1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 * 21 * Portions Copyright 2006-2008 John Birrell jb@freebsd.org 22 * 23 * $FreeBSD$ 24 * 25 */ 26 27 /* 28 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 29 * Use is subject to license terms. 30 */ 31 32 #include <sys/cdefs.h> 33 #include <sys/param.h> 34 #include <sys/systm.h> 35 #include <sys/conf.h> 36 #include <sys/cpuvar.h> 37 #include <sys/endian.h> 38 #include <sys/fcntl.h> 39 #include <sys/filio.h> 40 #include <sys/kdb.h> 41 #include <sys/kernel.h> 42 #include <sys/kmem.h> 43 #include <sys/kthread.h> 44 #include <sys/limits.h> 45 #include <sys/linker.h> 46 #include <sys/lock.h> 47 #include <sys/malloc.h> 48 #include <sys/module.h> 49 #include <sys/mutex.h> 50 #include <sys/pcpu.h> 51 #include <sys/poll.h> 52 #include <sys/proc.h> 53 #include <sys/selinfo.h> 54 #include <sys/smp.h> 55 #include <sys/syscall.h> 56 #include <sys/sysent.h> 57 #include <sys/sysproto.h> 58 #include <sys/uio.h> 59 #include <sys/unistd.h> 60 #include <machine/stdarg.h> 61 62 #include <sys/dtrace.h> 63 #include <sys/dtrace_bsd.h> 64 65 #include "fbt.h" 66 67 MALLOC_DEFINE(M_FBT, "fbt", "Function Boundary Tracing"); 68 69 dtrace_provider_id_t fbt_id; 70 fbt_probe_t **fbt_probetab; 71 int fbt_probetab_mask; 72 73 static d_open_t fbt_open; 74 static int fbt_unload(void); 75 static void fbt_getargdesc(void *, dtrace_id_t, void *, dtrace_argdesc_t *); 76 static void fbt_provide_module(void *, modctl_t *); 77 static void fbt_destroy(void *, dtrace_id_t, void *); 78 static void fbt_enable(void *, dtrace_id_t, void *); 79 static void fbt_disable(void *, dtrace_id_t, void *); 80 static void fbt_load(void *); 81 static void fbt_suspend(void *, dtrace_id_t, void *); 82 static void fbt_resume(void *, dtrace_id_t, void *); 83 84 static struct cdevsw fbt_cdevsw = { 85 .d_version = D_VERSION, 86 .d_open = fbt_open, 87 .d_name = "fbt", 88 }; 89 90 static dtrace_pattr_t fbt_attr = { 91 { DTRACE_STABILITY_EVOLVING, DTRACE_STABILITY_EVOLVING, DTRACE_CLASS_COMMON }, 92 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, 93 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_ISA }, 94 { DTRACE_STABILITY_EVOLVING, DTRACE_STABILITY_EVOLVING, DTRACE_CLASS_COMMON }, 95 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_ISA }, 96 }; 97 98 static dtrace_pops_t fbt_pops = { 99 .dtps_provide = NULL, 100 .dtps_provide_module = fbt_provide_module, 101 .dtps_enable = fbt_enable, 102 .dtps_disable = fbt_disable, 103 .dtps_suspend = fbt_suspend, 104 .dtps_resume = fbt_resume, 105 .dtps_getargdesc = fbt_getargdesc, 106 .dtps_getargval = NULL, 107 .dtps_usermode = NULL, 108 .dtps_destroy = fbt_destroy 109 }; 110 111 static struct cdev *fbt_cdev; 112 static int fbt_probetab_size; 113 static int fbt_verbose = 0; 114 115 int 116 fbt_excluded(const char *name) 117 { 118 119 if (strncmp(name, "dtrace_", 7) == 0 && 120 strncmp(name, "dtrace_safe_", 12) != 0) { 121 /* 122 * Anything beginning with "dtrace_" may be called 123 * from probe context unless it explicitly indicates 124 * that it won't be called from probe context by 125 * using the prefix "dtrace_safe_". 126 */ 127 return (1); 128 } 129 130 /* 131 * Omit instrumentation of functions that are probably in DDB. It 132 * makes it too hard to debug broken FBT. 133 * 134 * NB: kdb_enter() can be excluded, but its call to printf() can't be. 135 * This is generally OK since we're not yet in debugging context. 136 */ 137 if (strncmp(name, "db_", 3) == 0 || 138 strncmp(name, "kdb_", 4) == 0) 139 return (1); 140 141 /* 142 * Lock owner methods may be called from probe context. 143 */ 144 if (strcmp(name, "owner_mtx") == 0 || 145 strcmp(name, "owner_rm") == 0 || 146 strcmp(name, "owner_rw") == 0 || 147 strcmp(name, "owner_sx") == 0) 148 return (1); 149 150 /* 151 * Stack unwinders may be called from probe context on some 152 * platforms. 153 */ 154 #if defined(__aarch64__) || defined(__riscv) 155 if (strcmp(name, "unwind_frame") == 0) 156 return (1); 157 #endif 158 159 /* 160 * When DTrace is built into the kernel we need to exclude 161 * the FBT functions from instrumentation. 162 */ 163 #ifndef _KLD_MODULE 164 if (strncmp(name, "fbt_", 4) == 0) 165 return (1); 166 #endif 167 168 return (0); 169 } 170 171 static void 172 fbt_doubletrap(void) 173 { 174 fbt_probe_t *fbt; 175 int i; 176 177 for (i = 0; i < fbt_probetab_size; i++) { 178 fbt = fbt_probetab[i]; 179 180 for (; fbt != NULL; fbt = fbt->fbtp_probenext) 181 fbt_patch_tracepoint(fbt, fbt->fbtp_savedval); 182 } 183 } 184 185 static void 186 fbt_provide_module(void *arg, modctl_t *lf) 187 { 188 char modname[MAXPATHLEN]; 189 int i; 190 size_t len; 191 192 strlcpy(modname, lf->filename, sizeof(modname)); 193 len = strlen(modname); 194 if (len > 3 && strcmp(modname + len - 3, ".ko") == 0) 195 modname[len - 3] = '\0'; 196 197 /* 198 * Employees of dtrace and their families are ineligible. Void 199 * where prohibited. 200 */ 201 if (strcmp(modname, "dtrace") == 0) 202 return; 203 204 /* 205 * To register with DTrace, a module must list 'dtrace' as a 206 * dependency in order for the kernel linker to resolve 207 * symbols like dtrace_register(). All modules with such a 208 * dependency are ineligible for FBT tracing. 209 */ 210 for (i = 0; i < lf->ndeps; i++) 211 if (strncmp(lf->deps[i]->filename, "dtrace", 6) == 0) 212 return; 213 214 if (lf->fbt_nentries) { 215 /* 216 * This module has some FBT entries allocated; we're afraid 217 * to screw with it. 218 */ 219 return; 220 } 221 222 /* 223 * List the functions in the module and the symbol values. 224 */ 225 (void) linker_file_function_listall(lf, fbt_provide_module_function, modname); 226 } 227 228 static void 229 fbt_destroy_one(fbt_probe_t *fbt) 230 { 231 fbt_probe_t *hash, *hashprev, *next; 232 int ndx; 233 234 ndx = FBT_ADDR2NDX(fbt->fbtp_patchpoint); 235 for (hash = fbt_probetab[ndx], hashprev = NULL; hash != NULL; 236 hashprev = hash, hash = hash->fbtp_hashnext) { 237 if (hash == fbt) { 238 if ((next = fbt->fbtp_tracenext) != NULL) 239 next->fbtp_hashnext = hash->fbtp_hashnext; 240 else 241 next = hash->fbtp_hashnext; 242 if (hashprev != NULL) 243 hashprev->fbtp_hashnext = next; 244 else 245 fbt_probetab[ndx] = next; 246 goto free; 247 } else if (hash->fbtp_patchpoint == fbt->fbtp_patchpoint) { 248 for (next = hash; next->fbtp_tracenext != NULL; 249 next = next->fbtp_tracenext) { 250 if (fbt == next->fbtp_tracenext) { 251 next->fbtp_tracenext = 252 fbt->fbtp_tracenext; 253 goto free; 254 } 255 } 256 } 257 } 258 panic("probe %p not found in hash table", fbt); 259 free: 260 free(fbt, M_FBT); 261 } 262 263 static void 264 fbt_destroy(void *arg, dtrace_id_t id, void *parg) 265 { 266 fbt_probe_t *fbt = parg, *next; 267 modctl_t *ctl; 268 269 do { 270 ctl = fbt->fbtp_ctl; 271 ctl->fbt_nentries--; 272 273 next = fbt->fbtp_probenext; 274 fbt_destroy_one(fbt); 275 fbt = next; 276 } while (fbt != NULL); 277 } 278 279 static void 280 fbt_enable(void *arg, dtrace_id_t id, void *parg) 281 { 282 fbt_probe_t *fbt = parg; 283 modctl_t *ctl = fbt->fbtp_ctl; 284 285 ctl->nenabled++; 286 287 /* 288 * Now check that our modctl has the expected load count. If it 289 * doesn't, this module must have been unloaded and reloaded -- and 290 * we're not going to touch it. 291 */ 292 if (ctl->loadcnt != fbt->fbtp_loadcnt) { 293 if (fbt_verbose) { 294 printf("fbt is failing for probe %s " 295 "(module %s reloaded)", 296 fbt->fbtp_name, ctl->filename); 297 } 298 299 return; 300 } 301 302 for (; fbt != NULL; fbt = fbt->fbtp_probenext) { 303 fbt_patch_tracepoint(fbt, fbt->fbtp_patchval); 304 fbt->fbtp_enabled++; 305 } 306 } 307 308 static void 309 fbt_disable(void *arg, dtrace_id_t id, void *parg) 310 { 311 fbt_probe_t *fbt = parg, *hash; 312 modctl_t *ctl = fbt->fbtp_ctl; 313 314 ASSERT(ctl->nenabled > 0); 315 ctl->nenabled--; 316 317 if ((ctl->loadcnt != fbt->fbtp_loadcnt)) 318 return; 319 320 for (; fbt != NULL; fbt = fbt->fbtp_probenext) { 321 fbt->fbtp_enabled--; 322 323 for (hash = fbt_probetab[FBT_ADDR2NDX(fbt->fbtp_patchpoint)]; 324 hash != NULL; hash = hash->fbtp_hashnext) { 325 if (hash->fbtp_patchpoint == fbt->fbtp_patchpoint) { 326 for (; hash != NULL; hash = hash->fbtp_tracenext) 327 if (hash->fbtp_enabled > 0) 328 break; 329 break; 330 } 331 } 332 if (hash == NULL) 333 fbt_patch_tracepoint(fbt, fbt->fbtp_savedval); 334 } 335 } 336 337 static void 338 fbt_suspend(void *arg, dtrace_id_t id, void *parg) 339 { 340 fbt_probe_t *fbt = parg; 341 modctl_t *ctl = fbt->fbtp_ctl; 342 343 ASSERT(ctl->nenabled > 0); 344 345 if ((ctl->loadcnt != fbt->fbtp_loadcnt)) 346 return; 347 348 for (; fbt != NULL; fbt = fbt->fbtp_probenext) 349 fbt_patch_tracepoint(fbt, fbt->fbtp_savedval); 350 } 351 352 static void 353 fbt_resume(void *arg, dtrace_id_t id, void *parg) 354 { 355 fbt_probe_t *fbt = parg; 356 modctl_t *ctl = fbt->fbtp_ctl; 357 358 ASSERT(ctl->nenabled > 0); 359 360 if ((ctl->loadcnt != fbt->fbtp_loadcnt)) 361 return; 362 363 for (; fbt != NULL; fbt = fbt->fbtp_probenext) 364 fbt_patch_tracepoint(fbt, fbt->fbtp_patchval); 365 } 366 367 static int 368 fbt_ctfoff_init(modctl_t *lf, linker_ctf_t *lc) 369 { 370 const Elf_Sym *symp = lc->symtab; 371 const ctf_header_t *hp = (const ctf_header_t *) lc->ctftab; 372 const uint8_t *ctfdata = lc->ctftab + sizeof(ctf_header_t); 373 int i; 374 uint32_t *ctfoff; 375 uint32_t objtoff = hp->cth_objtoff; 376 uint32_t funcoff = hp->cth_funcoff; 377 ushort_t info; 378 ushort_t vlen; 379 380 /* Sanity check. */ 381 if (hp->cth_magic != CTF_MAGIC) { 382 printf("Bad magic value in CTF data of '%s'\n",lf->pathname); 383 return (EINVAL); 384 } 385 386 if (lc->symtab == NULL) { 387 printf("No symbol table in '%s'\n",lf->pathname); 388 return (EINVAL); 389 } 390 391 ctfoff = malloc(sizeof(uint32_t) * lc->nsym, M_LINKER, M_WAITOK); 392 *lc->ctfoffp = ctfoff; 393 394 for (i = 0; i < lc->nsym; i++, ctfoff++, symp++) { 395 if (symp->st_name == 0 || symp->st_shndx == SHN_UNDEF) { 396 *ctfoff = 0xffffffff; 397 continue; 398 } 399 400 switch (ELF_ST_TYPE(symp->st_info)) { 401 case STT_OBJECT: 402 if (objtoff >= hp->cth_funcoff || 403 (symp->st_shndx == SHN_ABS && symp->st_value == 0)) { 404 *ctfoff = 0xffffffff; 405 break; 406 } 407 408 *ctfoff = objtoff; 409 objtoff += sizeof (ushort_t); 410 break; 411 412 case STT_FUNC: 413 if (funcoff >= hp->cth_typeoff) { 414 *ctfoff = 0xffffffff; 415 break; 416 } 417 418 *ctfoff = funcoff; 419 420 info = *((const ushort_t *)(ctfdata + funcoff)); 421 vlen = CTF_INFO_VLEN(info); 422 423 /* 424 * If we encounter a zero pad at the end, just skip it. 425 * Otherwise skip over the function and its return type 426 * (+2) and the argument list (vlen). 427 */ 428 if (CTF_INFO_KIND(info) == CTF_K_UNKNOWN && vlen == 0) 429 funcoff += sizeof (ushort_t); /* skip pad */ 430 else 431 funcoff += sizeof (ushort_t) * (vlen + 2); 432 break; 433 434 default: 435 *ctfoff = 0xffffffff; 436 break; 437 } 438 } 439 440 return (0); 441 } 442 443 static ssize_t 444 fbt_get_ctt_size(uint8_t version, const ctf_type_t *tp, ssize_t *sizep, 445 ssize_t *incrementp) 446 { 447 ssize_t size, increment; 448 449 if (version > CTF_VERSION_1 && 450 tp->ctt_size == CTF_LSIZE_SENT) { 451 size = CTF_TYPE_LSIZE(tp); 452 increment = sizeof (ctf_type_t); 453 } else { 454 size = tp->ctt_size; 455 increment = sizeof (ctf_stype_t); 456 } 457 458 if (sizep) 459 *sizep = size; 460 if (incrementp) 461 *incrementp = increment; 462 463 return (size); 464 } 465 466 static int 467 fbt_typoff_init(linker_ctf_t *lc) 468 { 469 const ctf_header_t *hp = (const ctf_header_t *) lc->ctftab; 470 const ctf_type_t *tbuf; 471 const ctf_type_t *tend; 472 const ctf_type_t *tp; 473 const uint8_t *ctfdata = lc->ctftab + sizeof(ctf_header_t); 474 int ctf_typemax = 0; 475 uint32_t *xp; 476 ulong_t pop[CTF_K_MAX + 1] = { 0 }; 477 uint8_t version; 478 479 480 /* Sanity check. */ 481 if (hp->cth_magic != CTF_MAGIC) 482 return (EINVAL); 483 484 version = hp->cth_version; 485 486 tbuf = (const ctf_type_t *) (ctfdata + hp->cth_typeoff); 487 tend = (const ctf_type_t *) (ctfdata + hp->cth_stroff); 488 489 /* 490 * We make two passes through the entire type section. In this first 491 * pass, we count the number of each type and the total number of types. 492 */ 493 for (tp = tbuf; tp < tend; ctf_typemax++) { 494 ushort_t kind = CTF_INFO_KIND(tp->ctt_info); 495 ulong_t vlen = CTF_INFO_VLEN(tp->ctt_info); 496 ssize_t size, increment; 497 498 size_t vbytes; 499 500 (void) fbt_get_ctt_size(version, tp, &size, &increment); 501 502 switch (kind) { 503 case CTF_K_INTEGER: 504 case CTF_K_FLOAT: 505 vbytes = sizeof (uint_t); 506 break; 507 case CTF_K_ARRAY: 508 vbytes = sizeof (ctf_array_t); 509 break; 510 case CTF_K_FUNCTION: 511 vbytes = sizeof (ushort_t) * (vlen + (vlen & 1)); 512 break; 513 case CTF_K_STRUCT: 514 case CTF_K_UNION: 515 if (size < CTF_LSTRUCT_THRESH) 516 vbytes = sizeof (ctf_member_t) * vlen; 517 else 518 vbytes = sizeof (ctf_lmember_t) * vlen; 519 break; 520 case CTF_K_ENUM: 521 vbytes = sizeof (ctf_enum_t) * vlen; 522 break; 523 case CTF_K_FORWARD: 524 /* 525 * For forward declarations, ctt_type is the CTF_K_* 526 * kind for the tag, so bump that population count too. 527 * If ctt_type is unknown, treat the tag as a struct. 528 */ 529 if (tp->ctt_type == CTF_K_UNKNOWN || 530 tp->ctt_type >= CTF_K_MAX) 531 pop[CTF_K_STRUCT]++; 532 else 533 pop[tp->ctt_type]++; 534 /*FALLTHRU*/ 535 case CTF_K_UNKNOWN: 536 vbytes = 0; 537 break; 538 case CTF_K_POINTER: 539 case CTF_K_TYPEDEF: 540 case CTF_K_VOLATILE: 541 case CTF_K_CONST: 542 case CTF_K_RESTRICT: 543 vbytes = 0; 544 break; 545 default: 546 printf("%s(%d): detected invalid CTF kind -- %u\n", __func__, __LINE__, kind); 547 return (EIO); 548 } 549 tp = (ctf_type_t *)((uintptr_t)tp + increment + vbytes); 550 pop[kind]++; 551 } 552 553 /* account for a sentinel value below */ 554 ctf_typemax++; 555 *lc->typlenp = ctf_typemax; 556 557 xp = malloc(sizeof(uint32_t) * ctf_typemax, M_LINKER, 558 M_ZERO | M_WAITOK); 559 560 *lc->typoffp = xp; 561 562 /* type id 0 is used as a sentinel value */ 563 *xp++ = 0; 564 565 /* 566 * In the second pass, fill in the type offset. 567 */ 568 for (tp = tbuf; tp < tend; xp++) { 569 ushort_t kind = CTF_INFO_KIND(tp->ctt_info); 570 ulong_t vlen = CTF_INFO_VLEN(tp->ctt_info); 571 ssize_t size, increment; 572 573 size_t vbytes; 574 575 (void) fbt_get_ctt_size(version, tp, &size, &increment); 576 577 switch (kind) { 578 case CTF_K_INTEGER: 579 case CTF_K_FLOAT: 580 vbytes = sizeof (uint_t); 581 break; 582 case CTF_K_ARRAY: 583 vbytes = sizeof (ctf_array_t); 584 break; 585 case CTF_K_FUNCTION: 586 vbytes = sizeof (ushort_t) * (vlen + (vlen & 1)); 587 break; 588 case CTF_K_STRUCT: 589 case CTF_K_UNION: 590 if (size < CTF_LSTRUCT_THRESH) 591 vbytes = sizeof (ctf_member_t) * vlen; 592 else 593 vbytes = sizeof (ctf_lmember_t) * vlen; 594 break; 595 case CTF_K_ENUM: 596 vbytes = sizeof (ctf_enum_t) * vlen; 597 break; 598 case CTF_K_FORWARD: 599 case CTF_K_UNKNOWN: 600 vbytes = 0; 601 break; 602 case CTF_K_POINTER: 603 case CTF_K_TYPEDEF: 604 case CTF_K_VOLATILE: 605 case CTF_K_CONST: 606 case CTF_K_RESTRICT: 607 vbytes = 0; 608 break; 609 default: 610 printf("%s(%d): detected invalid CTF kind -- %u\n", __func__, __LINE__, kind); 611 return (EIO); 612 } 613 *xp = (uint32_t)((uintptr_t) tp - (uintptr_t) ctfdata); 614 tp = (ctf_type_t *)((uintptr_t)tp + increment + vbytes); 615 } 616 617 return (0); 618 } 619 620 /* 621 * CTF Declaration Stack 622 * 623 * In order to implement ctf_type_name(), we must convert a type graph back 624 * into a C type declaration. Unfortunately, a type graph represents a storage 625 * class ordering of the type whereas a type declaration must obey the C rules 626 * for operator precedence, and the two orderings are frequently in conflict. 627 * For example, consider these CTF type graphs and their C declarations: 628 * 629 * CTF_K_POINTER -> CTF_K_FUNCTION -> CTF_K_INTEGER : int (*)() 630 * CTF_K_POINTER -> CTF_K_ARRAY -> CTF_K_INTEGER : int (*)[] 631 * 632 * In each case, parentheses are used to raise operator * to higher lexical 633 * precedence, so the string form of the C declaration cannot be constructed by 634 * walking the type graph links and forming the string from left to right. 635 * 636 * The functions in this file build a set of stacks from the type graph nodes 637 * corresponding to the C operator precedence levels in the appropriate order. 638 * The code in ctf_type_name() can then iterate over the levels and nodes in 639 * lexical precedence order and construct the final C declaration string. 640 */ 641 typedef struct ctf_list { 642 struct ctf_list *l_prev; /* previous pointer or tail pointer */ 643 struct ctf_list *l_next; /* next pointer or head pointer */ 644 } ctf_list_t; 645 646 #define ctf_list_prev(elem) ((void *)(((ctf_list_t *)(elem))->l_prev)) 647 #define ctf_list_next(elem) ((void *)(((ctf_list_t *)(elem))->l_next)) 648 649 typedef enum { 650 CTF_PREC_BASE, 651 CTF_PREC_POINTER, 652 CTF_PREC_ARRAY, 653 CTF_PREC_FUNCTION, 654 CTF_PREC_MAX 655 } ctf_decl_prec_t; 656 657 typedef struct ctf_decl_node { 658 ctf_list_t cd_list; /* linked list pointers */ 659 ctf_id_t cd_type; /* type identifier */ 660 uint_t cd_kind; /* type kind */ 661 uint_t cd_n; /* type dimension if array */ 662 } ctf_decl_node_t; 663 664 typedef struct ctf_decl { 665 ctf_list_t cd_nodes[CTF_PREC_MAX]; /* declaration node stacks */ 666 int cd_order[CTF_PREC_MAX]; /* storage order of decls */ 667 ctf_decl_prec_t cd_qualp; /* qualifier precision */ 668 ctf_decl_prec_t cd_ordp; /* ordered precision */ 669 char *cd_buf; /* buffer for output */ 670 char *cd_ptr; /* buffer location */ 671 char *cd_end; /* buffer limit */ 672 size_t cd_len; /* buffer space required */ 673 int cd_err; /* saved error value */ 674 } ctf_decl_t; 675 676 /* 677 * Simple doubly-linked list append routine. This implementation assumes that 678 * each list element contains an embedded ctf_list_t as the first member. 679 * An additional ctf_list_t is used to store the head (l_next) and tail 680 * (l_prev) pointers. The current head and tail list elements have their 681 * previous and next pointers set to NULL, respectively. 682 */ 683 static void 684 ctf_list_append(ctf_list_t *lp, void *new) 685 { 686 ctf_list_t *p = lp->l_prev; /* p = tail list element */ 687 ctf_list_t *q = new; /* q = new list element */ 688 689 lp->l_prev = q; 690 q->l_prev = p; 691 q->l_next = NULL; 692 693 if (p != NULL) 694 p->l_next = q; 695 else 696 lp->l_next = q; 697 } 698 699 /* 700 * Prepend the specified existing element to the given ctf_list_t. The 701 * existing pointer should be pointing at a struct with embedded ctf_list_t. 702 */ 703 static void 704 ctf_list_prepend(ctf_list_t *lp, void *new) 705 { 706 ctf_list_t *p = new; /* p = new list element */ 707 ctf_list_t *q = lp->l_next; /* q = head list element */ 708 709 lp->l_next = p; 710 p->l_prev = NULL; 711 p->l_next = q; 712 713 if (q != NULL) 714 q->l_prev = p; 715 else 716 lp->l_prev = p; 717 } 718 719 static void 720 ctf_decl_init(ctf_decl_t *cd, char *buf, size_t len) 721 { 722 int i; 723 724 bzero(cd, sizeof (ctf_decl_t)); 725 726 for (i = CTF_PREC_BASE; i < CTF_PREC_MAX; i++) 727 cd->cd_order[i] = CTF_PREC_BASE - 1; 728 729 cd->cd_qualp = CTF_PREC_BASE; 730 cd->cd_ordp = CTF_PREC_BASE; 731 732 cd->cd_buf = buf; 733 cd->cd_ptr = buf; 734 cd->cd_end = buf + len; 735 } 736 737 static void 738 ctf_decl_fini(ctf_decl_t *cd) 739 { 740 ctf_decl_node_t *cdp, *ndp; 741 int i; 742 743 for (i = CTF_PREC_BASE; i < CTF_PREC_MAX; i++) { 744 for (cdp = ctf_list_next(&cd->cd_nodes[i]); 745 cdp != NULL; cdp = ndp) { 746 ndp = ctf_list_next(cdp); 747 free(cdp, M_FBT); 748 } 749 } 750 } 751 752 static const ctf_type_t * 753 ctf_lookup_by_id(linker_ctf_t *lc, ctf_id_t type) 754 { 755 const ctf_type_t *tp; 756 uint32_t offset; 757 uint32_t *typoff = *lc->typoffp; 758 759 if (type >= *lc->typlenp) { 760 printf("%s(%d): type %d exceeds max %ld\n",__func__,__LINE__,(int) type,*lc->typlenp); 761 return(NULL); 762 } 763 764 /* Check if the type isn't cross-referenced. */ 765 if ((offset = typoff[type]) == 0) { 766 printf("%s(%d): type %d isn't cross referenced\n",__func__,__LINE__, (int) type); 767 return(NULL); 768 } 769 770 tp = (const ctf_type_t *)(lc->ctftab + offset + sizeof(ctf_header_t)); 771 772 return (tp); 773 } 774 775 static void 776 fbt_array_info(linker_ctf_t *lc, ctf_id_t type, ctf_arinfo_t *arp) 777 { 778 const ctf_header_t *hp = (const ctf_header_t *) lc->ctftab; 779 const ctf_type_t *tp; 780 const ctf_array_t *ap; 781 ssize_t increment; 782 783 bzero(arp, sizeof(*arp)); 784 785 if ((tp = ctf_lookup_by_id(lc, type)) == NULL) 786 return; 787 788 if (CTF_INFO_KIND(tp->ctt_info) != CTF_K_ARRAY) 789 return; 790 791 (void) fbt_get_ctt_size(hp->cth_version, tp, NULL, &increment); 792 793 ap = (const ctf_array_t *)((uintptr_t)tp + increment); 794 arp->ctr_contents = ap->cta_contents; 795 arp->ctr_index = ap->cta_index; 796 arp->ctr_nelems = ap->cta_nelems; 797 } 798 799 static const char * 800 ctf_strptr(linker_ctf_t *lc, int name) 801 { 802 const ctf_header_t *hp = (const ctf_header_t *) lc->ctftab; 803 const char *strp = ""; 804 805 if (name < 0 || name >= hp->cth_strlen) 806 return(strp); 807 808 strp = (const char *)(lc->ctftab + hp->cth_stroff + name + sizeof(ctf_header_t)); 809 810 return (strp); 811 } 812 813 static void 814 ctf_decl_push(ctf_decl_t *cd, linker_ctf_t *lc, ctf_id_t type) 815 { 816 ctf_decl_node_t *cdp; 817 ctf_decl_prec_t prec; 818 uint_t kind, n = 1; 819 int is_qual = 0; 820 821 const ctf_type_t *tp; 822 ctf_arinfo_t ar; 823 824 if ((tp = ctf_lookup_by_id(lc, type)) == NULL) { 825 cd->cd_err = ENOENT; 826 return; 827 } 828 829 switch (kind = CTF_INFO_KIND(tp->ctt_info)) { 830 case CTF_K_ARRAY: 831 fbt_array_info(lc, type, &ar); 832 ctf_decl_push(cd, lc, ar.ctr_contents); 833 n = ar.ctr_nelems; 834 prec = CTF_PREC_ARRAY; 835 break; 836 837 case CTF_K_TYPEDEF: 838 if (ctf_strptr(lc, tp->ctt_name)[0] == '\0') { 839 ctf_decl_push(cd, lc, tp->ctt_type); 840 return; 841 } 842 prec = CTF_PREC_BASE; 843 break; 844 845 case CTF_K_FUNCTION: 846 ctf_decl_push(cd, lc, tp->ctt_type); 847 prec = CTF_PREC_FUNCTION; 848 break; 849 850 case CTF_K_POINTER: 851 ctf_decl_push(cd, lc, tp->ctt_type); 852 prec = CTF_PREC_POINTER; 853 break; 854 855 case CTF_K_VOLATILE: 856 case CTF_K_CONST: 857 case CTF_K_RESTRICT: 858 ctf_decl_push(cd, lc, tp->ctt_type); 859 prec = cd->cd_qualp; 860 is_qual++; 861 break; 862 863 default: 864 prec = CTF_PREC_BASE; 865 } 866 867 cdp = malloc(sizeof(*cdp), M_FBT, M_WAITOK); 868 cdp->cd_type = type; 869 cdp->cd_kind = kind; 870 cdp->cd_n = n; 871 872 if (ctf_list_next(&cd->cd_nodes[prec]) == NULL) 873 cd->cd_order[prec] = cd->cd_ordp++; 874 875 /* 876 * Reset cd_qualp to the highest precedence level that we've seen so 877 * far that can be qualified (CTF_PREC_BASE or CTF_PREC_POINTER). 878 */ 879 if (prec > cd->cd_qualp && prec < CTF_PREC_ARRAY) 880 cd->cd_qualp = prec; 881 882 /* 883 * C array declarators are ordered inside out so prepend them. Also by 884 * convention qualifiers of base types precede the type specifier (e.g. 885 * const int vs. int const) even though the two forms are equivalent. 886 */ 887 if (kind == CTF_K_ARRAY || (is_qual && prec == CTF_PREC_BASE)) 888 ctf_list_prepend(&cd->cd_nodes[prec], cdp); 889 else 890 ctf_list_append(&cd->cd_nodes[prec], cdp); 891 } 892 893 static void 894 ctf_decl_sprintf(ctf_decl_t *cd, const char *format, ...) 895 { 896 size_t len = (size_t)(cd->cd_end - cd->cd_ptr); 897 va_list ap; 898 size_t n; 899 900 va_start(ap, format); 901 n = vsnprintf(cd->cd_ptr, len, format, ap); 902 va_end(ap); 903 904 cd->cd_ptr += MIN(n, len); 905 cd->cd_len += n; 906 } 907 908 static ssize_t 909 fbt_type_name(linker_ctf_t *lc, ctf_id_t type, char *buf, size_t len) 910 { 911 ctf_decl_t cd; 912 ctf_decl_node_t *cdp; 913 ctf_decl_prec_t prec, lp, rp; 914 int ptr, arr; 915 uint_t k; 916 917 if (lc == NULL && type == CTF_ERR) 918 return (-1); /* simplify caller code by permitting CTF_ERR */ 919 920 ctf_decl_init(&cd, buf, len); 921 ctf_decl_push(&cd, lc, type); 922 923 if (cd.cd_err != 0) { 924 ctf_decl_fini(&cd); 925 return (-1); 926 } 927 928 /* 929 * If the type graph's order conflicts with lexical precedence order 930 * for pointers or arrays, then we need to surround the declarations at 931 * the corresponding lexical precedence with parentheses. This can 932 * result in either a parenthesized pointer (*) as in int (*)() or 933 * int (*)[], or in a parenthesized pointer and array as in int (*[])(). 934 */ 935 ptr = cd.cd_order[CTF_PREC_POINTER] > CTF_PREC_POINTER; 936 arr = cd.cd_order[CTF_PREC_ARRAY] > CTF_PREC_ARRAY; 937 938 rp = arr ? CTF_PREC_ARRAY : ptr ? CTF_PREC_POINTER : -1; 939 lp = ptr ? CTF_PREC_POINTER : arr ? CTF_PREC_ARRAY : -1; 940 941 k = CTF_K_POINTER; /* avoid leading whitespace (see below) */ 942 943 for (prec = CTF_PREC_BASE; prec < CTF_PREC_MAX; prec++) { 944 for (cdp = ctf_list_next(&cd.cd_nodes[prec]); 945 cdp != NULL; cdp = ctf_list_next(cdp)) { 946 947 const ctf_type_t *tp = 948 ctf_lookup_by_id(lc, cdp->cd_type); 949 const char *name = ctf_strptr(lc, tp->ctt_name); 950 951 if (k != CTF_K_POINTER && k != CTF_K_ARRAY) 952 ctf_decl_sprintf(&cd, " "); 953 954 if (lp == prec) { 955 ctf_decl_sprintf(&cd, "("); 956 lp = -1; 957 } 958 959 switch (cdp->cd_kind) { 960 case CTF_K_INTEGER: 961 case CTF_K_FLOAT: 962 case CTF_K_TYPEDEF: 963 ctf_decl_sprintf(&cd, "%s", name); 964 break; 965 case CTF_K_POINTER: 966 ctf_decl_sprintf(&cd, "*"); 967 break; 968 case CTF_K_ARRAY: 969 ctf_decl_sprintf(&cd, "[%u]", cdp->cd_n); 970 break; 971 case CTF_K_FUNCTION: 972 ctf_decl_sprintf(&cd, "()"); 973 break; 974 case CTF_K_STRUCT: 975 case CTF_K_FORWARD: 976 ctf_decl_sprintf(&cd, "struct %s", name); 977 break; 978 case CTF_K_UNION: 979 ctf_decl_sprintf(&cd, "union %s", name); 980 break; 981 case CTF_K_ENUM: 982 ctf_decl_sprintf(&cd, "enum %s", name); 983 break; 984 case CTF_K_VOLATILE: 985 ctf_decl_sprintf(&cd, "volatile"); 986 break; 987 case CTF_K_CONST: 988 ctf_decl_sprintf(&cd, "const"); 989 break; 990 case CTF_K_RESTRICT: 991 ctf_decl_sprintf(&cd, "restrict"); 992 break; 993 } 994 995 k = cdp->cd_kind; 996 } 997 998 if (rp == prec) 999 ctf_decl_sprintf(&cd, ")"); 1000 } 1001 1002 ctf_decl_fini(&cd); 1003 return (cd.cd_len); 1004 } 1005 1006 static void 1007 fbt_getargdesc(void *arg __unused, dtrace_id_t id __unused, void *parg, dtrace_argdesc_t *desc) 1008 { 1009 const ushort_t *dp; 1010 fbt_probe_t *fbt = parg; 1011 linker_ctf_t lc; 1012 modctl_t *ctl = fbt->fbtp_ctl; 1013 int ndx = desc->dtargd_ndx; 1014 int symindx = fbt->fbtp_symindx; 1015 uint32_t *ctfoff; 1016 uint32_t offset; 1017 ushort_t info, kind, n; 1018 1019 if (fbt->fbtp_roffset != 0 && desc->dtargd_ndx == 0) { 1020 (void) strcpy(desc->dtargd_native, "int"); 1021 return; 1022 } 1023 1024 desc->dtargd_ndx = DTRACE_ARGNONE; 1025 1026 /* Get a pointer to the CTF data and it's length. */ 1027 if (linker_ctf_get(ctl, &lc) != 0) 1028 /* No CTF data? Something wrong? *shrug* */ 1029 return; 1030 1031 /* Check if this module hasn't been initialised yet. */ 1032 if (*lc.ctfoffp == NULL) { 1033 /* 1034 * Initialise the CTF object and function symindx to 1035 * byte offset array. 1036 */ 1037 if (fbt_ctfoff_init(ctl, &lc) != 0) 1038 return; 1039 1040 /* Initialise the CTF type to byte offset array. */ 1041 if (fbt_typoff_init(&lc) != 0) 1042 return; 1043 } 1044 1045 ctfoff = *lc.ctfoffp; 1046 1047 if (ctfoff == NULL || *lc.typoffp == NULL) 1048 return; 1049 1050 /* Check if the symbol index is out of range. */ 1051 if (symindx >= lc.nsym) 1052 return; 1053 1054 /* Check if the symbol isn't cross-referenced. */ 1055 if ((offset = ctfoff[symindx]) == 0xffffffff) 1056 return; 1057 1058 dp = (const ushort_t *)(lc.ctftab + offset + sizeof(ctf_header_t)); 1059 1060 info = *dp++; 1061 kind = CTF_INFO_KIND(info); 1062 n = CTF_INFO_VLEN(info); 1063 1064 if (kind == CTF_K_UNKNOWN && n == 0) { 1065 printf("%s(%d): Unknown function!\n",__func__,__LINE__); 1066 return; 1067 } 1068 1069 if (kind != CTF_K_FUNCTION) { 1070 printf("%s(%d): Expected a function!\n",__func__,__LINE__); 1071 return; 1072 } 1073 1074 if (fbt->fbtp_roffset != 0) { 1075 /* Only return type is available for args[1] in return probe. */ 1076 if (ndx > 1) 1077 return; 1078 ASSERT(ndx == 1); 1079 } else { 1080 /* Check if the requested argument doesn't exist. */ 1081 if (ndx >= n) 1082 return; 1083 1084 /* Skip the return type and arguments up to the one requested. */ 1085 dp += ndx + 1; 1086 } 1087 1088 if (fbt_type_name(&lc, *dp, desc->dtargd_native, sizeof(desc->dtargd_native)) > 0) 1089 desc->dtargd_ndx = ndx; 1090 1091 return; 1092 } 1093 1094 static int 1095 fbt_linker_file_cb(linker_file_t lf, void *arg) 1096 { 1097 1098 fbt_provide_module(arg, lf); 1099 1100 return (0); 1101 } 1102 1103 static void 1104 fbt_load(void *dummy) 1105 { 1106 /* Create the /dev/dtrace/fbt entry. */ 1107 fbt_cdev = make_dev(&fbt_cdevsw, 0, UID_ROOT, GID_WHEEL, 0600, 1108 "dtrace/fbt"); 1109 1110 /* Default the probe table size if not specified. */ 1111 if (fbt_probetab_size == 0) 1112 fbt_probetab_size = FBT_PROBETAB_SIZE; 1113 1114 /* Choose the hash mask for the probe table. */ 1115 fbt_probetab_mask = fbt_probetab_size - 1; 1116 1117 /* Allocate memory for the probe table. */ 1118 fbt_probetab = 1119 malloc(fbt_probetab_size * sizeof (fbt_probe_t *), M_FBT, M_WAITOK | M_ZERO); 1120 1121 dtrace_doubletrap_func = fbt_doubletrap; 1122 dtrace_invop_add(fbt_invop); 1123 1124 if (dtrace_register("fbt", &fbt_attr, DTRACE_PRIV_USER, 1125 NULL, &fbt_pops, NULL, &fbt_id) != 0) 1126 return; 1127 1128 /* Create probes for the kernel and already-loaded modules. */ 1129 linker_file_foreach(fbt_linker_file_cb, NULL); 1130 } 1131 1132 static int 1133 fbt_unload() 1134 { 1135 int error = 0; 1136 1137 /* De-register the invalid opcode handler. */ 1138 dtrace_invop_remove(fbt_invop); 1139 1140 dtrace_doubletrap_func = NULL; 1141 1142 /* De-register this DTrace provider. */ 1143 if ((error = dtrace_unregister(fbt_id)) != 0) 1144 return (error); 1145 1146 /* Free the probe table. */ 1147 free(fbt_probetab, M_FBT); 1148 fbt_probetab = NULL; 1149 fbt_probetab_mask = 0; 1150 1151 destroy_dev(fbt_cdev); 1152 1153 return (error); 1154 } 1155 1156 static int 1157 fbt_modevent(module_t mod __unused, int type, void *data __unused) 1158 { 1159 int error = 0; 1160 1161 switch (type) { 1162 case MOD_LOAD: 1163 break; 1164 1165 case MOD_UNLOAD: 1166 break; 1167 1168 case MOD_SHUTDOWN: 1169 break; 1170 1171 default: 1172 error = EOPNOTSUPP; 1173 break; 1174 1175 } 1176 1177 return (error); 1178 } 1179 1180 static int 1181 fbt_open(struct cdev *dev __unused, int oflags __unused, int devtype __unused, struct thread *td __unused) 1182 { 1183 return (0); 1184 } 1185 1186 SYSINIT(fbt_load, SI_SUB_DTRACE_PROVIDER, SI_ORDER_ANY, fbt_load, NULL); 1187 SYSUNINIT(fbt_unload, SI_SUB_DTRACE_PROVIDER, SI_ORDER_ANY, fbt_unload, NULL); 1188 1189 DEV_MODULE(fbt, fbt_modevent, NULL); 1190 MODULE_VERSION(fbt, 1); 1191 MODULE_DEPEND(fbt, dtrace, 1, 1, 1); 1192 MODULE_DEPEND(fbt, opensolaris, 1, 1, 1); 1193