xref: /freebsd/sys/cddl/dev/fbt/fbt.c (revision 094fc1ed0f2627525c7b0342efcbad5be7a8546a)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  *
21  * Portions Copyright 2006-2008 John Birrell jb@freebsd.org
22  *
23  * $FreeBSD$
24  *
25  */
26 
27 /*
28  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
29  * Use is subject to license terms.
30  */
31 
32 #include <sys/cdefs.h>
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/conf.h>
36 #include <sys/cpuvar.h>
37 #include <sys/fcntl.h>
38 #include <sys/filio.h>
39 #include <sys/kdb.h>
40 #include <sys/kernel.h>
41 #include <sys/kmem.h>
42 #include <sys/kthread.h>
43 #include <sys/limits.h>
44 #include <sys/linker.h>
45 #include <sys/lock.h>
46 #include <sys/malloc.h>
47 #include <sys/module.h>
48 #include <sys/mutex.h>
49 #include <sys/pcpu.h>
50 #include <sys/poll.h>
51 #include <sys/proc.h>
52 #include <sys/selinfo.h>
53 #include <sys/smp.h>
54 #include <sys/syscall.h>
55 #include <sys/sysent.h>
56 #include <sys/sysproto.h>
57 #include <sys/uio.h>
58 #include <sys/unistd.h>
59 #include <machine/stdarg.h>
60 
61 #include <sys/dtrace.h>
62 #include <sys/dtrace_bsd.h>
63 
64 #include "fbt.h"
65 
66 MALLOC_DEFINE(M_FBT, "fbt", "Function Boundary Tracing");
67 
68 dtrace_provider_id_t	fbt_id;
69 fbt_probe_t		**fbt_probetab;
70 int			fbt_probetab_mask;
71 
72 static d_open_t	fbt_open;
73 static int	fbt_unload(void);
74 static void	fbt_getargdesc(void *, dtrace_id_t, void *, dtrace_argdesc_t *);
75 static void	fbt_provide_module(void *, modctl_t *);
76 static void	fbt_destroy(void *, dtrace_id_t, void *);
77 static void	fbt_enable(void *, dtrace_id_t, void *);
78 static void	fbt_disable(void *, dtrace_id_t, void *);
79 static void	fbt_load(void *);
80 static void	fbt_suspend(void *, dtrace_id_t, void *);
81 static void	fbt_resume(void *, dtrace_id_t, void *);
82 
83 static struct cdevsw fbt_cdevsw = {
84 	.d_version	= D_VERSION,
85 	.d_open		= fbt_open,
86 	.d_name		= "fbt",
87 };
88 
89 static dtrace_pattr_t fbt_attr = {
90 { DTRACE_STABILITY_EVOLVING, DTRACE_STABILITY_EVOLVING, DTRACE_CLASS_COMMON },
91 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
92 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_ISA },
93 { DTRACE_STABILITY_EVOLVING, DTRACE_STABILITY_EVOLVING, DTRACE_CLASS_COMMON },
94 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_ISA },
95 };
96 
97 static dtrace_pops_t fbt_pops = {
98 	.dtps_provide =		NULL,
99 	.dtps_provide_module =	fbt_provide_module,
100 	.dtps_enable =		fbt_enable,
101 	.dtps_disable =		fbt_disable,
102 	.dtps_suspend =		fbt_suspend,
103 	.dtps_resume =		fbt_resume,
104 	.dtps_getargdesc =	fbt_getargdesc,
105 	.dtps_getargval =	NULL,
106 	.dtps_usermode =	NULL,
107 	.dtps_destroy =		fbt_destroy
108 };
109 
110 static struct cdev		*fbt_cdev;
111 static int			fbt_probetab_size;
112 static int			fbt_verbose = 0;
113 
114 int
115 fbt_excluded(const char *name)
116 {
117 
118 	if (strncmp(name, "dtrace_", 7) == 0 &&
119 	    strncmp(name, "dtrace_safe_", 12) != 0) {
120 		/*
121 		 * Anything beginning with "dtrace_" may be called
122 		 * from probe context unless it explicitly indicates
123 		 * that it won't be called from probe context by
124 		 * using the prefix "dtrace_safe_".
125 		 */
126 		return (1);
127 	}
128 
129 	/*
130 	 * Lock owner methods may be called from probe context.
131 	 */
132 	if (strcmp(name, "owner_mtx") == 0 ||
133 	    strcmp(name, "owner_rm") == 0 ||
134 	    strcmp(name, "owner_rw") == 0 ||
135 	    strcmp(name, "owner_sx") == 0)
136 		return (1);
137 
138 	/*
139 	 * When DTrace is built into the kernel we need to exclude
140 	 * the FBT functions from instrumentation.
141 	 */
142 #ifndef _KLD_MODULE
143 	if (strncmp(name, "fbt_", 4) == 0)
144 		return (1);
145 #endif
146 
147 	return (0);
148 }
149 
150 static void
151 fbt_doubletrap(void)
152 {
153 	fbt_probe_t *fbt;
154 	int i;
155 
156 	for (i = 0; i < fbt_probetab_size; i++) {
157 		fbt = fbt_probetab[i];
158 
159 		for (; fbt != NULL; fbt = fbt->fbtp_next)
160 			fbt_patch_tracepoint(fbt, fbt->fbtp_savedval);
161 	}
162 }
163 
164 static void
165 fbt_provide_module(void *arg, modctl_t *lf)
166 {
167 	char modname[MAXPATHLEN];
168 	int i;
169 	size_t len;
170 
171 	strlcpy(modname, lf->filename, sizeof(modname));
172 	len = strlen(modname);
173 	if (len > 3 && strcmp(modname + len - 3, ".ko") == 0)
174 		modname[len - 3] = '\0';
175 
176 	/*
177 	 * Employees of dtrace and their families are ineligible.  Void
178 	 * where prohibited.
179 	 */
180 	if (strcmp(modname, "dtrace") == 0)
181 		return;
182 
183 	/*
184 	 * To register with DTrace, a module must list 'dtrace' as a
185 	 * dependency in order for the kernel linker to resolve
186 	 * symbols like dtrace_register(). All modules with such a
187 	 * dependency are ineligible for FBT tracing.
188 	 */
189 	for (i = 0; i < lf->ndeps; i++)
190 		if (strncmp(lf->deps[i]->filename, "dtrace", 6) == 0)
191 			return;
192 
193 	if (lf->fbt_nentries) {
194 		/*
195 		 * This module has some FBT entries allocated; we're afraid
196 		 * to screw with it.
197 		 */
198 		return;
199 	}
200 
201 	/*
202 	 * List the functions in the module and the symbol values.
203 	 */
204 	(void) linker_file_function_listall(lf, fbt_provide_module_function, modname);
205 }
206 
207 static void
208 fbt_destroy(void *arg, dtrace_id_t id, void *parg)
209 {
210 	fbt_probe_t *fbt = parg, *next, *hash, *last;
211 	modctl_t *ctl;
212 	int ndx;
213 
214 	do {
215 		ctl = fbt->fbtp_ctl;
216 
217 		ctl->fbt_nentries--;
218 
219 		/*
220 		 * Now we need to remove this probe from the fbt_probetab.
221 		 */
222 		ndx = FBT_ADDR2NDX(fbt->fbtp_patchpoint);
223 		last = NULL;
224 		hash = fbt_probetab[ndx];
225 
226 		while (hash != fbt) {
227 			ASSERT(hash != NULL);
228 			last = hash;
229 			hash = hash->fbtp_hashnext;
230 		}
231 
232 		if (last != NULL) {
233 			last->fbtp_hashnext = fbt->fbtp_hashnext;
234 		} else {
235 			fbt_probetab[ndx] = fbt->fbtp_hashnext;
236 		}
237 
238 		next = fbt->fbtp_next;
239 		free(fbt, M_FBT);
240 
241 		fbt = next;
242 	} while (fbt != NULL);
243 }
244 
245 static void
246 fbt_enable(void *arg, dtrace_id_t id, void *parg)
247 {
248 	fbt_probe_t *fbt = parg;
249 	modctl_t *ctl = fbt->fbtp_ctl;
250 
251 	ctl->nenabled++;
252 
253 	/*
254 	 * Now check that our modctl has the expected load count.  If it
255 	 * doesn't, this module must have been unloaded and reloaded -- and
256 	 * we're not going to touch it.
257 	 */
258 	if (ctl->loadcnt != fbt->fbtp_loadcnt) {
259 		if (fbt_verbose) {
260 			printf("fbt is failing for probe %s "
261 			    "(module %s reloaded)",
262 			    fbt->fbtp_name, ctl->filename);
263 		}
264 
265 		return;
266 	}
267 
268 	for (; fbt != NULL; fbt = fbt->fbtp_next)
269 		fbt_patch_tracepoint(fbt, fbt->fbtp_patchval);
270 }
271 
272 static void
273 fbt_disable(void *arg, dtrace_id_t id, void *parg)
274 {
275 	fbt_probe_t *fbt = parg;
276 	modctl_t *ctl = fbt->fbtp_ctl;
277 
278 	ASSERT(ctl->nenabled > 0);
279 	ctl->nenabled--;
280 
281 	if ((ctl->loadcnt != fbt->fbtp_loadcnt))
282 		return;
283 
284 	for (; fbt != NULL; fbt = fbt->fbtp_next)
285 		fbt_patch_tracepoint(fbt, fbt->fbtp_savedval);
286 }
287 
288 static void
289 fbt_suspend(void *arg, dtrace_id_t id, void *parg)
290 {
291 	fbt_probe_t *fbt = parg;
292 	modctl_t *ctl = fbt->fbtp_ctl;
293 
294 	ASSERT(ctl->nenabled > 0);
295 
296 	if ((ctl->loadcnt != fbt->fbtp_loadcnt))
297 		return;
298 
299 	for (; fbt != NULL; fbt = fbt->fbtp_next)
300 		fbt_patch_tracepoint(fbt, fbt->fbtp_savedval);
301 }
302 
303 static void
304 fbt_resume(void *arg, dtrace_id_t id, void *parg)
305 {
306 	fbt_probe_t *fbt = parg;
307 	modctl_t *ctl = fbt->fbtp_ctl;
308 
309 	ASSERT(ctl->nenabled > 0);
310 
311 	if ((ctl->loadcnt != fbt->fbtp_loadcnt))
312 		return;
313 
314 	for (; fbt != NULL; fbt = fbt->fbtp_next)
315 		fbt_patch_tracepoint(fbt, fbt->fbtp_patchval);
316 }
317 
318 static int
319 fbt_ctfoff_init(modctl_t *lf, linker_ctf_t *lc)
320 {
321 	const Elf_Sym *symp = lc->symtab;;
322 	const ctf_header_t *hp = (const ctf_header_t *) lc->ctftab;
323 	const uint8_t *ctfdata = lc->ctftab + sizeof(ctf_header_t);
324 	int i;
325 	uint32_t *ctfoff;
326 	uint32_t objtoff = hp->cth_objtoff;
327 	uint32_t funcoff = hp->cth_funcoff;
328 	ushort_t info;
329 	ushort_t vlen;
330 
331 	/* Sanity check. */
332 	if (hp->cth_magic != CTF_MAGIC) {
333 		printf("Bad magic value in CTF data of '%s'\n",lf->pathname);
334 		return (EINVAL);
335 	}
336 
337 	if (lc->symtab == NULL) {
338 		printf("No symbol table in '%s'\n",lf->pathname);
339 		return (EINVAL);
340 	}
341 
342 	ctfoff = malloc(sizeof(uint32_t) * lc->nsym, M_LINKER, M_WAITOK);
343 	*lc->ctfoffp = ctfoff;
344 
345 	for (i = 0; i < lc->nsym; i++, ctfoff++, symp++) {
346 		if (symp->st_name == 0 || symp->st_shndx == SHN_UNDEF) {
347 			*ctfoff = 0xffffffff;
348 			continue;
349 		}
350 
351 		switch (ELF_ST_TYPE(symp->st_info)) {
352 		case STT_OBJECT:
353 			if (objtoff >= hp->cth_funcoff ||
354                             (symp->st_shndx == SHN_ABS && symp->st_value == 0)) {
355 				*ctfoff = 0xffffffff;
356                                 break;
357                         }
358 
359                         *ctfoff = objtoff;
360                         objtoff += sizeof (ushort_t);
361 			break;
362 
363 		case STT_FUNC:
364 			if (funcoff >= hp->cth_typeoff) {
365 				*ctfoff = 0xffffffff;
366 				break;
367 			}
368 
369 			*ctfoff = funcoff;
370 
371 			info = *((const ushort_t *)(ctfdata + funcoff));
372 			vlen = CTF_INFO_VLEN(info);
373 
374 			/*
375 			 * If we encounter a zero pad at the end, just skip it.
376 			 * Otherwise skip over the function and its return type
377 			 * (+2) and the argument list (vlen).
378 			 */
379 			if (CTF_INFO_KIND(info) == CTF_K_UNKNOWN && vlen == 0)
380 				funcoff += sizeof (ushort_t); /* skip pad */
381 			else
382 				funcoff += sizeof (ushort_t) * (vlen + 2);
383 			break;
384 
385 		default:
386 			*ctfoff = 0xffffffff;
387 			break;
388 		}
389 	}
390 
391 	return (0);
392 }
393 
394 static ssize_t
395 fbt_get_ctt_size(uint8_t version, const ctf_type_t *tp, ssize_t *sizep,
396     ssize_t *incrementp)
397 {
398 	ssize_t size, increment;
399 
400 	if (version > CTF_VERSION_1 &&
401 	    tp->ctt_size == CTF_LSIZE_SENT) {
402 		size = CTF_TYPE_LSIZE(tp);
403 		increment = sizeof (ctf_type_t);
404 	} else {
405 		size = tp->ctt_size;
406 		increment = sizeof (ctf_stype_t);
407 	}
408 
409 	if (sizep)
410 		*sizep = size;
411 	if (incrementp)
412 		*incrementp = increment;
413 
414 	return (size);
415 }
416 
417 static int
418 fbt_typoff_init(linker_ctf_t *lc)
419 {
420 	const ctf_header_t *hp = (const ctf_header_t *) lc->ctftab;
421 	const ctf_type_t *tbuf;
422 	const ctf_type_t *tend;
423 	const ctf_type_t *tp;
424 	const uint8_t *ctfdata = lc->ctftab + sizeof(ctf_header_t);
425 	int ctf_typemax = 0;
426 	uint32_t *xp;
427 	ulong_t pop[CTF_K_MAX + 1] = { 0 };
428 
429 
430 	/* Sanity check. */
431 	if (hp->cth_magic != CTF_MAGIC)
432 		return (EINVAL);
433 
434 	tbuf = (const ctf_type_t *) (ctfdata + hp->cth_typeoff);
435 	tend = (const ctf_type_t *) (ctfdata + hp->cth_stroff);
436 
437 	int child = hp->cth_parname != 0;
438 
439 	/*
440 	 * We make two passes through the entire type section.  In this first
441 	 * pass, we count the number of each type and the total number of types.
442 	 */
443 	for (tp = tbuf; tp < tend; ctf_typemax++) {
444 		ushort_t kind = CTF_INFO_KIND(tp->ctt_info);
445 		ulong_t vlen = CTF_INFO_VLEN(tp->ctt_info);
446 		ssize_t size, increment;
447 
448 		size_t vbytes;
449 		uint_t n;
450 
451 		(void) fbt_get_ctt_size(hp->cth_version, tp, &size, &increment);
452 
453 		switch (kind) {
454 		case CTF_K_INTEGER:
455 		case CTF_K_FLOAT:
456 			vbytes = sizeof (uint_t);
457 			break;
458 		case CTF_K_ARRAY:
459 			vbytes = sizeof (ctf_array_t);
460 			break;
461 		case CTF_K_FUNCTION:
462 			vbytes = sizeof (ushort_t) * (vlen + (vlen & 1));
463 			break;
464 		case CTF_K_STRUCT:
465 		case CTF_K_UNION:
466 			if (size < CTF_LSTRUCT_THRESH) {
467 				ctf_member_t *mp = (ctf_member_t *)
468 				    ((uintptr_t)tp + increment);
469 
470 				vbytes = sizeof (ctf_member_t) * vlen;
471 				for (n = vlen; n != 0; n--, mp++)
472 					child |= CTF_TYPE_ISCHILD(mp->ctm_type);
473 			} else {
474 				ctf_lmember_t *lmp = (ctf_lmember_t *)
475 				    ((uintptr_t)tp + increment);
476 
477 				vbytes = sizeof (ctf_lmember_t) * vlen;
478 				for (n = vlen; n != 0; n--, lmp++)
479 					child |=
480 					    CTF_TYPE_ISCHILD(lmp->ctlm_type);
481 			}
482 			break;
483 		case CTF_K_ENUM:
484 			vbytes = sizeof (ctf_enum_t) * vlen;
485 			break;
486 		case CTF_K_FORWARD:
487 			/*
488 			 * For forward declarations, ctt_type is the CTF_K_*
489 			 * kind for the tag, so bump that population count too.
490 			 * If ctt_type is unknown, treat the tag as a struct.
491 			 */
492 			if (tp->ctt_type == CTF_K_UNKNOWN ||
493 			    tp->ctt_type >= CTF_K_MAX)
494 				pop[CTF_K_STRUCT]++;
495 			else
496 				pop[tp->ctt_type]++;
497 			/*FALLTHRU*/
498 		case CTF_K_UNKNOWN:
499 			vbytes = 0;
500 			break;
501 		case CTF_K_POINTER:
502 		case CTF_K_TYPEDEF:
503 		case CTF_K_VOLATILE:
504 		case CTF_K_CONST:
505 		case CTF_K_RESTRICT:
506 			child |= CTF_TYPE_ISCHILD(tp->ctt_type);
507 			vbytes = 0;
508 			break;
509 		default:
510 			printf("%s(%d): detected invalid CTF kind -- %u\n", __func__, __LINE__, kind);
511 			return (EIO);
512 		}
513 		tp = (ctf_type_t *)((uintptr_t)tp + increment + vbytes);
514 		pop[kind]++;
515 	}
516 
517 	/* account for a sentinel value below */
518 	ctf_typemax++;
519 	*lc->typlenp = ctf_typemax;
520 
521 	xp = malloc(sizeof(uint32_t) * ctf_typemax, M_LINKER,
522 	    M_ZERO | M_WAITOK);
523 
524 	*lc->typoffp = xp;
525 
526 	/* type id 0 is used as a sentinel value */
527 	*xp++ = 0;
528 
529 	/*
530 	 * In the second pass, fill in the type offset.
531 	 */
532 	for (tp = tbuf; tp < tend; xp++) {
533 		ushort_t kind = CTF_INFO_KIND(tp->ctt_info);
534 		ulong_t vlen = CTF_INFO_VLEN(tp->ctt_info);
535 		ssize_t size, increment;
536 
537 		size_t vbytes;
538 		uint_t n;
539 
540 		(void) fbt_get_ctt_size(hp->cth_version, tp, &size, &increment);
541 
542 		switch (kind) {
543 		case CTF_K_INTEGER:
544 		case CTF_K_FLOAT:
545 			vbytes = sizeof (uint_t);
546 			break;
547 		case CTF_K_ARRAY:
548 			vbytes = sizeof (ctf_array_t);
549 			break;
550 		case CTF_K_FUNCTION:
551 			vbytes = sizeof (ushort_t) * (vlen + (vlen & 1));
552 			break;
553 		case CTF_K_STRUCT:
554 		case CTF_K_UNION:
555 			if (size < CTF_LSTRUCT_THRESH) {
556 				ctf_member_t *mp = (ctf_member_t *)
557 				    ((uintptr_t)tp + increment);
558 
559 				vbytes = sizeof (ctf_member_t) * vlen;
560 				for (n = vlen; n != 0; n--, mp++)
561 					child |= CTF_TYPE_ISCHILD(mp->ctm_type);
562 			} else {
563 				ctf_lmember_t *lmp = (ctf_lmember_t *)
564 				    ((uintptr_t)tp + increment);
565 
566 				vbytes = sizeof (ctf_lmember_t) * vlen;
567 				for (n = vlen; n != 0; n--, lmp++)
568 					child |=
569 					    CTF_TYPE_ISCHILD(lmp->ctlm_type);
570 			}
571 			break;
572 		case CTF_K_ENUM:
573 			vbytes = sizeof (ctf_enum_t) * vlen;
574 			break;
575 		case CTF_K_FORWARD:
576 		case CTF_K_UNKNOWN:
577 			vbytes = 0;
578 			break;
579 		case CTF_K_POINTER:
580 		case CTF_K_TYPEDEF:
581 		case CTF_K_VOLATILE:
582 		case CTF_K_CONST:
583 		case CTF_K_RESTRICT:
584 			vbytes = 0;
585 			break;
586 		default:
587 			printf("%s(%d): detected invalid CTF kind -- %u\n", __func__, __LINE__, kind);
588 			return (EIO);
589 		}
590 		*xp = (uint32_t)((uintptr_t) tp - (uintptr_t) ctfdata);
591 		tp = (ctf_type_t *)((uintptr_t)tp + increment + vbytes);
592 	}
593 
594 	return (0);
595 }
596 
597 /*
598  * CTF Declaration Stack
599  *
600  * In order to implement ctf_type_name(), we must convert a type graph back
601  * into a C type declaration.  Unfortunately, a type graph represents a storage
602  * class ordering of the type whereas a type declaration must obey the C rules
603  * for operator precedence, and the two orderings are frequently in conflict.
604  * For example, consider these CTF type graphs and their C declarations:
605  *
606  * CTF_K_POINTER -> CTF_K_FUNCTION -> CTF_K_INTEGER  : int (*)()
607  * CTF_K_POINTER -> CTF_K_ARRAY -> CTF_K_INTEGER     : int (*)[]
608  *
609  * In each case, parentheses are used to raise operator * to higher lexical
610  * precedence, so the string form of the C declaration cannot be constructed by
611  * walking the type graph links and forming the string from left to right.
612  *
613  * The functions in this file build a set of stacks from the type graph nodes
614  * corresponding to the C operator precedence levels in the appropriate order.
615  * The code in ctf_type_name() can then iterate over the levels and nodes in
616  * lexical precedence order and construct the final C declaration string.
617  */
618 typedef struct ctf_list {
619 	struct ctf_list *l_prev; /* previous pointer or tail pointer */
620 	struct ctf_list *l_next; /* next pointer or head pointer */
621 } ctf_list_t;
622 
623 #define	ctf_list_prev(elem)	((void *)(((ctf_list_t *)(elem))->l_prev))
624 #define	ctf_list_next(elem)	((void *)(((ctf_list_t *)(elem))->l_next))
625 
626 typedef enum {
627 	CTF_PREC_BASE,
628 	CTF_PREC_POINTER,
629 	CTF_PREC_ARRAY,
630 	CTF_PREC_FUNCTION,
631 	CTF_PREC_MAX
632 } ctf_decl_prec_t;
633 
634 typedef struct ctf_decl_node {
635 	ctf_list_t cd_list;			/* linked list pointers */
636 	ctf_id_t cd_type;			/* type identifier */
637 	uint_t cd_kind;				/* type kind */
638 	uint_t cd_n;				/* type dimension if array */
639 } ctf_decl_node_t;
640 
641 typedef struct ctf_decl {
642 	ctf_list_t cd_nodes[CTF_PREC_MAX];	/* declaration node stacks */
643 	int cd_order[CTF_PREC_MAX];		/* storage order of decls */
644 	ctf_decl_prec_t cd_qualp;		/* qualifier precision */
645 	ctf_decl_prec_t cd_ordp;		/* ordered precision */
646 	char *cd_buf;				/* buffer for output */
647 	char *cd_ptr;				/* buffer location */
648 	char *cd_end;				/* buffer limit */
649 	size_t cd_len;				/* buffer space required */
650 	int cd_err;				/* saved error value */
651 } ctf_decl_t;
652 
653 /*
654  * Simple doubly-linked list append routine.  This implementation assumes that
655  * each list element contains an embedded ctf_list_t as the first member.
656  * An additional ctf_list_t is used to store the head (l_next) and tail
657  * (l_prev) pointers.  The current head and tail list elements have their
658  * previous and next pointers set to NULL, respectively.
659  */
660 static void
661 ctf_list_append(ctf_list_t *lp, void *new)
662 {
663 	ctf_list_t *p = lp->l_prev;	/* p = tail list element */
664 	ctf_list_t *q = new;		/* q = new list element */
665 
666 	lp->l_prev = q;
667 	q->l_prev = p;
668 	q->l_next = NULL;
669 
670 	if (p != NULL)
671 		p->l_next = q;
672 	else
673 		lp->l_next = q;
674 }
675 
676 /*
677  * Prepend the specified existing element to the given ctf_list_t.  The
678  * existing pointer should be pointing at a struct with embedded ctf_list_t.
679  */
680 static void
681 ctf_list_prepend(ctf_list_t *lp, void *new)
682 {
683 	ctf_list_t *p = new;		/* p = new list element */
684 	ctf_list_t *q = lp->l_next;	/* q = head list element */
685 
686 	lp->l_next = p;
687 	p->l_prev = NULL;
688 	p->l_next = q;
689 
690 	if (q != NULL)
691 		q->l_prev = p;
692 	else
693 		lp->l_prev = p;
694 }
695 
696 static void
697 ctf_decl_init(ctf_decl_t *cd, char *buf, size_t len)
698 {
699 	int i;
700 
701 	bzero(cd, sizeof (ctf_decl_t));
702 
703 	for (i = CTF_PREC_BASE; i < CTF_PREC_MAX; i++)
704 		cd->cd_order[i] = CTF_PREC_BASE - 1;
705 
706 	cd->cd_qualp = CTF_PREC_BASE;
707 	cd->cd_ordp = CTF_PREC_BASE;
708 
709 	cd->cd_buf = buf;
710 	cd->cd_ptr = buf;
711 	cd->cd_end = buf + len;
712 }
713 
714 static void
715 ctf_decl_fini(ctf_decl_t *cd)
716 {
717 	ctf_decl_node_t *cdp, *ndp;
718 	int i;
719 
720 	for (i = CTF_PREC_BASE; i < CTF_PREC_MAX; i++) {
721 		for (cdp = ctf_list_next(&cd->cd_nodes[i]);
722 		    cdp != NULL; cdp = ndp) {
723 			ndp = ctf_list_next(cdp);
724 			free(cdp, M_FBT);
725 		}
726 	}
727 }
728 
729 static const ctf_type_t *
730 ctf_lookup_by_id(linker_ctf_t *lc, ctf_id_t type)
731 {
732 	const ctf_type_t *tp;
733 	uint32_t offset;
734 	uint32_t *typoff = *lc->typoffp;
735 
736 	if (type >= *lc->typlenp) {
737 		printf("%s(%d): type %d exceeds max %ld\n",__func__,__LINE__,(int) type,*lc->typlenp);
738 		return(NULL);
739 	}
740 
741 	/* Check if the type isn't cross-referenced. */
742 	if ((offset = typoff[type]) == 0) {
743 		printf("%s(%d): type %d isn't cross referenced\n",__func__,__LINE__, (int) type);
744 		return(NULL);
745 	}
746 
747 	tp = (const ctf_type_t *)(lc->ctftab + offset + sizeof(ctf_header_t));
748 
749 	return (tp);
750 }
751 
752 static void
753 fbt_array_info(linker_ctf_t *lc, ctf_id_t type, ctf_arinfo_t *arp)
754 {
755 	const ctf_header_t *hp = (const ctf_header_t *) lc->ctftab;
756 	const ctf_type_t *tp;
757 	const ctf_array_t *ap;
758 	ssize_t increment;
759 
760 	bzero(arp, sizeof(*arp));
761 
762 	if ((tp = ctf_lookup_by_id(lc, type)) == NULL)
763 		return;
764 
765 	if (CTF_INFO_KIND(tp->ctt_info) != CTF_K_ARRAY)
766 		return;
767 
768 	(void) fbt_get_ctt_size(hp->cth_version, tp, NULL, &increment);
769 
770 	ap = (const ctf_array_t *)((uintptr_t)tp + increment);
771 	arp->ctr_contents = ap->cta_contents;
772 	arp->ctr_index = ap->cta_index;
773 	arp->ctr_nelems = ap->cta_nelems;
774 }
775 
776 static const char *
777 ctf_strptr(linker_ctf_t *lc, int name)
778 {
779 	const ctf_header_t *hp = (const ctf_header_t *) lc->ctftab;;
780 	const char *strp = "";
781 
782 	if (name < 0 || name >= hp->cth_strlen)
783 		return(strp);
784 
785 	strp = (const char *)(lc->ctftab + hp->cth_stroff + name + sizeof(ctf_header_t));
786 
787 	return (strp);
788 }
789 
790 static void
791 ctf_decl_push(ctf_decl_t *cd, linker_ctf_t *lc, ctf_id_t type)
792 {
793 	ctf_decl_node_t *cdp;
794 	ctf_decl_prec_t prec;
795 	uint_t kind, n = 1;
796 	int is_qual = 0;
797 
798 	const ctf_type_t *tp;
799 	ctf_arinfo_t ar;
800 
801 	if ((tp = ctf_lookup_by_id(lc, type)) == NULL) {
802 		cd->cd_err = ENOENT;
803 		return;
804 	}
805 
806 	switch (kind = CTF_INFO_KIND(tp->ctt_info)) {
807 	case CTF_K_ARRAY:
808 		fbt_array_info(lc, type, &ar);
809 		ctf_decl_push(cd, lc, ar.ctr_contents);
810 		n = ar.ctr_nelems;
811 		prec = CTF_PREC_ARRAY;
812 		break;
813 
814 	case CTF_K_TYPEDEF:
815 		if (ctf_strptr(lc, tp->ctt_name)[0] == '\0') {
816 			ctf_decl_push(cd, lc, tp->ctt_type);
817 			return;
818 		}
819 		prec = CTF_PREC_BASE;
820 		break;
821 
822 	case CTF_K_FUNCTION:
823 		ctf_decl_push(cd, lc, tp->ctt_type);
824 		prec = CTF_PREC_FUNCTION;
825 		break;
826 
827 	case CTF_K_POINTER:
828 		ctf_decl_push(cd, lc, tp->ctt_type);
829 		prec = CTF_PREC_POINTER;
830 		break;
831 
832 	case CTF_K_VOLATILE:
833 	case CTF_K_CONST:
834 	case CTF_K_RESTRICT:
835 		ctf_decl_push(cd, lc, tp->ctt_type);
836 		prec = cd->cd_qualp;
837 		is_qual++;
838 		break;
839 
840 	default:
841 		prec = CTF_PREC_BASE;
842 	}
843 
844 	cdp = malloc(sizeof(*cdp), M_FBT, M_WAITOK);
845 	cdp->cd_type = type;
846 	cdp->cd_kind = kind;
847 	cdp->cd_n = n;
848 
849 	if (ctf_list_next(&cd->cd_nodes[prec]) == NULL)
850 		cd->cd_order[prec] = cd->cd_ordp++;
851 
852 	/*
853 	 * Reset cd_qualp to the highest precedence level that we've seen so
854 	 * far that can be qualified (CTF_PREC_BASE or CTF_PREC_POINTER).
855 	 */
856 	if (prec > cd->cd_qualp && prec < CTF_PREC_ARRAY)
857 		cd->cd_qualp = prec;
858 
859 	/*
860 	 * C array declarators are ordered inside out so prepend them.  Also by
861 	 * convention qualifiers of base types precede the type specifier (e.g.
862 	 * const int vs. int const) even though the two forms are equivalent.
863 	 */
864 	if (kind == CTF_K_ARRAY || (is_qual && prec == CTF_PREC_BASE))
865 		ctf_list_prepend(&cd->cd_nodes[prec], cdp);
866 	else
867 		ctf_list_append(&cd->cd_nodes[prec], cdp);
868 }
869 
870 static void
871 ctf_decl_sprintf(ctf_decl_t *cd, const char *format, ...)
872 {
873 	size_t len = (size_t)(cd->cd_end - cd->cd_ptr);
874 	va_list ap;
875 	size_t n;
876 
877 	va_start(ap, format);
878 	n = vsnprintf(cd->cd_ptr, len, format, ap);
879 	va_end(ap);
880 
881 	cd->cd_ptr += MIN(n, len);
882 	cd->cd_len += n;
883 }
884 
885 static ssize_t
886 fbt_type_name(linker_ctf_t *lc, ctf_id_t type, char *buf, size_t len)
887 {
888 	ctf_decl_t cd;
889 	ctf_decl_node_t *cdp;
890 	ctf_decl_prec_t prec, lp, rp;
891 	int ptr, arr;
892 	uint_t k;
893 
894 	if (lc == NULL && type == CTF_ERR)
895 		return (-1); /* simplify caller code by permitting CTF_ERR */
896 
897 	ctf_decl_init(&cd, buf, len);
898 	ctf_decl_push(&cd, lc, type);
899 
900 	if (cd.cd_err != 0) {
901 		ctf_decl_fini(&cd);
902 		return (-1);
903 	}
904 
905 	/*
906 	 * If the type graph's order conflicts with lexical precedence order
907 	 * for pointers or arrays, then we need to surround the declarations at
908 	 * the corresponding lexical precedence with parentheses.  This can
909 	 * result in either a parenthesized pointer (*) as in int (*)() or
910 	 * int (*)[], or in a parenthesized pointer and array as in int (*[])().
911 	 */
912 	ptr = cd.cd_order[CTF_PREC_POINTER] > CTF_PREC_POINTER;
913 	arr = cd.cd_order[CTF_PREC_ARRAY] > CTF_PREC_ARRAY;
914 
915 	rp = arr ? CTF_PREC_ARRAY : ptr ? CTF_PREC_POINTER : -1;
916 	lp = ptr ? CTF_PREC_POINTER : arr ? CTF_PREC_ARRAY : -1;
917 
918 	k = CTF_K_POINTER; /* avoid leading whitespace (see below) */
919 
920 	for (prec = CTF_PREC_BASE; prec < CTF_PREC_MAX; prec++) {
921 		for (cdp = ctf_list_next(&cd.cd_nodes[prec]);
922 		    cdp != NULL; cdp = ctf_list_next(cdp)) {
923 
924 			const ctf_type_t *tp =
925 			    ctf_lookup_by_id(lc, cdp->cd_type);
926 			const char *name = ctf_strptr(lc, tp->ctt_name);
927 
928 			if (k != CTF_K_POINTER && k != CTF_K_ARRAY)
929 				ctf_decl_sprintf(&cd, " ");
930 
931 			if (lp == prec) {
932 				ctf_decl_sprintf(&cd, "(");
933 				lp = -1;
934 			}
935 
936 			switch (cdp->cd_kind) {
937 			case CTF_K_INTEGER:
938 			case CTF_K_FLOAT:
939 			case CTF_K_TYPEDEF:
940 				ctf_decl_sprintf(&cd, "%s", name);
941 				break;
942 			case CTF_K_POINTER:
943 				ctf_decl_sprintf(&cd, "*");
944 				break;
945 			case CTF_K_ARRAY:
946 				ctf_decl_sprintf(&cd, "[%u]", cdp->cd_n);
947 				break;
948 			case CTF_K_FUNCTION:
949 				ctf_decl_sprintf(&cd, "()");
950 				break;
951 			case CTF_K_STRUCT:
952 			case CTF_K_FORWARD:
953 				ctf_decl_sprintf(&cd, "struct %s", name);
954 				break;
955 			case CTF_K_UNION:
956 				ctf_decl_sprintf(&cd, "union %s", name);
957 				break;
958 			case CTF_K_ENUM:
959 				ctf_decl_sprintf(&cd, "enum %s", name);
960 				break;
961 			case CTF_K_VOLATILE:
962 				ctf_decl_sprintf(&cd, "volatile");
963 				break;
964 			case CTF_K_CONST:
965 				ctf_decl_sprintf(&cd, "const");
966 				break;
967 			case CTF_K_RESTRICT:
968 				ctf_decl_sprintf(&cd, "restrict");
969 				break;
970 			}
971 
972 			k = cdp->cd_kind;
973 		}
974 
975 		if (rp == prec)
976 			ctf_decl_sprintf(&cd, ")");
977 	}
978 
979 	ctf_decl_fini(&cd);
980 	return (cd.cd_len);
981 }
982 
983 static void
984 fbt_getargdesc(void *arg __unused, dtrace_id_t id __unused, void *parg, dtrace_argdesc_t *desc)
985 {
986 	const ushort_t *dp;
987 	fbt_probe_t *fbt = parg;
988 	linker_ctf_t lc;
989 	modctl_t *ctl = fbt->fbtp_ctl;
990 	int ndx = desc->dtargd_ndx;
991 	int symindx = fbt->fbtp_symindx;
992 	uint32_t *ctfoff;
993 	uint32_t offset;
994 	ushort_t info, kind, n;
995 
996 	if (fbt->fbtp_roffset != 0 && desc->dtargd_ndx == 0) {
997 		(void) strcpy(desc->dtargd_native, "int");
998 		return;
999 	}
1000 
1001 	desc->dtargd_ndx = DTRACE_ARGNONE;
1002 
1003 	/* Get a pointer to the CTF data and it's length. */
1004 	if (linker_ctf_get(ctl, &lc) != 0)
1005 		/* No CTF data? Something wrong? *shrug* */
1006 		return;
1007 
1008 	/* Check if this module hasn't been initialised yet. */
1009 	if (*lc.ctfoffp == NULL) {
1010 		/*
1011 		 * Initialise the CTF object and function symindx to
1012 		 * byte offset array.
1013 		 */
1014 		if (fbt_ctfoff_init(ctl, &lc) != 0)
1015 			return;
1016 
1017 		/* Initialise the CTF type to byte offset array. */
1018 		if (fbt_typoff_init(&lc) != 0)
1019 			return;
1020 	}
1021 
1022 	ctfoff = *lc.ctfoffp;
1023 
1024 	if (ctfoff == NULL || *lc.typoffp == NULL)
1025 		return;
1026 
1027 	/* Check if the symbol index is out of range. */
1028 	if (symindx >= lc.nsym)
1029 		return;
1030 
1031 	/* Check if the symbol isn't cross-referenced. */
1032 	if ((offset = ctfoff[symindx]) == 0xffffffff)
1033 		return;
1034 
1035 	dp = (const ushort_t *)(lc.ctftab + offset + sizeof(ctf_header_t));
1036 
1037 	info = *dp++;
1038 	kind = CTF_INFO_KIND(info);
1039 	n = CTF_INFO_VLEN(info);
1040 
1041 	if (kind == CTF_K_UNKNOWN && n == 0) {
1042 		printf("%s(%d): Unknown function!\n",__func__,__LINE__);
1043 		return;
1044 	}
1045 
1046 	if (kind != CTF_K_FUNCTION) {
1047 		printf("%s(%d): Expected a function!\n",__func__,__LINE__);
1048 		return;
1049 	}
1050 
1051 	if (fbt->fbtp_roffset != 0) {
1052 		/* Only return type is available for args[1] in return probe. */
1053 		if (ndx > 1)
1054 			return;
1055 		ASSERT(ndx == 1);
1056 	} else {
1057 		/* Check if the requested argument doesn't exist. */
1058 		if (ndx >= n)
1059 			return;
1060 
1061 		/* Skip the return type and arguments up to the one requested. */
1062 		dp += ndx + 1;
1063 	}
1064 
1065 	if (fbt_type_name(&lc, *dp, desc->dtargd_native, sizeof(desc->dtargd_native)) > 0)
1066 		desc->dtargd_ndx = ndx;
1067 
1068 	return;
1069 }
1070 
1071 static int
1072 fbt_linker_file_cb(linker_file_t lf, void *arg)
1073 {
1074 
1075 	fbt_provide_module(arg, lf);
1076 
1077 	return (0);
1078 }
1079 
1080 static void
1081 fbt_load(void *dummy)
1082 {
1083 	/* Create the /dev/dtrace/fbt entry. */
1084 	fbt_cdev = make_dev(&fbt_cdevsw, 0, UID_ROOT, GID_WHEEL, 0600,
1085 	    "dtrace/fbt");
1086 
1087 	/* Default the probe table size if not specified. */
1088 	if (fbt_probetab_size == 0)
1089 		fbt_probetab_size = FBT_PROBETAB_SIZE;
1090 
1091 	/* Choose the hash mask for the probe table. */
1092 	fbt_probetab_mask = fbt_probetab_size - 1;
1093 
1094 	/* Allocate memory for the probe table. */
1095 	fbt_probetab =
1096 	    malloc(fbt_probetab_size * sizeof (fbt_probe_t *), M_FBT, M_WAITOK | M_ZERO);
1097 
1098 	dtrace_doubletrap_func = fbt_doubletrap;
1099 	dtrace_invop_add(fbt_invop);
1100 
1101 	if (dtrace_register("fbt", &fbt_attr, DTRACE_PRIV_USER,
1102 	    NULL, &fbt_pops, NULL, &fbt_id) != 0)
1103 		return;
1104 
1105 	/* Create probes for the kernel and already-loaded modules. */
1106 	linker_file_foreach(fbt_linker_file_cb, NULL);
1107 }
1108 
1109 static int
1110 fbt_unload()
1111 {
1112 	int error = 0;
1113 
1114 	/* De-register the invalid opcode handler. */
1115 	dtrace_invop_remove(fbt_invop);
1116 
1117 	dtrace_doubletrap_func = NULL;
1118 
1119 	/* De-register this DTrace provider. */
1120 	if ((error = dtrace_unregister(fbt_id)) != 0)
1121 		return (error);
1122 
1123 	/* Free the probe table. */
1124 	free(fbt_probetab, M_FBT);
1125 	fbt_probetab = NULL;
1126 	fbt_probetab_mask = 0;
1127 
1128 	destroy_dev(fbt_cdev);
1129 
1130 	return (error);
1131 }
1132 
1133 static int
1134 fbt_modevent(module_t mod __unused, int type, void *data __unused)
1135 {
1136 	int error = 0;
1137 
1138 	switch (type) {
1139 	case MOD_LOAD:
1140 		break;
1141 
1142 	case MOD_UNLOAD:
1143 		break;
1144 
1145 	case MOD_SHUTDOWN:
1146 		break;
1147 
1148 	default:
1149 		error = EOPNOTSUPP;
1150 		break;
1151 
1152 	}
1153 
1154 	return (error);
1155 }
1156 
1157 static int
1158 fbt_open(struct cdev *dev __unused, int oflags __unused, int devtype __unused, struct thread *td __unused)
1159 {
1160 	return (0);
1161 }
1162 
1163 SYSINIT(fbt_load, SI_SUB_DTRACE_PROVIDER, SI_ORDER_ANY, fbt_load, NULL);
1164 SYSUNINIT(fbt_unload, SI_SUB_DTRACE_PROVIDER, SI_ORDER_ANY, fbt_unload, NULL);
1165 
1166 DEV_MODULE(fbt, fbt_modevent, NULL);
1167 MODULE_VERSION(fbt, 1);
1168 MODULE_DEPEND(fbt, dtrace, 1, 1, 1);
1169 MODULE_DEPEND(fbt, opensolaris, 1, 1, 1);
1170