xref: /freebsd/sys/cddl/dev/fbt/fbt.c (revision 361e428888e630eb708c72cf31579a25ba5d4f03)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  *
21  * Portions Copyright 2006-2008 John Birrell jb@freebsd.org
22  *
23  * $FreeBSD$
24  *
25  */
26 
27 /*
28  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
29  * Use is subject to license terms.
30  */
31 
32 #include <sys/cdefs.h>
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/conf.h>
36 #include <sys/cpuvar.h>
37 #include <sys/fcntl.h>
38 #include <sys/filio.h>
39 #include <sys/kdb.h>
40 #include <sys/kernel.h>
41 #include <sys/kmem.h>
42 #include <sys/kthread.h>
43 #include <sys/limits.h>
44 #include <sys/linker.h>
45 #include <sys/lock.h>
46 #include <sys/malloc.h>
47 #include <sys/module.h>
48 #include <sys/mutex.h>
49 #include <sys/pcpu.h>
50 #include <sys/poll.h>
51 #include <sys/proc.h>
52 #include <sys/selinfo.h>
53 #include <sys/smp.h>
54 #include <sys/syscall.h>
55 #include <sys/sysent.h>
56 #include <sys/sysproto.h>
57 #include <sys/uio.h>
58 #include <sys/unistd.h>
59 #include <machine/stdarg.h>
60 
61 #include <sys/dtrace.h>
62 #include <sys/dtrace_bsd.h>
63 
64 #include "fbt.h"
65 
66 MALLOC_DEFINE(M_FBT, "fbt", "Function Boundary Tracing");
67 
68 dtrace_provider_id_t	fbt_id;
69 fbt_probe_t		**fbt_probetab;
70 int			fbt_probetab_mask;
71 
72 static d_open_t	fbt_open;
73 static int	fbt_unload(void);
74 static void	fbt_getargdesc(void *, dtrace_id_t, void *, dtrace_argdesc_t *);
75 static void	fbt_provide_module(void *, modctl_t *);
76 static void	fbt_destroy(void *, dtrace_id_t, void *);
77 static void	fbt_enable(void *, dtrace_id_t, void *);
78 static void	fbt_disable(void *, dtrace_id_t, void *);
79 static void	fbt_load(void *);
80 static void	fbt_suspend(void *, dtrace_id_t, void *);
81 static void	fbt_resume(void *, dtrace_id_t, void *);
82 
83 static struct cdevsw fbt_cdevsw = {
84 	.d_version	= D_VERSION,
85 	.d_open		= fbt_open,
86 	.d_name		= "fbt",
87 };
88 
89 static dtrace_pattr_t fbt_attr = {
90 { DTRACE_STABILITY_EVOLVING, DTRACE_STABILITY_EVOLVING, DTRACE_CLASS_COMMON },
91 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
92 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_ISA },
93 { DTRACE_STABILITY_EVOLVING, DTRACE_STABILITY_EVOLVING, DTRACE_CLASS_COMMON },
94 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_ISA },
95 };
96 
97 static dtrace_pops_t fbt_pops = {
98 	NULL,
99 	fbt_provide_module,
100 	fbt_enable,
101 	fbt_disable,
102 	fbt_suspend,
103 	fbt_resume,
104 	fbt_getargdesc,
105 	NULL,
106 	NULL,
107 	fbt_destroy
108 };
109 
110 static struct cdev		*fbt_cdev;
111 static int			fbt_probetab_size;
112 static int			fbt_verbose = 0;
113 
114 int
115 fbt_excluded(const char *name)
116 {
117 
118 	if (strncmp(name, "dtrace_", 7) == 0 &&
119 	    strncmp(name, "dtrace_safe_", 12) != 0) {
120 		/*
121 		 * Anything beginning with "dtrace_" may be called
122 		 * from probe context unless it explicitly indicates
123 		 * that it won't be called from probe context by
124 		 * using the prefix "dtrace_safe_".
125 		 */
126 		return (1);
127 	}
128 
129 	/* Exclude some internal functions */
130 	if (name[0] == '_' && name[1] == '_')
131 		return (1);
132 
133 	/*
134 	 * When DTrace is built into the kernel we need to exclude
135 	 * the FBT functions from instrumentation.
136 	 */
137 #ifndef _KLD_MODULE
138 	if (strncmp(name, "fbt_", 4) == 0)
139 		return (1);
140 #endif
141 
142 	return (0);
143 }
144 
145 static void
146 fbt_doubletrap(void)
147 {
148 	fbt_probe_t *fbt;
149 	int i;
150 
151 	for (i = 0; i < fbt_probetab_size; i++) {
152 		fbt = fbt_probetab[i];
153 
154 		for (; fbt != NULL; fbt = fbt->fbtp_next)
155 			fbt_patch_tracepoint(fbt, fbt->fbtp_savedval);
156 	}
157 }
158 
159 static void
160 fbt_provide_module(void *arg, modctl_t *lf)
161 {
162 	char modname[MAXPATHLEN];
163 	int i;
164 	size_t len;
165 
166 	strlcpy(modname, lf->filename, sizeof(modname));
167 	len = strlen(modname);
168 	if (len > 3 && strcmp(modname + len - 3, ".ko") == 0)
169 		modname[len - 3] = '\0';
170 
171 	/*
172 	 * Employees of dtrace and their families are ineligible.  Void
173 	 * where prohibited.
174 	 */
175 	if (strcmp(modname, "dtrace") == 0)
176 		return;
177 
178 	/*
179 	 * To register with DTrace, a module must list 'dtrace' as a
180 	 * dependency in order for the kernel linker to resolve
181 	 * symbols like dtrace_register(). All modules with such a
182 	 * dependency are ineligible for FBT tracing.
183 	 */
184 	for (i = 0; i < lf->ndeps; i++)
185 		if (strncmp(lf->deps[i]->filename, "dtrace", 6) == 0)
186 			return;
187 
188 	if (lf->fbt_nentries) {
189 		/*
190 		 * This module has some FBT entries allocated; we're afraid
191 		 * to screw with it.
192 		 */
193 		return;
194 	}
195 
196 	/*
197 	 * List the functions in the module and the symbol values.
198 	 */
199 	(void) linker_file_function_listall(lf, fbt_provide_module_function, modname);
200 }
201 
202 static void
203 fbt_destroy(void *arg, dtrace_id_t id, void *parg)
204 {
205 	fbt_probe_t *fbt = parg, *next, *hash, *last;
206 	modctl_t *ctl;
207 	int ndx;
208 
209 	do {
210 		ctl = fbt->fbtp_ctl;
211 
212 		ctl->fbt_nentries--;
213 
214 		/*
215 		 * Now we need to remove this probe from the fbt_probetab.
216 		 */
217 		ndx = FBT_ADDR2NDX(fbt->fbtp_patchpoint);
218 		last = NULL;
219 		hash = fbt_probetab[ndx];
220 
221 		while (hash != fbt) {
222 			ASSERT(hash != NULL);
223 			last = hash;
224 			hash = hash->fbtp_hashnext;
225 		}
226 
227 		if (last != NULL) {
228 			last->fbtp_hashnext = fbt->fbtp_hashnext;
229 		} else {
230 			fbt_probetab[ndx] = fbt->fbtp_hashnext;
231 		}
232 
233 		next = fbt->fbtp_next;
234 		free(fbt, M_FBT);
235 
236 		fbt = next;
237 	} while (fbt != NULL);
238 }
239 
240 static void
241 fbt_enable(void *arg, dtrace_id_t id, void *parg)
242 {
243 	fbt_probe_t *fbt = parg;
244 	modctl_t *ctl = fbt->fbtp_ctl;
245 
246 	ctl->nenabled++;
247 
248 	/*
249 	 * Now check that our modctl has the expected load count.  If it
250 	 * doesn't, this module must have been unloaded and reloaded -- and
251 	 * we're not going to touch it.
252 	 */
253 	if (ctl->loadcnt != fbt->fbtp_loadcnt) {
254 		if (fbt_verbose) {
255 			printf("fbt is failing for probe %s "
256 			    "(module %s reloaded)",
257 			    fbt->fbtp_name, ctl->filename);
258 		}
259 
260 		return;
261 	}
262 
263 	for (; fbt != NULL; fbt = fbt->fbtp_next)
264 		fbt_patch_tracepoint(fbt, fbt->fbtp_patchval);
265 }
266 
267 static void
268 fbt_disable(void *arg, dtrace_id_t id, void *parg)
269 {
270 	fbt_probe_t *fbt = parg;
271 	modctl_t *ctl = fbt->fbtp_ctl;
272 
273 	ASSERT(ctl->nenabled > 0);
274 	ctl->nenabled--;
275 
276 	if ((ctl->loadcnt != fbt->fbtp_loadcnt))
277 		return;
278 
279 	for (; fbt != NULL; fbt = fbt->fbtp_next)
280 		fbt_patch_tracepoint(fbt, fbt->fbtp_savedval);
281 }
282 
283 static void
284 fbt_suspend(void *arg, dtrace_id_t id, void *parg)
285 {
286 	fbt_probe_t *fbt = parg;
287 	modctl_t *ctl = fbt->fbtp_ctl;
288 
289 	ASSERT(ctl->nenabled > 0);
290 
291 	if ((ctl->loadcnt != fbt->fbtp_loadcnt))
292 		return;
293 
294 	for (; fbt != NULL; fbt = fbt->fbtp_next)
295 		fbt_patch_tracepoint(fbt, fbt->fbtp_savedval);
296 }
297 
298 static void
299 fbt_resume(void *arg, dtrace_id_t id, void *parg)
300 {
301 	fbt_probe_t *fbt = parg;
302 	modctl_t *ctl = fbt->fbtp_ctl;
303 
304 	ASSERT(ctl->nenabled > 0);
305 
306 	if ((ctl->loadcnt != fbt->fbtp_loadcnt))
307 		return;
308 
309 	for (; fbt != NULL; fbt = fbt->fbtp_next)
310 		fbt_patch_tracepoint(fbt, fbt->fbtp_patchval);
311 }
312 
313 static int
314 fbt_ctfoff_init(modctl_t *lf, linker_ctf_t *lc)
315 {
316 	const Elf_Sym *symp = lc->symtab;;
317 	const ctf_header_t *hp = (const ctf_header_t *) lc->ctftab;
318 	const uint8_t *ctfdata = lc->ctftab + sizeof(ctf_header_t);
319 	int i;
320 	uint32_t *ctfoff;
321 	uint32_t objtoff = hp->cth_objtoff;
322 	uint32_t funcoff = hp->cth_funcoff;
323 	ushort_t info;
324 	ushort_t vlen;
325 
326 	/* Sanity check. */
327 	if (hp->cth_magic != CTF_MAGIC) {
328 		printf("Bad magic value in CTF data of '%s'\n",lf->pathname);
329 		return (EINVAL);
330 	}
331 
332 	if (lc->symtab == NULL) {
333 		printf("No symbol table in '%s'\n",lf->pathname);
334 		return (EINVAL);
335 	}
336 
337 	ctfoff = malloc(sizeof(uint32_t) * lc->nsym, M_LINKER, M_WAITOK);
338 	*lc->ctfoffp = ctfoff;
339 
340 	for (i = 0; i < lc->nsym; i++, ctfoff++, symp++) {
341 		if (symp->st_name == 0 || symp->st_shndx == SHN_UNDEF) {
342 			*ctfoff = 0xffffffff;
343 			continue;
344 		}
345 
346 		switch (ELF_ST_TYPE(symp->st_info)) {
347 		case STT_OBJECT:
348 			if (objtoff >= hp->cth_funcoff ||
349                             (symp->st_shndx == SHN_ABS && symp->st_value == 0)) {
350 				*ctfoff = 0xffffffff;
351                                 break;
352                         }
353 
354                         *ctfoff = objtoff;
355                         objtoff += sizeof (ushort_t);
356 			break;
357 
358 		case STT_FUNC:
359 			if (funcoff >= hp->cth_typeoff) {
360 				*ctfoff = 0xffffffff;
361 				break;
362 			}
363 
364 			*ctfoff = funcoff;
365 
366 			info = *((const ushort_t *)(ctfdata + funcoff));
367 			vlen = CTF_INFO_VLEN(info);
368 
369 			/*
370 			 * If we encounter a zero pad at the end, just skip it.
371 			 * Otherwise skip over the function and its return type
372 			 * (+2) and the argument list (vlen).
373 			 */
374 			if (CTF_INFO_KIND(info) == CTF_K_UNKNOWN && vlen == 0)
375 				funcoff += sizeof (ushort_t); /* skip pad */
376 			else
377 				funcoff += sizeof (ushort_t) * (vlen + 2);
378 			break;
379 
380 		default:
381 			*ctfoff = 0xffffffff;
382 			break;
383 		}
384 	}
385 
386 	return (0);
387 }
388 
389 static ssize_t
390 fbt_get_ctt_size(uint8_t version, const ctf_type_t *tp, ssize_t *sizep,
391     ssize_t *incrementp)
392 {
393 	ssize_t size, increment;
394 
395 	if (version > CTF_VERSION_1 &&
396 	    tp->ctt_size == CTF_LSIZE_SENT) {
397 		size = CTF_TYPE_LSIZE(tp);
398 		increment = sizeof (ctf_type_t);
399 	} else {
400 		size = tp->ctt_size;
401 		increment = sizeof (ctf_stype_t);
402 	}
403 
404 	if (sizep)
405 		*sizep = size;
406 	if (incrementp)
407 		*incrementp = increment;
408 
409 	return (size);
410 }
411 
412 static int
413 fbt_typoff_init(linker_ctf_t *lc)
414 {
415 	const ctf_header_t *hp = (const ctf_header_t *) lc->ctftab;
416 	const ctf_type_t *tbuf;
417 	const ctf_type_t *tend;
418 	const ctf_type_t *tp;
419 	const uint8_t *ctfdata = lc->ctftab + sizeof(ctf_header_t);
420 	int ctf_typemax = 0;
421 	uint32_t *xp;
422 	ulong_t pop[CTF_K_MAX + 1] = { 0 };
423 
424 
425 	/* Sanity check. */
426 	if (hp->cth_magic != CTF_MAGIC)
427 		return (EINVAL);
428 
429 	tbuf = (const ctf_type_t *) (ctfdata + hp->cth_typeoff);
430 	tend = (const ctf_type_t *) (ctfdata + hp->cth_stroff);
431 
432 	int child = hp->cth_parname != 0;
433 
434 	/*
435 	 * We make two passes through the entire type section.  In this first
436 	 * pass, we count the number of each type and the total number of types.
437 	 */
438 	for (tp = tbuf; tp < tend; ctf_typemax++) {
439 		ushort_t kind = CTF_INFO_KIND(tp->ctt_info);
440 		ulong_t vlen = CTF_INFO_VLEN(tp->ctt_info);
441 		ssize_t size, increment;
442 
443 		size_t vbytes;
444 		uint_t n;
445 
446 		(void) fbt_get_ctt_size(hp->cth_version, tp, &size, &increment);
447 
448 		switch (kind) {
449 		case CTF_K_INTEGER:
450 		case CTF_K_FLOAT:
451 			vbytes = sizeof (uint_t);
452 			break;
453 		case CTF_K_ARRAY:
454 			vbytes = sizeof (ctf_array_t);
455 			break;
456 		case CTF_K_FUNCTION:
457 			vbytes = sizeof (ushort_t) * (vlen + (vlen & 1));
458 			break;
459 		case CTF_K_STRUCT:
460 		case CTF_K_UNION:
461 			if (size < CTF_LSTRUCT_THRESH) {
462 				ctf_member_t *mp = (ctf_member_t *)
463 				    ((uintptr_t)tp + increment);
464 
465 				vbytes = sizeof (ctf_member_t) * vlen;
466 				for (n = vlen; n != 0; n--, mp++)
467 					child |= CTF_TYPE_ISCHILD(mp->ctm_type);
468 			} else {
469 				ctf_lmember_t *lmp = (ctf_lmember_t *)
470 				    ((uintptr_t)tp + increment);
471 
472 				vbytes = sizeof (ctf_lmember_t) * vlen;
473 				for (n = vlen; n != 0; n--, lmp++)
474 					child |=
475 					    CTF_TYPE_ISCHILD(lmp->ctlm_type);
476 			}
477 			break;
478 		case CTF_K_ENUM:
479 			vbytes = sizeof (ctf_enum_t) * vlen;
480 			break;
481 		case CTF_K_FORWARD:
482 			/*
483 			 * For forward declarations, ctt_type is the CTF_K_*
484 			 * kind for the tag, so bump that population count too.
485 			 * If ctt_type is unknown, treat the tag as a struct.
486 			 */
487 			if (tp->ctt_type == CTF_K_UNKNOWN ||
488 			    tp->ctt_type >= CTF_K_MAX)
489 				pop[CTF_K_STRUCT]++;
490 			else
491 				pop[tp->ctt_type]++;
492 			/*FALLTHRU*/
493 		case CTF_K_UNKNOWN:
494 			vbytes = 0;
495 			break;
496 		case CTF_K_POINTER:
497 		case CTF_K_TYPEDEF:
498 		case CTF_K_VOLATILE:
499 		case CTF_K_CONST:
500 		case CTF_K_RESTRICT:
501 			child |= CTF_TYPE_ISCHILD(tp->ctt_type);
502 			vbytes = 0;
503 			break;
504 		default:
505 			printf("%s(%d): detected invalid CTF kind -- %u\n", __func__, __LINE__, kind);
506 			return (EIO);
507 		}
508 		tp = (ctf_type_t *)((uintptr_t)tp + increment + vbytes);
509 		pop[kind]++;
510 	}
511 
512 	/* account for a sentinel value below */
513 	ctf_typemax++;
514 	*lc->typlenp = ctf_typemax;
515 
516 	xp = malloc(sizeof(uint32_t) * ctf_typemax, M_LINKER,
517 	    M_ZERO | M_WAITOK);
518 
519 	*lc->typoffp = xp;
520 
521 	/* type id 0 is used as a sentinel value */
522 	*xp++ = 0;
523 
524 	/*
525 	 * In the second pass, fill in the type offset.
526 	 */
527 	for (tp = tbuf; tp < tend; xp++) {
528 		ushort_t kind = CTF_INFO_KIND(tp->ctt_info);
529 		ulong_t vlen = CTF_INFO_VLEN(tp->ctt_info);
530 		ssize_t size, increment;
531 
532 		size_t vbytes;
533 		uint_t n;
534 
535 		(void) fbt_get_ctt_size(hp->cth_version, tp, &size, &increment);
536 
537 		switch (kind) {
538 		case CTF_K_INTEGER:
539 		case CTF_K_FLOAT:
540 			vbytes = sizeof (uint_t);
541 			break;
542 		case CTF_K_ARRAY:
543 			vbytes = sizeof (ctf_array_t);
544 			break;
545 		case CTF_K_FUNCTION:
546 			vbytes = sizeof (ushort_t) * (vlen + (vlen & 1));
547 			break;
548 		case CTF_K_STRUCT:
549 		case CTF_K_UNION:
550 			if (size < CTF_LSTRUCT_THRESH) {
551 				ctf_member_t *mp = (ctf_member_t *)
552 				    ((uintptr_t)tp + increment);
553 
554 				vbytes = sizeof (ctf_member_t) * vlen;
555 				for (n = vlen; n != 0; n--, mp++)
556 					child |= CTF_TYPE_ISCHILD(mp->ctm_type);
557 			} else {
558 				ctf_lmember_t *lmp = (ctf_lmember_t *)
559 				    ((uintptr_t)tp + increment);
560 
561 				vbytes = sizeof (ctf_lmember_t) * vlen;
562 				for (n = vlen; n != 0; n--, lmp++)
563 					child |=
564 					    CTF_TYPE_ISCHILD(lmp->ctlm_type);
565 			}
566 			break;
567 		case CTF_K_ENUM:
568 			vbytes = sizeof (ctf_enum_t) * vlen;
569 			break;
570 		case CTF_K_FORWARD:
571 		case CTF_K_UNKNOWN:
572 			vbytes = 0;
573 			break;
574 		case CTF_K_POINTER:
575 		case CTF_K_TYPEDEF:
576 		case CTF_K_VOLATILE:
577 		case CTF_K_CONST:
578 		case CTF_K_RESTRICT:
579 			vbytes = 0;
580 			break;
581 		default:
582 			printf("%s(%d): detected invalid CTF kind -- %u\n", __func__, __LINE__, kind);
583 			return (EIO);
584 		}
585 		*xp = (uint32_t)((uintptr_t) tp - (uintptr_t) ctfdata);
586 		tp = (ctf_type_t *)((uintptr_t)tp + increment + vbytes);
587 	}
588 
589 	return (0);
590 }
591 
592 /*
593  * CTF Declaration Stack
594  *
595  * In order to implement ctf_type_name(), we must convert a type graph back
596  * into a C type declaration.  Unfortunately, a type graph represents a storage
597  * class ordering of the type whereas a type declaration must obey the C rules
598  * for operator precedence, and the two orderings are frequently in conflict.
599  * For example, consider these CTF type graphs and their C declarations:
600  *
601  * CTF_K_POINTER -> CTF_K_FUNCTION -> CTF_K_INTEGER  : int (*)()
602  * CTF_K_POINTER -> CTF_K_ARRAY -> CTF_K_INTEGER     : int (*)[]
603  *
604  * In each case, parentheses are used to raise operator * to higher lexical
605  * precedence, so the string form of the C declaration cannot be constructed by
606  * walking the type graph links and forming the string from left to right.
607  *
608  * The functions in this file build a set of stacks from the type graph nodes
609  * corresponding to the C operator precedence levels in the appropriate order.
610  * The code in ctf_type_name() can then iterate over the levels and nodes in
611  * lexical precedence order and construct the final C declaration string.
612  */
613 typedef struct ctf_list {
614 	struct ctf_list *l_prev; /* previous pointer or tail pointer */
615 	struct ctf_list *l_next; /* next pointer or head pointer */
616 } ctf_list_t;
617 
618 #define	ctf_list_prev(elem)	((void *)(((ctf_list_t *)(elem))->l_prev))
619 #define	ctf_list_next(elem)	((void *)(((ctf_list_t *)(elem))->l_next))
620 
621 typedef enum {
622 	CTF_PREC_BASE,
623 	CTF_PREC_POINTER,
624 	CTF_PREC_ARRAY,
625 	CTF_PREC_FUNCTION,
626 	CTF_PREC_MAX
627 } ctf_decl_prec_t;
628 
629 typedef struct ctf_decl_node {
630 	ctf_list_t cd_list;			/* linked list pointers */
631 	ctf_id_t cd_type;			/* type identifier */
632 	uint_t cd_kind;				/* type kind */
633 	uint_t cd_n;				/* type dimension if array */
634 } ctf_decl_node_t;
635 
636 typedef struct ctf_decl {
637 	ctf_list_t cd_nodes[CTF_PREC_MAX];	/* declaration node stacks */
638 	int cd_order[CTF_PREC_MAX];		/* storage order of decls */
639 	ctf_decl_prec_t cd_qualp;		/* qualifier precision */
640 	ctf_decl_prec_t cd_ordp;		/* ordered precision */
641 	char *cd_buf;				/* buffer for output */
642 	char *cd_ptr;				/* buffer location */
643 	char *cd_end;				/* buffer limit */
644 	size_t cd_len;				/* buffer space required */
645 	int cd_err;				/* saved error value */
646 } ctf_decl_t;
647 
648 /*
649  * Simple doubly-linked list append routine.  This implementation assumes that
650  * each list element contains an embedded ctf_list_t as the first member.
651  * An additional ctf_list_t is used to store the head (l_next) and tail
652  * (l_prev) pointers.  The current head and tail list elements have their
653  * previous and next pointers set to NULL, respectively.
654  */
655 static void
656 ctf_list_append(ctf_list_t *lp, void *new)
657 {
658 	ctf_list_t *p = lp->l_prev;	/* p = tail list element */
659 	ctf_list_t *q = new;		/* q = new list element */
660 
661 	lp->l_prev = q;
662 	q->l_prev = p;
663 	q->l_next = NULL;
664 
665 	if (p != NULL)
666 		p->l_next = q;
667 	else
668 		lp->l_next = q;
669 }
670 
671 /*
672  * Prepend the specified existing element to the given ctf_list_t.  The
673  * existing pointer should be pointing at a struct with embedded ctf_list_t.
674  */
675 static void
676 ctf_list_prepend(ctf_list_t *lp, void *new)
677 {
678 	ctf_list_t *p = new;		/* p = new list element */
679 	ctf_list_t *q = lp->l_next;	/* q = head list element */
680 
681 	lp->l_next = p;
682 	p->l_prev = NULL;
683 	p->l_next = q;
684 
685 	if (q != NULL)
686 		q->l_prev = p;
687 	else
688 		lp->l_prev = p;
689 }
690 
691 static void
692 ctf_decl_init(ctf_decl_t *cd, char *buf, size_t len)
693 {
694 	int i;
695 
696 	bzero(cd, sizeof (ctf_decl_t));
697 
698 	for (i = CTF_PREC_BASE; i < CTF_PREC_MAX; i++)
699 		cd->cd_order[i] = CTF_PREC_BASE - 1;
700 
701 	cd->cd_qualp = CTF_PREC_BASE;
702 	cd->cd_ordp = CTF_PREC_BASE;
703 
704 	cd->cd_buf = buf;
705 	cd->cd_ptr = buf;
706 	cd->cd_end = buf + len;
707 }
708 
709 static void
710 ctf_decl_fini(ctf_decl_t *cd)
711 {
712 	ctf_decl_node_t *cdp, *ndp;
713 	int i;
714 
715 	for (i = CTF_PREC_BASE; i < CTF_PREC_MAX; i++) {
716 		for (cdp = ctf_list_next(&cd->cd_nodes[i]);
717 		    cdp != NULL; cdp = ndp) {
718 			ndp = ctf_list_next(cdp);
719 			free(cdp, M_FBT);
720 		}
721 	}
722 }
723 
724 static const ctf_type_t *
725 ctf_lookup_by_id(linker_ctf_t *lc, ctf_id_t type)
726 {
727 	const ctf_type_t *tp;
728 	uint32_t offset;
729 	uint32_t *typoff = *lc->typoffp;
730 
731 	if (type >= *lc->typlenp) {
732 		printf("%s(%d): type %d exceeds max %ld\n",__func__,__LINE__,(int) type,*lc->typlenp);
733 		return(NULL);
734 	}
735 
736 	/* Check if the type isn't cross-referenced. */
737 	if ((offset = typoff[type]) == 0) {
738 		printf("%s(%d): type %d isn't cross referenced\n",__func__,__LINE__, (int) type);
739 		return(NULL);
740 	}
741 
742 	tp = (const ctf_type_t *)(lc->ctftab + offset + sizeof(ctf_header_t));
743 
744 	return (tp);
745 }
746 
747 static void
748 fbt_array_info(linker_ctf_t *lc, ctf_id_t type, ctf_arinfo_t *arp)
749 {
750 	const ctf_header_t *hp = (const ctf_header_t *) lc->ctftab;
751 	const ctf_type_t *tp;
752 	const ctf_array_t *ap;
753 	ssize_t increment;
754 
755 	bzero(arp, sizeof(*arp));
756 
757 	if ((tp = ctf_lookup_by_id(lc, type)) == NULL)
758 		return;
759 
760 	if (CTF_INFO_KIND(tp->ctt_info) != CTF_K_ARRAY)
761 		return;
762 
763 	(void) fbt_get_ctt_size(hp->cth_version, tp, NULL, &increment);
764 
765 	ap = (const ctf_array_t *)((uintptr_t)tp + increment);
766 	arp->ctr_contents = ap->cta_contents;
767 	arp->ctr_index = ap->cta_index;
768 	arp->ctr_nelems = ap->cta_nelems;
769 }
770 
771 static const char *
772 ctf_strptr(linker_ctf_t *lc, int name)
773 {
774 	const ctf_header_t *hp = (const ctf_header_t *) lc->ctftab;;
775 	const char *strp = "";
776 
777 	if (name < 0 || name >= hp->cth_strlen)
778 		return(strp);
779 
780 	strp = (const char *)(lc->ctftab + hp->cth_stroff + name + sizeof(ctf_header_t));
781 
782 	return (strp);
783 }
784 
785 static void
786 ctf_decl_push(ctf_decl_t *cd, linker_ctf_t *lc, ctf_id_t type)
787 {
788 	ctf_decl_node_t *cdp;
789 	ctf_decl_prec_t prec;
790 	uint_t kind, n = 1;
791 	int is_qual = 0;
792 
793 	const ctf_type_t *tp;
794 	ctf_arinfo_t ar;
795 
796 	if ((tp = ctf_lookup_by_id(lc, type)) == NULL) {
797 		cd->cd_err = ENOENT;
798 		return;
799 	}
800 
801 	switch (kind = CTF_INFO_KIND(tp->ctt_info)) {
802 	case CTF_K_ARRAY:
803 		fbt_array_info(lc, type, &ar);
804 		ctf_decl_push(cd, lc, ar.ctr_contents);
805 		n = ar.ctr_nelems;
806 		prec = CTF_PREC_ARRAY;
807 		break;
808 
809 	case CTF_K_TYPEDEF:
810 		if (ctf_strptr(lc, tp->ctt_name)[0] == '\0') {
811 			ctf_decl_push(cd, lc, tp->ctt_type);
812 			return;
813 		}
814 		prec = CTF_PREC_BASE;
815 		break;
816 
817 	case CTF_K_FUNCTION:
818 		ctf_decl_push(cd, lc, tp->ctt_type);
819 		prec = CTF_PREC_FUNCTION;
820 		break;
821 
822 	case CTF_K_POINTER:
823 		ctf_decl_push(cd, lc, tp->ctt_type);
824 		prec = CTF_PREC_POINTER;
825 		break;
826 
827 	case CTF_K_VOLATILE:
828 	case CTF_K_CONST:
829 	case CTF_K_RESTRICT:
830 		ctf_decl_push(cd, lc, tp->ctt_type);
831 		prec = cd->cd_qualp;
832 		is_qual++;
833 		break;
834 
835 	default:
836 		prec = CTF_PREC_BASE;
837 	}
838 
839 	cdp = malloc(sizeof(*cdp), M_FBT, M_WAITOK);
840 	cdp->cd_type = type;
841 	cdp->cd_kind = kind;
842 	cdp->cd_n = n;
843 
844 	if (ctf_list_next(&cd->cd_nodes[prec]) == NULL)
845 		cd->cd_order[prec] = cd->cd_ordp++;
846 
847 	/*
848 	 * Reset cd_qualp to the highest precedence level that we've seen so
849 	 * far that can be qualified (CTF_PREC_BASE or CTF_PREC_POINTER).
850 	 */
851 	if (prec > cd->cd_qualp && prec < CTF_PREC_ARRAY)
852 		cd->cd_qualp = prec;
853 
854 	/*
855 	 * C array declarators are ordered inside out so prepend them.  Also by
856 	 * convention qualifiers of base types precede the type specifier (e.g.
857 	 * const int vs. int const) even though the two forms are equivalent.
858 	 */
859 	if (kind == CTF_K_ARRAY || (is_qual && prec == CTF_PREC_BASE))
860 		ctf_list_prepend(&cd->cd_nodes[prec], cdp);
861 	else
862 		ctf_list_append(&cd->cd_nodes[prec], cdp);
863 }
864 
865 static void
866 ctf_decl_sprintf(ctf_decl_t *cd, const char *format, ...)
867 {
868 	size_t len = (size_t)(cd->cd_end - cd->cd_ptr);
869 	va_list ap;
870 	size_t n;
871 
872 	va_start(ap, format);
873 	n = vsnprintf(cd->cd_ptr, len, format, ap);
874 	va_end(ap);
875 
876 	cd->cd_ptr += MIN(n, len);
877 	cd->cd_len += n;
878 }
879 
880 static ssize_t
881 fbt_type_name(linker_ctf_t *lc, ctf_id_t type, char *buf, size_t len)
882 {
883 	ctf_decl_t cd;
884 	ctf_decl_node_t *cdp;
885 	ctf_decl_prec_t prec, lp, rp;
886 	int ptr, arr;
887 	uint_t k;
888 
889 	if (lc == NULL && type == CTF_ERR)
890 		return (-1); /* simplify caller code by permitting CTF_ERR */
891 
892 	ctf_decl_init(&cd, buf, len);
893 	ctf_decl_push(&cd, lc, type);
894 
895 	if (cd.cd_err != 0) {
896 		ctf_decl_fini(&cd);
897 		return (-1);
898 	}
899 
900 	/*
901 	 * If the type graph's order conflicts with lexical precedence order
902 	 * for pointers or arrays, then we need to surround the declarations at
903 	 * the corresponding lexical precedence with parentheses.  This can
904 	 * result in either a parenthesized pointer (*) as in int (*)() or
905 	 * int (*)[], or in a parenthesized pointer and array as in int (*[])().
906 	 */
907 	ptr = cd.cd_order[CTF_PREC_POINTER] > CTF_PREC_POINTER;
908 	arr = cd.cd_order[CTF_PREC_ARRAY] > CTF_PREC_ARRAY;
909 
910 	rp = arr ? CTF_PREC_ARRAY : ptr ? CTF_PREC_POINTER : -1;
911 	lp = ptr ? CTF_PREC_POINTER : arr ? CTF_PREC_ARRAY : -1;
912 
913 	k = CTF_K_POINTER; /* avoid leading whitespace (see below) */
914 
915 	for (prec = CTF_PREC_BASE; prec < CTF_PREC_MAX; prec++) {
916 		for (cdp = ctf_list_next(&cd.cd_nodes[prec]);
917 		    cdp != NULL; cdp = ctf_list_next(cdp)) {
918 
919 			const ctf_type_t *tp =
920 			    ctf_lookup_by_id(lc, cdp->cd_type);
921 			const char *name = ctf_strptr(lc, tp->ctt_name);
922 
923 			if (k != CTF_K_POINTER && k != CTF_K_ARRAY)
924 				ctf_decl_sprintf(&cd, " ");
925 
926 			if (lp == prec) {
927 				ctf_decl_sprintf(&cd, "(");
928 				lp = -1;
929 			}
930 
931 			switch (cdp->cd_kind) {
932 			case CTF_K_INTEGER:
933 			case CTF_K_FLOAT:
934 			case CTF_K_TYPEDEF:
935 				ctf_decl_sprintf(&cd, "%s", name);
936 				break;
937 			case CTF_K_POINTER:
938 				ctf_decl_sprintf(&cd, "*");
939 				break;
940 			case CTF_K_ARRAY:
941 				ctf_decl_sprintf(&cd, "[%u]", cdp->cd_n);
942 				break;
943 			case CTF_K_FUNCTION:
944 				ctf_decl_sprintf(&cd, "()");
945 				break;
946 			case CTF_K_STRUCT:
947 			case CTF_K_FORWARD:
948 				ctf_decl_sprintf(&cd, "struct %s", name);
949 				break;
950 			case CTF_K_UNION:
951 				ctf_decl_sprintf(&cd, "union %s", name);
952 				break;
953 			case CTF_K_ENUM:
954 				ctf_decl_sprintf(&cd, "enum %s", name);
955 				break;
956 			case CTF_K_VOLATILE:
957 				ctf_decl_sprintf(&cd, "volatile");
958 				break;
959 			case CTF_K_CONST:
960 				ctf_decl_sprintf(&cd, "const");
961 				break;
962 			case CTF_K_RESTRICT:
963 				ctf_decl_sprintf(&cd, "restrict");
964 				break;
965 			}
966 
967 			k = cdp->cd_kind;
968 		}
969 
970 		if (rp == prec)
971 			ctf_decl_sprintf(&cd, ")");
972 	}
973 
974 	ctf_decl_fini(&cd);
975 	return (cd.cd_len);
976 }
977 
978 static void
979 fbt_getargdesc(void *arg __unused, dtrace_id_t id __unused, void *parg, dtrace_argdesc_t *desc)
980 {
981 	const ushort_t *dp;
982 	fbt_probe_t *fbt = parg;
983 	linker_ctf_t lc;
984 	modctl_t *ctl = fbt->fbtp_ctl;
985 	int ndx = desc->dtargd_ndx;
986 	int symindx = fbt->fbtp_symindx;
987 	uint32_t *ctfoff;
988 	uint32_t offset;
989 	ushort_t info, kind, n;
990 
991 	if (fbt->fbtp_roffset != 0 && desc->dtargd_ndx == 0) {
992 		(void) strcpy(desc->dtargd_native, "int");
993 		return;
994 	}
995 
996 	desc->dtargd_ndx = DTRACE_ARGNONE;
997 
998 	/* Get a pointer to the CTF data and it's length. */
999 	if (linker_ctf_get(ctl, &lc) != 0)
1000 		/* No CTF data? Something wrong? *shrug* */
1001 		return;
1002 
1003 	/* Check if this module hasn't been initialised yet. */
1004 	if (*lc.ctfoffp == NULL) {
1005 		/*
1006 		 * Initialise the CTF object and function symindx to
1007 		 * byte offset array.
1008 		 */
1009 		if (fbt_ctfoff_init(ctl, &lc) != 0)
1010 			return;
1011 
1012 		/* Initialise the CTF type to byte offset array. */
1013 		if (fbt_typoff_init(&lc) != 0)
1014 			return;
1015 	}
1016 
1017 	ctfoff = *lc.ctfoffp;
1018 
1019 	if (ctfoff == NULL || *lc.typoffp == NULL)
1020 		return;
1021 
1022 	/* Check if the symbol index is out of range. */
1023 	if (symindx >= lc.nsym)
1024 		return;
1025 
1026 	/* Check if the symbol isn't cross-referenced. */
1027 	if ((offset = ctfoff[symindx]) == 0xffffffff)
1028 		return;
1029 
1030 	dp = (const ushort_t *)(lc.ctftab + offset + sizeof(ctf_header_t));
1031 
1032 	info = *dp++;
1033 	kind = CTF_INFO_KIND(info);
1034 	n = CTF_INFO_VLEN(info);
1035 
1036 	if (kind == CTF_K_UNKNOWN && n == 0) {
1037 		printf("%s(%d): Unknown function!\n",__func__,__LINE__);
1038 		return;
1039 	}
1040 
1041 	if (kind != CTF_K_FUNCTION) {
1042 		printf("%s(%d): Expected a function!\n",__func__,__LINE__);
1043 		return;
1044 	}
1045 
1046 	if (fbt->fbtp_roffset != 0) {
1047 		/* Only return type is available for args[1] in return probe. */
1048 		if (ndx > 1)
1049 			return;
1050 		ASSERT(ndx == 1);
1051 	} else {
1052 		/* Check if the requested argument doesn't exist. */
1053 		if (ndx >= n)
1054 			return;
1055 
1056 		/* Skip the return type and arguments up to the one requested. */
1057 		dp += ndx + 1;
1058 	}
1059 
1060 	if (fbt_type_name(&lc, *dp, desc->dtargd_native, sizeof(desc->dtargd_native)) > 0)
1061 		desc->dtargd_ndx = ndx;
1062 
1063 	return;
1064 }
1065 
1066 static int
1067 fbt_linker_file_cb(linker_file_t lf, void *arg)
1068 {
1069 
1070 	fbt_provide_module(arg, lf);
1071 
1072 	return (0);
1073 }
1074 
1075 static void
1076 fbt_load(void *dummy)
1077 {
1078 	/* Create the /dev/dtrace/fbt entry. */
1079 	fbt_cdev = make_dev(&fbt_cdevsw, 0, UID_ROOT, GID_WHEEL, 0600,
1080 	    "dtrace/fbt");
1081 
1082 	/* Default the probe table size if not specified. */
1083 	if (fbt_probetab_size == 0)
1084 		fbt_probetab_size = FBT_PROBETAB_SIZE;
1085 
1086 	/* Choose the hash mask for the probe table. */
1087 	fbt_probetab_mask = fbt_probetab_size - 1;
1088 
1089 	/* Allocate memory for the probe table. */
1090 	fbt_probetab =
1091 	    malloc(fbt_probetab_size * sizeof (fbt_probe_t *), M_FBT, M_WAITOK | M_ZERO);
1092 
1093 	dtrace_doubletrap_func = fbt_doubletrap;
1094 	dtrace_invop_add(fbt_invop);
1095 
1096 	if (dtrace_register("fbt", &fbt_attr, DTRACE_PRIV_USER,
1097 	    NULL, &fbt_pops, NULL, &fbt_id) != 0)
1098 		return;
1099 
1100 	/* Create probes for the kernel and already-loaded modules. */
1101 	linker_file_foreach(fbt_linker_file_cb, NULL);
1102 }
1103 
1104 static int
1105 fbt_unload()
1106 {
1107 	int error = 0;
1108 
1109 	/* De-register the invalid opcode handler. */
1110 	dtrace_invop_remove(fbt_invop);
1111 
1112 	dtrace_doubletrap_func = NULL;
1113 
1114 	/* De-register this DTrace provider. */
1115 	if ((error = dtrace_unregister(fbt_id)) != 0)
1116 		return (error);
1117 
1118 	/* Free the probe table. */
1119 	free(fbt_probetab, M_FBT);
1120 	fbt_probetab = NULL;
1121 	fbt_probetab_mask = 0;
1122 
1123 	destroy_dev(fbt_cdev);
1124 
1125 	return (error);
1126 }
1127 
1128 static int
1129 fbt_modevent(module_t mod __unused, int type, void *data __unused)
1130 {
1131 	int error = 0;
1132 
1133 	switch (type) {
1134 	case MOD_LOAD:
1135 		break;
1136 
1137 	case MOD_UNLOAD:
1138 		break;
1139 
1140 	case MOD_SHUTDOWN:
1141 		break;
1142 
1143 	default:
1144 		error = EOPNOTSUPP;
1145 		break;
1146 
1147 	}
1148 
1149 	return (error);
1150 }
1151 
1152 static int
1153 fbt_open(struct cdev *dev __unused, int oflags __unused, int devtype __unused, struct thread *td __unused)
1154 {
1155 	return (0);
1156 }
1157 
1158 SYSINIT(fbt_load, SI_SUB_DTRACE_PROVIDER, SI_ORDER_ANY, fbt_load, NULL);
1159 SYSUNINIT(fbt_unload, SI_SUB_DTRACE_PROVIDER, SI_ORDER_ANY, fbt_unload, NULL);
1160 
1161 DEV_MODULE(fbt, fbt_modevent, NULL);
1162 MODULE_VERSION(fbt, 1);
1163 MODULE_DEPEND(fbt, dtrace, 1, 1, 1);
1164 MODULE_DEPEND(fbt, opensolaris, 1, 1, 1);
1165