1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 * 22 * $FreeBSD$ 23 * 24 */ 25 /* 26 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 27 * Use is subject to license terms. 28 */ 29 30 /* 31 * Copyright (c) 2011, Joyent, Inc. All rights reserved. 32 */ 33 34 #include <sys/param.h> 35 #include <sys/systm.h> 36 #include <sys/types.h> 37 #include <sys/cpuset.h> 38 #include <sys/kernel.h> 39 #include <sys/malloc.h> 40 #include <sys/kmem.h> 41 #include <sys/smp.h> 42 #include <sys/dtrace_impl.h> 43 #include <sys/dtrace_bsd.h> 44 #include <machine/clock.h> 45 #include <machine/cpufunc.h> 46 #include <machine/frame.h> 47 #include <machine/psl.h> 48 #include <vm/pmap.h> 49 50 extern uintptr_t kernelbase; 51 52 extern void dtrace_getnanotime(struct timespec *tsp); 53 54 int dtrace_invop(uintptr_t, struct trapframe *, uintptr_t); 55 56 typedef struct dtrace_invop_hdlr { 57 int (*dtih_func)(uintptr_t, struct trapframe *, uintptr_t); 58 struct dtrace_invop_hdlr *dtih_next; 59 } dtrace_invop_hdlr_t; 60 61 dtrace_invop_hdlr_t *dtrace_invop_hdlr; 62 63 int 64 dtrace_invop(uintptr_t addr, struct trapframe *frame, uintptr_t eax) 65 { 66 dtrace_invop_hdlr_t *hdlr; 67 int rval; 68 69 for (hdlr = dtrace_invop_hdlr; hdlr != NULL; hdlr = hdlr->dtih_next) 70 if ((rval = hdlr->dtih_func(addr, frame, eax)) != 0) 71 return (rval); 72 73 return (0); 74 } 75 76 void 77 dtrace_invop_add(int (*func)(uintptr_t, struct trapframe *, uintptr_t)) 78 { 79 dtrace_invop_hdlr_t *hdlr; 80 81 hdlr = kmem_alloc(sizeof (dtrace_invop_hdlr_t), KM_SLEEP); 82 hdlr->dtih_func = func; 83 hdlr->dtih_next = dtrace_invop_hdlr; 84 dtrace_invop_hdlr = hdlr; 85 } 86 87 void 88 dtrace_invop_remove(int (*func)(uintptr_t, struct trapframe *, uintptr_t)) 89 { 90 dtrace_invop_hdlr_t *hdlr = dtrace_invop_hdlr, *prev = NULL; 91 92 for (;;) { 93 if (hdlr == NULL) 94 panic("attempt to remove non-existent invop handler"); 95 96 if (hdlr->dtih_func == func) 97 break; 98 99 prev = hdlr; 100 hdlr = hdlr->dtih_next; 101 } 102 103 if (prev == NULL) { 104 ASSERT(dtrace_invop_hdlr == hdlr); 105 dtrace_invop_hdlr = hdlr->dtih_next; 106 } else { 107 ASSERT(dtrace_invop_hdlr != hdlr); 108 prev->dtih_next = hdlr->dtih_next; 109 } 110 111 kmem_free(hdlr, 0); 112 } 113 114 void 115 dtrace_toxic_ranges(void (*func)(uintptr_t base, uintptr_t limit)) 116 { 117 (*func)(0, kernelbase); 118 } 119 120 void 121 dtrace_xcall(processorid_t cpu, dtrace_xcall_t func, void *arg) 122 { 123 cpuset_t cpus; 124 125 if (cpu == DTRACE_CPUALL) 126 cpus = all_cpus; 127 else 128 CPU_SETOF(cpu, &cpus); 129 130 smp_rendezvous_cpus(cpus, smp_no_rendezvous_barrier, func, 131 smp_no_rendezvous_barrier, arg); 132 } 133 134 static void 135 dtrace_sync_func(void) 136 { 137 } 138 139 void 140 dtrace_sync(void) 141 { 142 dtrace_xcall(DTRACE_CPUALL, (dtrace_xcall_t)dtrace_sync_func, NULL); 143 } 144 145 #ifdef notyet 146 void 147 dtrace_safe_synchronous_signal(void) 148 { 149 kthread_t *t = curthread; 150 struct regs *rp = lwptoregs(ttolwp(t)); 151 size_t isz = t->t_dtrace_npc - t->t_dtrace_pc; 152 153 ASSERT(t->t_dtrace_on); 154 155 /* 156 * If we're not in the range of scratch addresses, we're not actually 157 * tracing user instructions so turn off the flags. If the instruction 158 * we copied out caused a synchonous trap, reset the pc back to its 159 * original value and turn off the flags. 160 */ 161 if (rp->r_pc < t->t_dtrace_scrpc || 162 rp->r_pc > t->t_dtrace_astpc + isz) { 163 t->t_dtrace_ft = 0; 164 } else if (rp->r_pc == t->t_dtrace_scrpc || 165 rp->r_pc == t->t_dtrace_astpc) { 166 rp->r_pc = t->t_dtrace_pc; 167 t->t_dtrace_ft = 0; 168 } 169 } 170 171 int 172 dtrace_safe_defer_signal(void) 173 { 174 kthread_t *t = curthread; 175 struct regs *rp = lwptoregs(ttolwp(t)); 176 size_t isz = t->t_dtrace_npc - t->t_dtrace_pc; 177 178 ASSERT(t->t_dtrace_on); 179 180 /* 181 * If we're not in the range of scratch addresses, we're not actually 182 * tracing user instructions so turn off the flags. 183 */ 184 if (rp->r_pc < t->t_dtrace_scrpc || 185 rp->r_pc > t->t_dtrace_astpc + isz) { 186 t->t_dtrace_ft = 0; 187 return (0); 188 } 189 190 /* 191 * If we have executed the original instruction, but we have performed 192 * neither the jmp back to t->t_dtrace_npc nor the clean up of any 193 * registers used to emulate %rip-relative instructions in 64-bit mode, 194 * we'll save ourselves some effort by doing that here and taking the 195 * signal right away. We detect this condition by seeing if the program 196 * counter is the range [scrpc + isz, astpc). 197 */ 198 if (rp->r_pc >= t->t_dtrace_scrpc + isz && 199 rp->r_pc < t->t_dtrace_astpc) { 200 #ifdef __amd64 201 /* 202 * If there is a scratch register and we're on the 203 * instruction immediately after the modified instruction, 204 * restore the value of that scratch register. 205 */ 206 if (t->t_dtrace_reg != 0 && 207 rp->r_pc == t->t_dtrace_scrpc + isz) { 208 switch (t->t_dtrace_reg) { 209 case REG_RAX: 210 rp->r_rax = t->t_dtrace_regv; 211 break; 212 case REG_RCX: 213 rp->r_rcx = t->t_dtrace_regv; 214 break; 215 case REG_R8: 216 rp->r_r8 = t->t_dtrace_regv; 217 break; 218 case REG_R9: 219 rp->r_r9 = t->t_dtrace_regv; 220 break; 221 } 222 } 223 #endif 224 rp->r_pc = t->t_dtrace_npc; 225 t->t_dtrace_ft = 0; 226 return (0); 227 } 228 229 /* 230 * Otherwise, make sure we'll return to the kernel after executing 231 * the copied out instruction and defer the signal. 232 */ 233 if (!t->t_dtrace_step) { 234 ASSERT(rp->r_pc < t->t_dtrace_astpc); 235 rp->r_pc += t->t_dtrace_astpc - t->t_dtrace_scrpc; 236 t->t_dtrace_step = 1; 237 } 238 239 t->t_dtrace_ast = 1; 240 241 return (1); 242 } 243 #endif 244 245 static int64_t tgt_cpu_tsc; 246 static int64_t hst_cpu_tsc; 247 static int64_t tsc_skew[MAXCPU]; 248 static uint64_t nsec_scale; 249 250 /* See below for the explanation of this macro. */ 251 #define SCALE_SHIFT 28 252 253 static void 254 dtrace_gethrtime_init_cpu(void *arg) 255 { 256 uintptr_t cpu = (uintptr_t) arg; 257 258 if (cpu == curcpu) 259 tgt_cpu_tsc = rdtsc(); 260 else 261 hst_cpu_tsc = rdtsc(); 262 } 263 264 #ifdef EARLY_AP_STARTUP 265 static void 266 dtrace_gethrtime_init(void *arg) 267 { 268 struct pcpu *pc; 269 uint64_t tsc_f; 270 cpuset_t map; 271 int i; 272 #else 273 /* 274 * Get the frequency and scale factor as early as possible so that they can be 275 * used for boot-time tracing. 276 */ 277 static void 278 dtrace_gethrtime_init_early(void *arg) 279 { 280 uint64_t tsc_f; 281 #endif 282 283 /* 284 * Get TSC frequency known at this moment. 285 * This should be constant if TSC is invariant. 286 * Otherwise tick->time conversion will be inaccurate, but 287 * will preserve monotonic property of TSC. 288 */ 289 tsc_f = atomic_load_acq_64(&tsc_freq); 290 291 /* 292 * The following line checks that nsec_scale calculated below 293 * doesn't overflow 32-bit unsigned integer, so that it can multiply 294 * another 32-bit integer without overflowing 64-bit. 295 * Thus minimum supported TSC frequency is 62.5MHz. 296 */ 297 KASSERT(tsc_f > (NANOSEC >> (32 - SCALE_SHIFT)), 298 ("TSC frequency is too low")); 299 300 /* 301 * We scale up NANOSEC/tsc_f ratio to preserve as much precision 302 * as possible. 303 * 2^28 factor was chosen quite arbitrarily from practical 304 * considerations: 305 * - it supports TSC frequencies as low as 62.5MHz (see above); 306 * - it provides quite good precision (e < 0.01%) up to THz 307 * (terahertz) values; 308 */ 309 nsec_scale = ((uint64_t)NANOSEC << SCALE_SHIFT) / tsc_f; 310 #ifndef EARLY_AP_STARTUP 311 } 312 SYSINIT(dtrace_gethrtime_init_early, SI_SUB_CPU, SI_ORDER_ANY, 313 dtrace_gethrtime_init_early, NULL); 314 315 static void 316 dtrace_gethrtime_init(void *arg) 317 { 318 cpuset_t map; 319 struct pcpu *pc; 320 int i; 321 #endif 322 323 /* The current CPU is the reference one. */ 324 sched_pin(); 325 tsc_skew[curcpu] = 0; 326 CPU_FOREACH(i) { 327 if (i == curcpu) 328 continue; 329 330 pc = pcpu_find(i); 331 CPU_SETOF(PCPU_GET(cpuid), &map); 332 CPU_SET(pc->pc_cpuid, &map); 333 334 smp_rendezvous_cpus(map, NULL, 335 dtrace_gethrtime_init_cpu, 336 smp_no_rendezvous_barrier, (void *)(uintptr_t) i); 337 338 tsc_skew[i] = tgt_cpu_tsc - hst_cpu_tsc; 339 } 340 sched_unpin(); 341 } 342 #ifdef EARLY_AP_STARTUP 343 SYSINIT(dtrace_gethrtime_init, SI_SUB_DTRACE, SI_ORDER_ANY, 344 dtrace_gethrtime_init, NULL); 345 #else 346 SYSINIT(dtrace_gethrtime_init, SI_SUB_SMP, SI_ORDER_ANY, dtrace_gethrtime_init, 347 NULL); 348 #endif 349 350 /* 351 * DTrace needs a high resolution time function which can 352 * be called from a probe context and guaranteed not to have 353 * instrumented with probes itself. 354 * 355 * Returns nanoseconds since boot. 356 */ 357 uint64_t 358 dtrace_gethrtime(void) 359 { 360 uint64_t tsc; 361 uint32_t lo, hi; 362 register_t eflags; 363 364 /* 365 * We split TSC value into lower and higher 32-bit halves and separately 366 * scale them with nsec_scale, then we scale them down by 2^28 367 * (see nsec_scale calculations) taking into account 32-bit shift of 368 * the higher half and finally add. 369 */ 370 eflags = intr_disable(); 371 tsc = rdtsc() - tsc_skew[curcpu]; 372 intr_restore(eflags); 373 374 lo = tsc; 375 hi = tsc >> 32; 376 return (((lo * nsec_scale) >> SCALE_SHIFT) + 377 ((hi * nsec_scale) << (32 - SCALE_SHIFT))); 378 } 379 380 uint64_t 381 dtrace_gethrestime(void) 382 { 383 struct timespec current_time; 384 385 dtrace_getnanotime(¤t_time); 386 387 return (current_time.tv_sec * 1000000000ULL + current_time.tv_nsec); 388 } 389 390 /* Function to handle DTrace traps during probes. See i386/i386/trap.c */ 391 int 392 dtrace_trap(struct trapframe *frame, u_int type) 393 { 394 uint16_t nofault; 395 396 /* 397 * A trap can occur while DTrace executes a probe. Before 398 * executing the probe, DTrace blocks re-scheduling and sets 399 * a flag in its per-cpu flags to indicate that it doesn't 400 * want to fault. On returning from the probe, the no-fault 401 * flag is cleared and finally re-scheduling is enabled. 402 * 403 * Check if DTrace has enabled 'no-fault' mode: 404 */ 405 sched_pin(); 406 nofault = cpu_core[curcpu].cpuc_dtrace_flags & CPU_DTRACE_NOFAULT; 407 sched_unpin(); 408 if (nofault) { 409 KASSERT((read_eflags() & PSL_I) == 0, ("interrupts enabled")); 410 411 /* 412 * There are only a couple of trap types that are expected. 413 * All the rest will be handled in the usual way. 414 */ 415 switch (type) { 416 /* General protection fault. */ 417 case T_PROTFLT: 418 /* Flag an illegal operation. */ 419 cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 420 421 /* 422 * Offset the instruction pointer to the instruction 423 * following the one causing the fault. 424 */ 425 frame->tf_eip += dtrace_instr_size((u_char *) frame->tf_eip); 426 return (1); 427 /* Page fault. */ 428 case T_PAGEFLT: 429 /* Flag a bad address. */ 430 cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_BADADDR; 431 cpu_core[curcpu].cpuc_dtrace_illval = rcr2(); 432 433 /* 434 * Offset the instruction pointer to the instruction 435 * following the one causing the fault. 436 */ 437 frame->tf_eip += dtrace_instr_size((u_char *) frame->tf_eip); 438 return (1); 439 default: 440 /* Handle all other traps in the usual way. */ 441 break; 442 } 443 } 444 445 /* Handle the trap in the usual way. */ 446 return (0); 447 } 448