xref: /freebsd/sys/cddl/dev/dtrace/powerpc/dtrace_subr.c (revision ce3adf4362fcca6a43e500b2531f0038adbfbd21)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  *
22  * $FreeBSD$
23  *
24  */
25 /*
26  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
27  * Use is subject to license terms.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/types.h>
36 #include <sys/kernel.h>
37 #include <sys/malloc.h>
38 #include <sys/kmem.h>
39 #include <sys/smp.h>
40 #include <sys/dtrace_impl.h>
41 #include <sys/dtrace_bsd.h>
42 #include <machine/clock.h>
43 #include <machine/frame.h>
44 #include <machine/trap.h>
45 #include <vm/pmap.h>
46 
47 #define	DELAYBRANCH(x)	((int)(x) < 0)
48 
49 extern uintptr_t 	dtrace_in_probe_addr;
50 extern int		dtrace_in_probe;
51 extern dtrace_id_t	dtrace_probeid_error;
52 extern int (*dtrace_invop_jump_addr)(struct trapframe *);
53 
54 extern void dtrace_getnanotime(struct timespec *tsp);
55 
56 int dtrace_invop(uintptr_t, uintptr_t *, uintptr_t);
57 void dtrace_invop_init(void);
58 void dtrace_invop_uninit(void);
59 
60 typedef struct dtrace_invop_hdlr {
61 	int (*dtih_func)(uintptr_t, uintptr_t *, uintptr_t);
62 	struct dtrace_invop_hdlr *dtih_next;
63 } dtrace_invop_hdlr_t;
64 
65 dtrace_invop_hdlr_t *dtrace_invop_hdlr;
66 
67 int
68 dtrace_invop(uintptr_t addr, uintptr_t *stack, uintptr_t arg0)
69 {
70 	dtrace_invop_hdlr_t *hdlr;
71 	int rval;
72 
73 	for (hdlr = dtrace_invop_hdlr; hdlr != NULL; hdlr = hdlr->dtih_next)
74 		if ((rval = hdlr->dtih_func(addr, stack, arg0)) != 0)
75 			return (rval);
76 
77 	return (0);
78 }
79 
80 void
81 dtrace_invop_add(int (*func)(uintptr_t, uintptr_t *, uintptr_t))
82 {
83 	dtrace_invop_hdlr_t *hdlr;
84 
85 	hdlr = kmem_alloc(sizeof (dtrace_invop_hdlr_t), KM_SLEEP);
86 	hdlr->dtih_func = func;
87 	hdlr->dtih_next = dtrace_invop_hdlr;
88 	dtrace_invop_hdlr = hdlr;
89 }
90 
91 void
92 dtrace_invop_remove(int (*func)(uintptr_t, uintptr_t *, uintptr_t))
93 {
94 	dtrace_invop_hdlr_t *hdlr = dtrace_invop_hdlr, *prev = NULL;
95 
96 	for (;;) {
97 		if (hdlr == NULL)
98 			panic("attempt to remove non-existent invop handler");
99 
100 		if (hdlr->dtih_func == func)
101 			break;
102 
103 		prev = hdlr;
104 		hdlr = hdlr->dtih_next;
105 	}
106 
107 	if (prev == NULL) {
108 		ASSERT(dtrace_invop_hdlr == hdlr);
109 		dtrace_invop_hdlr = hdlr->dtih_next;
110 	} else {
111 		ASSERT(dtrace_invop_hdlr != hdlr);
112 		prev->dtih_next = hdlr->dtih_next;
113 	}
114 
115 	kmem_free(hdlr, 0);
116 }
117 
118 
119 /*ARGSUSED*/
120 void
121 dtrace_toxic_ranges(void (*func)(uintptr_t base, uintptr_t limit))
122 {
123 	/*
124 	 * No toxic regions?
125 	 */
126 }
127 
128 void
129 dtrace_xcall(processorid_t cpu, dtrace_xcall_t func, void *arg)
130 {
131 	cpuset_t cpus;
132 
133 	if (cpu == DTRACE_CPUALL)
134 		cpus = all_cpus;
135 	else
136 		CPU_SETOF(cpu, &cpus);
137 
138 	smp_rendezvous_cpus(cpus, smp_no_rendevous_barrier, func,
139 			smp_no_rendevous_barrier, arg);
140 }
141 
142 static void
143 dtrace_sync_func(void)
144 {
145 }
146 
147 void
148 dtrace_sync(void)
149 {
150 	dtrace_xcall(DTRACE_CPUALL, (dtrace_xcall_t)dtrace_sync_func, NULL);
151 }
152 
153 static int64_t	tgt_cpu_tsc;
154 static int64_t	hst_cpu_tsc;
155 static int64_t	timebase_skew[MAXCPU];
156 static uint64_t	nsec_scale;
157 
158 /* See below for the explanation of this macro. */
159 /* This is taken from the amd64 dtrace_subr, to provide a synchronized timer
160  * between multiple processors in dtrace.  Since PowerPC Timebases can be much
161  * lower than x86, the scale shift is 26 instead of 28, allowing for a 15.63MHz
162  * timebase.
163  */
164 #define SCALE_SHIFT	26
165 
166 static void
167 dtrace_gethrtime_init_cpu(void *arg)
168 {
169 	uintptr_t cpu = (uintptr_t) arg;
170 
171 	if (cpu == curcpu)
172 		tgt_cpu_tsc = mftb();
173 	else
174 		hst_cpu_tsc = mftb();
175 }
176 
177 static void
178 dtrace_gethrtime_init(void *arg)
179 {
180 	struct pcpu *pc;
181 	uint64_t tb_f;
182 	cpuset_t map;
183 	int i;
184 
185 	tb_f = cpu_tickrate();
186 
187 	/*
188 	 * The following line checks that nsec_scale calculated below
189 	 * doesn't overflow 32-bit unsigned integer, so that it can multiply
190 	 * another 32-bit integer without overflowing 64-bit.
191 	 * Thus minimum supported Timebase frequency is 15.63MHz.
192 	 */
193 	KASSERT(tb_f > (NANOSEC >> (32 - SCALE_SHIFT)), ("Timebase frequency is too low"));
194 
195 	/*
196 	 * We scale up NANOSEC/tb_f ratio to preserve as much precision
197 	 * as possible.
198 	 * 2^26 factor was chosen quite arbitrarily from practical
199 	 * considerations:
200 	 * - it supports TSC frequencies as low as 15.63MHz (see above);
201 	 */
202 	nsec_scale = ((uint64_t)NANOSEC << SCALE_SHIFT) / tb_f;
203 
204 	/* The current CPU is the reference one. */
205 	sched_pin();
206 	timebase_skew[curcpu] = 0;
207 	CPU_FOREACH(i) {
208 		if (i == curcpu)
209 			continue;
210 
211 		pc = pcpu_find(i);
212 		CPU_SETOF(PCPU_GET(cpuid), &map);
213 		CPU_SET(pc->pc_cpuid, &map);
214 
215 		smp_rendezvous_cpus(map, NULL,
216 		    dtrace_gethrtime_init_cpu,
217 		    smp_no_rendevous_barrier, (void *)(uintptr_t) i);
218 
219 		timebase_skew[i] = tgt_cpu_tsc - hst_cpu_tsc;
220 	}
221 	sched_unpin();
222 }
223 
224 SYSINIT(dtrace_gethrtime_init, SI_SUB_SMP, SI_ORDER_ANY, dtrace_gethrtime_init, NULL);
225 
226 /*
227  * DTrace needs a high resolution time function which can
228  * be called from a probe context and guaranteed not to have
229  * instrumented with probes itself.
230  *
231  * Returns nanoseconds since boot.
232  */
233 uint64_t
234 dtrace_gethrtime()
235 {
236 	uint64_t timebase;
237 	uint32_t lo;
238 	uint32_t hi;
239 
240 	/*
241 	 * We split timebase value into lower and higher 32-bit halves and separately
242 	 * scale them with nsec_scale, then we scale them down by 2^28
243 	 * (see nsec_scale calculations) taking into account 32-bit shift of
244 	 * the higher half and finally add.
245 	 */
246 	timebase = mftb() - timebase_skew[curcpu];
247 	lo = timebase;
248 	hi = timebase >> 32;
249 	return (((lo * nsec_scale) >> SCALE_SHIFT) +
250 	    ((hi * nsec_scale) << (32 - SCALE_SHIFT)));
251 }
252 
253 uint64_t
254 dtrace_gethrestime(void)
255 {
256 	struct      timespec curtime;
257 
258 	dtrace_getnanotime(&curtime);
259 
260 	return (curtime.tv_sec * 1000000000UL + curtime.tv_nsec);
261 }
262 
263 /* Function to handle DTrace traps during probes. See powerpc/powerpc/trap.c */
264 int
265 dtrace_trap(struct trapframe *frame, u_int type)
266 {
267 	/*
268 	 * A trap can occur while DTrace executes a probe. Before
269 	 * executing the probe, DTrace blocks re-scheduling and sets
270 	 * a flag in it's per-cpu flags to indicate that it doesn't
271 	 * want to fault. On returning from the probe, the no-fault
272 	 * flag is cleared and finally re-scheduling is enabled.
273 	 *
274 	 * Check if DTrace has enabled 'no-fault' mode:
275 	 *
276 	 */
277 	if ((cpu_core[curcpu].cpuc_dtrace_flags & CPU_DTRACE_NOFAULT) != 0) {
278 		/*
279 		 * There are only a couple of trap types that are expected.
280 		 * All the rest will be handled in the usual way.
281 		 */
282 		switch (type) {
283 		/* Page fault. */
284 		case EXC_DSI:
285 		case EXC_DSE:
286 			/* Flag a bad address. */
287 			cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_BADADDR;
288 			cpu_core[curcpu].cpuc_dtrace_illval = frame->cpu.aim.dar;
289 
290 			/*
291 			 * Offset the instruction pointer to the instruction
292 			 * following the one causing the fault.
293 			 */
294 			frame->srr0 += sizeof(int);
295 			return (1);
296 		case EXC_ISI:
297 		case EXC_ISE:
298 			/* Flag a bad address. */
299 			cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_BADADDR;
300 			cpu_core[curcpu].cpuc_dtrace_illval = frame->srr0;
301 
302 			/*
303 			 * Offset the instruction pointer to the instruction
304 			 * following the one causing the fault.
305 			 */
306 			frame->srr0 += sizeof(int);
307 			return (1);
308 		default:
309 			/* Handle all other traps in the usual way. */
310 			break;
311 		}
312 	}
313 
314 	/* Handle the trap in the usual way. */
315 	return (0);
316 }
317 
318 void
319 dtrace_probe_error(dtrace_state_t *state, dtrace_epid_t epid, int which,
320     int fault, int fltoffs, uintptr_t illval)
321 {
322 
323 	dtrace_probe(dtrace_probeid_error, (uint64_t)(uintptr_t)state,
324 	    (uintptr_t)epid,
325 	    (uintptr_t)which, (uintptr_t)fault, (uintptr_t)fltoffs);
326 }
327 
328 static int
329 dtrace_invop_start(struct trapframe *frame)
330 {
331 	switch (dtrace_invop(frame->srr0, (uintptr_t *)frame, frame->fixreg[3])) {
332 	case DTRACE_INVOP_JUMP:
333 		break;
334 	case DTRACE_INVOP_BCTR:
335 		frame->srr0 = frame->ctr;
336 		break;
337 	case DTRACE_INVOP_BLR:
338 		frame->srr0 = frame->lr;
339 		break;
340 	case DTRACE_INVOP_MFLR_R0:
341 		frame->fixreg[0] = frame->lr;
342 		frame->srr0 = frame->srr0 + 4;
343 		break;
344 	default:
345 		return (-1);
346 		break;
347 	}
348 
349 	return (0);
350 }
351 
352 void dtrace_invop_init(void)
353 {
354 	dtrace_invop_jump_addr = dtrace_invop_start;
355 }
356 
357 void dtrace_invop_uninit(void)
358 {
359 	dtrace_invop_jump_addr = 0;
360 }
361