1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2002 Doug Rabson 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include "opt_ffclock.h" 33 #include "opt_inet.h" 34 #include "opt_inet6.h" 35 #include "opt_ktrace.h" 36 37 #define __ELF_WORD_SIZE 32 38 39 #ifdef COMPAT_FREEBSD11 40 #define _WANT_FREEBSD11_KEVENT 41 #endif 42 43 #include <sys/param.h> 44 #include <sys/bus.h> 45 #include <sys/capsicum.h> 46 #include <sys/clock.h> 47 #include <sys/exec.h> 48 #include <sys/fcntl.h> 49 #include <sys/filedesc.h> 50 #include <sys/imgact.h> 51 #include <sys/jail.h> 52 #include <sys/kernel.h> 53 #include <sys/limits.h> 54 #include <sys/linker.h> 55 #include <sys/lock.h> 56 #include <sys/malloc.h> 57 #include <sys/file.h> /* Must come after sys/malloc.h */ 58 #include <sys/imgact.h> 59 #include <sys/mbuf.h> 60 #include <sys/mman.h> 61 #include <sys/module.h> 62 #include <sys/mount.h> 63 #include <sys/mutex.h> 64 #include <sys/namei.h> 65 #include <sys/priv.h> 66 #include <sys/proc.h> 67 #include <sys/procctl.h> 68 #include <sys/ptrace.h> 69 #include <sys/reboot.h> 70 #include <sys/resource.h> 71 #include <sys/resourcevar.h> 72 #include <sys/selinfo.h> 73 #include <sys/eventvar.h> /* Must come after sys/selinfo.h */ 74 #include <sys/pipe.h> /* Must come after sys/selinfo.h */ 75 #include <sys/signal.h> 76 #include <sys/signalvar.h> 77 #include <sys/socket.h> 78 #include <sys/socketvar.h> 79 #include <sys/stat.h> 80 #include <sys/syscall.h> 81 #include <sys/syscallsubr.h> 82 #include <sys/sysctl.h> 83 #include <sys/sysent.h> 84 #include <sys/sysproto.h> 85 #include <sys/systm.h> 86 #include <sys/thr.h> 87 #include <sys/timex.h> 88 #include <sys/unistd.h> 89 #include <sys/ucontext.h> 90 #include <sys/vnode.h> 91 #include <sys/wait.h> 92 #include <sys/ipc.h> 93 #include <sys/msg.h> 94 #include <sys/sem.h> 95 #include <sys/shm.h> 96 #include <sys/timeffc.h> 97 #ifdef KTRACE 98 #include <sys/ktrace.h> 99 #endif 100 101 #ifdef INET 102 #include <netinet/in.h> 103 #endif 104 105 #include <vm/vm.h> 106 #include <vm/vm_param.h> 107 #include <vm/pmap.h> 108 #include <vm/vm_map.h> 109 #include <vm/vm_object.h> 110 #include <vm/vm_extern.h> 111 112 #include <machine/cpu.h> 113 #include <machine/elf.h> 114 #ifdef __amd64__ 115 #include <machine/md_var.h> 116 #endif 117 118 #include <security/audit/audit.h> 119 120 #include <compat/freebsd32/freebsd32_util.h> 121 #include <compat/freebsd32/freebsd32.h> 122 #include <compat/freebsd32/freebsd32_ipc.h> 123 #include <compat/freebsd32/freebsd32_misc.h> 124 #include <compat/freebsd32/freebsd32_signal.h> 125 #include <compat/freebsd32/freebsd32_proto.h> 126 127 FEATURE(compat_freebsd_32bit, "Compatible with 32-bit FreeBSD"); 128 129 struct ptrace_io_desc32 { 130 int piod_op; 131 uint32_t piod_offs; 132 uint32_t piod_addr; 133 uint32_t piod_len; 134 }; 135 136 struct ptrace_vm_entry32 { 137 int pve_entry; 138 int pve_timestamp; 139 uint32_t pve_start; 140 uint32_t pve_end; 141 uint32_t pve_offset; 142 u_int pve_prot; 143 u_int pve_pathlen; 144 int32_t pve_fileid; 145 u_int pve_fsid; 146 uint32_t pve_path; 147 }; 148 149 #ifdef __amd64__ 150 CTASSERT(sizeof(struct timeval32) == 8); 151 CTASSERT(sizeof(struct timespec32) == 8); 152 CTASSERT(sizeof(struct itimerval32) == 16); 153 CTASSERT(sizeof(struct bintime32) == 12); 154 #else 155 CTASSERT(sizeof(struct timeval32) == 16); 156 CTASSERT(sizeof(struct timespec32) == 16); 157 CTASSERT(sizeof(struct itimerval32) == 32); 158 CTASSERT(sizeof(struct bintime32) == 16); 159 #endif 160 CTASSERT(sizeof(struct ostatfs32) == 256); 161 #ifdef __amd64__ 162 CTASSERT(sizeof(struct rusage32) == 72); 163 #else 164 CTASSERT(sizeof(struct rusage32) == 88); 165 #endif 166 CTASSERT(sizeof(struct sigaltstack32) == 12); 167 #ifdef __amd64__ 168 CTASSERT(sizeof(struct kevent32) == 56); 169 #else 170 CTASSERT(sizeof(struct kevent32) == 64); 171 #endif 172 CTASSERT(sizeof(struct iovec32) == 8); 173 CTASSERT(sizeof(struct msghdr32) == 28); 174 #ifdef __amd64__ 175 CTASSERT(sizeof(struct stat32) == 208); 176 CTASSERT(sizeof(struct freebsd11_stat32) == 96); 177 #else 178 CTASSERT(sizeof(struct stat32) == 224); 179 CTASSERT(sizeof(struct freebsd11_stat32) == 120); 180 #endif 181 CTASSERT(sizeof(struct sigaction32) == 24); 182 183 static int freebsd32_kevent_copyout(void *arg, struct kevent *kevp, int count); 184 static int freebsd32_kevent_copyin(void *arg, struct kevent *kevp, int count); 185 static int freebsd32_user_clock_nanosleep(struct thread *td, clockid_t clock_id, 186 int flags, const struct timespec32 *ua_rqtp, struct timespec32 *ua_rmtp); 187 188 void 189 freebsd32_rusage_out(const struct rusage *s, struct rusage32 *s32) 190 { 191 192 TV_CP(*s, *s32, ru_utime); 193 TV_CP(*s, *s32, ru_stime); 194 CP(*s, *s32, ru_maxrss); 195 CP(*s, *s32, ru_ixrss); 196 CP(*s, *s32, ru_idrss); 197 CP(*s, *s32, ru_isrss); 198 CP(*s, *s32, ru_minflt); 199 CP(*s, *s32, ru_majflt); 200 CP(*s, *s32, ru_nswap); 201 CP(*s, *s32, ru_inblock); 202 CP(*s, *s32, ru_oublock); 203 CP(*s, *s32, ru_msgsnd); 204 CP(*s, *s32, ru_msgrcv); 205 CP(*s, *s32, ru_nsignals); 206 CP(*s, *s32, ru_nvcsw); 207 CP(*s, *s32, ru_nivcsw); 208 } 209 210 int 211 freebsd32_wait4(struct thread *td, struct freebsd32_wait4_args *uap) 212 { 213 int error, status; 214 struct rusage32 ru32; 215 struct rusage ru, *rup; 216 217 if (uap->rusage != NULL) 218 rup = &ru; 219 else 220 rup = NULL; 221 error = kern_wait(td, uap->pid, &status, uap->options, rup); 222 if (error) 223 return (error); 224 if (uap->status != NULL) 225 error = copyout(&status, uap->status, sizeof(status)); 226 if (uap->rusage != NULL && error == 0) { 227 freebsd32_rusage_out(&ru, &ru32); 228 error = copyout(&ru32, uap->rusage, sizeof(ru32)); 229 } 230 return (error); 231 } 232 233 int 234 freebsd32_wait6(struct thread *td, struct freebsd32_wait6_args *uap) 235 { 236 struct __wrusage32 wru32; 237 struct __wrusage wru, *wrup; 238 struct siginfo32 si32; 239 struct __siginfo si, *sip; 240 int error, status; 241 242 if (uap->wrusage != NULL) 243 wrup = &wru; 244 else 245 wrup = NULL; 246 if (uap->info != NULL) { 247 sip = &si; 248 bzero(sip, sizeof(*sip)); 249 } else 250 sip = NULL; 251 error = kern_wait6(td, uap->idtype, PAIR32TO64(id_t, uap->id), 252 &status, uap->options, wrup, sip); 253 if (error != 0) 254 return (error); 255 if (uap->status != NULL) 256 error = copyout(&status, uap->status, sizeof(status)); 257 if (uap->wrusage != NULL && error == 0) { 258 freebsd32_rusage_out(&wru.wru_self, &wru32.wru_self); 259 freebsd32_rusage_out(&wru.wru_children, &wru32.wru_children); 260 error = copyout(&wru32, uap->wrusage, sizeof(wru32)); 261 } 262 if (uap->info != NULL && error == 0) { 263 siginfo_to_siginfo32 (&si, &si32); 264 error = copyout(&si32, uap->info, sizeof(si32)); 265 } 266 return (error); 267 } 268 269 #ifdef COMPAT_FREEBSD4 270 static void 271 copy_statfs(struct statfs *in, struct ostatfs32 *out) 272 { 273 274 statfs_scale_blocks(in, INT32_MAX); 275 bzero(out, sizeof(*out)); 276 CP(*in, *out, f_bsize); 277 out->f_iosize = MIN(in->f_iosize, INT32_MAX); 278 CP(*in, *out, f_blocks); 279 CP(*in, *out, f_bfree); 280 CP(*in, *out, f_bavail); 281 out->f_files = MIN(in->f_files, INT32_MAX); 282 out->f_ffree = MIN(in->f_ffree, INT32_MAX); 283 CP(*in, *out, f_fsid); 284 CP(*in, *out, f_owner); 285 CP(*in, *out, f_type); 286 CP(*in, *out, f_flags); 287 out->f_syncwrites = MIN(in->f_syncwrites, INT32_MAX); 288 out->f_asyncwrites = MIN(in->f_asyncwrites, INT32_MAX); 289 strlcpy(out->f_fstypename, 290 in->f_fstypename, MFSNAMELEN); 291 strlcpy(out->f_mntonname, 292 in->f_mntonname, min(MNAMELEN, FREEBSD4_OMNAMELEN)); 293 out->f_syncreads = MIN(in->f_syncreads, INT32_MAX); 294 out->f_asyncreads = MIN(in->f_asyncreads, INT32_MAX); 295 strlcpy(out->f_mntfromname, 296 in->f_mntfromname, min(MNAMELEN, FREEBSD4_OMNAMELEN)); 297 } 298 #endif 299 300 int 301 freebsd32_getfsstat(struct thread *td, struct freebsd32_getfsstat_args *uap) 302 { 303 size_t count; 304 int error; 305 306 if (uap->bufsize < 0 || uap->bufsize > SIZE_MAX) 307 return (EINVAL); 308 error = kern_getfsstat(td, &uap->buf, uap->bufsize, &count, 309 UIO_USERSPACE, uap->mode); 310 if (error == 0) 311 td->td_retval[0] = count; 312 return (error); 313 } 314 315 #ifdef COMPAT_FREEBSD4 316 int 317 freebsd4_freebsd32_getfsstat(struct thread *td, 318 struct freebsd4_freebsd32_getfsstat_args *uap) 319 { 320 struct statfs *buf, *sp; 321 struct ostatfs32 stat32; 322 size_t count, size, copycount; 323 int error; 324 325 count = uap->bufsize / sizeof(struct ostatfs32); 326 size = count * sizeof(struct statfs); 327 error = kern_getfsstat(td, &buf, size, &count, UIO_SYSSPACE, uap->mode); 328 if (size > 0) { 329 sp = buf; 330 copycount = count; 331 while (copycount > 0 && error == 0) { 332 copy_statfs(sp, &stat32); 333 error = copyout(&stat32, uap->buf, sizeof(stat32)); 334 sp++; 335 uap->buf++; 336 copycount--; 337 } 338 free(buf, M_STATFS); 339 } 340 if (error == 0) 341 td->td_retval[0] = count; 342 return (error); 343 } 344 #endif 345 346 #ifdef COMPAT_FREEBSD11 347 int 348 freebsd11_freebsd32_getfsstat(struct thread *td, 349 struct freebsd11_freebsd32_getfsstat_args *uap) 350 { 351 return(kern_freebsd11_getfsstat(td, uap->buf, uap->bufsize, 352 uap->mode)); 353 } 354 #endif 355 356 int 357 freebsd32_sigaltstack(struct thread *td, 358 struct freebsd32_sigaltstack_args *uap) 359 { 360 struct sigaltstack32 s32; 361 struct sigaltstack ss, oss, *ssp; 362 int error; 363 364 if (uap->ss != NULL) { 365 error = copyin(uap->ss, &s32, sizeof(s32)); 366 if (error) 367 return (error); 368 PTRIN_CP(s32, ss, ss_sp); 369 CP(s32, ss, ss_size); 370 CP(s32, ss, ss_flags); 371 ssp = &ss; 372 } else 373 ssp = NULL; 374 error = kern_sigaltstack(td, ssp, &oss); 375 if (error == 0 && uap->oss != NULL) { 376 PTROUT_CP(oss, s32, ss_sp); 377 CP(oss, s32, ss_size); 378 CP(oss, s32, ss_flags); 379 error = copyout(&s32, uap->oss, sizeof(s32)); 380 } 381 return (error); 382 } 383 384 /* 385 * Custom version of exec_copyin_args() so that we can translate 386 * the pointers. 387 */ 388 int 389 freebsd32_exec_copyin_args(struct image_args *args, const char *fname, 390 enum uio_seg segflg, uint32_t *argv, uint32_t *envv) 391 { 392 char *argp, *envp; 393 uint32_t *p32, arg; 394 int error; 395 396 bzero(args, sizeof(*args)); 397 if (argv == NULL) 398 return (EFAULT); 399 400 /* 401 * Allocate demand-paged memory for the file name, argument, and 402 * environment strings. 403 */ 404 error = exec_alloc_args(args); 405 if (error != 0) 406 return (error); 407 408 /* 409 * Copy the file name. 410 */ 411 error = exec_args_add_fname(args, fname, segflg); 412 if (error != 0) 413 goto err_exit; 414 415 /* 416 * extract arguments first 417 */ 418 p32 = argv; 419 for (;;) { 420 error = copyin(p32++, &arg, sizeof(arg)); 421 if (error) 422 goto err_exit; 423 if (arg == 0) 424 break; 425 argp = PTRIN(arg); 426 error = exec_args_add_arg(args, argp, UIO_USERSPACE); 427 if (error != 0) 428 goto err_exit; 429 } 430 431 /* 432 * extract environment strings 433 */ 434 if (envv) { 435 p32 = envv; 436 for (;;) { 437 error = copyin(p32++, &arg, sizeof(arg)); 438 if (error) 439 goto err_exit; 440 if (arg == 0) 441 break; 442 envp = PTRIN(arg); 443 error = exec_args_add_env(args, envp, UIO_USERSPACE); 444 if (error != 0) 445 goto err_exit; 446 } 447 } 448 449 return (0); 450 451 err_exit: 452 exec_free_args(args); 453 return (error); 454 } 455 456 int 457 freebsd32_execve(struct thread *td, struct freebsd32_execve_args *uap) 458 { 459 struct image_args eargs; 460 struct vmspace *oldvmspace; 461 int error; 462 463 error = pre_execve(td, &oldvmspace); 464 if (error != 0) 465 return (error); 466 error = freebsd32_exec_copyin_args(&eargs, uap->fname, UIO_USERSPACE, 467 uap->argv, uap->envv); 468 if (error == 0) 469 error = kern_execve(td, &eargs, NULL, oldvmspace); 470 post_execve(td, error, oldvmspace); 471 AUDIT_SYSCALL_EXIT(error == EJUSTRETURN ? 0 : error, td); 472 return (error); 473 } 474 475 int 476 freebsd32_fexecve(struct thread *td, struct freebsd32_fexecve_args *uap) 477 { 478 struct image_args eargs; 479 struct vmspace *oldvmspace; 480 int error; 481 482 error = pre_execve(td, &oldvmspace); 483 if (error != 0) 484 return (error); 485 error = freebsd32_exec_copyin_args(&eargs, NULL, UIO_SYSSPACE, 486 uap->argv, uap->envv); 487 if (error == 0) { 488 eargs.fd = uap->fd; 489 error = kern_execve(td, &eargs, NULL, oldvmspace); 490 } 491 post_execve(td, error, oldvmspace); 492 AUDIT_SYSCALL_EXIT(error == EJUSTRETURN ? 0 : error, td); 493 return (error); 494 } 495 496 int 497 freebsd32_mknodat(struct thread *td, struct freebsd32_mknodat_args *uap) 498 { 499 500 return (kern_mknodat(td, uap->fd, uap->path, UIO_USERSPACE, 501 uap->mode, PAIR32TO64(dev_t, uap->dev))); 502 } 503 504 int 505 freebsd32_mprotect(struct thread *td, struct freebsd32_mprotect_args *uap) 506 { 507 int prot; 508 509 prot = uap->prot; 510 #if defined(__amd64__) 511 if (i386_read_exec && (prot & PROT_READ) != 0) 512 prot |= PROT_EXEC; 513 #endif 514 return (kern_mprotect(td, (uintptr_t)PTRIN(uap->addr), uap->len, 515 prot)); 516 } 517 518 int 519 freebsd32_mmap(struct thread *td, struct freebsd32_mmap_args *uap) 520 { 521 int prot; 522 523 prot = uap->prot; 524 #if defined(__amd64__) 525 if (i386_read_exec && (prot & PROT_READ)) 526 prot |= PROT_EXEC; 527 #endif 528 529 return (kern_mmap(td, &(struct mmap_req){ 530 .mr_hint = (uintptr_t)uap->addr, 531 .mr_len = uap->len, 532 .mr_prot = prot, 533 .mr_flags = uap->flags, 534 .mr_fd = uap->fd, 535 .mr_pos = PAIR32TO64(off_t, uap->pos), 536 })); 537 } 538 539 #ifdef COMPAT_FREEBSD6 540 int 541 freebsd6_freebsd32_mmap(struct thread *td, 542 struct freebsd6_freebsd32_mmap_args *uap) 543 { 544 int prot; 545 546 prot = uap->prot; 547 #if defined(__amd64__) 548 if (i386_read_exec && (prot & PROT_READ)) 549 prot |= PROT_EXEC; 550 #endif 551 552 return (kern_mmap(td, &(struct mmap_req){ 553 .mr_hint = (uintptr_t)uap->addr, 554 .mr_len = uap->len, 555 .mr_prot = prot, 556 .mr_flags = uap->flags, 557 .mr_fd = uap->fd, 558 .mr_pos = PAIR32TO64(off_t, uap->pos), 559 })); 560 } 561 #endif 562 563 #ifdef COMPAT_43 564 int 565 ofreebsd32_mmap(struct thread *td, struct ofreebsd32_mmap_args *uap) 566 { 567 return (kern_ommap(td, (uintptr_t)uap->addr, uap->len, uap->prot, 568 uap->flags, uap->fd, uap->pos)); 569 } 570 #endif 571 572 int 573 freebsd32_setitimer(struct thread *td, struct freebsd32_setitimer_args *uap) 574 { 575 struct itimerval itv, oitv, *itvp; 576 struct itimerval32 i32; 577 int error; 578 579 if (uap->itv != NULL) { 580 error = copyin(uap->itv, &i32, sizeof(i32)); 581 if (error) 582 return (error); 583 TV_CP(i32, itv, it_interval); 584 TV_CP(i32, itv, it_value); 585 itvp = &itv; 586 } else 587 itvp = NULL; 588 error = kern_setitimer(td, uap->which, itvp, &oitv); 589 if (error || uap->oitv == NULL) 590 return (error); 591 TV_CP(oitv, i32, it_interval); 592 TV_CP(oitv, i32, it_value); 593 return (copyout(&i32, uap->oitv, sizeof(i32))); 594 } 595 596 int 597 freebsd32_getitimer(struct thread *td, struct freebsd32_getitimer_args *uap) 598 { 599 struct itimerval itv; 600 struct itimerval32 i32; 601 int error; 602 603 error = kern_getitimer(td, uap->which, &itv); 604 if (error || uap->itv == NULL) 605 return (error); 606 TV_CP(itv, i32, it_interval); 607 TV_CP(itv, i32, it_value); 608 return (copyout(&i32, uap->itv, sizeof(i32))); 609 } 610 611 int 612 freebsd32_select(struct thread *td, struct freebsd32_select_args *uap) 613 { 614 struct timeval32 tv32; 615 struct timeval tv, *tvp; 616 int error; 617 618 if (uap->tv != NULL) { 619 error = copyin(uap->tv, &tv32, sizeof(tv32)); 620 if (error) 621 return (error); 622 CP(tv32, tv, tv_sec); 623 CP(tv32, tv, tv_usec); 624 tvp = &tv; 625 } else 626 tvp = NULL; 627 /* 628 * XXX Do pointers need PTRIN()? 629 */ 630 return (kern_select(td, uap->nd, uap->in, uap->ou, uap->ex, tvp, 631 sizeof(int32_t) * 8)); 632 } 633 634 int 635 freebsd32_pselect(struct thread *td, struct freebsd32_pselect_args *uap) 636 { 637 struct timespec32 ts32; 638 struct timespec ts; 639 struct timeval tv, *tvp; 640 sigset_t set, *uset; 641 int error; 642 643 if (uap->ts != NULL) { 644 error = copyin(uap->ts, &ts32, sizeof(ts32)); 645 if (error != 0) 646 return (error); 647 CP(ts32, ts, tv_sec); 648 CP(ts32, ts, tv_nsec); 649 TIMESPEC_TO_TIMEVAL(&tv, &ts); 650 tvp = &tv; 651 } else 652 tvp = NULL; 653 if (uap->sm != NULL) { 654 error = copyin(uap->sm, &set, sizeof(set)); 655 if (error != 0) 656 return (error); 657 uset = &set; 658 } else 659 uset = NULL; 660 /* 661 * XXX Do pointers need PTRIN()? 662 */ 663 error = kern_pselect(td, uap->nd, uap->in, uap->ou, uap->ex, tvp, 664 uset, sizeof(int32_t) * 8); 665 return (error); 666 } 667 668 /* 669 * Copy 'count' items into the destination list pointed to by uap->eventlist. 670 */ 671 static int 672 freebsd32_kevent_copyout(void *arg, struct kevent *kevp, int count) 673 { 674 struct freebsd32_kevent_args *uap; 675 struct kevent32 ks32[KQ_NEVENTS]; 676 uint64_t e; 677 int i, j, error; 678 679 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count)); 680 uap = (struct freebsd32_kevent_args *)arg; 681 682 for (i = 0; i < count; i++) { 683 CP(kevp[i], ks32[i], ident); 684 CP(kevp[i], ks32[i], filter); 685 CP(kevp[i], ks32[i], flags); 686 CP(kevp[i], ks32[i], fflags); 687 #if BYTE_ORDER == LITTLE_ENDIAN 688 ks32[i].data1 = kevp[i].data; 689 ks32[i].data2 = kevp[i].data >> 32; 690 #else 691 ks32[i].data1 = kevp[i].data >> 32; 692 ks32[i].data2 = kevp[i].data; 693 #endif 694 PTROUT_CP(kevp[i], ks32[i], udata); 695 for (j = 0; j < nitems(kevp->ext); j++) { 696 e = kevp[i].ext[j]; 697 #if BYTE_ORDER == LITTLE_ENDIAN 698 ks32[i].ext64[2 * j] = e; 699 ks32[i].ext64[2 * j + 1] = e >> 32; 700 #else 701 ks32[i].ext64[2 * j] = e >> 32; 702 ks32[i].ext64[2 * j + 1] = e; 703 #endif 704 } 705 } 706 error = copyout(ks32, uap->eventlist, count * sizeof *ks32); 707 if (error == 0) 708 uap->eventlist += count; 709 return (error); 710 } 711 712 /* 713 * Copy 'count' items from the list pointed to by uap->changelist. 714 */ 715 static int 716 freebsd32_kevent_copyin(void *arg, struct kevent *kevp, int count) 717 { 718 struct freebsd32_kevent_args *uap; 719 struct kevent32 ks32[KQ_NEVENTS]; 720 uint64_t e; 721 int i, j, error; 722 723 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count)); 724 uap = (struct freebsd32_kevent_args *)arg; 725 726 error = copyin(uap->changelist, ks32, count * sizeof *ks32); 727 if (error) 728 goto done; 729 uap->changelist += count; 730 731 for (i = 0; i < count; i++) { 732 CP(ks32[i], kevp[i], ident); 733 CP(ks32[i], kevp[i], filter); 734 CP(ks32[i], kevp[i], flags); 735 CP(ks32[i], kevp[i], fflags); 736 kevp[i].data = PAIR32TO64(uint64_t, ks32[i].data); 737 PTRIN_CP(ks32[i], kevp[i], udata); 738 for (j = 0; j < nitems(kevp->ext); j++) { 739 #if BYTE_ORDER == LITTLE_ENDIAN 740 e = ks32[i].ext64[2 * j + 1]; 741 e <<= 32; 742 e += ks32[i].ext64[2 * j]; 743 #else 744 e = ks32[i].ext64[2 * j]; 745 e <<= 32; 746 e += ks32[i].ext64[2 * j + 1]; 747 #endif 748 kevp[i].ext[j] = e; 749 } 750 } 751 done: 752 return (error); 753 } 754 755 int 756 freebsd32_kevent(struct thread *td, struct freebsd32_kevent_args *uap) 757 { 758 struct timespec32 ts32; 759 struct timespec ts, *tsp; 760 struct kevent_copyops k_ops = { 761 .arg = uap, 762 .k_copyout = freebsd32_kevent_copyout, 763 .k_copyin = freebsd32_kevent_copyin, 764 }; 765 #ifdef KTRACE 766 struct kevent32 *eventlist = uap->eventlist; 767 #endif 768 int error; 769 770 if (uap->timeout) { 771 error = copyin(uap->timeout, &ts32, sizeof(ts32)); 772 if (error) 773 return (error); 774 CP(ts32, ts, tv_sec); 775 CP(ts32, ts, tv_nsec); 776 tsp = &ts; 777 } else 778 tsp = NULL; 779 #ifdef KTRACE 780 if (KTRPOINT(td, KTR_STRUCT_ARRAY)) 781 ktrstructarray("kevent32", UIO_USERSPACE, uap->changelist, 782 uap->nchanges, sizeof(struct kevent32)); 783 #endif 784 error = kern_kevent(td, uap->fd, uap->nchanges, uap->nevents, 785 &k_ops, tsp); 786 #ifdef KTRACE 787 if (error == 0 && KTRPOINT(td, KTR_STRUCT_ARRAY)) 788 ktrstructarray("kevent32", UIO_USERSPACE, eventlist, 789 td->td_retval[0], sizeof(struct kevent32)); 790 #endif 791 return (error); 792 } 793 794 #ifdef COMPAT_FREEBSD11 795 static int 796 freebsd32_kevent11_copyout(void *arg, struct kevent *kevp, int count) 797 { 798 struct freebsd11_freebsd32_kevent_args *uap; 799 struct freebsd11_kevent32 ks32[KQ_NEVENTS]; 800 int i, error; 801 802 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count)); 803 uap = (struct freebsd11_freebsd32_kevent_args *)arg; 804 805 for (i = 0; i < count; i++) { 806 CP(kevp[i], ks32[i], ident); 807 CP(kevp[i], ks32[i], filter); 808 CP(kevp[i], ks32[i], flags); 809 CP(kevp[i], ks32[i], fflags); 810 CP(kevp[i], ks32[i], data); 811 PTROUT_CP(kevp[i], ks32[i], udata); 812 } 813 error = copyout(ks32, uap->eventlist, count * sizeof *ks32); 814 if (error == 0) 815 uap->eventlist += count; 816 return (error); 817 } 818 819 /* 820 * Copy 'count' items from the list pointed to by uap->changelist. 821 */ 822 static int 823 freebsd32_kevent11_copyin(void *arg, struct kevent *kevp, int count) 824 { 825 struct freebsd11_freebsd32_kevent_args *uap; 826 struct freebsd11_kevent32 ks32[KQ_NEVENTS]; 827 int i, j, error; 828 829 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count)); 830 uap = (struct freebsd11_freebsd32_kevent_args *)arg; 831 832 error = copyin(uap->changelist, ks32, count * sizeof *ks32); 833 if (error) 834 goto done; 835 uap->changelist += count; 836 837 for (i = 0; i < count; i++) { 838 CP(ks32[i], kevp[i], ident); 839 CP(ks32[i], kevp[i], filter); 840 CP(ks32[i], kevp[i], flags); 841 CP(ks32[i], kevp[i], fflags); 842 CP(ks32[i], kevp[i], data); 843 PTRIN_CP(ks32[i], kevp[i], udata); 844 for (j = 0; j < nitems(kevp->ext); j++) 845 kevp[i].ext[j] = 0; 846 } 847 done: 848 return (error); 849 } 850 851 int 852 freebsd11_freebsd32_kevent(struct thread *td, 853 struct freebsd11_freebsd32_kevent_args *uap) 854 { 855 struct timespec32 ts32; 856 struct timespec ts, *tsp; 857 struct kevent_copyops k_ops = { 858 .arg = uap, 859 .k_copyout = freebsd32_kevent11_copyout, 860 .k_copyin = freebsd32_kevent11_copyin, 861 }; 862 #ifdef KTRACE 863 struct freebsd11_kevent32 *eventlist = uap->eventlist; 864 #endif 865 int error; 866 867 if (uap->timeout) { 868 error = copyin(uap->timeout, &ts32, sizeof(ts32)); 869 if (error) 870 return (error); 871 CP(ts32, ts, tv_sec); 872 CP(ts32, ts, tv_nsec); 873 tsp = &ts; 874 } else 875 tsp = NULL; 876 #ifdef KTRACE 877 if (KTRPOINT(td, KTR_STRUCT_ARRAY)) 878 ktrstructarray("freebsd11_kevent32", UIO_USERSPACE, 879 uap->changelist, uap->nchanges, 880 sizeof(struct freebsd11_kevent32)); 881 #endif 882 error = kern_kevent(td, uap->fd, uap->nchanges, uap->nevents, 883 &k_ops, tsp); 884 #ifdef KTRACE 885 if (error == 0 && KTRPOINT(td, KTR_STRUCT_ARRAY)) 886 ktrstructarray("freebsd11_kevent32", UIO_USERSPACE, 887 eventlist, td->td_retval[0], 888 sizeof(struct freebsd11_kevent32)); 889 #endif 890 return (error); 891 } 892 #endif 893 894 int 895 freebsd32_gettimeofday(struct thread *td, 896 struct freebsd32_gettimeofday_args *uap) 897 { 898 struct timeval atv; 899 struct timeval32 atv32; 900 struct timezone rtz; 901 int error = 0; 902 903 if (uap->tp) { 904 microtime(&atv); 905 CP(atv, atv32, tv_sec); 906 CP(atv, atv32, tv_usec); 907 error = copyout(&atv32, uap->tp, sizeof (atv32)); 908 } 909 if (error == 0 && uap->tzp != NULL) { 910 rtz.tz_minuteswest = 0; 911 rtz.tz_dsttime = 0; 912 error = copyout(&rtz, uap->tzp, sizeof (rtz)); 913 } 914 return (error); 915 } 916 917 int 918 freebsd32_getrusage(struct thread *td, struct freebsd32_getrusage_args *uap) 919 { 920 struct rusage32 s32; 921 struct rusage s; 922 int error; 923 924 error = kern_getrusage(td, uap->who, &s); 925 if (error == 0) { 926 freebsd32_rusage_out(&s, &s32); 927 error = copyout(&s32, uap->rusage, sizeof(s32)); 928 } 929 return (error); 930 } 931 932 static void 933 ptrace_lwpinfo_to32(const struct ptrace_lwpinfo *pl, 934 struct ptrace_lwpinfo32 *pl32) 935 { 936 937 bzero(pl32, sizeof(*pl32)); 938 pl32->pl_lwpid = pl->pl_lwpid; 939 pl32->pl_event = pl->pl_event; 940 pl32->pl_flags = pl->pl_flags; 941 pl32->pl_sigmask = pl->pl_sigmask; 942 pl32->pl_siglist = pl->pl_siglist; 943 siginfo_to_siginfo32(&pl->pl_siginfo, &pl32->pl_siginfo); 944 strcpy(pl32->pl_tdname, pl->pl_tdname); 945 pl32->pl_child_pid = pl->pl_child_pid; 946 pl32->pl_syscall_code = pl->pl_syscall_code; 947 pl32->pl_syscall_narg = pl->pl_syscall_narg; 948 } 949 950 static void 951 ptrace_sc_ret_to32(const struct ptrace_sc_ret *psr, 952 struct ptrace_sc_ret32 *psr32) 953 { 954 955 bzero(psr32, sizeof(*psr32)); 956 psr32->sr_retval[0] = psr->sr_retval[0]; 957 psr32->sr_retval[1] = psr->sr_retval[1]; 958 psr32->sr_error = psr->sr_error; 959 } 960 961 int 962 freebsd32_ptrace(struct thread *td, struct freebsd32_ptrace_args *uap) 963 { 964 union { 965 struct ptrace_io_desc piod; 966 struct ptrace_lwpinfo pl; 967 struct ptrace_vm_entry pve; 968 struct ptrace_coredump pc; 969 struct ptrace_sc_remote sr; 970 struct dbreg32 dbreg; 971 struct fpreg32 fpreg; 972 struct reg32 reg; 973 struct iovec vec; 974 register_t args[nitems(td->td_sa.args)]; 975 struct ptrace_sc_ret psr; 976 int ptevents; 977 } r; 978 union { 979 struct ptrace_io_desc32 piod; 980 struct ptrace_lwpinfo32 pl; 981 struct ptrace_vm_entry32 pve; 982 struct ptrace_coredump32 pc; 983 struct ptrace_sc_remote32 sr; 984 uint32_t args[nitems(td->td_sa.args)]; 985 struct ptrace_sc_ret32 psr; 986 struct iovec32 vec; 987 } r32; 988 syscallarg_t pscr_args[nitems(td->td_sa.args)]; 989 u_int pscr_args32[nitems(td->td_sa.args)]; 990 void *addr; 991 int data, error, i; 992 993 if (!allow_ptrace) 994 return (ENOSYS); 995 error = 0; 996 997 AUDIT_ARG_PID(uap->pid); 998 AUDIT_ARG_CMD(uap->req); 999 AUDIT_ARG_VALUE(uap->data); 1000 addr = &r; 1001 data = uap->data; 1002 switch (uap->req) { 1003 case PT_GET_EVENT_MASK: 1004 case PT_GET_SC_ARGS: 1005 case PT_GET_SC_RET: 1006 break; 1007 case PT_LWPINFO: 1008 if (uap->data > sizeof(r32.pl)) 1009 return (EINVAL); 1010 1011 /* 1012 * Pass size of native structure in 'data'. Truncate 1013 * if necessary to avoid siginfo. 1014 */ 1015 data = sizeof(r.pl); 1016 if (uap->data < offsetof(struct ptrace_lwpinfo32, pl_siginfo) + 1017 sizeof(struct siginfo32)) 1018 data = offsetof(struct ptrace_lwpinfo, pl_siginfo); 1019 break; 1020 case PT_GETREGS: 1021 bzero(&r.reg, sizeof(r.reg)); 1022 break; 1023 case PT_GETFPREGS: 1024 bzero(&r.fpreg, sizeof(r.fpreg)); 1025 break; 1026 case PT_GETDBREGS: 1027 bzero(&r.dbreg, sizeof(r.dbreg)); 1028 break; 1029 case PT_SETREGS: 1030 error = copyin(uap->addr, &r.reg, sizeof(r.reg)); 1031 break; 1032 case PT_SETFPREGS: 1033 error = copyin(uap->addr, &r.fpreg, sizeof(r.fpreg)); 1034 break; 1035 case PT_SETDBREGS: 1036 error = copyin(uap->addr, &r.dbreg, sizeof(r.dbreg)); 1037 break; 1038 case PT_GETREGSET: 1039 case PT_SETREGSET: 1040 error = copyin(uap->addr, &r32.vec, sizeof(r32.vec)); 1041 if (error != 0) 1042 break; 1043 1044 r.vec.iov_len = r32.vec.iov_len; 1045 r.vec.iov_base = PTRIN(r32.vec.iov_base); 1046 break; 1047 case PT_SET_EVENT_MASK: 1048 if (uap->data != sizeof(r.ptevents)) 1049 error = EINVAL; 1050 else 1051 error = copyin(uap->addr, &r.ptevents, uap->data); 1052 break; 1053 case PT_IO: 1054 error = copyin(uap->addr, &r32.piod, sizeof(r32.piod)); 1055 if (error) 1056 break; 1057 CP(r32.piod, r.piod, piod_op); 1058 PTRIN_CP(r32.piod, r.piod, piod_offs); 1059 PTRIN_CP(r32.piod, r.piod, piod_addr); 1060 CP(r32.piod, r.piod, piod_len); 1061 break; 1062 case PT_VM_ENTRY: 1063 error = copyin(uap->addr, &r32.pve, sizeof(r32.pve)); 1064 if (error) 1065 break; 1066 1067 CP(r32.pve, r.pve, pve_entry); 1068 CP(r32.pve, r.pve, pve_timestamp); 1069 CP(r32.pve, r.pve, pve_start); 1070 CP(r32.pve, r.pve, pve_end); 1071 CP(r32.pve, r.pve, pve_offset); 1072 CP(r32.pve, r.pve, pve_prot); 1073 CP(r32.pve, r.pve, pve_pathlen); 1074 CP(r32.pve, r.pve, pve_fileid); 1075 CP(r32.pve, r.pve, pve_fsid); 1076 PTRIN_CP(r32.pve, r.pve, pve_path); 1077 break; 1078 case PT_COREDUMP: 1079 if (uap->data != sizeof(r32.pc)) 1080 error = EINVAL; 1081 else 1082 error = copyin(uap->addr, &r32.pc, uap->data); 1083 CP(r32.pc, r.pc, pc_fd); 1084 CP(r32.pc, r.pc, pc_flags); 1085 r.pc.pc_limit = PAIR32TO64(off_t, r32.pc.pc_limit); 1086 data = sizeof(r.pc); 1087 break; 1088 case PT_SC_REMOTE: 1089 if (uap->data != sizeof(r32.sr)) { 1090 error = EINVAL; 1091 break; 1092 } 1093 error = copyin(uap->addr, &r32.sr, uap->data); 1094 if (error != 0) 1095 break; 1096 CP(r32.sr, r.sr, pscr_syscall); 1097 CP(r32.sr, r.sr, pscr_nargs); 1098 if (r.sr.pscr_nargs > nitems(td->td_sa.args)) { 1099 error = EINVAL; 1100 break; 1101 } 1102 error = copyin(PTRIN(r32.sr.pscr_args), pscr_args32, 1103 sizeof(u_int) * r32.sr.pscr_nargs); 1104 if (error != 0) 1105 break; 1106 for (i = 0; i < r32.sr.pscr_nargs; i++) 1107 pscr_args[i] = pscr_args32[i]; 1108 r.sr.pscr_args = pscr_args; 1109 break; 1110 default: 1111 addr = uap->addr; 1112 break; 1113 } 1114 if (error) 1115 return (error); 1116 1117 error = kern_ptrace(td, uap->req, uap->pid, addr, data); 1118 if (error) 1119 return (error); 1120 1121 switch (uap->req) { 1122 case PT_VM_ENTRY: 1123 CP(r.pve, r32.pve, pve_entry); 1124 CP(r.pve, r32.pve, pve_timestamp); 1125 CP(r.pve, r32.pve, pve_start); 1126 CP(r.pve, r32.pve, pve_end); 1127 CP(r.pve, r32.pve, pve_offset); 1128 CP(r.pve, r32.pve, pve_prot); 1129 CP(r.pve, r32.pve, pve_pathlen); 1130 CP(r.pve, r32.pve, pve_fileid); 1131 CP(r.pve, r32.pve, pve_fsid); 1132 error = copyout(&r32.pve, uap->addr, sizeof(r32.pve)); 1133 break; 1134 case PT_IO: 1135 CP(r.piod, r32.piod, piod_len); 1136 error = copyout(&r32.piod, uap->addr, sizeof(r32.piod)); 1137 break; 1138 case PT_GETREGS: 1139 error = copyout(&r.reg, uap->addr, sizeof(r.reg)); 1140 break; 1141 case PT_GETFPREGS: 1142 error = copyout(&r.fpreg, uap->addr, sizeof(r.fpreg)); 1143 break; 1144 case PT_GETDBREGS: 1145 error = copyout(&r.dbreg, uap->addr, sizeof(r.dbreg)); 1146 break; 1147 case PT_GETREGSET: 1148 r32.vec.iov_len = r.vec.iov_len; 1149 error = copyout(&r32.vec, uap->addr, sizeof(r32.vec)); 1150 break; 1151 case PT_GET_EVENT_MASK: 1152 /* NB: The size in uap->data is validated in kern_ptrace(). */ 1153 error = copyout(&r.ptevents, uap->addr, uap->data); 1154 break; 1155 case PT_LWPINFO: 1156 ptrace_lwpinfo_to32(&r.pl, &r32.pl); 1157 error = copyout(&r32.pl, uap->addr, uap->data); 1158 break; 1159 case PT_GET_SC_ARGS: 1160 for (i = 0; i < nitems(r.args); i++) 1161 r32.args[i] = (uint32_t)r.args[i]; 1162 error = copyout(r32.args, uap->addr, MIN(uap->data, 1163 sizeof(r32.args))); 1164 break; 1165 case PT_GET_SC_RET: 1166 ptrace_sc_ret_to32(&r.psr, &r32.psr); 1167 error = copyout(&r32.psr, uap->addr, MIN(uap->data, 1168 sizeof(r32.psr))); 1169 break; 1170 case PT_SC_REMOTE: 1171 ptrace_sc_ret_to32(&r.sr.pscr_ret, &r32.sr.pscr_ret); 1172 error = copyout(&r32.sr.pscr_ret, uap->addr + 1173 offsetof(struct ptrace_sc_remote32, pscr_ret), 1174 sizeof(r32.psr)); 1175 break; 1176 } 1177 1178 return (error); 1179 } 1180 1181 int 1182 freebsd32_copyinuio(struct iovec32 *iovp, u_int iovcnt, struct uio **uiop) 1183 { 1184 struct iovec32 iov32; 1185 struct iovec *iov; 1186 struct uio *uio; 1187 u_int iovlen; 1188 int error, i; 1189 1190 *uiop = NULL; 1191 if (iovcnt > UIO_MAXIOV) 1192 return (EINVAL); 1193 iovlen = iovcnt * sizeof(struct iovec); 1194 uio = malloc(iovlen + sizeof *uio, M_IOV, M_WAITOK); 1195 iov = (struct iovec *)(uio + 1); 1196 for (i = 0; i < iovcnt; i++) { 1197 error = copyin(&iovp[i], &iov32, sizeof(struct iovec32)); 1198 if (error) { 1199 free(uio, M_IOV); 1200 return (error); 1201 } 1202 iov[i].iov_base = PTRIN(iov32.iov_base); 1203 iov[i].iov_len = iov32.iov_len; 1204 } 1205 uio->uio_iov = iov; 1206 uio->uio_iovcnt = iovcnt; 1207 uio->uio_segflg = UIO_USERSPACE; 1208 uio->uio_offset = -1; 1209 uio->uio_resid = 0; 1210 for (i = 0; i < iovcnt; i++) { 1211 if (iov->iov_len > INT_MAX - uio->uio_resid) { 1212 free(uio, M_IOV); 1213 return (EINVAL); 1214 } 1215 uio->uio_resid += iov->iov_len; 1216 iov++; 1217 } 1218 *uiop = uio; 1219 return (0); 1220 } 1221 1222 int 1223 freebsd32_readv(struct thread *td, struct freebsd32_readv_args *uap) 1224 { 1225 struct uio *auio; 1226 int error; 1227 1228 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 1229 if (error) 1230 return (error); 1231 error = kern_readv(td, uap->fd, auio); 1232 free(auio, M_IOV); 1233 return (error); 1234 } 1235 1236 int 1237 freebsd32_writev(struct thread *td, struct freebsd32_writev_args *uap) 1238 { 1239 struct uio *auio; 1240 int error; 1241 1242 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 1243 if (error) 1244 return (error); 1245 error = kern_writev(td, uap->fd, auio); 1246 free(auio, M_IOV); 1247 return (error); 1248 } 1249 1250 int 1251 freebsd32_preadv(struct thread *td, struct freebsd32_preadv_args *uap) 1252 { 1253 struct uio *auio; 1254 int error; 1255 1256 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 1257 if (error) 1258 return (error); 1259 error = kern_preadv(td, uap->fd, auio, PAIR32TO64(off_t,uap->offset)); 1260 free(auio, M_IOV); 1261 return (error); 1262 } 1263 1264 int 1265 freebsd32_pwritev(struct thread *td, struct freebsd32_pwritev_args *uap) 1266 { 1267 struct uio *auio; 1268 int error; 1269 1270 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 1271 if (error) 1272 return (error); 1273 error = kern_pwritev(td, uap->fd, auio, PAIR32TO64(off_t,uap->offset)); 1274 free(auio, M_IOV); 1275 return (error); 1276 } 1277 1278 int 1279 freebsd32_copyiniov(struct iovec32 *iovp32, u_int iovcnt, struct iovec **iovp, 1280 int error) 1281 { 1282 struct iovec32 iov32; 1283 struct iovec *iov; 1284 u_int iovlen; 1285 int i; 1286 1287 *iovp = NULL; 1288 if (iovcnt > UIO_MAXIOV) 1289 return (error); 1290 iovlen = iovcnt * sizeof(struct iovec); 1291 iov = malloc(iovlen, M_IOV, M_WAITOK); 1292 for (i = 0; i < iovcnt; i++) { 1293 error = copyin(&iovp32[i], &iov32, sizeof(struct iovec32)); 1294 if (error) { 1295 free(iov, M_IOV); 1296 return (error); 1297 } 1298 iov[i].iov_base = PTRIN(iov32.iov_base); 1299 iov[i].iov_len = iov32.iov_len; 1300 } 1301 *iovp = iov; 1302 return (0); 1303 } 1304 1305 static int 1306 freebsd32_copyinmsghdr(const struct msghdr32 *msg32, struct msghdr *msg) 1307 { 1308 struct msghdr32 m32; 1309 int error; 1310 1311 error = copyin(msg32, &m32, sizeof(m32)); 1312 if (error) 1313 return (error); 1314 msg->msg_name = PTRIN(m32.msg_name); 1315 msg->msg_namelen = m32.msg_namelen; 1316 msg->msg_iov = PTRIN(m32.msg_iov); 1317 msg->msg_iovlen = m32.msg_iovlen; 1318 msg->msg_control = PTRIN(m32.msg_control); 1319 msg->msg_controllen = m32.msg_controllen; 1320 msg->msg_flags = m32.msg_flags; 1321 return (0); 1322 } 1323 1324 static int 1325 freebsd32_copyoutmsghdr(struct msghdr *msg, struct msghdr32 *msg32) 1326 { 1327 struct msghdr32 m32; 1328 int error; 1329 1330 m32.msg_name = PTROUT(msg->msg_name); 1331 m32.msg_namelen = msg->msg_namelen; 1332 m32.msg_iov = PTROUT(msg->msg_iov); 1333 m32.msg_iovlen = msg->msg_iovlen; 1334 m32.msg_control = PTROUT(msg->msg_control); 1335 m32.msg_controllen = msg->msg_controllen; 1336 m32.msg_flags = msg->msg_flags; 1337 error = copyout(&m32, msg32, sizeof(m32)); 1338 return (error); 1339 } 1340 1341 #define FREEBSD32_ALIGNBYTES (sizeof(int) - 1) 1342 #define FREEBSD32_ALIGN(p) \ 1343 (((u_long)(p) + FREEBSD32_ALIGNBYTES) & ~FREEBSD32_ALIGNBYTES) 1344 #define FREEBSD32_CMSG_SPACE(l) \ 1345 (FREEBSD32_ALIGN(sizeof(struct cmsghdr)) + FREEBSD32_ALIGN(l)) 1346 1347 #define FREEBSD32_CMSG_DATA(cmsg) ((unsigned char *)(cmsg) + \ 1348 FREEBSD32_ALIGN(sizeof(struct cmsghdr))) 1349 1350 static size_t 1351 freebsd32_cmsg_convert(const struct cmsghdr *cm, void *data, socklen_t datalen) 1352 { 1353 size_t copylen; 1354 union { 1355 struct timespec32 ts; 1356 struct timeval32 tv; 1357 struct bintime32 bt; 1358 } tmp32; 1359 1360 union { 1361 struct timespec ts; 1362 struct timeval tv; 1363 struct bintime bt; 1364 } *in; 1365 1366 in = data; 1367 copylen = 0; 1368 switch (cm->cmsg_level) { 1369 case SOL_SOCKET: 1370 switch (cm->cmsg_type) { 1371 case SCM_TIMESTAMP: 1372 TV_CP(*in, tmp32, tv); 1373 copylen = sizeof(tmp32.tv); 1374 break; 1375 1376 case SCM_BINTIME: 1377 BT_CP(*in, tmp32, bt); 1378 copylen = sizeof(tmp32.bt); 1379 break; 1380 1381 case SCM_REALTIME: 1382 case SCM_MONOTONIC: 1383 TS_CP(*in, tmp32, ts); 1384 copylen = sizeof(tmp32.ts); 1385 break; 1386 1387 default: 1388 break; 1389 } 1390 1391 default: 1392 break; 1393 } 1394 1395 if (copylen == 0) 1396 return (datalen); 1397 1398 KASSERT((datalen >= copylen), ("corrupted cmsghdr")); 1399 1400 bcopy(&tmp32, data, copylen); 1401 return (copylen); 1402 } 1403 1404 static int 1405 freebsd32_copy_msg_out(struct msghdr *msg, struct mbuf *control) 1406 { 1407 struct cmsghdr *cm; 1408 void *data; 1409 socklen_t clen, datalen, datalen_out, oldclen; 1410 int error; 1411 caddr_t ctlbuf; 1412 int len, copylen; 1413 struct mbuf *m; 1414 error = 0; 1415 1416 len = msg->msg_controllen; 1417 msg->msg_controllen = 0; 1418 1419 ctlbuf = msg->msg_control; 1420 for (m = control; m != NULL && len > 0; m = m->m_next) { 1421 cm = mtod(m, struct cmsghdr *); 1422 clen = m->m_len; 1423 while (cm != NULL) { 1424 if (sizeof(struct cmsghdr) > clen || 1425 cm->cmsg_len > clen) { 1426 error = EINVAL; 1427 break; 1428 } 1429 1430 data = CMSG_DATA(cm); 1431 datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data; 1432 datalen_out = freebsd32_cmsg_convert(cm, data, datalen); 1433 1434 /* 1435 * Copy out the message header. Preserve the native 1436 * message size in case we need to inspect the message 1437 * contents later. 1438 */ 1439 copylen = sizeof(struct cmsghdr); 1440 if (len < copylen) { 1441 msg->msg_flags |= MSG_CTRUNC; 1442 m_dispose_extcontrolm(m); 1443 goto exit; 1444 } 1445 oldclen = cm->cmsg_len; 1446 cm->cmsg_len = FREEBSD32_ALIGN(sizeof(struct cmsghdr)) + 1447 datalen_out; 1448 error = copyout(cm, ctlbuf, copylen); 1449 cm->cmsg_len = oldclen; 1450 if (error != 0) 1451 goto exit; 1452 1453 ctlbuf += FREEBSD32_ALIGN(copylen); 1454 len -= FREEBSD32_ALIGN(copylen); 1455 1456 copylen = datalen_out; 1457 if (len < copylen) { 1458 msg->msg_flags |= MSG_CTRUNC; 1459 m_dispose_extcontrolm(m); 1460 break; 1461 } 1462 1463 /* Copy out the message data. */ 1464 error = copyout(data, ctlbuf, copylen); 1465 if (error) 1466 goto exit; 1467 1468 ctlbuf += FREEBSD32_ALIGN(copylen); 1469 len -= FREEBSD32_ALIGN(copylen); 1470 1471 if (CMSG_SPACE(datalen) < clen) { 1472 clen -= CMSG_SPACE(datalen); 1473 cm = (struct cmsghdr *) 1474 ((caddr_t)cm + CMSG_SPACE(datalen)); 1475 } else { 1476 clen = 0; 1477 cm = NULL; 1478 } 1479 1480 msg->msg_controllen += 1481 FREEBSD32_CMSG_SPACE(datalen_out); 1482 } 1483 } 1484 if (len == 0 && m != NULL) { 1485 msg->msg_flags |= MSG_CTRUNC; 1486 m_dispose_extcontrolm(m); 1487 } 1488 1489 exit: 1490 return (error); 1491 } 1492 1493 int 1494 freebsd32_recvmsg(struct thread *td, struct freebsd32_recvmsg_args *uap) 1495 { 1496 struct msghdr msg; 1497 struct iovec *uiov, *iov; 1498 struct mbuf *control = NULL; 1499 struct mbuf **controlp; 1500 int error; 1501 1502 error = freebsd32_copyinmsghdr(uap->msg, &msg); 1503 if (error) 1504 return (error); 1505 error = freebsd32_copyiniov((void *)msg.msg_iov, msg.msg_iovlen, &iov, 1506 EMSGSIZE); 1507 if (error) 1508 return (error); 1509 msg.msg_flags = uap->flags; 1510 uiov = msg.msg_iov; 1511 msg.msg_iov = iov; 1512 1513 controlp = (msg.msg_control != NULL) ? &control : NULL; 1514 error = kern_recvit(td, uap->s, &msg, UIO_USERSPACE, controlp); 1515 if (error == 0) { 1516 msg.msg_iov = uiov; 1517 1518 if (control != NULL) 1519 error = freebsd32_copy_msg_out(&msg, control); 1520 else 1521 msg.msg_controllen = 0; 1522 1523 if (error == 0) 1524 error = freebsd32_copyoutmsghdr(&msg, uap->msg); 1525 } 1526 free(iov, M_IOV); 1527 1528 if (control != NULL) { 1529 if (error != 0) 1530 m_dispose_extcontrolm(control); 1531 m_freem(control); 1532 } 1533 1534 return (error); 1535 } 1536 1537 #ifdef COMPAT_43 1538 int 1539 ofreebsd32_recvmsg(struct thread *td, struct ofreebsd32_recvmsg_args *uap) 1540 { 1541 return (ENOSYS); 1542 } 1543 #endif 1544 1545 /* 1546 * Copy-in the array of control messages constructed using alignment 1547 * and padding suitable for a 32-bit environment and construct an 1548 * mbuf using alignment and padding suitable for a 64-bit kernel. 1549 * The alignment and padding are defined indirectly by CMSG_DATA(), 1550 * CMSG_SPACE() and CMSG_LEN(). 1551 */ 1552 static int 1553 freebsd32_copyin_control(struct mbuf **mp, caddr_t buf, u_int buflen) 1554 { 1555 struct cmsghdr *cm; 1556 struct mbuf *m; 1557 void *in, *in1, *md; 1558 u_int msglen, outlen; 1559 int error; 1560 1561 /* Enforce the size limit of the native implementation. */ 1562 if (buflen > MCLBYTES) 1563 return (EINVAL); 1564 1565 in = malloc(buflen, M_TEMP, M_WAITOK); 1566 error = copyin(buf, in, buflen); 1567 if (error != 0) 1568 goto out; 1569 1570 /* 1571 * Make a pass over the input buffer to determine the amount of space 1572 * required for 64 bit-aligned copies of the control messages. 1573 */ 1574 in1 = in; 1575 outlen = 0; 1576 while (buflen > 0) { 1577 if (buflen < sizeof(*cm)) { 1578 error = EINVAL; 1579 break; 1580 } 1581 cm = (struct cmsghdr *)in1; 1582 if (cm->cmsg_len < FREEBSD32_ALIGN(sizeof(*cm)) || 1583 cm->cmsg_len > buflen) { 1584 error = EINVAL; 1585 break; 1586 } 1587 msglen = FREEBSD32_ALIGN(cm->cmsg_len); 1588 if (msglen < cm->cmsg_len) { 1589 error = EINVAL; 1590 break; 1591 } 1592 /* The native ABI permits the final padding to be omitted. */ 1593 if (msglen > buflen) 1594 msglen = buflen; 1595 buflen -= msglen; 1596 1597 in1 = (char *)in1 + msglen; 1598 outlen += CMSG_ALIGN(sizeof(*cm)) + 1599 CMSG_ALIGN(msglen - FREEBSD32_ALIGN(sizeof(*cm))); 1600 } 1601 if (error != 0) 1602 goto out; 1603 1604 /* 1605 * Allocate up to MJUMPAGESIZE space for the re-aligned and 1606 * re-padded control messages. This allows a full MCLBYTES of 1607 * 32-bit sized and aligned messages to fit and avoids an ABI 1608 * mismatch with the native implementation. 1609 */ 1610 m = m_get2(outlen, M_WAITOK, MT_CONTROL, 0); 1611 if (m == NULL) { 1612 error = EINVAL; 1613 goto out; 1614 } 1615 m->m_len = outlen; 1616 md = mtod(m, void *); 1617 1618 /* 1619 * Make a second pass over input messages, copying them into the output 1620 * buffer. 1621 */ 1622 in1 = in; 1623 while (outlen > 0) { 1624 /* Copy the message header and align the length field. */ 1625 cm = md; 1626 memcpy(cm, in1, sizeof(*cm)); 1627 msglen = cm->cmsg_len - FREEBSD32_ALIGN(sizeof(*cm)); 1628 cm->cmsg_len = CMSG_ALIGN(sizeof(*cm)) + msglen; 1629 1630 /* Copy the message body. */ 1631 in1 = (char *)in1 + FREEBSD32_ALIGN(sizeof(*cm)); 1632 md = (char *)md + CMSG_ALIGN(sizeof(*cm)); 1633 memcpy(md, in1, msglen); 1634 in1 = (char *)in1 + FREEBSD32_ALIGN(msglen); 1635 md = (char *)md + CMSG_ALIGN(msglen); 1636 KASSERT(outlen >= CMSG_ALIGN(sizeof(*cm)) + CMSG_ALIGN(msglen), 1637 ("outlen %u underflow, msglen %u", outlen, msglen)); 1638 outlen -= CMSG_ALIGN(sizeof(*cm)) + CMSG_ALIGN(msglen); 1639 } 1640 1641 *mp = m; 1642 out: 1643 free(in, M_TEMP); 1644 return (error); 1645 } 1646 1647 int 1648 freebsd32_sendmsg(struct thread *td, struct freebsd32_sendmsg_args *uap) 1649 { 1650 struct msghdr msg; 1651 struct iovec *iov; 1652 struct mbuf *control = NULL; 1653 struct sockaddr *to = NULL; 1654 int error; 1655 1656 error = freebsd32_copyinmsghdr(uap->msg, &msg); 1657 if (error) 1658 return (error); 1659 error = freebsd32_copyiniov((void *)msg.msg_iov, msg.msg_iovlen, &iov, 1660 EMSGSIZE); 1661 if (error) 1662 return (error); 1663 msg.msg_iov = iov; 1664 if (msg.msg_name != NULL) { 1665 error = getsockaddr(&to, msg.msg_name, msg.msg_namelen); 1666 if (error) { 1667 to = NULL; 1668 goto out; 1669 } 1670 msg.msg_name = to; 1671 } 1672 1673 if (msg.msg_control) { 1674 if (msg.msg_controllen < sizeof(struct cmsghdr)) { 1675 error = EINVAL; 1676 goto out; 1677 } 1678 1679 error = freebsd32_copyin_control(&control, msg.msg_control, 1680 msg.msg_controllen); 1681 if (error) 1682 goto out; 1683 1684 msg.msg_control = NULL; 1685 msg.msg_controllen = 0; 1686 } 1687 1688 error = kern_sendit(td, uap->s, &msg, uap->flags, control, 1689 UIO_USERSPACE); 1690 1691 out: 1692 free(iov, M_IOV); 1693 if (to) 1694 free(to, M_SONAME); 1695 return (error); 1696 } 1697 1698 #ifdef COMPAT_43 1699 int 1700 ofreebsd32_sendmsg(struct thread *td, struct ofreebsd32_sendmsg_args *uap) 1701 { 1702 return (ENOSYS); 1703 } 1704 #endif 1705 1706 1707 int 1708 freebsd32_settimeofday(struct thread *td, 1709 struct freebsd32_settimeofday_args *uap) 1710 { 1711 struct timeval32 tv32; 1712 struct timeval tv, *tvp; 1713 struct timezone tz, *tzp; 1714 int error; 1715 1716 if (uap->tv) { 1717 error = copyin(uap->tv, &tv32, sizeof(tv32)); 1718 if (error) 1719 return (error); 1720 CP(tv32, tv, tv_sec); 1721 CP(tv32, tv, tv_usec); 1722 tvp = &tv; 1723 } else 1724 tvp = NULL; 1725 if (uap->tzp) { 1726 error = copyin(uap->tzp, &tz, sizeof(tz)); 1727 if (error) 1728 return (error); 1729 tzp = &tz; 1730 } else 1731 tzp = NULL; 1732 return (kern_settimeofday(td, tvp, tzp)); 1733 } 1734 1735 int 1736 freebsd32_utimes(struct thread *td, struct freebsd32_utimes_args *uap) 1737 { 1738 struct timeval32 s32[2]; 1739 struct timeval s[2], *sp; 1740 int error; 1741 1742 if (uap->tptr != NULL) { 1743 error = copyin(uap->tptr, s32, sizeof(s32)); 1744 if (error) 1745 return (error); 1746 CP(s32[0], s[0], tv_sec); 1747 CP(s32[0], s[0], tv_usec); 1748 CP(s32[1], s[1], tv_sec); 1749 CP(s32[1], s[1], tv_usec); 1750 sp = s; 1751 } else 1752 sp = NULL; 1753 return (kern_utimesat(td, AT_FDCWD, uap->path, UIO_USERSPACE, 1754 sp, UIO_SYSSPACE)); 1755 } 1756 1757 int 1758 freebsd32_lutimes(struct thread *td, struct freebsd32_lutimes_args *uap) 1759 { 1760 struct timeval32 s32[2]; 1761 struct timeval s[2], *sp; 1762 int error; 1763 1764 if (uap->tptr != NULL) { 1765 error = copyin(uap->tptr, s32, sizeof(s32)); 1766 if (error) 1767 return (error); 1768 CP(s32[0], s[0], tv_sec); 1769 CP(s32[0], s[0], tv_usec); 1770 CP(s32[1], s[1], tv_sec); 1771 CP(s32[1], s[1], tv_usec); 1772 sp = s; 1773 } else 1774 sp = NULL; 1775 return (kern_lutimes(td, uap->path, UIO_USERSPACE, sp, UIO_SYSSPACE)); 1776 } 1777 1778 int 1779 freebsd32_futimes(struct thread *td, struct freebsd32_futimes_args *uap) 1780 { 1781 struct timeval32 s32[2]; 1782 struct timeval s[2], *sp; 1783 int error; 1784 1785 if (uap->tptr != NULL) { 1786 error = copyin(uap->tptr, s32, sizeof(s32)); 1787 if (error) 1788 return (error); 1789 CP(s32[0], s[0], tv_sec); 1790 CP(s32[0], s[0], tv_usec); 1791 CP(s32[1], s[1], tv_sec); 1792 CP(s32[1], s[1], tv_usec); 1793 sp = s; 1794 } else 1795 sp = NULL; 1796 return (kern_futimes(td, uap->fd, sp, UIO_SYSSPACE)); 1797 } 1798 1799 int 1800 freebsd32_futimesat(struct thread *td, struct freebsd32_futimesat_args *uap) 1801 { 1802 struct timeval32 s32[2]; 1803 struct timeval s[2], *sp; 1804 int error; 1805 1806 if (uap->times != NULL) { 1807 error = copyin(uap->times, s32, sizeof(s32)); 1808 if (error) 1809 return (error); 1810 CP(s32[0], s[0], tv_sec); 1811 CP(s32[0], s[0], tv_usec); 1812 CP(s32[1], s[1], tv_sec); 1813 CP(s32[1], s[1], tv_usec); 1814 sp = s; 1815 } else 1816 sp = NULL; 1817 return (kern_utimesat(td, uap->fd, uap->path, UIO_USERSPACE, 1818 sp, UIO_SYSSPACE)); 1819 } 1820 1821 int 1822 freebsd32_futimens(struct thread *td, struct freebsd32_futimens_args *uap) 1823 { 1824 struct timespec32 ts32[2]; 1825 struct timespec ts[2], *tsp; 1826 int error; 1827 1828 if (uap->times != NULL) { 1829 error = copyin(uap->times, ts32, sizeof(ts32)); 1830 if (error) 1831 return (error); 1832 CP(ts32[0], ts[0], tv_sec); 1833 CP(ts32[0], ts[0], tv_nsec); 1834 CP(ts32[1], ts[1], tv_sec); 1835 CP(ts32[1], ts[1], tv_nsec); 1836 tsp = ts; 1837 } else 1838 tsp = NULL; 1839 return (kern_futimens(td, uap->fd, tsp, UIO_SYSSPACE)); 1840 } 1841 1842 int 1843 freebsd32_utimensat(struct thread *td, struct freebsd32_utimensat_args *uap) 1844 { 1845 struct timespec32 ts32[2]; 1846 struct timespec ts[2], *tsp; 1847 int error; 1848 1849 if (uap->times != NULL) { 1850 error = copyin(uap->times, ts32, sizeof(ts32)); 1851 if (error) 1852 return (error); 1853 CP(ts32[0], ts[0], tv_sec); 1854 CP(ts32[0], ts[0], tv_nsec); 1855 CP(ts32[1], ts[1], tv_sec); 1856 CP(ts32[1], ts[1], tv_nsec); 1857 tsp = ts; 1858 } else 1859 tsp = NULL; 1860 return (kern_utimensat(td, uap->fd, uap->path, UIO_USERSPACE, 1861 tsp, UIO_SYSSPACE, uap->flag)); 1862 } 1863 1864 int 1865 freebsd32_adjtime(struct thread *td, struct freebsd32_adjtime_args *uap) 1866 { 1867 struct timeval32 tv32; 1868 struct timeval delta, olddelta, *deltap; 1869 int error; 1870 1871 if (uap->delta) { 1872 error = copyin(uap->delta, &tv32, sizeof(tv32)); 1873 if (error) 1874 return (error); 1875 CP(tv32, delta, tv_sec); 1876 CP(tv32, delta, tv_usec); 1877 deltap = δ 1878 } else 1879 deltap = NULL; 1880 error = kern_adjtime(td, deltap, &olddelta); 1881 if (uap->olddelta && error == 0) { 1882 CP(olddelta, tv32, tv_sec); 1883 CP(olddelta, tv32, tv_usec); 1884 error = copyout(&tv32, uap->olddelta, sizeof(tv32)); 1885 } 1886 return (error); 1887 } 1888 1889 #ifdef COMPAT_FREEBSD4 1890 int 1891 freebsd4_freebsd32_statfs(struct thread *td, struct freebsd4_freebsd32_statfs_args *uap) 1892 { 1893 struct ostatfs32 s32; 1894 struct statfs *sp; 1895 int error; 1896 1897 sp = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK); 1898 error = kern_statfs(td, uap->path, UIO_USERSPACE, sp); 1899 if (error == 0) { 1900 copy_statfs(sp, &s32); 1901 error = copyout(&s32, uap->buf, sizeof(s32)); 1902 } 1903 free(sp, M_STATFS); 1904 return (error); 1905 } 1906 #endif 1907 1908 #ifdef COMPAT_FREEBSD4 1909 int 1910 freebsd4_freebsd32_fstatfs(struct thread *td, struct freebsd4_freebsd32_fstatfs_args *uap) 1911 { 1912 struct ostatfs32 s32; 1913 struct statfs *sp; 1914 int error; 1915 1916 sp = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK); 1917 error = kern_fstatfs(td, uap->fd, sp); 1918 if (error == 0) { 1919 copy_statfs(sp, &s32); 1920 error = copyout(&s32, uap->buf, sizeof(s32)); 1921 } 1922 free(sp, M_STATFS); 1923 return (error); 1924 } 1925 #endif 1926 1927 #ifdef COMPAT_FREEBSD4 1928 int 1929 freebsd4_freebsd32_fhstatfs(struct thread *td, struct freebsd4_freebsd32_fhstatfs_args *uap) 1930 { 1931 struct ostatfs32 s32; 1932 struct statfs *sp; 1933 fhandle_t fh; 1934 int error; 1935 1936 if ((error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t))) != 0) 1937 return (error); 1938 sp = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK); 1939 error = kern_fhstatfs(td, fh, sp); 1940 if (error == 0) { 1941 copy_statfs(sp, &s32); 1942 error = copyout(&s32, uap->buf, sizeof(s32)); 1943 } 1944 free(sp, M_STATFS); 1945 return (error); 1946 } 1947 #endif 1948 1949 int 1950 freebsd32_pread(struct thread *td, struct freebsd32_pread_args *uap) 1951 { 1952 1953 return (kern_pread(td, uap->fd, uap->buf, uap->nbyte, 1954 PAIR32TO64(off_t, uap->offset))); 1955 } 1956 1957 int 1958 freebsd32_pwrite(struct thread *td, struct freebsd32_pwrite_args *uap) 1959 { 1960 1961 return (kern_pwrite(td, uap->fd, uap->buf, uap->nbyte, 1962 PAIR32TO64(off_t, uap->offset))); 1963 } 1964 1965 #ifdef COMPAT_43 1966 int 1967 ofreebsd32_lseek(struct thread *td, struct ofreebsd32_lseek_args *uap) 1968 { 1969 1970 return (kern_lseek(td, uap->fd, uap->offset, uap->whence)); 1971 } 1972 #endif 1973 1974 int 1975 freebsd32_lseek(struct thread *td, struct freebsd32_lseek_args *uap) 1976 { 1977 int error; 1978 off_t pos; 1979 1980 error = kern_lseek(td, uap->fd, PAIR32TO64(off_t, uap->offset), 1981 uap->whence); 1982 /* Expand the quad return into two parts for eax and edx */ 1983 pos = td->td_uretoff.tdu_off; 1984 td->td_retval[RETVAL_LO] = pos & 0xffffffff; /* %eax */ 1985 td->td_retval[RETVAL_HI] = pos >> 32; /* %edx */ 1986 return error; 1987 } 1988 1989 int 1990 freebsd32_truncate(struct thread *td, struct freebsd32_truncate_args *uap) 1991 { 1992 1993 return (kern_truncate(td, uap->path, UIO_USERSPACE, 1994 PAIR32TO64(off_t, uap->length))); 1995 } 1996 1997 #ifdef COMPAT_43 1998 int 1999 ofreebsd32_truncate(struct thread *td, struct ofreebsd32_truncate_args *uap) 2000 { 2001 return (kern_truncate(td, uap->path, UIO_USERSPACE, uap->length)); 2002 } 2003 #endif 2004 2005 int 2006 freebsd32_ftruncate(struct thread *td, struct freebsd32_ftruncate_args *uap) 2007 { 2008 2009 return (kern_ftruncate(td, uap->fd, PAIR32TO64(off_t, uap->length))); 2010 } 2011 2012 #ifdef COMPAT_43 2013 int 2014 ofreebsd32_ftruncate(struct thread *td, struct ofreebsd32_ftruncate_args *uap) 2015 { 2016 return (kern_ftruncate(td, uap->fd, uap->length)); 2017 } 2018 2019 int 2020 ofreebsd32_getdirentries(struct thread *td, 2021 struct ofreebsd32_getdirentries_args *uap) 2022 { 2023 struct ogetdirentries_args ap; 2024 int error; 2025 long loff; 2026 int32_t loff_cut; 2027 2028 ap.fd = uap->fd; 2029 ap.buf = uap->buf; 2030 ap.count = uap->count; 2031 ap.basep = NULL; 2032 error = kern_ogetdirentries(td, &ap, &loff); 2033 if (error == 0) { 2034 loff_cut = loff; 2035 error = copyout(&loff_cut, uap->basep, sizeof(int32_t)); 2036 } 2037 return (error); 2038 } 2039 #endif 2040 2041 #if defined(COMPAT_FREEBSD11) 2042 int 2043 freebsd11_freebsd32_getdirentries(struct thread *td, 2044 struct freebsd11_freebsd32_getdirentries_args *uap) 2045 { 2046 long base; 2047 int32_t base32; 2048 int error; 2049 2050 error = freebsd11_kern_getdirentries(td, uap->fd, uap->buf, uap->count, 2051 &base, NULL); 2052 if (error) 2053 return (error); 2054 if (uap->basep != NULL) { 2055 base32 = base; 2056 error = copyout(&base32, uap->basep, sizeof(int32_t)); 2057 } 2058 return (error); 2059 } 2060 #endif /* COMPAT_FREEBSD11 */ 2061 2062 #ifdef COMPAT_FREEBSD6 2063 /* versions with the 'int pad' argument */ 2064 int 2065 freebsd6_freebsd32_pread(struct thread *td, struct freebsd6_freebsd32_pread_args *uap) 2066 { 2067 2068 return (kern_pread(td, uap->fd, uap->buf, uap->nbyte, 2069 PAIR32TO64(off_t, uap->offset))); 2070 } 2071 2072 int 2073 freebsd6_freebsd32_pwrite(struct thread *td, struct freebsd6_freebsd32_pwrite_args *uap) 2074 { 2075 2076 return (kern_pwrite(td, uap->fd, uap->buf, uap->nbyte, 2077 PAIR32TO64(off_t, uap->offset))); 2078 } 2079 2080 int 2081 freebsd6_freebsd32_lseek(struct thread *td, struct freebsd6_freebsd32_lseek_args *uap) 2082 { 2083 int error; 2084 off_t pos; 2085 2086 error = kern_lseek(td, uap->fd, PAIR32TO64(off_t, uap->offset), 2087 uap->whence); 2088 /* Expand the quad return into two parts for eax and edx */ 2089 pos = *(off_t *)(td->td_retval); 2090 td->td_retval[RETVAL_LO] = pos & 0xffffffff; /* %eax */ 2091 td->td_retval[RETVAL_HI] = pos >> 32; /* %edx */ 2092 return error; 2093 } 2094 2095 int 2096 freebsd6_freebsd32_truncate(struct thread *td, struct freebsd6_freebsd32_truncate_args *uap) 2097 { 2098 2099 return (kern_truncate(td, uap->path, UIO_USERSPACE, 2100 PAIR32TO64(off_t, uap->length))); 2101 } 2102 2103 int 2104 freebsd6_freebsd32_ftruncate(struct thread *td, struct freebsd6_freebsd32_ftruncate_args *uap) 2105 { 2106 2107 return (kern_ftruncate(td, uap->fd, PAIR32TO64(off_t, uap->length))); 2108 } 2109 #endif /* COMPAT_FREEBSD6 */ 2110 2111 struct sf_hdtr32 { 2112 uint32_t headers; 2113 int hdr_cnt; 2114 uint32_t trailers; 2115 int trl_cnt; 2116 }; 2117 2118 static int 2119 freebsd32_do_sendfile(struct thread *td, 2120 struct freebsd32_sendfile_args *uap, int compat) 2121 { 2122 struct sf_hdtr32 hdtr32; 2123 struct sf_hdtr hdtr; 2124 struct uio *hdr_uio, *trl_uio; 2125 struct file *fp; 2126 cap_rights_t rights; 2127 struct iovec32 *iov32; 2128 off_t offset, sbytes; 2129 int error; 2130 2131 offset = PAIR32TO64(off_t, uap->offset); 2132 if (offset < 0) 2133 return (EINVAL); 2134 2135 hdr_uio = trl_uio = NULL; 2136 2137 if (uap->hdtr != NULL) { 2138 error = copyin(uap->hdtr, &hdtr32, sizeof(hdtr32)); 2139 if (error) 2140 goto out; 2141 PTRIN_CP(hdtr32, hdtr, headers); 2142 CP(hdtr32, hdtr, hdr_cnt); 2143 PTRIN_CP(hdtr32, hdtr, trailers); 2144 CP(hdtr32, hdtr, trl_cnt); 2145 2146 if (hdtr.headers != NULL) { 2147 iov32 = PTRIN(hdtr32.headers); 2148 error = freebsd32_copyinuio(iov32, 2149 hdtr32.hdr_cnt, &hdr_uio); 2150 if (error) 2151 goto out; 2152 #ifdef COMPAT_FREEBSD4 2153 /* 2154 * In FreeBSD < 5.0 the nbytes to send also included 2155 * the header. If compat is specified subtract the 2156 * header size from nbytes. 2157 */ 2158 if (compat) { 2159 if (uap->nbytes > hdr_uio->uio_resid) 2160 uap->nbytes -= hdr_uio->uio_resid; 2161 else 2162 uap->nbytes = 0; 2163 } 2164 #endif 2165 } 2166 if (hdtr.trailers != NULL) { 2167 iov32 = PTRIN(hdtr32.trailers); 2168 error = freebsd32_copyinuio(iov32, 2169 hdtr32.trl_cnt, &trl_uio); 2170 if (error) 2171 goto out; 2172 } 2173 } 2174 2175 AUDIT_ARG_FD(uap->fd); 2176 2177 if ((error = fget_read(td, uap->fd, 2178 cap_rights_init_one(&rights, CAP_PREAD), &fp)) != 0) 2179 goto out; 2180 2181 error = fo_sendfile(fp, uap->s, hdr_uio, trl_uio, offset, 2182 uap->nbytes, &sbytes, uap->flags, td); 2183 fdrop(fp, td); 2184 2185 if (uap->sbytes != NULL) 2186 copyout(&sbytes, uap->sbytes, sizeof(off_t)); 2187 2188 out: 2189 if (hdr_uio) 2190 free(hdr_uio, M_IOV); 2191 if (trl_uio) 2192 free(trl_uio, M_IOV); 2193 return (error); 2194 } 2195 2196 #ifdef COMPAT_FREEBSD4 2197 int 2198 freebsd4_freebsd32_sendfile(struct thread *td, 2199 struct freebsd4_freebsd32_sendfile_args *uap) 2200 { 2201 return (freebsd32_do_sendfile(td, 2202 (struct freebsd32_sendfile_args *)uap, 1)); 2203 } 2204 #endif 2205 2206 int 2207 freebsd32_sendfile(struct thread *td, struct freebsd32_sendfile_args *uap) 2208 { 2209 2210 return (freebsd32_do_sendfile(td, uap, 0)); 2211 } 2212 2213 static void 2214 copy_stat(struct stat *in, struct stat32 *out) 2215 { 2216 2217 #ifndef __amd64__ 2218 /* 2219 * 32-bit architectures other than i386 have 64-bit time_t. This 2220 * results in struct timespec32 with 12 bytes for tv_sec and tv_nsec, 2221 * and 4 bytes of padding. Zero the padding holes in struct stat32. 2222 */ 2223 bzero(&out->st_atim, sizeof(out->st_atim)); 2224 bzero(&out->st_mtim, sizeof(out->st_mtim)); 2225 bzero(&out->st_ctim, sizeof(out->st_ctim)); 2226 bzero(&out->st_birthtim, sizeof(out->st_birthtim)); 2227 #endif 2228 CP(*in, *out, st_dev); 2229 CP(*in, *out, st_ino); 2230 CP(*in, *out, st_mode); 2231 CP(*in, *out, st_nlink); 2232 CP(*in, *out, st_uid); 2233 CP(*in, *out, st_gid); 2234 CP(*in, *out, st_rdev); 2235 TS_CP(*in, *out, st_atim); 2236 TS_CP(*in, *out, st_mtim); 2237 TS_CP(*in, *out, st_ctim); 2238 CP(*in, *out, st_size); 2239 CP(*in, *out, st_blocks); 2240 CP(*in, *out, st_blksize); 2241 CP(*in, *out, st_flags); 2242 CP(*in, *out, st_gen); 2243 TS_CP(*in, *out, st_birthtim); 2244 out->st_padding0 = 0; 2245 out->st_padding1 = 0; 2246 #ifdef __STAT32_TIME_T_EXT 2247 out->st_atim_ext = 0; 2248 out->st_mtim_ext = 0; 2249 out->st_ctim_ext = 0; 2250 out->st_btim_ext = 0; 2251 #endif 2252 bzero(out->st_spare, sizeof(out->st_spare)); 2253 } 2254 2255 #ifdef COMPAT_43 2256 static void 2257 copy_ostat(struct stat *in, struct ostat32 *out) 2258 { 2259 2260 bzero(out, sizeof(*out)); 2261 CP(*in, *out, st_dev); 2262 CP(*in, *out, st_ino); 2263 CP(*in, *out, st_mode); 2264 CP(*in, *out, st_nlink); 2265 CP(*in, *out, st_uid); 2266 CP(*in, *out, st_gid); 2267 CP(*in, *out, st_rdev); 2268 out->st_size = MIN(in->st_size, INT32_MAX); 2269 TS_CP(*in, *out, st_atim); 2270 TS_CP(*in, *out, st_mtim); 2271 TS_CP(*in, *out, st_ctim); 2272 CP(*in, *out, st_blksize); 2273 CP(*in, *out, st_blocks); 2274 CP(*in, *out, st_flags); 2275 CP(*in, *out, st_gen); 2276 } 2277 #endif 2278 2279 #ifdef COMPAT_43 2280 int 2281 ofreebsd32_stat(struct thread *td, struct ofreebsd32_stat_args *uap) 2282 { 2283 struct stat sb; 2284 struct ostat32 sb32; 2285 int error; 2286 2287 error = kern_statat(td, 0, AT_FDCWD, uap->path, UIO_USERSPACE, 2288 &sb, NULL); 2289 if (error) 2290 return (error); 2291 copy_ostat(&sb, &sb32); 2292 error = copyout(&sb32, uap->ub, sizeof (sb32)); 2293 return (error); 2294 } 2295 #endif 2296 2297 int 2298 freebsd32_fstat(struct thread *td, struct freebsd32_fstat_args *uap) 2299 { 2300 struct stat ub; 2301 struct stat32 ub32; 2302 int error; 2303 2304 error = kern_fstat(td, uap->fd, &ub); 2305 if (error) 2306 return (error); 2307 copy_stat(&ub, &ub32); 2308 error = copyout(&ub32, uap->sb, sizeof(ub32)); 2309 return (error); 2310 } 2311 2312 #ifdef COMPAT_43 2313 int 2314 ofreebsd32_fstat(struct thread *td, struct ofreebsd32_fstat_args *uap) 2315 { 2316 struct stat ub; 2317 struct ostat32 ub32; 2318 int error; 2319 2320 error = kern_fstat(td, uap->fd, &ub); 2321 if (error) 2322 return (error); 2323 copy_ostat(&ub, &ub32); 2324 error = copyout(&ub32, uap->sb, sizeof(ub32)); 2325 return (error); 2326 } 2327 #endif 2328 2329 int 2330 freebsd32_fstatat(struct thread *td, struct freebsd32_fstatat_args *uap) 2331 { 2332 struct stat ub; 2333 struct stat32 ub32; 2334 int error; 2335 2336 error = kern_statat(td, uap->flag, uap->fd, uap->path, UIO_USERSPACE, 2337 &ub, NULL); 2338 if (error) 2339 return (error); 2340 copy_stat(&ub, &ub32); 2341 error = copyout(&ub32, uap->buf, sizeof(ub32)); 2342 return (error); 2343 } 2344 2345 #ifdef COMPAT_43 2346 int 2347 ofreebsd32_lstat(struct thread *td, struct ofreebsd32_lstat_args *uap) 2348 { 2349 struct stat sb; 2350 struct ostat32 sb32; 2351 int error; 2352 2353 error = kern_statat(td, AT_SYMLINK_NOFOLLOW, AT_FDCWD, uap->path, 2354 UIO_USERSPACE, &sb, NULL); 2355 if (error) 2356 return (error); 2357 copy_ostat(&sb, &sb32); 2358 error = copyout(&sb32, uap->ub, sizeof (sb32)); 2359 return (error); 2360 } 2361 #endif 2362 2363 int 2364 freebsd32_fhstat(struct thread *td, struct freebsd32_fhstat_args *uap) 2365 { 2366 struct stat sb; 2367 struct stat32 sb32; 2368 struct fhandle fh; 2369 int error; 2370 2371 error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t)); 2372 if (error != 0) 2373 return (error); 2374 error = kern_fhstat(td, fh, &sb); 2375 if (error != 0) 2376 return (error); 2377 copy_stat(&sb, &sb32); 2378 error = copyout(&sb32, uap->sb, sizeof (sb32)); 2379 return (error); 2380 } 2381 2382 #if defined(COMPAT_FREEBSD11) 2383 extern int ino64_trunc_error; 2384 2385 static int 2386 freebsd11_cvtstat32(struct stat *in, struct freebsd11_stat32 *out) 2387 { 2388 2389 #ifndef __amd64__ 2390 /* 2391 * 32-bit architectures other than i386 have 64-bit time_t. This 2392 * results in struct timespec32 with 12 bytes for tv_sec and tv_nsec, 2393 * and 4 bytes of padding. Zero the padding holes in freebsd11_stat32. 2394 */ 2395 bzero(&out->st_atim, sizeof(out->st_atim)); 2396 bzero(&out->st_mtim, sizeof(out->st_mtim)); 2397 bzero(&out->st_ctim, sizeof(out->st_ctim)); 2398 bzero(&out->st_birthtim, sizeof(out->st_birthtim)); 2399 #endif 2400 2401 CP(*in, *out, st_ino); 2402 if (in->st_ino != out->st_ino) { 2403 switch (ino64_trunc_error) { 2404 default: 2405 case 0: 2406 break; 2407 case 1: 2408 return (EOVERFLOW); 2409 case 2: 2410 out->st_ino = UINT32_MAX; 2411 break; 2412 } 2413 } 2414 CP(*in, *out, st_nlink); 2415 if (in->st_nlink != out->st_nlink) { 2416 switch (ino64_trunc_error) { 2417 default: 2418 case 0: 2419 break; 2420 case 1: 2421 return (EOVERFLOW); 2422 case 2: 2423 out->st_nlink = UINT16_MAX; 2424 break; 2425 } 2426 } 2427 out->st_dev = in->st_dev; 2428 if (out->st_dev != in->st_dev) { 2429 switch (ino64_trunc_error) { 2430 default: 2431 break; 2432 case 1: 2433 return (EOVERFLOW); 2434 } 2435 } 2436 CP(*in, *out, st_mode); 2437 CP(*in, *out, st_uid); 2438 CP(*in, *out, st_gid); 2439 out->st_rdev = in->st_rdev; 2440 if (out->st_rdev != in->st_rdev) { 2441 switch (ino64_trunc_error) { 2442 default: 2443 break; 2444 case 1: 2445 return (EOVERFLOW); 2446 } 2447 } 2448 TS_CP(*in, *out, st_atim); 2449 TS_CP(*in, *out, st_mtim); 2450 TS_CP(*in, *out, st_ctim); 2451 CP(*in, *out, st_size); 2452 CP(*in, *out, st_blocks); 2453 CP(*in, *out, st_blksize); 2454 CP(*in, *out, st_flags); 2455 CP(*in, *out, st_gen); 2456 TS_CP(*in, *out, st_birthtim); 2457 out->st_lspare = 0; 2458 bzero((char *)&out->st_birthtim + sizeof(out->st_birthtim), 2459 sizeof(*out) - offsetof(struct freebsd11_stat32, 2460 st_birthtim) - sizeof(out->st_birthtim)); 2461 return (0); 2462 } 2463 2464 int 2465 freebsd11_freebsd32_stat(struct thread *td, 2466 struct freebsd11_freebsd32_stat_args *uap) 2467 { 2468 struct stat sb; 2469 struct freebsd11_stat32 sb32; 2470 int error; 2471 2472 error = kern_statat(td, 0, AT_FDCWD, uap->path, UIO_USERSPACE, 2473 &sb, NULL); 2474 if (error != 0) 2475 return (error); 2476 error = freebsd11_cvtstat32(&sb, &sb32); 2477 if (error == 0) 2478 error = copyout(&sb32, uap->ub, sizeof (sb32)); 2479 return (error); 2480 } 2481 2482 int 2483 freebsd11_freebsd32_fstat(struct thread *td, 2484 struct freebsd11_freebsd32_fstat_args *uap) 2485 { 2486 struct stat sb; 2487 struct freebsd11_stat32 sb32; 2488 int error; 2489 2490 error = kern_fstat(td, uap->fd, &sb); 2491 if (error != 0) 2492 return (error); 2493 error = freebsd11_cvtstat32(&sb, &sb32); 2494 if (error == 0) 2495 error = copyout(&sb32, uap->sb, sizeof (sb32)); 2496 return (error); 2497 } 2498 2499 int 2500 freebsd11_freebsd32_fstatat(struct thread *td, 2501 struct freebsd11_freebsd32_fstatat_args *uap) 2502 { 2503 struct stat sb; 2504 struct freebsd11_stat32 sb32; 2505 int error; 2506 2507 error = kern_statat(td, uap->flag, uap->fd, uap->path, UIO_USERSPACE, 2508 &sb, NULL); 2509 if (error != 0) 2510 return (error); 2511 error = freebsd11_cvtstat32(&sb, &sb32); 2512 if (error == 0) 2513 error = copyout(&sb32, uap->buf, sizeof (sb32)); 2514 return (error); 2515 } 2516 2517 int 2518 freebsd11_freebsd32_lstat(struct thread *td, 2519 struct freebsd11_freebsd32_lstat_args *uap) 2520 { 2521 struct stat sb; 2522 struct freebsd11_stat32 sb32; 2523 int error; 2524 2525 error = kern_statat(td, AT_SYMLINK_NOFOLLOW, AT_FDCWD, uap->path, 2526 UIO_USERSPACE, &sb, NULL); 2527 if (error != 0) 2528 return (error); 2529 error = freebsd11_cvtstat32(&sb, &sb32); 2530 if (error == 0) 2531 error = copyout(&sb32, uap->ub, sizeof (sb32)); 2532 return (error); 2533 } 2534 2535 int 2536 freebsd11_freebsd32_fhstat(struct thread *td, 2537 struct freebsd11_freebsd32_fhstat_args *uap) 2538 { 2539 struct stat sb; 2540 struct freebsd11_stat32 sb32; 2541 struct fhandle fh; 2542 int error; 2543 2544 error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t)); 2545 if (error != 0) 2546 return (error); 2547 error = kern_fhstat(td, fh, &sb); 2548 if (error != 0) 2549 return (error); 2550 error = freebsd11_cvtstat32(&sb, &sb32); 2551 if (error == 0) 2552 error = copyout(&sb32, uap->sb, sizeof (sb32)); 2553 return (error); 2554 } 2555 2556 static int 2557 freebsd11_cvtnstat32(struct stat *sb, struct nstat32 *nsb32) 2558 { 2559 struct nstat nsb; 2560 int error; 2561 2562 error = freebsd11_cvtnstat(sb, &nsb); 2563 if (error != 0) 2564 return (error); 2565 2566 bzero(nsb32, sizeof(*nsb32)); 2567 CP(nsb, *nsb32, st_dev); 2568 CP(nsb, *nsb32, st_ino); 2569 CP(nsb, *nsb32, st_mode); 2570 CP(nsb, *nsb32, st_nlink); 2571 CP(nsb, *nsb32, st_uid); 2572 CP(nsb, *nsb32, st_gid); 2573 CP(nsb, *nsb32, st_rdev); 2574 CP(nsb, *nsb32, st_atim.tv_sec); 2575 CP(nsb, *nsb32, st_atim.tv_nsec); 2576 CP(nsb, *nsb32, st_mtim.tv_sec); 2577 CP(nsb, *nsb32, st_mtim.tv_nsec); 2578 CP(nsb, *nsb32, st_ctim.tv_sec); 2579 CP(nsb, *nsb32, st_ctim.tv_nsec); 2580 CP(nsb, *nsb32, st_size); 2581 CP(nsb, *nsb32, st_blocks); 2582 CP(nsb, *nsb32, st_blksize); 2583 CP(nsb, *nsb32, st_flags); 2584 CP(nsb, *nsb32, st_gen); 2585 CP(nsb, *nsb32, st_birthtim.tv_sec); 2586 CP(nsb, *nsb32, st_birthtim.tv_nsec); 2587 return (0); 2588 } 2589 2590 int 2591 freebsd11_freebsd32_nstat(struct thread *td, 2592 struct freebsd11_freebsd32_nstat_args *uap) 2593 { 2594 struct stat sb; 2595 struct nstat32 nsb; 2596 int error; 2597 2598 error = kern_statat(td, 0, AT_FDCWD, uap->path, UIO_USERSPACE, 2599 &sb, NULL); 2600 if (error != 0) 2601 return (error); 2602 error = freebsd11_cvtnstat32(&sb, &nsb); 2603 if (error != 0) 2604 error = copyout(&nsb, uap->ub, sizeof (nsb)); 2605 return (error); 2606 } 2607 2608 int 2609 freebsd11_freebsd32_nlstat(struct thread *td, 2610 struct freebsd11_freebsd32_nlstat_args *uap) 2611 { 2612 struct stat sb; 2613 struct nstat32 nsb; 2614 int error; 2615 2616 error = kern_statat(td, AT_SYMLINK_NOFOLLOW, AT_FDCWD, uap->path, 2617 UIO_USERSPACE, &sb, NULL); 2618 if (error != 0) 2619 return (error); 2620 error = freebsd11_cvtnstat32(&sb, &nsb); 2621 if (error == 0) 2622 error = copyout(&nsb, uap->ub, sizeof (nsb)); 2623 return (error); 2624 } 2625 2626 int 2627 freebsd11_freebsd32_nfstat(struct thread *td, 2628 struct freebsd11_freebsd32_nfstat_args *uap) 2629 { 2630 struct nstat32 nub; 2631 struct stat ub; 2632 int error; 2633 2634 error = kern_fstat(td, uap->fd, &ub); 2635 if (error != 0) 2636 return (error); 2637 error = freebsd11_cvtnstat32(&ub, &nub); 2638 if (error == 0) 2639 error = copyout(&nub, uap->sb, sizeof(nub)); 2640 return (error); 2641 } 2642 #endif 2643 2644 int 2645 freebsd32___sysctl(struct thread *td, struct freebsd32___sysctl_args *uap) 2646 { 2647 int error, name[CTL_MAXNAME]; 2648 size_t j, oldlen; 2649 uint32_t tmp; 2650 2651 if (uap->namelen > CTL_MAXNAME || uap->namelen < 2) 2652 return (EINVAL); 2653 error = copyin(uap->name, name, uap->namelen * sizeof(int)); 2654 if (error) 2655 return (error); 2656 if (uap->oldlenp) { 2657 error = fueword32(uap->oldlenp, &tmp); 2658 oldlen = tmp; 2659 } else { 2660 oldlen = 0; 2661 } 2662 if (error != 0) 2663 return (EFAULT); 2664 error = userland_sysctl(td, name, uap->namelen, 2665 uap->old, &oldlen, 1, 2666 uap->new, uap->newlen, &j, SCTL_MASK32); 2667 if (error) 2668 return (error); 2669 if (uap->oldlenp) 2670 suword32(uap->oldlenp, j); 2671 return (0); 2672 } 2673 2674 int 2675 freebsd32___sysctlbyname(struct thread *td, 2676 struct freebsd32___sysctlbyname_args *uap) 2677 { 2678 size_t oldlen, rv; 2679 int error; 2680 uint32_t tmp; 2681 2682 if (uap->oldlenp != NULL) { 2683 error = fueword32(uap->oldlenp, &tmp); 2684 oldlen = tmp; 2685 } else { 2686 error = oldlen = 0; 2687 } 2688 if (error != 0) 2689 return (EFAULT); 2690 error = kern___sysctlbyname(td, uap->name, uap->namelen, uap->old, 2691 &oldlen, uap->new, uap->newlen, &rv, SCTL_MASK32, 1); 2692 if (error != 0) 2693 return (error); 2694 if (uap->oldlenp != NULL) 2695 error = suword32(uap->oldlenp, rv); 2696 2697 return (error); 2698 } 2699 2700 int 2701 freebsd32_jail(struct thread *td, struct freebsd32_jail_args *uap) 2702 { 2703 uint32_t version; 2704 int error; 2705 struct jail j; 2706 2707 error = copyin(uap->jail, &version, sizeof(uint32_t)); 2708 if (error) 2709 return (error); 2710 2711 switch (version) { 2712 case 0: 2713 { 2714 /* FreeBSD single IPv4 jails. */ 2715 struct jail32_v0 j32_v0; 2716 2717 bzero(&j, sizeof(struct jail)); 2718 error = copyin(uap->jail, &j32_v0, sizeof(struct jail32_v0)); 2719 if (error) 2720 return (error); 2721 CP(j32_v0, j, version); 2722 PTRIN_CP(j32_v0, j, path); 2723 PTRIN_CP(j32_v0, j, hostname); 2724 j.ip4s = htonl(j32_v0.ip_number); /* jail_v0 is host order */ 2725 break; 2726 } 2727 2728 case 1: 2729 /* 2730 * Version 1 was used by multi-IPv4 jail implementations 2731 * that never made it into the official kernel. 2732 */ 2733 return (EINVAL); 2734 2735 case 2: /* JAIL_API_VERSION */ 2736 { 2737 /* FreeBSD multi-IPv4/IPv6,noIP jails. */ 2738 struct jail32 j32; 2739 2740 error = copyin(uap->jail, &j32, sizeof(struct jail32)); 2741 if (error) 2742 return (error); 2743 CP(j32, j, version); 2744 PTRIN_CP(j32, j, path); 2745 PTRIN_CP(j32, j, hostname); 2746 PTRIN_CP(j32, j, jailname); 2747 CP(j32, j, ip4s); 2748 CP(j32, j, ip6s); 2749 PTRIN_CP(j32, j, ip4); 2750 PTRIN_CP(j32, j, ip6); 2751 break; 2752 } 2753 2754 default: 2755 /* Sci-Fi jails are not supported, sorry. */ 2756 return (EINVAL); 2757 } 2758 return (kern_jail(td, &j)); 2759 } 2760 2761 int 2762 freebsd32_jail_set(struct thread *td, struct freebsd32_jail_set_args *uap) 2763 { 2764 struct uio *auio; 2765 int error; 2766 2767 /* Check that we have an even number of iovecs. */ 2768 if (uap->iovcnt & 1) 2769 return (EINVAL); 2770 2771 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 2772 if (error) 2773 return (error); 2774 error = kern_jail_set(td, auio, uap->flags); 2775 free(auio, M_IOV); 2776 return (error); 2777 } 2778 2779 int 2780 freebsd32_jail_get(struct thread *td, struct freebsd32_jail_get_args *uap) 2781 { 2782 struct iovec32 iov32; 2783 struct uio *auio; 2784 int error, i; 2785 2786 /* Check that we have an even number of iovecs. */ 2787 if (uap->iovcnt & 1) 2788 return (EINVAL); 2789 2790 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 2791 if (error) 2792 return (error); 2793 error = kern_jail_get(td, auio, uap->flags); 2794 if (error == 0) 2795 for (i = 0; i < uap->iovcnt; i++) { 2796 PTROUT_CP(auio->uio_iov[i], iov32, iov_base); 2797 CP(auio->uio_iov[i], iov32, iov_len); 2798 error = copyout(&iov32, uap->iovp + i, sizeof(iov32)); 2799 if (error != 0) 2800 break; 2801 } 2802 free(auio, M_IOV); 2803 return (error); 2804 } 2805 2806 int 2807 freebsd32_sigaction(struct thread *td, struct freebsd32_sigaction_args *uap) 2808 { 2809 struct sigaction32 s32; 2810 struct sigaction sa, osa, *sap; 2811 int error; 2812 2813 if (uap->act) { 2814 error = copyin(uap->act, &s32, sizeof(s32)); 2815 if (error) 2816 return (error); 2817 sa.sa_handler = PTRIN(s32.sa_u); 2818 CP(s32, sa, sa_flags); 2819 CP(s32, sa, sa_mask); 2820 sap = &sa; 2821 } else 2822 sap = NULL; 2823 error = kern_sigaction(td, uap->sig, sap, &osa, 0); 2824 if (error == 0 && uap->oact != NULL) { 2825 s32.sa_u = PTROUT(osa.sa_handler); 2826 CP(osa, s32, sa_flags); 2827 CP(osa, s32, sa_mask); 2828 error = copyout(&s32, uap->oact, sizeof(s32)); 2829 } 2830 return (error); 2831 } 2832 2833 #ifdef COMPAT_FREEBSD4 2834 int 2835 freebsd4_freebsd32_sigaction(struct thread *td, 2836 struct freebsd4_freebsd32_sigaction_args *uap) 2837 { 2838 struct sigaction32 s32; 2839 struct sigaction sa, osa, *sap; 2840 int error; 2841 2842 if (uap->act) { 2843 error = copyin(uap->act, &s32, sizeof(s32)); 2844 if (error) 2845 return (error); 2846 sa.sa_handler = PTRIN(s32.sa_u); 2847 CP(s32, sa, sa_flags); 2848 CP(s32, sa, sa_mask); 2849 sap = &sa; 2850 } else 2851 sap = NULL; 2852 error = kern_sigaction(td, uap->sig, sap, &osa, KSA_FREEBSD4); 2853 if (error == 0 && uap->oact != NULL) { 2854 s32.sa_u = PTROUT(osa.sa_handler); 2855 CP(osa, s32, sa_flags); 2856 CP(osa, s32, sa_mask); 2857 error = copyout(&s32, uap->oact, sizeof(s32)); 2858 } 2859 return (error); 2860 } 2861 #endif 2862 2863 #ifdef COMPAT_43 2864 struct osigaction32 { 2865 uint32_t sa_u; 2866 osigset_t sa_mask; 2867 int sa_flags; 2868 }; 2869 2870 #define ONSIG 32 2871 2872 int 2873 ofreebsd32_sigaction(struct thread *td, 2874 struct ofreebsd32_sigaction_args *uap) 2875 { 2876 struct osigaction32 s32; 2877 struct sigaction sa, osa, *sap; 2878 int error; 2879 2880 if (uap->signum <= 0 || uap->signum >= ONSIG) 2881 return (EINVAL); 2882 2883 if (uap->nsa) { 2884 error = copyin(uap->nsa, &s32, sizeof(s32)); 2885 if (error) 2886 return (error); 2887 sa.sa_handler = PTRIN(s32.sa_u); 2888 CP(s32, sa, sa_flags); 2889 OSIG2SIG(s32.sa_mask, sa.sa_mask); 2890 sap = &sa; 2891 } else 2892 sap = NULL; 2893 error = kern_sigaction(td, uap->signum, sap, &osa, KSA_OSIGSET); 2894 if (error == 0 && uap->osa != NULL) { 2895 s32.sa_u = PTROUT(osa.sa_handler); 2896 CP(osa, s32, sa_flags); 2897 SIG2OSIG(osa.sa_mask, s32.sa_mask); 2898 error = copyout(&s32, uap->osa, sizeof(s32)); 2899 } 2900 return (error); 2901 } 2902 2903 struct sigvec32 { 2904 uint32_t sv_handler; 2905 int sv_mask; 2906 int sv_flags; 2907 }; 2908 2909 int 2910 ofreebsd32_sigvec(struct thread *td, 2911 struct ofreebsd32_sigvec_args *uap) 2912 { 2913 struct sigvec32 vec; 2914 struct sigaction sa, osa, *sap; 2915 int error; 2916 2917 if (uap->signum <= 0 || uap->signum >= ONSIG) 2918 return (EINVAL); 2919 2920 if (uap->nsv) { 2921 error = copyin(uap->nsv, &vec, sizeof(vec)); 2922 if (error) 2923 return (error); 2924 sa.sa_handler = PTRIN(vec.sv_handler); 2925 OSIG2SIG(vec.sv_mask, sa.sa_mask); 2926 sa.sa_flags = vec.sv_flags; 2927 sa.sa_flags ^= SA_RESTART; 2928 sap = &sa; 2929 } else 2930 sap = NULL; 2931 error = kern_sigaction(td, uap->signum, sap, &osa, KSA_OSIGSET); 2932 if (error == 0 && uap->osv != NULL) { 2933 vec.sv_handler = PTROUT(osa.sa_handler); 2934 SIG2OSIG(osa.sa_mask, vec.sv_mask); 2935 vec.sv_flags = osa.sa_flags; 2936 vec.sv_flags &= ~SA_NOCLDWAIT; 2937 vec.sv_flags ^= SA_RESTART; 2938 error = copyout(&vec, uap->osv, sizeof(vec)); 2939 } 2940 return (error); 2941 } 2942 2943 struct sigstack32 { 2944 uint32_t ss_sp; 2945 int ss_onstack; 2946 }; 2947 2948 int 2949 ofreebsd32_sigstack(struct thread *td, 2950 struct ofreebsd32_sigstack_args *uap) 2951 { 2952 struct sigstack32 s32; 2953 struct sigstack nss, oss; 2954 int error = 0, unss; 2955 2956 if (uap->nss != NULL) { 2957 error = copyin(uap->nss, &s32, sizeof(s32)); 2958 if (error) 2959 return (error); 2960 nss.ss_sp = PTRIN(s32.ss_sp); 2961 CP(s32, nss, ss_onstack); 2962 unss = 1; 2963 } else { 2964 unss = 0; 2965 } 2966 oss.ss_sp = td->td_sigstk.ss_sp; 2967 oss.ss_onstack = sigonstack(cpu_getstack(td)); 2968 if (unss) { 2969 td->td_sigstk.ss_sp = nss.ss_sp; 2970 td->td_sigstk.ss_size = 0; 2971 td->td_sigstk.ss_flags |= (nss.ss_onstack & SS_ONSTACK); 2972 td->td_pflags |= TDP_ALTSTACK; 2973 } 2974 if (uap->oss != NULL) { 2975 s32.ss_sp = PTROUT(oss.ss_sp); 2976 CP(oss, s32, ss_onstack); 2977 error = copyout(&s32, uap->oss, sizeof(s32)); 2978 } 2979 return (error); 2980 } 2981 #endif 2982 2983 int 2984 freebsd32_nanosleep(struct thread *td, struct freebsd32_nanosleep_args *uap) 2985 { 2986 2987 return (freebsd32_user_clock_nanosleep(td, CLOCK_REALTIME, 2988 TIMER_RELTIME, uap->rqtp, uap->rmtp)); 2989 } 2990 2991 int 2992 freebsd32_clock_nanosleep(struct thread *td, 2993 struct freebsd32_clock_nanosleep_args *uap) 2994 { 2995 int error; 2996 2997 error = freebsd32_user_clock_nanosleep(td, uap->clock_id, uap->flags, 2998 uap->rqtp, uap->rmtp); 2999 return (kern_posix_error(td, error)); 3000 } 3001 3002 static int 3003 freebsd32_user_clock_nanosleep(struct thread *td, clockid_t clock_id, 3004 int flags, const struct timespec32 *ua_rqtp, struct timespec32 *ua_rmtp) 3005 { 3006 struct timespec32 rmt32, rqt32; 3007 struct timespec rmt, rqt; 3008 int error, error2; 3009 3010 error = copyin(ua_rqtp, &rqt32, sizeof(rqt32)); 3011 if (error) 3012 return (error); 3013 3014 CP(rqt32, rqt, tv_sec); 3015 CP(rqt32, rqt, tv_nsec); 3016 3017 error = kern_clock_nanosleep(td, clock_id, flags, &rqt, &rmt); 3018 if (error == EINTR && ua_rmtp != NULL && (flags & TIMER_ABSTIME) == 0) { 3019 CP(rmt, rmt32, tv_sec); 3020 CP(rmt, rmt32, tv_nsec); 3021 3022 error2 = copyout(&rmt32, ua_rmtp, sizeof(rmt32)); 3023 if (error2 != 0) 3024 error = error2; 3025 } 3026 return (error); 3027 } 3028 3029 int 3030 freebsd32_clock_gettime(struct thread *td, 3031 struct freebsd32_clock_gettime_args *uap) 3032 { 3033 struct timespec ats; 3034 struct timespec32 ats32; 3035 int error; 3036 3037 error = kern_clock_gettime(td, uap->clock_id, &ats); 3038 if (error == 0) { 3039 CP(ats, ats32, tv_sec); 3040 CP(ats, ats32, tv_nsec); 3041 error = copyout(&ats32, uap->tp, sizeof(ats32)); 3042 } 3043 return (error); 3044 } 3045 3046 int 3047 freebsd32_clock_settime(struct thread *td, 3048 struct freebsd32_clock_settime_args *uap) 3049 { 3050 struct timespec ats; 3051 struct timespec32 ats32; 3052 int error; 3053 3054 error = copyin(uap->tp, &ats32, sizeof(ats32)); 3055 if (error) 3056 return (error); 3057 CP(ats32, ats, tv_sec); 3058 CP(ats32, ats, tv_nsec); 3059 3060 return (kern_clock_settime(td, uap->clock_id, &ats)); 3061 } 3062 3063 int 3064 freebsd32_clock_getres(struct thread *td, 3065 struct freebsd32_clock_getres_args *uap) 3066 { 3067 struct timespec ts; 3068 struct timespec32 ts32; 3069 int error; 3070 3071 if (uap->tp == NULL) 3072 return (0); 3073 error = kern_clock_getres(td, uap->clock_id, &ts); 3074 if (error == 0) { 3075 CP(ts, ts32, tv_sec); 3076 CP(ts, ts32, tv_nsec); 3077 error = copyout(&ts32, uap->tp, sizeof(ts32)); 3078 } 3079 return (error); 3080 } 3081 3082 int freebsd32_ktimer_create(struct thread *td, 3083 struct freebsd32_ktimer_create_args *uap) 3084 { 3085 struct sigevent32 ev32; 3086 struct sigevent ev, *evp; 3087 int error, id; 3088 3089 if (uap->evp == NULL) { 3090 evp = NULL; 3091 } else { 3092 evp = &ev; 3093 error = copyin(uap->evp, &ev32, sizeof(ev32)); 3094 if (error != 0) 3095 return (error); 3096 error = convert_sigevent32(&ev32, &ev); 3097 if (error != 0) 3098 return (error); 3099 } 3100 error = kern_ktimer_create(td, uap->clock_id, evp, &id, -1); 3101 if (error == 0) { 3102 error = copyout(&id, uap->timerid, sizeof(int)); 3103 if (error != 0) 3104 kern_ktimer_delete(td, id); 3105 } 3106 return (error); 3107 } 3108 3109 int 3110 freebsd32_ktimer_settime(struct thread *td, 3111 struct freebsd32_ktimer_settime_args *uap) 3112 { 3113 struct itimerspec32 val32, oval32; 3114 struct itimerspec val, oval, *ovalp; 3115 int error; 3116 3117 error = copyin(uap->value, &val32, sizeof(val32)); 3118 if (error != 0) 3119 return (error); 3120 ITS_CP(val32, val); 3121 ovalp = uap->ovalue != NULL ? &oval : NULL; 3122 error = kern_ktimer_settime(td, uap->timerid, uap->flags, &val, ovalp); 3123 if (error == 0 && uap->ovalue != NULL) { 3124 ITS_CP(oval, oval32); 3125 error = copyout(&oval32, uap->ovalue, sizeof(oval32)); 3126 } 3127 return (error); 3128 } 3129 3130 int 3131 freebsd32_ktimer_gettime(struct thread *td, 3132 struct freebsd32_ktimer_gettime_args *uap) 3133 { 3134 struct itimerspec32 val32; 3135 struct itimerspec val; 3136 int error; 3137 3138 error = kern_ktimer_gettime(td, uap->timerid, &val); 3139 if (error == 0) { 3140 ITS_CP(val, val32); 3141 error = copyout(&val32, uap->value, sizeof(val32)); 3142 } 3143 return (error); 3144 } 3145 3146 int 3147 freebsd32_clock_getcpuclockid2(struct thread *td, 3148 struct freebsd32_clock_getcpuclockid2_args *uap) 3149 { 3150 clockid_t clk_id; 3151 int error; 3152 3153 error = kern_clock_getcpuclockid2(td, PAIR32TO64(id_t, uap->id), 3154 uap->which, &clk_id); 3155 if (error == 0) 3156 error = copyout(&clk_id, uap->clock_id, sizeof(clockid_t)); 3157 return (error); 3158 } 3159 3160 int 3161 freebsd32_thr_new(struct thread *td, 3162 struct freebsd32_thr_new_args *uap) 3163 { 3164 struct thr_param32 param32; 3165 struct thr_param param; 3166 int error; 3167 3168 if (uap->param_size < 0 || 3169 uap->param_size > sizeof(struct thr_param32)) 3170 return (EINVAL); 3171 bzero(¶m, sizeof(struct thr_param)); 3172 bzero(¶m32, sizeof(struct thr_param32)); 3173 error = copyin(uap->param, ¶m32, uap->param_size); 3174 if (error != 0) 3175 return (error); 3176 param.start_func = PTRIN(param32.start_func); 3177 param.arg = PTRIN(param32.arg); 3178 param.stack_base = PTRIN(param32.stack_base); 3179 param.stack_size = param32.stack_size; 3180 param.tls_base = PTRIN(param32.tls_base); 3181 param.tls_size = param32.tls_size; 3182 param.child_tid = PTRIN(param32.child_tid); 3183 param.parent_tid = PTRIN(param32.parent_tid); 3184 param.flags = param32.flags; 3185 param.rtp = PTRIN(param32.rtp); 3186 param.spare[0] = PTRIN(param32.spare[0]); 3187 param.spare[1] = PTRIN(param32.spare[1]); 3188 param.spare[2] = PTRIN(param32.spare[2]); 3189 3190 return (kern_thr_new(td, ¶m)); 3191 } 3192 3193 int 3194 freebsd32_thr_suspend(struct thread *td, struct freebsd32_thr_suspend_args *uap) 3195 { 3196 struct timespec32 ts32; 3197 struct timespec ts, *tsp; 3198 int error; 3199 3200 error = 0; 3201 tsp = NULL; 3202 if (uap->timeout != NULL) { 3203 error = copyin((const void *)uap->timeout, (void *)&ts32, 3204 sizeof(struct timespec32)); 3205 if (error != 0) 3206 return (error); 3207 ts.tv_sec = ts32.tv_sec; 3208 ts.tv_nsec = ts32.tv_nsec; 3209 tsp = &ts; 3210 } 3211 return (kern_thr_suspend(td, tsp)); 3212 } 3213 3214 void 3215 siginfo_to_siginfo32(const siginfo_t *src, struct siginfo32 *dst) 3216 { 3217 bzero(dst, sizeof(*dst)); 3218 dst->si_signo = src->si_signo; 3219 dst->si_errno = src->si_errno; 3220 dst->si_code = src->si_code; 3221 dst->si_pid = src->si_pid; 3222 dst->si_uid = src->si_uid; 3223 dst->si_status = src->si_status; 3224 dst->si_addr = (uintptr_t)src->si_addr; 3225 dst->si_value.sival_int = src->si_value.sival_int; 3226 dst->si_timerid = src->si_timerid; 3227 dst->si_overrun = src->si_overrun; 3228 } 3229 3230 #ifndef _FREEBSD32_SYSPROTO_H_ 3231 struct freebsd32_sigqueue_args { 3232 pid_t pid; 3233 int signum; 3234 /* union sigval32 */ int value; 3235 }; 3236 #endif 3237 int 3238 freebsd32_sigqueue(struct thread *td, struct freebsd32_sigqueue_args *uap) 3239 { 3240 union sigval sv; 3241 3242 /* 3243 * On 32-bit ABIs, sival_int and sival_ptr are the same. 3244 * On 64-bit little-endian ABIs, the low bits are the same. 3245 * In 64-bit big-endian ABIs, sival_int overlaps with 3246 * sival_ptr's HIGH bits. We choose to support sival_int 3247 * rather than sival_ptr in this case as it seems to be 3248 * more common. 3249 */ 3250 bzero(&sv, sizeof(sv)); 3251 sv.sival_int = (uint32_t)(uint64_t)uap->value; 3252 3253 return (kern_sigqueue(td, uap->pid, uap->signum, &sv)); 3254 } 3255 3256 int 3257 freebsd32_sigtimedwait(struct thread *td, struct freebsd32_sigtimedwait_args *uap) 3258 { 3259 struct timespec32 ts32; 3260 struct timespec ts; 3261 struct timespec *timeout; 3262 sigset_t set; 3263 ksiginfo_t ksi; 3264 struct siginfo32 si32; 3265 int error; 3266 3267 if (uap->timeout) { 3268 error = copyin(uap->timeout, &ts32, sizeof(ts32)); 3269 if (error) 3270 return (error); 3271 ts.tv_sec = ts32.tv_sec; 3272 ts.tv_nsec = ts32.tv_nsec; 3273 timeout = &ts; 3274 } else 3275 timeout = NULL; 3276 3277 error = copyin(uap->set, &set, sizeof(set)); 3278 if (error) 3279 return (error); 3280 3281 error = kern_sigtimedwait(td, set, &ksi, timeout); 3282 if (error) 3283 return (error); 3284 3285 if (uap->info) { 3286 siginfo_to_siginfo32(&ksi.ksi_info, &si32); 3287 error = copyout(&si32, uap->info, sizeof(struct siginfo32)); 3288 } 3289 3290 if (error == 0) 3291 td->td_retval[0] = ksi.ksi_signo; 3292 return (error); 3293 } 3294 3295 /* 3296 * MPSAFE 3297 */ 3298 int 3299 freebsd32_sigwaitinfo(struct thread *td, struct freebsd32_sigwaitinfo_args *uap) 3300 { 3301 ksiginfo_t ksi; 3302 struct siginfo32 si32; 3303 sigset_t set; 3304 int error; 3305 3306 error = copyin(uap->set, &set, sizeof(set)); 3307 if (error) 3308 return (error); 3309 3310 error = kern_sigtimedwait(td, set, &ksi, NULL); 3311 if (error) 3312 return (error); 3313 3314 if (uap->info) { 3315 siginfo_to_siginfo32(&ksi.ksi_info, &si32); 3316 error = copyout(&si32, uap->info, sizeof(struct siginfo32)); 3317 } 3318 if (error == 0) 3319 td->td_retval[0] = ksi.ksi_signo; 3320 return (error); 3321 } 3322 3323 int 3324 freebsd32_cpuset_setid(struct thread *td, 3325 struct freebsd32_cpuset_setid_args *uap) 3326 { 3327 3328 return (kern_cpuset_setid(td, uap->which, 3329 PAIR32TO64(id_t, uap->id), uap->setid)); 3330 } 3331 3332 int 3333 freebsd32_cpuset_getid(struct thread *td, 3334 struct freebsd32_cpuset_getid_args *uap) 3335 { 3336 3337 return (kern_cpuset_getid(td, uap->level, uap->which, 3338 PAIR32TO64(id_t, uap->id), uap->setid)); 3339 } 3340 3341 static int 3342 copyin32_set(const void *u, void *k, size_t size) 3343 { 3344 #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 3345 int rv; 3346 struct bitset *kb = k; 3347 int *p; 3348 3349 rv = copyin(u, k, size); 3350 if (rv != 0) 3351 return (rv); 3352 3353 p = (int *)kb->__bits; 3354 /* Loop through swapping words. 3355 * `size' is in bytes, we need bits. */ 3356 for (int i = 0; i < __bitset_words(size * 8); i++) { 3357 int tmp = p[0]; 3358 p[0] = p[1]; 3359 p[1] = tmp; 3360 p += 2; 3361 } 3362 return (0); 3363 #else 3364 return (copyin(u, k, size)); 3365 #endif 3366 } 3367 3368 static int 3369 copyout32_set(const void *k, void *u, size_t size) 3370 { 3371 #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 3372 const struct bitset *kb = k; 3373 struct bitset *ub = u; 3374 const int *kp = (const int *)kb->__bits; 3375 int *up = (int *)ub->__bits; 3376 int rv; 3377 3378 for (int i = 0; i < __bitset_words(CPU_SETSIZE); i++) { 3379 /* `size' is in bytes, we need bits. */ 3380 for (int i = 0; i < __bitset_words(size * 8); i++) { 3381 rv = suword32(up, kp[1]); 3382 if (rv == 0) 3383 rv = suword32(up + 1, kp[0]); 3384 if (rv != 0) 3385 return (EFAULT); 3386 } 3387 } 3388 return (0); 3389 #else 3390 return (copyout(k, u, size)); 3391 #endif 3392 } 3393 3394 static const struct cpuset_copy_cb cpuset_copy32_cb = { 3395 .cpuset_copyin = copyin32_set, 3396 .cpuset_copyout = copyout32_set 3397 }; 3398 3399 int 3400 freebsd32_cpuset_getaffinity(struct thread *td, 3401 struct freebsd32_cpuset_getaffinity_args *uap) 3402 { 3403 3404 return (user_cpuset_getaffinity(td, uap->level, uap->which, 3405 PAIR32TO64(id_t,uap->id), uap->cpusetsize, uap->mask, 3406 &cpuset_copy32_cb)); 3407 } 3408 3409 int 3410 freebsd32_cpuset_setaffinity(struct thread *td, 3411 struct freebsd32_cpuset_setaffinity_args *uap) 3412 { 3413 3414 return (user_cpuset_setaffinity(td, uap->level, uap->which, 3415 PAIR32TO64(id_t,uap->id), uap->cpusetsize, uap->mask, 3416 &cpuset_copy32_cb)); 3417 } 3418 3419 int 3420 freebsd32_cpuset_getdomain(struct thread *td, 3421 struct freebsd32_cpuset_getdomain_args *uap) 3422 { 3423 3424 return (kern_cpuset_getdomain(td, uap->level, uap->which, 3425 PAIR32TO64(id_t,uap->id), uap->domainsetsize, uap->mask, uap->policy, 3426 &cpuset_copy32_cb)); 3427 } 3428 3429 int 3430 freebsd32_cpuset_setdomain(struct thread *td, 3431 struct freebsd32_cpuset_setdomain_args *uap) 3432 { 3433 3434 return (kern_cpuset_setdomain(td, uap->level, uap->which, 3435 PAIR32TO64(id_t,uap->id), uap->domainsetsize, uap->mask, uap->policy, 3436 &cpuset_copy32_cb)); 3437 } 3438 3439 int 3440 freebsd32_nmount(struct thread *td, 3441 struct freebsd32_nmount_args /* { 3442 struct iovec *iovp; 3443 unsigned int iovcnt; 3444 int flags; 3445 } */ *uap) 3446 { 3447 struct uio *auio; 3448 uint64_t flags; 3449 int error; 3450 3451 /* 3452 * Mount flags are now 64-bits. On 32-bit archtectures only 3453 * 32-bits are passed in, but from here on everything handles 3454 * 64-bit flags correctly. 3455 */ 3456 flags = uap->flags; 3457 3458 AUDIT_ARG_FFLAGS(flags); 3459 3460 /* 3461 * Filter out MNT_ROOTFS. We do not want clients of nmount() in 3462 * userspace to set this flag, but we must filter it out if we want 3463 * MNT_UPDATE on the root file system to work. 3464 * MNT_ROOTFS should only be set by the kernel when mounting its 3465 * root file system. 3466 */ 3467 flags &= ~MNT_ROOTFS; 3468 3469 /* 3470 * check that we have an even number of iovec's 3471 * and that we have at least two options. 3472 */ 3473 if ((uap->iovcnt & 1) || (uap->iovcnt < 4)) 3474 return (EINVAL); 3475 3476 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 3477 if (error) 3478 return (error); 3479 error = vfs_donmount(td, flags, auio); 3480 3481 free(auio, M_IOV); 3482 return error; 3483 } 3484 3485 #if 0 3486 int 3487 freebsd32_xxx(struct thread *td, struct freebsd32_xxx_args *uap) 3488 { 3489 struct yyy32 *p32, s32; 3490 struct yyy *p = NULL, s; 3491 struct xxx_arg ap; 3492 int error; 3493 3494 if (uap->zzz) { 3495 error = copyin(uap->zzz, &s32, sizeof(s32)); 3496 if (error) 3497 return (error); 3498 /* translate in */ 3499 p = &s; 3500 } 3501 error = kern_xxx(td, p); 3502 if (error) 3503 return (error); 3504 if (uap->zzz) { 3505 /* translate out */ 3506 error = copyout(&s32, p32, sizeof(s32)); 3507 } 3508 return (error); 3509 } 3510 #endif 3511 3512 int 3513 syscall32_module_handler(struct module *mod, int what, void *arg) 3514 { 3515 3516 return (kern_syscall_module_handler(freebsd32_sysent, mod, what, arg)); 3517 } 3518 3519 int 3520 syscall32_helper_register(struct syscall_helper_data *sd, int flags) 3521 { 3522 3523 return (kern_syscall_helper_register(freebsd32_sysent, sd, flags)); 3524 } 3525 3526 int 3527 syscall32_helper_unregister(struct syscall_helper_data *sd) 3528 { 3529 3530 return (kern_syscall_helper_unregister(freebsd32_sysent, sd)); 3531 } 3532 3533 int 3534 freebsd32_copyout_strings(struct image_params *imgp, uintptr_t *stack_base) 3535 { 3536 struct sysentvec *sysent; 3537 int argc, envc, i; 3538 uint32_t *vectp; 3539 char *stringp; 3540 uintptr_t destp, ustringp; 3541 struct freebsd32_ps_strings *arginfo; 3542 char canary[sizeof(long) * 8]; 3543 int32_t pagesizes32[MAXPAGESIZES]; 3544 size_t execpath_len; 3545 int error, szsigcode; 3546 3547 sysent = imgp->sysent; 3548 3549 arginfo = (struct freebsd32_ps_strings *)PROC_PS_STRINGS(imgp->proc); 3550 imgp->ps_strings = arginfo; 3551 destp = (uintptr_t)arginfo; 3552 3553 /* 3554 * Install sigcode. 3555 */ 3556 if (!PROC_HAS_SHP(imgp->proc)) { 3557 szsigcode = *sysent->sv_szsigcode; 3558 destp -= szsigcode; 3559 destp = rounddown2(destp, sizeof(uint32_t)); 3560 error = copyout(sysent->sv_sigcode, (void *)destp, 3561 szsigcode); 3562 if (error != 0) 3563 return (error); 3564 } 3565 3566 /* 3567 * Copy the image path for the rtld. 3568 */ 3569 if (imgp->execpath != NULL && imgp->auxargs != NULL) { 3570 execpath_len = strlen(imgp->execpath) + 1; 3571 destp -= execpath_len; 3572 imgp->execpathp = (void *)destp; 3573 error = copyout(imgp->execpath, imgp->execpathp, execpath_len); 3574 if (error != 0) 3575 return (error); 3576 } 3577 3578 /* 3579 * Prepare the canary for SSP. 3580 */ 3581 arc4rand(canary, sizeof(canary), 0); 3582 destp -= sizeof(canary); 3583 imgp->canary = (void *)destp; 3584 error = copyout(canary, imgp->canary, sizeof(canary)); 3585 if (error != 0) 3586 return (error); 3587 imgp->canarylen = sizeof(canary); 3588 3589 /* 3590 * Prepare the pagesizes array. 3591 */ 3592 for (i = 0; i < MAXPAGESIZES; i++) 3593 pagesizes32[i] = (uint32_t)pagesizes[i]; 3594 destp -= sizeof(pagesizes32); 3595 destp = rounddown2(destp, sizeof(uint32_t)); 3596 imgp->pagesizes = (void *)destp; 3597 error = copyout(pagesizes32, imgp->pagesizes, sizeof(pagesizes32)); 3598 if (error != 0) 3599 return (error); 3600 imgp->pagesizeslen = sizeof(pagesizes32); 3601 3602 /* 3603 * Allocate room for the argument and environment strings. 3604 */ 3605 destp -= ARG_MAX - imgp->args->stringspace; 3606 destp = rounddown2(destp, sizeof(uint32_t)); 3607 ustringp = destp; 3608 3609 if (imgp->auxargs) { 3610 /* 3611 * Allocate room on the stack for the ELF auxargs 3612 * array. It has up to AT_COUNT entries. 3613 */ 3614 destp -= AT_COUNT * sizeof(Elf32_Auxinfo); 3615 destp = rounddown2(destp, sizeof(uint32_t)); 3616 } 3617 3618 vectp = (uint32_t *)destp; 3619 3620 /* 3621 * Allocate room for the argv[] and env vectors including the 3622 * terminating NULL pointers. 3623 */ 3624 vectp -= imgp->args->argc + 1 + imgp->args->envc + 1; 3625 3626 /* 3627 * vectp also becomes our initial stack base 3628 */ 3629 *stack_base = (uintptr_t)vectp; 3630 3631 stringp = imgp->args->begin_argv; 3632 argc = imgp->args->argc; 3633 envc = imgp->args->envc; 3634 /* 3635 * Copy out strings - arguments and environment. 3636 */ 3637 error = copyout(stringp, (void *)ustringp, 3638 ARG_MAX - imgp->args->stringspace); 3639 if (error != 0) 3640 return (error); 3641 3642 /* 3643 * Fill in "ps_strings" struct for ps, w, etc. 3644 */ 3645 imgp->argv = vectp; 3646 if (suword32(&arginfo->ps_argvstr, (uint32_t)(intptr_t)vectp) != 0 || 3647 suword32(&arginfo->ps_nargvstr, argc) != 0) 3648 return (EFAULT); 3649 3650 /* 3651 * Fill in argument portion of vector table. 3652 */ 3653 for (; argc > 0; --argc) { 3654 if (suword32(vectp++, ustringp) != 0) 3655 return (EFAULT); 3656 while (*stringp++ != 0) 3657 ustringp++; 3658 ustringp++; 3659 } 3660 3661 /* a null vector table pointer separates the argp's from the envp's */ 3662 if (suword32(vectp++, 0) != 0) 3663 return (EFAULT); 3664 3665 imgp->envv = vectp; 3666 if (suword32(&arginfo->ps_envstr, (uint32_t)(intptr_t)vectp) != 0 || 3667 suword32(&arginfo->ps_nenvstr, envc) != 0) 3668 return (EFAULT); 3669 3670 /* 3671 * Fill in environment portion of vector table. 3672 */ 3673 for (; envc > 0; --envc) { 3674 if (suword32(vectp++, ustringp) != 0) 3675 return (EFAULT); 3676 while (*stringp++ != 0) 3677 ustringp++; 3678 ustringp++; 3679 } 3680 3681 /* end of vector table is a null pointer */ 3682 if (suword32(vectp, 0) != 0) 3683 return (EFAULT); 3684 3685 if (imgp->auxargs) { 3686 vectp++; 3687 error = imgp->sysent->sv_copyout_auxargs(imgp, 3688 (uintptr_t)vectp); 3689 if (error != 0) 3690 return (error); 3691 } 3692 3693 return (0); 3694 } 3695 3696 int 3697 freebsd32_kldstat(struct thread *td, struct freebsd32_kldstat_args *uap) 3698 { 3699 struct kld_file_stat *stat; 3700 struct kld_file_stat32 *stat32; 3701 int error, version; 3702 3703 if ((error = copyin(&uap->stat->version, &version, sizeof(version))) 3704 != 0) 3705 return (error); 3706 if (version != sizeof(struct kld_file_stat_1_32) && 3707 version != sizeof(struct kld_file_stat32)) 3708 return (EINVAL); 3709 3710 stat = malloc(sizeof(*stat), M_TEMP, M_WAITOK | M_ZERO); 3711 stat32 = malloc(sizeof(*stat32), M_TEMP, M_WAITOK | M_ZERO); 3712 error = kern_kldstat(td, uap->fileid, stat); 3713 if (error == 0) { 3714 bcopy(&stat->name[0], &stat32->name[0], sizeof(stat->name)); 3715 CP(*stat, *stat32, refs); 3716 CP(*stat, *stat32, id); 3717 PTROUT_CP(*stat, *stat32, address); 3718 CP(*stat, *stat32, size); 3719 bcopy(&stat->pathname[0], &stat32->pathname[0], 3720 sizeof(stat->pathname)); 3721 stat32->version = version; 3722 error = copyout(stat32, uap->stat, version); 3723 } 3724 free(stat, M_TEMP); 3725 free(stat32, M_TEMP); 3726 return (error); 3727 } 3728 3729 int 3730 freebsd32_posix_fallocate(struct thread *td, 3731 struct freebsd32_posix_fallocate_args *uap) 3732 { 3733 int error; 3734 3735 error = kern_posix_fallocate(td, uap->fd, 3736 PAIR32TO64(off_t, uap->offset), PAIR32TO64(off_t, uap->len)); 3737 return (kern_posix_error(td, error)); 3738 } 3739 3740 int 3741 freebsd32_posix_fadvise(struct thread *td, 3742 struct freebsd32_posix_fadvise_args *uap) 3743 { 3744 int error; 3745 3746 error = kern_posix_fadvise(td, uap->fd, PAIR32TO64(off_t, uap->offset), 3747 PAIR32TO64(off_t, uap->len), uap->advice); 3748 return (kern_posix_error(td, error)); 3749 } 3750 3751 int 3752 convert_sigevent32(struct sigevent32 *sig32, struct sigevent *sig) 3753 { 3754 3755 CP(*sig32, *sig, sigev_notify); 3756 switch (sig->sigev_notify) { 3757 case SIGEV_NONE: 3758 break; 3759 case SIGEV_THREAD_ID: 3760 CP(*sig32, *sig, sigev_notify_thread_id); 3761 /* FALLTHROUGH */ 3762 case SIGEV_SIGNAL: 3763 CP(*sig32, *sig, sigev_signo); 3764 PTRIN_CP(*sig32, *sig, sigev_value.sival_ptr); 3765 break; 3766 case SIGEV_KEVENT: 3767 CP(*sig32, *sig, sigev_notify_kqueue); 3768 CP(*sig32, *sig, sigev_notify_kevent_flags); 3769 PTRIN_CP(*sig32, *sig, sigev_value.sival_ptr); 3770 break; 3771 default: 3772 return (EINVAL); 3773 } 3774 return (0); 3775 } 3776 3777 int 3778 freebsd32_procctl(struct thread *td, struct freebsd32_procctl_args *uap) 3779 { 3780 void *data; 3781 union { 3782 struct procctl_reaper_status rs; 3783 struct procctl_reaper_pids rp; 3784 struct procctl_reaper_kill rk; 3785 } x; 3786 union { 3787 struct procctl_reaper_pids32 rp; 3788 } x32; 3789 int error, error1, flags, signum; 3790 3791 if (uap->com >= PROC_PROCCTL_MD_MIN) 3792 return (cpu_procctl(td, uap->idtype, PAIR32TO64(id_t, uap->id), 3793 uap->com, PTRIN(uap->data))); 3794 3795 switch (uap->com) { 3796 case PROC_ASLR_CTL: 3797 case PROC_PROTMAX_CTL: 3798 case PROC_SPROTECT: 3799 case PROC_STACKGAP_CTL: 3800 case PROC_TRACE_CTL: 3801 case PROC_TRAPCAP_CTL: 3802 case PROC_NO_NEW_PRIVS_CTL: 3803 case PROC_WXMAP_CTL: 3804 error = copyin(PTRIN(uap->data), &flags, sizeof(flags)); 3805 if (error != 0) 3806 return (error); 3807 data = &flags; 3808 break; 3809 case PROC_REAP_ACQUIRE: 3810 case PROC_REAP_RELEASE: 3811 if (uap->data != NULL) 3812 return (EINVAL); 3813 data = NULL; 3814 break; 3815 case PROC_REAP_STATUS: 3816 data = &x.rs; 3817 break; 3818 case PROC_REAP_GETPIDS: 3819 error = copyin(uap->data, &x32.rp, sizeof(x32.rp)); 3820 if (error != 0) 3821 return (error); 3822 CP(x32.rp, x.rp, rp_count); 3823 PTRIN_CP(x32.rp, x.rp, rp_pids); 3824 data = &x.rp; 3825 break; 3826 case PROC_REAP_KILL: 3827 error = copyin(uap->data, &x.rk, sizeof(x.rk)); 3828 if (error != 0) 3829 return (error); 3830 data = &x.rk; 3831 break; 3832 case PROC_ASLR_STATUS: 3833 case PROC_PROTMAX_STATUS: 3834 case PROC_STACKGAP_STATUS: 3835 case PROC_TRACE_STATUS: 3836 case PROC_TRAPCAP_STATUS: 3837 case PROC_NO_NEW_PRIVS_STATUS: 3838 case PROC_WXMAP_STATUS: 3839 data = &flags; 3840 break; 3841 case PROC_PDEATHSIG_CTL: 3842 error = copyin(uap->data, &signum, sizeof(signum)); 3843 if (error != 0) 3844 return (error); 3845 data = &signum; 3846 break; 3847 case PROC_PDEATHSIG_STATUS: 3848 data = &signum; 3849 break; 3850 default: 3851 return (EINVAL); 3852 } 3853 error = kern_procctl(td, uap->idtype, PAIR32TO64(id_t, uap->id), 3854 uap->com, data); 3855 switch (uap->com) { 3856 case PROC_REAP_STATUS: 3857 if (error == 0) 3858 error = copyout(&x.rs, uap->data, sizeof(x.rs)); 3859 break; 3860 case PROC_REAP_KILL: 3861 error1 = copyout(&x.rk, uap->data, sizeof(x.rk)); 3862 if (error == 0) 3863 error = error1; 3864 break; 3865 case PROC_ASLR_STATUS: 3866 case PROC_PROTMAX_STATUS: 3867 case PROC_STACKGAP_STATUS: 3868 case PROC_TRACE_STATUS: 3869 case PROC_TRAPCAP_STATUS: 3870 case PROC_NO_NEW_PRIVS_STATUS: 3871 case PROC_WXMAP_STATUS: 3872 if (error == 0) 3873 error = copyout(&flags, uap->data, sizeof(flags)); 3874 break; 3875 case PROC_PDEATHSIG_STATUS: 3876 if (error == 0) 3877 error = copyout(&signum, uap->data, sizeof(signum)); 3878 break; 3879 } 3880 return (error); 3881 } 3882 3883 int 3884 freebsd32_fcntl(struct thread *td, struct freebsd32_fcntl_args *uap) 3885 { 3886 long tmp; 3887 3888 switch (uap->cmd) { 3889 /* 3890 * Do unsigned conversion for arg when operation 3891 * interprets it as flags or pointer. 3892 */ 3893 case F_SETLK_REMOTE: 3894 case F_SETLKW: 3895 case F_SETLK: 3896 case F_GETLK: 3897 case F_SETFD: 3898 case F_SETFL: 3899 case F_OGETLK: 3900 case F_OSETLK: 3901 case F_OSETLKW: 3902 case F_KINFO: 3903 tmp = (unsigned int)(uap->arg); 3904 break; 3905 default: 3906 tmp = uap->arg; 3907 break; 3908 } 3909 return (kern_fcntl_freebsd(td, uap->fd, uap->cmd, tmp)); 3910 } 3911 3912 int 3913 freebsd32_ppoll(struct thread *td, struct freebsd32_ppoll_args *uap) 3914 { 3915 struct timespec32 ts32; 3916 struct timespec ts, *tsp; 3917 sigset_t set, *ssp; 3918 int error; 3919 3920 if (uap->ts != NULL) { 3921 error = copyin(uap->ts, &ts32, sizeof(ts32)); 3922 if (error != 0) 3923 return (error); 3924 CP(ts32, ts, tv_sec); 3925 CP(ts32, ts, tv_nsec); 3926 tsp = &ts; 3927 } else 3928 tsp = NULL; 3929 if (uap->set != NULL) { 3930 error = copyin(uap->set, &set, sizeof(set)); 3931 if (error != 0) 3932 return (error); 3933 ssp = &set; 3934 } else 3935 ssp = NULL; 3936 3937 return (kern_poll(td, uap->fds, uap->nfds, tsp, ssp)); 3938 } 3939 3940 int 3941 freebsd32_sched_rr_get_interval(struct thread *td, 3942 struct freebsd32_sched_rr_get_interval_args *uap) 3943 { 3944 struct timespec ts; 3945 struct timespec32 ts32; 3946 int error; 3947 3948 error = kern_sched_rr_get_interval(td, uap->pid, &ts); 3949 if (error == 0) { 3950 CP(ts, ts32, tv_sec); 3951 CP(ts, ts32, tv_nsec); 3952 error = copyout(&ts32, uap->interval, sizeof(ts32)); 3953 } 3954 return (error); 3955 } 3956 3957 static void 3958 timex_to_32(struct timex32 *dst, struct timex *src) 3959 { 3960 CP(*src, *dst, modes); 3961 CP(*src, *dst, offset); 3962 CP(*src, *dst, freq); 3963 CP(*src, *dst, maxerror); 3964 CP(*src, *dst, esterror); 3965 CP(*src, *dst, status); 3966 CP(*src, *dst, constant); 3967 CP(*src, *dst, precision); 3968 CP(*src, *dst, tolerance); 3969 CP(*src, *dst, ppsfreq); 3970 CP(*src, *dst, jitter); 3971 CP(*src, *dst, shift); 3972 CP(*src, *dst, stabil); 3973 CP(*src, *dst, jitcnt); 3974 CP(*src, *dst, calcnt); 3975 CP(*src, *dst, errcnt); 3976 CP(*src, *dst, stbcnt); 3977 } 3978 3979 static void 3980 timex_from_32(struct timex *dst, struct timex32 *src) 3981 { 3982 CP(*src, *dst, modes); 3983 CP(*src, *dst, offset); 3984 CP(*src, *dst, freq); 3985 CP(*src, *dst, maxerror); 3986 CP(*src, *dst, esterror); 3987 CP(*src, *dst, status); 3988 CP(*src, *dst, constant); 3989 CP(*src, *dst, precision); 3990 CP(*src, *dst, tolerance); 3991 CP(*src, *dst, ppsfreq); 3992 CP(*src, *dst, jitter); 3993 CP(*src, *dst, shift); 3994 CP(*src, *dst, stabil); 3995 CP(*src, *dst, jitcnt); 3996 CP(*src, *dst, calcnt); 3997 CP(*src, *dst, errcnt); 3998 CP(*src, *dst, stbcnt); 3999 } 4000 4001 int 4002 freebsd32_ntp_adjtime(struct thread *td, struct freebsd32_ntp_adjtime_args *uap) 4003 { 4004 struct timex tx; 4005 struct timex32 tx32; 4006 int error, retval; 4007 4008 error = copyin(uap->tp, &tx32, sizeof(tx32)); 4009 if (error == 0) { 4010 timex_from_32(&tx, &tx32); 4011 error = kern_ntp_adjtime(td, &tx, &retval); 4012 if (error == 0) { 4013 timex_to_32(&tx32, &tx); 4014 error = copyout(&tx32, uap->tp, sizeof(tx32)); 4015 if (error == 0) 4016 td->td_retval[0] = retval; 4017 } 4018 } 4019 return (error); 4020 } 4021 4022 #ifdef FFCLOCK 4023 extern struct mtx ffclock_mtx; 4024 extern struct ffclock_estimate ffclock_estimate; 4025 extern int8_t ffclock_updated; 4026 4027 int 4028 freebsd32_ffclock_setestimate(struct thread *td, 4029 struct freebsd32_ffclock_setestimate_args *uap) 4030 { 4031 struct ffclock_estimate cest; 4032 struct ffclock_estimate32 cest32; 4033 int error; 4034 4035 /* Reuse of PRIV_CLOCK_SETTIME. */ 4036 if ((error = priv_check(td, PRIV_CLOCK_SETTIME)) != 0) 4037 return (error); 4038 4039 if ((error = copyin(uap->cest, &cest32, 4040 sizeof(struct ffclock_estimate32))) != 0) 4041 return (error); 4042 4043 CP(cest.update_time, cest32.update_time, sec); 4044 memcpy(&cest.update_time.frac, &cest32.update_time.frac, sizeof(uint64_t)); 4045 CP(cest, cest32, update_ffcount); 4046 CP(cest, cest32, leapsec_next); 4047 CP(cest, cest32, period); 4048 CP(cest, cest32, errb_abs); 4049 CP(cest, cest32, errb_rate); 4050 CP(cest, cest32, status); 4051 CP(cest, cest32, leapsec_total); 4052 CP(cest, cest32, leapsec); 4053 4054 mtx_lock(&ffclock_mtx); 4055 memcpy(&ffclock_estimate, &cest, sizeof(struct ffclock_estimate)); 4056 ffclock_updated++; 4057 mtx_unlock(&ffclock_mtx); 4058 return (error); 4059 } 4060 4061 int 4062 freebsd32_ffclock_getestimate(struct thread *td, 4063 struct freebsd32_ffclock_getestimate_args *uap) 4064 { 4065 struct ffclock_estimate cest; 4066 struct ffclock_estimate32 cest32; 4067 int error; 4068 4069 mtx_lock(&ffclock_mtx); 4070 memcpy(&cest, &ffclock_estimate, sizeof(struct ffclock_estimate)); 4071 mtx_unlock(&ffclock_mtx); 4072 4073 CP(cest32.update_time, cest.update_time, sec); 4074 memcpy(&cest32.update_time.frac, &cest.update_time.frac, sizeof(uint64_t)); 4075 CP(cest32, cest, update_ffcount); 4076 CP(cest32, cest, leapsec_next); 4077 CP(cest32, cest, period); 4078 CP(cest32, cest, errb_abs); 4079 CP(cest32, cest, errb_rate); 4080 CP(cest32, cest, status); 4081 CP(cest32, cest, leapsec_total); 4082 CP(cest32, cest, leapsec); 4083 4084 error = copyout(&cest32, uap->cest, sizeof(struct ffclock_estimate32)); 4085 return (error); 4086 } 4087 #else /* !FFCLOCK */ 4088 int 4089 freebsd32_ffclock_setestimate(struct thread *td, 4090 struct freebsd32_ffclock_setestimate_args *uap) 4091 { 4092 return (ENOSYS); 4093 } 4094 4095 int 4096 freebsd32_ffclock_getestimate(struct thread *td, 4097 struct freebsd32_ffclock_getestimate_args *uap) 4098 { 4099 return (ENOSYS); 4100 } 4101 #endif /* FFCLOCK */ 4102 4103 #ifdef COMPAT_43 4104 int 4105 ofreebsd32_sethostid(struct thread *td, struct ofreebsd32_sethostid_args *uap) 4106 { 4107 int name[] = { CTL_KERN, KERN_HOSTID }; 4108 long hostid; 4109 4110 hostid = uap->hostid; 4111 return (kernel_sysctl(td, name, nitems(name), NULL, NULL, &hostid, 4112 sizeof(hostid), NULL, 0)); 4113 } 4114 #endif 4115