_FREEBSD4);
1881 	if (error == 0 && uap->oact != NULL) {
1882 		s32.sa_u = PTROUT(osa.sa_handler);
1883 		CP(osa, s32, sa_flags);
1884 		CP(osa, s32, sa_mask);
1885 		error = copyout(&s32, uap->oact, sizeof(s32));
1886 	}
1887 	return (error);
1888 }
1889 #endif
1890 
1891 #ifdef COMPAT_43
1892 struct osigaction32 {
1893 	u_int32_t	sa_u;
1894 	osigset_t	sa_mask;
1895 	int		sa_flags;
1896 };
1897 
1898 #define	ONSIG	32
1899 
1900 int
1901 ofreebsd32_sigaction(struct thread *td,
1902 			     struct ofreebsd32_sigaction_args *uap)
1903 {
1904 	struct osigaction32 s32;
1905 	struct sigaction sa, osa, *sap;
1906 	int error;
1907 
1908 	if (uap->signum <= 0 || uap->signum >= ONSIG)
1909 		return (EINVAL);
1910 
1911 	if (uap->nsa) {
1912 		error = copyin(uap->nsa, &s32, sizeof(s32));
1913 		if (error)
1914 			return (error);
1915 		sa.sa_handler = PTRIN(s32.sa_u);
1916 		CP(s32, sa, sa_flags);
1917 		OSIG2SIG(s32.sa_mask, sa.sa_mask);
1918 		sap = &sa;
1919 	} else
1920 		sap = NULL;
1921 	error = kern_sigaction(td, uap->signum, sap, &osa, KSA_OSIGSET);
1922 	if (error == 0 && uap->osa != NULL) {
1923 		s32.sa_u = PTROUT(osa.sa_handler);
1924 		CP(osa, s32, sa_flags);
1925 		SIG2OSIG(osa.sa_mask, s32.sa_mask);
1926 		error = copyout(&s32, uap->osa, sizeof(s32));
1927 	}
1928 	return (error);
1929 }
1930 
1931 int
1932 ofreebsd32_sigprocmask(struct thread *td,
1933 			       struct ofreebsd32_sigprocmask_args *uap)
1934 {
1935 	sigset_t set, oset;
1936 	int error;
1937 
1938 	OSIG2SIG(uap->mask, set);
1939 	error = kern_sigprocmask(td, uap->how, &set, &oset, SIGPROCMASK_OLD);
1940 	SIG2OSIG(oset, td->td_retval[0]);
1941 	return (error);
1942 }
1943 
1944 int
1945 ofreebsd32_sigpending(struct thread *td,
1946 			      struct ofreebsd32_sigpending_args *uap)
1947 {
1948 	struct proc *p = td->td_proc;
1949 	sigset_t siglist;
1950 
1951 	PROC_LOCK(p);
1952 	siglist = p->p_siglist;
1953 	SIGSETOR(siglist, td->td_siglist);
1954 	PROC_UNLOCK(p);
1955 	SIG2OSIG(siglist, td->td_retval[0]);
1956 	return (0);
1957 }
1958 
1959 struct sigvec32 {
1960 	u_int32_t	sv_handler;
1961 	int		sv_mask;
1962 	int		sv_flags;
1963 };
1964 
1965 int
1966 ofreebsd32_sigvec(struct thread *td,
1967 			  struct ofreebsd32_sigvec_args *uap)
1968 {
1969 	struct sigvec32 vec;
1970 	struct sigaction sa, osa, *sap;
1971 	int error;
1972 
1973 	if (uap->signum <= 0 || uap->signum >= ONSIG)
1974 		return (EINVAL);
1975 
1976 	if (uap->nsv) {
1977 		error = copyin(uap->nsv, &vec, sizeof(vec));
1978 		if (error)
1979 			return (error);
1980 		sa.sa_handler = PTRIN(vec.sv_handler);
1981 		OSIG2SIG(vec.sv_mask, sa.sa_mask);
1982 		sa.sa_flags = vec.sv_flags;
1983 		sa.sa_flags ^= SA_RESTART;
1984 		sap = &sa;
1985 	} else
1986 		sap = NULL;
1987 	error = kern_sigaction(td, uap->signum, sap, &osa, KSA_OSIGSET);
1988 	if (error == 0 && uap->osv != NULL) {
1989 		vec.sv_handler = PTROUT(osa.sa_handler);
1990 		SIG2OSIG(osa.sa_mask, vec.sv_mask);
1991 		vec.sv_flags = osa.sa_flags;
1992 		vec.sv_flags &= ~SA_NOCLDWAIT;
1993 		vec.sv_flags ^= SA_RESTART;
1994 		error = copyout(&vec, uap->osv, sizeof(vec));
1995 	}
1996 	return (error);
1997 }
1998 
1999 int
2000 ofreebsd32_sigblock(struct thread *td,
2001 			    struct ofreebsd32_sigblock_args *uap)
2002 {
2003 	sigset_t set, oset;
2004 
2005 	OSIG2SIG(uap->mask, set);
2006 	kern_sigprocmask(td, SIG_BLOCK, &set, &oset, 0);
2007 	SIG2OSIG(oset, td->td_retval[0]);
2008 	return (0);
2009 }
2010 
2011 int
2012 ofreebsd32_sigsetmask(struct thread *td,
2013 			      struct ofreebsd32_sigsetmask_args *uap)
2014 {
2015 	sigset_t set, oset;
2016 
2017 	OSIG2SIG(uap->mask, set);
2018 	kern_sigprocmask(td, SIG_SETMASK, &set, &oset, 0);
2019 	SIG2OSIG(oset, td->td_retval[0]);
2020 	return (0);
2021 }
2022 
2023 int
2024 ofreebsd32_sigsuspend(struct thread *td,
2025 			      struct ofreebsd32_sigsuspend_args *uap)
2026 {
2027 	sigset_t mask;
2028 
2029 	OSIG2SIG(uap->mask, mask);
2030 	return (kern_sigsuspend(td, mask));
2031 }
2032 
2033 struct sigstack32 {
2034 	u_int32_t	ss_sp;
2035 	int		ss_onstack;
2036 };
2037 
2038 int
2039 ofreebsd32_sigstack(struct thread *td,
2040 			    struct ofreebsd32_sigstack_args *uap)
2041 {
2042 	struct sigstack32 s32;
2043 	struct sigstack nss, oss;
2044 	int error = 0, unss;
2045 
2046 	if (uap->nss != NULL) {
2047 		error = copyin(uap->nss, &s32, sizeof(s32));
2048 		if (error)
2049 			return (error);
2050 		nss.ss_sp = PTRIN(s32.ss_sp);
2051 		CP(s32, nss, ss_onstack);
2052 		unss = 1;
2053 	} else {
2054 		unss = 0;
2055 	}
2056 	oss.ss_sp = td->td_sigstk.ss_sp;
2057 	oss.ss_onstack = sigonstack(cpu_getstack(td));
2058 	if (unss) {
2059 		td->td_sigstk.ss_sp = nss.ss_sp;
2060 		td->td_sigstk.ss_size = 0;
2061 		td->td_sigstk.ss_flags |= (nss.ss_onstack & SS_ONSTACK);
2062 		td->td_pflags |= TDP_ALTSTACK;
2063 	}
2064 	if (uap->oss != NULL) {
2065 		s32.ss_sp = PTROUT(oss.ss_sp);
2066 		CP(oss, s32, ss_onstack);
2067 		error = copyout(&s32, uap->oss, sizeof(s32));
2068 	}
2069 	return (error);
2070 }
2071 #endif
2072 
2073 int
2074 freebsd32_nanosleep(struct thread *td, struct freebsd32_nanosleep_args *uap)
2075 {
2076 	struct timespec32 rmt32, rqt32;
2077 	struct timespec rmt, rqt;
2078 	int error;
2079 
2080 	error = copyin(uap->rqtp, &rqt32, sizeof(rqt32));
2081 	if (error)
2082 		return (error);
2083 
2084 	CP(rqt32, rqt, tv_sec);
2085 	CP(rqt32, rqt, tv_nsec);
2086 
2087 	if (uap->rmtp &&
2088 	    !useracc((caddr_t)uap->rmtp, sizeof(rmt), VM_PROT_WRITE))
2089 		return (EFAULT);
2090 	error = kern_nanosleep(td, &rqt, &rmt);
2091 	if (error && uap->rmtp) {
2092 		int error2;
2093 
2094 		CP(rmt, rmt32, tv_sec);
2095 		CP(rmt, rmt32, tv_nsec);
2096 
2097 		error2 = copyout(&rmt32, uap->rmtp, sizeof(rmt32));
2098 		if (error2)
2099 			error = error2;
2100 	}
2101 	return (error);
2102 }
2103 
2104 int
2105 freebsd32_clock_gettime(struct thread *td,
2106 			struct freebsd32_clock_gettime_args *uap)
2107 {
2108 	struct timespec	ats;
2109 	struct timespec32 ats32;
2110 	int error;
2111 
2112 	error = kern_clock_gettime(td, uap->clock_id, &ats);
2113 	if (error == 0) {
2114 		CP(ats, ats32, tv_sec);
2115 		CP(ats, ats32, tv_nsec);
2116 		error = copyout(&ats32, uap->tp, sizeof(ats32));
2117 	}
2118 	return (error);
2119 }
2120 
2121 int
2122 freebsd32_clock_settime(struct thread *td,
2123 			struct freebsd32_clock_settime_args *uap)
2124 {
2125 	struct timespec	ats;
2126 	struct timespec32 ats32;
2127 	int error;
2128 
2129 	error = copyin(uap->tp, &ats32, sizeof(ats32));
2130 	if (error)
2131 		return (error);
2132 	CP(ats32, ats, tv_sec);
2133 	CP(ats32, ats, tv_nsec);
2134 
2135 	return (kern_clock_settime(td, uap->clock_id, &ats));
2136 }
2137 
2138 int
2139 freebsd32_clock_getres(struct thread *td,
2140 		       struct freebsd32_clock_getres_args *uap)
2141 {
2142 	struct timespec	ts;
2143 	struct timespec32 ts32;
2144 	int error;
2145 
2146 	if (uap->tp == NULL)
2147 		return (0);
2148 	error = kern_clock_getres(td, uap->clock_id, &ts);
2149 	if (error == 0) {
2150 		CP(ts, ts32, tv_sec);
2151 		CP(ts, ts32, tv_nsec);
2152 		error = copyout(&ts32, uap->tp, sizeof(ts32));
2153 	}
2154 	return (error);
2155 }
2156 
2157 int
2158 freebsd32_thr_new(struct thread *td,
2159 		  struct freebsd32_thr_new_args *uap)
2160 {
2161 	struct thr_param32 param32;
2162 	struct thr_param param;
2163 	int error;
2164 
2165 	if (uap->param_size < 0 ||
2166 	    uap->param_size > sizeof(struct thr_param32))
2167 		return (EINVAL);
2168 	bzero(&param, sizeof(struct thr_param));
2169 	bzero(&param32, sizeof(struct thr_param32));
2170 	error = copyin(uap->param, &param32, uap->param_size);
2171 	if (error != 0)
2172 		return (error);
2173 	param.start_func = PTRIN(param32.start_func);
2174 	param.arg = PTRIN(param32.arg);
2175 	param.stack_base = PTRIN(param32.stack_base);
2176 	param.stack_size = param32.stack_size;
2177 	param.tls_base = PTRIN(param32.tls_base);
2178 	param.tls_size = param32.tls_size;
2179 	param.child_tid = PTRIN(param32.child_tid);
2180 	param.parent_tid = PTRIN(param32.parent_tid);
2181 	param.flags = param32.flags;
2182 	param.rtp = PTRIN(param32.rtp);
2183 	param.spare[0] = PTRIN(param32.spare[0]);
2184 	param.spare[1] = PTRIN(param32.spare[1]);
2185 	param.spare[2] = PTRIN(param32.spare[2]);
2186 
2187 	return (kern_thr_new(td, &param));
2188 }
2189 
2190 int
2191 freebsd32_thr_suspend(struct thread *td, struct freebsd32_thr_suspend_args *uap)
2192 {
2193 	struct timespec32 ts32;
2194 	struct timespec ts, *tsp;
2195 	int error;
2196 
2197 	error = 0;
2198 	tsp = NULL;
2199 	if (uap->timeout != NULL) {
2200 		error = copyin((const void *)uap->timeout, (void *)&ts32,
2201 		    sizeof(struct timespec32));
2202 		if (error != 0)
2203 			return (error);
2204 		ts.tv_sec = ts32.tv_sec;
2205 		ts.tv_nsec = ts32.tv_nsec;
2206 		tsp = &ts;
2207 	}
2208 	return (kern_thr_suspend(td, tsp));
2209 }
2210 
2211 void
2212 siginfo_to_siginfo32(const siginfo_t *src, struct siginfo32 *dst)
2213 {
2214 	bzero(dst, sizeof(*dst));
2215 	dst->si_signo = src->si_signo;
2216 	dst->si_errno = src->si_errno;
2217 	dst->si_code = src->si_code;
2218 	dst->si_pid = src->si_pid;
2219 	dst->si_uid = src->si_uid;
2220 	dst->si_status = src->si_status;
2221 	dst->si_addr = (uintptr_t)src->si_addr;
2222 	dst->si_value.sigval_int = src->si_value.sival_int;
2223 	dst->si_timerid = src->si_timerid;
2224 	dst->si_overrun = src->si_overrun;
2225 }
2226 
2227 int
2228 freebsd32_sigtimedwait(struct thread *td, struct freebsd32_sigtimedwait_args *uap)
2229 {
2230 	struct timespec32 ts32;
2231 	struct timespec ts;
2232 	struct timespec *timeout;
2233 	sigset_t set;
2234 	ksiginfo_t ksi;
2235 	struct siginfo32 si32;
2236 	int error;
2237 
2238 	if (uap->timeout) {
2239 		error = copyin(uap->timeout, &ts32, sizeof(ts32));
2240 		if (error)
2241 			return (error);
2242 		ts.tv_sec = ts32.tv_sec;
2243 		ts.tv_nsec = ts32.tv_nsec;
2244 		timeout = &ts;
2245 	} else
2246 		timeout = NULL;
2247 
2248 	error = copyin(uap->set, &set, sizeof(set));
2249 	if (error)
2250 		return (error);
2251 
2252 	error = kern_sigtimedwait(td, set, &ksi, timeout);
2253 	if (error)
2254 		return (error);
2255 
2256 	if (uap->info) {
2257 		siginfo_to_siginfo32(&ksi.ksi_info, &si32);
2258 		error = copyout(&si32, uap->info, sizeof(struct siginfo32));
2259 	}
2260 
2261 	if (error == 0)
2262 		td->td_retval[0] = ksi.ksi_signo;
2263 	return (error);
2264 }
2265 
2266 /*
2267  * MPSAFE
2268  */
2269 int
2270 freebsd32_sigwaitinfo(struct thread *td, struct freebsd32_sigwaitinfo_args *uap)
2271 {
2272 	ksiginfo_t ksi;
2273 	struct siginfo32 si32;
2274 	sigset_t set;
2275 	int error;
2276 
2277 	error = copyin(uap->set, &set, sizeof(set));
2278 	if (error)
2279 		return (error);
2280 
2281 	error = kern_sigtimedwait(td, set, &ksi, NULL);
2282 	if (error)
2283 		return (error);
2284 
2285 	if (uap->info) {
2286 		siginfo_to_siginfo32(&ksi.ksi_info, &si32);
2287 		error = copyout(&si32, uap->info, sizeof(struct siginfo32));
2288 	}
2289 	if (error == 0)
2290 		td->td_retval[0] = ksi.ksi_signo;
2291 	return (error);
2292 }
2293 
2294 int
2295 freebsd32_cpuset_setid(struct thread *td,
2296     struct freebsd32_cpuset_setid_args *uap)
2297 {
2298 	struct cpuset_setid_args ap;
2299 
2300 	ap.which = uap->which;
2301 	ap.id = PAIR32TO64(id_t,uap->id);
2302 	ap.setid = uap->setid;
2303 
2304 	return (cpuset_setid(td, &ap));
2305 }
2306 
2307 int
2308 freebsd32_cpuset_getid(struct thread *td,
2309     struct freebsd32_cpuset_getid_args *uap)
2310 {
2311 	struct cpuset_getid_args ap;
2312 
2313 	ap.level = uap->level;
2314 	ap.which = uap->which;
2315 	ap.id = PAIR32TO64(id_t,uap->id);
2316 	ap.setid = uap->setid;
2317 
2318 	return (cpuset_getid(td, &ap));
2319 }
2320 
2321 int
2322 freebsd32_cpuset_getaffinity(struct thread *td,
2323     struct freebsd32_cpuset_getaffinity_args *uap)
2324 {
2325 	struct cpuset_getaffinity_args ap;
2326 
2327 	ap.level = uap->level;
2328 	ap.which = uap->which;
2329 	ap.id = PAIR32TO64(id_t,uap->id);
2330 	ap.cpusetsize = uap->cpusetsize;
2331 	ap.mask = uap->mask;
2332 
2333 	return (cpuset_getaffinity(td, &ap));
2334 }
2335 
2336 int
2337 freebsd32_cpuset_setaffinity(struct thread *td,
2338     struct freebsd32_cpuset_setaffinity_args *uap)
2339 {
2340 	struct cpuset_setaffinity_args ap;
2341 
2342 	ap.level = uap->level;
2343 	ap.which = uap->which;
2344 	ap.id = PAIR32TO64(id_t,uap->id);
2345 	ap.cpusetsize = uap->cpusetsize;
2346 	ap.mask = uap->mask;
2347 
2348 	return (cpuset_setaffinity(td, &ap));
2349 }
2350 
2351 int
2352 freebsd32_nmount(struct thread *td,
2353     struct freebsd32_nmount_args /* {
2354     	struct iovec *iovp;
2355     	unsigned int iovcnt;
2356     	int flags;
2357     } */ *uap)
2358 {
2359 	struct uio *auio;
2360 	int error;
2361 
2362 	AUDIT_ARG_FFLAGS(uap->flags);
2363 
2364 	/*
2365 	 * Filter out MNT_ROOTFS.  We do not want clients of nmount() in
2366 	 * userspace to set this flag, but we must filter it out if we want
2367 	 * MNT_UPDATE on the root file system to work.
2368 	 * MNT_ROOTFS should only be set in the kernel in vfs_mountroot_try().
2369 	 */
2370 	uap->flags &= ~MNT_ROOTFS;
2371 
2372 	/*
2373 	 * check that we have an even number of iovec's
2374 	 * and that we have at least two options.
2375 	 */
2376 	if ((uap->iovcnt & 1) || (uap->iovcnt < 4))
2377 		return (EINVAL);
2378 
2379 	error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio);
2380 	if (error)
2381 		return (error);
2382 	error = vfs_donmount(td, uap->flags, auio);
2383 
2384 	free(auio, M_IOV);
2385 	return error;
2386 }
2387 
2388 #if 0
2389 int
2390 freebsd32_xxx(struct thread *td, struct freebsd32_xxx_args *uap)
2391 {
2392 	struct yyy32 *p32, s32;
2393 	struct yyy *p = NULL, s;
2394 	struct xxx_arg ap;
2395 	int error;
2396 
2397 	if (uap->zzz) {
2398 		error = copyin(uap->zzz, &s32, sizeof(s32));
2399 		if (error)
2400 			return (error);
2401 		/* translate in */
2402 		p = &s;
2403 	}
2404 	error = kern_xxx(td, p);
2405 	if (error)
2406 		return (error);
2407 	if (uap->zzz) {
2408 		/* translate out */
2409 		error = copyout(&s32, p32, sizeof(s32));
2410 	}
2411 	return (error);
2412 }
2413 #endif
2414 
2415 int
2416 syscall32_register(int *offset, struct sysent *new_sysent,
2417     struct sysent *old_sysent)
2418 {
2419 	if (*offset == NO_SYSCALL) {
2420 		int i;
2421 
2422 		for (i = 1; i < SYS_MAXSYSCALL; ++i)
2423 			if (freebsd32_sysent[i].sy_call ==
2424 			    (sy_call_t *)lkmnosys)
2425 				break;
2426 		if (i == SYS_MAXSYSCALL)
2427 			return (ENFILE);
2428 		*offset = i;
2429 	} else if (*offset < 0 || *offset >= SYS_MAXSYSCALL)
2430 		return (EINVAL);
2431 	else if (freebsd32_sysent[*offset].sy_call != (sy_call_t *)lkmnosys &&
2432 	    freebsd32_sysent[*offset].sy_call != (sy_call_t *)lkmressys)
2433 		return (EEXIST);
2434 
2435 	*old_sysent = freebsd32_sysent[*offset];
2436 	freebsd32_sysent[*offset] = *new_sysent;
2437 	return 0;
2438 }
2439 
2440 int
2441 syscall32_deregister(int *offset, struct sysent *old_sysent)
2442 {
2443 
2444 	if (*offset)
2445 		freebsd32_sysent[*offset] = *old_sysent;
2446 	return 0;
2447 }
2448 
2449 int
2450 syscall32_module_handler(struct module *mod, int what, void *arg)
2451 {
2452 	struct syscall_module_data *data = (struct syscall_module_data*)arg;
2453 	modspecific_t ms;
2454 	int error;
2455 
2456 	switch (what) {
2457 	case MOD_LOAD:
2458 		error = syscall32_register(data->offset, data->new_sysent,
2459 		    &data->old_sysent);
2460 		if (error) {
2461 			/* Leave a mark so we know to safely unload below. */
2462 			data->offset = NULL;
2463 			return error;
2464 		}
2465 		ms.intval = *data->offset;
2466 		MOD_XLOCK;
2467 		module_setspecific(mod, &ms);
2468 		MOD_XUNLOCK;
2469 		if (data->chainevh)
2470 			error = data->chainevh(mod, what, data->chainarg);
2471 		return (error);
2472 	case MOD_UNLOAD:
2473 		/*
2474 		 * MOD_LOAD failed, so just return without calling the
2475 		 * chained handler since we didn't pass along the MOD_LOAD
2476 		 * event.
2477 		 */
2478 		if (data->offset == NULL)
2479 			return (0);
2480 		if (data->chainevh) {
2481 			error = data->chainevh(mod, what, data->chainarg);
2482 			if (error)
2483 				return (error);
2484 		}
2485 		error = syscall32_deregister(data->offset, &data->old_sysent);
2486 		return (error);
2487 	default:
2488 		error = EOPNOTSUPP;
2489 		if (data->chainevh)
2490 			error = data->chainevh(mod, what, data->chainarg);
2491 		return (error);
2492 	}
2493 }
2494 
2495 int
2496 syscall32_helper_register(struct syscall_helper_data *sd)
2497 {
2498 	struct syscall_helper_data *sd1;
2499 	int error;
2500 
2501 	for (sd1 = sd; sd1->syscall_no != NO_SYSCALL; sd1++) {
2502 		error = syscall32_register(&sd1->syscall_no, &sd1->new_sysent,
2503 		    &sd1->old_sysent);
2504 		if (error != 0) {
2505 			syscall32_helper_unregister(sd);
2506 			return (error);
2507 		}
2508 		sd1->registered = 1;
2509 	}
2510 	return (0);
2511 }
2512 
2513 int
2514 syscall32_helper_unregister(struct syscall_helper_data *sd)
2515 {
2516 	struct syscall_helper_data *sd1;
2517 
2518 	for (sd1 = sd; sd1->registered != 0; sd1++) {
2519 		syscall32_deregister(&sd1->syscall_no, &sd1->old_sysent);
2520 		sd1->registered = 0;
2521 	}
2522 	return (0);
2523 }
2524 
2525 register_t *
2526 freebsd32_copyout_strings(struct image_params *imgp)
2527 {
2528 	int argc, envc, i;
2529 	u_int32_t *vectp;
2530 	char *stringp, *destp;
2531 	u_int32_t *stack_base;
2532 	struct freebsd32_ps_strings *arginfo;
2533 	char canary[sizeof(long) * 8];
2534 	int32_t pagesizes32[MAXPAGESIZES];
2535 	size_t execpath_len;
2536 	int szsigcode;
2537 
2538 	/*
2539 	 * Calculate string base and vector table pointers.
2540 	 * Also deal with signal trampoline code for this exec type.
2541 	 */
2542 	if (imgp->execpath != NULL && imgp->auxargs != NULL)
2543 		execpath_len = strlen(imgp->execpath) + 1;
2544 	else
2545 		execpath_len = 0;
2546 	arginfo = (struct freebsd32_ps_strings *)curproc->p_sysent->
2547 	    sv_psstrings;
2548 	szsigcode = *(imgp->proc->p_sysent->sv_szsigcode);
2549 	destp =	(caddr_t)arginfo - szsigcode - SPARE_USRSPACE -
2550 	    roundup(execpath_len, sizeof(char *)) -
2551 	    roundup(sizeof(canary), sizeof(char *)) -
2552 	    roundup(sizeof(pagesizes32), sizeof(char *)) -
2553 	    roundup((ARG_MAX - imgp->args->stringspace), sizeof(char *));
2554 
2555 	/*
2556 	 * install sigcode
2557 	 */
2558 	if (szsigcode)
2559 		copyout(imgp->proc->p_sysent->sv_sigcode,
2560 			((caddr_t)arginfo - szsigcode), szsigcode);
2561 
2562 	/*
2563 	 * Copy the image path for the rtld.
2564 	 */
2565 	if (execpath_len != 0) {
2566 		imgp->execpathp = (uintptr_t)arginfo - szsigcode - execpath_len;
2567 		copyout(imgp->execpath, (void *)imgp->execpathp,
2568 		    execpath_len);
2569 	}
2570 
2571 	/*
2572 	 * Prepare the canary for SSP.
2573 	 */
2574 	arc4rand(canary, sizeof(canary), 0);
2575 	imgp->canary = (uintptr_t)arginfo - szsigcode - execpath_len -
2576 	    sizeof(canary);
2577 	copyout(canary, (void *)imgp->canary, sizeof(canary));
2578 	imgp->canarylen = sizeof(canary);
2579 
2580 	/*
2581 	 * Prepare the pagesizes array.
2582 	 */
2583 	for (i = 0; i < MAXPAGESIZES; i++)
2584 		pagesizes32[i] = (uint32_t)pagesizes[i];
2585 	imgp->pagesizes = (uintptr_t)arginfo - szsigcode - execpath_len -
2586 	    roundup(sizeof(canary), sizeof(char *)) - sizeof(pagesizes32);
2587 	copyout(pagesizes32, (void *)imgp->pagesizes, sizeof(pagesizes32));
2588 	imgp->pagesizeslen = sizeof(pagesizes32);
2589 
2590 	/*
2591 	 * If we have a valid auxargs ptr, prepare some room
2592 	 * on the stack.
2593 	 */
2594 	if (imgp->auxargs) {
2595 		/*
2596 		 * 'AT_COUNT*2' is size for the ELF Auxargs data. This is for
2597 		 * lower compatibility.
2598 		 */
2599 		imgp->auxarg_size = (imgp->auxarg_size) ? imgp->auxarg_size
2600 			: (AT_COUNT * 2);
2601 		/*
2602 		 * The '+ 2' is for the null pointers at the end of each of
2603 		 * the arg and env vector sets,and imgp->auxarg_size is room
2604 		 * for argument of Runtime loader.
2605 		 */
2606 		vectp = (u_int32_t *) (destp - (imgp->args->argc +
2607 		    imgp->args->envc + 2 + imgp->auxarg_size + execpath_len) *
2608 		    sizeof(u_int32_t));
2609 	} else
2610 		/*
2611 		 * The '+ 2' is for the null pointers at the end of each of
2612 		 * the arg and env vector sets
2613 		 */
2614 		vectp = (u_int32_t *)
2615 			(destp - (imgp->args->argc + imgp->args->envc + 2) * sizeof(u_int32_t));
2616 
2617 	/*
2618 	 * vectp also becomes our initial stack base
2619 	 */
2620 	stack_base = vectp;
2621 
2622 	stringp = imgp->args->begin_argv;
2623 	argc = imgp->args->argc;
2624 	envc = imgp->args->envc;
2625 	/*
2626 	 * Copy out strings - arguments and environment.
2627 	 */
2628 	copyout(stringp, destp, ARG_MAX - imgp->args->stringspace);
2629 
2630 	/*
2631 	 * Fill in "ps_strings" struct for ps, w, etc.
2632 	 */
2633 	suword32(&arginfo->ps_argvstr, (u_int32_t)(intptr_t)vectp);
2634 	suword32(&arginfo->ps_nargvstr, argc);
2635 
2636 	/*
2637 	 * Fill in argument portion of vector table.
2638 	 */
2639 	for (; argc > 0; --argc) {
2640 		suword32(vectp++, (u_int32_t)(intptr_t)destp);
2641 		while (*stringp++ != 0)
2642 			destp++;
2643 		destp++;
2644 	}
2645 
2646 	/* a null vector table pointer separates the argp's from the envp's */
2647 	suword32(vectp++, 0);
2648 
2649 	suword32(&arginfo->ps_envstr, (u_int32_t)(intptr_t)vectp);
2650 	suword32(&arginfo->ps_nenvstr, envc);
2651 
2652 	/*
2653 	 * Fill in environment portion of vector table.
2654 	 */
2655 	for (; envc > 0; --envc) {
2656 		suword32(vectp++, (u_int32_t)(intptr_t)destp);
2657 		while (*stringp++ != 0)
2658 			destp++;
2659 		destp++;
2660 	}
2661 
2662 	/* end of vector table is a null pointer */
2663 	suword32(vectp, 0);
2664 
2665 	return ((register_t *)stack_base);
2666 }
2667 
2668