1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 * 22 * $FreeBSD$ 23 * 24 */ 25 /* 26 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 27 * Use is subject to license terms. 28 */ 29 30 #include <sys/param.h> 31 #include <sys/systm.h> 32 #include <sys/types.h> 33 #include <sys/kernel.h> 34 #include <sys/malloc.h> 35 #include <sys/kmem.h> 36 #include <sys/smp.h> 37 #include <sys/dtrace_impl.h> 38 #include <sys/dtrace_bsd.h> 39 #include <machine/clock.h> 40 #include <machine/frame.h> 41 #include <vm/pmap.h> 42 43 extern uintptr_t kernelbase; 44 extern uintptr_t dtrace_in_probe_addr; 45 extern int dtrace_in_probe; 46 47 int dtrace_invop(uintptr_t, uintptr_t *, uintptr_t); 48 49 typedef struct dtrace_invop_hdlr { 50 int (*dtih_func)(uintptr_t, uintptr_t *, uintptr_t); 51 struct dtrace_invop_hdlr *dtih_next; 52 } dtrace_invop_hdlr_t; 53 54 dtrace_invop_hdlr_t *dtrace_invop_hdlr; 55 56 int 57 dtrace_invop(uintptr_t addr, uintptr_t *stack, uintptr_t eax) 58 { 59 dtrace_invop_hdlr_t *hdlr; 60 int rval; 61 62 for (hdlr = dtrace_invop_hdlr; hdlr != NULL; hdlr = hdlr->dtih_next) 63 if ((rval = hdlr->dtih_func(addr, stack, eax)) != 0) 64 return (rval); 65 66 return (0); 67 } 68 69 void 70 dtrace_invop_add(int (*func)(uintptr_t, uintptr_t *, uintptr_t)) 71 { 72 dtrace_invop_hdlr_t *hdlr; 73 74 hdlr = kmem_alloc(sizeof (dtrace_invop_hdlr_t), KM_SLEEP); 75 hdlr->dtih_func = func; 76 hdlr->dtih_next = dtrace_invop_hdlr; 77 dtrace_invop_hdlr = hdlr; 78 } 79 80 void 81 dtrace_invop_remove(int (*func)(uintptr_t, uintptr_t *, uintptr_t)) 82 { 83 dtrace_invop_hdlr_t *hdlr = dtrace_invop_hdlr, *prev = NULL; 84 85 for (;;) { 86 if (hdlr == NULL) 87 panic("attempt to remove non-existent invop handler"); 88 89 if (hdlr->dtih_func == func) 90 break; 91 92 prev = hdlr; 93 hdlr = hdlr->dtih_next; 94 } 95 96 if (prev == NULL) { 97 ASSERT(dtrace_invop_hdlr == hdlr); 98 dtrace_invop_hdlr = hdlr->dtih_next; 99 } else { 100 ASSERT(dtrace_invop_hdlr != hdlr); 101 prev->dtih_next = hdlr->dtih_next; 102 } 103 104 kmem_free(hdlr, 0); 105 } 106 107 void 108 dtrace_toxic_ranges(void (*func)(uintptr_t base, uintptr_t limit)) 109 { 110 (*func)(0, kernelbase); 111 } 112 113 void 114 dtrace_xcall(processorid_t cpu, dtrace_xcall_t func, void *arg) 115 { 116 cpumask_t cpus; 117 118 critical_enter(); 119 120 if (cpu == DTRACE_CPUALL) 121 cpus = all_cpus; 122 else 123 cpus = (cpumask_t) (1 << cpu); 124 125 /* If the current CPU is in the set, call the function directly: */ 126 if ((cpus & (1 << curcpu)) != 0) { 127 (*func)(arg); 128 129 /* Mask the current CPU from the set */ 130 cpus &= ~(1 << curcpu); 131 } 132 133 /* If there are any CPUs in the set, cross-call to those CPUs */ 134 if (cpus != 0) 135 smp_rendezvous_cpus(cpus, NULL, func, smp_no_rendevous_barrier, arg); 136 137 critical_exit(); 138 } 139 140 static void 141 dtrace_sync_func(void) 142 { 143 } 144 145 void 146 dtrace_sync(void) 147 { 148 dtrace_xcall(DTRACE_CPUALL, (dtrace_xcall_t)dtrace_sync_func, NULL); 149 } 150 151 #ifdef notyet 152 int (*dtrace_fasttrap_probe_ptr)(struct regs *); 153 int (*dtrace_pid_probe_ptr)(struct regs *); 154 int (*dtrace_return_probe_ptr)(struct regs *); 155 156 void 157 dtrace_user_probe(struct regs *rp, caddr_t addr, processorid_t cpuid) 158 { 159 krwlock_t *rwp; 160 proc_t *p = curproc; 161 extern void trap(struct regs *, caddr_t, processorid_t); 162 163 if (USERMODE(rp->r_cs) || (rp->r_ps & PS_VM)) { 164 if (curthread->t_cred != p->p_cred) { 165 cred_t *oldcred = curthread->t_cred; 166 /* 167 * DTrace accesses t_cred in probe context. t_cred 168 * must always be either NULL, or point to a valid, 169 * allocated cred structure. 170 */ 171 curthread->t_cred = crgetcred(); 172 crfree(oldcred); 173 } 174 } 175 176 if (rp->r_trapno == T_DTRACE_RET) { 177 uint8_t step = curthread->t_dtrace_step; 178 uint8_t ret = curthread->t_dtrace_ret; 179 uintptr_t npc = curthread->t_dtrace_npc; 180 181 if (curthread->t_dtrace_ast) { 182 aston(curthread); 183 curthread->t_sig_check = 1; 184 } 185 186 /* 187 * Clear all user tracing flags. 188 */ 189 curthread->t_dtrace_ft = 0; 190 191 /* 192 * If we weren't expecting to take a return probe trap, kill 193 * the process as though it had just executed an unassigned 194 * trap instruction. 195 */ 196 if (step == 0) { 197 tsignal(curthread, SIGILL); 198 return; 199 } 200 201 /* 202 * If we hit this trap unrelated to a return probe, we're 203 * just here to reset the AST flag since we deferred a signal 204 * until after we logically single-stepped the instruction we 205 * copied out. 206 */ 207 if (ret == 0) { 208 rp->r_pc = npc; 209 return; 210 } 211 212 /* 213 * We need to wait until after we've called the 214 * dtrace_return_probe_ptr function pointer to set %pc. 215 */ 216 rwp = &CPU->cpu_ft_lock; 217 rw_enter(rwp, RW_READER); 218 if (dtrace_return_probe_ptr != NULL) 219 (void) (*dtrace_return_probe_ptr)(rp); 220 rw_exit(rwp); 221 rp->r_pc = npc; 222 223 } else if (rp->r_trapno == T_DTRACE_PROBE) { 224 rwp = &CPU->cpu_ft_lock; 225 rw_enter(rwp, RW_READER); 226 if (dtrace_fasttrap_probe_ptr != NULL) 227 (void) (*dtrace_fasttrap_probe_ptr)(rp); 228 rw_exit(rwp); 229 230 } else if (rp->r_trapno == T_BPTFLT) { 231 uint8_t instr; 232 rwp = &CPU->cpu_ft_lock; 233 234 /* 235 * The DTrace fasttrap provider uses the breakpoint trap 236 * (int 3). We let DTrace take the first crack at handling 237 * this trap; if it's not a probe that DTrace knowns about, 238 * we call into the trap() routine to handle it like a 239 * breakpoint placed by a conventional debugger. 240 */ 241 rw_enter(rwp, RW_READER); 242 if (dtrace_pid_probe_ptr != NULL && 243 (*dtrace_pid_probe_ptr)(rp) == 0) { 244 rw_exit(rwp); 245 return; 246 } 247 rw_exit(rwp); 248 249 /* 250 * If the instruction that caused the breakpoint trap doesn't 251 * look like an int 3 anymore, it may be that this tracepoint 252 * was removed just after the user thread executed it. In 253 * that case, return to user land to retry the instuction. 254 */ 255 if (fuword8((void *)(rp->r_pc - 1), &instr) == 0 && 256 instr != FASTTRAP_INSTR) { 257 rp->r_pc--; 258 return; 259 } 260 261 trap(rp, addr, cpuid); 262 263 } else { 264 trap(rp, addr, cpuid); 265 } 266 } 267 268 void 269 dtrace_safe_synchronous_signal(void) 270 { 271 kthread_t *t = curthread; 272 struct regs *rp = lwptoregs(ttolwp(t)); 273 size_t isz = t->t_dtrace_npc - t->t_dtrace_pc; 274 275 ASSERT(t->t_dtrace_on); 276 277 /* 278 * If we're not in the range of scratch addresses, we're not actually 279 * tracing user instructions so turn off the flags. If the instruction 280 * we copied out caused a synchonous trap, reset the pc back to its 281 * original value and turn off the flags. 282 */ 283 if (rp->r_pc < t->t_dtrace_scrpc || 284 rp->r_pc > t->t_dtrace_astpc + isz) { 285 t->t_dtrace_ft = 0; 286 } else if (rp->r_pc == t->t_dtrace_scrpc || 287 rp->r_pc == t->t_dtrace_astpc) { 288 rp->r_pc = t->t_dtrace_pc; 289 t->t_dtrace_ft = 0; 290 } 291 } 292 293 int 294 dtrace_safe_defer_signal(void) 295 { 296 kthread_t *t = curthread; 297 struct regs *rp = lwptoregs(ttolwp(t)); 298 size_t isz = t->t_dtrace_npc - t->t_dtrace_pc; 299 300 ASSERT(t->t_dtrace_on); 301 302 /* 303 * If we're not in the range of scratch addresses, we're not actually 304 * tracing user instructions so turn off the flags. 305 */ 306 if (rp->r_pc < t->t_dtrace_scrpc || 307 rp->r_pc > t->t_dtrace_astpc + isz) { 308 t->t_dtrace_ft = 0; 309 return (0); 310 } 311 312 /* 313 * If we've executed the original instruction, but haven't performed 314 * the jmp back to t->t_dtrace_npc or the clean up of any registers 315 * used to emulate %rip-relative instructions in 64-bit mode, do that 316 * here and take the signal right away. We detect this condition by 317 * seeing if the program counter is the range [scrpc + isz, astpc). 318 */ 319 if (t->t_dtrace_astpc - rp->r_pc < 320 t->t_dtrace_astpc - t->t_dtrace_scrpc - isz) { 321 #ifdef __amd64 322 /* 323 * If there is a scratch register and we're on the 324 * instruction immediately after the modified instruction, 325 * restore the value of that scratch register. 326 */ 327 if (t->t_dtrace_reg != 0 && 328 rp->r_pc == t->t_dtrace_scrpc + isz) { 329 switch (t->t_dtrace_reg) { 330 case REG_RAX: 331 rp->r_rax = t->t_dtrace_regv; 332 break; 333 case REG_RCX: 334 rp->r_rcx = t->t_dtrace_regv; 335 break; 336 case REG_R8: 337 rp->r_r8 = t->t_dtrace_regv; 338 break; 339 case REG_R9: 340 rp->r_r9 = t->t_dtrace_regv; 341 break; 342 } 343 } 344 #endif 345 rp->r_pc = t->t_dtrace_npc; 346 t->t_dtrace_ft = 0; 347 return (0); 348 } 349 350 /* 351 * Otherwise, make sure we'll return to the kernel after executing 352 * the copied out instruction and defer the signal. 353 */ 354 if (!t->t_dtrace_step) { 355 ASSERT(rp->r_pc < t->t_dtrace_astpc); 356 rp->r_pc += t->t_dtrace_astpc - t->t_dtrace_scrpc; 357 t->t_dtrace_step = 1; 358 } 359 360 t->t_dtrace_ast = 1; 361 362 return (1); 363 } 364 #endif 365 366 static int64_t tgt_cpu_tsc; 367 static int64_t hst_cpu_tsc; 368 static int64_t tsc_skew[MAXCPU]; 369 static uint64_t nsec_scale; 370 371 /* See below for the explanation of this macro. */ 372 #define SCALE_SHIFT 28 373 374 static void 375 dtrace_gethrtime_init_sync(void *arg) 376 { 377 #ifdef CHECK_SYNC 378 /* 379 * Delay this function from returning on one 380 * of the CPUs to check that the synchronisation 381 * works. 382 */ 383 uintptr_t cpu = (uintptr_t) arg; 384 385 if (cpu == curcpu) { 386 int i; 387 for (i = 0; i < 1000000000; i++) 388 tgt_cpu_tsc = rdtsc(); 389 tgt_cpu_tsc = 0; 390 } 391 #endif 392 } 393 394 static void 395 dtrace_gethrtime_init_cpu(void *arg) 396 { 397 uintptr_t cpu = (uintptr_t) arg; 398 399 if (cpu == curcpu) 400 tgt_cpu_tsc = rdtsc(); 401 else 402 hst_cpu_tsc = rdtsc(); 403 } 404 405 static void 406 dtrace_gethrtime_init(void *arg) 407 { 408 uint64_t tsc_f; 409 cpumask_t map; 410 int i; 411 412 /* 413 * Get TSC frequency known at this moment. 414 * This should be constant if TSC is invariant. 415 * Otherwise tick->time conversion will be inaccurate, but 416 * will preserve monotonic property of TSC. 417 */ 418 tsc_f = tsc_freq; 419 420 /* 421 * The following line checks that nsec_scale calculated below 422 * doesn't overflow 32-bit unsigned integer, so that it can multiply 423 * another 32-bit integer without overflowing 64-bit. 424 * Thus minimum supported TSC frequency is 62.5MHz. 425 */ 426 KASSERT(tsc_f > (NANOSEC >> (32 - SCALE_SHIFT)), ("TSC frequency is too low")); 427 428 /* 429 * We scale up NANOSEC/tsc_f ratio to preserve as much precision 430 * as possible. 431 * 2^28 factor was chosen quite arbitrarily from practical 432 * considerations: 433 * - it supports TSC frequencies as low as 62.5MHz (see above); 434 * - it provides quite good precision (e < 0.01%) up to THz 435 * (terahertz) values; 436 */ 437 nsec_scale = ((uint64_t)NANOSEC << SCALE_SHIFT) / tsc_f; 438 439 /* The current CPU is the reference one. */ 440 tsc_skew[curcpu] = 0; 441 442 for (i = 0; i <= mp_maxid; i++) { 443 if (i == curcpu) 444 continue; 445 446 if (pcpu_find(i) == NULL) 447 continue; 448 449 map = 0; 450 map |= (1 << curcpu); 451 map |= (1 << i); 452 453 smp_rendezvous_cpus(map, dtrace_gethrtime_init_sync, 454 dtrace_gethrtime_init_cpu, 455 smp_no_rendevous_barrier, (void *)(uintptr_t) i); 456 457 tsc_skew[i] = tgt_cpu_tsc - hst_cpu_tsc; 458 } 459 } 460 461 SYSINIT(dtrace_gethrtime_init, SI_SUB_SMP, SI_ORDER_ANY, dtrace_gethrtime_init, NULL); 462 463 /* 464 * DTrace needs a high resolution time function which can 465 * be called from a probe context and guaranteed not to have 466 * instrumented with probes itself. 467 * 468 * Returns nanoseconds since boot. 469 */ 470 uint64_t 471 dtrace_gethrtime() 472 { 473 uint64_t tsc; 474 uint32_t lo; 475 uint32_t hi; 476 477 /* 478 * We split TSC value into lower and higher 32-bit halves and separately 479 * scale them with nsec_scale, then we scale them down by 2^28 480 * (see nsec_scale calculations) taking into account 32-bit shift of 481 * the higher half and finally add. 482 */ 483 tsc = rdtsc() + tsc_skew[curcpu]; 484 lo = tsc; 485 hi = tsc >> 32; 486 return (((lo * nsec_scale) >> SCALE_SHIFT) + 487 ((hi * nsec_scale) << (32 - SCALE_SHIFT))); 488 } 489 490 uint64_t 491 dtrace_gethrestime(void) 492 { 493 printf("%s(%d): XXX\n",__func__,__LINE__); 494 return (0); 495 } 496 497 /* Function to handle DTrace traps during probes. See i386/i386/trap.c */ 498 int 499 dtrace_trap(struct trapframe *frame, u_int type) 500 { 501 /* 502 * A trap can occur while DTrace executes a probe. Before 503 * executing the probe, DTrace blocks re-scheduling and sets 504 * a flag in it's per-cpu flags to indicate that it doesn't 505 * want to fault. On returning from the the probe, the no-fault 506 * flag is cleared and finally re-scheduling is enabled. 507 * 508 * Check if DTrace has enabled 'no-fault' mode: 509 * 510 */ 511 if ((cpu_core[curcpu].cpuc_dtrace_flags & CPU_DTRACE_NOFAULT) != 0) { 512 /* 513 * There are only a couple of trap types that are expected. 514 * All the rest will be handled in the usual way. 515 */ 516 switch (type) { 517 /* General protection fault. */ 518 case T_PROTFLT: 519 /* Flag an illegal operation. */ 520 cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 521 522 /* 523 * Offset the instruction pointer to the instruction 524 * following the one causing the fault. 525 */ 526 frame->tf_eip += dtrace_instr_size((u_char *) frame->tf_eip); 527 return (1); 528 /* Page fault. */ 529 case T_PAGEFLT: 530 /* Flag a bad address. */ 531 cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_BADADDR; 532 cpu_core[curcpu].cpuc_dtrace_illval = rcr2(); 533 534 /* 535 * Offset the instruction pointer to the instruction 536 * following the one causing the fault. 537 */ 538 frame->tf_eip += dtrace_instr_size((u_char *) frame->tf_eip); 539 return (1); 540 default: 541 /* Handle all other traps in the usual way. */ 542 break; 543 } 544 } 545 546 /* Handle the trap in the usual way. */ 547 return (0); 548 } 549