1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 * 22 * $FreeBSD$ 23 * 24 */ 25 /* 26 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 27 * Use is subject to license terms. 28 */ 29 30 /* 31 * Copyright (c) 2011, Joyent, Inc. All rights reserved. 32 */ 33 34 #include <sys/param.h> 35 #include <sys/systm.h> 36 #include <sys/types.h> 37 #include <sys/cpuset.h> 38 #include <sys/kernel.h> 39 #include <sys/malloc.h> 40 #include <sys/kmem.h> 41 #include <sys/smp.h> 42 #include <sys/dtrace_impl.h> 43 #include <sys/dtrace_bsd.h> 44 #include <machine/clock.h> 45 #include <machine/frame.h> 46 #include <vm/pmap.h> 47 48 extern uintptr_t kernelbase; 49 extern uintptr_t dtrace_in_probe_addr; 50 extern int dtrace_in_probe; 51 52 extern void dtrace_getnanotime(struct timespec *tsp); 53 54 int dtrace_invop(uintptr_t, uintptr_t *, uintptr_t); 55 56 typedef struct dtrace_invop_hdlr { 57 int (*dtih_func)(uintptr_t, uintptr_t *, uintptr_t); 58 struct dtrace_invop_hdlr *dtih_next; 59 } dtrace_invop_hdlr_t; 60 61 dtrace_invop_hdlr_t *dtrace_invop_hdlr; 62 63 int 64 dtrace_invop(uintptr_t addr, uintptr_t *stack, uintptr_t eax) 65 { 66 dtrace_invop_hdlr_t *hdlr; 67 int rval; 68 69 for (hdlr = dtrace_invop_hdlr; hdlr != NULL; hdlr = hdlr->dtih_next) 70 if ((rval = hdlr->dtih_func(addr, stack, eax)) != 0) 71 return (rval); 72 73 return (0); 74 } 75 76 void 77 dtrace_invop_add(int (*func)(uintptr_t, uintptr_t *, uintptr_t)) 78 { 79 dtrace_invop_hdlr_t *hdlr; 80 81 hdlr = kmem_alloc(sizeof (dtrace_invop_hdlr_t), KM_SLEEP); 82 hdlr->dtih_func = func; 83 hdlr->dtih_next = dtrace_invop_hdlr; 84 dtrace_invop_hdlr = hdlr; 85 } 86 87 void 88 dtrace_invop_remove(int (*func)(uintptr_t, uintptr_t *, uintptr_t)) 89 { 90 dtrace_invop_hdlr_t *hdlr = dtrace_invop_hdlr, *prev = NULL; 91 92 for (;;) { 93 if (hdlr == NULL) 94 panic("attempt to remove non-existent invop handler"); 95 96 if (hdlr->dtih_func == func) 97 break; 98 99 prev = hdlr; 100 hdlr = hdlr->dtih_next; 101 } 102 103 if (prev == NULL) { 104 ASSERT(dtrace_invop_hdlr == hdlr); 105 dtrace_invop_hdlr = hdlr->dtih_next; 106 } else { 107 ASSERT(dtrace_invop_hdlr != hdlr); 108 prev->dtih_next = hdlr->dtih_next; 109 } 110 111 kmem_free(hdlr, 0); 112 } 113 114 void 115 dtrace_toxic_ranges(void (*func)(uintptr_t base, uintptr_t limit)) 116 { 117 (*func)(0, kernelbase); 118 } 119 120 void 121 dtrace_xcall(processorid_t cpu, dtrace_xcall_t func, void *arg) 122 { 123 cpuset_t cpus; 124 125 if (cpu == DTRACE_CPUALL) 126 cpus = all_cpus; 127 else 128 CPU_SETOF(cpu, &cpus); 129 130 smp_rendezvous_cpus(cpus, smp_no_rendevous_barrier, func, 131 smp_no_rendevous_barrier, arg); 132 } 133 134 static void 135 dtrace_sync_func(void) 136 { 137 } 138 139 void 140 dtrace_sync(void) 141 { 142 dtrace_xcall(DTRACE_CPUALL, (dtrace_xcall_t)dtrace_sync_func, NULL); 143 } 144 145 #ifdef notyet 146 int (*dtrace_fasttrap_probe_ptr)(struct regs *); 147 int (*dtrace_pid_probe_ptr)(struct regs *); 148 int (*dtrace_return_probe_ptr)(struct regs *); 149 150 void 151 dtrace_user_probe(struct regs *rp, caddr_t addr, processorid_t cpuid) 152 { 153 krwlock_t *rwp; 154 proc_t *p = curproc; 155 extern void trap(struct regs *, caddr_t, processorid_t); 156 157 if (USERMODE(rp->r_cs) || (rp->r_ps & PS_VM)) { 158 if (curthread->t_cred != p->p_cred) { 159 cred_t *oldcred = curthread->t_cred; 160 /* 161 * DTrace accesses t_cred in probe context. t_cred 162 * must always be either NULL, or point to a valid, 163 * allocated cred structure. 164 */ 165 curthread->t_cred = crgetcred(); 166 crfree(oldcred); 167 } 168 } 169 170 if (rp->r_trapno == T_DTRACE_RET) { 171 uint8_t step = curthread->t_dtrace_step; 172 uint8_t ret = curthread->t_dtrace_ret; 173 uintptr_t npc = curthread->t_dtrace_npc; 174 175 if (curthread->t_dtrace_ast) { 176 aston(curthread); 177 curthread->t_sig_check = 1; 178 } 179 180 /* 181 * Clear all user tracing flags. 182 */ 183 curthread->t_dtrace_ft = 0; 184 185 /* 186 * If we weren't expecting to take a return probe trap, kill 187 * the process as though it had just executed an unassigned 188 * trap instruction. 189 */ 190 if (step == 0) { 191 tsignal(curthread, SIGILL); 192 return; 193 } 194 195 /* 196 * If we hit this trap unrelated to a return probe, we're 197 * just here to reset the AST flag since we deferred a signal 198 * until after we logically single-stepped the instruction we 199 * copied out. 200 */ 201 if (ret == 0) { 202 rp->r_pc = npc; 203 return; 204 } 205 206 /* 207 * We need to wait until after we've called the 208 * dtrace_return_probe_ptr function pointer to set %pc. 209 */ 210 rwp = &CPU->cpu_ft_lock; 211 rw_enter(rwp, RW_READER); 212 if (dtrace_return_probe_ptr != NULL) 213 (void) (*dtrace_return_probe_ptr)(rp); 214 rw_exit(rwp); 215 rp->r_pc = npc; 216 217 } else if (rp->r_trapno == T_DTRACE_PROBE) { 218 rwp = &CPU->cpu_ft_lock; 219 rw_enter(rwp, RW_READER); 220 if (dtrace_fasttrap_probe_ptr != NULL) 221 (void) (*dtrace_fasttrap_probe_ptr)(rp); 222 rw_exit(rwp); 223 224 } else if (rp->r_trapno == T_BPTFLT) { 225 uint8_t instr; 226 rwp = &CPU->cpu_ft_lock; 227 228 /* 229 * The DTrace fasttrap provider uses the breakpoint trap 230 * (int 3). We let DTrace take the first crack at handling 231 * this trap; if it's not a probe that DTrace knowns about, 232 * we call into the trap() routine to handle it like a 233 * breakpoint placed by a conventional debugger. 234 */ 235 rw_enter(rwp, RW_READER); 236 if (dtrace_pid_probe_ptr != NULL && 237 (*dtrace_pid_probe_ptr)(rp) == 0) { 238 rw_exit(rwp); 239 return; 240 } 241 rw_exit(rwp); 242 243 /* 244 * If the instruction that caused the breakpoint trap doesn't 245 * look like an int 3 anymore, it may be that this tracepoint 246 * was removed just after the user thread executed it. In 247 * that case, return to user land to retry the instuction. 248 */ 249 if (fuword8((void *)(rp->r_pc - 1), &instr) == 0 && 250 instr != FASTTRAP_INSTR) { 251 rp->r_pc--; 252 return; 253 } 254 255 trap(rp, addr, cpuid); 256 257 } else { 258 trap(rp, addr, cpuid); 259 } 260 } 261 262 void 263 dtrace_safe_synchronous_signal(void) 264 { 265 kthread_t *t = curthread; 266 struct regs *rp = lwptoregs(ttolwp(t)); 267 size_t isz = t->t_dtrace_npc - t->t_dtrace_pc; 268 269 ASSERT(t->t_dtrace_on); 270 271 /* 272 * If we're not in the range of scratch addresses, we're not actually 273 * tracing user instructions so turn off the flags. If the instruction 274 * we copied out caused a synchonous trap, reset the pc back to its 275 * original value and turn off the flags. 276 */ 277 if (rp->r_pc < t->t_dtrace_scrpc || 278 rp->r_pc > t->t_dtrace_astpc + isz) { 279 t->t_dtrace_ft = 0; 280 } else if (rp->r_pc == t->t_dtrace_scrpc || 281 rp->r_pc == t->t_dtrace_astpc) { 282 rp->r_pc = t->t_dtrace_pc; 283 t->t_dtrace_ft = 0; 284 } 285 } 286 287 int 288 dtrace_safe_defer_signal(void) 289 { 290 kthread_t *t = curthread; 291 struct regs *rp = lwptoregs(ttolwp(t)); 292 size_t isz = t->t_dtrace_npc - t->t_dtrace_pc; 293 294 ASSERT(t->t_dtrace_on); 295 296 /* 297 * If we're not in the range of scratch addresses, we're not actually 298 * tracing user instructions so turn off the flags. 299 */ 300 if (rp->r_pc < t->t_dtrace_scrpc || 301 rp->r_pc > t->t_dtrace_astpc + isz) { 302 t->t_dtrace_ft = 0; 303 return (0); 304 } 305 306 /* 307 * If we have executed the original instruction, but we have performed 308 * neither the jmp back to t->t_dtrace_npc nor the clean up of any 309 * registers used to emulate %rip-relative instructions in 64-bit mode, 310 * we'll save ourselves some effort by doing that here and taking the 311 * signal right away. We detect this condition by seeing if the program 312 * counter is the range [scrpc + isz, astpc). 313 */ 314 if (rp->r_pc >= t->t_dtrace_scrpc + isz && 315 rp->r_pc < t->t_dtrace_astpc) { 316 #ifdef __amd64 317 /* 318 * If there is a scratch register and we're on the 319 * instruction immediately after the modified instruction, 320 * restore the value of that scratch register. 321 */ 322 if (t->t_dtrace_reg != 0 && 323 rp->r_pc == t->t_dtrace_scrpc + isz) { 324 switch (t->t_dtrace_reg) { 325 case REG_RAX: 326 rp->r_rax = t->t_dtrace_regv; 327 break; 328 case REG_RCX: 329 rp->r_rcx = t->t_dtrace_regv; 330 break; 331 case REG_R8: 332 rp->r_r8 = t->t_dtrace_regv; 333 break; 334 case REG_R9: 335 rp->r_r9 = t->t_dtrace_regv; 336 break; 337 } 338 } 339 #endif 340 rp->r_pc = t->t_dtrace_npc; 341 t->t_dtrace_ft = 0; 342 return (0); 343 } 344 345 /* 346 * Otherwise, make sure we'll return to the kernel after executing 347 * the copied out instruction and defer the signal. 348 */ 349 if (!t->t_dtrace_step) { 350 ASSERT(rp->r_pc < t->t_dtrace_astpc); 351 rp->r_pc += t->t_dtrace_astpc - t->t_dtrace_scrpc; 352 t->t_dtrace_step = 1; 353 } 354 355 t->t_dtrace_ast = 1; 356 357 return (1); 358 } 359 #endif 360 361 static int64_t tgt_cpu_tsc; 362 static int64_t hst_cpu_tsc; 363 static int64_t tsc_skew[MAXCPU]; 364 static uint64_t nsec_scale; 365 366 /* See below for the explanation of this macro. */ 367 #define SCALE_SHIFT 28 368 369 static void 370 dtrace_gethrtime_init_cpu(void *arg) 371 { 372 uintptr_t cpu = (uintptr_t) arg; 373 374 if (cpu == curcpu) 375 tgt_cpu_tsc = rdtsc(); 376 else 377 hst_cpu_tsc = rdtsc(); 378 } 379 380 static void 381 dtrace_gethrtime_init(void *arg) 382 { 383 cpuset_t map; 384 struct pcpu *pc; 385 uint64_t tsc_f; 386 int i; 387 388 /* 389 * Get TSC frequency known at this moment. 390 * This should be constant if TSC is invariant. 391 * Otherwise tick->time conversion will be inaccurate, but 392 * will preserve monotonic property of TSC. 393 */ 394 tsc_f = atomic_load_acq_64(&tsc_freq); 395 396 /* 397 * The following line checks that nsec_scale calculated below 398 * doesn't overflow 32-bit unsigned integer, so that it can multiply 399 * another 32-bit integer without overflowing 64-bit. 400 * Thus minimum supported TSC frequency is 62.5MHz. 401 */ 402 KASSERT(tsc_f > (NANOSEC >> (32 - SCALE_SHIFT)), ("TSC frequency is too low")); 403 404 /* 405 * We scale up NANOSEC/tsc_f ratio to preserve as much precision 406 * as possible. 407 * 2^28 factor was chosen quite arbitrarily from practical 408 * considerations: 409 * - it supports TSC frequencies as low as 62.5MHz (see above); 410 * - it provides quite good precision (e < 0.01%) up to THz 411 * (terahertz) values; 412 */ 413 nsec_scale = ((uint64_t)NANOSEC << SCALE_SHIFT) / tsc_f; 414 415 /* The current CPU is the reference one. */ 416 sched_pin(); 417 tsc_skew[curcpu] = 0; 418 CPU_FOREACH(i) { 419 if (i == curcpu) 420 continue; 421 422 pc = pcpu_find(i); 423 CPU_SETOF(PCPU_GET(cpuid), &map); 424 CPU_SET(pc->pc_cpuid, &map); 425 426 smp_rendezvous_cpus(map, NULL, 427 dtrace_gethrtime_init_cpu, 428 smp_no_rendevous_barrier, (void *)(uintptr_t) i); 429 430 tsc_skew[i] = tgt_cpu_tsc - hst_cpu_tsc; 431 } 432 sched_unpin(); 433 } 434 435 SYSINIT(dtrace_gethrtime_init, SI_SUB_SMP, SI_ORDER_ANY, dtrace_gethrtime_init, NULL); 436 437 /* 438 * DTrace needs a high resolution time function which can 439 * be called from a probe context and guaranteed not to have 440 * instrumented with probes itself. 441 * 442 * Returns nanoseconds since boot. 443 */ 444 uint64_t 445 dtrace_gethrtime() 446 { 447 uint64_t tsc; 448 uint32_t lo; 449 uint32_t hi; 450 451 /* 452 * We split TSC value into lower and higher 32-bit halves and separately 453 * scale them with nsec_scale, then we scale them down by 2^28 454 * (see nsec_scale calculations) taking into account 32-bit shift of 455 * the higher half and finally add. 456 */ 457 tsc = rdtsc() - tsc_skew[curcpu]; 458 lo = tsc; 459 hi = tsc >> 32; 460 return (((lo * nsec_scale) >> SCALE_SHIFT) + 461 ((hi * nsec_scale) << (32 - SCALE_SHIFT))); 462 } 463 464 uint64_t 465 dtrace_gethrestime(void) 466 { 467 struct timespec current_time; 468 469 dtrace_getnanotime(¤t_time); 470 471 return (current_time.tv_sec * 1000000000ULL + current_time.tv_nsec); 472 } 473 474 /* Function to handle DTrace traps during probes. See i386/i386/trap.c */ 475 int 476 dtrace_trap(struct trapframe *frame, u_int type) 477 { 478 /* 479 * A trap can occur while DTrace executes a probe. Before 480 * executing the probe, DTrace blocks re-scheduling and sets 481 * a flag in it's per-cpu flags to indicate that it doesn't 482 * want to fault. On returning from the probe, the no-fault 483 * flag is cleared and finally re-scheduling is enabled. 484 * 485 * Check if DTrace has enabled 'no-fault' mode: 486 * 487 */ 488 if ((cpu_core[curcpu].cpuc_dtrace_flags & CPU_DTRACE_NOFAULT) != 0) { 489 /* 490 * There are only a couple of trap types that are expected. 491 * All the rest will be handled in the usual way. 492 */ 493 switch (type) { 494 /* General protection fault. */ 495 case T_PROTFLT: 496 /* Flag an illegal operation. */ 497 cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 498 499 /* 500 * Offset the instruction pointer to the instruction 501 * following the one causing the fault. 502 */ 503 frame->tf_eip += dtrace_instr_size((u_char *) frame->tf_eip); 504 return (1); 505 /* Page fault. */ 506 case T_PAGEFLT: 507 /* Flag a bad address. */ 508 cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_BADADDR; 509 cpu_core[curcpu].cpuc_dtrace_illval = rcr2(); 510 511 /* 512 * Offset the instruction pointer to the instruction 513 * following the one causing the fault. 514 */ 515 frame->tf_eip += dtrace_instr_size((u_char *) frame->tf_eip); 516 return (1); 517 default: 518 /* Handle all other traps in the usual way. */ 519 break; 520 } 521 } 522 523 /* Handle the trap in the usual way. */ 524 return (0); 525 } 526