1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2002 Doug Rabson 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 #include "opt_ffclock.h" 31 #include "opt_inet.h" 32 #include "opt_inet6.h" 33 #include "opt_ktrace.h" 34 35 #define __ELF_WORD_SIZE 32 36 37 #ifdef COMPAT_FREEBSD11 38 #define _WANT_FREEBSD11_KEVENT 39 #endif 40 41 #include <sys/param.h> 42 #include <sys/bus.h> 43 #include <sys/capsicum.h> 44 #include <sys/clock.h> 45 #include <sys/exec.h> 46 #include <sys/fcntl.h> 47 #include <sys/filedesc.h> 48 #include <sys/imgact.h> 49 #include <sys/jail.h> 50 #include <sys/kernel.h> 51 #include <sys/limits.h> 52 #include <sys/linker.h> 53 #include <sys/lock.h> 54 #include <sys/malloc.h> 55 #include <sys/file.h> /* Must come after sys/malloc.h */ 56 #include <sys/imgact.h> 57 #include <sys/mbuf.h> 58 #include <sys/mman.h> 59 #include <sys/module.h> 60 #include <sys/mount.h> 61 #include <sys/mutex.h> 62 #include <sys/namei.h> 63 #include <sys/priv.h> 64 #include <sys/proc.h> 65 #include <sys/procctl.h> 66 #include <sys/ptrace.h> 67 #include <sys/reboot.h> 68 #include <sys/resource.h> 69 #include <sys/resourcevar.h> 70 #include <sys/selinfo.h> 71 #include <sys/eventvar.h> /* Must come after sys/selinfo.h */ 72 #include <sys/pipe.h> /* Must come after sys/selinfo.h */ 73 #include <sys/signal.h> 74 #include <sys/signalvar.h> 75 #include <sys/socket.h> 76 #include <sys/socketvar.h> 77 #include <sys/stat.h> 78 #include <sys/syscall.h> 79 #include <sys/syscallsubr.h> 80 #include <sys/sysctl.h> 81 #include <sys/sysent.h> 82 #include <sys/sysproto.h> 83 #include <sys/systm.h> 84 #include <sys/thr.h> 85 #include <sys/timerfd.h> 86 #include <sys/timex.h> 87 #include <sys/unistd.h> 88 #include <sys/ucontext.h> 89 #include <sys/ucred.h> 90 #include <sys/vnode.h> 91 #include <sys/wait.h> 92 #include <sys/ipc.h> 93 #include <sys/msg.h> 94 #include <sys/sem.h> 95 #include <sys/shm.h> 96 #include <sys/timeffc.h> 97 #ifdef KTRACE 98 #include <sys/ktrace.h> 99 #endif 100 101 #ifdef INET 102 #include <netinet/in.h> 103 #endif 104 105 #include <vm/vm.h> 106 #include <vm/vm_param.h> 107 #include <vm/pmap.h> 108 #include <vm/vm_map.h> 109 #include <vm/vm_object.h> 110 #include <vm/vm_extern.h> 111 112 #include <machine/cpu.h> 113 #include <machine/elf.h> 114 #ifdef __amd64__ 115 #include <machine/md_var.h> 116 #endif 117 118 #include <security/audit/audit.h> 119 #include <security/mac/mac_syscalls.h> 120 121 #include <compat/freebsd32/freebsd32_util.h> 122 #include <compat/freebsd32/freebsd32.h> 123 #include <compat/freebsd32/freebsd32_ipc.h> 124 #include <compat/freebsd32/freebsd32_misc.h> 125 #include <compat/freebsd32/freebsd32_signal.h> 126 #include <compat/freebsd32/freebsd32_proto.h> 127 128 int compat_freebsd_32bit = 1; 129 130 static void 131 register_compat32_feature(void *arg) 132 { 133 if (!compat_freebsd_32bit) 134 return; 135 136 FEATURE_ADD("compat_freebsd32", "Compatible with 32-bit FreeBSD"); 137 FEATURE_ADD("compat_freebsd_32bit", 138 "Compatible with 32-bit FreeBSD (legacy feature name)"); 139 } 140 SYSINIT(freebsd32, SI_SUB_EXEC, SI_ORDER_ANY, register_compat32_feature, 141 NULL); 142 143 struct ptrace_io_desc32 { 144 int piod_op; 145 uint32_t piod_offs; 146 uint32_t piod_addr; 147 uint32_t piod_len; 148 }; 149 150 struct ptrace_vm_entry32 { 151 int pve_entry; 152 int pve_timestamp; 153 uint32_t pve_start; 154 uint32_t pve_end; 155 uint32_t pve_offset; 156 u_int pve_prot; 157 u_int pve_pathlen; 158 int32_t pve_fileid; 159 u_int pve_fsid; 160 uint32_t pve_path; 161 }; 162 163 #ifdef __amd64__ 164 CTASSERT(sizeof(struct timeval32) == 8); 165 CTASSERT(sizeof(struct timespec32) == 8); 166 CTASSERT(sizeof(struct itimerval32) == 16); 167 CTASSERT(sizeof(struct bintime32) == 12); 168 #else 169 CTASSERT(sizeof(struct timeval32) == 16); 170 CTASSERT(sizeof(struct timespec32) == 16); 171 CTASSERT(sizeof(struct itimerval32) == 32); 172 CTASSERT(sizeof(struct bintime32) == 16); 173 #endif 174 CTASSERT(sizeof(struct ostatfs32) == 256); 175 #ifdef __amd64__ 176 CTASSERT(sizeof(struct rusage32) == 72); 177 #else 178 CTASSERT(sizeof(struct rusage32) == 88); 179 #endif 180 CTASSERT(sizeof(struct sigaltstack32) == 12); 181 #ifdef __amd64__ 182 CTASSERT(sizeof(struct kevent32) == 56); 183 #else 184 CTASSERT(sizeof(struct kevent32) == 64); 185 #endif 186 CTASSERT(sizeof(struct iovec32) == 8); 187 CTASSERT(sizeof(struct msghdr32) == 28); 188 #ifdef __amd64__ 189 CTASSERT(sizeof(struct stat32) == 208); 190 CTASSERT(sizeof(struct freebsd11_stat32) == 96); 191 #else 192 CTASSERT(sizeof(struct stat32) == 224); 193 CTASSERT(sizeof(struct freebsd11_stat32) == 120); 194 #endif 195 CTASSERT(sizeof(struct sigaction32) == 24); 196 197 static int freebsd32_kevent_copyout(void *arg, struct kevent *kevp, int count); 198 static int freebsd32_kevent_copyin(void *arg, struct kevent *kevp, int count); 199 static int freebsd32_user_clock_nanosleep(struct thread *td, clockid_t clock_id, 200 int flags, const struct timespec32 *ua_rqtp, struct timespec32 *ua_rmtp); 201 202 void 203 freebsd32_rusage_out(const struct rusage *s, struct rusage32 *s32) 204 { 205 206 TV_CP(*s, *s32, ru_utime); 207 TV_CP(*s, *s32, ru_stime); 208 CP(*s, *s32, ru_maxrss); 209 CP(*s, *s32, ru_ixrss); 210 CP(*s, *s32, ru_idrss); 211 CP(*s, *s32, ru_isrss); 212 CP(*s, *s32, ru_minflt); 213 CP(*s, *s32, ru_majflt); 214 CP(*s, *s32, ru_nswap); 215 CP(*s, *s32, ru_inblock); 216 CP(*s, *s32, ru_oublock); 217 CP(*s, *s32, ru_msgsnd); 218 CP(*s, *s32, ru_msgrcv); 219 CP(*s, *s32, ru_nsignals); 220 CP(*s, *s32, ru_nvcsw); 221 CP(*s, *s32, ru_nivcsw); 222 } 223 224 int 225 freebsd32_wait4(struct thread *td, struct freebsd32_wait4_args *uap) 226 { 227 int error, status; 228 struct rusage32 ru32; 229 struct rusage ru, *rup; 230 231 if (uap->rusage != NULL) 232 rup = &ru; 233 else 234 rup = NULL; 235 error = kern_wait(td, uap->pid, &status, uap->options, rup); 236 if (error) 237 return (error); 238 if (uap->status != NULL) 239 error = copyout(&status, uap->status, sizeof(status)); 240 if (uap->rusage != NULL && error == 0) { 241 freebsd32_rusage_out(&ru, &ru32); 242 error = copyout(&ru32, uap->rusage, sizeof(ru32)); 243 } 244 return (error); 245 } 246 247 int 248 freebsd32_wait6(struct thread *td, struct freebsd32_wait6_args *uap) 249 { 250 struct __wrusage32 wru32; 251 struct __wrusage wru, *wrup; 252 struct __siginfo32 si32; 253 struct __siginfo si, *sip; 254 int error, status; 255 256 if (uap->wrusage != NULL) 257 wrup = &wru; 258 else 259 wrup = NULL; 260 if (uap->info != NULL) { 261 sip = &si; 262 bzero(sip, sizeof(*sip)); 263 } else 264 sip = NULL; 265 error = kern_wait6(td, uap->idtype, PAIR32TO64(id_t, uap->id), 266 &status, uap->options, wrup, sip); 267 if (error != 0) 268 return (error); 269 if (uap->status != NULL) 270 error = copyout(&status, uap->status, sizeof(status)); 271 if (uap->wrusage != NULL && error == 0) { 272 freebsd32_rusage_out(&wru.wru_self, &wru32.wru_self); 273 freebsd32_rusage_out(&wru.wru_children, &wru32.wru_children); 274 error = copyout(&wru32, uap->wrusage, sizeof(wru32)); 275 } 276 if (uap->info != NULL && error == 0) { 277 siginfo_to_siginfo32 (&si, &si32); 278 error = copyout(&si32, uap->info, sizeof(si32)); 279 } 280 return (error); 281 } 282 283 #ifdef COMPAT_FREEBSD4 284 static void 285 copy_statfs(struct statfs *in, struct ostatfs32 *out) 286 { 287 288 statfs_scale_blocks(in, INT32_MAX); 289 bzero(out, sizeof(*out)); 290 CP(*in, *out, f_bsize); 291 out->f_iosize = MIN(in->f_iosize, INT32_MAX); 292 CP(*in, *out, f_blocks); 293 CP(*in, *out, f_bfree); 294 CP(*in, *out, f_bavail); 295 out->f_files = MIN(in->f_files, INT32_MAX); 296 out->f_ffree = MIN(in->f_ffree, INT32_MAX); 297 CP(*in, *out, f_fsid); 298 CP(*in, *out, f_owner); 299 CP(*in, *out, f_type); 300 CP(*in, *out, f_flags); 301 out->f_syncwrites = MIN(in->f_syncwrites, INT32_MAX); 302 out->f_asyncwrites = MIN(in->f_asyncwrites, INT32_MAX); 303 strlcpy(out->f_fstypename, 304 in->f_fstypename, MFSNAMELEN); 305 strlcpy(out->f_mntonname, 306 in->f_mntonname, min(MNAMELEN, FREEBSD4_OMNAMELEN)); 307 out->f_syncreads = MIN(in->f_syncreads, INT32_MAX); 308 out->f_asyncreads = MIN(in->f_asyncreads, INT32_MAX); 309 strlcpy(out->f_mntfromname, 310 in->f_mntfromname, min(MNAMELEN, FREEBSD4_OMNAMELEN)); 311 } 312 #endif 313 314 int 315 freebsd32_getfsstat(struct thread *td, struct freebsd32_getfsstat_args *uap) 316 { 317 size_t count; 318 int error; 319 320 if (uap->bufsize < 0 || uap->bufsize > SIZE_MAX) 321 return (EINVAL); 322 error = kern_getfsstat(td, &uap->buf, uap->bufsize, &count, 323 UIO_USERSPACE, uap->mode); 324 if (error == 0) 325 td->td_retval[0] = count; 326 return (error); 327 } 328 329 #ifdef COMPAT_FREEBSD4 330 int 331 freebsd4_freebsd32_getfsstat(struct thread *td, 332 struct freebsd4_freebsd32_getfsstat_args *uap) 333 { 334 struct statfs *buf, *sp; 335 struct ostatfs32 stat32; 336 size_t count, size, copycount; 337 int error; 338 339 count = uap->bufsize / sizeof(struct ostatfs32); 340 size = count * sizeof(struct statfs); 341 error = kern_getfsstat(td, &buf, size, &count, UIO_SYSSPACE, uap->mode); 342 if (size > 0) { 343 sp = buf; 344 copycount = count; 345 while (copycount > 0 && error == 0) { 346 copy_statfs(sp, &stat32); 347 error = copyout(&stat32, uap->buf, sizeof(stat32)); 348 sp++; 349 uap->buf++; 350 copycount--; 351 } 352 free(buf, M_STATFS); 353 } 354 if (error == 0) 355 td->td_retval[0] = count; 356 return (error); 357 } 358 #endif 359 360 #ifdef COMPAT_FREEBSD11 361 int 362 freebsd11_freebsd32_getfsstat(struct thread *td, 363 struct freebsd11_freebsd32_getfsstat_args *uap) 364 { 365 return(kern_freebsd11_getfsstat(td, uap->buf, uap->bufsize, 366 uap->mode)); 367 } 368 #endif 369 370 int 371 freebsd32_sigaltstack(struct thread *td, 372 struct freebsd32_sigaltstack_args *uap) 373 { 374 struct sigaltstack32 s32; 375 struct sigaltstack ss, oss, *ssp; 376 int error; 377 378 if (uap->ss != NULL) { 379 error = copyin(uap->ss, &s32, sizeof(s32)); 380 if (error) 381 return (error); 382 PTRIN_CP(s32, ss, ss_sp); 383 CP(s32, ss, ss_size); 384 CP(s32, ss, ss_flags); 385 ssp = &ss; 386 } else 387 ssp = NULL; 388 error = kern_sigaltstack(td, ssp, &oss); 389 if (error == 0 && uap->oss != NULL) { 390 PTROUT_CP(oss, s32, ss_sp); 391 CP(oss, s32, ss_size); 392 CP(oss, s32, ss_flags); 393 error = copyout(&s32, uap->oss, sizeof(s32)); 394 } 395 return (error); 396 } 397 398 /* 399 * Custom version of exec_copyin_args() so that we can translate 400 * the pointers. 401 */ 402 int 403 freebsd32_exec_copyin_args(struct image_args *args, const char *fname, 404 enum uio_seg segflg, uint32_t *argv, uint32_t *envv) 405 { 406 char *argp, *envp; 407 uint32_t *p32, arg; 408 int error; 409 410 bzero(args, sizeof(*args)); 411 if (argv == NULL) 412 return (EFAULT); 413 414 /* 415 * Allocate demand-paged memory for the file name, argument, and 416 * environment strings. 417 */ 418 error = exec_alloc_args(args); 419 if (error != 0) 420 return (error); 421 422 /* 423 * Copy the file name. 424 */ 425 error = exec_args_add_fname(args, fname, segflg); 426 if (error != 0) 427 goto err_exit; 428 429 /* 430 * extract arguments first 431 */ 432 p32 = argv; 433 for (;;) { 434 error = copyin(p32++, &arg, sizeof(arg)); 435 if (error) 436 goto err_exit; 437 if (arg == 0) 438 break; 439 argp = PTRIN(arg); 440 error = exec_args_add_arg(args, argp, UIO_USERSPACE); 441 if (error != 0) 442 goto err_exit; 443 } 444 445 /* 446 * extract environment strings 447 */ 448 if (envv) { 449 p32 = envv; 450 for (;;) { 451 error = copyin(p32++, &arg, sizeof(arg)); 452 if (error) 453 goto err_exit; 454 if (arg == 0) 455 break; 456 envp = PTRIN(arg); 457 error = exec_args_add_env(args, envp, UIO_USERSPACE); 458 if (error != 0) 459 goto err_exit; 460 } 461 } 462 463 return (0); 464 465 err_exit: 466 exec_free_args(args); 467 return (error); 468 } 469 470 int 471 freebsd32_execve(struct thread *td, struct freebsd32_execve_args *uap) 472 { 473 struct image_args eargs; 474 struct vmspace *oldvmspace; 475 int error; 476 477 error = pre_execve(td, &oldvmspace); 478 if (error != 0) 479 return (error); 480 error = freebsd32_exec_copyin_args(&eargs, uap->fname, UIO_USERSPACE, 481 uap->argv, uap->envv); 482 if (error == 0) 483 error = kern_execve(td, &eargs, NULL, oldvmspace); 484 post_execve(td, error, oldvmspace); 485 AUDIT_SYSCALL_EXIT(error == EJUSTRETURN ? 0 : error, td); 486 return (error); 487 } 488 489 int 490 freebsd32_fexecve(struct thread *td, struct freebsd32_fexecve_args *uap) 491 { 492 struct image_args eargs; 493 struct vmspace *oldvmspace; 494 int error; 495 496 error = pre_execve(td, &oldvmspace); 497 if (error != 0) 498 return (error); 499 error = freebsd32_exec_copyin_args(&eargs, NULL, UIO_SYSSPACE, 500 uap->argv, uap->envv); 501 if (error == 0) { 502 eargs.fd = uap->fd; 503 error = kern_execve(td, &eargs, NULL, oldvmspace); 504 } 505 post_execve(td, error, oldvmspace); 506 AUDIT_SYSCALL_EXIT(error == EJUSTRETURN ? 0 : error, td); 507 return (error); 508 } 509 510 int 511 freebsd32_mknodat(struct thread *td, struct freebsd32_mknodat_args *uap) 512 { 513 514 return (kern_mknodat(td, uap->fd, uap->path, UIO_USERSPACE, 515 uap->mode, PAIR32TO64(dev_t, uap->dev))); 516 } 517 518 int 519 freebsd32_mprotect(struct thread *td, struct freebsd32_mprotect_args *uap) 520 { 521 int prot; 522 523 prot = uap->prot; 524 #if defined(__amd64__) 525 if (i386_read_exec && (prot & PROT_READ) != 0) 526 prot |= PROT_EXEC; 527 #endif 528 return (kern_mprotect(td, (uintptr_t)PTRIN(uap->addr), uap->len, 529 prot, 0)); 530 } 531 532 int 533 freebsd32_mmap(struct thread *td, struct freebsd32_mmap_args *uap) 534 { 535 int prot; 536 537 prot = uap->prot; 538 #if defined(__amd64__) 539 if (i386_read_exec && (prot & PROT_READ)) 540 prot |= PROT_EXEC; 541 #endif 542 543 return (kern_mmap(td, &(struct mmap_req){ 544 .mr_hint = (uintptr_t)uap->addr, 545 .mr_len = uap->len, 546 .mr_prot = prot, 547 .mr_flags = uap->flags, 548 .mr_fd = uap->fd, 549 .mr_pos = PAIR32TO64(off_t, uap->pos), 550 })); 551 } 552 553 #ifdef COMPAT_FREEBSD6 554 int 555 freebsd6_freebsd32_mmap(struct thread *td, 556 struct freebsd6_freebsd32_mmap_args *uap) 557 { 558 int prot; 559 560 prot = uap->prot; 561 #if defined(__amd64__) 562 if (i386_read_exec && (prot & PROT_READ)) 563 prot |= PROT_EXEC; 564 #endif 565 566 return (kern_mmap(td, &(struct mmap_req){ 567 .mr_hint = (uintptr_t)uap->addr, 568 .mr_len = uap->len, 569 .mr_prot = prot, 570 .mr_flags = uap->flags, 571 .mr_fd = uap->fd, 572 .mr_pos = PAIR32TO64(off_t, uap->pos), 573 })); 574 } 575 #endif 576 577 #ifdef COMPAT_43 578 int 579 ofreebsd32_mmap(struct thread *td, struct ofreebsd32_mmap_args *uap) 580 { 581 return (kern_ommap(td, (uintptr_t)uap->addr, uap->len, uap->prot, 582 uap->flags, uap->fd, uap->pos)); 583 } 584 #endif 585 586 int 587 freebsd32_setitimer(struct thread *td, struct freebsd32_setitimer_args *uap) 588 { 589 struct itimerval itv, oitv, *itvp; 590 struct itimerval32 i32; 591 int error; 592 593 if (uap->itv != NULL) { 594 error = copyin(uap->itv, &i32, sizeof(i32)); 595 if (error) 596 return (error); 597 TV_CP(i32, itv, it_interval); 598 TV_CP(i32, itv, it_value); 599 itvp = &itv; 600 } else 601 itvp = NULL; 602 error = kern_setitimer(td, uap->which, itvp, &oitv); 603 if (error || uap->oitv == NULL) 604 return (error); 605 TV_CP(oitv, i32, it_interval); 606 TV_CP(oitv, i32, it_value); 607 return (copyout(&i32, uap->oitv, sizeof(i32))); 608 } 609 610 int 611 freebsd32_getitimer(struct thread *td, struct freebsd32_getitimer_args *uap) 612 { 613 struct itimerval itv; 614 struct itimerval32 i32; 615 int error; 616 617 error = kern_getitimer(td, uap->which, &itv); 618 if (error || uap->itv == NULL) 619 return (error); 620 TV_CP(itv, i32, it_interval); 621 TV_CP(itv, i32, it_value); 622 return (copyout(&i32, uap->itv, sizeof(i32))); 623 } 624 625 int 626 freebsd32_select(struct thread *td, struct freebsd32_select_args *uap) 627 { 628 struct timeval32 tv32; 629 struct timeval tv, *tvp; 630 int error; 631 632 if (uap->tv != NULL) { 633 error = copyin(uap->tv, &tv32, sizeof(tv32)); 634 if (error) 635 return (error); 636 CP(tv32, tv, tv_sec); 637 CP(tv32, tv, tv_usec); 638 tvp = &tv; 639 } else 640 tvp = NULL; 641 /* 642 * XXX Do pointers need PTRIN()? 643 */ 644 return (kern_select(td, uap->nd, uap->in, uap->ou, uap->ex, tvp, 645 sizeof(int32_t) * 8)); 646 } 647 648 int 649 freebsd32_pselect(struct thread *td, struct freebsd32_pselect_args *uap) 650 { 651 struct timespec32 ts32; 652 struct timespec ts; 653 struct timeval tv, *tvp; 654 sigset_t set, *uset; 655 int error; 656 657 if (uap->ts != NULL) { 658 error = copyin(uap->ts, &ts32, sizeof(ts32)); 659 if (error != 0) 660 return (error); 661 CP(ts32, ts, tv_sec); 662 CP(ts32, ts, tv_nsec); 663 TIMESPEC_TO_TIMEVAL(&tv, &ts); 664 tvp = &tv; 665 } else 666 tvp = NULL; 667 if (uap->sm != NULL) { 668 error = copyin(uap->sm, &set, sizeof(set)); 669 if (error != 0) 670 return (error); 671 uset = &set; 672 } else 673 uset = NULL; 674 /* 675 * XXX Do pointers need PTRIN()? 676 */ 677 error = kern_pselect(td, uap->nd, uap->in, uap->ou, uap->ex, tvp, 678 uset, sizeof(int32_t) * 8); 679 return (error); 680 } 681 682 static void 683 freebsd32_kevent_to_kevent32(const struct kevent *kevp, struct kevent32 *ks32) 684 { 685 uint64_t e; 686 int j; 687 688 CP(*kevp, *ks32, ident); 689 CP(*kevp, *ks32, filter); 690 CP(*kevp, *ks32, flags); 691 CP(*kevp, *ks32, fflags); 692 #if BYTE_ORDER == LITTLE_ENDIAN 693 ks32->data1 = kevp->data; 694 ks32->data2 = kevp->data >> 32; 695 #else 696 ks32->data1 = kevp->data >> 32; 697 ks32->data2 = kevp->data; 698 #endif 699 PTROUT_CP(*kevp, *ks32, udata); 700 for (j = 0; j < nitems(kevp->ext); j++) { 701 e = kevp->ext[j]; 702 #if BYTE_ORDER == LITTLE_ENDIAN 703 ks32->ext64[2 * j] = e; 704 ks32->ext64[2 * j + 1] = e >> 32; 705 #else 706 ks32->ext64[2 * j] = e >> 32; 707 ks32->ext64[2 * j + 1] = e; 708 #endif 709 } 710 } 711 712 void 713 freebsd32_kinfo_knote_to_32(const struct kinfo_knote *kin, 714 struct kinfo_knote32 *kin32) 715 { 716 memset(kin32, 0, sizeof(*kin32)); 717 CP(*kin, *kin32, knt_kq_fd); 718 freebsd32_kevent_to_kevent32(&kin->knt_event, &kin32->knt_event); 719 CP(*kin, *kin32, knt_status); 720 CP(*kin, *kin32, knt_extdata); 721 switch (kin->knt_extdata) { 722 case KNOTE_EXTDATA_NONE: 723 break; 724 case KNOTE_EXTDATA_VNODE: 725 CP(*kin, *kin32, knt_vnode.knt_vnode_type); 726 #if BYTE_ORDER == LITTLE_ENDIAN 727 kin32->knt_vnode.knt_vnode_fsid[0] = kin->knt_vnode. 728 knt_vnode_fsid; 729 kin32->knt_vnode.knt_vnode_fsid[1] = kin->knt_vnode. 730 knt_vnode_fsid >> 32; 731 kin32->knt_vnode.knt_vnode_fileid[0] = kin->knt_vnode. 732 knt_vnode_fileid; 733 kin32->knt_vnode.knt_vnode_fileid[1] = kin->knt_vnode. 734 knt_vnode_fileid >> 32; 735 #else 736 kin32->knt_vnode.knt_vnode_fsid[1] = kin->knt_vnode. 737 knt_vnode_fsid; 738 kin32->knt_vnode.knt_vnode_fsid[0] = kin->knt_vnode. 739 knt_vnode_fsid >> 32; 740 kin32->knt_vnode.knt_vnode_fileid[1] = kin->knt_vnode. 741 knt_vnode_fileid; 742 kin32->knt_vnode.knt_vnode_fileid[0] = kin->knt_vnode. 743 knt_vnode_fileid >> 32; 744 #endif 745 memcpy(kin32->knt_vnode.knt_vnode_fullpath, 746 kin->knt_vnode.knt_vnode_fullpath, PATH_MAX); 747 break; 748 case KNOTE_EXTDATA_PIPE: 749 #if BYTE_ORDER == LITTLE_ENDIAN 750 kin32->knt_pipe.knt_pipe_ino[0] = kin->knt_pipe.knt_pipe_ino; 751 kin32->knt_pipe.knt_pipe_ino[1] = kin->knt_pipe. 752 knt_pipe_ino >> 32; 753 #else 754 kin32->knt_pipe.knt_pipe_ino[1] = kin->knt_pipe.knt_pipe_ino; 755 kin32->knt_pipe.knt_pipe_ino[0] = kin->knt_pipe. 756 knt_pipe_ino >> 32; 757 #endif 758 break; 759 } 760 } 761 762 /* 763 * Copy 'count' items into the destination list pointed to by uap->eventlist. 764 */ 765 static int 766 freebsd32_kevent_copyout(void *arg, struct kevent *kevp, int count) 767 { 768 struct freebsd32_kevent_args *uap; 769 struct kevent32 ks32[KQ_NEVENTS]; 770 int i, error; 771 772 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count)); 773 uap = (struct freebsd32_kevent_args *)arg; 774 775 for (i = 0; i < count; i++) 776 freebsd32_kevent_to_kevent32(&kevp[i], &ks32[i]); 777 error = copyout(ks32, uap->eventlist, count * sizeof *ks32); 778 if (error == 0) 779 uap->eventlist += count; 780 return (error); 781 } 782 783 /* 784 * Copy 'count' items from the list pointed to by uap->changelist. 785 */ 786 static int 787 freebsd32_kevent_copyin(void *arg, struct kevent *kevp, int count) 788 { 789 struct freebsd32_kevent_args *uap; 790 struct kevent32 ks32[KQ_NEVENTS]; 791 uint64_t e; 792 int i, j, error; 793 794 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count)); 795 uap = (struct freebsd32_kevent_args *)arg; 796 797 error = copyin(uap->changelist, ks32, count * sizeof *ks32); 798 if (error) 799 goto done; 800 uap->changelist += count; 801 802 for (i = 0; i < count; i++) { 803 CP(ks32[i], kevp[i], ident); 804 CP(ks32[i], kevp[i], filter); 805 CP(ks32[i], kevp[i], flags); 806 CP(ks32[i], kevp[i], fflags); 807 kevp[i].data = PAIR32TO64(uint64_t, ks32[i].data); 808 PTRIN_CP(ks32[i], kevp[i], udata); 809 for (j = 0; j < nitems(kevp->ext); j++) { 810 #if BYTE_ORDER == LITTLE_ENDIAN 811 e = ks32[i].ext64[2 * j + 1]; 812 e <<= 32; 813 e += ks32[i].ext64[2 * j]; 814 #else 815 e = ks32[i].ext64[2 * j]; 816 e <<= 32; 817 e += ks32[i].ext64[2 * j + 1]; 818 #endif 819 kevp[i].ext[j] = e; 820 } 821 } 822 done: 823 return (error); 824 } 825 826 int 827 freebsd32_kevent(struct thread *td, struct freebsd32_kevent_args *uap) 828 { 829 struct timespec32 ts32; 830 struct timespec ts, *tsp; 831 struct kevent_copyops k_ops = { 832 .arg = uap, 833 .k_copyout = freebsd32_kevent_copyout, 834 .k_copyin = freebsd32_kevent_copyin, 835 }; 836 #ifdef KTRACE 837 struct kevent32 *eventlist = uap->eventlist; 838 #endif 839 int error; 840 841 if (uap->timeout) { 842 error = copyin(uap->timeout, &ts32, sizeof(ts32)); 843 if (error) 844 return (error); 845 CP(ts32, ts, tv_sec); 846 CP(ts32, ts, tv_nsec); 847 tsp = &ts; 848 } else 849 tsp = NULL; 850 #ifdef KTRACE 851 if (KTRPOINT(td, KTR_STRUCT_ARRAY)) 852 ktrstructarray("kevent32", UIO_USERSPACE, uap->changelist, 853 uap->nchanges, sizeof(struct kevent32)); 854 #endif 855 error = kern_kevent(td, uap->fd, uap->nchanges, uap->nevents, 856 &k_ops, tsp); 857 #ifdef KTRACE 858 if (error == 0 && KTRPOINT(td, KTR_STRUCT_ARRAY)) 859 ktrstructarray("kevent32", UIO_USERSPACE, eventlist, 860 td->td_retval[0], sizeof(struct kevent32)); 861 #endif 862 return (error); 863 } 864 865 #ifdef COMPAT_FREEBSD11 866 static int 867 freebsd32_kevent11_copyout(void *arg, struct kevent *kevp, int count) 868 { 869 struct freebsd11_freebsd32_kevent_args *uap; 870 struct freebsd11_kevent32 ks32[KQ_NEVENTS]; 871 int i, error; 872 873 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count)); 874 uap = (struct freebsd11_freebsd32_kevent_args *)arg; 875 876 for (i = 0; i < count; i++) { 877 CP(kevp[i], ks32[i], ident); 878 CP(kevp[i], ks32[i], filter); 879 CP(kevp[i], ks32[i], flags); 880 CP(kevp[i], ks32[i], fflags); 881 CP(kevp[i], ks32[i], data); 882 PTROUT_CP(kevp[i], ks32[i], udata); 883 } 884 error = copyout(ks32, uap->eventlist, count * sizeof *ks32); 885 if (error == 0) 886 uap->eventlist += count; 887 return (error); 888 } 889 890 /* 891 * Copy 'count' items from the list pointed to by uap->changelist. 892 */ 893 static int 894 freebsd32_kevent11_copyin(void *arg, struct kevent *kevp, int count) 895 { 896 struct freebsd11_freebsd32_kevent_args *uap; 897 struct freebsd11_kevent32 ks32[KQ_NEVENTS]; 898 int i, j, error; 899 900 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count)); 901 uap = (struct freebsd11_freebsd32_kevent_args *)arg; 902 903 error = copyin(uap->changelist, ks32, count * sizeof *ks32); 904 if (error) 905 goto done; 906 uap->changelist += count; 907 908 for (i = 0; i < count; i++) { 909 CP(ks32[i], kevp[i], ident); 910 CP(ks32[i], kevp[i], filter); 911 CP(ks32[i], kevp[i], flags); 912 CP(ks32[i], kevp[i], fflags); 913 CP(ks32[i], kevp[i], data); 914 PTRIN_CP(ks32[i], kevp[i], udata); 915 for (j = 0; j < nitems(kevp->ext); j++) 916 kevp[i].ext[j] = 0; 917 } 918 done: 919 return (error); 920 } 921 922 int 923 freebsd11_freebsd32_kevent(struct thread *td, 924 struct freebsd11_freebsd32_kevent_args *uap) 925 { 926 struct timespec32 ts32; 927 struct timespec ts, *tsp; 928 struct kevent_copyops k_ops = { 929 .arg = uap, 930 .k_copyout = freebsd32_kevent11_copyout, 931 .k_copyin = freebsd32_kevent11_copyin, 932 }; 933 #ifdef KTRACE 934 struct freebsd11_kevent32 *eventlist = uap->eventlist; 935 #endif 936 int error; 937 938 if (uap->timeout) { 939 error = copyin(uap->timeout, &ts32, sizeof(ts32)); 940 if (error) 941 return (error); 942 CP(ts32, ts, tv_sec); 943 CP(ts32, ts, tv_nsec); 944 tsp = &ts; 945 } else 946 tsp = NULL; 947 #ifdef KTRACE 948 if (KTRPOINT(td, KTR_STRUCT_ARRAY)) 949 ktrstructarray("freebsd11_kevent32", UIO_USERSPACE, 950 uap->changelist, uap->nchanges, 951 sizeof(struct freebsd11_kevent32)); 952 #endif 953 error = kern_kevent(td, uap->fd, uap->nchanges, uap->nevents, 954 &k_ops, tsp); 955 #ifdef KTRACE 956 if (error == 0 && KTRPOINT(td, KTR_STRUCT_ARRAY)) 957 ktrstructarray("freebsd11_kevent32", UIO_USERSPACE, 958 eventlist, td->td_retval[0], 959 sizeof(struct freebsd11_kevent32)); 960 #endif 961 return (error); 962 } 963 #endif 964 965 int 966 freebsd32_gettimeofday(struct thread *td, 967 struct freebsd32_gettimeofday_args *uap) 968 { 969 struct timeval atv; 970 struct timeval32 atv32; 971 struct timezone rtz; 972 int error = 0; 973 974 if (uap->tp) { 975 microtime(&atv); 976 CP(atv, atv32, tv_sec); 977 CP(atv, atv32, tv_usec); 978 error = copyout(&atv32, uap->tp, sizeof (atv32)); 979 } 980 if (error == 0 && uap->tzp != NULL) { 981 rtz.tz_minuteswest = 0; 982 rtz.tz_dsttime = 0; 983 error = copyout(&rtz, uap->tzp, sizeof (rtz)); 984 } 985 return (error); 986 } 987 988 int 989 freebsd32_getrusage(struct thread *td, struct freebsd32_getrusage_args *uap) 990 { 991 struct rusage32 s32; 992 struct rusage s; 993 int error; 994 995 error = kern_getrusage(td, uap->who, &s); 996 if (error == 0) { 997 freebsd32_rusage_out(&s, &s32); 998 error = copyout(&s32, uap->rusage, sizeof(s32)); 999 } 1000 return (error); 1001 } 1002 1003 static void 1004 ptrace_lwpinfo_to32(const struct ptrace_lwpinfo *pl, 1005 struct ptrace_lwpinfo32 *pl32) 1006 { 1007 1008 bzero(pl32, sizeof(*pl32)); 1009 pl32->pl_lwpid = pl->pl_lwpid; 1010 pl32->pl_event = pl->pl_event; 1011 pl32->pl_flags = pl->pl_flags; 1012 pl32->pl_sigmask = pl->pl_sigmask; 1013 pl32->pl_siglist = pl->pl_siglist; 1014 siginfo_to_siginfo32(&pl->pl_siginfo, &pl32->pl_siginfo); 1015 strcpy(pl32->pl_tdname, pl->pl_tdname); 1016 pl32->pl_child_pid = pl->pl_child_pid; 1017 pl32->pl_syscall_code = pl->pl_syscall_code; 1018 pl32->pl_syscall_narg = pl->pl_syscall_narg; 1019 } 1020 1021 static void 1022 ptrace_sc_ret_to32(const struct ptrace_sc_ret *psr, 1023 struct ptrace_sc_ret32 *psr32) 1024 { 1025 1026 bzero(psr32, sizeof(*psr32)); 1027 psr32->sr_retval[0] = psr->sr_retval[0]; 1028 psr32->sr_retval[1] = psr->sr_retval[1]; 1029 psr32->sr_error = psr->sr_error; 1030 } 1031 1032 int 1033 freebsd32_ptrace(struct thread *td, struct freebsd32_ptrace_args *uap) 1034 { 1035 union { 1036 struct ptrace_io_desc piod; 1037 struct ptrace_lwpinfo pl; 1038 struct ptrace_vm_entry pve; 1039 struct ptrace_coredump pc; 1040 struct ptrace_sc_remote sr; 1041 struct dbreg32 dbreg; 1042 struct fpreg32 fpreg; 1043 struct reg32 reg; 1044 struct iovec vec; 1045 register_t args[nitems(td->td_sa.args)]; 1046 struct ptrace_sc_ret psr; 1047 int ptevents; 1048 } r; 1049 union { 1050 struct ptrace_io_desc32 piod; 1051 struct ptrace_lwpinfo32 pl; 1052 struct ptrace_vm_entry32 pve; 1053 struct ptrace_coredump32 pc; 1054 struct ptrace_sc_remote32 sr; 1055 uint32_t args[nitems(td->td_sa.args)]; 1056 struct ptrace_sc_ret32 psr; 1057 struct iovec32 vec; 1058 } r32; 1059 syscallarg_t pscr_args[nitems(td->td_sa.args)]; 1060 u_int pscr_args32[nitems(td->td_sa.args)]; 1061 void *addr; 1062 int data, error, i; 1063 1064 if (!allow_ptrace) 1065 return (ENOSYS); 1066 error = 0; 1067 1068 AUDIT_ARG_PID(uap->pid); 1069 AUDIT_ARG_CMD(uap->req); 1070 AUDIT_ARG_VALUE(uap->data); 1071 addr = &r; 1072 data = uap->data; 1073 switch (uap->req) { 1074 case PT_GET_EVENT_MASK: 1075 case PT_GET_SC_ARGS: 1076 case PT_GET_SC_RET: 1077 break; 1078 case PT_LWPINFO: 1079 if (uap->data > sizeof(r32.pl)) 1080 return (EINVAL); 1081 1082 /* 1083 * Pass size of native structure in 'data'. Truncate 1084 * if necessary to avoid siginfo. 1085 */ 1086 data = sizeof(r.pl); 1087 if (uap->data < offsetof(struct ptrace_lwpinfo32, pl_siginfo) + 1088 sizeof(struct __siginfo32)) 1089 data = offsetof(struct ptrace_lwpinfo, pl_siginfo); 1090 break; 1091 case PT_GETREGS: 1092 bzero(&r.reg, sizeof(r.reg)); 1093 break; 1094 case PT_GETFPREGS: 1095 bzero(&r.fpreg, sizeof(r.fpreg)); 1096 break; 1097 case PT_GETDBREGS: 1098 bzero(&r.dbreg, sizeof(r.dbreg)); 1099 break; 1100 case PT_SETREGS: 1101 error = copyin(uap->addr, &r.reg, sizeof(r.reg)); 1102 break; 1103 case PT_SETFPREGS: 1104 error = copyin(uap->addr, &r.fpreg, sizeof(r.fpreg)); 1105 break; 1106 case PT_SETDBREGS: 1107 error = copyin(uap->addr, &r.dbreg, sizeof(r.dbreg)); 1108 break; 1109 case PT_GETREGSET: 1110 case PT_SETREGSET: 1111 error = copyin(uap->addr, &r32.vec, sizeof(r32.vec)); 1112 if (error != 0) 1113 break; 1114 1115 r.vec.iov_len = r32.vec.iov_len; 1116 r.vec.iov_base = PTRIN(r32.vec.iov_base); 1117 break; 1118 case PT_SET_EVENT_MASK: 1119 if (uap->data != sizeof(r.ptevents)) 1120 error = EINVAL; 1121 else 1122 error = copyin(uap->addr, &r.ptevents, uap->data); 1123 break; 1124 case PT_IO: 1125 error = copyin(uap->addr, &r32.piod, sizeof(r32.piod)); 1126 if (error) 1127 break; 1128 CP(r32.piod, r.piod, piod_op); 1129 PTRIN_CP(r32.piod, r.piod, piod_offs); 1130 PTRIN_CP(r32.piod, r.piod, piod_addr); 1131 CP(r32.piod, r.piod, piod_len); 1132 break; 1133 case PT_VM_ENTRY: 1134 error = copyin(uap->addr, &r32.pve, sizeof(r32.pve)); 1135 if (error) 1136 break; 1137 1138 CP(r32.pve, r.pve, pve_entry); 1139 CP(r32.pve, r.pve, pve_timestamp); 1140 CP(r32.pve, r.pve, pve_start); 1141 CP(r32.pve, r.pve, pve_end); 1142 CP(r32.pve, r.pve, pve_offset); 1143 CP(r32.pve, r.pve, pve_prot); 1144 CP(r32.pve, r.pve, pve_pathlen); 1145 CP(r32.pve, r.pve, pve_fileid); 1146 CP(r32.pve, r.pve, pve_fsid); 1147 PTRIN_CP(r32.pve, r.pve, pve_path); 1148 break; 1149 case PT_COREDUMP: 1150 if (uap->data != sizeof(r32.pc)) 1151 error = EINVAL; 1152 else 1153 error = copyin(uap->addr, &r32.pc, uap->data); 1154 CP(r32.pc, r.pc, pc_fd); 1155 CP(r32.pc, r.pc, pc_flags); 1156 r.pc.pc_limit = PAIR32TO64(off_t, r32.pc.pc_limit); 1157 data = sizeof(r.pc); 1158 break; 1159 case PT_SC_REMOTE: 1160 if (uap->data != sizeof(r32.sr)) { 1161 error = EINVAL; 1162 break; 1163 } 1164 error = copyin(uap->addr, &r32.sr, uap->data); 1165 if (error != 0) 1166 break; 1167 CP(r32.sr, r.sr, pscr_syscall); 1168 CP(r32.sr, r.sr, pscr_nargs); 1169 if (r.sr.pscr_nargs > nitems(td->td_sa.args)) { 1170 error = EINVAL; 1171 break; 1172 } 1173 error = copyin(PTRIN(r32.sr.pscr_args), pscr_args32, 1174 sizeof(u_int) * r32.sr.pscr_nargs); 1175 if (error != 0) 1176 break; 1177 for (i = 0; i < r32.sr.pscr_nargs; i++) 1178 pscr_args[i] = pscr_args32[i]; 1179 r.sr.pscr_args = pscr_args; 1180 break; 1181 default: 1182 addr = uap->addr; 1183 break; 1184 } 1185 if (error) 1186 return (error); 1187 1188 error = kern_ptrace(td, uap->req, uap->pid, addr, data); 1189 if (error) 1190 return (error); 1191 1192 switch (uap->req) { 1193 case PT_VM_ENTRY: 1194 CP(r.pve, r32.pve, pve_entry); 1195 CP(r.pve, r32.pve, pve_timestamp); 1196 CP(r.pve, r32.pve, pve_start); 1197 CP(r.pve, r32.pve, pve_end); 1198 CP(r.pve, r32.pve, pve_offset); 1199 CP(r.pve, r32.pve, pve_prot); 1200 CP(r.pve, r32.pve, pve_pathlen); 1201 CP(r.pve, r32.pve, pve_fileid); 1202 CP(r.pve, r32.pve, pve_fsid); 1203 error = copyout(&r32.pve, uap->addr, sizeof(r32.pve)); 1204 break; 1205 case PT_IO: 1206 CP(r.piod, r32.piod, piod_len); 1207 error = copyout(&r32.piod, uap->addr, sizeof(r32.piod)); 1208 break; 1209 case PT_GETREGS: 1210 error = copyout(&r.reg, uap->addr, sizeof(r.reg)); 1211 break; 1212 case PT_GETFPREGS: 1213 error = copyout(&r.fpreg, uap->addr, sizeof(r.fpreg)); 1214 break; 1215 case PT_GETDBREGS: 1216 error = copyout(&r.dbreg, uap->addr, sizeof(r.dbreg)); 1217 break; 1218 case PT_GETREGSET: 1219 r32.vec.iov_len = r.vec.iov_len; 1220 error = copyout(&r32.vec, uap->addr, sizeof(r32.vec)); 1221 break; 1222 case PT_GET_EVENT_MASK: 1223 /* NB: The size in uap->data is validated in kern_ptrace(). */ 1224 error = copyout(&r.ptevents, uap->addr, uap->data); 1225 break; 1226 case PT_LWPINFO: 1227 ptrace_lwpinfo_to32(&r.pl, &r32.pl); 1228 error = copyout(&r32.pl, uap->addr, uap->data); 1229 break; 1230 case PT_GET_SC_ARGS: 1231 for (i = 0; i < nitems(r.args); i++) 1232 r32.args[i] = (uint32_t)r.args[i]; 1233 error = copyout(r32.args, uap->addr, MIN(uap->data, 1234 sizeof(r32.args))); 1235 break; 1236 case PT_GET_SC_RET: 1237 ptrace_sc_ret_to32(&r.psr, &r32.psr); 1238 error = copyout(&r32.psr, uap->addr, MIN(uap->data, 1239 sizeof(r32.psr))); 1240 break; 1241 case PT_SC_REMOTE: 1242 ptrace_sc_ret_to32(&r.sr.pscr_ret, &r32.sr.pscr_ret); 1243 error = copyout(&r32.sr.pscr_ret, uap->addr + 1244 offsetof(struct ptrace_sc_remote32, pscr_ret), 1245 sizeof(r32.psr)); 1246 break; 1247 } 1248 1249 return (error); 1250 } 1251 1252 int 1253 freebsd32_copyinuio(const struct iovec32 *iovp, u_int iovcnt, struct uio **uiop) 1254 { 1255 struct iovec32 iov32; 1256 struct iovec *iov; 1257 struct uio *uio; 1258 int error, i; 1259 1260 *uiop = NULL; 1261 if (iovcnt > UIO_MAXIOV) 1262 return (EINVAL); 1263 uio = allocuio(iovcnt); 1264 iov = uio->uio_iov; 1265 for (i = 0; i < iovcnt; i++) { 1266 error = copyin(&iovp[i], &iov32, sizeof(struct iovec32)); 1267 if (error) { 1268 freeuio(uio); 1269 return (error); 1270 } 1271 iov[i].iov_base = PTRIN(iov32.iov_base); 1272 iov[i].iov_len = iov32.iov_len; 1273 } 1274 uio->uio_iovcnt = iovcnt; 1275 uio->uio_segflg = UIO_USERSPACE; 1276 uio->uio_offset = -1; 1277 uio->uio_resid = 0; 1278 for (i = 0; i < iovcnt; i++) { 1279 if (iov->iov_len > INT_MAX - uio->uio_resid) { 1280 freeuio(uio); 1281 return (EINVAL); 1282 } 1283 uio->uio_resid += iov->iov_len; 1284 iov++; 1285 } 1286 *uiop = uio; 1287 return (0); 1288 } 1289 1290 int 1291 freebsd32_readv(struct thread *td, struct freebsd32_readv_args *uap) 1292 { 1293 struct uio *auio; 1294 int error; 1295 1296 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 1297 if (error) 1298 return (error); 1299 error = kern_readv(td, uap->fd, auio); 1300 freeuio(auio); 1301 return (error); 1302 } 1303 1304 int 1305 freebsd32_writev(struct thread *td, struct freebsd32_writev_args *uap) 1306 { 1307 struct uio *auio; 1308 int error; 1309 1310 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 1311 if (error) 1312 return (error); 1313 error = kern_writev(td, uap->fd, auio); 1314 freeuio(auio); 1315 return (error); 1316 } 1317 1318 int 1319 freebsd32_preadv(struct thread *td, struct freebsd32_preadv_args *uap) 1320 { 1321 struct uio *auio; 1322 int error; 1323 1324 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 1325 if (error) 1326 return (error); 1327 error = kern_preadv(td, uap->fd, auio, PAIR32TO64(off_t,uap->offset)); 1328 freeuio(auio); 1329 return (error); 1330 } 1331 1332 int 1333 freebsd32_pwritev(struct thread *td, struct freebsd32_pwritev_args *uap) 1334 { 1335 struct uio *auio; 1336 int error; 1337 1338 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 1339 if (error) 1340 return (error); 1341 error = kern_pwritev(td, uap->fd, auio, PAIR32TO64(off_t,uap->offset)); 1342 freeuio(auio); 1343 return (error); 1344 } 1345 1346 int 1347 freebsd32_copyiniov(struct iovec32 *iovp32, u_int iovcnt, struct iovec **iovp, 1348 int error) 1349 { 1350 struct iovec32 iov32; 1351 struct iovec *iov; 1352 u_int iovlen; 1353 int i; 1354 1355 *iovp = NULL; 1356 if (iovcnt > UIO_MAXIOV) 1357 return (error); 1358 iovlen = iovcnt * sizeof(struct iovec); 1359 iov = malloc(iovlen, M_IOV, M_WAITOK); 1360 for (i = 0; i < iovcnt; i++) { 1361 error = copyin(&iovp32[i], &iov32, sizeof(struct iovec32)); 1362 if (error) { 1363 free(iov, M_IOV); 1364 return (error); 1365 } 1366 iov[i].iov_base = PTRIN(iov32.iov_base); 1367 iov[i].iov_len = iov32.iov_len; 1368 } 1369 *iovp = iov; 1370 return (0); 1371 } 1372 1373 static int 1374 freebsd32_copyinmsghdr(const struct msghdr32 *msg32, struct msghdr *msg) 1375 { 1376 struct msghdr32 m32; 1377 int error; 1378 1379 error = copyin(msg32, &m32, sizeof(m32)); 1380 if (error) 1381 return (error); 1382 msg->msg_name = PTRIN(m32.msg_name); 1383 msg->msg_namelen = m32.msg_namelen; 1384 msg->msg_iov = PTRIN(m32.msg_iov); 1385 msg->msg_iovlen = m32.msg_iovlen; 1386 msg->msg_control = PTRIN(m32.msg_control); 1387 msg->msg_controllen = m32.msg_controllen; 1388 msg->msg_flags = m32.msg_flags; 1389 return (0); 1390 } 1391 1392 static int 1393 freebsd32_copyoutmsghdr(struct msghdr *msg, struct msghdr32 *msg32) 1394 { 1395 struct msghdr32 m32; 1396 int error; 1397 1398 m32.msg_name = PTROUT(msg->msg_name); 1399 m32.msg_namelen = msg->msg_namelen; 1400 m32.msg_iov = PTROUT(msg->msg_iov); 1401 m32.msg_iovlen = msg->msg_iovlen; 1402 m32.msg_control = PTROUT(msg->msg_control); 1403 m32.msg_controllen = msg->msg_controllen; 1404 m32.msg_flags = msg->msg_flags; 1405 error = copyout(&m32, msg32, sizeof(m32)); 1406 return (error); 1407 } 1408 1409 #define FREEBSD32_ALIGNBYTES (sizeof(int) - 1) 1410 #define FREEBSD32_ALIGN(p) \ 1411 (((u_long)(p) + FREEBSD32_ALIGNBYTES) & ~FREEBSD32_ALIGNBYTES) 1412 #define FREEBSD32_CMSG_SPACE(l) \ 1413 (FREEBSD32_ALIGN(sizeof(struct cmsghdr)) + FREEBSD32_ALIGN(l)) 1414 1415 #define FREEBSD32_CMSG_DATA(cmsg) ((unsigned char *)(cmsg) + \ 1416 FREEBSD32_ALIGN(sizeof(struct cmsghdr))) 1417 1418 static size_t 1419 freebsd32_cmsg_convert(const struct cmsghdr *cm, void *data, socklen_t datalen) 1420 { 1421 size_t copylen; 1422 union { 1423 struct timespec32 ts; 1424 struct timeval32 tv; 1425 struct bintime32 bt; 1426 } tmp32; 1427 1428 union { 1429 struct timespec ts; 1430 struct timeval tv; 1431 struct bintime bt; 1432 } *in; 1433 1434 in = data; 1435 copylen = 0; 1436 switch (cm->cmsg_level) { 1437 case SOL_SOCKET: 1438 switch (cm->cmsg_type) { 1439 case SCM_TIMESTAMP: 1440 TV_CP(*in, tmp32, tv); 1441 copylen = sizeof(tmp32.tv); 1442 break; 1443 1444 case SCM_BINTIME: 1445 BT_CP(*in, tmp32, bt); 1446 copylen = sizeof(tmp32.bt); 1447 break; 1448 1449 case SCM_REALTIME: 1450 case SCM_MONOTONIC: 1451 TS_CP(*in, tmp32, ts); 1452 copylen = sizeof(tmp32.ts); 1453 break; 1454 1455 default: 1456 break; 1457 } 1458 1459 default: 1460 break; 1461 } 1462 1463 if (copylen == 0) 1464 return (datalen); 1465 1466 KASSERT((datalen >= copylen), ("corrupted cmsghdr")); 1467 1468 bcopy(&tmp32, data, copylen); 1469 return (copylen); 1470 } 1471 1472 static int 1473 freebsd32_copy_msg_out(struct msghdr *msg, struct mbuf *control) 1474 { 1475 struct cmsghdr *cm; 1476 void *data; 1477 socklen_t clen, datalen, datalen_out, oldclen; 1478 int error; 1479 caddr_t ctlbuf; 1480 int len, copylen; 1481 struct mbuf *m; 1482 error = 0; 1483 1484 len = msg->msg_controllen; 1485 msg->msg_controllen = 0; 1486 1487 ctlbuf = msg->msg_control; 1488 for (m = control; m != NULL && len > 0; m = m->m_next) { 1489 cm = mtod(m, struct cmsghdr *); 1490 clen = m->m_len; 1491 while (cm != NULL) { 1492 if (sizeof(struct cmsghdr) > clen || 1493 cm->cmsg_len > clen) { 1494 error = EINVAL; 1495 break; 1496 } 1497 1498 data = CMSG_DATA(cm); 1499 datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data; 1500 datalen_out = freebsd32_cmsg_convert(cm, data, datalen); 1501 1502 /* 1503 * Copy out the message header. Preserve the native 1504 * message size in case we need to inspect the message 1505 * contents later. 1506 */ 1507 copylen = sizeof(struct cmsghdr); 1508 if (len < copylen) { 1509 msg->msg_flags |= MSG_CTRUNC; 1510 m_dispose_extcontrolm(m); 1511 goto exit; 1512 } 1513 oldclen = cm->cmsg_len; 1514 cm->cmsg_len = FREEBSD32_ALIGN(sizeof(struct cmsghdr)) + 1515 datalen_out; 1516 error = copyout(cm, ctlbuf, copylen); 1517 cm->cmsg_len = oldclen; 1518 if (error != 0) 1519 goto exit; 1520 1521 ctlbuf += FREEBSD32_ALIGN(copylen); 1522 len -= FREEBSD32_ALIGN(copylen); 1523 1524 copylen = datalen_out; 1525 if (len < copylen) { 1526 msg->msg_flags |= MSG_CTRUNC; 1527 m_dispose_extcontrolm(m); 1528 break; 1529 } 1530 1531 /* Copy out the message data. */ 1532 error = copyout(data, ctlbuf, copylen); 1533 if (error) 1534 goto exit; 1535 1536 ctlbuf += FREEBSD32_ALIGN(copylen); 1537 len -= FREEBSD32_ALIGN(copylen); 1538 1539 if (CMSG_SPACE(datalen) < clen) { 1540 clen -= CMSG_SPACE(datalen); 1541 cm = (struct cmsghdr *) 1542 ((caddr_t)cm + CMSG_SPACE(datalen)); 1543 } else { 1544 clen = 0; 1545 cm = NULL; 1546 } 1547 1548 msg->msg_controllen += 1549 FREEBSD32_CMSG_SPACE(datalen_out); 1550 } 1551 } 1552 if (len == 0 && m != NULL) { 1553 msg->msg_flags |= MSG_CTRUNC; 1554 m_dispose_extcontrolm(m); 1555 } 1556 1557 exit: 1558 return (error); 1559 } 1560 1561 int 1562 freebsd32_recvmsg(struct thread *td, struct freebsd32_recvmsg_args *uap) 1563 { 1564 struct msghdr msg; 1565 struct iovec *uiov, *iov; 1566 struct mbuf *control = NULL; 1567 struct mbuf **controlp; 1568 int error; 1569 1570 error = freebsd32_copyinmsghdr(uap->msg, &msg); 1571 if (error) 1572 return (error); 1573 error = freebsd32_copyiniov((void *)msg.msg_iov, msg.msg_iovlen, &iov, 1574 EMSGSIZE); 1575 if (error) 1576 return (error); 1577 msg.msg_flags = uap->flags; 1578 uiov = msg.msg_iov; 1579 msg.msg_iov = iov; 1580 1581 controlp = (msg.msg_control != NULL) ? &control : NULL; 1582 error = kern_recvit(td, uap->s, &msg, UIO_USERSPACE, controlp); 1583 if (error == 0) { 1584 msg.msg_iov = uiov; 1585 1586 if (control != NULL) 1587 error = freebsd32_copy_msg_out(&msg, control); 1588 else 1589 msg.msg_controllen = 0; 1590 1591 if (error == 0) 1592 error = freebsd32_copyoutmsghdr(&msg, uap->msg); 1593 } 1594 free(iov, M_IOV); 1595 1596 if (control != NULL) { 1597 if (error != 0) 1598 m_dispose_extcontrolm(control); 1599 m_freem(control); 1600 } 1601 1602 return (error); 1603 } 1604 1605 #ifdef COMPAT_43 1606 int 1607 ofreebsd32_recvmsg(struct thread *td, struct ofreebsd32_recvmsg_args *uap) 1608 { 1609 return (ENOSYS); 1610 } 1611 #endif 1612 1613 /* 1614 * Copy-in the array of control messages constructed using alignment 1615 * and padding suitable for a 32-bit environment and construct an 1616 * mbuf using alignment and padding suitable for a 64-bit kernel. 1617 * The alignment and padding are defined indirectly by CMSG_DATA(), 1618 * CMSG_SPACE() and CMSG_LEN(). 1619 */ 1620 static int 1621 freebsd32_copyin_control(struct mbuf **mp, caddr_t buf, u_int buflen) 1622 { 1623 struct cmsghdr *cm; 1624 struct mbuf *m; 1625 void *in, *in1, *md; 1626 u_int msglen, outlen; 1627 int error; 1628 1629 /* Enforce the size limit of the native implementation. */ 1630 if (buflen > MCLBYTES) 1631 return (EINVAL); 1632 1633 in = malloc(buflen, M_TEMP, M_WAITOK); 1634 error = copyin(buf, in, buflen); 1635 if (error != 0) 1636 goto out; 1637 1638 /* 1639 * Make a pass over the input buffer to determine the amount of space 1640 * required for 64 bit-aligned copies of the control messages. 1641 */ 1642 in1 = in; 1643 outlen = 0; 1644 while (buflen > 0) { 1645 if (buflen < sizeof(*cm)) { 1646 error = EINVAL; 1647 break; 1648 } 1649 cm = (struct cmsghdr *)in1; 1650 if (cm->cmsg_len < FREEBSD32_ALIGN(sizeof(*cm)) || 1651 cm->cmsg_len > buflen) { 1652 error = EINVAL; 1653 break; 1654 } 1655 msglen = FREEBSD32_ALIGN(cm->cmsg_len); 1656 if (msglen < cm->cmsg_len) { 1657 error = EINVAL; 1658 break; 1659 } 1660 /* The native ABI permits the final padding to be omitted. */ 1661 if (msglen > buflen) 1662 msglen = buflen; 1663 buflen -= msglen; 1664 1665 in1 = (char *)in1 + msglen; 1666 outlen += CMSG_ALIGN(sizeof(*cm)) + 1667 CMSG_ALIGN(msglen - FREEBSD32_ALIGN(sizeof(*cm))); 1668 } 1669 if (error != 0) 1670 goto out; 1671 1672 /* 1673 * Allocate up to MJUMPAGESIZE space for the re-aligned and 1674 * re-padded control messages. This allows a full MCLBYTES of 1675 * 32-bit sized and aligned messages to fit and avoids an ABI 1676 * mismatch with the native implementation. 1677 */ 1678 m = m_get2(outlen, M_WAITOK, MT_CONTROL, 0); 1679 if (m == NULL) { 1680 error = EINVAL; 1681 goto out; 1682 } 1683 m->m_len = outlen; 1684 md = mtod(m, void *); 1685 1686 /* 1687 * Make a second pass over input messages, copying them into the output 1688 * buffer. 1689 */ 1690 in1 = in; 1691 while (outlen > 0) { 1692 /* Copy the message header and align the length field. */ 1693 cm = md; 1694 memcpy(cm, in1, sizeof(*cm)); 1695 msglen = cm->cmsg_len - FREEBSD32_ALIGN(sizeof(*cm)); 1696 cm->cmsg_len = CMSG_ALIGN(sizeof(*cm)) + msglen; 1697 1698 /* Copy the message body. */ 1699 in1 = (char *)in1 + FREEBSD32_ALIGN(sizeof(*cm)); 1700 md = (char *)md + CMSG_ALIGN(sizeof(*cm)); 1701 memcpy(md, in1, msglen); 1702 in1 = (char *)in1 + FREEBSD32_ALIGN(msglen); 1703 md = (char *)md + CMSG_ALIGN(msglen); 1704 KASSERT(outlen >= CMSG_ALIGN(sizeof(*cm)) + CMSG_ALIGN(msglen), 1705 ("outlen %u underflow, msglen %u", outlen, msglen)); 1706 outlen -= CMSG_ALIGN(sizeof(*cm)) + CMSG_ALIGN(msglen); 1707 } 1708 1709 *mp = m; 1710 out: 1711 free(in, M_TEMP); 1712 return (error); 1713 } 1714 1715 int 1716 freebsd32_sendmsg(struct thread *td, struct freebsd32_sendmsg_args *uap) 1717 { 1718 struct msghdr msg; 1719 struct iovec *iov; 1720 struct mbuf *control = NULL; 1721 struct sockaddr *to = NULL; 1722 int error; 1723 1724 error = freebsd32_copyinmsghdr(uap->msg, &msg); 1725 if (error) 1726 return (error); 1727 error = freebsd32_copyiniov((void *)msg.msg_iov, msg.msg_iovlen, &iov, 1728 EMSGSIZE); 1729 if (error) 1730 return (error); 1731 msg.msg_iov = iov; 1732 if (msg.msg_name != NULL) { 1733 error = getsockaddr(&to, msg.msg_name, msg.msg_namelen); 1734 if (error) { 1735 to = NULL; 1736 goto out; 1737 } 1738 msg.msg_name = to; 1739 } 1740 1741 if (msg.msg_control) { 1742 if (msg.msg_controllen < sizeof(struct cmsghdr)) { 1743 error = EINVAL; 1744 goto out; 1745 } 1746 1747 error = freebsd32_copyin_control(&control, msg.msg_control, 1748 msg.msg_controllen); 1749 if (error) 1750 goto out; 1751 1752 msg.msg_control = NULL; 1753 msg.msg_controllen = 0; 1754 } 1755 1756 error = kern_sendit(td, uap->s, &msg, uap->flags, control, 1757 UIO_USERSPACE); 1758 1759 out: 1760 free(iov, M_IOV); 1761 if (to) 1762 free(to, M_SONAME); 1763 return (error); 1764 } 1765 1766 #ifdef COMPAT_43 1767 int 1768 ofreebsd32_sendmsg(struct thread *td, struct ofreebsd32_sendmsg_args *uap) 1769 { 1770 return (ENOSYS); 1771 } 1772 #endif 1773 1774 1775 int 1776 freebsd32_settimeofday(struct thread *td, 1777 struct freebsd32_settimeofday_args *uap) 1778 { 1779 struct timeval32 tv32; 1780 struct timeval tv, *tvp; 1781 struct timezone tz, *tzp; 1782 int error; 1783 1784 if (uap->tv) { 1785 error = copyin(uap->tv, &tv32, sizeof(tv32)); 1786 if (error) 1787 return (error); 1788 CP(tv32, tv, tv_sec); 1789 CP(tv32, tv, tv_usec); 1790 tvp = &tv; 1791 } else 1792 tvp = NULL; 1793 if (uap->tzp) { 1794 error = copyin(uap->tzp, &tz, sizeof(tz)); 1795 if (error) 1796 return (error); 1797 tzp = &tz; 1798 } else 1799 tzp = NULL; 1800 return (kern_settimeofday(td, tvp, tzp)); 1801 } 1802 1803 int 1804 freebsd32_utimes(struct thread *td, struct freebsd32_utimes_args *uap) 1805 { 1806 struct timeval32 s32[2]; 1807 struct timeval s[2], *sp; 1808 int error; 1809 1810 if (uap->tptr != NULL) { 1811 error = copyin(uap->tptr, s32, sizeof(s32)); 1812 if (error) 1813 return (error); 1814 CP(s32[0], s[0], tv_sec); 1815 CP(s32[0], s[0], tv_usec); 1816 CP(s32[1], s[1], tv_sec); 1817 CP(s32[1], s[1], tv_usec); 1818 sp = s; 1819 } else 1820 sp = NULL; 1821 return (kern_utimesat(td, AT_FDCWD, uap->path, UIO_USERSPACE, 1822 sp, UIO_SYSSPACE)); 1823 } 1824 1825 int 1826 freebsd32_lutimes(struct thread *td, struct freebsd32_lutimes_args *uap) 1827 { 1828 struct timeval32 s32[2]; 1829 struct timeval s[2], *sp; 1830 int error; 1831 1832 if (uap->tptr != NULL) { 1833 error = copyin(uap->tptr, s32, sizeof(s32)); 1834 if (error) 1835 return (error); 1836 CP(s32[0], s[0], tv_sec); 1837 CP(s32[0], s[0], tv_usec); 1838 CP(s32[1], s[1], tv_sec); 1839 CP(s32[1], s[1], tv_usec); 1840 sp = s; 1841 } else 1842 sp = NULL; 1843 return (kern_lutimes(td, uap->path, UIO_USERSPACE, sp, UIO_SYSSPACE)); 1844 } 1845 1846 int 1847 freebsd32_futimes(struct thread *td, struct freebsd32_futimes_args *uap) 1848 { 1849 struct timeval32 s32[2]; 1850 struct timeval s[2], *sp; 1851 int error; 1852 1853 if (uap->tptr != NULL) { 1854 error = copyin(uap->tptr, s32, sizeof(s32)); 1855 if (error) 1856 return (error); 1857 CP(s32[0], s[0], tv_sec); 1858 CP(s32[0], s[0], tv_usec); 1859 CP(s32[1], s[1], tv_sec); 1860 CP(s32[1], s[1], tv_usec); 1861 sp = s; 1862 } else 1863 sp = NULL; 1864 return (kern_futimes(td, uap->fd, sp, UIO_SYSSPACE)); 1865 } 1866 1867 int 1868 freebsd32_futimesat(struct thread *td, struct freebsd32_futimesat_args *uap) 1869 { 1870 struct timeval32 s32[2]; 1871 struct timeval s[2], *sp; 1872 int error; 1873 1874 if (uap->times != NULL) { 1875 error = copyin(uap->times, s32, sizeof(s32)); 1876 if (error) 1877 return (error); 1878 CP(s32[0], s[0], tv_sec); 1879 CP(s32[0], s[0], tv_usec); 1880 CP(s32[1], s[1], tv_sec); 1881 CP(s32[1], s[1], tv_usec); 1882 sp = s; 1883 } else 1884 sp = NULL; 1885 return (kern_utimesat(td, uap->fd, uap->path, UIO_USERSPACE, 1886 sp, UIO_SYSSPACE)); 1887 } 1888 1889 int 1890 freebsd32_futimens(struct thread *td, struct freebsd32_futimens_args *uap) 1891 { 1892 struct timespec32 ts32[2]; 1893 struct timespec ts[2], *tsp; 1894 int error; 1895 1896 if (uap->times != NULL) { 1897 error = copyin(uap->times, ts32, sizeof(ts32)); 1898 if (error) 1899 return (error); 1900 CP(ts32[0], ts[0], tv_sec); 1901 CP(ts32[0], ts[0], tv_nsec); 1902 CP(ts32[1], ts[1], tv_sec); 1903 CP(ts32[1], ts[1], tv_nsec); 1904 tsp = ts; 1905 } else 1906 tsp = NULL; 1907 return (kern_futimens(td, uap->fd, tsp, UIO_SYSSPACE)); 1908 } 1909 1910 int 1911 freebsd32_utimensat(struct thread *td, struct freebsd32_utimensat_args *uap) 1912 { 1913 struct timespec32 ts32[2]; 1914 struct timespec ts[2], *tsp; 1915 int error; 1916 1917 if (uap->times != NULL) { 1918 error = copyin(uap->times, ts32, sizeof(ts32)); 1919 if (error) 1920 return (error); 1921 CP(ts32[0], ts[0], tv_sec); 1922 CP(ts32[0], ts[0], tv_nsec); 1923 CP(ts32[1], ts[1], tv_sec); 1924 CP(ts32[1], ts[1], tv_nsec); 1925 tsp = ts; 1926 } else 1927 tsp = NULL; 1928 return (kern_utimensat(td, uap->fd, uap->path, UIO_USERSPACE, 1929 tsp, UIO_SYSSPACE, uap->flag)); 1930 } 1931 1932 int 1933 freebsd32_adjtime(struct thread *td, struct freebsd32_adjtime_args *uap) 1934 { 1935 struct timeval32 tv32; 1936 struct timeval delta, olddelta, *deltap; 1937 int error; 1938 1939 if (uap->delta) { 1940 error = copyin(uap->delta, &tv32, sizeof(tv32)); 1941 if (error) 1942 return (error); 1943 CP(tv32, delta, tv_sec); 1944 CP(tv32, delta, tv_usec); 1945 deltap = δ 1946 } else 1947 deltap = NULL; 1948 error = kern_adjtime(td, deltap, &olddelta); 1949 if (uap->olddelta && error == 0) { 1950 CP(olddelta, tv32, tv_sec); 1951 CP(olddelta, tv32, tv_usec); 1952 error = copyout(&tv32, uap->olddelta, sizeof(tv32)); 1953 } 1954 return (error); 1955 } 1956 1957 #ifdef COMPAT_FREEBSD4 1958 int 1959 freebsd4_freebsd32_statfs(struct thread *td, struct freebsd4_freebsd32_statfs_args *uap) 1960 { 1961 struct ostatfs32 s32; 1962 struct statfs *sp; 1963 int error; 1964 1965 sp = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK); 1966 error = kern_statfs(td, uap->path, UIO_USERSPACE, sp); 1967 if (error == 0) { 1968 copy_statfs(sp, &s32); 1969 error = copyout(&s32, uap->buf, sizeof(s32)); 1970 } 1971 free(sp, M_STATFS); 1972 return (error); 1973 } 1974 #endif 1975 1976 #ifdef COMPAT_FREEBSD4 1977 int 1978 freebsd4_freebsd32_fstatfs(struct thread *td, struct freebsd4_freebsd32_fstatfs_args *uap) 1979 { 1980 struct ostatfs32 s32; 1981 struct statfs *sp; 1982 int error; 1983 1984 sp = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK); 1985 error = kern_fstatfs(td, uap->fd, sp); 1986 if (error == 0) { 1987 copy_statfs(sp, &s32); 1988 error = copyout(&s32, uap->buf, sizeof(s32)); 1989 } 1990 free(sp, M_STATFS); 1991 return (error); 1992 } 1993 #endif 1994 1995 #ifdef COMPAT_FREEBSD4 1996 int 1997 freebsd4_freebsd32_fhstatfs(struct thread *td, struct freebsd4_freebsd32_fhstatfs_args *uap) 1998 { 1999 struct ostatfs32 s32; 2000 struct statfs *sp; 2001 fhandle_t fh; 2002 int error; 2003 2004 if ((error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t))) != 0) 2005 return (error); 2006 sp = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK); 2007 error = kern_fhstatfs(td, fh, sp); 2008 if (error == 0) { 2009 copy_statfs(sp, &s32); 2010 error = copyout(&s32, uap->buf, sizeof(s32)); 2011 } 2012 free(sp, M_STATFS); 2013 return (error); 2014 } 2015 #endif 2016 2017 int 2018 freebsd32_pread(struct thread *td, struct freebsd32_pread_args *uap) 2019 { 2020 2021 return (kern_pread(td, uap->fd, uap->buf, uap->nbyte, 2022 PAIR32TO64(off_t, uap->offset))); 2023 } 2024 2025 int 2026 freebsd32_pwrite(struct thread *td, struct freebsd32_pwrite_args *uap) 2027 { 2028 2029 return (kern_pwrite(td, uap->fd, uap->buf, uap->nbyte, 2030 PAIR32TO64(off_t, uap->offset))); 2031 } 2032 2033 #ifdef COMPAT_43 2034 int 2035 ofreebsd32_lseek(struct thread *td, struct ofreebsd32_lseek_args *uap) 2036 { 2037 2038 return (kern_lseek(td, uap->fd, uap->offset, uap->whence)); 2039 } 2040 #endif 2041 2042 int 2043 freebsd32_lseek(struct thread *td, struct freebsd32_lseek_args *uap) 2044 { 2045 int error; 2046 off_t pos; 2047 2048 error = kern_lseek(td, uap->fd, PAIR32TO64(off_t, uap->offset), 2049 uap->whence); 2050 /* Expand the quad return into two parts for eax and edx */ 2051 pos = td->td_uretoff.tdu_off; 2052 td->td_retval[RETVAL_LO] = pos & 0xffffffff; /* %eax */ 2053 td->td_retval[RETVAL_HI] = pos >> 32; /* %edx */ 2054 return error; 2055 } 2056 2057 int 2058 freebsd32_truncate(struct thread *td, struct freebsd32_truncate_args *uap) 2059 { 2060 2061 return (kern_truncate(td, uap->path, UIO_USERSPACE, 2062 PAIR32TO64(off_t, uap->length))); 2063 } 2064 2065 #ifdef COMPAT_43 2066 int 2067 ofreebsd32_truncate(struct thread *td, struct ofreebsd32_truncate_args *uap) 2068 { 2069 return (kern_truncate(td, uap->path, UIO_USERSPACE, uap->length)); 2070 } 2071 #endif 2072 2073 int 2074 freebsd32_ftruncate(struct thread *td, struct freebsd32_ftruncate_args *uap) 2075 { 2076 2077 return (kern_ftruncate(td, uap->fd, PAIR32TO64(off_t, uap->length))); 2078 } 2079 2080 #ifdef COMPAT_43 2081 int 2082 ofreebsd32_ftruncate(struct thread *td, struct ofreebsd32_ftruncate_args *uap) 2083 { 2084 return (kern_ftruncate(td, uap->fd, uap->length)); 2085 } 2086 2087 int 2088 ofreebsd32_getdirentries(struct thread *td, 2089 struct ofreebsd32_getdirentries_args *uap) 2090 { 2091 struct ogetdirentries_args ap; 2092 int error; 2093 long loff; 2094 int32_t loff_cut; 2095 2096 ap.fd = uap->fd; 2097 ap.buf = uap->buf; 2098 ap.count = uap->count; 2099 ap.basep = NULL; 2100 error = kern_ogetdirentries(td, &ap, &loff); 2101 if (error == 0) { 2102 loff_cut = loff; 2103 error = copyout(&loff_cut, uap->basep, sizeof(int32_t)); 2104 } 2105 return (error); 2106 } 2107 #endif 2108 2109 #if defined(COMPAT_FREEBSD11) 2110 int 2111 freebsd11_freebsd32_getdirentries(struct thread *td, 2112 struct freebsd11_freebsd32_getdirentries_args *uap) 2113 { 2114 long base; 2115 int32_t base32; 2116 int error; 2117 2118 error = freebsd11_kern_getdirentries(td, uap->fd, uap->buf, uap->count, 2119 &base, NULL); 2120 if (error) 2121 return (error); 2122 if (uap->basep != NULL) { 2123 base32 = base; 2124 error = copyout(&base32, uap->basep, sizeof(int32_t)); 2125 } 2126 return (error); 2127 } 2128 #endif /* COMPAT_FREEBSD11 */ 2129 2130 #ifdef COMPAT_FREEBSD6 2131 /* versions with the 'int pad' argument */ 2132 int 2133 freebsd6_freebsd32_pread(struct thread *td, struct freebsd6_freebsd32_pread_args *uap) 2134 { 2135 2136 return (kern_pread(td, uap->fd, uap->buf, uap->nbyte, 2137 PAIR32TO64(off_t, uap->offset))); 2138 } 2139 2140 int 2141 freebsd6_freebsd32_pwrite(struct thread *td, struct freebsd6_freebsd32_pwrite_args *uap) 2142 { 2143 2144 return (kern_pwrite(td, uap->fd, uap->buf, uap->nbyte, 2145 PAIR32TO64(off_t, uap->offset))); 2146 } 2147 2148 int 2149 freebsd6_freebsd32_lseek(struct thread *td, struct freebsd6_freebsd32_lseek_args *uap) 2150 { 2151 int error; 2152 off_t pos; 2153 2154 error = kern_lseek(td, uap->fd, PAIR32TO64(off_t, uap->offset), 2155 uap->whence); 2156 /* Expand the quad return into two parts for eax and edx */ 2157 pos = *(off_t *)(td->td_retval); 2158 td->td_retval[RETVAL_LO] = pos & 0xffffffff; /* %eax */ 2159 td->td_retval[RETVAL_HI] = pos >> 32; /* %edx */ 2160 return error; 2161 } 2162 2163 int 2164 freebsd6_freebsd32_truncate(struct thread *td, struct freebsd6_freebsd32_truncate_args *uap) 2165 { 2166 2167 return (kern_truncate(td, uap->path, UIO_USERSPACE, 2168 PAIR32TO64(off_t, uap->length))); 2169 } 2170 2171 int 2172 freebsd6_freebsd32_ftruncate(struct thread *td, struct freebsd6_freebsd32_ftruncate_args *uap) 2173 { 2174 2175 return (kern_ftruncate(td, uap->fd, PAIR32TO64(off_t, uap->length))); 2176 } 2177 #endif /* COMPAT_FREEBSD6 */ 2178 2179 struct sf_hdtr32 { 2180 uint32_t headers; 2181 int hdr_cnt; 2182 uint32_t trailers; 2183 int trl_cnt; 2184 }; 2185 2186 static int 2187 freebsd32_do_sendfile(struct thread *td, 2188 struct freebsd32_sendfile_args *uap, int compat) 2189 { 2190 struct sf_hdtr32 hdtr32; 2191 struct sf_hdtr hdtr; 2192 struct uio *hdr_uio, *trl_uio; 2193 struct file *fp; 2194 cap_rights_t rights; 2195 struct iovec32 *iov32; 2196 off_t offset, sbytes; 2197 int error; 2198 2199 offset = PAIR32TO64(off_t, uap->offset); 2200 if (offset < 0) 2201 return (EINVAL); 2202 2203 hdr_uio = trl_uio = NULL; 2204 2205 if (uap->hdtr != NULL) { 2206 error = copyin(uap->hdtr, &hdtr32, sizeof(hdtr32)); 2207 if (error) 2208 goto out; 2209 PTRIN_CP(hdtr32, hdtr, headers); 2210 CP(hdtr32, hdtr, hdr_cnt); 2211 PTRIN_CP(hdtr32, hdtr, trailers); 2212 CP(hdtr32, hdtr, trl_cnt); 2213 2214 if (hdtr.headers != NULL) { 2215 iov32 = PTRIN(hdtr32.headers); 2216 error = freebsd32_copyinuio(iov32, 2217 hdtr32.hdr_cnt, &hdr_uio); 2218 if (error) 2219 goto out; 2220 #ifdef COMPAT_FREEBSD4 2221 /* 2222 * In FreeBSD < 5.0 the nbytes to send also included 2223 * the header. If compat is specified subtract the 2224 * header size from nbytes. 2225 */ 2226 if (compat) { 2227 if (uap->nbytes > hdr_uio->uio_resid) 2228 uap->nbytes -= hdr_uio->uio_resid; 2229 else 2230 uap->nbytes = 0; 2231 } 2232 #endif 2233 } 2234 if (hdtr.trailers != NULL) { 2235 iov32 = PTRIN(hdtr32.trailers); 2236 error = freebsd32_copyinuio(iov32, 2237 hdtr32.trl_cnt, &trl_uio); 2238 if (error) 2239 goto out; 2240 } 2241 } 2242 2243 AUDIT_ARG_FD(uap->fd); 2244 2245 if ((error = fget_read(td, uap->fd, 2246 cap_rights_init_one(&rights, CAP_PREAD), &fp)) != 0) 2247 goto out; 2248 2249 error = fo_sendfile(fp, uap->s, hdr_uio, trl_uio, offset, 2250 uap->nbytes, &sbytes, uap->flags, td); 2251 fdrop(fp, td); 2252 2253 if (uap->sbytes != NULL) 2254 (void)copyout(&sbytes, uap->sbytes, sizeof(off_t)); 2255 2256 out: 2257 if (hdr_uio) 2258 freeuio(hdr_uio); 2259 if (trl_uio) 2260 freeuio(trl_uio); 2261 return (error); 2262 } 2263 2264 #ifdef COMPAT_FREEBSD4 2265 int 2266 freebsd4_freebsd32_sendfile(struct thread *td, 2267 struct freebsd4_freebsd32_sendfile_args *uap) 2268 { 2269 return (freebsd32_do_sendfile(td, 2270 (struct freebsd32_sendfile_args *)uap, 1)); 2271 } 2272 #endif 2273 2274 int 2275 freebsd32_sendfile(struct thread *td, struct freebsd32_sendfile_args *uap) 2276 { 2277 2278 return (freebsd32_do_sendfile(td, uap, 0)); 2279 } 2280 2281 static void 2282 copy_stat(struct stat *in, struct stat32 *out) 2283 { 2284 2285 #ifndef __amd64__ 2286 /* 2287 * 32-bit architectures other than i386 have 64-bit time_t. This 2288 * results in struct timespec32 with 12 bytes for tv_sec and tv_nsec, 2289 * and 4 bytes of padding. Zero the padding holes in struct stat32. 2290 */ 2291 bzero(&out->st_atim, sizeof(out->st_atim)); 2292 bzero(&out->st_mtim, sizeof(out->st_mtim)); 2293 bzero(&out->st_ctim, sizeof(out->st_ctim)); 2294 bzero(&out->st_birthtim, sizeof(out->st_birthtim)); 2295 #endif 2296 CP(*in, *out, st_dev); 2297 CP(*in, *out, st_ino); 2298 CP(*in, *out, st_mode); 2299 CP(*in, *out, st_nlink); 2300 CP(*in, *out, st_uid); 2301 CP(*in, *out, st_gid); 2302 CP(*in, *out, st_rdev); 2303 TS_CP(*in, *out, st_atim); 2304 TS_CP(*in, *out, st_mtim); 2305 TS_CP(*in, *out, st_ctim); 2306 CP(*in, *out, st_size); 2307 CP(*in, *out, st_blocks); 2308 CP(*in, *out, st_blksize); 2309 CP(*in, *out, st_flags); 2310 CP(*in, *out, st_gen); 2311 CP(*in, *out, st_filerev); 2312 TS_CP(*in, *out, st_birthtim); 2313 out->st_padding0 = 0; 2314 out->st_padding1 = 0; 2315 #ifdef __STAT32_TIME_T_EXT 2316 out->st_atim_ext = 0; 2317 out->st_mtim_ext = 0; 2318 out->st_ctim_ext = 0; 2319 out->st_btim_ext = 0; 2320 #endif 2321 bzero(out->st_spare, sizeof(out->st_spare)); 2322 } 2323 2324 #ifdef COMPAT_43 2325 static void 2326 copy_ostat(struct stat *in, struct ostat32 *out) 2327 { 2328 2329 bzero(out, sizeof(*out)); 2330 CP(*in, *out, st_dev); 2331 CP(*in, *out, st_ino); 2332 CP(*in, *out, st_mode); 2333 CP(*in, *out, st_nlink); 2334 CP(*in, *out, st_uid); 2335 CP(*in, *out, st_gid); 2336 CP(*in, *out, st_rdev); 2337 out->st_size = MIN(in->st_size, INT32_MAX); 2338 TS_CP(*in, *out, st_atim); 2339 TS_CP(*in, *out, st_mtim); 2340 TS_CP(*in, *out, st_ctim); 2341 CP(*in, *out, st_blksize); 2342 CP(*in, *out, st_blocks); 2343 CP(*in, *out, st_flags); 2344 CP(*in, *out, st_gen); 2345 } 2346 #endif 2347 2348 #ifdef COMPAT_43 2349 int 2350 ofreebsd32_stat(struct thread *td, struct ofreebsd32_stat_args *uap) 2351 { 2352 struct stat sb; 2353 struct ostat32 sb32; 2354 int error; 2355 2356 error = kern_statat(td, 0, AT_FDCWD, uap->path, UIO_USERSPACE, &sb); 2357 if (error) 2358 return (error); 2359 copy_ostat(&sb, &sb32); 2360 error = copyout(&sb32, uap->ub, sizeof (sb32)); 2361 return (error); 2362 } 2363 #endif 2364 2365 int 2366 freebsd32_fstat(struct thread *td, struct freebsd32_fstat_args *uap) 2367 { 2368 struct stat ub; 2369 struct stat32 ub32; 2370 int error; 2371 2372 error = kern_fstat(td, uap->fd, &ub); 2373 if (error) 2374 return (error); 2375 copy_stat(&ub, &ub32); 2376 error = copyout(&ub32, uap->sb, sizeof(ub32)); 2377 return (error); 2378 } 2379 2380 #ifdef COMPAT_43 2381 int 2382 ofreebsd32_fstat(struct thread *td, struct ofreebsd32_fstat_args *uap) 2383 { 2384 struct stat ub; 2385 struct ostat32 ub32; 2386 int error; 2387 2388 error = kern_fstat(td, uap->fd, &ub); 2389 if (error) 2390 return (error); 2391 copy_ostat(&ub, &ub32); 2392 error = copyout(&ub32, uap->sb, sizeof(ub32)); 2393 return (error); 2394 } 2395 #endif 2396 2397 int 2398 freebsd32_fstatat(struct thread *td, struct freebsd32_fstatat_args *uap) 2399 { 2400 struct stat ub; 2401 struct stat32 ub32; 2402 int error; 2403 2404 error = kern_statat(td, uap->flag, uap->fd, uap->path, UIO_USERSPACE, 2405 &ub); 2406 if (error) 2407 return (error); 2408 copy_stat(&ub, &ub32); 2409 error = copyout(&ub32, uap->buf, sizeof(ub32)); 2410 return (error); 2411 } 2412 2413 #ifdef COMPAT_43 2414 int 2415 ofreebsd32_lstat(struct thread *td, struct ofreebsd32_lstat_args *uap) 2416 { 2417 struct stat sb; 2418 struct ostat32 sb32; 2419 int error; 2420 2421 error = kern_statat(td, AT_SYMLINK_NOFOLLOW, AT_FDCWD, uap->path, 2422 UIO_USERSPACE, &sb); 2423 if (error) 2424 return (error); 2425 copy_ostat(&sb, &sb32); 2426 error = copyout(&sb32, uap->ub, sizeof (sb32)); 2427 return (error); 2428 } 2429 #endif 2430 2431 int 2432 freebsd32_fhstat(struct thread *td, struct freebsd32_fhstat_args *uap) 2433 { 2434 struct stat sb; 2435 struct stat32 sb32; 2436 struct fhandle fh; 2437 int error; 2438 2439 error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t)); 2440 if (error != 0) 2441 return (error); 2442 error = kern_fhstat(td, fh, &sb); 2443 if (error != 0) 2444 return (error); 2445 copy_stat(&sb, &sb32); 2446 error = copyout(&sb32, uap->sb, sizeof (sb32)); 2447 return (error); 2448 } 2449 2450 #if defined(COMPAT_FREEBSD11) 2451 extern int ino64_trunc_error; 2452 2453 static int 2454 freebsd11_cvtstat32(struct stat *in, struct freebsd11_stat32 *out) 2455 { 2456 2457 #ifndef __amd64__ 2458 /* 2459 * 32-bit architectures other than i386 have 64-bit time_t. This 2460 * results in struct timespec32 with 12 bytes for tv_sec and tv_nsec, 2461 * and 4 bytes of padding. Zero the padding holes in freebsd11_stat32. 2462 */ 2463 bzero(&out->st_atim, sizeof(out->st_atim)); 2464 bzero(&out->st_mtim, sizeof(out->st_mtim)); 2465 bzero(&out->st_ctim, sizeof(out->st_ctim)); 2466 bzero(&out->st_birthtim, sizeof(out->st_birthtim)); 2467 #endif 2468 2469 CP(*in, *out, st_ino); 2470 if (in->st_ino != out->st_ino) { 2471 switch (ino64_trunc_error) { 2472 default: 2473 case 0: 2474 break; 2475 case 1: 2476 return (EOVERFLOW); 2477 case 2: 2478 out->st_ino = UINT32_MAX; 2479 break; 2480 } 2481 } 2482 CP(*in, *out, st_nlink); 2483 if (in->st_nlink != out->st_nlink) { 2484 switch (ino64_trunc_error) { 2485 default: 2486 case 0: 2487 break; 2488 case 1: 2489 return (EOVERFLOW); 2490 case 2: 2491 out->st_nlink = UINT16_MAX; 2492 break; 2493 } 2494 } 2495 out->st_dev = in->st_dev; 2496 if (out->st_dev != in->st_dev) { 2497 switch (ino64_trunc_error) { 2498 default: 2499 break; 2500 case 1: 2501 return (EOVERFLOW); 2502 } 2503 } 2504 CP(*in, *out, st_mode); 2505 CP(*in, *out, st_uid); 2506 CP(*in, *out, st_gid); 2507 out->st_rdev = in->st_rdev; 2508 if (out->st_rdev != in->st_rdev) { 2509 switch (ino64_trunc_error) { 2510 default: 2511 break; 2512 case 1: 2513 return (EOVERFLOW); 2514 } 2515 } 2516 TS_CP(*in, *out, st_atim); 2517 TS_CP(*in, *out, st_mtim); 2518 TS_CP(*in, *out, st_ctim); 2519 CP(*in, *out, st_size); 2520 CP(*in, *out, st_blocks); 2521 CP(*in, *out, st_blksize); 2522 CP(*in, *out, st_flags); 2523 CP(*in, *out, st_gen); 2524 TS_CP(*in, *out, st_birthtim); 2525 out->st_lspare = 0; 2526 bzero((char *)&out->st_birthtim + sizeof(out->st_birthtim), 2527 sizeof(*out) - offsetof(struct freebsd11_stat32, 2528 st_birthtim) - sizeof(out->st_birthtim)); 2529 return (0); 2530 } 2531 2532 int 2533 freebsd11_freebsd32_stat(struct thread *td, 2534 struct freebsd11_freebsd32_stat_args *uap) 2535 { 2536 struct stat sb; 2537 struct freebsd11_stat32 sb32; 2538 int error; 2539 2540 error = kern_statat(td, 0, AT_FDCWD, uap->path, UIO_USERSPACE, &sb); 2541 if (error != 0) 2542 return (error); 2543 error = freebsd11_cvtstat32(&sb, &sb32); 2544 if (error == 0) 2545 error = copyout(&sb32, uap->ub, sizeof (sb32)); 2546 return (error); 2547 } 2548 2549 int 2550 freebsd11_freebsd32_fstat(struct thread *td, 2551 struct freebsd11_freebsd32_fstat_args *uap) 2552 { 2553 struct stat sb; 2554 struct freebsd11_stat32 sb32; 2555 int error; 2556 2557 error = kern_fstat(td, uap->fd, &sb); 2558 if (error != 0) 2559 return (error); 2560 error = freebsd11_cvtstat32(&sb, &sb32); 2561 if (error == 0) 2562 error = copyout(&sb32, uap->sb, sizeof (sb32)); 2563 return (error); 2564 } 2565 2566 int 2567 freebsd11_freebsd32_fstatat(struct thread *td, 2568 struct freebsd11_freebsd32_fstatat_args *uap) 2569 { 2570 struct stat sb; 2571 struct freebsd11_stat32 sb32; 2572 int error; 2573 2574 error = kern_statat(td, uap->flag, uap->fd, uap->path, UIO_USERSPACE, 2575 &sb); 2576 if (error != 0) 2577 return (error); 2578 error = freebsd11_cvtstat32(&sb, &sb32); 2579 if (error == 0) 2580 error = copyout(&sb32, uap->buf, sizeof (sb32)); 2581 return (error); 2582 } 2583 2584 int 2585 freebsd11_freebsd32_lstat(struct thread *td, 2586 struct freebsd11_freebsd32_lstat_args *uap) 2587 { 2588 struct stat sb; 2589 struct freebsd11_stat32 sb32; 2590 int error; 2591 2592 error = kern_statat(td, AT_SYMLINK_NOFOLLOW, AT_FDCWD, uap->path, 2593 UIO_USERSPACE, &sb); 2594 if (error != 0) 2595 return (error); 2596 error = freebsd11_cvtstat32(&sb, &sb32); 2597 if (error == 0) 2598 error = copyout(&sb32, uap->ub, sizeof (sb32)); 2599 return (error); 2600 } 2601 2602 int 2603 freebsd11_freebsd32_fhstat(struct thread *td, 2604 struct freebsd11_freebsd32_fhstat_args *uap) 2605 { 2606 struct stat sb; 2607 struct freebsd11_stat32 sb32; 2608 struct fhandle fh; 2609 int error; 2610 2611 error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t)); 2612 if (error != 0) 2613 return (error); 2614 error = kern_fhstat(td, fh, &sb); 2615 if (error != 0) 2616 return (error); 2617 error = freebsd11_cvtstat32(&sb, &sb32); 2618 if (error == 0) 2619 error = copyout(&sb32, uap->sb, sizeof (sb32)); 2620 return (error); 2621 } 2622 2623 static int 2624 freebsd11_cvtnstat32(struct stat *sb, struct nstat32 *nsb32) 2625 { 2626 struct nstat nsb; 2627 int error; 2628 2629 error = freebsd11_cvtnstat(sb, &nsb); 2630 if (error != 0) 2631 return (error); 2632 2633 bzero(nsb32, sizeof(*nsb32)); 2634 CP(nsb, *nsb32, st_dev); 2635 CP(nsb, *nsb32, st_ino); 2636 CP(nsb, *nsb32, st_mode); 2637 CP(nsb, *nsb32, st_nlink); 2638 CP(nsb, *nsb32, st_uid); 2639 CP(nsb, *nsb32, st_gid); 2640 CP(nsb, *nsb32, st_rdev); 2641 CP(nsb, *nsb32, st_atim.tv_sec); 2642 CP(nsb, *nsb32, st_atim.tv_nsec); 2643 CP(nsb, *nsb32, st_mtim.tv_sec); 2644 CP(nsb, *nsb32, st_mtim.tv_nsec); 2645 CP(nsb, *nsb32, st_ctim.tv_sec); 2646 CP(nsb, *nsb32, st_ctim.tv_nsec); 2647 CP(nsb, *nsb32, st_size); 2648 CP(nsb, *nsb32, st_blocks); 2649 CP(nsb, *nsb32, st_blksize); 2650 CP(nsb, *nsb32, st_flags); 2651 CP(nsb, *nsb32, st_gen); 2652 CP(nsb, *nsb32, st_birthtim.tv_sec); 2653 CP(nsb, *nsb32, st_birthtim.tv_nsec); 2654 return (0); 2655 } 2656 2657 int 2658 freebsd11_freebsd32_nstat(struct thread *td, 2659 struct freebsd11_freebsd32_nstat_args *uap) 2660 { 2661 struct stat sb; 2662 struct nstat32 nsb; 2663 int error; 2664 2665 error = kern_statat(td, 0, AT_FDCWD, uap->path, UIO_USERSPACE, &sb); 2666 if (error != 0) 2667 return (error); 2668 error = freebsd11_cvtnstat32(&sb, &nsb); 2669 if (error != 0) 2670 error = copyout(&nsb, uap->ub, sizeof (nsb)); 2671 return (error); 2672 } 2673 2674 int 2675 freebsd11_freebsd32_nlstat(struct thread *td, 2676 struct freebsd11_freebsd32_nlstat_args *uap) 2677 { 2678 struct stat sb; 2679 struct nstat32 nsb; 2680 int error; 2681 2682 error = kern_statat(td, AT_SYMLINK_NOFOLLOW, AT_FDCWD, uap->path, 2683 UIO_USERSPACE, &sb); 2684 if (error != 0) 2685 return (error); 2686 error = freebsd11_cvtnstat32(&sb, &nsb); 2687 if (error == 0) 2688 error = copyout(&nsb, uap->ub, sizeof (nsb)); 2689 return (error); 2690 } 2691 2692 int 2693 freebsd11_freebsd32_nfstat(struct thread *td, 2694 struct freebsd11_freebsd32_nfstat_args *uap) 2695 { 2696 struct nstat32 nub; 2697 struct stat ub; 2698 int error; 2699 2700 error = kern_fstat(td, uap->fd, &ub); 2701 if (error != 0) 2702 return (error); 2703 error = freebsd11_cvtnstat32(&ub, &nub); 2704 if (error == 0) 2705 error = copyout(&nub, uap->sb, sizeof(nub)); 2706 return (error); 2707 } 2708 #endif 2709 2710 int 2711 freebsd32___sysctl(struct thread *td, struct freebsd32___sysctl_args *uap) 2712 { 2713 int error, name[CTL_MAXNAME]; 2714 size_t j, oldlen; 2715 uint32_t tmp; 2716 2717 if (uap->namelen > CTL_MAXNAME || uap->namelen < 2) 2718 return (EINVAL); 2719 error = copyin(uap->name, name, uap->namelen * sizeof(int)); 2720 if (error) 2721 return (error); 2722 if (uap->oldlenp) { 2723 error = fueword32(uap->oldlenp, &tmp); 2724 oldlen = tmp; 2725 } else { 2726 oldlen = 0; 2727 } 2728 if (error != 0) 2729 return (EFAULT); 2730 error = userland_sysctl(td, name, uap->namelen, 2731 uap->old, &oldlen, 1, 2732 uap->new, uap->newlen, &j, SCTL_MASK32); 2733 if (error) 2734 return (error); 2735 if (uap->oldlenp != NULL && suword32(uap->oldlenp, j) != 0) 2736 error = EFAULT; 2737 return (error); 2738 } 2739 2740 int 2741 freebsd32___sysctlbyname(struct thread *td, 2742 struct freebsd32___sysctlbyname_args *uap) 2743 { 2744 size_t oldlen, rv; 2745 int error; 2746 uint32_t tmp; 2747 2748 if (uap->oldlenp != NULL) { 2749 error = fueword32(uap->oldlenp, &tmp); 2750 oldlen = tmp; 2751 } else { 2752 error = oldlen = 0; 2753 } 2754 if (error != 0) 2755 return (EFAULT); 2756 error = kern___sysctlbyname(td, uap->name, uap->namelen, uap->old, 2757 &oldlen, uap->new, uap->newlen, &rv, SCTL_MASK32, 1); 2758 if (error != 0) 2759 return (error); 2760 if (uap->oldlenp != NULL && suword32(uap->oldlenp, rv) != 0) 2761 error = EFAULT; 2762 return (error); 2763 } 2764 2765 int 2766 freebsd32_jail(struct thread *td, struct freebsd32_jail_args *uap) 2767 { 2768 uint32_t version; 2769 int error; 2770 struct jail j; 2771 2772 error = copyin(uap->jail, &version, sizeof(uint32_t)); 2773 if (error) 2774 return (error); 2775 2776 switch (version) { 2777 case 0: 2778 { 2779 /* FreeBSD single IPv4 jails. */ 2780 struct jail32_v0 j32_v0; 2781 2782 bzero(&j, sizeof(struct jail)); 2783 error = copyin(uap->jail, &j32_v0, sizeof(struct jail32_v0)); 2784 if (error) 2785 return (error); 2786 CP(j32_v0, j, version); 2787 PTRIN_CP(j32_v0, j, path); 2788 PTRIN_CP(j32_v0, j, hostname); 2789 j.ip4s = htonl(j32_v0.ip_number); /* jail_v0 is host order */ 2790 break; 2791 } 2792 2793 case 1: 2794 /* 2795 * Version 1 was used by multi-IPv4 jail implementations 2796 * that never made it into the official kernel. 2797 */ 2798 return (EINVAL); 2799 2800 case 2: /* JAIL_API_VERSION */ 2801 { 2802 /* FreeBSD multi-IPv4/IPv6,noIP jails. */ 2803 struct jail32 j32; 2804 2805 error = copyin(uap->jail, &j32, sizeof(struct jail32)); 2806 if (error) 2807 return (error); 2808 CP(j32, j, version); 2809 PTRIN_CP(j32, j, path); 2810 PTRIN_CP(j32, j, hostname); 2811 PTRIN_CP(j32, j, jailname); 2812 CP(j32, j, ip4s); 2813 CP(j32, j, ip6s); 2814 PTRIN_CP(j32, j, ip4); 2815 PTRIN_CP(j32, j, ip6); 2816 break; 2817 } 2818 2819 default: 2820 /* Sci-Fi jails are not supported, sorry. */ 2821 return (EINVAL); 2822 } 2823 return (kern_jail(td, &j)); 2824 } 2825 2826 int 2827 freebsd32_jail_set(struct thread *td, struct freebsd32_jail_set_args *uap) 2828 { 2829 struct uio *auio; 2830 int error; 2831 2832 /* Check that we have an even number of iovecs. */ 2833 if (uap->iovcnt & 1) 2834 return (EINVAL); 2835 2836 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 2837 if (error) 2838 return (error); 2839 error = kern_jail_set(td, auio, uap->flags); 2840 freeuio(auio); 2841 return (error); 2842 } 2843 2844 int 2845 freebsd32_jail_get(struct thread *td, struct freebsd32_jail_get_args *uap) 2846 { 2847 struct iovec32 iov32; 2848 struct uio *auio; 2849 int error, i; 2850 2851 /* Check that we have an even number of iovecs. */ 2852 if (uap->iovcnt & 1) 2853 return (EINVAL); 2854 2855 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 2856 if (error) 2857 return (error); 2858 error = kern_jail_get(td, auio, uap->flags); 2859 if (error == 0) 2860 for (i = 0; i < uap->iovcnt; i++) { 2861 PTROUT_CP(auio->uio_iov[i], iov32, iov_base); 2862 CP(auio->uio_iov[i], iov32, iov_len); 2863 error = copyout(&iov32, uap->iovp + i, sizeof(iov32)); 2864 if (error != 0) 2865 break; 2866 } 2867 freeuio(auio); 2868 return (error); 2869 } 2870 2871 int 2872 freebsd32_sigaction(struct thread *td, struct freebsd32_sigaction_args *uap) 2873 { 2874 struct sigaction32 s32; 2875 struct sigaction sa, osa, *sap; 2876 int error; 2877 2878 if (uap->act) { 2879 error = copyin(uap->act, &s32, sizeof(s32)); 2880 if (error) 2881 return (error); 2882 sa.sa_handler = PTRIN(s32.sa_u); 2883 CP(s32, sa, sa_flags); 2884 CP(s32, sa, sa_mask); 2885 sap = &sa; 2886 } else 2887 sap = NULL; 2888 error = kern_sigaction(td, uap->sig, sap, &osa, 0); 2889 if (error == 0 && uap->oact != NULL) { 2890 s32.sa_u = PTROUT(osa.sa_handler); 2891 CP(osa, s32, sa_flags); 2892 CP(osa, s32, sa_mask); 2893 error = copyout(&s32, uap->oact, sizeof(s32)); 2894 } 2895 return (error); 2896 } 2897 2898 #ifdef COMPAT_FREEBSD4 2899 int 2900 freebsd4_freebsd32_sigaction(struct thread *td, 2901 struct freebsd4_freebsd32_sigaction_args *uap) 2902 { 2903 struct sigaction32 s32; 2904 struct sigaction sa, osa, *sap; 2905 int error; 2906 2907 if (uap->act) { 2908 error = copyin(uap->act, &s32, sizeof(s32)); 2909 if (error) 2910 return (error); 2911 sa.sa_handler = PTRIN(s32.sa_u); 2912 CP(s32, sa, sa_flags); 2913 CP(s32, sa, sa_mask); 2914 sap = &sa; 2915 } else 2916 sap = NULL; 2917 error = kern_sigaction(td, uap->sig, sap, &osa, KSA_FREEBSD4); 2918 if (error == 0 && uap->oact != NULL) { 2919 s32.sa_u = PTROUT(osa.sa_handler); 2920 CP(osa, s32, sa_flags); 2921 CP(osa, s32, sa_mask); 2922 error = copyout(&s32, uap->oact, sizeof(s32)); 2923 } 2924 return (error); 2925 } 2926 #endif 2927 2928 #ifdef COMPAT_43 2929 struct osigaction32 { 2930 uint32_t sa_u; 2931 osigset_t sa_mask; 2932 int sa_flags; 2933 }; 2934 2935 #define ONSIG 32 2936 2937 int 2938 ofreebsd32_sigaction(struct thread *td, 2939 struct ofreebsd32_sigaction_args *uap) 2940 { 2941 struct osigaction32 s32; 2942 struct sigaction sa, osa, *sap; 2943 int error; 2944 2945 if (uap->signum <= 0 || uap->signum >= ONSIG) 2946 return (EINVAL); 2947 2948 if (uap->nsa) { 2949 error = copyin(uap->nsa, &s32, sizeof(s32)); 2950 if (error) 2951 return (error); 2952 sa.sa_handler = PTRIN(s32.sa_u); 2953 CP(s32, sa, sa_flags); 2954 OSIG2SIG(s32.sa_mask, sa.sa_mask); 2955 sap = &sa; 2956 } else 2957 sap = NULL; 2958 error = kern_sigaction(td, uap->signum, sap, &osa, KSA_OSIGSET); 2959 if (error == 0 && uap->osa != NULL) { 2960 s32.sa_u = PTROUT(osa.sa_handler); 2961 CP(osa, s32, sa_flags); 2962 SIG2OSIG(osa.sa_mask, s32.sa_mask); 2963 error = copyout(&s32, uap->osa, sizeof(s32)); 2964 } 2965 return (error); 2966 } 2967 2968 struct sigvec32 { 2969 uint32_t sv_handler; 2970 int sv_mask; 2971 int sv_flags; 2972 }; 2973 2974 int 2975 ofreebsd32_sigvec(struct thread *td, 2976 struct ofreebsd32_sigvec_args *uap) 2977 { 2978 struct sigvec32 vec; 2979 struct sigaction sa, osa, *sap; 2980 int error; 2981 2982 if (uap->signum <= 0 || uap->signum >= ONSIG) 2983 return (EINVAL); 2984 2985 if (uap->nsv) { 2986 error = copyin(uap->nsv, &vec, sizeof(vec)); 2987 if (error) 2988 return (error); 2989 sa.sa_handler = PTRIN(vec.sv_handler); 2990 OSIG2SIG(vec.sv_mask, sa.sa_mask); 2991 sa.sa_flags = vec.sv_flags; 2992 sa.sa_flags ^= SA_RESTART; 2993 sap = &sa; 2994 } else 2995 sap = NULL; 2996 error = kern_sigaction(td, uap->signum, sap, &osa, KSA_OSIGSET); 2997 if (error == 0 && uap->osv != NULL) { 2998 vec.sv_handler = PTROUT(osa.sa_handler); 2999 SIG2OSIG(osa.sa_mask, vec.sv_mask); 3000 vec.sv_flags = osa.sa_flags; 3001 vec.sv_flags &= ~SA_NOCLDWAIT; 3002 vec.sv_flags ^= SA_RESTART; 3003 error = copyout(&vec, uap->osv, sizeof(vec)); 3004 } 3005 return (error); 3006 } 3007 3008 struct sigstack32 { 3009 uint32_t ss_sp; 3010 int ss_onstack; 3011 }; 3012 3013 int 3014 ofreebsd32_sigstack(struct thread *td, 3015 struct ofreebsd32_sigstack_args *uap) 3016 { 3017 struct sigstack32 s32; 3018 struct sigstack nss, oss; 3019 int error = 0, unss; 3020 3021 if (uap->nss != NULL) { 3022 error = copyin(uap->nss, &s32, sizeof(s32)); 3023 if (error) 3024 return (error); 3025 nss.ss_sp = PTRIN(s32.ss_sp); 3026 CP(s32, nss, ss_onstack); 3027 unss = 1; 3028 } else { 3029 unss = 0; 3030 } 3031 oss.ss_sp = td->td_sigstk.ss_sp; 3032 oss.ss_onstack = sigonstack(cpu_getstack(td)); 3033 if (unss) { 3034 td->td_sigstk.ss_sp = nss.ss_sp; 3035 td->td_sigstk.ss_size = 0; 3036 td->td_sigstk.ss_flags |= (nss.ss_onstack & SS_ONSTACK); 3037 td->td_pflags |= TDP_ALTSTACK; 3038 } 3039 if (uap->oss != NULL) { 3040 s32.ss_sp = PTROUT(oss.ss_sp); 3041 CP(oss, s32, ss_onstack); 3042 error = copyout(&s32, uap->oss, sizeof(s32)); 3043 } 3044 return (error); 3045 } 3046 #endif 3047 3048 int 3049 freebsd32_nanosleep(struct thread *td, struct freebsd32_nanosleep_args *uap) 3050 { 3051 3052 return (freebsd32_user_clock_nanosleep(td, CLOCK_REALTIME, 3053 TIMER_RELTIME, uap->rqtp, uap->rmtp)); 3054 } 3055 3056 int 3057 freebsd32_clock_nanosleep(struct thread *td, 3058 struct freebsd32_clock_nanosleep_args *uap) 3059 { 3060 int error; 3061 3062 error = freebsd32_user_clock_nanosleep(td, uap->clock_id, uap->flags, 3063 uap->rqtp, uap->rmtp); 3064 return (kern_posix_error(td, error)); 3065 } 3066 3067 static int 3068 freebsd32_user_clock_nanosleep(struct thread *td, clockid_t clock_id, 3069 int flags, const struct timespec32 *ua_rqtp, struct timespec32 *ua_rmtp) 3070 { 3071 struct timespec32 rmt32, rqt32; 3072 struct timespec rmt, rqt; 3073 int error, error2; 3074 3075 error = copyin(ua_rqtp, &rqt32, sizeof(rqt32)); 3076 if (error) 3077 return (error); 3078 3079 CP(rqt32, rqt, tv_sec); 3080 CP(rqt32, rqt, tv_nsec); 3081 3082 error = kern_clock_nanosleep(td, clock_id, flags, &rqt, &rmt); 3083 if (error == EINTR && ua_rmtp != NULL && (flags & TIMER_ABSTIME) == 0) { 3084 CP(rmt, rmt32, tv_sec); 3085 CP(rmt, rmt32, tv_nsec); 3086 3087 error2 = copyout(&rmt32, ua_rmtp, sizeof(rmt32)); 3088 if (error2 != 0) 3089 error = error2; 3090 } 3091 return (error); 3092 } 3093 3094 int 3095 freebsd32_clock_gettime(struct thread *td, 3096 struct freebsd32_clock_gettime_args *uap) 3097 { 3098 struct timespec ats; 3099 struct timespec32 ats32; 3100 int error; 3101 3102 error = kern_clock_gettime(td, uap->clock_id, &ats); 3103 if (error == 0) { 3104 CP(ats, ats32, tv_sec); 3105 CP(ats, ats32, tv_nsec); 3106 error = copyout(&ats32, uap->tp, sizeof(ats32)); 3107 } 3108 return (error); 3109 } 3110 3111 int 3112 freebsd32_clock_settime(struct thread *td, 3113 struct freebsd32_clock_settime_args *uap) 3114 { 3115 struct timespec ats; 3116 struct timespec32 ats32; 3117 int error; 3118 3119 error = copyin(uap->tp, &ats32, sizeof(ats32)); 3120 if (error) 3121 return (error); 3122 CP(ats32, ats, tv_sec); 3123 CP(ats32, ats, tv_nsec); 3124 3125 return (kern_clock_settime(td, uap->clock_id, &ats)); 3126 } 3127 3128 int 3129 freebsd32_clock_getres(struct thread *td, 3130 struct freebsd32_clock_getres_args *uap) 3131 { 3132 struct timespec ts; 3133 struct timespec32 ts32; 3134 int error; 3135 3136 if (uap->tp == NULL) 3137 return (0); 3138 error = kern_clock_getres(td, uap->clock_id, &ts); 3139 if (error == 0) { 3140 CP(ts, ts32, tv_sec); 3141 CP(ts, ts32, tv_nsec); 3142 error = copyout(&ts32, uap->tp, sizeof(ts32)); 3143 } 3144 return (error); 3145 } 3146 3147 int freebsd32_ktimer_create(struct thread *td, 3148 struct freebsd32_ktimer_create_args *uap) 3149 { 3150 struct sigevent32 ev32; 3151 struct sigevent ev, *evp; 3152 int error, id; 3153 3154 if (uap->evp == NULL) { 3155 evp = NULL; 3156 } else { 3157 evp = &ev; 3158 error = copyin(uap->evp, &ev32, sizeof(ev32)); 3159 if (error != 0) 3160 return (error); 3161 error = convert_sigevent32(&ev32, &ev); 3162 if (error != 0) 3163 return (error); 3164 } 3165 error = kern_ktimer_create(td, uap->clock_id, evp, &id, -1); 3166 if (error == 0) { 3167 error = copyout(&id, uap->timerid, sizeof(int)); 3168 if (error != 0) 3169 kern_ktimer_delete(td, id); 3170 } 3171 return (error); 3172 } 3173 3174 int 3175 freebsd32_ktimer_settime(struct thread *td, 3176 struct freebsd32_ktimer_settime_args *uap) 3177 { 3178 struct itimerspec32 val32, oval32; 3179 struct itimerspec val, oval, *ovalp; 3180 int error; 3181 3182 error = copyin(uap->value, &val32, sizeof(val32)); 3183 if (error != 0) 3184 return (error); 3185 ITS_CP(val32, val); 3186 ovalp = uap->ovalue != NULL ? &oval : NULL; 3187 error = kern_ktimer_settime(td, uap->timerid, uap->flags, &val, ovalp); 3188 if (error == 0 && uap->ovalue != NULL) { 3189 ITS_CP(oval, oval32); 3190 error = copyout(&oval32, uap->ovalue, sizeof(oval32)); 3191 } 3192 return (error); 3193 } 3194 3195 int 3196 freebsd32_ktimer_gettime(struct thread *td, 3197 struct freebsd32_ktimer_gettime_args *uap) 3198 { 3199 struct itimerspec32 val32; 3200 struct itimerspec val; 3201 int error; 3202 3203 error = kern_ktimer_gettime(td, uap->timerid, &val); 3204 if (error == 0) { 3205 ITS_CP(val, val32); 3206 error = copyout(&val32, uap->value, sizeof(val32)); 3207 } 3208 return (error); 3209 } 3210 3211 int 3212 freebsd32_timerfd_gettime(struct thread *td, 3213 struct freebsd32_timerfd_gettime_args *uap) 3214 { 3215 struct itimerspec curr_value; 3216 struct itimerspec32 curr_value32; 3217 int error; 3218 3219 error = kern_timerfd_gettime(td, uap->fd, &curr_value); 3220 if (error == 0) { 3221 CP(curr_value, curr_value32, it_value.tv_sec); 3222 CP(curr_value, curr_value32, it_value.tv_nsec); 3223 CP(curr_value, curr_value32, it_interval.tv_sec); 3224 CP(curr_value, curr_value32, it_interval.tv_nsec); 3225 error = copyout(&curr_value32, uap->curr_value, 3226 sizeof(curr_value32)); 3227 } 3228 3229 return (error); 3230 } 3231 3232 int 3233 freebsd32_timerfd_settime(struct thread *td, 3234 struct freebsd32_timerfd_settime_args *uap) 3235 { 3236 struct itimerspec new_value, old_value; 3237 struct itimerspec32 new_value32, old_value32; 3238 int error; 3239 3240 error = copyin(uap->new_value, &new_value32, sizeof(new_value32)); 3241 if (error != 0) 3242 return (error); 3243 CP(new_value32, new_value, it_value.tv_sec); 3244 CP(new_value32, new_value, it_value.tv_nsec); 3245 CP(new_value32, new_value, it_interval.tv_sec); 3246 CP(new_value32, new_value, it_interval.tv_nsec); 3247 if (uap->old_value == NULL) { 3248 error = kern_timerfd_settime(td, uap->fd, uap->flags, 3249 &new_value, NULL); 3250 } else { 3251 error = kern_timerfd_settime(td, uap->fd, uap->flags, 3252 &new_value, &old_value); 3253 if (error == 0) { 3254 CP(old_value, old_value32, it_value.tv_sec); 3255 CP(old_value, old_value32, it_value.tv_nsec); 3256 CP(old_value, old_value32, it_interval.tv_sec); 3257 CP(old_value, old_value32, it_interval.tv_nsec); 3258 error = copyout(&old_value32, uap->old_value, 3259 sizeof(old_value32)); 3260 } 3261 } 3262 return (error); 3263 } 3264 3265 int 3266 freebsd32_clock_getcpuclockid2(struct thread *td, 3267 struct freebsd32_clock_getcpuclockid2_args *uap) 3268 { 3269 clockid_t clk_id; 3270 int error; 3271 3272 error = kern_clock_getcpuclockid2(td, PAIR32TO64(id_t, uap->id), 3273 uap->which, &clk_id); 3274 if (error == 0) 3275 error = copyout(&clk_id, uap->clock_id, sizeof(clockid_t)); 3276 return (error); 3277 } 3278 3279 int 3280 freebsd32_thr_new(struct thread *td, 3281 struct freebsd32_thr_new_args *uap) 3282 { 3283 struct thr_param32 param32; 3284 struct thr_param param; 3285 int error; 3286 3287 if (uap->param_size < 0 || 3288 uap->param_size > sizeof(struct thr_param32)) 3289 return (EINVAL); 3290 bzero(¶m, sizeof(struct thr_param)); 3291 bzero(¶m32, sizeof(struct thr_param32)); 3292 error = copyin(uap->param, ¶m32, uap->param_size); 3293 if (error != 0) 3294 return (error); 3295 param.start_func = PTRIN(param32.start_func); 3296 param.arg = PTRIN(param32.arg); 3297 param.stack_base = PTRIN(param32.stack_base); 3298 param.stack_size = param32.stack_size; 3299 param.tls_base = PTRIN(param32.tls_base); 3300 param.tls_size = param32.tls_size; 3301 param.child_tid = PTRIN(param32.child_tid); 3302 param.parent_tid = PTRIN(param32.parent_tid); 3303 param.flags = param32.flags; 3304 param.rtp = PTRIN(param32.rtp); 3305 param.spare[0] = PTRIN(param32.spare[0]); 3306 param.spare[1] = PTRIN(param32.spare[1]); 3307 param.spare[2] = PTRIN(param32.spare[2]); 3308 3309 return (kern_thr_new(td, ¶m)); 3310 } 3311 3312 int 3313 freebsd32_thr_suspend(struct thread *td, struct freebsd32_thr_suspend_args *uap) 3314 { 3315 struct timespec32 ts32; 3316 struct timespec ts, *tsp; 3317 int error; 3318 3319 error = 0; 3320 tsp = NULL; 3321 if (uap->timeout != NULL) { 3322 error = copyin((const void *)uap->timeout, (void *)&ts32, 3323 sizeof(struct timespec32)); 3324 if (error != 0) 3325 return (error); 3326 ts.tv_sec = ts32.tv_sec; 3327 ts.tv_nsec = ts32.tv_nsec; 3328 tsp = &ts; 3329 } 3330 return (kern_thr_suspend(td, tsp)); 3331 } 3332 3333 void 3334 siginfo_to_siginfo32(const siginfo_t *src, struct __siginfo32 *dst) 3335 { 3336 bzero(dst, sizeof(*dst)); 3337 dst->si_signo = src->si_signo; 3338 dst->si_errno = src->si_errno; 3339 dst->si_code = src->si_code; 3340 dst->si_pid = src->si_pid; 3341 dst->si_uid = src->si_uid; 3342 dst->si_status = src->si_status; 3343 dst->si_addr = (uintptr_t)src->si_addr; 3344 dst->si_value.sival_int = src->si_value.sival_int; 3345 dst->si_timerid = src->si_timerid; 3346 dst->si_overrun = src->si_overrun; 3347 } 3348 3349 #ifndef _FREEBSD32_SYSPROTO_H_ 3350 struct freebsd32_sigqueue_args { 3351 pid_t pid; 3352 int signum; 3353 /* union sigval32 */ int value; 3354 }; 3355 #endif 3356 int 3357 freebsd32_sigqueue(struct thread *td, struct freebsd32_sigqueue_args *uap) 3358 { 3359 union sigval sv; 3360 3361 /* 3362 * On 32-bit ABIs, sival_int and sival_ptr are the same. 3363 * On 64-bit little-endian ABIs, the low bits are the same. 3364 * In 64-bit big-endian ABIs, sival_int overlaps with 3365 * sival_ptr's HIGH bits. We choose to support sival_int 3366 * rather than sival_ptr in this case as it seems to be 3367 * more common. 3368 */ 3369 bzero(&sv, sizeof(sv)); 3370 sv.sival_int = (uint32_t)(uint64_t)uap->value; 3371 3372 return (kern_sigqueue(td, uap->pid, uap->signum, &sv)); 3373 } 3374 3375 int 3376 freebsd32_sigtimedwait(struct thread *td, struct freebsd32_sigtimedwait_args *uap) 3377 { 3378 struct timespec32 ts32; 3379 struct timespec ts; 3380 struct timespec *timeout; 3381 sigset_t set; 3382 ksiginfo_t ksi; 3383 struct __siginfo32 si32; 3384 int error; 3385 3386 if (uap->timeout) { 3387 error = copyin(uap->timeout, &ts32, sizeof(ts32)); 3388 if (error) 3389 return (error); 3390 ts.tv_sec = ts32.tv_sec; 3391 ts.tv_nsec = ts32.tv_nsec; 3392 timeout = &ts; 3393 } else 3394 timeout = NULL; 3395 3396 error = copyin(uap->set, &set, sizeof(set)); 3397 if (error) 3398 return (error); 3399 3400 error = kern_sigtimedwait(td, set, &ksi, timeout); 3401 if (error) 3402 return (error); 3403 3404 if (uap->info) { 3405 siginfo_to_siginfo32(&ksi.ksi_info, &si32); 3406 error = copyout(&si32, uap->info, sizeof(struct __siginfo32)); 3407 } 3408 3409 if (error == 0) 3410 td->td_retval[0] = ksi.ksi_signo; 3411 return (error); 3412 } 3413 3414 /* 3415 * MPSAFE 3416 */ 3417 int 3418 freebsd32_sigwaitinfo(struct thread *td, struct freebsd32_sigwaitinfo_args *uap) 3419 { 3420 ksiginfo_t ksi; 3421 struct __siginfo32 si32; 3422 sigset_t set; 3423 int error; 3424 3425 error = copyin(uap->set, &set, sizeof(set)); 3426 if (error) 3427 return (error); 3428 3429 error = kern_sigtimedwait(td, set, &ksi, NULL); 3430 if (error) 3431 return (error); 3432 3433 if (uap->info) { 3434 siginfo_to_siginfo32(&ksi.ksi_info, &si32); 3435 error = copyout(&si32, uap->info, sizeof(struct __siginfo32)); 3436 } 3437 if (error == 0) 3438 td->td_retval[0] = ksi.ksi_signo; 3439 return (error); 3440 } 3441 3442 int 3443 freebsd32_cpuset_setid(struct thread *td, 3444 struct freebsd32_cpuset_setid_args *uap) 3445 { 3446 3447 return (kern_cpuset_setid(td, uap->which, 3448 PAIR32TO64(id_t, uap->id), uap->setid)); 3449 } 3450 3451 int 3452 freebsd32_cpuset_getid(struct thread *td, 3453 struct freebsd32_cpuset_getid_args *uap) 3454 { 3455 3456 return (kern_cpuset_getid(td, uap->level, uap->which, 3457 PAIR32TO64(id_t, uap->id), uap->setid)); 3458 } 3459 3460 static int 3461 copyin32_set(const void *u, void *k, size_t size) 3462 { 3463 #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 3464 int rv; 3465 struct bitset *kb = k; 3466 int *p; 3467 3468 rv = copyin(u, k, size); 3469 if (rv != 0) 3470 return (rv); 3471 3472 p = (int *)kb->__bits; 3473 /* Loop through swapping words. 3474 * `size' is in bytes, we need bits. */ 3475 for (int i = 0; i < __bitset_words(size * 8); i++) { 3476 int tmp = p[0]; 3477 p[0] = p[1]; 3478 p[1] = tmp; 3479 p += 2; 3480 } 3481 return (0); 3482 #else 3483 return (copyin(u, k, size)); 3484 #endif 3485 } 3486 3487 static int 3488 copyout32_set(const void *k, void *u, size_t size) 3489 { 3490 #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 3491 const struct bitset *kb = k; 3492 struct bitset *ub = u; 3493 const int *kp = (const int *)kb->__bits; 3494 int *up = (int *)ub->__bits; 3495 int rv; 3496 3497 for (int i = 0; i < __bitset_words(CPU_SETSIZE); i++) { 3498 /* `size' is in bytes, we need bits. */ 3499 for (int i = 0; i < __bitset_words(size * 8); i++) { 3500 rv = suword32(up, kp[1]); 3501 if (rv == 0) 3502 rv = suword32(up + 1, kp[0]); 3503 if (rv != 0) 3504 return (EFAULT); 3505 } 3506 } 3507 return (0); 3508 #else 3509 return (copyout(k, u, size)); 3510 #endif 3511 } 3512 3513 static const struct cpuset_copy_cb cpuset_copy32_cb = { 3514 .cpuset_copyin = copyin32_set, 3515 .cpuset_copyout = copyout32_set 3516 }; 3517 3518 int 3519 freebsd32_cpuset_getaffinity(struct thread *td, 3520 struct freebsd32_cpuset_getaffinity_args *uap) 3521 { 3522 3523 return (user_cpuset_getaffinity(td, uap->level, uap->which, 3524 PAIR32TO64(id_t,uap->id), uap->cpusetsize, uap->mask, 3525 &cpuset_copy32_cb)); 3526 } 3527 3528 int 3529 freebsd32_cpuset_setaffinity(struct thread *td, 3530 struct freebsd32_cpuset_setaffinity_args *uap) 3531 { 3532 3533 return (user_cpuset_setaffinity(td, uap->level, uap->which, 3534 PAIR32TO64(id_t,uap->id), uap->cpusetsize, uap->mask, 3535 &cpuset_copy32_cb)); 3536 } 3537 3538 int 3539 freebsd32_cpuset_getdomain(struct thread *td, 3540 struct freebsd32_cpuset_getdomain_args *uap) 3541 { 3542 3543 return (kern_cpuset_getdomain(td, uap->level, uap->which, 3544 PAIR32TO64(id_t,uap->id), uap->domainsetsize, uap->mask, uap->policy, 3545 &cpuset_copy32_cb)); 3546 } 3547 3548 int 3549 freebsd32_cpuset_setdomain(struct thread *td, 3550 struct freebsd32_cpuset_setdomain_args *uap) 3551 { 3552 3553 return (kern_cpuset_setdomain(td, uap->level, uap->which, 3554 PAIR32TO64(id_t,uap->id), uap->domainsetsize, uap->mask, uap->policy, 3555 &cpuset_copy32_cb)); 3556 } 3557 3558 int 3559 freebsd32_nmount(struct thread *td, 3560 struct freebsd32_nmount_args /* { 3561 struct iovec *iovp; 3562 unsigned int iovcnt; 3563 int flags; 3564 } */ *uap) 3565 { 3566 struct uio *auio; 3567 uint64_t flags; 3568 int error; 3569 3570 /* 3571 * Mount flags are now 64-bits. On 32-bit archtectures only 3572 * 32-bits are passed in, but from here on everything handles 3573 * 64-bit flags correctly. 3574 */ 3575 flags = uap->flags; 3576 3577 AUDIT_ARG_FFLAGS(flags); 3578 3579 /* 3580 * Filter out MNT_ROOTFS. We do not want clients of nmount() in 3581 * userspace to set this flag, but we must filter it out if we want 3582 * MNT_UPDATE on the root file system to work. 3583 * MNT_ROOTFS should only be set by the kernel when mounting its 3584 * root file system. 3585 */ 3586 flags &= ~MNT_ROOTFS; 3587 3588 /* 3589 * check that we have an even number of iovec's 3590 * and that we have at least two options. 3591 */ 3592 if ((uap->iovcnt & 1) || (uap->iovcnt < 4)) 3593 return (EINVAL); 3594 3595 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); 3596 if (error) 3597 return (error); 3598 error = vfs_donmount(td, flags, auio); 3599 3600 freeuio(auio); 3601 return error; 3602 } 3603 3604 #if 0 3605 int 3606 freebsd32_xxx(struct thread *td, struct freebsd32_xxx_args *uap) 3607 { 3608 struct yyy32 *p32, s32; 3609 struct yyy *p = NULL, s; 3610 struct xxx_arg ap; 3611 int error; 3612 3613 if (uap->zzz) { 3614 error = copyin(uap->zzz, &s32, sizeof(s32)); 3615 if (error) 3616 return (error); 3617 /* translate in */ 3618 p = &s; 3619 } 3620 error = kern_xxx(td, p); 3621 if (error) 3622 return (error); 3623 if (uap->zzz) { 3624 /* translate out */ 3625 error = copyout(&s32, p32, sizeof(s32)); 3626 } 3627 return (error); 3628 } 3629 #endif 3630 3631 int 3632 syscall32_module_handler(struct module *mod, int what, void *arg) 3633 { 3634 3635 return (kern_syscall_module_handler(freebsd32_sysent, mod, what, arg)); 3636 } 3637 3638 int 3639 syscall32_helper_register(struct syscall_helper_data *sd, int flags) 3640 { 3641 3642 return (kern_syscall_helper_register(freebsd32_sysent, sd, flags)); 3643 } 3644 3645 int 3646 syscall32_helper_unregister(struct syscall_helper_data *sd) 3647 { 3648 3649 return (kern_syscall_helper_unregister(freebsd32_sysent, sd)); 3650 } 3651 3652 int 3653 freebsd32_copyout_strings(struct image_params *imgp, uintptr_t *stack_base) 3654 { 3655 struct sysentvec *sysent; 3656 int argc, envc, i; 3657 uint32_t *vectp; 3658 char *stringp; 3659 uintptr_t destp, ustringp; 3660 struct freebsd32_ps_strings *arginfo; 3661 char canary[sizeof(long) * 8]; 3662 int32_t pagesizes32[MAXPAGESIZES]; 3663 size_t execpath_len; 3664 int error, szsigcode; 3665 3666 sysent = imgp->sysent; 3667 3668 arginfo = (struct freebsd32_ps_strings *)PROC_PS_STRINGS(imgp->proc); 3669 imgp->ps_strings = arginfo; 3670 destp = (uintptr_t)arginfo; 3671 3672 /* 3673 * Install sigcode. 3674 */ 3675 if (!PROC_HAS_SHP(imgp->proc)) { 3676 szsigcode = *sysent->sv_szsigcode; 3677 destp -= szsigcode; 3678 destp = rounddown2(destp, sizeof(uint32_t)); 3679 error = copyout(sysent->sv_sigcode, (void *)destp, 3680 szsigcode); 3681 if (error != 0) 3682 return (error); 3683 } 3684 3685 /* 3686 * Copy the image path for the rtld. 3687 */ 3688 if (imgp->execpath != NULL && imgp->auxargs != NULL) { 3689 execpath_len = strlen(imgp->execpath) + 1; 3690 destp -= execpath_len; 3691 imgp->execpathp = (void *)destp; 3692 error = copyout(imgp->execpath, imgp->execpathp, execpath_len); 3693 if (error != 0) 3694 return (error); 3695 } 3696 3697 /* 3698 * Prepare the canary for SSP. 3699 */ 3700 arc4rand(canary, sizeof(canary), 0); 3701 destp -= sizeof(canary); 3702 imgp->canary = (void *)destp; 3703 error = copyout(canary, imgp->canary, sizeof(canary)); 3704 if (error != 0) 3705 return (error); 3706 imgp->canarylen = sizeof(canary); 3707 3708 /* 3709 * Prepare the pagesizes array. 3710 */ 3711 for (i = 0; i < MAXPAGESIZES; i++) 3712 pagesizes32[i] = (uint32_t)pagesizes[i]; 3713 destp -= sizeof(pagesizes32); 3714 destp = rounddown2(destp, sizeof(uint32_t)); 3715 imgp->pagesizes = (void *)destp; 3716 error = copyout(pagesizes32, imgp->pagesizes, sizeof(pagesizes32)); 3717 if (error != 0) 3718 return (error); 3719 imgp->pagesizeslen = sizeof(pagesizes32); 3720 3721 /* 3722 * Allocate room for the argument and environment strings. 3723 */ 3724 destp -= ARG_MAX - imgp->args->stringspace; 3725 destp = rounddown2(destp, sizeof(uint32_t)); 3726 ustringp = destp; 3727 3728 if (imgp->auxargs) { 3729 /* 3730 * Allocate room on the stack for the ELF auxargs 3731 * array. It has up to AT_COUNT entries. 3732 */ 3733 destp -= AT_COUNT * sizeof(Elf32_Auxinfo); 3734 destp = rounddown2(destp, sizeof(uint32_t)); 3735 } 3736 3737 vectp = (uint32_t *)destp; 3738 3739 /* 3740 * Allocate room for the argv[] and env vectors including the 3741 * terminating NULL pointers. 3742 */ 3743 vectp -= imgp->args->argc + 1 + imgp->args->envc + 1; 3744 3745 /* 3746 * vectp also becomes our initial stack base 3747 */ 3748 *stack_base = (uintptr_t)vectp; 3749 3750 stringp = imgp->args->begin_argv; 3751 argc = imgp->args->argc; 3752 envc = imgp->args->envc; 3753 /* 3754 * Copy out strings - arguments and environment. 3755 */ 3756 error = copyout(stringp, (void *)ustringp, 3757 ARG_MAX - imgp->args->stringspace); 3758 if (error != 0) 3759 return (error); 3760 3761 /* 3762 * Fill in "ps_strings" struct for ps, w, etc. 3763 */ 3764 imgp->argv = vectp; 3765 if (suword32(&arginfo->ps_argvstr, (uint32_t)(intptr_t)vectp) != 0 || 3766 suword32(&arginfo->ps_nargvstr, argc) != 0) 3767 return (EFAULT); 3768 3769 /* 3770 * Fill in argument portion of vector table. 3771 */ 3772 for (; argc > 0; --argc) { 3773 if (suword32(vectp++, ustringp) != 0) 3774 return (EFAULT); 3775 while (*stringp++ != 0) 3776 ustringp++; 3777 ustringp++; 3778 } 3779 3780 /* a null vector table pointer separates the argp's from the envp's */ 3781 if (suword32(vectp++, 0) != 0) 3782 return (EFAULT); 3783 3784 imgp->envv = vectp; 3785 if (suword32(&arginfo->ps_envstr, (uint32_t)(intptr_t)vectp) != 0 || 3786 suword32(&arginfo->ps_nenvstr, envc) != 0) 3787 return (EFAULT); 3788 3789 /* 3790 * Fill in environment portion of vector table. 3791 */ 3792 for (; envc > 0; --envc) { 3793 if (suword32(vectp++, ustringp) != 0) 3794 return (EFAULT); 3795 while (*stringp++ != 0) 3796 ustringp++; 3797 ustringp++; 3798 } 3799 3800 /* end of vector table is a null pointer */ 3801 if (suword32(vectp, 0) != 0) 3802 return (EFAULT); 3803 3804 if (imgp->auxargs) { 3805 vectp++; 3806 error = imgp->sysent->sv_copyout_auxargs(imgp, 3807 (uintptr_t)vectp); 3808 if (error != 0) 3809 return (error); 3810 } 3811 3812 return (0); 3813 } 3814 3815 int 3816 freebsd32_kldstat(struct thread *td, struct freebsd32_kldstat_args *uap) 3817 { 3818 struct kld_file_stat *stat; 3819 struct kld_file_stat32 *stat32; 3820 int error, version; 3821 3822 if ((error = copyin(&uap->stat->version, &version, sizeof(version))) 3823 != 0) 3824 return (error); 3825 if (version != sizeof(struct kld_file_stat_1_32) && 3826 version != sizeof(struct kld_file_stat32)) 3827 return (EINVAL); 3828 3829 stat = malloc(sizeof(*stat), M_TEMP, M_WAITOK | M_ZERO); 3830 stat32 = malloc(sizeof(*stat32), M_TEMP, M_WAITOK | M_ZERO); 3831 error = kern_kldstat(td, uap->fileid, stat); 3832 if (error == 0) { 3833 bcopy(&stat->name[0], &stat32->name[0], sizeof(stat->name)); 3834 CP(*stat, *stat32, refs); 3835 CP(*stat, *stat32, id); 3836 PTROUT_CP(*stat, *stat32, address); 3837 CP(*stat, *stat32, size); 3838 bcopy(&stat->pathname[0], &stat32->pathname[0], 3839 sizeof(stat->pathname)); 3840 stat32->version = version; 3841 error = copyout(stat32, uap->stat, version); 3842 } 3843 free(stat, M_TEMP); 3844 free(stat32, M_TEMP); 3845 return (error); 3846 } 3847 3848 int 3849 freebsd32_posix_fallocate(struct thread *td, 3850 struct freebsd32_posix_fallocate_args *uap) 3851 { 3852 int error; 3853 3854 error = kern_posix_fallocate(td, uap->fd, 3855 PAIR32TO64(off_t, uap->offset), PAIR32TO64(off_t, uap->len)); 3856 return (kern_posix_error(td, error)); 3857 } 3858 3859 int 3860 freebsd32_posix_fadvise(struct thread *td, 3861 struct freebsd32_posix_fadvise_args *uap) 3862 { 3863 int error; 3864 3865 error = kern_posix_fadvise(td, uap->fd, PAIR32TO64(off_t, uap->offset), 3866 PAIR32TO64(off_t, uap->len), uap->advice); 3867 return (kern_posix_error(td, error)); 3868 } 3869 3870 int 3871 convert_sigevent32(struct sigevent32 *sig32, struct sigevent *sig) 3872 { 3873 3874 CP(*sig32, *sig, sigev_notify); 3875 switch (sig->sigev_notify) { 3876 case SIGEV_NONE: 3877 break; 3878 case SIGEV_THREAD_ID: 3879 CP(*sig32, *sig, sigev_notify_thread_id); 3880 /* FALLTHROUGH */ 3881 case SIGEV_SIGNAL: 3882 CP(*sig32, *sig, sigev_signo); 3883 PTRIN_CP(*sig32, *sig, sigev_value.sival_ptr); 3884 break; 3885 case SIGEV_KEVENT: 3886 CP(*sig32, *sig, sigev_notify_kqueue); 3887 CP(*sig32, *sig, sigev_notify_kevent_flags); 3888 PTRIN_CP(*sig32, *sig, sigev_value.sival_ptr); 3889 break; 3890 default: 3891 return (EINVAL); 3892 } 3893 return (0); 3894 } 3895 3896 int 3897 freebsd32_procctl(struct thread *td, struct freebsd32_procctl_args *uap) 3898 { 3899 void *data; 3900 union { 3901 struct procctl_reaper_status rs; 3902 struct procctl_reaper_pids rp; 3903 struct procctl_reaper_kill rk; 3904 } x; 3905 union { 3906 struct procctl_reaper_pids32 rp; 3907 } x32; 3908 int error, error1, flags, signum; 3909 3910 if (uap->com >= PROC_PROCCTL_MD_MIN) 3911 return (cpu_procctl(td, uap->idtype, PAIR32TO64(id_t, uap->id), 3912 uap->com, PTRIN(uap->data))); 3913 3914 switch (uap->com) { 3915 case PROC_ASLR_CTL: 3916 case PROC_PROTMAX_CTL: 3917 case PROC_SPROTECT: 3918 case PROC_STACKGAP_CTL: 3919 case PROC_TRACE_CTL: 3920 case PROC_TRAPCAP_CTL: 3921 case PROC_NO_NEW_PRIVS_CTL: 3922 case PROC_WXMAP_CTL: 3923 case PROC_LOGSIGEXIT_CTL: 3924 error = copyin(PTRIN(uap->data), &flags, sizeof(flags)); 3925 if (error != 0) 3926 return (error); 3927 data = &flags; 3928 break; 3929 case PROC_REAP_ACQUIRE: 3930 case PROC_REAP_RELEASE: 3931 if (uap->data != NULL) 3932 return (EINVAL); 3933 data = NULL; 3934 break; 3935 case PROC_REAP_STATUS: 3936 data = &x.rs; 3937 break; 3938 case PROC_REAP_GETPIDS: 3939 error = copyin(uap->data, &x32.rp, sizeof(x32.rp)); 3940 if (error != 0) 3941 return (error); 3942 CP(x32.rp, x.rp, rp_count); 3943 PTRIN_CP(x32.rp, x.rp, rp_pids); 3944 data = &x.rp; 3945 break; 3946 case PROC_REAP_KILL: 3947 error = copyin(uap->data, &x.rk, sizeof(x.rk)); 3948 if (error != 0) 3949 return (error); 3950 data = &x.rk; 3951 break; 3952 case PROC_ASLR_STATUS: 3953 case PROC_PROTMAX_STATUS: 3954 case PROC_STACKGAP_STATUS: 3955 case PROC_TRACE_STATUS: 3956 case PROC_TRAPCAP_STATUS: 3957 case PROC_NO_NEW_PRIVS_STATUS: 3958 case PROC_WXMAP_STATUS: 3959 case PROC_LOGSIGEXIT_STATUS: 3960 data = &flags; 3961 break; 3962 case PROC_PDEATHSIG_CTL: 3963 error = copyin(uap->data, &signum, sizeof(signum)); 3964 if (error != 0) 3965 return (error); 3966 data = &signum; 3967 break; 3968 case PROC_PDEATHSIG_STATUS: 3969 data = &signum; 3970 break; 3971 default: 3972 return (EINVAL); 3973 } 3974 error = kern_procctl(td, uap->idtype, PAIR32TO64(id_t, uap->id), 3975 uap->com, data); 3976 switch (uap->com) { 3977 case PROC_REAP_STATUS: 3978 if (error == 0) 3979 error = copyout(&x.rs, uap->data, sizeof(x.rs)); 3980 break; 3981 case PROC_REAP_KILL: 3982 error1 = copyout(&x.rk, uap->data, sizeof(x.rk)); 3983 if (error == 0) 3984 error = error1; 3985 break; 3986 case PROC_ASLR_STATUS: 3987 case PROC_PROTMAX_STATUS: 3988 case PROC_STACKGAP_STATUS: 3989 case PROC_TRACE_STATUS: 3990 case PROC_TRAPCAP_STATUS: 3991 case PROC_NO_NEW_PRIVS_STATUS: 3992 case PROC_WXMAP_STATUS: 3993 case PROC_LOGSIGEXIT_STATUS: 3994 if (error == 0) 3995 error = copyout(&flags, uap->data, sizeof(flags)); 3996 break; 3997 case PROC_PDEATHSIG_STATUS: 3998 if (error == 0) 3999 error = copyout(&signum, uap->data, sizeof(signum)); 4000 break; 4001 } 4002 return (error); 4003 } 4004 4005 int 4006 freebsd32_fcntl(struct thread *td, struct freebsd32_fcntl_args *uap) 4007 { 4008 intptr_t tmp; 4009 4010 switch (uap->cmd) { 4011 /* 4012 * Do unsigned conversion for arg when operation 4013 * interprets it as flags or pointer. 4014 */ 4015 case F_SETLK_REMOTE: 4016 case F_SETLKW: 4017 case F_SETLK: 4018 case F_GETLK: 4019 case F_SETFD: 4020 case F_SETFL: 4021 case F_OGETLK: 4022 case F_OSETLK: 4023 case F_OSETLKW: 4024 case F_KINFO: 4025 tmp = (unsigned int)(uap->arg); 4026 break; 4027 default: 4028 tmp = uap->arg; 4029 break; 4030 } 4031 return (kern_fcntl_freebsd(td, uap->fd, uap->cmd, tmp)); 4032 } 4033 4034 int 4035 freebsd32_ppoll(struct thread *td, struct freebsd32_ppoll_args *uap) 4036 { 4037 struct timespec32 ts32; 4038 struct timespec ts, *tsp; 4039 sigset_t set, *ssp; 4040 int error; 4041 4042 if (uap->ts != NULL) { 4043 error = copyin(uap->ts, &ts32, sizeof(ts32)); 4044 if (error != 0) 4045 return (error); 4046 CP(ts32, ts, tv_sec); 4047 CP(ts32, ts, tv_nsec); 4048 tsp = &ts; 4049 } else 4050 tsp = NULL; 4051 if (uap->set != NULL) { 4052 error = copyin(uap->set, &set, sizeof(set)); 4053 if (error != 0) 4054 return (error); 4055 ssp = &set; 4056 } else 4057 ssp = NULL; 4058 4059 return (kern_poll(td, uap->fds, uap->nfds, tsp, ssp)); 4060 } 4061 4062 int 4063 freebsd32_sched_rr_get_interval(struct thread *td, 4064 struct freebsd32_sched_rr_get_interval_args *uap) 4065 { 4066 struct timespec ts; 4067 struct timespec32 ts32; 4068 int error; 4069 4070 error = kern_sched_rr_get_interval(td, uap->pid, &ts); 4071 if (error == 0) { 4072 CP(ts, ts32, tv_sec); 4073 CP(ts, ts32, tv_nsec); 4074 error = copyout(&ts32, uap->interval, sizeof(ts32)); 4075 } 4076 return (error); 4077 } 4078 4079 static void 4080 timex_to_32(struct timex32 *dst, struct timex *src) 4081 { 4082 CP(*src, *dst, modes); 4083 CP(*src, *dst, offset); 4084 CP(*src, *dst, freq); 4085 CP(*src, *dst, maxerror); 4086 CP(*src, *dst, esterror); 4087 CP(*src, *dst, status); 4088 CP(*src, *dst, constant); 4089 CP(*src, *dst, precision); 4090 CP(*src, *dst, tolerance); 4091 CP(*src, *dst, ppsfreq); 4092 CP(*src, *dst, jitter); 4093 CP(*src, *dst, shift); 4094 CP(*src, *dst, stabil); 4095 CP(*src, *dst, jitcnt); 4096 CP(*src, *dst, calcnt); 4097 CP(*src, *dst, errcnt); 4098 CP(*src, *dst, stbcnt); 4099 } 4100 4101 static void 4102 timex_from_32(struct timex *dst, struct timex32 *src) 4103 { 4104 CP(*src, *dst, modes); 4105 CP(*src, *dst, offset); 4106 CP(*src, *dst, freq); 4107 CP(*src, *dst, maxerror); 4108 CP(*src, *dst, esterror); 4109 CP(*src, *dst, status); 4110 CP(*src, *dst, constant); 4111 CP(*src, *dst, precision); 4112 CP(*src, *dst, tolerance); 4113 CP(*src, *dst, ppsfreq); 4114 CP(*src, *dst, jitter); 4115 CP(*src, *dst, shift); 4116 CP(*src, *dst, stabil); 4117 CP(*src, *dst, jitcnt); 4118 CP(*src, *dst, calcnt); 4119 CP(*src, *dst, errcnt); 4120 CP(*src, *dst, stbcnt); 4121 } 4122 4123 int 4124 freebsd32_ntp_adjtime(struct thread *td, struct freebsd32_ntp_adjtime_args *uap) 4125 { 4126 struct timex tx; 4127 struct timex32 tx32; 4128 int error, retval; 4129 4130 error = copyin(uap->tp, &tx32, sizeof(tx32)); 4131 if (error == 0) { 4132 timex_from_32(&tx, &tx32); 4133 error = kern_ntp_adjtime(td, &tx, &retval); 4134 if (error == 0) { 4135 timex_to_32(&tx32, &tx); 4136 error = copyout(&tx32, uap->tp, sizeof(tx32)); 4137 if (error == 0) 4138 td->td_retval[0] = retval; 4139 } 4140 } 4141 return (error); 4142 } 4143 4144 #ifdef FFCLOCK 4145 extern struct mtx ffclock_mtx; 4146 extern struct ffclock_estimate ffclock_estimate; 4147 extern int8_t ffclock_updated; 4148 4149 int 4150 freebsd32_ffclock_setestimate(struct thread *td, 4151 struct freebsd32_ffclock_setestimate_args *uap) 4152 { 4153 struct ffclock_estimate cest; 4154 struct ffclock_estimate32 cest32; 4155 int error; 4156 4157 /* Reuse of PRIV_CLOCK_SETTIME. */ 4158 if ((error = priv_check(td, PRIV_CLOCK_SETTIME)) != 0) 4159 return (error); 4160 4161 if ((error = copyin(uap->cest, &cest32, 4162 sizeof(struct ffclock_estimate32))) != 0) 4163 return (error); 4164 4165 CP(cest.update_time, cest32.update_time, sec); 4166 memcpy(&cest.update_time.frac, &cest32.update_time.frac, sizeof(uint64_t)); 4167 CP(cest, cest32, update_ffcount); 4168 CP(cest, cest32, leapsec_next); 4169 CP(cest, cest32, period); 4170 CP(cest, cest32, errb_abs); 4171 CP(cest, cest32, errb_rate); 4172 CP(cest, cest32, status); 4173 CP(cest, cest32, leapsec_total); 4174 CP(cest, cest32, leapsec); 4175 4176 mtx_lock(&ffclock_mtx); 4177 memcpy(&ffclock_estimate, &cest, sizeof(struct ffclock_estimate)); 4178 ffclock_updated++; 4179 mtx_unlock(&ffclock_mtx); 4180 return (error); 4181 } 4182 4183 int 4184 freebsd32_ffclock_getestimate(struct thread *td, 4185 struct freebsd32_ffclock_getestimate_args *uap) 4186 { 4187 struct ffclock_estimate cest; 4188 struct ffclock_estimate32 cest32; 4189 int error; 4190 4191 mtx_lock(&ffclock_mtx); 4192 memcpy(&cest, &ffclock_estimate, sizeof(struct ffclock_estimate)); 4193 mtx_unlock(&ffclock_mtx); 4194 4195 CP(cest32.update_time, cest.update_time, sec); 4196 memcpy(&cest32.update_time.frac, &cest.update_time.frac, sizeof(uint64_t)); 4197 CP(cest32, cest, update_ffcount); 4198 CP(cest32, cest, leapsec_next); 4199 CP(cest32, cest, period); 4200 CP(cest32, cest, errb_abs); 4201 CP(cest32, cest, errb_rate); 4202 CP(cest32, cest, status); 4203 CP(cest32, cest, leapsec_total); 4204 CP(cest32, cest, leapsec); 4205 4206 error = copyout(&cest32, uap->cest, sizeof(struct ffclock_estimate32)); 4207 return (error); 4208 } 4209 #else /* !FFCLOCK */ 4210 int 4211 freebsd32_ffclock_setestimate(struct thread *td, 4212 struct freebsd32_ffclock_setestimate_args *uap) 4213 { 4214 return (ENOSYS); 4215 } 4216 4217 int 4218 freebsd32_ffclock_getestimate(struct thread *td, 4219 struct freebsd32_ffclock_getestimate_args *uap) 4220 { 4221 return (ENOSYS); 4222 } 4223 #endif /* FFCLOCK */ 4224 4225 #ifdef COMPAT_43 4226 int 4227 ofreebsd32_sethostid(struct thread *td, struct ofreebsd32_sethostid_args *uap) 4228 { 4229 int name[] = { CTL_KERN, KERN_HOSTID }; 4230 long hostid; 4231 4232 hostid = uap->hostid; 4233 return (kernel_sysctl(td, name, nitems(name), NULL, NULL, &hostid, 4234 sizeof(hostid), NULL, 0)); 4235 } 4236 #endif 4237 4238 int 4239 freebsd32_setcred(struct thread *td, struct freebsd32_setcred_args *uap) 4240 { 4241 /* Last argument is 'is_32bit'. */ 4242 return (user_setcred(td, uap->flags, uap->wcred, uap->size, true)); 4243 } 4244