1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2002 Doug Rabson 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 #include "opt_ffclock.h" 31 #include "opt_inet.h" 32 #include "opt_inet6.h" 33 #include "opt_ktrace.h" 34 35 #define __ELF_WORD_SIZE 32 36 37 #ifdef COMPAT_FREEBSD11 38 #define _WANT_FREEBSD11_KEVENT 39 #endif 40 41 #include <sys/param.h> 42 #include <sys/bus.h> 43 #include <sys/capsicum.h> 44 #include <sys/clock.h> 45 #include <sys/exec.h> 46 #include <sys/fcntl.h> 47 #include <sys/filedesc.h> 48 #include <sys/imgact.h> 49 #include <sys/jail.h> 50 #include <sys/kernel.h> 51 #include <sys/limits.h> 52 #include <sys/linker.h> 53 #include <sys/lock.h> 54 #include <sys/malloc.h> 55 #include <sys/file.h> /* Must come after sys/malloc.h */ 56 #include <sys/imgact.h> 57 #include <sys/mbuf.h> 58 #include <sys/mman.h> 59 #include <sys/module.h> 60 #include <sys/mount.h> 61 #include <sys/mutex.h> 62 #include <sys/namei.h> 63 #include <sys/priv.h> 64 #include <sys/proc.h> 65 #include <sys/procctl.h> 66 #include <sys/ptrace.h> 67 #include <sys/reboot.h> 68 #include <sys/resource.h> 69 #include <sys/resourcevar.h> 70 #include <sys/selinfo.h> 71 #include <sys/eventvar.h> /* Must come after sys/selinfo.h */ 72 #include <sys/pipe.h> /* Must come after sys/selinfo.h */ 73 #include <sys/signal.h> 74 #include <sys/signalvar.h> 75 #include <sys/socket.h> 76 #include <sys/socketvar.h> 77 #include <sys/stat.h> 78 #include <sys/syscall.h> 79 #include <sys/syscallsubr.h> 80 #include <sys/sysctl.h> 81 #include <sys/sysent.h> 82 #include <sys/sysproto.h> 83 #include <sys/systm.h> 84 #include <sys/thr.h> 85 #include <sys/timerfd.h> 86 #include <sys/timex.h> 87 #include <sys/unistd.h> 88 #include <sys/ucontext.h> 89 #include <sys/vnode.h> 90 #include <sys/wait.h> 91 #include <sys/ipc.h> 92 #include <sys/msg.h> 93 #include <sys/sem.h> 94 #include <sys/shm.h> 95 #include <sys/timeffc.h> 96 #ifdef KTRACE 97 #include <sys/ktrace.h> 98 #endif 99 100 #ifdef INET 101 #include <netinet/in.h> 102 #endif 103 104 #include <vm/vm.h> 105 #include <vm/vm_param.h> 106 #include <vm/pmap.h> 107 #include <vm/vm_map.h> 108 #include <vm/vm_object.h> 109 #include <vm/vm_extern.h> 110 111 #include <machine/cpu.h> 112 #include <machine/elf.h> 113 #ifdef __amd64__ 114 #include <machine/md_var.h> 115 #endif 116 117 #include <security/audit/audit.h> 118 119 #include <compat/freebsd32/freebsd32_util.h> 120 #include <compat/freebsd32/freebsd32.h> 121 #include <compat/freebsd32/freebsd32_ipc.h> 122 #include <compat/freebsd32/freebsd32_misc.h> 123 #include <compat/freebsd32/freebsd32_signal.h> 124 #include <compat/freebsd32/freebsd32_proto.h> 125 126 int compat_freebsd_32bit = 1; 127 128 static void 129 register_compat32_feature(void *arg) 130 { 131 if (!compat_freebsd_32bit) 132 return; 133 134 FEATURE_ADD("compat_freebsd32", "Compatible with 32-bit FreeBSD"); 135 FEATURE_ADD("compat_freebsd_32bit", 136 "Compatible with 32-bit FreeBSD (legacy feature name)"); 137 } 138 SYSINIT(freebsd32, SI_SUB_EXEC, SI_ORDER_ANY, register_compat32_feature, 139 NULL); 140 141 struct ptrace_io_desc32 { 142 int piod_op; 143 uint32_t piod_offs; 144 uint32_t piod_addr; 145 uint32_t piod_len; 146 }; 147 148 struct ptrace_vm_entry32 { 149 int pve_entry; 150 int pve_timestamp; 151 uint32_t pve_start; 152 uint32_t pve_end; 153 uint32_t pve_offset; 154 u_int pve_prot; 155 u_int pve_pathlen; 156 int32_t pve_fileid; 157 u_int pve_fsid; 158 uint32_t pve_path; 159 }; 160 161 #ifdef __amd64__ 162 CTASSERT(sizeof(struct timeval32) == 8); 163 CTASSERT(sizeof(struct timespec32) == 8); 164 CTASSERT(sizeof(struct itimerval32) == 16); 165 CTASSERT(sizeof(struct bintime32) == 12); 166 #else 167 CTASSERT(sizeof(struct timeval32) == 16); 168 CTASSERT(sizeof(struct timespec32) == 16); 169 CTASSERT(sizeof(struct itimerval32) == 32); 170 CTASSERT(sizeof(struct bintime32) == 16); 171 #endif 172 CTASSERT(sizeof(struct ostatfs32) == 256); 173 #ifdef __amd64__ 174 CTASSERT(sizeof(struct rusage32) == 72); 175 #else 176 CTASSERT(sizeof(struct rusage32) == 88); 177 #endif 178 CTASSERT(sizeof(struct sigaltstack32) == 12); 179 #ifdef __amd64__ 180 CTASSERT(sizeof(struct kevent32) == 56); 181 #else 182 CTASSERT(sizeof(struct kevent32) == 64); 183 #endif 184 CTASSERT(sizeof(struct iovec32) == 8); 185 CTASSERT(sizeof(struct msghdr32) == 28); 186 #ifdef __amd64__ 187 CTASSERT(sizeof(struct stat32) == 208); 188 CTASSERT(sizeof(struct freebsd11_stat32) == 96); 189 #else 190 CTASSERT(sizeof(struct stat32) == 224); 191 CTASSERT(sizeof(struct freebsd11_stat32) == 120); 192 #endif 193 CTASSERT(sizeof(struct sigaction32) == 24); 194 195 static int freebsd32_kevent_copyout(void *arg, struct kevent *kevp, int count); 196 static int freebsd32_kevent_copyin(void *arg, struct kevent *kevp, int count); 197 static int freebsd32_user_clock_nanosleep(struct thread *td, clockid_t clock_id, 198 int flags, const struct timespec32 *ua_rqtp, struct timespec32 *ua_rmtp); 199 200 void 201 freebsd32_rusage_out(const struct rusage *s, struct rusage32 *s32) 202 { 203 204 TV_CP(*s, *s32, ru_utime); 205 TV_CP(*s, *s32, ru_stime); 206 CP(*s, *s32, ru_maxrss); 207 CP(*s, *s32, ru_ixrss); 208 CP(*s, *s32, ru_idrss); 209 CP(*s, *s32, ru_isrss); 210 CP(*s, *s32, ru_minflt); 211 CP(*s, *s32, ru_majflt); 212 CP(*s, *s32, ru_nswap); 213 CP(*s, *s32, ru_inblock); 214 CP(*s, *s32, ru_oublock); 215 CP(*s, *s32, ru_msgsnd); 216 CP(*s, *s32, ru_msgrcv); 217 CP(*s, *s32, ru_nsignals); 218 CP(*s, *s32, ru_nvcsw); 219 CP(*s, *s32, ru_nivcsw); 220 } 221 222 int 223 freebsd32_wait4(struct thread *td, struct freebsd32_wait4_args *uap) 224 { 225 int error, status; 226 struct rusage32 ru32; 227 struct rusage ru, *rup; 228 229 if (uap->rusage != NULL) 230 rup = &ru; 231 else 232 rup = NULL; 233 error = kern_wait(td, uap->pid, &status, uap->options, rup); 234 if (error) 235 return (error); 236 if (uap->status != NULL) 237 error = copyout(&status, uap->status, sizeof(status)); 238 if (uap->rusage != NULL && error == 0) { 239 freebsd32_rusage_out(&ru, &ru32); 240 error = copyout(&ru32, uap->rusage, sizeof(ru32)); 241 } 242 return (error); 243 } 244 245 int 246 freebsd32_wait6(struct thread *td, struct freebsd32_wait6_args *uap) 247 { 248 struct __wrusage32 wru32; 249 struct __wrusage wru, *wrup; 250 struct siginfo32 si32; 251 struct __siginfo si, *sip; 252 int error, status; 253 254 if (uap->wrusage != NULL) 255 wrup = &wru; 256 else 257 wrup = NULL; 258 if (uap->info != NULL) { 259 sip = &si; 260 bzero(sip, sizeof(*sip)); 261 } else 262 sip = NULL; 263 error = kern_wait6(td, uap->idtype, PAIR32TO64(id_t, uap->id), 264 &status, uap->options, wrup, sip); 265 if (error != 0) 266 return (error); 267 if (uap->status != NULL) 268 error = copyout(&status, uap->status, sizeof(status)); 269 if (uap->wrusage != NULL && error == 0) { 270 freebsd32_rusage_out(&wru.wru_self, &wru32.wru_self); 271 freebsd32_rusage_out(&wru.wru_children, &wru32.wru_children); 272 error = copyout(&wru32, uap->wrusage, sizeof(wru32)); 273 } 274 if (uap->info != NULL && error == 0) { 275 siginfo_to_siginfo32 (&si, &si32); 276 error = copyout(&si32, uap->info, sizeof(si32)); 277 } 278 return (error); 279 } 280 281 #ifdef COMPAT_FREEBSD4 282 static void 283 copy_statfs(struct statfs *in, struct ostatfs32 *out) 284 { 285 286 statfs_scale_blocks(in, INT32_MAX); 287 bzero(out, sizeof(*out)); 288 CP(*in, *out, f_bsize); 289 out->f_iosize = MIN(in->f_iosize, INT32_MAX); 290 CP(*in, *out, f_blocks); 291 CP(*in, *out, f_bfree); 292 CP(*in, *out, f_bavail); 293 out->f_files = MIN(in->f_files, INT32_MAX); 294 out->f_ffree = MIN(in->f_ffree, INT32_MAX); 295 CP(*in, *out, f_fsid); 296 CP(*in, *out, f_owner); 297 CP(*in, *out, f_type); 298 CP(*in, *out, f_flags); 299 out->f_syncwrites = MIN(in->f_syncwrites, INT32_MAX); 300 out->f_asyncwrites = MIN(in->f_asyncwrites, INT32_MAX); 301 strlcpy(out->f_fstypename, 302 in->f_fstypename, MFSNAMELEN); 303 strlcpy(out->f_mntonname, 304 in->f_mntonname, min(MNAMELEN, FREEBSD4_OMNAMELEN)); 305 out->f_syncreads = MIN(in->f_syncreads, INT32_MAX); 306 out->f_asyncreads = MIN(in->f_asyncreads, INT32_MAX); 307 strlcpy(out->f_mntfromname, 308 in->f_mntfromname, min(MNAMELEN, FREEBSD4_OMNAMELEN)); 309 } 310 #endif 311 312 int 313 freebsd32_getfsstat(struct thread *td, struct freebsd32_getfsstat_args *uap) 314 { 315 size_t count; 316 int error; 317 318 if (uap->bufsize < 0 || uap->bufsize > SIZE_MAX) 319 return (EINVAL); 320 error = kern_getfsstat(td, &uap->buf, uap->bufsize, &count, 321 UIO_USERSPACE, uap->mode); 322 if (error == 0) 323 td->td_retval[0] = count; 324 return (error); 325 } 326 327 #ifdef COMPAT_FREEBSD4 328 int 329 freebsd4_freebsd32_getfsstat(struct thread *td, 330 struct freebsd4_freebsd32_getfsstat_args *uap) 331 { 332 struct statfs *buf, *sp; 333 struct ostatfs32 stat32; 334 size_t count, size, copycount; 335 int error; 336 337 count = uap->bufsize / sizeof(struct ostatfs32); 338 size = count * sizeof(struct statfs); 339 error = kern_getfsstat(td, &buf, size, &count, UIO_SYSSPACE, uap->mode); 340 if (size > 0) { 341 sp = buf; 342 copycount = count; 343 while (copycount > 0 && error == 0) { 344 copy_statfs(sp, &stat32); 345 error = copyout(&stat32, uap->buf, sizeof(stat32)); 346 sp++; 347 uap->buf++; 348 copycount--; 349 } 350 free(buf, M_STATFS); 351 } 352 if (error == 0) 353 td->td_retval[0] = count; 354 return (error); 355 } 356 #endif 357 358 #ifdef COMPAT_FREEBSD11 359 int 360 freebsd11_freebsd32_getfsstat(struct thread *td, 361 struct freebsd11_freebsd32_getfsstat_args *uap) 362 { 363 return(kern_freebsd11_getfsstat(td, uap->buf, uap->bufsize, 364 uap->mode)); 365 } 366 #endif 367 368 int 369 freebsd32_sigaltstack(struct thread *td, 370 struct freebsd32_sigaltstack_args *uap) 371 { 372 struct sigaltstack32 s32; 373 struct sigaltstack ss, oss, *ssp; 374 int error; 375 376 if (uap->ss != NULL) { 377 error = copyin(uap->ss, &s32, sizeof(s32)); 378 if (error) 379 return (error); 380 PTRIN_CP(s32, ss, ss_sp); 381 CP(s32, ss, ss_size); 382 CP(s32, ss, ss_flags); 383 ssp = &ss; 384 } else 385 ssp = NULL; 386 error = kern_sigaltstack(td, ssp, &oss); 387 if (error == 0 && uap->oss != NULL) { 388 PTROUT_CP(oss, s32, ss_sp); 389 CP(oss, s32, ss_size); 390 CP(oss, s32, ss_flags); 391 error = copyout(&s32, uap->oss, sizeof(s32)); 392 } 393 return (error); 394 } 395 396 /* 397 * Custom version of exec_copyin_args() so that we can translate 398 * the pointers. 399 */ 400 int 401 freebsd32_exec_copyin_args(struct image_args *args, const char *fname, 402 enum uio_seg segflg, uint32_t *argv, uint32_t *envv) 403 { 404 char *argp, *envp; 405 uint32_t *p32, arg; 406 int error; 407 408 bzero(args, sizeof(*args)); 409 if (argv == NULL) 410 return (EFAULT); 411 412 /* 413 * Allocate demand-paged memory for the file name, argument, and 414 * environment strings. 415 */ 416 error = exec_alloc_args(args); 417 if (error != 0) 418 return (error); 419 420 /* 421 * Copy the file name. 422 */ 423 error = exec_args_add_fname(args, fname, segflg); 424 if (error != 0) 425 goto err_exit; 426 427 /* 428 * extract arguments first 429 */ 430 p32 = argv; 431 for (;;) { 432 error = copyin(p32++, &arg, sizeof(arg)); 433 if (error) 434 goto err_exit; 435 if (arg == 0) 436 break; 437 argp = PTRIN(arg); 438 error = exec_args_add_arg(args, argp, UIO_USERSPACE); 439 if (error != 0) 440 goto err_exit; 441 } 442 443 /* 444 * extract environment strings 445 */ 446 if (envv) { 447 p32 = envv; 448 for (;;) { 449 error = copyin(p32++, &arg, sizeof(arg)); 450 if (error) 451 goto err_exit; 452 if (arg == 0) 453 break; 454 envp = PTRIN(arg); 455 error = exec_args_add_env(args, envp, UIO_USERSPACE); 456 if (error != 0) 457 goto err_exit; 458 } 459 } 460 461 return (0); 462 463 err_exit: 464 exec_free_args(args); 465 return (error); 466 } 467 468 int 469 freebsd32_execve(struct thread *td, struct freebsd32_execve_args *uap) 470 { 471 struct image_args eargs; 472 struct vmspace *oldvmspace; 473 int error; 474 475 error = pre_execve(td, &oldvmspace); 476 if (error != 0) 477 return (error); 478 error = freebsd32_exec_copyin_args(&eargs, uap->fname, UIO_USERSPACE, 479 uap->argv, uap->envv); 480 if (error == 0) 481 error = kern_execve(td, &eargs, NULL, oldvmspace); 482 post_execve(td, error, oldvmspace); 483 AUDIT_SYSCALL_EXIT(error == EJUSTRETURN ? 0 : error, td); 484 return (error); 485 } 486 487 int 488 freebsd32_fexecve(struct thread *td, struct freebsd32_fexecve_args *uap) 489 { 490 struct image_args eargs; 491 struct vmspace *oldvmspace; 492 int error; 493 494 error = pre_execve(td, &oldvmspace); 495 if (error != 0) 496 return (error); 497 error = freebsd32_exec_copyin_args(&eargs, NULL, UIO_SYSSPACE, 498 uap->argv, uap->envv); 499 if (error == 0) { 500 eargs.fd = uap->fd; 501 error = kern_execve(td, &eargs, NULL, oldvmspace); 502 } 503 post_execve(td, error, oldvmspace); 504 AUDIT_SYSCALL_EXIT(error == EJUSTRETURN ? 0 : error, td); 505 return (error); 506 } 507 508 int 509 freebsd32_mknodat(struct thread *td, struct freebsd32_mknodat_args *uap) 510 { 511 512 return (kern_mknodat(td, uap->fd, uap->path, UIO_USERSPACE, 513 uap->mode, PAIR32TO64(dev_t, uap->dev))); 514 } 515 516 int 517 freebsd32_mprotect(struct thread *td, struct freebsd32_mprotect_args *uap) 518 { 519 int prot; 520 521 prot = uap->prot; 522 #if defined(__amd64__) 523 if (i386_read_exec && (prot & PROT_READ) != 0) 524 prot |= PROT_EXEC; 525 #endif 526 return (kern_mprotect(td, (uintptr_t)PTRIN(uap->addr), uap->len, 527 prot, 0)); 528 } 529 530 int 531 freebsd32_mmap(struct thread *td, struct freebsd32_mmap_args *uap) 532 { 533 int prot; 534 535 prot = uap->prot; 536 #if defined(__amd64__) 537 if (i386_read_exec && (prot & PROT_READ)) 538 prot |= PROT_EXEC; 539 #endif 540 541 return (kern_mmap(td, &(struct mmap_req){ 542 .mr_hint = (uintptr_t)uap->addr, 543 .mr_len = uap->len, 544 .mr_prot = prot, 545 .mr_flags = uap->flags, 546 .mr_fd = uap->fd, 547 .mr_pos = PAIR32TO64(off_t, uap->pos), 548 })); 549 } 550 551 #ifdef COMPAT_FREEBSD6 552 int 553 freebsd6_freebsd32_mmap(struct thread *td, 554 struct freebsd6_freebsd32_mmap_args *uap) 555 { 556 int prot; 557 558 prot = uap->prot; 559 #if defined(__amd64__) 560 if (i386_read_exec && (prot & PROT_READ)) 561 prot |= PROT_EXEC; 562 #endif 563 564 return (kern_mmap(td, &(struct mmap_req){ 565 .mr_hint = (uintptr_t)uap->addr, 566 .mr_len = uap->len, 567 .mr_prot = prot, 568 .mr_flags = uap->flags, 569 .mr_fd = uap->fd, 570 .mr_pos = PAIR32TO64(off_t, uap->pos), 571 })); 572 } 573 #endif 574 575 #ifdef COMPAT_43 576 int 577 ofreebsd32_mmap(struct thread *td, struct ofreebsd32_mmap_args *uap) 578 { 579 return (kern_ommap(td, (uintptr_t)uap->addr, uap->len, uap->prot, 580 uap->flags, uap->fd, uap->pos)); 581 } 582 #endif 583 584 int 585 freebsd32_setitimer(struct thread *td, struct freebsd32_setitimer_args *uap) 586 { 587 struct itimerval itv, oitv, *itvp; 588 struct itimerval32 i32; 589 int error; 590 591 if (uap->itv != NULL) { 592 error = copyin(uap->itv, &i32, sizeof(i32)); 593 if (error) 594 return (error); 595 TV_CP(i32, itv, it_interval); 596 TV_CP(i32, itv, it_value); 597 itvp = &itv; 598 } else 599 itvp = NULL; 600 error = kern_setitimer(td, uap->which, itvp, &oitv); 601 if (error || uap->oitv == NULL) 602 return (error); 603 TV_CP(oitv, i32, it_interval); 604 TV_CP(oitv, i32, it_value); 605 return (copyout(&i32, uap->oitv, sizeof(i32))); 606 } 607 608 int 609 freebsd32_getitimer(struct thread *td, struct freebsd32_getitimer_args *uap) 610 { 611 struct itimerval itv; 612 struct itimerval32 i32; 613 int error; 614 615 error = kern_getitimer(td, uap->which, &itv); 616 if (error || uap->itv == NULL) 617 return (error); 618 TV_CP(itv, i32, it_interval); 619 TV_CP(itv, i32, it_value); 620 return (copyout(&i32, uap->itv, sizeof(i32))); 621 } 622 623 int 624 freebsd32_select(struct thread *td, struct freebsd32_select_args *uap) 625 { 626 struct timeval32 tv32; 627 struct timeval tv, *tvp; 628 int error; 629 630 if (uap->tv != NULL) { 631 error = copyin(uap->tv, &tv32, sizeof(tv32)); 632 if (error) 633 return (error); 634 CP(tv32, tv, tv_sec); 635 CP(tv32, tv, tv_usec); 636 tvp = &tv; 637 } else 638 tvp = NULL; 639 /* 640 * XXX Do pointers need PTRIN()? 641 */ 642 return (kern_select(td, uap->nd, uap->in, uap->ou, uap->ex, tvp, 643 sizeof(int32_t) * 8)); 644 } 645 646 int 647 freebsd32_pselect(struct thread *td, struct freebsd32_pselect_args *uap) 648 { 649 struct timespec32 ts32; 650 struct timespec ts; 651 struct timeval tv, *tvp; 652 sigset_t set, *uset; 653 int error; 654 655 if (uap->ts != NULL) { 656 error = copyin(uap->ts, &ts32, sizeof(ts32)); 657 if (error != 0) 658 return (error); 659 CP(ts32, ts, tv_sec); 660 CP(ts32, ts, tv_nsec); 661 TIMESPEC_TO_TIMEVAL(&tv, &ts); 662 tvp = &tv; 663 } else 664 tvp = NULL; 665 if (uap->sm != NULL) { 666 error = copyin(uap->sm, &set, sizeof(set)); 667 if (error != 0) 668 return (error); 669 uset = &set; 670 } else 671 uset = NULL; 672 /* 673 * XXX Do pointers need PTRIN()? 674 */ 675 error = kern_pselect(td, uap->nd, uap->in, uap->ou, uap->ex, tvp, 676 uset, sizeof(int32_t) * 8); 677 return (error); 678 } 679 680 /* 681 * Copy 'count' items into the destination list pointed to by uap->eventlist. 682 */ 683 static int 684 freebsd32_kevent_copyout(void *arg, struct kevent *kevp, int count) 685 { 686 struct freebsd32_kevent_args *uap; 687 struct kevent32 ks32[KQ_NEVENTS]; 688 uint64_t e; 689 int i, j, error; 690 691 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count)); 692 uap = (struct freebsd32_kevent_args *)arg; 693 694 for (i = 0; i < count; i++) { 695 CP(kevp[i], ks32[i], ident); 696 CP(kevp[i], ks32[i], filter); 697 CP(kevp[i], ks32[i], flags); 698 CP(kevp[i], ks32[i], fflags); 699 #if BYTE_ORDER == LITTLE_ENDIAN 700 ks32[i].data1 = kevp[i].data; 701 ks32[i].data2 = kevp[i].data >> 32; 702 #else 703 ks32[i].data1 = kevp[i].data >> 32; 704 ks32[i].data2 = kevp[i].data; 705 #endif 706 PTROUT_CP(kevp[i], ks32[i], udata); 707 for (j = 0; j < nitems(kevp->ext); j++) { 708 e = kevp[i].ext[j]; 709 #if BYTE_ORDER == LITTLE_ENDIAN 710 ks32[i].ext64[2 * j] = e; 711 ks32[i].ext64[2 * j + 1] = e >> 32; 712 #else 713 ks32[i].ext64[2 * j] = e >> 32; 714 ks32[i].ext64[2 * j + 1] = e; 715 #endif 716 } 717 } 718 error = copyout(ks32, uap->eventlist, count * sizeof *ks32); 719 if (error == 0) 720 uap->eventlist += count; 721 return (error); 722 } 723 724 /* 725 * Copy 'count' items from the list pointed to by uap->changelist. 726 */ 727 static int 728 freebsd32_kevent_copyin(void *arg, struct kevent *kevp, int count) 729 { 730 struct freebsd32_kevent_args *uap; 731 struct kevent32 ks32[KQ_NEVENTS]; 732 uint64_t e; 733 int i, j, error; 734 735 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count)); 736 uap = (struct freebsd32_kevent_args *)arg; 737 738 error = copyin(uap->changelist, ks32, count * sizeof *ks32); 739 if (error) 740 goto done; 741 uap->changelist += count; 742 743 for (i = 0; i < count; i++) { 744 CP(ks32[i], kevp[i], ident); 745 CP(ks32[i], kevp[i], filter); 746 CP(ks32[i], kevp[i], flags); 747 CP(ks32[i], kevp[i], fflags); 748 kevp[i].data = PAIR32TO64(uint64_t, ks32[i].data); 749 PTRIN_CP(ks32[i], kevp[i], udata); 750 for (j = 0; j < nitems(kevp->ext); j++) { 751 #if BYTE_ORDER == LITTLE_ENDIAN 752 e = ks32[i].ext64[2 * j + 1]; 753 e <<= 32; 754 e += ks32[i].ext64[2 * j]; 755 #else 756 e = ks32[i].ext64[2 * j]; 757 e <<= 32; 758 e += ks32[i].ext64[2 * j + 1]; 759 #endif 760 kevp[i].ext[j] = e; 761 } 762 } 763 done: 764 return (error); 765 } 766 767 int 768 freebsd32_kevent(struct thread *td, struct freebsd32_kevent_args *uap) 769 { 770 struct timespec32 ts32; 771 struct timespec ts, *tsp; 772 struct kevent_copyops k_ops = { 773 .arg = uap, 774 .k_copyout = freebsd32_kevent_copyout, 775 .k_copyin = freebsd32_kevent_copyin, 776 }; 777 #ifdef KTRACE 778 struct kevent32 *eventlist = uap->eventlist; 779 #endif 780 int error; 781 782 if (uap->timeout) { 783 error = copyin(uap->timeout, &ts32, sizeof(ts32)); 784 if (error) 785 return (error); 786 CP(ts32, ts, tv_sec); 787 CP(ts32, ts, tv_nsec); 788 tsp = &ts; 789 } else 790 tsp = NULL; 791 #ifdef KTRACE 792 if (KTRPOINT(td, KTR_STRUCT_ARRAY)) 793 ktrstructarray("kevent32", UIO_USERSPACE, uap->changelist, 794 uap->nchanges, sizeof(struct kevent32)); 795 #endif 796 error = kern_kevent(td, uap->fd, uap->nchanges, uap->nevents, 797 &k_ops, tsp); 798 #ifdef KTRACE 799 if (error == 0 && KTRPOINT(td, KTR_STRUCT_ARRAY)) 800 ktrstructarray("kevent32", UIO_USERSPACE, eventlist, 801 td->td_retval[0], sizeof(struct kevent32)); 802 #endif 803 return (error); 804 } 805 806 #ifdef COMPAT_FREEBSD11 807 static int 808 freebsd32_kevent11_copyout(void *arg, struct kevent *kevp, int count) 809 { 810 struct freebsd11_freebsd32_kevent_args *uap; 811 struct freebsd11_kevent32 ks32[KQ_NEVENTS]; 812 int i, error; 813 814 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count)); 815 uap = (struct freebsd11_freebsd32_kevent_args *)arg; 816 817 for (i = 0; i < count; i++) { 818 CP(kevp[i], ks32[i], ident); 819 CP(kevp[i], ks32[i], filter); 820 CP(kevp[i], ks32[i], flags); 821 CP(kevp[i], ks32[i], fflags); 822 CP(kevp[i], ks32[i], data); 823 PTROUT_CP(kevp[i], ks32[i], udata); 824 } 825 error = copyout(ks32, uap->eventlist, count * sizeof *ks32); 826 if (error == 0) 827 uap->eventlist += count; 828 return (error); 829 } 830 831 /* 832 * Copy 'count' items from the list pointed to by uap->changelist. 833 */ 834 static int 835 freebsd32_kevent11_copyin(void *arg, struct kevent *kevp, int count) 836 { 837 struct freebsd11_freebsd32_kevent_args *uap; 838 struct freebsd11_kevent32 ks32[KQ_NEVENTS]; 839 int i, j, error; 840 841 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count)); 842 uap = (struct freebsd11_freebsd32_kevent_args *)arg; 843 844 error = copyin(uap->changelist, ks32, count * sizeof *ks32); 845 if (error) 846 goto done; 847 uap->changelist += count; 848 849 for (i = 0; i < count; i++) { 850 CP(ks32[i], kevp[i], ident); 851 CP(ks32[i], kevp[i], filter); 852 CP(ks32[i], kevp[i], flags); 853 CP(ks32[i], kevp[i], fflags); 854 CP(ks32[i], kevp[i], data); 855 PTRIN_CP(ks32[i], kevp[i], udata); 856 for (j = 0; j < nitems(kevp->ext); j++) 857 kevp[i].ext[j] = 0; 858 } 859 done: 860 return (error); 861 } 862 863 int 864 freebsd11_freebsd32_kevent(struct thread *td, 865 struct freebsd11_freebsd32_kevent_args *uap) 866 { 867 struct timespec32 ts32; 868 struct timespec ts, *tsp; 869 struct kevent_copyops k_ops = { 870 .arg = uap, 871 .k_copyout = freebsd32_kevent11_copyout, 872 .k_copyin = freebsd32_kevent11_copyin, 873 }; 874 #ifdef KTRACE 875 struct freebsd11_kevent32 *eventlist = uap->eventlist; 876 #endif 877 int error; 878 879 if (uap->timeout) { 880 error = copyin(uap->timeout, &ts32, sizeof(ts32)); 881 if (error) 882 return (error); 883 CP(ts32, ts, tv_sec); 884 CP(ts32, ts, tv_nsec); 885 tsp = &ts; 886 } else 887 tsp = NULL; 888 #ifdef KTRACE 889 if (KTRPOINT(td, KTR_STRUCT_ARRAY)) 890 ktrstructarray("freebsd11_kevent32", UIO_USERSPACE, 891 uap->changelist, uap->nchanges, 892 sizeof(struct freebsd11_kevent32)); 893 #endif 894 error = kern_kevent(td, uap->fd, uap->nchanges, uap->nevents, 895 &k_ops, tsp); 896 #ifdef KTRACE 897 if (error == 0 && KTRPOINT(td, KTR_STRUCT_ARRAY)) 898 ktrstructarray("freebsd11_kevent32", UIO_USERSPACE, 899 eventlist, td->td_retval[0], 900 sizeof(struct freebsd11_kevent32)); 901 #endif 902 return (error); 903 } 904 #endif 905 906 int 907 freebsd32_gettimeofday(struct thread *td, 908 struct freebsd32_gettimeofday_args *uap) 909 { 910 struct timeval atv; 911 struct timeval32 atv32; 912 struct timezone rtz; 913 int error = 0; 914 915 if (uap->tp) { 916 microtime(&atv); 917 CP(atv, atv32, tv_sec); 918 CP(atv, atv32, tv_usec); 919 error = copyout(&atv32, uap->tp, sizeof (atv32)); 920 } 921 if (error == 0 && uap->tzp != NULL) { 922 rtz.tz_minuteswest = 0; 923 rtz.tz_dsttime = 0; 924 error = copyout(&rtz, uap->tzp, sizeof (rtz)); 925 } 926 return (error); 927 } 928 929 int 930 freebsd32_getrusage(struct thread *td, struct freebsd32_getrusage_args *uap) 931 { 932 struct rusage32 s32; 933 struct rusage s; 934 int error; 935 936 error = kern_getrusage(td, uap->who, &s); 937 if (error == 0) { 938 freebsd32_rusage_out(&s, &s32); 939 error = copyout(&s32, uap->rusage, sizeof(s32)); 940 } 941 return (error); 942 } 943 944 static void 945 ptrace_lwpinfo_to32(const struct ptrace_lwpinfo *pl, 946 struct ptrace_lwpinfo32 *pl32) 947 { 948 949 bzero(pl32, sizeof(*pl32)); 950 pl32->pl_lwpid = pl->pl_lwpid; 951 pl32->pl_event = pl->pl_event; 952 pl32->pl_flags = pl->pl_flags; 953 pl32->pl_sigmask = pl->pl_sigmask; 954 pl32->pl_siglist = pl->pl_siglist; 955 siginfo_to_siginfo32(&pl->pl_siginfo, &pl32->pl_siginfo); 956 strcpy(pl32->pl_tdname, pl->pl_tdname); 957 pl32->pl_child_pid = pl->pl_child_pid; 958 pl32->pl_syscall_code = pl->pl_syscall_code; 959 pl32->pl_syscall_narg = pl->pl_syscall_narg; 960 } 961 962 static void 963 ptrace_sc_ret_to32(const struct ptrace_sc_ret *psr, 964 struct ptrace_sc_ret32 *psr32) 965 { 966 967 bzero(psr32, sizeof(*psr32)); 968 psr32->sr_retval[0] = psr->sr_retval[0]; 969 psr32->sr_retval[1] = psr->sr_retval[1]; 970 psr32->sr_error = psr->sr_error; 971 } 972 973 int 974 freebsd32_ptrace(struct thread *td, struct freebsd32_ptrace_args *uap) 975 { 976 union { 977 struct ptrace_io_desc piod; 978 struct ptrace_lwpinfo pl; 979 struct ptrace_vm_entry pve; 980 struct ptrace_coredump pc; 981 struct ptrace_sc_remote sr; 982 struct dbreg32 dbreg; 983 struct fpreg32 fpreg; 984 struct reg32 reg; 985 struct iovec vec; 986 register_t args[nitems(td->td_sa.args)]; 987 struct ptrace_sc_ret psr; 988 int ptevents; 989 } r; 990 union { 991 struct ptrace_io_desc32 piod; 992 struct ptrace_lwpinfo32 pl; 993 struct ptrace_vm_entry32 pve; 994 struct ptrace_coredump32 pc; 995 struct ptrace_sc_remote32 sr; 996 uint32_t args[nitems(td->td_sa.args)]; 997 struct ptrace_sc_ret32 psr; 998 struct iovec32 vec; 999 } r32; 1000 syscallarg_t pscr_args[nitems(td->td_sa.args)]; 1001 u_int pscr_args32[nitems(td->td_sa.args)]; 1002 void *addr; 1003 int data, error, i; 1004 1005 if (!allow_ptrace) 1006 return (ENOSYS); 1007 error = 0; 1008 1009 AUDIT_ARG_PID(uap->pid); 1010 AUDIT_ARG_CMD(uap->req); 1011 AUDIT_ARG_VALUE(uap->data); 1012 addr = &r; 1013 data = uap->data; 1014 switch (uap->req) { 1015 case PT_GET_EVENT_MASK: 1016 case PT_GET_SC_ARGS: 1017 case PT_GET_SC_RET: 1018 break; 1019 case PT_LWPINFO: 1020 if (uap->data > sizeof(r32.pl)) 1021 return (EINVAL); 1022 1023 /* 1024 * Pass size of native structure in 'data'. Truncate 1025 * if necessary to avoid siginfo. 1026 */ 1027 data = sizeof(r.pl); 1028 if (uap->data < offsetof(struct ptrace_lwpinfo32, pl_siginfo) + 1029 sizeof(struct siginfo32)) 1030 data = offsetof(struct ptrace_lwpinfo, pl_siginfo); 1031 break; 1032 case PT_GETREGS: 1033 bzero(&r.reg, sizeof(r.reg)); 1034 break; 1035 case PT_GETFPREGS: 1036 bzero(&r.fpreg, sizeof(r.fpreg)); 1037 break; 1038 case PT_GETDBREGS: 1039 bzero(&r.dbreg, sizeof(r.dbreg)); 1040 break; 1041 case PT_SETREGS: 1042 error = copyin(uap->addr, &r.reg, sizeof(r.reg)); 1043 break; 1044 case PT_SETFPREGS: 1045 error = copyin(uap->addr, &r.fpreg, sizeof(r.fpreg)); 1046 break; 1047 case PT_SETDBREGS: 1048 error = copyin(uap->addr, &r.dbreg, sizeof(r.dbreg)); 1049 break; 1050 case PT_GETREGSET: 1051 case PT_SETREGSET: 1052 error = copyin(uap->addr, &r32.vec, sizeof(r32.vec)); 1053 if (error != 0) 1054 break; 1055 1056 r.vec.iov_len = r32.vec.iov_len; 1057 r.vec.iov_base = PTRIN(r32.vec.iov_base); 1058 break; 1059 case PT_SET_EVENT_MASK: 1060 if (uap->data != sizeof(r.ptevents)) 1061 error = EINVAL; 1062 else 1063 error = copyin(uap->addr, &r.ptevents, uap->data); 1064 break; 1065 case PT_IO: 1066 error = copyin(uap->addr, &r32.piod, sizeof(r32.piod)); 1067 if (error) 1068 break; 1069 CP(r32.piod, r.piod, piod_op); 1070 PTRIN_CP(r32.piod, r.piod, piod_offs); 1071 PTRIN_CP(r32.piod, r.piod, piod_addr); 1072 CP(r32.piod, r.piod, piod_len); 1073 break; 1074 case PT_VM_ENTRY: 1075 error = copyin(uap->addr, &r32.pve, sizeof(r32.pve)); 1076 if (error) 1077 break; 1078 1079 CP(r32.pve, r.pve, pve_entry); 1080 CP(r32.pve, r.pve, pve_timestamp); 1081 CP(r32.pve, r.pve, pve_start); 1082 CP(r32.pve, r.pve, pve_end); 1083 CP(r32.pve, r.pve, pve_offset); 1084 CP(r32.pve, r.pve, pve_prot); 1085 CP(r32.pve, r.pve, pve_pathlen); 1086 CP(r32.pve, r.pve, pve_fileid); 1087 CP(r32.pve, r.pve, pve_fsid); 1088 PTRIN_CP(r32.pve, r.pve, pve_path); 1089 break; 1090 case PT_COREDUMP: 1091 if (uap->data != sizeof(r32.pc)) 1092 error = EINVAL; 1093 else 1094 error = copyin(uap->addr, &r32.pc, uap->data); 1095 CP(r32.pc, r.pc, pc_fd); 1096 CP(r32.pc, r.pc, pc_flags); 1097 r.pc.pc_limit = PAIR32TO64(off_t, r32.pc.pc_limit); 1098 data = sizeof(r.pc); 1099 break; 1100 case PT_SC_REMOTE: 1101 if (uap->data != sizeof(r32.sr)) { 1102 error = EINVAL; 1103 break; 1104 } 1105 error = copyin(uap->addr, &r32.sr, uap->data); 1106 if (error != 0) 1107 break; 1108 CP(r32.sr, r.sr, pscr_syscall); 1109 CP(r32.sr, r.sr, pscr_nargs); 1110 if (r.sr.pscr_nargs > nitems(td->td_sa.args)) { 1111 error = EINVAL; 1112 break; 1113 } 1114 error = copyin(PTRIN(r32.sr.pscr_args), pscr_args32, 1115 sizeof(u_int) * r32.sr.pscr_nargs); 1116 if (error != 0) 1117 break; 1118 for (i = 0; i < r32.sr.pscr_nargs; i++) 1119 pscr_args[i] = pscr_args32[i]; 1120 r.sr.pscr_args = pscr_args; 1121 break; 1122 default: 1123 addr = uap->addr; 1124 break; 1125 } 1126 if (error) 1127 return (error); 1128 1129 error = kern_ptrace(td, uap->req, uap->pid, addr, data); 1130 if (error) 1131 return (error); 1132 1133 switch (uap->req) { 1134 case PT_VM_ENTRY: 1135 CP(r.pve, r32.pve, pve_entry); 1136 CP(r.pve, r32.pve, pve_timestamp); 1137 CP(r.pve, r32.pve, pve_start); 1138 CP(r.pve, r32.pve, pve_end); 1139 CP(r.pve, r32.pve, pve_offset); 1140 CP(r.pve, r32.pve, pve_prot); 1141 CP(r.pve, r32.pve, pve_pathlen); 1142 CP(r.pve, r32.pve, pve_fileid); 1143 CP(r.pve, r32.pve, pve_fsid); 1144 error = copyout(&r32.pve, uap->addr, sizeof(r32.pve)); 1145 break; 1146 case PT_IO: 1147 CP(r.piod, r32.piod, piod_len); 1148 error = copyout(&r32.piod, uap->addr, sizeof(r32.piod)); 1149 break; 1150 case PT_GETREGS: 1151 error = copyout(&r.reg, uap->addr, sizeof(r.reg)); 1152 break; 1153 case PT_GETFPREGS: 1154 error = copyout(&r.fpreg, uap->addr, sizeof(r.fpreg)); 1155 break; 1156 case PT_GETDBREGS: 1157 error = copyout(&r.dbreg, uap->addr, sizeof(r.dbreg)); 1158 break; 1159 case PT_GETREGSET: 1160 r32.vec.iov_len = r.vec.iov_len; 1161 error = copyout(&r32.vec, uap->addr, sizeof(r32.vec)); 1162 break; 1163 case PT_GET_EVENT_MASK: 1164 /* NB: The size in uap->data is validated in kern_ptrace(). */ 1165 error = copyout(&r.ptevents, uap->addr, uap->data); 1166 break; 1167 case PT_LWPINFO: 1168 ptrace_lwpinfo_to32(&r.pl, &r32.pl); 1169 error = copyout(&r32.pl, uap->addr, uap->data); 1170 break; 1171 case PT_GET_SC_ARGS: 1172 for (i = 0; i < nitems(r.args); i++) 1173 r32.args[i] = (uint32_t)r.args[i]; 1174 error = copyout(r32.args, uap->addr, MIN(uap->data, 1175 sizeof(r32.args))); 1176 break; 1177 case PT_GET_SC_RET: 1178 ptrace_sc_ret_to32(&r.psr, &r32.psr); 1179 error = copyout(&r32.psr, uap->addr, MIN(uap->data, 1180 sizeof(r32.psr))); 1181 break; 1182 case PT_SC_REMOTE: 1183 ptrace_sc_ret_to32(&r.sr.pscr_ret, &r32.sr.pscr_ret); 1184 error = copyout(&r32.sr.pscr_ret, uap->addr + 1185 offsetof(struct ptrace_sc_remote32, pscr_ret), 1186 sizeof(r32.psr)); 1187 break; 1188 } 1189 1190 return (error); 1191 } 1192 1193 int 1194 freebsd32_copyinuio(struct iovec32 *iovp, u_int iovcnt, struct uio **uiop) 1195 { 1196 struct iovec32 iov32; 1197 struct iovec *iov; 1198 struct uio *uio; 1199 u_int iovlen; 1200 int error, i; 1201 1202 *uiop = NULL; 1203 if (iovcnt > UIO_MAXIOV) 1204 return (EINVAL); 1205 iovlen = iovcnt * sizeof(struct iovec); 1206 uio = malloc(iovlen + sizeof *uio, M_IOV, M_WAITOK); 1207 iov = (struct iovec *)(uio + 1); 1208 for (i = 0; i < iovcnt; i++) { 1209 error = copyin(&iovp[i], &iov32, sizeof(struct iovec32)); 1210 if (error) { 1211 free(uio, M_IOV); 1212 return (error); 1213 } 1214 iov[i].iov_base = PTRIN(iov32.iov_base); 1215 iov[i].iov_len = iov32.iov_len; 1216 } 1217 uio->uio_iov = iov; 1218 uio->uio_iovcnt = iovcnt; 1219 uio->uio_segflg = UIO_USERSPACE; 1220 uio->uio_offset = -1; 1221 uio->uio_resid = 0; 1222 for (i = 0; i < iovcnt; i++) { 1223 if (iov->iov_len > INT_MAX - uio->uio_resid) { 1224 free(uio, M_IOV); 1225 return (EINVAL); 1226 } 1227 uio->uio_resid += iov->iov_len; 1228 iov++; 1229 } 1230 *uiop = uio; 1231 return (0); 1232 } 1233 1234 int 1235 freebsd32_readv(struct thread *td, struct freebsd32_readv_args *uap) 1236 { 1237 struct uio *auio; 1238 int error; 1239 1240 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 1241 if (error) 1242 return (error); 1243 error = kern_readv(td, uap->fd, auio); 1244 free(auio, M_IOV); 1245 return (error); 1246 } 1247 1248 int 1249 freebsd32_writev(struct thread *td, struct freebsd32_writev_args *uap) 1250 { 1251 struct uio *auio; 1252 int error; 1253 1254 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 1255 if (error) 1256 return (error); 1257 error = kern_writev(td, uap->fd, auio); 1258 free(auio, M_IOV); 1259 return (error); 1260 } 1261 1262 int 1263 freebsd32_preadv(struct thread *td, struct freebsd32_preadv_args *uap) 1264 { 1265 struct uio *auio; 1266 int error; 1267 1268 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 1269 if (error) 1270 return (error); 1271 error = kern_preadv(td, uap->fd, auio, PAIR32TO64(off_t,uap->offset)); 1272 free(auio, M_IOV); 1273 return (error); 1274 } 1275 1276 int 1277 freebsd32_pwritev(struct thread *td, struct freebsd32_pwritev_args *uap) 1278 { 1279 struct uio *auio; 1280 int error; 1281 1282 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 1283 if (error) 1284 return (error); 1285 error = kern_pwritev(td, uap->fd, auio, PAIR32TO64(off_t,uap->offset)); 1286 free(auio, M_IOV); 1287 return (error); 1288 } 1289 1290 int 1291 freebsd32_copyiniov(struct iovec32 *iovp32, u_int iovcnt, struct iovec **iovp, 1292 int error) 1293 { 1294 struct iovec32 iov32; 1295 struct iovec *iov; 1296 u_int iovlen; 1297 int i; 1298 1299 *iovp = NULL; 1300 if (iovcnt > UIO_MAXIOV) 1301 return (error); 1302 iovlen = iovcnt * sizeof(struct iovec); 1303 iov = malloc(iovlen, M_IOV, M_WAITOK); 1304 for (i = 0; i < iovcnt; i++) { 1305 error = copyin(&iovp32[i], &iov32, sizeof(struct iovec32)); 1306 if (error) { 1307 free(iov, M_IOV); 1308 return (error); 1309 } 1310 iov[i].iov_base = PTRIN(iov32.iov_base); 1311 iov[i].iov_len = iov32.iov_len; 1312 } 1313 *iovp = iov; 1314 return (0); 1315 } 1316 1317 static int 1318 freebsd32_copyinmsghdr(const struct msghdr32 *msg32, struct msghdr *msg) 1319 { 1320 struct msghdr32 m32; 1321 int error; 1322 1323 error = copyin(msg32, &m32, sizeof(m32)); 1324 if (error) 1325 return (error); 1326 msg->msg_name = PTRIN(m32.msg_name); 1327 msg->msg_namelen = m32.msg_namelen; 1328 msg->msg_iov = PTRIN(m32.msg_iov); 1329 msg->msg_iovlen = m32.msg_iovlen; 1330 msg->msg_control = PTRIN(m32.msg_control); 1331 msg->msg_controllen = m32.msg_controllen; 1332 msg->msg_flags = m32.msg_flags; 1333 return (0); 1334 } 1335 1336 static int 1337 freebsd32_copyoutmsghdr(struct msghdr *msg, struct msghdr32 *msg32) 1338 { 1339 struct msghdr32 m32; 1340 int error; 1341 1342 m32.msg_name = PTROUT(msg->msg_name); 1343 m32.msg_namelen = msg->msg_namelen; 1344 m32.msg_iov = PTROUT(msg->msg_iov); 1345 m32.msg_iovlen = msg->msg_iovlen; 1346 m32.msg_control = PTROUT(msg->msg_control); 1347 m32.msg_controllen = msg->msg_controllen; 1348 m32.msg_flags = msg->msg_flags; 1349 error = copyout(&m32, msg32, sizeof(m32)); 1350 return (error); 1351 } 1352 1353 #define FREEBSD32_ALIGNBYTES (sizeof(int) - 1) 1354 #define FREEBSD32_ALIGN(p) \ 1355 (((u_long)(p) + FREEBSD32_ALIGNBYTES) & ~FREEBSD32_ALIGNBYTES) 1356 #define FREEBSD32_CMSG_SPACE(l) \ 1357 (FREEBSD32_ALIGN(sizeof(struct cmsghdr)) + FREEBSD32_ALIGN(l)) 1358 1359 #define FREEBSD32_CMSG_DATA(cmsg) ((unsigned char *)(cmsg) + \ 1360 FREEBSD32_ALIGN(sizeof(struct cmsghdr))) 1361 1362 static size_t 1363 freebsd32_cmsg_convert(const struct cmsghdr *cm, void *data, socklen_t datalen) 1364 { 1365 size_t copylen; 1366 union { 1367 struct timespec32 ts; 1368 struct timeval32 tv; 1369 struct bintime32 bt; 1370 } tmp32; 1371 1372 union { 1373 struct timespec ts; 1374 struct timeval tv; 1375 struct bintime bt; 1376 } *in; 1377 1378 in = data; 1379 copylen = 0; 1380 switch (cm->cmsg_level) { 1381 case SOL_SOCKET: 1382 switch (cm->cmsg_type) { 1383 case SCM_TIMESTAMP: 1384 TV_CP(*in, tmp32, tv); 1385 copylen = sizeof(tmp32.tv); 1386 break; 1387 1388 case SCM_BINTIME: 1389 BT_CP(*in, tmp32, bt); 1390 copylen = sizeof(tmp32.bt); 1391 break; 1392 1393 case SCM_REALTIME: 1394 case SCM_MONOTONIC: 1395 TS_CP(*in, tmp32, ts); 1396 copylen = sizeof(tmp32.ts); 1397 break; 1398 1399 default: 1400 break; 1401 } 1402 1403 default: 1404 break; 1405 } 1406 1407 if (copylen == 0) 1408 return (datalen); 1409 1410 KASSERT((datalen >= copylen), ("corrupted cmsghdr")); 1411 1412 bcopy(&tmp32, data, copylen); 1413 return (copylen); 1414 } 1415 1416 static int 1417 freebsd32_copy_msg_out(struct msghdr *msg, struct mbuf *control) 1418 { 1419 struct cmsghdr *cm; 1420 void *data; 1421 socklen_t clen, datalen, datalen_out, oldclen; 1422 int error; 1423 caddr_t ctlbuf; 1424 int len, copylen; 1425 struct mbuf *m; 1426 error = 0; 1427 1428 len = msg->msg_controllen; 1429 msg->msg_controllen = 0; 1430 1431 ctlbuf = msg->msg_control; 1432 for (m = control; m != NULL && len > 0; m = m->m_next) { 1433 cm = mtod(m, struct cmsghdr *); 1434 clen = m->m_len; 1435 while (cm != NULL) { 1436 if (sizeof(struct cmsghdr) > clen || 1437 cm->cmsg_len > clen) { 1438 error = EINVAL; 1439 break; 1440 } 1441 1442 data = CMSG_DATA(cm); 1443 datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data; 1444 datalen_out = freebsd32_cmsg_convert(cm, data, datalen); 1445 1446 /* 1447 * Copy out the message header. Preserve the native 1448 * message size in case we need to inspect the message 1449 * contents later. 1450 */ 1451 copylen = sizeof(struct cmsghdr); 1452 if (len < copylen) { 1453 msg->msg_flags |= MSG_CTRUNC; 1454 m_dispose_extcontrolm(m); 1455 goto exit; 1456 } 1457 oldclen = cm->cmsg_len; 1458 cm->cmsg_len = FREEBSD32_ALIGN(sizeof(struct cmsghdr)) + 1459 datalen_out; 1460 error = copyout(cm, ctlbuf, copylen); 1461 cm->cmsg_len = oldclen; 1462 if (error != 0) 1463 goto exit; 1464 1465 ctlbuf += FREEBSD32_ALIGN(copylen); 1466 len -= FREEBSD32_ALIGN(copylen); 1467 1468 copylen = datalen_out; 1469 if (len < copylen) { 1470 msg->msg_flags |= MSG_CTRUNC; 1471 m_dispose_extcontrolm(m); 1472 break; 1473 } 1474 1475 /* Copy out the message data. */ 1476 error = copyout(data, ctlbuf, copylen); 1477 if (error) 1478 goto exit; 1479 1480 ctlbuf += FREEBSD32_ALIGN(copylen); 1481 len -= FREEBSD32_ALIGN(copylen); 1482 1483 if (CMSG_SPACE(datalen) < clen) { 1484 clen -= CMSG_SPACE(datalen); 1485 cm = (struct cmsghdr *) 1486 ((caddr_t)cm + CMSG_SPACE(datalen)); 1487 } else { 1488 clen = 0; 1489 cm = NULL; 1490 } 1491 1492 msg->msg_controllen += 1493 FREEBSD32_CMSG_SPACE(datalen_out); 1494 } 1495 } 1496 if (len == 0 && m != NULL) { 1497 msg->msg_flags |= MSG_CTRUNC; 1498 m_dispose_extcontrolm(m); 1499 } 1500 1501 exit: 1502 return (error); 1503 } 1504 1505 int 1506 freebsd32_recvmsg(struct thread *td, struct freebsd32_recvmsg_args *uap) 1507 { 1508 struct msghdr msg; 1509 struct iovec *uiov, *iov; 1510 struct mbuf *control = NULL; 1511 struct mbuf **controlp; 1512 int error; 1513 1514 error = freebsd32_copyinmsghdr(uap->msg, &msg); 1515 if (error) 1516 return (error); 1517 error = freebsd32_copyiniov((void *)msg.msg_iov, msg.msg_iovlen, &iov, 1518 EMSGSIZE); 1519 if (error) 1520 return (error); 1521 msg.msg_flags = uap->flags; 1522 uiov = msg.msg_iov; 1523 msg.msg_iov = iov; 1524 1525 controlp = (msg.msg_control != NULL) ? &control : NULL; 1526 error = kern_recvit(td, uap->s, &msg, UIO_USERSPACE, controlp); 1527 if (error == 0) { 1528 msg.msg_iov = uiov; 1529 1530 if (control != NULL) 1531 error = freebsd32_copy_msg_out(&msg, control); 1532 else 1533 msg.msg_controllen = 0; 1534 1535 if (error == 0) 1536 error = freebsd32_copyoutmsghdr(&msg, uap->msg); 1537 } 1538 free(iov, M_IOV); 1539 1540 if (control != NULL) { 1541 if (error != 0) 1542 m_dispose_extcontrolm(control); 1543 m_freem(control); 1544 } 1545 1546 return (error); 1547 } 1548 1549 #ifdef COMPAT_43 1550 int 1551 ofreebsd32_recvmsg(struct thread *td, struct ofreebsd32_recvmsg_args *uap) 1552 { 1553 return (ENOSYS); 1554 } 1555 #endif 1556 1557 /* 1558 * Copy-in the array of control messages constructed using alignment 1559 * and padding suitable for a 32-bit environment and construct an 1560 * mbuf using alignment and padding suitable for a 64-bit kernel. 1561 * The alignment and padding are defined indirectly by CMSG_DATA(), 1562 * CMSG_SPACE() and CMSG_LEN(). 1563 */ 1564 static int 1565 freebsd32_copyin_control(struct mbuf **mp, caddr_t buf, u_int buflen) 1566 { 1567 struct cmsghdr *cm; 1568 struct mbuf *m; 1569 void *in, *in1, *md; 1570 u_int msglen, outlen; 1571 int error; 1572 1573 /* Enforce the size limit of the native implementation. */ 1574 if (buflen > MCLBYTES) 1575 return (EINVAL); 1576 1577 in = malloc(buflen, M_TEMP, M_WAITOK); 1578 error = copyin(buf, in, buflen); 1579 if (error != 0) 1580 goto out; 1581 1582 /* 1583 * Make a pass over the input buffer to determine the amount of space 1584 * required for 64 bit-aligned copies of the control messages. 1585 */ 1586 in1 = in; 1587 outlen = 0; 1588 while (buflen > 0) { 1589 if (buflen < sizeof(*cm)) { 1590 error = EINVAL; 1591 break; 1592 } 1593 cm = (struct cmsghdr *)in1; 1594 if (cm->cmsg_len < FREEBSD32_ALIGN(sizeof(*cm)) || 1595 cm->cmsg_len > buflen) { 1596 error = EINVAL; 1597 break; 1598 } 1599 msglen = FREEBSD32_ALIGN(cm->cmsg_len); 1600 if (msglen < cm->cmsg_len) { 1601 error = EINVAL; 1602 break; 1603 } 1604 /* The native ABI permits the final padding to be omitted. */ 1605 if (msglen > buflen) 1606 msglen = buflen; 1607 buflen -= msglen; 1608 1609 in1 = (char *)in1 + msglen; 1610 outlen += CMSG_ALIGN(sizeof(*cm)) + 1611 CMSG_ALIGN(msglen - FREEBSD32_ALIGN(sizeof(*cm))); 1612 } 1613 if (error != 0) 1614 goto out; 1615 1616 /* 1617 * Allocate up to MJUMPAGESIZE space for the re-aligned and 1618 * re-padded control messages. This allows a full MCLBYTES of 1619 * 32-bit sized and aligned messages to fit and avoids an ABI 1620 * mismatch with the native implementation. 1621 */ 1622 m = m_get2(outlen, M_WAITOK, MT_CONTROL, 0); 1623 if (m == NULL) { 1624 error = EINVAL; 1625 goto out; 1626 } 1627 m->m_len = outlen; 1628 md = mtod(m, void *); 1629 1630 /* 1631 * Make a second pass over input messages, copying them into the output 1632 * buffer. 1633 */ 1634 in1 = in; 1635 while (outlen > 0) { 1636 /* Copy the message header and align the length field. */ 1637 cm = md; 1638 memcpy(cm, in1, sizeof(*cm)); 1639 msglen = cm->cmsg_len - FREEBSD32_ALIGN(sizeof(*cm)); 1640 cm->cmsg_len = CMSG_ALIGN(sizeof(*cm)) + msglen; 1641 1642 /* Copy the message body. */ 1643 in1 = (char *)in1 + FREEBSD32_ALIGN(sizeof(*cm)); 1644 md = (char *)md + CMSG_ALIGN(sizeof(*cm)); 1645 memcpy(md, in1, msglen); 1646 in1 = (char *)in1 + FREEBSD32_ALIGN(msglen); 1647 md = (char *)md + CMSG_ALIGN(msglen); 1648 KASSERT(outlen >= CMSG_ALIGN(sizeof(*cm)) + CMSG_ALIGN(msglen), 1649 ("outlen %u underflow, msglen %u", outlen, msglen)); 1650 outlen -= CMSG_ALIGN(sizeof(*cm)) + CMSG_ALIGN(msglen); 1651 } 1652 1653 *mp = m; 1654 out: 1655 free(in, M_TEMP); 1656 return (error); 1657 } 1658 1659 int 1660 freebsd32_sendmsg(struct thread *td, struct freebsd32_sendmsg_args *uap) 1661 { 1662 struct msghdr msg; 1663 struct iovec *iov; 1664 struct mbuf *control = NULL; 1665 struct sockaddr *to = NULL; 1666 int error; 1667 1668 error = freebsd32_copyinmsghdr(uap->msg, &msg); 1669 if (error) 1670 return (error); 1671 error = freebsd32_copyiniov((void *)msg.msg_iov, msg.msg_iovlen, &iov, 1672 EMSGSIZE); 1673 if (error) 1674 return (error); 1675 msg.msg_iov = iov; 1676 if (msg.msg_name != NULL) { 1677 error = getsockaddr(&to, msg.msg_name, msg.msg_namelen); 1678 if (error) { 1679 to = NULL; 1680 goto out; 1681 } 1682 msg.msg_name = to; 1683 } 1684 1685 if (msg.msg_control) { 1686 if (msg.msg_controllen < sizeof(struct cmsghdr)) { 1687 error = EINVAL; 1688 goto out; 1689 } 1690 1691 error = freebsd32_copyin_control(&control, msg.msg_control, 1692 msg.msg_controllen); 1693 if (error) 1694 goto out; 1695 1696 msg.msg_control = NULL; 1697 msg.msg_controllen = 0; 1698 } 1699 1700 error = kern_sendit(td, uap->s, &msg, uap->flags, control, 1701 UIO_USERSPACE); 1702 1703 out: 1704 free(iov, M_IOV); 1705 if (to) 1706 free(to, M_SONAME); 1707 return (error); 1708 } 1709 1710 #ifdef COMPAT_43 1711 int 1712 ofreebsd32_sendmsg(struct thread *td, struct ofreebsd32_sendmsg_args *uap) 1713 { 1714 return (ENOSYS); 1715 } 1716 #endif 1717 1718 1719 int 1720 freebsd32_settimeofday(struct thread *td, 1721 struct freebsd32_settimeofday_args *uap) 1722 { 1723 struct timeval32 tv32; 1724 struct timeval tv, *tvp; 1725 struct timezone tz, *tzp; 1726 int error; 1727 1728 if (uap->tv) { 1729 error = copyin(uap->tv, &tv32, sizeof(tv32)); 1730 if (error) 1731 return (error); 1732 CP(tv32, tv, tv_sec); 1733 CP(tv32, tv, tv_usec); 1734 tvp = &tv; 1735 } else 1736 tvp = NULL; 1737 if (uap->tzp) { 1738 error = copyin(uap->tzp, &tz, sizeof(tz)); 1739 if (error) 1740 return (error); 1741 tzp = &tz; 1742 } else 1743 tzp = NULL; 1744 return (kern_settimeofday(td, tvp, tzp)); 1745 } 1746 1747 int 1748 freebsd32_utimes(struct thread *td, struct freebsd32_utimes_args *uap) 1749 { 1750 struct timeval32 s32[2]; 1751 struct timeval s[2], *sp; 1752 int error; 1753 1754 if (uap->tptr != NULL) { 1755 error = copyin(uap->tptr, s32, sizeof(s32)); 1756 if (error) 1757 return (error); 1758 CP(s32[0], s[0], tv_sec); 1759 CP(s32[0], s[0], tv_usec); 1760 CP(s32[1], s[1], tv_sec); 1761 CP(s32[1], s[1], tv_usec); 1762 sp = s; 1763 } else 1764 sp = NULL; 1765 return (kern_utimesat(td, AT_FDCWD, uap->path, UIO_USERSPACE, 1766 sp, UIO_SYSSPACE)); 1767 } 1768 1769 int 1770 freebsd32_lutimes(struct thread *td, struct freebsd32_lutimes_args *uap) 1771 { 1772 struct timeval32 s32[2]; 1773 struct timeval s[2], *sp; 1774 int error; 1775 1776 if (uap->tptr != NULL) { 1777 error = copyin(uap->tptr, s32, sizeof(s32)); 1778 if (error) 1779 return (error); 1780 CP(s32[0], s[0], tv_sec); 1781 CP(s32[0], s[0], tv_usec); 1782 CP(s32[1], s[1], tv_sec); 1783 CP(s32[1], s[1], tv_usec); 1784 sp = s; 1785 } else 1786 sp = NULL; 1787 return (kern_lutimes(td, uap->path, UIO_USERSPACE, sp, UIO_SYSSPACE)); 1788 } 1789 1790 int 1791 freebsd32_futimes(struct thread *td, struct freebsd32_futimes_args *uap) 1792 { 1793 struct timeval32 s32[2]; 1794 struct timeval s[2], *sp; 1795 int error; 1796 1797 if (uap->tptr != NULL) { 1798 error = copyin(uap->tptr, s32, sizeof(s32)); 1799 if (error) 1800 return (error); 1801 CP(s32[0], s[0], tv_sec); 1802 CP(s32[0], s[0], tv_usec); 1803 CP(s32[1], s[1], tv_sec); 1804 CP(s32[1], s[1], tv_usec); 1805 sp = s; 1806 } else 1807 sp = NULL; 1808 return (kern_futimes(td, uap->fd, sp, UIO_SYSSPACE)); 1809 } 1810 1811 int 1812 freebsd32_futimesat(struct thread *td, struct freebsd32_futimesat_args *uap) 1813 { 1814 struct timeval32 s32[2]; 1815 struct timeval s[2], *sp; 1816 int error; 1817 1818 if (uap->times != NULL) { 1819 error = copyin(uap->times, s32, sizeof(s32)); 1820 if (error) 1821 return (error); 1822 CP(s32[0], s[0], tv_sec); 1823 CP(s32[0], s[0], tv_usec); 1824 CP(s32[1], s[1], tv_sec); 1825 CP(s32[1], s[1], tv_usec); 1826 sp = s; 1827 } else 1828 sp = NULL; 1829 return (kern_utimesat(td, uap->fd, uap->path, UIO_USERSPACE, 1830 sp, UIO_SYSSPACE)); 1831 } 1832 1833 int 1834 freebsd32_futimens(struct thread *td, struct freebsd32_futimens_args *uap) 1835 { 1836 struct timespec32 ts32[2]; 1837 struct timespec ts[2], *tsp; 1838 int error; 1839 1840 if (uap->times != NULL) { 1841 error = copyin(uap->times, ts32, sizeof(ts32)); 1842 if (error) 1843 return (error); 1844 CP(ts32[0], ts[0], tv_sec); 1845 CP(ts32[0], ts[0], tv_nsec); 1846 CP(ts32[1], ts[1], tv_sec); 1847 CP(ts32[1], ts[1], tv_nsec); 1848 tsp = ts; 1849 } else 1850 tsp = NULL; 1851 return (kern_futimens(td, uap->fd, tsp, UIO_SYSSPACE)); 1852 } 1853 1854 int 1855 freebsd32_utimensat(struct thread *td, struct freebsd32_utimensat_args *uap) 1856 { 1857 struct timespec32 ts32[2]; 1858 struct timespec ts[2], *tsp; 1859 int error; 1860 1861 if (uap->times != NULL) { 1862 error = copyin(uap->times, ts32, sizeof(ts32)); 1863 if (error) 1864 return (error); 1865 CP(ts32[0], ts[0], tv_sec); 1866 CP(ts32[0], ts[0], tv_nsec); 1867 CP(ts32[1], ts[1], tv_sec); 1868 CP(ts32[1], ts[1], tv_nsec); 1869 tsp = ts; 1870 } else 1871 tsp = NULL; 1872 return (kern_utimensat(td, uap->fd, uap->path, UIO_USERSPACE, 1873 tsp, UIO_SYSSPACE, uap->flag)); 1874 } 1875 1876 int 1877 freebsd32_adjtime(struct thread *td, struct freebsd32_adjtime_args *uap) 1878 { 1879 struct timeval32 tv32; 1880 struct timeval delta, olddelta, *deltap; 1881 int error; 1882 1883 if (uap->delta) { 1884 error = copyin(uap->delta, &tv32, sizeof(tv32)); 1885 if (error) 1886 return (error); 1887 CP(tv32, delta, tv_sec); 1888 CP(tv32, delta, tv_usec); 1889 deltap = δ 1890 } else 1891 deltap = NULL; 1892 error = kern_adjtime(td, deltap, &olddelta); 1893 if (uap->olddelta && error == 0) { 1894 CP(olddelta, tv32, tv_sec); 1895 CP(olddelta, tv32, tv_usec); 1896 error = copyout(&tv32, uap->olddelta, sizeof(tv32)); 1897 } 1898 return (error); 1899 } 1900 1901 #ifdef COMPAT_FREEBSD4 1902 int 1903 freebsd4_freebsd32_statfs(struct thread *td, struct freebsd4_freebsd32_statfs_args *uap) 1904 { 1905 struct ostatfs32 s32; 1906 struct statfs *sp; 1907 int error; 1908 1909 sp = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK); 1910 error = kern_statfs(td, uap->path, UIO_USERSPACE, sp); 1911 if (error == 0) { 1912 copy_statfs(sp, &s32); 1913 error = copyout(&s32, uap->buf, sizeof(s32)); 1914 } 1915 free(sp, M_STATFS); 1916 return (error); 1917 } 1918 #endif 1919 1920 #ifdef COMPAT_FREEBSD4 1921 int 1922 freebsd4_freebsd32_fstatfs(struct thread *td, struct freebsd4_freebsd32_fstatfs_args *uap) 1923 { 1924 struct ostatfs32 s32; 1925 struct statfs *sp; 1926 int error; 1927 1928 sp = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK); 1929 error = kern_fstatfs(td, uap->fd, sp); 1930 if (error == 0) { 1931 copy_statfs(sp, &s32); 1932 error = copyout(&s32, uap->buf, sizeof(s32)); 1933 } 1934 free(sp, M_STATFS); 1935 return (error); 1936 } 1937 #endif 1938 1939 #ifdef COMPAT_FREEBSD4 1940 int 1941 freebsd4_freebsd32_fhstatfs(struct thread *td, struct freebsd4_freebsd32_fhstatfs_args *uap) 1942 { 1943 struct ostatfs32 s32; 1944 struct statfs *sp; 1945 fhandle_t fh; 1946 int error; 1947 1948 if ((error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t))) != 0) 1949 return (error); 1950 sp = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK); 1951 error = kern_fhstatfs(td, fh, sp); 1952 if (error == 0) { 1953 copy_statfs(sp, &s32); 1954 error = copyout(&s32, uap->buf, sizeof(s32)); 1955 } 1956 free(sp, M_STATFS); 1957 return (error); 1958 } 1959 #endif 1960 1961 int 1962 freebsd32_pread(struct thread *td, struct freebsd32_pread_args *uap) 1963 { 1964 1965 return (kern_pread(td, uap->fd, uap->buf, uap->nbyte, 1966 PAIR32TO64(off_t, uap->offset))); 1967 } 1968 1969 int 1970 freebsd32_pwrite(struct thread *td, struct freebsd32_pwrite_args *uap) 1971 { 1972 1973 return (kern_pwrite(td, uap->fd, uap->buf, uap->nbyte, 1974 PAIR32TO64(off_t, uap->offset))); 1975 } 1976 1977 #ifdef COMPAT_43 1978 int 1979 ofreebsd32_lseek(struct thread *td, struct ofreebsd32_lseek_args *uap) 1980 { 1981 1982 return (kern_lseek(td, uap->fd, uap->offset, uap->whence)); 1983 } 1984 #endif 1985 1986 int 1987 freebsd32_lseek(struct thread *td, struct freebsd32_lseek_args *uap) 1988 { 1989 int error; 1990 off_t pos; 1991 1992 error = kern_lseek(td, uap->fd, PAIR32TO64(off_t, uap->offset), 1993 uap->whence); 1994 /* Expand the quad return into two parts for eax and edx */ 1995 pos = td->td_uretoff.tdu_off; 1996 td->td_retval[RETVAL_LO] = pos & 0xffffffff; /* %eax */ 1997 td->td_retval[RETVAL_HI] = pos >> 32; /* %edx */ 1998 return error; 1999 } 2000 2001 int 2002 freebsd32_truncate(struct thread *td, struct freebsd32_truncate_args *uap) 2003 { 2004 2005 return (kern_truncate(td, uap->path, UIO_USERSPACE, 2006 PAIR32TO64(off_t, uap->length))); 2007 } 2008 2009 #ifdef COMPAT_43 2010 int 2011 ofreebsd32_truncate(struct thread *td, struct ofreebsd32_truncate_args *uap) 2012 { 2013 return (kern_truncate(td, uap->path, UIO_USERSPACE, uap->length)); 2014 } 2015 #endif 2016 2017 int 2018 freebsd32_ftruncate(struct thread *td, struct freebsd32_ftruncate_args *uap) 2019 { 2020 2021 return (kern_ftruncate(td, uap->fd, PAIR32TO64(off_t, uap->length))); 2022 } 2023 2024 #ifdef COMPAT_43 2025 int 2026 ofreebsd32_ftruncate(struct thread *td, struct ofreebsd32_ftruncate_args *uap) 2027 { 2028 return (kern_ftruncate(td, uap->fd, uap->length)); 2029 } 2030 2031 int 2032 ofreebsd32_getdirentries(struct thread *td, 2033 struct ofreebsd32_getdirentries_args *uap) 2034 { 2035 struct ogetdirentries_args ap; 2036 int error; 2037 long loff; 2038 int32_t loff_cut; 2039 2040 ap.fd = uap->fd; 2041 ap.buf = uap->buf; 2042 ap.count = uap->count; 2043 ap.basep = NULL; 2044 error = kern_ogetdirentries(td, &ap, &loff); 2045 if (error == 0) { 2046 loff_cut = loff; 2047 error = copyout(&loff_cut, uap->basep, sizeof(int32_t)); 2048 } 2049 return (error); 2050 } 2051 #endif 2052 2053 #if defined(COMPAT_FREEBSD11) 2054 int 2055 freebsd11_freebsd32_getdirentries(struct thread *td, 2056 struct freebsd11_freebsd32_getdirentries_args *uap) 2057 { 2058 long base; 2059 int32_t base32; 2060 int error; 2061 2062 error = freebsd11_kern_getdirentries(td, uap->fd, uap->buf, uap->count, 2063 &base, NULL); 2064 if (error) 2065 return (error); 2066 if (uap->basep != NULL) { 2067 base32 = base; 2068 error = copyout(&base32, uap->basep, sizeof(int32_t)); 2069 } 2070 return (error); 2071 } 2072 #endif /* COMPAT_FREEBSD11 */ 2073 2074 #ifdef COMPAT_FREEBSD6 2075 /* versions with the 'int pad' argument */ 2076 int 2077 freebsd6_freebsd32_pread(struct thread *td, struct freebsd6_freebsd32_pread_args *uap) 2078 { 2079 2080 return (kern_pread(td, uap->fd, uap->buf, uap->nbyte, 2081 PAIR32TO64(off_t, uap->offset))); 2082 } 2083 2084 int 2085 freebsd6_freebsd32_pwrite(struct thread *td, struct freebsd6_freebsd32_pwrite_args *uap) 2086 { 2087 2088 return (kern_pwrite(td, uap->fd, uap->buf, uap->nbyte, 2089 PAIR32TO64(off_t, uap->offset))); 2090 } 2091 2092 int 2093 freebsd6_freebsd32_lseek(struct thread *td, struct freebsd6_freebsd32_lseek_args *uap) 2094 { 2095 int error; 2096 off_t pos; 2097 2098 error = kern_lseek(td, uap->fd, PAIR32TO64(off_t, uap->offset), 2099 uap->whence); 2100 /* Expand the quad return into two parts for eax and edx */ 2101 pos = *(off_t *)(td->td_retval); 2102 td->td_retval[RETVAL_LO] = pos & 0xffffffff; /* %eax */ 2103 td->td_retval[RETVAL_HI] = pos >> 32; /* %edx */ 2104 return error; 2105 } 2106 2107 int 2108 freebsd6_freebsd32_truncate(struct thread *td, struct freebsd6_freebsd32_truncate_args *uap) 2109 { 2110 2111 return (kern_truncate(td, uap->path, UIO_USERSPACE, 2112 PAIR32TO64(off_t, uap->length))); 2113 } 2114 2115 int 2116 freebsd6_freebsd32_ftruncate(struct thread *td, struct freebsd6_freebsd32_ftruncate_args *uap) 2117 { 2118 2119 return (kern_ftruncate(td, uap->fd, PAIR32TO64(off_t, uap->length))); 2120 } 2121 #endif /* COMPAT_FREEBSD6 */ 2122 2123 struct sf_hdtr32 { 2124 uint32_t headers; 2125 int hdr_cnt; 2126 uint32_t trailers; 2127 int trl_cnt; 2128 }; 2129 2130 static int 2131 freebsd32_do_sendfile(struct thread *td, 2132 struct freebsd32_sendfile_args *uap, int compat) 2133 { 2134 struct sf_hdtr32 hdtr32; 2135 struct sf_hdtr hdtr; 2136 struct uio *hdr_uio, *trl_uio; 2137 struct file *fp; 2138 cap_rights_t rights; 2139 struct iovec32 *iov32; 2140 off_t offset, sbytes; 2141 int error; 2142 2143 offset = PAIR32TO64(off_t, uap->offset); 2144 if (offset < 0) 2145 return (EINVAL); 2146 2147 hdr_uio = trl_uio = NULL; 2148 2149 if (uap->hdtr != NULL) { 2150 error = copyin(uap->hdtr, &hdtr32, sizeof(hdtr32)); 2151 if (error) 2152 goto out; 2153 PTRIN_CP(hdtr32, hdtr, headers); 2154 CP(hdtr32, hdtr, hdr_cnt); 2155 PTRIN_CP(hdtr32, hdtr, trailers); 2156 CP(hdtr32, hdtr, trl_cnt); 2157 2158 if (hdtr.headers != NULL) { 2159 iov32 = PTRIN(hdtr32.headers); 2160 error = freebsd32_copyinuio(iov32, 2161 hdtr32.hdr_cnt, &hdr_uio); 2162 if (error) 2163 goto out; 2164 #ifdef COMPAT_FREEBSD4 2165 /* 2166 * In FreeBSD < 5.0 the nbytes to send also included 2167 * the header. If compat is specified subtract the 2168 * header size from nbytes. 2169 */ 2170 if (compat) { 2171 if (uap->nbytes > hdr_uio->uio_resid) 2172 uap->nbytes -= hdr_uio->uio_resid; 2173 else 2174 uap->nbytes = 0; 2175 } 2176 #endif 2177 } 2178 if (hdtr.trailers != NULL) { 2179 iov32 = PTRIN(hdtr32.trailers); 2180 error = freebsd32_copyinuio(iov32, 2181 hdtr32.trl_cnt, &trl_uio); 2182 if (error) 2183 goto out; 2184 } 2185 } 2186 2187 AUDIT_ARG_FD(uap->fd); 2188 2189 if ((error = fget_read(td, uap->fd, 2190 cap_rights_init_one(&rights, CAP_PREAD), &fp)) != 0) 2191 goto out; 2192 2193 error = fo_sendfile(fp, uap->s, hdr_uio, trl_uio, offset, 2194 uap->nbytes, &sbytes, uap->flags, td); 2195 fdrop(fp, td); 2196 2197 if (uap->sbytes != NULL) 2198 copyout(&sbytes, uap->sbytes, sizeof(off_t)); 2199 2200 out: 2201 if (hdr_uio) 2202 free(hdr_uio, M_IOV); 2203 if (trl_uio) 2204 free(trl_uio, M_IOV); 2205 return (error); 2206 } 2207 2208 #ifdef COMPAT_FREEBSD4 2209 int 2210 freebsd4_freebsd32_sendfile(struct thread *td, 2211 struct freebsd4_freebsd32_sendfile_args *uap) 2212 { 2213 return (freebsd32_do_sendfile(td, 2214 (struct freebsd32_sendfile_args *)uap, 1)); 2215 } 2216 #endif 2217 2218 int 2219 freebsd32_sendfile(struct thread *td, struct freebsd32_sendfile_args *uap) 2220 { 2221 2222 return (freebsd32_do_sendfile(td, uap, 0)); 2223 } 2224 2225 static void 2226 copy_stat(struct stat *in, struct stat32 *out) 2227 { 2228 2229 #ifndef __amd64__ 2230 /* 2231 * 32-bit architectures other than i386 have 64-bit time_t. This 2232 * results in struct timespec32 with 12 bytes for tv_sec and tv_nsec, 2233 * and 4 bytes of padding. Zero the padding holes in struct stat32. 2234 */ 2235 bzero(&out->st_atim, sizeof(out->st_atim)); 2236 bzero(&out->st_mtim, sizeof(out->st_mtim)); 2237 bzero(&out->st_ctim, sizeof(out->st_ctim)); 2238 bzero(&out->st_birthtim, sizeof(out->st_birthtim)); 2239 #endif 2240 CP(*in, *out, st_dev); 2241 CP(*in, *out, st_ino); 2242 CP(*in, *out, st_mode); 2243 CP(*in, *out, st_nlink); 2244 CP(*in, *out, st_uid); 2245 CP(*in, *out, st_gid); 2246 CP(*in, *out, st_rdev); 2247 TS_CP(*in, *out, st_atim); 2248 TS_CP(*in, *out, st_mtim); 2249 TS_CP(*in, *out, st_ctim); 2250 CP(*in, *out, st_size); 2251 CP(*in, *out, st_blocks); 2252 CP(*in, *out, st_blksize); 2253 CP(*in, *out, st_flags); 2254 CP(*in, *out, st_gen); 2255 TS_CP(*in, *out, st_birthtim); 2256 out->st_padding0 = 0; 2257 out->st_padding1 = 0; 2258 #ifdef __STAT32_TIME_T_EXT 2259 out->st_atim_ext = 0; 2260 out->st_mtim_ext = 0; 2261 out->st_ctim_ext = 0; 2262 out->st_btim_ext = 0; 2263 #endif 2264 bzero(out->st_spare, sizeof(out->st_spare)); 2265 } 2266 2267 #ifdef COMPAT_43 2268 static void 2269 copy_ostat(struct stat *in, struct ostat32 *out) 2270 { 2271 2272 bzero(out, sizeof(*out)); 2273 CP(*in, *out, st_dev); 2274 CP(*in, *out, st_ino); 2275 CP(*in, *out, st_mode); 2276 CP(*in, *out, st_nlink); 2277 CP(*in, *out, st_uid); 2278 CP(*in, *out, st_gid); 2279 CP(*in, *out, st_rdev); 2280 out->st_size = MIN(in->st_size, INT32_MAX); 2281 TS_CP(*in, *out, st_atim); 2282 TS_CP(*in, *out, st_mtim); 2283 TS_CP(*in, *out, st_ctim); 2284 CP(*in, *out, st_blksize); 2285 CP(*in, *out, st_blocks); 2286 CP(*in, *out, st_flags); 2287 CP(*in, *out, st_gen); 2288 } 2289 #endif 2290 2291 #ifdef COMPAT_43 2292 int 2293 ofreebsd32_stat(struct thread *td, struct ofreebsd32_stat_args *uap) 2294 { 2295 struct stat sb; 2296 struct ostat32 sb32; 2297 int error; 2298 2299 error = kern_statat(td, 0, AT_FDCWD, uap->path, UIO_USERSPACE, &sb); 2300 if (error) 2301 return (error); 2302 copy_ostat(&sb, &sb32); 2303 error = copyout(&sb32, uap->ub, sizeof (sb32)); 2304 return (error); 2305 } 2306 #endif 2307 2308 int 2309 freebsd32_fstat(struct thread *td, struct freebsd32_fstat_args *uap) 2310 { 2311 struct stat ub; 2312 struct stat32 ub32; 2313 int error; 2314 2315 error = kern_fstat(td, uap->fd, &ub); 2316 if (error) 2317 return (error); 2318 copy_stat(&ub, &ub32); 2319 error = copyout(&ub32, uap->sb, sizeof(ub32)); 2320 return (error); 2321 } 2322 2323 #ifdef COMPAT_43 2324 int 2325 ofreebsd32_fstat(struct thread *td, struct ofreebsd32_fstat_args *uap) 2326 { 2327 struct stat ub; 2328 struct ostat32 ub32; 2329 int error; 2330 2331 error = kern_fstat(td, uap->fd, &ub); 2332 if (error) 2333 return (error); 2334 copy_ostat(&ub, &ub32); 2335 error = copyout(&ub32, uap->sb, sizeof(ub32)); 2336 return (error); 2337 } 2338 #endif 2339 2340 int 2341 freebsd32_fstatat(struct thread *td, struct freebsd32_fstatat_args *uap) 2342 { 2343 struct stat ub; 2344 struct stat32 ub32; 2345 int error; 2346 2347 error = kern_statat(td, uap->flag, uap->fd, uap->path, UIO_USERSPACE, 2348 &ub); 2349 if (error) 2350 return (error); 2351 copy_stat(&ub, &ub32); 2352 error = copyout(&ub32, uap->buf, sizeof(ub32)); 2353 return (error); 2354 } 2355 2356 #ifdef COMPAT_43 2357 int 2358 ofreebsd32_lstat(struct thread *td, struct ofreebsd32_lstat_args *uap) 2359 { 2360 struct stat sb; 2361 struct ostat32 sb32; 2362 int error; 2363 2364 error = kern_statat(td, AT_SYMLINK_NOFOLLOW, AT_FDCWD, uap->path, 2365 UIO_USERSPACE, &sb); 2366 if (error) 2367 return (error); 2368 copy_ostat(&sb, &sb32); 2369 error = copyout(&sb32, uap->ub, sizeof (sb32)); 2370 return (error); 2371 } 2372 #endif 2373 2374 int 2375 freebsd32_fhstat(struct thread *td, struct freebsd32_fhstat_args *uap) 2376 { 2377 struct stat sb; 2378 struct stat32 sb32; 2379 struct fhandle fh; 2380 int error; 2381 2382 error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t)); 2383 if (error != 0) 2384 return (error); 2385 error = kern_fhstat(td, fh, &sb); 2386 if (error != 0) 2387 return (error); 2388 copy_stat(&sb, &sb32); 2389 error = copyout(&sb32, uap->sb, sizeof (sb32)); 2390 return (error); 2391 } 2392 2393 #if defined(COMPAT_FREEBSD11) 2394 extern int ino64_trunc_error; 2395 2396 static int 2397 freebsd11_cvtstat32(struct stat *in, struct freebsd11_stat32 *out) 2398 { 2399 2400 #ifndef __amd64__ 2401 /* 2402 * 32-bit architectures other than i386 have 64-bit time_t. This 2403 * results in struct timespec32 with 12 bytes for tv_sec and tv_nsec, 2404 * and 4 bytes of padding. Zero the padding holes in freebsd11_stat32. 2405 */ 2406 bzero(&out->st_atim, sizeof(out->st_atim)); 2407 bzero(&out->st_mtim, sizeof(out->st_mtim)); 2408 bzero(&out->st_ctim, sizeof(out->st_ctim)); 2409 bzero(&out->st_birthtim, sizeof(out->st_birthtim)); 2410 #endif 2411 2412 CP(*in, *out, st_ino); 2413 if (in->st_ino != out->st_ino) { 2414 switch (ino64_trunc_error) { 2415 default: 2416 case 0: 2417 break; 2418 case 1: 2419 return (EOVERFLOW); 2420 case 2: 2421 out->st_ino = UINT32_MAX; 2422 break; 2423 } 2424 } 2425 CP(*in, *out, st_nlink); 2426 if (in->st_nlink != out->st_nlink) { 2427 switch (ino64_trunc_error) { 2428 default: 2429 case 0: 2430 break; 2431 case 1: 2432 return (EOVERFLOW); 2433 case 2: 2434 out->st_nlink = UINT16_MAX; 2435 break; 2436 } 2437 } 2438 out->st_dev = in->st_dev; 2439 if (out->st_dev != in->st_dev) { 2440 switch (ino64_trunc_error) { 2441 default: 2442 break; 2443 case 1: 2444 return (EOVERFLOW); 2445 } 2446 } 2447 CP(*in, *out, st_mode); 2448 CP(*in, *out, st_uid); 2449 CP(*in, *out, st_gid); 2450 out->st_rdev = in->st_rdev; 2451 if (out->st_rdev != in->st_rdev) { 2452 switch (ino64_trunc_error) { 2453 default: 2454 break; 2455 case 1: 2456 return (EOVERFLOW); 2457 } 2458 } 2459 TS_CP(*in, *out, st_atim); 2460 TS_CP(*in, *out, st_mtim); 2461 TS_CP(*in, *out, st_ctim); 2462 CP(*in, *out, st_size); 2463 CP(*in, *out, st_blocks); 2464 CP(*in, *out, st_blksize); 2465 CP(*in, *out, st_flags); 2466 CP(*in, *out, st_gen); 2467 TS_CP(*in, *out, st_birthtim); 2468 out->st_lspare = 0; 2469 bzero((char *)&out->st_birthtim + sizeof(out->st_birthtim), 2470 sizeof(*out) - offsetof(struct freebsd11_stat32, 2471 st_birthtim) - sizeof(out->st_birthtim)); 2472 return (0); 2473 } 2474 2475 int 2476 freebsd11_freebsd32_stat(struct thread *td, 2477 struct freebsd11_freebsd32_stat_args *uap) 2478 { 2479 struct stat sb; 2480 struct freebsd11_stat32 sb32; 2481 int error; 2482 2483 error = kern_statat(td, 0, AT_FDCWD, uap->path, UIO_USERSPACE, &sb); 2484 if (error != 0) 2485 return (error); 2486 error = freebsd11_cvtstat32(&sb, &sb32); 2487 if (error == 0) 2488 error = copyout(&sb32, uap->ub, sizeof (sb32)); 2489 return (error); 2490 } 2491 2492 int 2493 freebsd11_freebsd32_fstat(struct thread *td, 2494 struct freebsd11_freebsd32_fstat_args *uap) 2495 { 2496 struct stat sb; 2497 struct freebsd11_stat32 sb32; 2498 int error; 2499 2500 error = kern_fstat(td, uap->fd, &sb); 2501 if (error != 0) 2502 return (error); 2503 error = freebsd11_cvtstat32(&sb, &sb32); 2504 if (error == 0) 2505 error = copyout(&sb32, uap->sb, sizeof (sb32)); 2506 return (error); 2507 } 2508 2509 int 2510 freebsd11_freebsd32_fstatat(struct thread *td, 2511 struct freebsd11_freebsd32_fstatat_args *uap) 2512 { 2513 struct stat sb; 2514 struct freebsd11_stat32 sb32; 2515 int error; 2516 2517 error = kern_statat(td, uap->flag, uap->fd, uap->path, UIO_USERSPACE, 2518 &sb); 2519 if (error != 0) 2520 return (error); 2521 error = freebsd11_cvtstat32(&sb, &sb32); 2522 if (error == 0) 2523 error = copyout(&sb32, uap->buf, sizeof (sb32)); 2524 return (error); 2525 } 2526 2527 int 2528 freebsd11_freebsd32_lstat(struct thread *td, 2529 struct freebsd11_freebsd32_lstat_args *uap) 2530 { 2531 struct stat sb; 2532 struct freebsd11_stat32 sb32; 2533 int error; 2534 2535 error = kern_statat(td, AT_SYMLINK_NOFOLLOW, AT_FDCWD, uap->path, 2536 UIO_USERSPACE, &sb); 2537 if (error != 0) 2538 return (error); 2539 error = freebsd11_cvtstat32(&sb, &sb32); 2540 if (error == 0) 2541 error = copyout(&sb32, uap->ub, sizeof (sb32)); 2542 return (error); 2543 } 2544 2545 int 2546 freebsd11_freebsd32_fhstat(struct thread *td, 2547 struct freebsd11_freebsd32_fhstat_args *uap) 2548 { 2549 struct stat sb; 2550 struct freebsd11_stat32 sb32; 2551 struct fhandle fh; 2552 int error; 2553 2554 error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t)); 2555 if (error != 0) 2556 return (error); 2557 error = kern_fhstat(td, fh, &sb); 2558 if (error != 0) 2559 return (error); 2560 error = freebsd11_cvtstat32(&sb, &sb32); 2561 if (error == 0) 2562 error = copyout(&sb32, uap->sb, sizeof (sb32)); 2563 return (error); 2564 } 2565 2566 static int 2567 freebsd11_cvtnstat32(struct stat *sb, struct nstat32 *nsb32) 2568 { 2569 struct nstat nsb; 2570 int error; 2571 2572 error = freebsd11_cvtnstat(sb, &nsb); 2573 if (error != 0) 2574 return (error); 2575 2576 bzero(nsb32, sizeof(*nsb32)); 2577 CP(nsb, *nsb32, st_dev); 2578 CP(nsb, *nsb32, st_ino); 2579 CP(nsb, *nsb32, st_mode); 2580 CP(nsb, *nsb32, st_nlink); 2581 CP(nsb, *nsb32, st_uid); 2582 CP(nsb, *nsb32, st_gid); 2583 CP(nsb, *nsb32, st_rdev); 2584 CP(nsb, *nsb32, st_atim.tv_sec); 2585 CP(nsb, *nsb32, st_atim.tv_nsec); 2586 CP(nsb, *nsb32, st_mtim.tv_sec); 2587 CP(nsb, *nsb32, st_mtim.tv_nsec); 2588 CP(nsb, *nsb32, st_ctim.tv_sec); 2589 CP(nsb, *nsb32, st_ctim.tv_nsec); 2590 CP(nsb, *nsb32, st_size); 2591 CP(nsb, *nsb32, st_blocks); 2592 CP(nsb, *nsb32, st_blksize); 2593 CP(nsb, *nsb32, st_flags); 2594 CP(nsb, *nsb32, st_gen); 2595 CP(nsb, *nsb32, st_birthtim.tv_sec); 2596 CP(nsb, *nsb32, st_birthtim.tv_nsec); 2597 return (0); 2598 } 2599 2600 int 2601 freebsd11_freebsd32_nstat(struct thread *td, 2602 struct freebsd11_freebsd32_nstat_args *uap) 2603 { 2604 struct stat sb; 2605 struct nstat32 nsb; 2606 int error; 2607 2608 error = kern_statat(td, 0, AT_FDCWD, uap->path, UIO_USERSPACE, &sb); 2609 if (error != 0) 2610 return (error); 2611 error = freebsd11_cvtnstat32(&sb, &nsb); 2612 if (error != 0) 2613 error = copyout(&nsb, uap->ub, sizeof (nsb)); 2614 return (error); 2615 } 2616 2617 int 2618 freebsd11_freebsd32_nlstat(struct thread *td, 2619 struct freebsd11_freebsd32_nlstat_args *uap) 2620 { 2621 struct stat sb; 2622 struct nstat32 nsb; 2623 int error; 2624 2625 error = kern_statat(td, AT_SYMLINK_NOFOLLOW, AT_FDCWD, uap->path, 2626 UIO_USERSPACE, &sb); 2627 if (error != 0) 2628 return (error); 2629 error = freebsd11_cvtnstat32(&sb, &nsb); 2630 if (error == 0) 2631 error = copyout(&nsb, uap->ub, sizeof (nsb)); 2632 return (error); 2633 } 2634 2635 int 2636 freebsd11_freebsd32_nfstat(struct thread *td, 2637 struct freebsd11_freebsd32_nfstat_args *uap) 2638 { 2639 struct nstat32 nub; 2640 struct stat ub; 2641 int error; 2642 2643 error = kern_fstat(td, uap->fd, &ub); 2644 if (error != 0) 2645 return (error); 2646 error = freebsd11_cvtnstat32(&ub, &nub); 2647 if (error == 0) 2648 error = copyout(&nub, uap->sb, sizeof(nub)); 2649 return (error); 2650 } 2651 #endif 2652 2653 int 2654 freebsd32___sysctl(struct thread *td, struct freebsd32___sysctl_args *uap) 2655 { 2656 int error, name[CTL_MAXNAME]; 2657 size_t j, oldlen; 2658 uint32_t tmp; 2659 2660 if (uap->namelen > CTL_MAXNAME || uap->namelen < 2) 2661 return (EINVAL); 2662 error = copyin(uap->name, name, uap->namelen * sizeof(int)); 2663 if (error) 2664 return (error); 2665 if (uap->oldlenp) { 2666 error = fueword32(uap->oldlenp, &tmp); 2667 oldlen = tmp; 2668 } else { 2669 oldlen = 0; 2670 } 2671 if (error != 0) 2672 return (EFAULT); 2673 error = userland_sysctl(td, name, uap->namelen, 2674 uap->old, &oldlen, 1, 2675 uap->new, uap->newlen, &j, SCTL_MASK32); 2676 if (error) 2677 return (error); 2678 if (uap->oldlenp) 2679 suword32(uap->oldlenp, j); 2680 return (0); 2681 } 2682 2683 int 2684 freebsd32___sysctlbyname(struct thread *td, 2685 struct freebsd32___sysctlbyname_args *uap) 2686 { 2687 size_t oldlen, rv; 2688 int error; 2689 uint32_t tmp; 2690 2691 if (uap->oldlenp != NULL) { 2692 error = fueword32(uap->oldlenp, &tmp); 2693 oldlen = tmp; 2694 } else { 2695 error = oldlen = 0; 2696 } 2697 if (error != 0) 2698 return (EFAULT); 2699 error = kern___sysctlbyname(td, uap->name, uap->namelen, uap->old, 2700 &oldlen, uap->new, uap->newlen, &rv, SCTL_MASK32, 1); 2701 if (error != 0) 2702 return (error); 2703 if (uap->oldlenp != NULL) 2704 error = suword32(uap->oldlenp, rv); 2705 2706 return (error); 2707 } 2708 2709 int 2710 freebsd32_jail(struct thread *td, struct freebsd32_jail_args *uap) 2711 { 2712 uint32_t version; 2713 int error; 2714 struct jail j; 2715 2716 error = copyin(uap->jail, &version, sizeof(uint32_t)); 2717 if (error) 2718 return (error); 2719 2720 switch (version) { 2721 case 0: 2722 { 2723 /* FreeBSD single IPv4 jails. */ 2724 struct jail32_v0 j32_v0; 2725 2726 bzero(&j, sizeof(struct jail)); 2727 error = copyin(uap->jail, &j32_v0, sizeof(struct jail32_v0)); 2728 if (error) 2729 return (error); 2730 CP(j32_v0, j, version); 2731 PTRIN_CP(j32_v0, j, path); 2732 PTRIN_CP(j32_v0, j, hostname); 2733 j.ip4s = htonl(j32_v0.ip_number); /* jail_v0 is host order */ 2734 break; 2735 } 2736 2737 case 1: 2738 /* 2739 * Version 1 was used by multi-IPv4 jail implementations 2740 * that never made it into the official kernel. 2741 */ 2742 return (EINVAL); 2743 2744 case 2: /* JAIL_API_VERSION */ 2745 { 2746 /* FreeBSD multi-IPv4/IPv6,noIP jails. */ 2747 struct jail32 j32; 2748 2749 error = copyin(uap->jail, &j32, sizeof(struct jail32)); 2750 if (error) 2751 return (error); 2752 CP(j32, j, version); 2753 PTRIN_CP(j32, j, path); 2754 PTRIN_CP(j32, j, hostname); 2755 PTRIN_CP(j32, j, jailname); 2756 CP(j32, j, ip4s); 2757 CP(j32, j, ip6s); 2758 PTRIN_CP(j32, j, ip4); 2759 PTRIN_CP(j32, j, ip6); 2760 break; 2761 } 2762 2763 default: 2764 /* Sci-Fi jails are not supported, sorry. */ 2765 return (EINVAL); 2766 } 2767 return (kern_jail(td, &j)); 2768 } 2769 2770 int 2771 freebsd32_jail_set(struct thread *td, struct freebsd32_jail_set_args *uap) 2772 { 2773 struct uio *auio; 2774 int error; 2775 2776 /* Check that we have an even number of iovecs. */ 2777 if (uap->iovcnt & 1) 2778 return (EINVAL); 2779 2780 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 2781 if (error) 2782 return (error); 2783 error = kern_jail_set(td, auio, uap->flags); 2784 free(auio, M_IOV); 2785 return (error); 2786 } 2787 2788 int 2789 freebsd32_jail_get(struct thread *td, struct freebsd32_jail_get_args *uap) 2790 { 2791 struct iovec32 iov32; 2792 struct uio *auio; 2793 int error, i; 2794 2795 /* Check that we have an even number of iovecs. */ 2796 if (uap->iovcnt & 1) 2797 return (EINVAL); 2798 2799 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 2800 if (error) 2801 return (error); 2802 error = kern_jail_get(td, auio, uap->flags); 2803 if (error == 0) 2804 for (i = 0; i < uap->iovcnt; i++) { 2805 PTROUT_CP(auio->uio_iov[i], iov32, iov_base); 2806 CP(auio->uio_iov[i], iov32, iov_len); 2807 error = copyout(&iov32, uap->iovp + i, sizeof(iov32)); 2808 if (error != 0) 2809 break; 2810 } 2811 free(auio, M_IOV); 2812 return (error); 2813 } 2814 2815 int 2816 freebsd32_sigaction(struct thread *td, struct freebsd32_sigaction_args *uap) 2817 { 2818 struct sigaction32 s32; 2819 struct sigaction sa, osa, *sap; 2820 int error; 2821 2822 if (uap->act) { 2823 error = copyin(uap->act, &s32, sizeof(s32)); 2824 if (error) 2825 return (error); 2826 sa.sa_handler = PTRIN(s32.sa_u); 2827 CP(s32, sa, sa_flags); 2828 CP(s32, sa, sa_mask); 2829 sap = &sa; 2830 } else 2831 sap = NULL; 2832 error = kern_sigaction(td, uap->sig, sap, &osa, 0); 2833 if (error == 0 && uap->oact != NULL) { 2834 s32.sa_u = PTROUT(osa.sa_handler); 2835 CP(osa, s32, sa_flags); 2836 CP(osa, s32, sa_mask); 2837 error = copyout(&s32, uap->oact, sizeof(s32)); 2838 } 2839 return (error); 2840 } 2841 2842 #ifdef COMPAT_FREEBSD4 2843 int 2844 freebsd4_freebsd32_sigaction(struct thread *td, 2845 struct freebsd4_freebsd32_sigaction_args *uap) 2846 { 2847 struct sigaction32 s32; 2848 struct sigaction sa, osa, *sap; 2849 int error; 2850 2851 if (uap->act) { 2852 error = copyin(uap->act, &s32, sizeof(s32)); 2853 if (error) 2854 return (error); 2855 sa.sa_handler = PTRIN(s32.sa_u); 2856 CP(s32, sa, sa_flags); 2857 CP(s32, sa, sa_mask); 2858 sap = &sa; 2859 } else 2860 sap = NULL; 2861 error = kern_sigaction(td, uap->sig, sap, &osa, KSA_FREEBSD4); 2862 if (error == 0 && uap->oact != NULL) { 2863 s32.sa_u = PTROUT(osa.sa_handler); 2864 CP(osa, s32, sa_flags); 2865 CP(osa, s32, sa_mask); 2866 error = copyout(&s32, uap->oact, sizeof(s32)); 2867 } 2868 return (error); 2869 } 2870 #endif 2871 2872 #ifdef COMPAT_43 2873 struct osigaction32 { 2874 uint32_t sa_u; 2875 osigset_t sa_mask; 2876 int sa_flags; 2877 }; 2878 2879 #define ONSIG 32 2880 2881 int 2882 ofreebsd32_sigaction(struct thread *td, 2883 struct ofreebsd32_sigaction_args *uap) 2884 { 2885 struct osigaction32 s32; 2886 struct sigaction sa, osa, *sap; 2887 int error; 2888 2889 if (uap->signum <= 0 || uap->signum >= ONSIG) 2890 return (EINVAL); 2891 2892 if (uap->nsa) { 2893 error = copyin(uap->nsa, &s32, sizeof(s32)); 2894 if (error) 2895 return (error); 2896 sa.sa_handler = PTRIN(s32.sa_u); 2897 CP(s32, sa, sa_flags); 2898 OSIG2SIG(s32.sa_mask, sa.sa_mask); 2899 sap = &sa; 2900 } else 2901 sap = NULL; 2902 error = kern_sigaction(td, uap->signum, sap, &osa, KSA_OSIGSET); 2903 if (error == 0 && uap->osa != NULL) { 2904 s32.sa_u = PTROUT(osa.sa_handler); 2905 CP(osa, s32, sa_flags); 2906 SIG2OSIG(osa.sa_mask, s32.sa_mask); 2907 error = copyout(&s32, uap->osa, sizeof(s32)); 2908 } 2909 return (error); 2910 } 2911 2912 struct sigvec32 { 2913 uint32_t sv_handler; 2914 int sv_mask; 2915 int sv_flags; 2916 }; 2917 2918 int 2919 ofreebsd32_sigvec(struct thread *td, 2920 struct ofreebsd32_sigvec_args *uap) 2921 { 2922 struct sigvec32 vec; 2923 struct sigaction sa, osa, *sap; 2924 int error; 2925 2926 if (uap->signum <= 0 || uap->signum >= ONSIG) 2927 return (EINVAL); 2928 2929 if (uap->nsv) { 2930 error = copyin(uap->nsv, &vec, sizeof(vec)); 2931 if (error) 2932 return (error); 2933 sa.sa_handler = PTRIN(vec.sv_handler); 2934 OSIG2SIG(vec.sv_mask, sa.sa_mask); 2935 sa.sa_flags = vec.sv_flags; 2936 sa.sa_flags ^= SA_RESTART; 2937 sap = &sa; 2938 } else 2939 sap = NULL; 2940 error = kern_sigaction(td, uap->signum, sap, &osa, KSA_OSIGSET); 2941 if (error == 0 && uap->osv != NULL) { 2942 vec.sv_handler = PTROUT(osa.sa_handler); 2943 SIG2OSIG(osa.sa_mask, vec.sv_mask); 2944 vec.sv_flags = osa.sa_flags; 2945 vec.sv_flags &= ~SA_NOCLDWAIT; 2946 vec.sv_flags ^= SA_RESTART; 2947 error = copyout(&vec, uap->osv, sizeof(vec)); 2948 } 2949 return (error); 2950 } 2951 2952 struct sigstack32 { 2953 uint32_t ss_sp; 2954 int ss_onstack; 2955 }; 2956 2957 int 2958 ofreebsd32_sigstack(struct thread *td, 2959 struct ofreebsd32_sigstack_args *uap) 2960 { 2961 struct sigstack32 s32; 2962 struct sigstack nss, oss; 2963 int error = 0, unss; 2964 2965 if (uap->nss != NULL) { 2966 error = copyin(uap->nss, &s32, sizeof(s32)); 2967 if (error) 2968 return (error); 2969 nss.ss_sp = PTRIN(s32.ss_sp); 2970 CP(s32, nss, ss_onstack); 2971 unss = 1; 2972 } else { 2973 unss = 0; 2974 } 2975 oss.ss_sp = td->td_sigstk.ss_sp; 2976 oss.ss_onstack = sigonstack(cpu_getstack(td)); 2977 if (unss) { 2978 td->td_sigstk.ss_sp = nss.ss_sp; 2979 td->td_sigstk.ss_size = 0; 2980 td->td_sigstk.ss_flags |= (nss.ss_onstack & SS_ONSTACK); 2981 td->td_pflags |= TDP_ALTSTACK; 2982 } 2983 if (uap->oss != NULL) { 2984 s32.ss_sp = PTROUT(oss.ss_sp); 2985 CP(oss, s32, ss_onstack); 2986 error = copyout(&s32, uap->oss, sizeof(s32)); 2987 } 2988 return (error); 2989 } 2990 #endif 2991 2992 int 2993 freebsd32_nanosleep(struct thread *td, struct freebsd32_nanosleep_args *uap) 2994 { 2995 2996 return (freebsd32_user_clock_nanosleep(td, CLOCK_REALTIME, 2997 TIMER_RELTIME, uap->rqtp, uap->rmtp)); 2998 } 2999 3000 int 3001 freebsd32_clock_nanosleep(struct thread *td, 3002 struct freebsd32_clock_nanosleep_args *uap) 3003 { 3004 int error; 3005 3006 error = freebsd32_user_clock_nanosleep(td, uap->clock_id, uap->flags, 3007 uap->rqtp, uap->rmtp); 3008 return (kern_posix_error(td, error)); 3009 } 3010 3011 static int 3012 freebsd32_user_clock_nanosleep(struct thread *td, clockid_t clock_id, 3013 int flags, const struct timespec32 *ua_rqtp, struct timespec32 *ua_rmtp) 3014 { 3015 struct timespec32 rmt32, rqt32; 3016 struct timespec rmt, rqt; 3017 int error, error2; 3018 3019 error = copyin(ua_rqtp, &rqt32, sizeof(rqt32)); 3020 if (error) 3021 return (error); 3022 3023 CP(rqt32, rqt, tv_sec); 3024 CP(rqt32, rqt, tv_nsec); 3025 3026 error = kern_clock_nanosleep(td, clock_id, flags, &rqt, &rmt); 3027 if (error == EINTR && ua_rmtp != NULL && (flags & TIMER_ABSTIME) == 0) { 3028 CP(rmt, rmt32, tv_sec); 3029 CP(rmt, rmt32, tv_nsec); 3030 3031 error2 = copyout(&rmt32, ua_rmtp, sizeof(rmt32)); 3032 if (error2 != 0) 3033 error = error2; 3034 } 3035 return (error); 3036 } 3037 3038 int 3039 freebsd32_clock_gettime(struct thread *td, 3040 struct freebsd32_clock_gettime_args *uap) 3041 { 3042 struct timespec ats; 3043 struct timespec32 ats32; 3044 int error; 3045 3046 error = kern_clock_gettime(td, uap->clock_id, &ats); 3047 if (error == 0) { 3048 CP(ats, ats32, tv_sec); 3049 CP(ats, ats32, tv_nsec); 3050 error = copyout(&ats32, uap->tp, sizeof(ats32)); 3051 } 3052 return (error); 3053 } 3054 3055 int 3056 freebsd32_clock_settime(struct thread *td, 3057 struct freebsd32_clock_settime_args *uap) 3058 { 3059 struct timespec ats; 3060 struct timespec32 ats32; 3061 int error; 3062 3063 error = copyin(uap->tp, &ats32, sizeof(ats32)); 3064 if (error) 3065 return (error); 3066 CP(ats32, ats, tv_sec); 3067 CP(ats32, ats, tv_nsec); 3068 3069 return (kern_clock_settime(td, uap->clock_id, &ats)); 3070 } 3071 3072 int 3073 freebsd32_clock_getres(struct thread *td, 3074 struct freebsd32_clock_getres_args *uap) 3075 { 3076 struct timespec ts; 3077 struct timespec32 ts32; 3078 int error; 3079 3080 if (uap->tp == NULL) 3081 return (0); 3082 error = kern_clock_getres(td, uap->clock_id, &ts); 3083 if (error == 0) { 3084 CP(ts, ts32, tv_sec); 3085 CP(ts, ts32, tv_nsec); 3086 error = copyout(&ts32, uap->tp, sizeof(ts32)); 3087 } 3088 return (error); 3089 } 3090 3091 int freebsd32_ktimer_create(struct thread *td, 3092 struct freebsd32_ktimer_create_args *uap) 3093 { 3094 struct sigevent32 ev32; 3095 struct sigevent ev, *evp; 3096 int error, id; 3097 3098 if (uap->evp == NULL) { 3099 evp = NULL; 3100 } else { 3101 evp = &ev; 3102 error = copyin(uap->evp, &ev32, sizeof(ev32)); 3103 if (error != 0) 3104 return (error); 3105 error = convert_sigevent32(&ev32, &ev); 3106 if (error != 0) 3107 return (error); 3108 } 3109 error = kern_ktimer_create(td, uap->clock_id, evp, &id, -1); 3110 if (error == 0) { 3111 error = copyout(&id, uap->timerid, sizeof(int)); 3112 if (error != 0) 3113 kern_ktimer_delete(td, id); 3114 } 3115 return (error); 3116 } 3117 3118 int 3119 freebsd32_ktimer_settime(struct thread *td, 3120 struct freebsd32_ktimer_settime_args *uap) 3121 { 3122 struct itimerspec32 val32, oval32; 3123 struct itimerspec val, oval, *ovalp; 3124 int error; 3125 3126 error = copyin(uap->value, &val32, sizeof(val32)); 3127 if (error != 0) 3128 return (error); 3129 ITS_CP(val32, val); 3130 ovalp = uap->ovalue != NULL ? &oval : NULL; 3131 error = kern_ktimer_settime(td, uap->timerid, uap->flags, &val, ovalp); 3132 if (error == 0 && uap->ovalue != NULL) { 3133 ITS_CP(oval, oval32); 3134 error = copyout(&oval32, uap->ovalue, sizeof(oval32)); 3135 } 3136 return (error); 3137 } 3138 3139 int 3140 freebsd32_ktimer_gettime(struct thread *td, 3141 struct freebsd32_ktimer_gettime_args *uap) 3142 { 3143 struct itimerspec32 val32; 3144 struct itimerspec val; 3145 int error; 3146 3147 error = kern_ktimer_gettime(td, uap->timerid, &val); 3148 if (error == 0) { 3149 ITS_CP(val, val32); 3150 error = copyout(&val32, uap->value, sizeof(val32)); 3151 } 3152 return (error); 3153 } 3154 3155 int 3156 freebsd32_timerfd_gettime(struct thread *td, 3157 struct freebsd32_timerfd_gettime_args *uap) 3158 { 3159 struct itimerspec curr_value; 3160 struct itimerspec32 curr_value32; 3161 int error; 3162 3163 error = kern_timerfd_gettime(td, uap->fd, &curr_value); 3164 if (error == 0) { 3165 CP(curr_value, curr_value32, it_value.tv_sec); 3166 CP(curr_value, curr_value32, it_value.tv_nsec); 3167 CP(curr_value, curr_value32, it_interval.tv_sec); 3168 CP(curr_value, curr_value32, it_interval.tv_nsec); 3169 error = copyout(&curr_value32, uap->curr_value, 3170 sizeof(curr_value32)); 3171 } 3172 3173 return (error); 3174 } 3175 3176 int 3177 freebsd32_timerfd_settime(struct thread *td, 3178 struct freebsd32_timerfd_settime_args *uap) 3179 { 3180 struct itimerspec new_value, old_value; 3181 struct itimerspec32 new_value32, old_value32; 3182 int error; 3183 3184 error = copyin(uap->new_value, &new_value32, sizeof(new_value32)); 3185 if (error != 0) 3186 return (error); 3187 CP(new_value32, new_value, it_value.tv_sec); 3188 CP(new_value32, new_value, it_value.tv_nsec); 3189 CP(new_value32, new_value, it_interval.tv_sec); 3190 CP(new_value32, new_value, it_interval.tv_nsec); 3191 if (uap->old_value == NULL) { 3192 error = kern_timerfd_settime(td, uap->fd, uap->flags, 3193 &new_value, NULL); 3194 } else { 3195 error = kern_timerfd_settime(td, uap->fd, uap->flags, 3196 &new_value, &old_value); 3197 if (error == 0) { 3198 CP(old_value, old_value32, it_value.tv_sec); 3199 CP(old_value, old_value32, it_value.tv_nsec); 3200 CP(old_value, old_value32, it_interval.tv_sec); 3201 CP(old_value, old_value32, it_interval.tv_nsec); 3202 error = copyout(&old_value32, uap->old_value, 3203 sizeof(old_value32)); 3204 } 3205 } 3206 return (error); 3207 } 3208 3209 int 3210 freebsd32_clock_getcpuclockid2(struct thread *td, 3211 struct freebsd32_clock_getcpuclockid2_args *uap) 3212 { 3213 clockid_t clk_id; 3214 int error; 3215 3216 error = kern_clock_getcpuclockid2(td, PAIR32TO64(id_t, uap->id), 3217 uap->which, &clk_id); 3218 if (error == 0) 3219 error = copyout(&clk_id, uap->clock_id, sizeof(clockid_t)); 3220 return (error); 3221 } 3222 3223 int 3224 freebsd32_thr_new(struct thread *td, 3225 struct freebsd32_thr_new_args *uap) 3226 { 3227 struct thr_param32 param32; 3228 struct thr_param param; 3229 int error; 3230 3231 if (uap->param_size < 0 || 3232 uap->param_size > sizeof(struct thr_param32)) 3233 return (EINVAL); 3234 bzero(¶m, sizeof(struct thr_param)); 3235 bzero(¶m32, sizeof(struct thr_param32)); 3236 error = copyin(uap->param, ¶m32, uap->param_size); 3237 if (error != 0) 3238 return (error); 3239 param.start_func = PTRIN(param32.start_func); 3240 param.arg = PTRIN(param32.arg); 3241 param.stack_base = PTRIN(param32.stack_base); 3242 param.stack_size = param32.stack_size; 3243 param.tls_base = PTRIN(param32.tls_base); 3244 param.tls_size = param32.tls_size; 3245 param.child_tid = PTRIN(param32.child_tid); 3246 param.parent_tid = PTRIN(param32.parent_tid); 3247 param.flags = param32.flags; 3248 param.rtp = PTRIN(param32.rtp); 3249 param.spare[0] = PTRIN(param32.spare[0]); 3250 param.spare[1] = PTRIN(param32.spare[1]); 3251 param.spare[2] = PTRIN(param32.spare[2]); 3252 3253 return (kern_thr_new(td, ¶m)); 3254 } 3255 3256 int 3257 freebsd32_thr_suspend(struct thread *td, struct freebsd32_thr_suspend_args *uap) 3258 { 3259 struct timespec32 ts32; 3260 struct timespec ts, *tsp; 3261 int error; 3262 3263 error = 0; 3264 tsp = NULL; 3265 if (uap->timeout != NULL) { 3266 error = copyin((const void *)uap->timeout, (void *)&ts32, 3267 sizeof(struct timespec32)); 3268 if (error != 0) 3269 return (error); 3270 ts.tv_sec = ts32.tv_sec; 3271 ts.tv_nsec = ts32.tv_nsec; 3272 tsp = &ts; 3273 } 3274 return (kern_thr_suspend(td, tsp)); 3275 } 3276 3277 void 3278 siginfo_to_siginfo32(const siginfo_t *src, struct siginfo32 *dst) 3279 { 3280 bzero(dst, sizeof(*dst)); 3281 dst->si_signo = src->si_signo; 3282 dst->si_errno = src->si_errno; 3283 dst->si_code = src->si_code; 3284 dst->si_pid = src->si_pid; 3285 dst->si_uid = src->si_uid; 3286 dst->si_status = src->si_status; 3287 dst->si_addr = (uintptr_t)src->si_addr; 3288 dst->si_value.sival_int = src->si_value.sival_int; 3289 dst->si_timerid = src->si_timerid; 3290 dst->si_overrun = src->si_overrun; 3291 } 3292 3293 #ifndef _FREEBSD32_SYSPROTO_H_ 3294 struct freebsd32_sigqueue_args { 3295 pid_t pid; 3296 int signum; 3297 /* union sigval32 */ int value; 3298 }; 3299 #endif 3300 int 3301 freebsd32_sigqueue(struct thread *td, struct freebsd32_sigqueue_args *uap) 3302 { 3303 union sigval sv; 3304 3305 /* 3306 * On 32-bit ABIs, sival_int and sival_ptr are the same. 3307 * On 64-bit little-endian ABIs, the low bits are the same. 3308 * In 64-bit big-endian ABIs, sival_int overlaps with 3309 * sival_ptr's HIGH bits. We choose to support sival_int 3310 * rather than sival_ptr in this case as it seems to be 3311 * more common. 3312 */ 3313 bzero(&sv, sizeof(sv)); 3314 sv.sival_int = (uint32_t)(uint64_t)uap->value; 3315 3316 return (kern_sigqueue(td, uap->pid, uap->signum, &sv)); 3317 } 3318 3319 int 3320 freebsd32_sigtimedwait(struct thread *td, struct freebsd32_sigtimedwait_args *uap) 3321 { 3322 struct timespec32 ts32; 3323 struct timespec ts; 3324 struct timespec *timeout; 3325 sigset_t set; 3326 ksiginfo_t ksi; 3327 struct siginfo32 si32; 3328 int error; 3329 3330 if (uap->timeout) { 3331 error = copyin(uap->timeout, &ts32, sizeof(ts32)); 3332 if (error) 3333 return (error); 3334 ts.tv_sec = ts32.tv_sec; 3335 ts.tv_nsec = ts32.tv_nsec; 3336 timeout = &ts; 3337 } else 3338 timeout = NULL; 3339 3340 error = copyin(uap->set, &set, sizeof(set)); 3341 if (error) 3342 return (error); 3343 3344 error = kern_sigtimedwait(td, set, &ksi, timeout); 3345 if (error) 3346 return (error); 3347 3348 if (uap->info) { 3349 siginfo_to_siginfo32(&ksi.ksi_info, &si32); 3350 error = copyout(&si32, uap->info, sizeof(struct siginfo32)); 3351 } 3352 3353 if (error == 0) 3354 td->td_retval[0] = ksi.ksi_signo; 3355 return (error); 3356 } 3357 3358 /* 3359 * MPSAFE 3360 */ 3361 int 3362 freebsd32_sigwaitinfo(struct thread *td, struct freebsd32_sigwaitinfo_args *uap) 3363 { 3364 ksiginfo_t ksi; 3365 struct siginfo32 si32; 3366 sigset_t set; 3367 int error; 3368 3369 error = copyin(uap->set, &set, sizeof(set)); 3370 if (error) 3371 return (error); 3372 3373 error = kern_sigtimedwait(td, set, &ksi, NULL); 3374 if (error) 3375 return (error); 3376 3377 if (uap->info) { 3378 siginfo_to_siginfo32(&ksi.ksi_info, &si32); 3379 error = copyout(&si32, uap->info, sizeof(struct siginfo32)); 3380 } 3381 if (error == 0) 3382 td->td_retval[0] = ksi.ksi_signo; 3383 return (error); 3384 } 3385 3386 int 3387 freebsd32_cpuset_setid(struct thread *td, 3388 struct freebsd32_cpuset_setid_args *uap) 3389 { 3390 3391 return (kern_cpuset_setid(td, uap->which, 3392 PAIR32TO64(id_t, uap->id), uap->setid)); 3393 } 3394 3395 int 3396 freebsd32_cpuset_getid(struct thread *td, 3397 struct freebsd32_cpuset_getid_args *uap) 3398 { 3399 3400 return (kern_cpuset_getid(td, uap->level, uap->which, 3401 PAIR32TO64(id_t, uap->id), uap->setid)); 3402 } 3403 3404 static int 3405 copyin32_set(const void *u, void *k, size_t size) 3406 { 3407 #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 3408 int rv; 3409 struct bitset *kb = k; 3410 int *p; 3411 3412 rv = copyin(u, k, size); 3413 if (rv != 0) 3414 return (rv); 3415 3416 p = (int *)kb->__bits; 3417 /* Loop through swapping words. 3418 * `size' is in bytes, we need bits. */ 3419 for (int i = 0; i < __bitset_words(size * 8); i++) { 3420 int tmp = p[0]; 3421 p[0] = p[1]; 3422 p[1] = tmp; 3423 p += 2; 3424 } 3425 return (0); 3426 #else 3427 return (copyin(u, k, size)); 3428 #endif 3429 } 3430 3431 static int 3432 copyout32_set(const void *k, void *u, size_t size) 3433 { 3434 #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 3435 const struct bitset *kb = k; 3436 struct bitset *ub = u; 3437 const int *kp = (const int *)kb->__bits; 3438 int *up = (int *)ub->__bits; 3439 int rv; 3440 3441 for (int i = 0; i < __bitset_words(CPU_SETSIZE); i++) { 3442 /* `size' is in bytes, we need bits. */ 3443 for (int i = 0; i < __bitset_words(size * 8); i++) { 3444 rv = suword32(up, kp[1]); 3445 if (rv == 0) 3446 rv = suword32(up + 1, kp[0]); 3447 if (rv != 0) 3448 return (EFAULT); 3449 } 3450 } 3451 return (0); 3452 #else 3453 return (copyout(k, u, size)); 3454 #endif 3455 } 3456 3457 static const struct cpuset_copy_cb cpuset_copy32_cb = { 3458 .cpuset_copyin = copyin32_set, 3459 .cpuset_copyout = copyout32_set 3460 }; 3461 3462 int 3463 freebsd32_cpuset_getaffinity(struct thread *td, 3464 struct freebsd32_cpuset_getaffinity_args *uap) 3465 { 3466 3467 return (user_cpuset_getaffinity(td, uap->level, uap->which, 3468 PAIR32TO64(id_t,uap->id), uap->cpusetsize, uap->mask, 3469 &cpuset_copy32_cb)); 3470 } 3471 3472 int 3473 freebsd32_cpuset_setaffinity(struct thread *td, 3474 struct freebsd32_cpuset_setaffinity_args *uap) 3475 { 3476 3477 return (user_cpuset_setaffinity(td, uap->level, uap->which, 3478 PAIR32TO64(id_t,uap->id), uap->cpusetsize, uap->mask, 3479 &cpuset_copy32_cb)); 3480 } 3481 3482 int 3483 freebsd32_cpuset_getdomain(struct thread *td, 3484 struct freebsd32_cpuset_getdomain_args *uap) 3485 { 3486 3487 return (kern_cpuset_getdomain(td, uap->level, uap->which, 3488 PAIR32TO64(id_t,uap->id), uap->domainsetsize, uap->mask, uap->policy, 3489 &cpuset_copy32_cb)); 3490 } 3491 3492 int 3493 freebsd32_cpuset_setdomain(struct thread *td, 3494 struct freebsd32_cpuset_setdomain_args *uap) 3495 { 3496 3497 return (kern_cpuset_setdomain(td, uap->level, uap->which, 3498 PAIR32TO64(id_t,uap->id), uap->domainsetsize, uap->mask, uap->policy, 3499 &cpuset_copy32_cb)); 3500 } 3501 3502 int 3503 freebsd32_nmount(struct thread *td, 3504 struct freebsd32_nmount_args /* { 3505 struct iovec *iovp; 3506 unsigned int iovcnt; 3507 int flags; 3508 } */ *uap) 3509 { 3510 struct uio *auio; 3511 uint64_t flags; 3512 int error; 3513 3514 /* 3515 * Mount flags are now 64-bits. On 32-bit archtectures only 3516 * 32-bits are passed in, but from here on everything handles 3517 * 64-bit flags correctly. 3518 */ 3519 flags = uap->flags; 3520 3521 AUDIT_ARG_FFLAGS(flags); 3522 3523 /* 3524 * Filter out MNT_ROOTFS. We do not want clients of nmount() in 3525 * userspace to set this flag, but we must filter it out if we want 3526 * MNT_UPDATE on the root file system to work. 3527 * MNT_ROOTFS should only be set by the kernel when mounting its 3528 * root file system. 3529 */ 3530 flags &= ~MNT_ROOTFS; 3531 3532 /* 3533 * check that we have an even number of iovec's 3534 * and that we have at least two options. 3535 */ 3536 if ((uap->iovcnt & 1) || (uap->iovcnt < 4)) 3537 return (EINVAL); 3538 3539 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 3540 if (error) 3541 return (error); 3542 error = vfs_donmount(td, flags, auio); 3543 3544 free(auio, M_IOV); 3545 return error; 3546 } 3547 3548 #if 0 3549 int 3550 freebsd32_xxx(struct thread *td, struct freebsd32_xxx_args *uap) 3551 { 3552 struct yyy32 *p32, s32; 3553 struct yyy *p = NULL, s; 3554 struct xxx_arg ap; 3555 int error; 3556 3557 if (uap->zzz) { 3558 error = copyin(uap->zzz, &s32, sizeof(s32)); 3559 if (error) 3560 return (error); 3561 /* translate in */ 3562 p = &s; 3563 } 3564 error = kern_xxx(td, p); 3565 if (error) 3566 return (error); 3567 if (uap->zzz) { 3568 /* translate out */ 3569 error = copyout(&s32, p32, sizeof(s32)); 3570 } 3571 return (error); 3572 } 3573 #endif 3574 3575 int 3576 syscall32_module_handler(struct module *mod, int what, void *arg) 3577 { 3578 3579 return (kern_syscall_module_handler(freebsd32_sysent, mod, what, arg)); 3580 } 3581 3582 int 3583 syscall32_helper_register(struct syscall_helper_data *sd, int flags) 3584 { 3585 3586 return (kern_syscall_helper_register(freebsd32_sysent, sd, flags)); 3587 } 3588 3589 int 3590 syscall32_helper_unregister(struct syscall_helper_data *sd) 3591 { 3592 3593 return (kern_syscall_helper_unregister(freebsd32_sysent, sd)); 3594 } 3595 3596 int 3597 freebsd32_copyout_strings(struct image_params *imgp, uintptr_t *stack_base) 3598 { 3599 struct sysentvec *sysent; 3600 int argc, envc, i; 3601 uint32_t *vectp; 3602 char *stringp; 3603 uintptr_t destp, ustringp; 3604 struct freebsd32_ps_strings *arginfo; 3605 char canary[sizeof(long) * 8]; 3606 int32_t pagesizes32[MAXPAGESIZES]; 3607 size_t execpath_len; 3608 int error, szsigcode; 3609 3610 sysent = imgp->sysent; 3611 3612 arginfo = (struct freebsd32_ps_strings *)PROC_PS_STRINGS(imgp->proc); 3613 imgp->ps_strings = arginfo; 3614 destp = (uintptr_t)arginfo; 3615 3616 /* 3617 * Install sigcode. 3618 */ 3619 if (!PROC_HAS_SHP(imgp->proc)) { 3620 szsigcode = *sysent->sv_szsigcode; 3621 destp -= szsigcode; 3622 destp = rounddown2(destp, sizeof(uint32_t)); 3623 error = copyout(sysent->sv_sigcode, (void *)destp, 3624 szsigcode); 3625 if (error != 0) 3626 return (error); 3627 } 3628 3629 /* 3630 * Copy the image path for the rtld. 3631 */ 3632 if (imgp->execpath != NULL && imgp->auxargs != NULL) { 3633 execpath_len = strlen(imgp->execpath) + 1; 3634 destp -= execpath_len; 3635 imgp->execpathp = (void *)destp; 3636 error = copyout(imgp->execpath, imgp->execpathp, execpath_len); 3637 if (error != 0) 3638 return (error); 3639 } 3640 3641 /* 3642 * Prepare the canary for SSP. 3643 */ 3644 arc4rand(canary, sizeof(canary), 0); 3645 destp -= sizeof(canary); 3646 imgp->canary = (void *)destp; 3647 error = copyout(canary, imgp->canary, sizeof(canary)); 3648 if (error != 0) 3649 return (error); 3650 imgp->canarylen = sizeof(canary); 3651 3652 /* 3653 * Prepare the pagesizes array. 3654 */ 3655 for (i = 0; i < MAXPAGESIZES; i++) 3656 pagesizes32[i] = (uint32_t)pagesizes[i]; 3657 destp -= sizeof(pagesizes32); 3658 destp = rounddown2(destp, sizeof(uint32_t)); 3659 imgp->pagesizes = (void *)destp; 3660 error = copyout(pagesizes32, imgp->pagesizes, sizeof(pagesizes32)); 3661 if (error != 0) 3662 return (error); 3663 imgp->pagesizeslen = sizeof(pagesizes32); 3664 3665 /* 3666 * Allocate room for the argument and environment strings. 3667 */ 3668 destp -= ARG_MAX - imgp->args->stringspace; 3669 destp = rounddown2(destp, sizeof(uint32_t)); 3670 ustringp = destp; 3671 3672 if (imgp->auxargs) { 3673 /* 3674 * Allocate room on the stack for the ELF auxargs 3675 * array. It has up to AT_COUNT entries. 3676 */ 3677 destp -= AT_COUNT * sizeof(Elf32_Auxinfo); 3678 destp = rounddown2(destp, sizeof(uint32_t)); 3679 } 3680 3681 vectp = (uint32_t *)destp; 3682 3683 /* 3684 * Allocate room for the argv[] and env vectors including the 3685 * terminating NULL pointers. 3686 */ 3687 vectp -= imgp->args->argc + 1 + imgp->args->envc + 1; 3688 3689 /* 3690 * vectp also becomes our initial stack base 3691 */ 3692 *stack_base = (uintptr_t)vectp; 3693 3694 stringp = imgp->args->begin_argv; 3695 argc = imgp->args->argc; 3696 envc = imgp->args->envc; 3697 /* 3698 * Copy out strings - arguments and environment. 3699 */ 3700 error = copyout(stringp, (void *)ustringp, 3701 ARG_MAX - imgp->args->stringspace); 3702 if (error != 0) 3703 return (error); 3704 3705 /* 3706 * Fill in "ps_strings" struct for ps, w, etc. 3707 */ 3708 imgp->argv = vectp; 3709 if (suword32(&arginfo->ps_argvstr, (uint32_t)(intptr_t)vectp) != 0 || 3710 suword32(&arginfo->ps_nargvstr, argc) != 0) 3711 return (EFAULT); 3712 3713 /* 3714 * Fill in argument portion of vector table. 3715 */ 3716 for (; argc > 0; --argc) { 3717 if (suword32(vectp++, ustringp) != 0) 3718 return (EFAULT); 3719 while (*stringp++ != 0) 3720 ustringp++; 3721 ustringp++; 3722 } 3723 3724 /* a null vector table pointer separates the argp's from the envp's */ 3725 if (suword32(vectp++, 0) != 0) 3726 return (EFAULT); 3727 3728 imgp->envv = vectp; 3729 if (suword32(&arginfo->ps_envstr, (uint32_t)(intptr_t)vectp) != 0 || 3730 suword32(&arginfo->ps_nenvstr, envc) != 0) 3731 return (EFAULT); 3732 3733 /* 3734 * Fill in environment portion of vector table. 3735 */ 3736 for (; envc > 0; --envc) { 3737 if (suword32(vectp++, ustringp) != 0) 3738 return (EFAULT); 3739 while (*stringp++ != 0) 3740 ustringp++; 3741 ustringp++; 3742 } 3743 3744 /* end of vector table is a null pointer */ 3745 if (suword32(vectp, 0) != 0) 3746 return (EFAULT); 3747 3748 if (imgp->auxargs) { 3749 vectp++; 3750 error = imgp->sysent->sv_copyout_auxargs(imgp, 3751 (uintptr_t)vectp); 3752 if (error != 0) 3753 return (error); 3754 } 3755 3756 return (0); 3757 } 3758 3759 int 3760 freebsd32_kldstat(struct thread *td, struct freebsd32_kldstat_args *uap) 3761 { 3762 struct kld_file_stat *stat; 3763 struct kld_file_stat32 *stat32; 3764 int error, version; 3765 3766 if ((error = copyin(&uap->stat->version, &version, sizeof(version))) 3767 != 0) 3768 return (error); 3769 if (version != sizeof(struct kld_file_stat_1_32) && 3770 version != sizeof(struct kld_file_stat32)) 3771 return (EINVAL); 3772 3773 stat = malloc(sizeof(*stat), M_TEMP, M_WAITOK | M_ZERO); 3774 stat32 = malloc(sizeof(*stat32), M_TEMP, M_WAITOK | M_ZERO); 3775 error = kern_kldstat(td, uap->fileid, stat); 3776 if (error == 0) { 3777 bcopy(&stat->name[0], &stat32->name[0], sizeof(stat->name)); 3778 CP(*stat, *stat32, refs); 3779 CP(*stat, *stat32, id); 3780 PTROUT_CP(*stat, *stat32, address); 3781 CP(*stat, *stat32, size); 3782 bcopy(&stat->pathname[0], &stat32->pathname[0], 3783 sizeof(stat->pathname)); 3784 stat32->version = version; 3785 error = copyout(stat32, uap->stat, version); 3786 } 3787 free(stat, M_TEMP); 3788 free(stat32, M_TEMP); 3789 return (error); 3790 } 3791 3792 int 3793 freebsd32_posix_fallocate(struct thread *td, 3794 struct freebsd32_posix_fallocate_args *uap) 3795 { 3796 int error; 3797 3798 error = kern_posix_fallocate(td, uap->fd, 3799 PAIR32TO64(off_t, uap->offset), PAIR32TO64(off_t, uap->len)); 3800 return (kern_posix_error(td, error)); 3801 } 3802 3803 int 3804 freebsd32_posix_fadvise(struct thread *td, 3805 struct freebsd32_posix_fadvise_args *uap) 3806 { 3807 int error; 3808 3809 error = kern_posix_fadvise(td, uap->fd, PAIR32TO64(off_t, uap->offset), 3810 PAIR32TO64(off_t, uap->len), uap->advice); 3811 return (kern_posix_error(td, error)); 3812 } 3813 3814 int 3815 convert_sigevent32(struct sigevent32 *sig32, struct sigevent *sig) 3816 { 3817 3818 CP(*sig32, *sig, sigev_notify); 3819 switch (sig->sigev_notify) { 3820 case SIGEV_NONE: 3821 break; 3822 case SIGEV_THREAD_ID: 3823 CP(*sig32, *sig, sigev_notify_thread_id); 3824 /* FALLTHROUGH */ 3825 case SIGEV_SIGNAL: 3826 CP(*sig32, *sig, sigev_signo); 3827 PTRIN_CP(*sig32, *sig, sigev_value.sival_ptr); 3828 break; 3829 case SIGEV_KEVENT: 3830 CP(*sig32, *sig, sigev_notify_kqueue); 3831 CP(*sig32, *sig, sigev_notify_kevent_flags); 3832 PTRIN_CP(*sig32, *sig, sigev_value.sival_ptr); 3833 break; 3834 default: 3835 return (EINVAL); 3836 } 3837 return (0); 3838 } 3839 3840 int 3841 freebsd32_procctl(struct thread *td, struct freebsd32_procctl_args *uap) 3842 { 3843 void *data; 3844 union { 3845 struct procctl_reaper_status rs; 3846 struct procctl_reaper_pids rp; 3847 struct procctl_reaper_kill rk; 3848 } x; 3849 union { 3850 struct procctl_reaper_pids32 rp; 3851 } x32; 3852 int error, error1, flags, signum; 3853 3854 if (uap->com >= PROC_PROCCTL_MD_MIN) 3855 return (cpu_procctl(td, uap->idtype, PAIR32TO64(id_t, uap->id), 3856 uap->com, PTRIN(uap->data))); 3857 3858 switch (uap->com) { 3859 case PROC_ASLR_CTL: 3860 case PROC_PROTMAX_CTL: 3861 case PROC_SPROTECT: 3862 case PROC_STACKGAP_CTL: 3863 case PROC_TRACE_CTL: 3864 case PROC_TRAPCAP_CTL: 3865 case PROC_NO_NEW_PRIVS_CTL: 3866 case PROC_WXMAP_CTL: 3867 error = copyin(PTRIN(uap->data), &flags, sizeof(flags)); 3868 if (error != 0) 3869 return (error); 3870 data = &flags; 3871 break; 3872 case PROC_REAP_ACQUIRE: 3873 case PROC_REAP_RELEASE: 3874 if (uap->data != NULL) 3875 return (EINVAL); 3876 data = NULL; 3877 break; 3878 case PROC_REAP_STATUS: 3879 data = &x.rs; 3880 break; 3881 case PROC_REAP_GETPIDS: 3882 error = copyin(uap->data, &x32.rp, sizeof(x32.rp)); 3883 if (error != 0) 3884 return (error); 3885 CP(x32.rp, x.rp, rp_count); 3886 PTRIN_CP(x32.rp, x.rp, rp_pids); 3887 data = &x.rp; 3888 break; 3889 case PROC_REAP_KILL: 3890 error = copyin(uap->data, &x.rk, sizeof(x.rk)); 3891 if (error != 0) 3892 return (error); 3893 data = &x.rk; 3894 break; 3895 case PROC_ASLR_STATUS: 3896 case PROC_PROTMAX_STATUS: 3897 case PROC_STACKGAP_STATUS: 3898 case PROC_TRACE_STATUS: 3899 case PROC_TRAPCAP_STATUS: 3900 case PROC_NO_NEW_PRIVS_STATUS: 3901 case PROC_WXMAP_STATUS: 3902 data = &flags; 3903 break; 3904 case PROC_PDEATHSIG_CTL: 3905 error = copyin(uap->data, &signum, sizeof(signum)); 3906 if (error != 0) 3907 return (error); 3908 data = &signum; 3909 break; 3910 case PROC_PDEATHSIG_STATUS: 3911 data = &signum; 3912 break; 3913 default: 3914 return (EINVAL); 3915 } 3916 error = kern_procctl(td, uap->idtype, PAIR32TO64(id_t, uap->id), 3917 uap->com, data); 3918 switch (uap->com) { 3919 case PROC_REAP_STATUS: 3920 if (error == 0) 3921 error = copyout(&x.rs, uap->data, sizeof(x.rs)); 3922 break; 3923 case PROC_REAP_KILL: 3924 error1 = copyout(&x.rk, uap->data, sizeof(x.rk)); 3925 if (error == 0) 3926 error = error1; 3927 break; 3928 case PROC_ASLR_STATUS: 3929 case PROC_PROTMAX_STATUS: 3930 case PROC_STACKGAP_STATUS: 3931 case PROC_TRACE_STATUS: 3932 case PROC_TRAPCAP_STATUS: 3933 case PROC_NO_NEW_PRIVS_STATUS: 3934 case PROC_WXMAP_STATUS: 3935 if (error == 0) 3936 error = copyout(&flags, uap->data, sizeof(flags)); 3937 break; 3938 case PROC_PDEATHSIG_STATUS: 3939 if (error == 0) 3940 error = copyout(&signum, uap->data, sizeof(signum)); 3941 break; 3942 } 3943 return (error); 3944 } 3945 3946 int 3947 freebsd32_fcntl(struct thread *td, struct freebsd32_fcntl_args *uap) 3948 { 3949 long tmp; 3950 3951 switch (uap->cmd) { 3952 /* 3953 * Do unsigned conversion for arg when operation 3954 * interprets it as flags or pointer. 3955 */ 3956 case F_SETLK_REMOTE: 3957 case F_SETLKW: 3958 case F_SETLK: 3959 case F_GETLK: 3960 case F_SETFD: 3961 case F_SETFL: 3962 case F_OGETLK: 3963 case F_OSETLK: 3964 case F_OSETLKW: 3965 case F_KINFO: 3966 tmp = (unsigned int)(uap->arg); 3967 break; 3968 default: 3969 tmp = uap->arg; 3970 break; 3971 } 3972 return (kern_fcntl_freebsd(td, uap->fd, uap->cmd, tmp)); 3973 } 3974 3975 int 3976 freebsd32_ppoll(struct thread *td, struct freebsd32_ppoll_args *uap) 3977 { 3978 struct timespec32 ts32; 3979 struct timespec ts, *tsp; 3980 sigset_t set, *ssp; 3981 int error; 3982 3983 if (uap->ts != NULL) { 3984 error = copyin(uap->ts, &ts32, sizeof(ts32)); 3985 if (error != 0) 3986 return (error); 3987 CP(ts32, ts, tv_sec); 3988 CP(ts32, ts, tv_nsec); 3989 tsp = &ts; 3990 } else 3991 tsp = NULL; 3992 if (uap->set != NULL) { 3993 error = copyin(uap->set, &set, sizeof(set)); 3994 if (error != 0) 3995 return (error); 3996 ssp = &set; 3997 } else 3998 ssp = NULL; 3999 4000 return (kern_poll(td, uap->fds, uap->nfds, tsp, ssp)); 4001 } 4002 4003 int 4004 freebsd32_sched_rr_get_interval(struct thread *td, 4005 struct freebsd32_sched_rr_get_interval_args *uap) 4006 { 4007 struct timespec ts; 4008 struct timespec32 ts32; 4009 int error; 4010 4011 error = kern_sched_rr_get_interval(td, uap->pid, &ts); 4012 if (error == 0) { 4013 CP(ts, ts32, tv_sec); 4014 CP(ts, ts32, tv_nsec); 4015 error = copyout(&ts32, uap->interval, sizeof(ts32)); 4016 } 4017 return (error); 4018 } 4019 4020 static void 4021 timex_to_32(struct timex32 *dst, struct timex *src) 4022 { 4023 CP(*src, *dst, modes); 4024 CP(*src, *dst, offset); 4025 CP(*src, *dst, freq); 4026 CP(*src, *dst, maxerror); 4027 CP(*src, *dst, esterror); 4028 CP(*src, *dst, status); 4029 CP(*src, *dst, constant); 4030 CP(*src, *dst, precision); 4031 CP(*src, *dst, tolerance); 4032 CP(*src, *dst, ppsfreq); 4033 CP(*src, *dst, jitter); 4034 CP(*src, *dst, shift); 4035 CP(*src, *dst, stabil); 4036 CP(*src, *dst, jitcnt); 4037 CP(*src, *dst, calcnt); 4038 CP(*src, *dst, errcnt); 4039 CP(*src, *dst, stbcnt); 4040 } 4041 4042 static void 4043 timex_from_32(struct timex *dst, struct timex32 *src) 4044 { 4045 CP(*src, *dst, modes); 4046 CP(*src, *dst, offset); 4047 CP(*src, *dst, freq); 4048 CP(*src, *dst, maxerror); 4049 CP(*src, *dst, esterror); 4050 CP(*src, *dst, status); 4051 CP(*src, *dst, constant); 4052 CP(*src, *dst, precision); 4053 CP(*src, *dst, tolerance); 4054 CP(*src, *dst, ppsfreq); 4055 CP(*src, *dst, jitter); 4056 CP(*src, *dst, shift); 4057 CP(*src, *dst, stabil); 4058 CP(*src, *dst, jitcnt); 4059 CP(*src, *dst, calcnt); 4060 CP(*src, *dst, errcnt); 4061 CP(*src, *dst, stbcnt); 4062 } 4063 4064 int 4065 freebsd32_ntp_adjtime(struct thread *td, struct freebsd32_ntp_adjtime_args *uap) 4066 { 4067 struct timex tx; 4068 struct timex32 tx32; 4069 int error, retval; 4070 4071 error = copyin(uap->tp, &tx32, sizeof(tx32)); 4072 if (error == 0) { 4073 timex_from_32(&tx, &tx32); 4074 error = kern_ntp_adjtime(td, &tx, &retval); 4075 if (error == 0) { 4076 timex_to_32(&tx32, &tx); 4077 error = copyout(&tx32, uap->tp, sizeof(tx32)); 4078 if (error == 0) 4079 td->td_retval[0] = retval; 4080 } 4081 } 4082 return (error); 4083 } 4084 4085 #ifdef FFCLOCK 4086 extern struct mtx ffclock_mtx; 4087 extern struct ffclock_estimate ffclock_estimate; 4088 extern int8_t ffclock_updated; 4089 4090 int 4091 freebsd32_ffclock_setestimate(struct thread *td, 4092 struct freebsd32_ffclock_setestimate_args *uap) 4093 { 4094 struct ffclock_estimate cest; 4095 struct ffclock_estimate32 cest32; 4096 int error; 4097 4098 /* Reuse of PRIV_CLOCK_SETTIME. */ 4099 if ((error = priv_check(td, PRIV_CLOCK_SETTIME)) != 0) 4100 return (error); 4101 4102 if ((error = copyin(uap->cest, &cest32, 4103 sizeof(struct ffclock_estimate32))) != 0) 4104 return (error); 4105 4106 CP(cest.update_time, cest32.update_time, sec); 4107 memcpy(&cest.update_time.frac, &cest32.update_time.frac, sizeof(uint64_t)); 4108 CP(cest, cest32, update_ffcount); 4109 CP(cest, cest32, leapsec_next); 4110 CP(cest, cest32, period); 4111 CP(cest, cest32, errb_abs); 4112 CP(cest, cest32, errb_rate); 4113 CP(cest, cest32, status); 4114 CP(cest, cest32, leapsec_total); 4115 CP(cest, cest32, leapsec); 4116 4117 mtx_lock(&ffclock_mtx); 4118 memcpy(&ffclock_estimate, &cest, sizeof(struct ffclock_estimate)); 4119 ffclock_updated++; 4120 mtx_unlock(&ffclock_mtx); 4121 return (error); 4122 } 4123 4124 int 4125 freebsd32_ffclock_getestimate(struct thread *td, 4126 struct freebsd32_ffclock_getestimate_args *uap) 4127 { 4128 struct ffclock_estimate cest; 4129 struct ffclock_estimate32 cest32; 4130 int error; 4131 4132 mtx_lock(&ffclock_mtx); 4133 memcpy(&cest, &ffclock_estimate, sizeof(struct ffclock_estimate)); 4134 mtx_unlock(&ffclock_mtx); 4135 4136 CP(cest32.update_time, cest.update_time, sec); 4137 memcpy(&cest32.update_time.frac, &cest.update_time.frac, sizeof(uint64_t)); 4138 CP(cest32, cest, update_ffcount); 4139 CP(cest32, cest, leapsec_next); 4140 CP(cest32, cest, period); 4141 CP(cest32, cest, errb_abs); 4142 CP(cest32, cest, errb_rate); 4143 CP(cest32, cest, status); 4144 CP(cest32, cest, leapsec_total); 4145 CP(cest32, cest, leapsec); 4146 4147 error = copyout(&cest32, uap->cest, sizeof(struct ffclock_estimate32)); 4148 return (error); 4149 } 4150 #else /* !FFCLOCK */ 4151 int 4152 freebsd32_ffclock_setestimate(struct thread *td, 4153 struct freebsd32_ffclock_setestimate_args *uap) 4154 { 4155 return (ENOSYS); 4156 } 4157 4158 int 4159 freebsd32_ffclock_getestimate(struct thread *td, 4160 struct freebsd32_ffclock_getestimate_args *uap) 4161 { 4162 return (ENOSYS); 4163 } 4164 #endif /* FFCLOCK */ 4165 4166 #ifdef COMPAT_43 4167 int 4168 ofreebsd32_sethostid(struct thread *td, struct ofreebsd32_sethostid_args *uap) 4169 { 4170 int name[] = { CTL_KERN, KERN_HOSTID }; 4171 long hostid; 4172 4173 hostid = uap->hostid; 4174 return (kernel_sysctl(td, name, nitems(name), NULL, NULL, &hostid, 4175 sizeof(hostid), NULL, 0)); 4176 } 4177 #endif 4178