xref: /freebsd/sys/cddl/dev/dtrace/i386/dtrace_subr.c (revision 7e00348e7605b9906601438008341ffc37c00e2c)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  *
22  * $FreeBSD$
23  *
24  */
25 /*
26  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
27  * Use is subject to license terms.
28  */
29 
30 /*
31  * Copyright (c) 2011, Joyent, Inc. All rights reserved.
32  */
33 
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/types.h>
37 #include <sys/cpuset.h>
38 #include <sys/kernel.h>
39 #include <sys/malloc.h>
40 #include <sys/kmem.h>
41 #include <sys/smp.h>
42 #include <sys/dtrace_impl.h>
43 #include <sys/dtrace_bsd.h>
44 #include <machine/clock.h>
45 #include <machine/frame.h>
46 #include <vm/pmap.h>
47 
48 extern uintptr_t 	kernelbase;
49 extern uintptr_t 	dtrace_in_probe_addr;
50 extern int		dtrace_in_probe;
51 
52 extern void dtrace_getnanotime(struct timespec *tsp);
53 
54 int dtrace_invop(uintptr_t, uintptr_t *, uintptr_t);
55 
56 typedef struct dtrace_invop_hdlr {
57 	int (*dtih_func)(uintptr_t, uintptr_t *, uintptr_t);
58 	struct dtrace_invop_hdlr *dtih_next;
59 } dtrace_invop_hdlr_t;
60 
61 dtrace_invop_hdlr_t *dtrace_invop_hdlr;
62 
63 int
64 dtrace_invop(uintptr_t addr, uintptr_t *stack, uintptr_t eax)
65 {
66 	dtrace_invop_hdlr_t *hdlr;
67 	int rval;
68 
69 	for (hdlr = dtrace_invop_hdlr; hdlr != NULL; hdlr = hdlr->dtih_next)
70 		if ((rval = hdlr->dtih_func(addr, stack, eax)) != 0)
71 			return (rval);
72 
73 	return (0);
74 }
75 
76 void
77 dtrace_invop_add(int (*func)(uintptr_t, uintptr_t *, uintptr_t))
78 {
79 	dtrace_invop_hdlr_t *hdlr;
80 
81 	hdlr = kmem_alloc(sizeof (dtrace_invop_hdlr_t), KM_SLEEP);
82 	hdlr->dtih_func = func;
83 	hdlr->dtih_next = dtrace_invop_hdlr;
84 	dtrace_invop_hdlr = hdlr;
85 }
86 
87 void
88 dtrace_invop_remove(int (*func)(uintptr_t, uintptr_t *, uintptr_t))
89 {
90 	dtrace_invop_hdlr_t *hdlr = dtrace_invop_hdlr, *prev = NULL;
91 
92 	for (;;) {
93 		if (hdlr == NULL)
94 			panic("attempt to remove non-existent invop handler");
95 
96 		if (hdlr->dtih_func == func)
97 			break;
98 
99 		prev = hdlr;
100 		hdlr = hdlr->dtih_next;
101 	}
102 
103 	if (prev == NULL) {
104 		ASSERT(dtrace_invop_hdlr == hdlr);
105 		dtrace_invop_hdlr = hdlr->dtih_next;
106 	} else {
107 		ASSERT(dtrace_invop_hdlr != hdlr);
108 		prev->dtih_next = hdlr->dtih_next;
109 	}
110 
111 	kmem_free(hdlr, 0);
112 }
113 
114 void
115 dtrace_toxic_ranges(void (*func)(uintptr_t base, uintptr_t limit))
116 {
117 	(*func)(0, kernelbase);
118 }
119 
120 void
121 dtrace_xcall(processorid_t cpu, dtrace_xcall_t func, void *arg)
122 {
123 	cpuset_t cpus;
124 
125 	if (cpu == DTRACE_CPUALL)
126 		cpus = all_cpus;
127 	else
128 		CPU_SETOF(cpu, &cpus);
129 
130 	smp_rendezvous_cpus(cpus, smp_no_rendevous_barrier, func,
131 	    smp_no_rendevous_barrier, arg);
132 }
133 
134 static void
135 dtrace_sync_func(void)
136 {
137 }
138 
139 void
140 dtrace_sync(void)
141 {
142         dtrace_xcall(DTRACE_CPUALL, (dtrace_xcall_t)dtrace_sync_func, NULL);
143 }
144 
145 #ifdef notyet
146 int (*dtrace_fasttrap_probe_ptr)(struct regs *);
147 int (*dtrace_pid_probe_ptr)(struct regs *);
148 int (*dtrace_return_probe_ptr)(struct regs *);
149 
150 void
151 dtrace_user_probe(struct regs *rp, caddr_t addr, processorid_t cpuid)
152 {
153 	krwlock_t *rwp;
154 	proc_t *p = curproc;
155 	extern void trap(struct regs *, caddr_t, processorid_t);
156 
157 	if (USERMODE(rp->r_cs) || (rp->r_ps & PS_VM)) {
158 		if (curthread->t_cred != p->p_cred) {
159 			cred_t *oldcred = curthread->t_cred;
160 			/*
161 			 * DTrace accesses t_cred in probe context.  t_cred
162 			 * must always be either NULL, or point to a valid,
163 			 * allocated cred structure.
164 			 */
165 			curthread->t_cred = crgetcred();
166 			crfree(oldcred);
167 		}
168 	}
169 
170 	if (rp->r_trapno == T_DTRACE_RET) {
171 		uint8_t step = curthread->t_dtrace_step;
172 		uint8_t ret = curthread->t_dtrace_ret;
173 		uintptr_t npc = curthread->t_dtrace_npc;
174 
175 		if (curthread->t_dtrace_ast) {
176 			aston(curthread);
177 			curthread->t_sig_check = 1;
178 		}
179 
180 		/*
181 		 * Clear all user tracing flags.
182 		 */
183 		curthread->t_dtrace_ft = 0;
184 
185 		/*
186 		 * If we weren't expecting to take a return probe trap, kill
187 		 * the process as though it had just executed an unassigned
188 		 * trap instruction.
189 		 */
190 		if (step == 0) {
191 			tsignal(curthread, SIGILL);
192 			return;
193 		}
194 
195 		/*
196 		 * If we hit this trap unrelated to a return probe, we're
197 		 * just here to reset the AST flag since we deferred a signal
198 		 * until after we logically single-stepped the instruction we
199 		 * copied out.
200 		 */
201 		if (ret == 0) {
202 			rp->r_pc = npc;
203 			return;
204 		}
205 
206 		/*
207 		 * We need to wait until after we've called the
208 		 * dtrace_return_probe_ptr function pointer to set %pc.
209 		 */
210 		rwp = &CPU->cpu_ft_lock;
211 		rw_enter(rwp, RW_READER);
212 		if (dtrace_return_probe_ptr != NULL)
213 			(void) (*dtrace_return_probe_ptr)(rp);
214 		rw_exit(rwp);
215 		rp->r_pc = npc;
216 
217 	} else if (rp->r_trapno == T_DTRACE_PROBE) {
218 		rwp = &CPU->cpu_ft_lock;
219 		rw_enter(rwp, RW_READER);
220 		if (dtrace_fasttrap_probe_ptr != NULL)
221 			(void) (*dtrace_fasttrap_probe_ptr)(rp);
222 		rw_exit(rwp);
223 
224 	} else if (rp->r_trapno == T_BPTFLT) {
225 		uint8_t instr;
226 		rwp = &CPU->cpu_ft_lock;
227 
228 		/*
229 		 * The DTrace fasttrap provider uses the breakpoint trap
230 		 * (int 3). We let DTrace take the first crack at handling
231 		 * this trap; if it's not a probe that DTrace knowns about,
232 		 * we call into the trap() routine to handle it like a
233 		 * breakpoint placed by a conventional debugger.
234 		 */
235 		rw_enter(rwp, RW_READER);
236 		if (dtrace_pid_probe_ptr != NULL &&
237 		    (*dtrace_pid_probe_ptr)(rp) == 0) {
238 			rw_exit(rwp);
239 			return;
240 		}
241 		rw_exit(rwp);
242 
243 		/*
244 		 * If the instruction that caused the breakpoint trap doesn't
245 		 * look like an int 3 anymore, it may be that this tracepoint
246 		 * was removed just after the user thread executed it. In
247 		 * that case, return to user land to retry the instuction.
248 		 */
249 		if (fuword8((void *)(rp->r_pc - 1), &instr) == 0 &&
250 		    instr != FASTTRAP_INSTR) {
251 			rp->r_pc--;
252 			return;
253 		}
254 
255 		trap(rp, addr, cpuid);
256 
257 	} else {
258 		trap(rp, addr, cpuid);
259 	}
260 }
261 
262 void
263 dtrace_safe_synchronous_signal(void)
264 {
265 	kthread_t *t = curthread;
266 	struct regs *rp = lwptoregs(ttolwp(t));
267 	size_t isz = t->t_dtrace_npc - t->t_dtrace_pc;
268 
269 	ASSERT(t->t_dtrace_on);
270 
271 	/*
272 	 * If we're not in the range of scratch addresses, we're not actually
273 	 * tracing user instructions so turn off the flags. If the instruction
274 	 * we copied out caused a synchonous trap, reset the pc back to its
275 	 * original value and turn off the flags.
276 	 */
277 	if (rp->r_pc < t->t_dtrace_scrpc ||
278 	    rp->r_pc > t->t_dtrace_astpc + isz) {
279 		t->t_dtrace_ft = 0;
280 	} else if (rp->r_pc == t->t_dtrace_scrpc ||
281 	    rp->r_pc == t->t_dtrace_astpc) {
282 		rp->r_pc = t->t_dtrace_pc;
283 		t->t_dtrace_ft = 0;
284 	}
285 }
286 
287 int
288 dtrace_safe_defer_signal(void)
289 {
290 	kthread_t *t = curthread;
291 	struct regs *rp = lwptoregs(ttolwp(t));
292 	size_t isz = t->t_dtrace_npc - t->t_dtrace_pc;
293 
294 	ASSERT(t->t_dtrace_on);
295 
296 	/*
297 	 * If we're not in the range of scratch addresses, we're not actually
298 	 * tracing user instructions so turn off the flags.
299 	 */
300 	if (rp->r_pc < t->t_dtrace_scrpc ||
301 	    rp->r_pc > t->t_dtrace_astpc + isz) {
302 		t->t_dtrace_ft = 0;
303 		return (0);
304 	}
305 
306 	/*
307 	 * If we have executed the original instruction, but we have performed
308 	 * neither the jmp back to t->t_dtrace_npc nor the clean up of any
309 	 * registers used to emulate %rip-relative instructions in 64-bit mode,
310 	 * we'll save ourselves some effort by doing that here and taking the
311 	 * signal right away.  We detect this condition by seeing if the program
312 	 * counter is the range [scrpc + isz, astpc).
313 	 */
314 	if (rp->r_pc >= t->t_dtrace_scrpc + isz &&
315 	    rp->r_pc < t->t_dtrace_astpc) {
316 #ifdef __amd64
317 		/*
318 		 * If there is a scratch register and we're on the
319 		 * instruction immediately after the modified instruction,
320 		 * restore the value of that scratch register.
321 		 */
322 		if (t->t_dtrace_reg != 0 &&
323 		    rp->r_pc == t->t_dtrace_scrpc + isz) {
324 			switch (t->t_dtrace_reg) {
325 			case REG_RAX:
326 				rp->r_rax = t->t_dtrace_regv;
327 				break;
328 			case REG_RCX:
329 				rp->r_rcx = t->t_dtrace_regv;
330 				break;
331 			case REG_R8:
332 				rp->r_r8 = t->t_dtrace_regv;
333 				break;
334 			case REG_R9:
335 				rp->r_r9 = t->t_dtrace_regv;
336 				break;
337 			}
338 		}
339 #endif
340 		rp->r_pc = t->t_dtrace_npc;
341 		t->t_dtrace_ft = 0;
342 		return (0);
343 	}
344 
345 	/*
346 	 * Otherwise, make sure we'll return to the kernel after executing
347 	 * the copied out instruction and defer the signal.
348 	 */
349 	if (!t->t_dtrace_step) {
350 		ASSERT(rp->r_pc < t->t_dtrace_astpc);
351 		rp->r_pc += t->t_dtrace_astpc - t->t_dtrace_scrpc;
352 		t->t_dtrace_step = 1;
353 	}
354 
355 	t->t_dtrace_ast = 1;
356 
357 	return (1);
358 }
359 #endif
360 
361 static int64_t	tgt_cpu_tsc;
362 static int64_t	hst_cpu_tsc;
363 static int64_t	tsc_skew[MAXCPU];
364 static uint64_t	nsec_scale;
365 
366 /* See below for the explanation of this macro. */
367 #define SCALE_SHIFT	28
368 
369 static void
370 dtrace_gethrtime_init_cpu(void *arg)
371 {
372 	uintptr_t cpu = (uintptr_t) arg;
373 
374 	if (cpu == curcpu)
375 		tgt_cpu_tsc = rdtsc();
376 	else
377 		hst_cpu_tsc = rdtsc();
378 }
379 
380 static void
381 dtrace_gethrtime_init(void *arg)
382 {
383 	cpuset_t map;
384 	struct pcpu *pc;
385 	uint64_t tsc_f;
386 	int i;
387 
388 	/*
389 	 * Get TSC frequency known at this moment.
390 	 * This should be constant if TSC is invariant.
391 	 * Otherwise tick->time conversion will be inaccurate, but
392 	 * will preserve monotonic property of TSC.
393 	 */
394 	tsc_f = atomic_load_acq_64(&tsc_freq);
395 
396 	/*
397 	 * The following line checks that nsec_scale calculated below
398 	 * doesn't overflow 32-bit unsigned integer, so that it can multiply
399 	 * another 32-bit integer without overflowing 64-bit.
400 	 * Thus minimum supported TSC frequency is 62.5MHz.
401 	 */
402 	KASSERT(tsc_f > (NANOSEC >> (32 - SCALE_SHIFT)), ("TSC frequency is too low"));
403 
404 	/*
405 	 * We scale up NANOSEC/tsc_f ratio to preserve as much precision
406 	 * as possible.
407 	 * 2^28 factor was chosen quite arbitrarily from practical
408 	 * considerations:
409 	 * - it supports TSC frequencies as low as 62.5MHz (see above);
410 	 * - it provides quite good precision (e < 0.01%) up to THz
411 	 *   (terahertz) values;
412 	 */
413 	nsec_scale = ((uint64_t)NANOSEC << SCALE_SHIFT) / tsc_f;
414 
415 	/* The current CPU is the reference one. */
416 	sched_pin();
417 	tsc_skew[curcpu] = 0;
418 	CPU_FOREACH(i) {
419 		if (i == curcpu)
420 			continue;
421 
422 		pc = pcpu_find(i);
423 		CPU_SETOF(PCPU_GET(cpuid), &map);
424 		CPU_SET(pc->pc_cpuid, &map);
425 
426 		smp_rendezvous_cpus(map, NULL,
427 		    dtrace_gethrtime_init_cpu,
428 		    smp_no_rendevous_barrier, (void *)(uintptr_t) i);
429 
430 		tsc_skew[i] = tgt_cpu_tsc - hst_cpu_tsc;
431 	}
432 	sched_unpin();
433 }
434 
435 SYSINIT(dtrace_gethrtime_init, SI_SUB_SMP, SI_ORDER_ANY, dtrace_gethrtime_init, NULL);
436 
437 /*
438  * DTrace needs a high resolution time function which can
439  * be called from a probe context and guaranteed not to have
440  * instrumented with probes itself.
441  *
442  * Returns nanoseconds since boot.
443  */
444 uint64_t
445 dtrace_gethrtime()
446 {
447 	uint64_t tsc;
448 	uint32_t lo;
449 	uint32_t hi;
450 
451 	/*
452 	 * We split TSC value into lower and higher 32-bit halves and separately
453 	 * scale them with nsec_scale, then we scale them down by 2^28
454 	 * (see nsec_scale calculations) taking into account 32-bit shift of
455 	 * the higher half and finally add.
456 	 */
457 	tsc = rdtsc() - tsc_skew[curcpu];
458 	lo = tsc;
459 	hi = tsc >> 32;
460 	return (((lo * nsec_scale) >> SCALE_SHIFT) +
461 	    ((hi * nsec_scale) << (32 - SCALE_SHIFT)));
462 }
463 
464 uint64_t
465 dtrace_gethrestime(void)
466 {
467 	struct timespec current_time;
468 
469 	dtrace_getnanotime(&current_time);
470 
471 	return (current_time.tv_sec * 1000000000ULL + current_time.tv_nsec);
472 }
473 
474 /* Function to handle DTrace traps during probes. See i386/i386/trap.c */
475 int
476 dtrace_trap(struct trapframe *frame)
477 {
478 	/*
479 	 * A trap can occur while DTrace executes a probe. Before
480 	 * executing the probe, DTrace blocks re-scheduling and sets
481 	 * a flag in its per-cpu flags to indicate that it doesn't
482 	 * want to fault. On returning from the probe, the no-fault
483 	 * flag is cleared and finally re-scheduling is enabled.
484 	 *
485 	 * Check if DTrace has enabled 'no-fault' mode:
486 	 */
487 	if ((cpu_core[curcpu].cpuc_dtrace_flags & CPU_DTRACE_NOFAULT) != 0) {
488 		/*
489 		 * There are only a couple of trap types that are expected.
490 		 * All the rest will be handled in the usual way.
491 		 */
492 		switch (frame->tf_trapno) {
493 		/* General protection fault. */
494 		case T_PROTFLT:
495 			/* Flag an illegal operation. */
496 			cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
497 
498 			/*
499 			 * Offset the instruction pointer to the instruction
500 			 * following the one causing the fault.
501 			 */
502 			frame->tf_eip += dtrace_instr_size((u_char *) frame->tf_eip);
503 			return (1);
504 		/* Page fault. */
505 		case T_PAGEFLT:
506 			/* Flag a bad address. */
507 			cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_BADADDR;
508 			cpu_core[curcpu].cpuc_dtrace_illval = rcr2();
509 
510 			/*
511 			 * Offset the instruction pointer to the instruction
512 			 * following the one causing the fault.
513 			 */
514 			frame->tf_eip += dtrace_instr_size((u_char *) frame->tf_eip);
515 			return (1);
516 		default:
517 			/* Handle all other traps in the usual way. */
518 			break;
519 		}
520 	}
521 
522 	/* Handle the trap in the usual way. */
523 	return (0);
524 }
525