xref: /freebsd/sys/cddl/dev/dtrace/i386/dtrace_subr.c (revision 36712a94975f5bd0d26c85377283b49a2369c82f)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  *
22  * $FreeBSD$
23  *
24  */
25 /*
26  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
27  * Use is subject to license terms.
28  */
29 
30 /*
31  * Copyright (c) 2011, Joyent, Inc. All rights reserved.
32  */
33 
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/types.h>
37 #include <sys/cpuset.h>
38 #include <sys/kernel.h>
39 #include <sys/malloc.h>
40 #include <sys/kmem.h>
41 #include <sys/smp.h>
42 #include <sys/dtrace_impl.h>
43 #include <sys/dtrace_bsd.h>
44 #include <machine/clock.h>
45 #include <machine/cpufunc.h>
46 #include <machine/frame.h>
47 #include <machine/psl.h>
48 #include <machine/trap.h>
49 #include <vm/pmap.h>
50 
51 extern uintptr_t 	kernelbase;
52 
53 extern void dtrace_getnanotime(struct timespec *tsp);
54 extern int (*dtrace_invop_jump_addr)(struct trapframe *);
55 
56 int	dtrace_invop(uintptr_t, struct trapframe *, uintptr_t);
57 int	dtrace_invop_start(struct trapframe *frame);
58 void	dtrace_invop_init(void);
59 void	dtrace_invop_uninit(void);
60 
61 typedef struct dtrace_invop_hdlr {
62 	int (*dtih_func)(uintptr_t, struct trapframe *, uintptr_t);
63 	struct dtrace_invop_hdlr *dtih_next;
64 } dtrace_invop_hdlr_t;
65 
66 dtrace_invop_hdlr_t *dtrace_invop_hdlr;
67 
68 int
69 dtrace_invop(uintptr_t addr, struct trapframe *frame, uintptr_t eax)
70 {
71 	dtrace_invop_hdlr_t *hdlr;
72 	int rval;
73 
74 	for (hdlr = dtrace_invop_hdlr; hdlr != NULL; hdlr = hdlr->dtih_next)
75 		if ((rval = hdlr->dtih_func(addr, frame, eax)) != 0)
76 			return (rval);
77 
78 	return (0);
79 }
80 
81 void
82 dtrace_invop_add(int (*func)(uintptr_t, struct trapframe *, uintptr_t))
83 {
84 	dtrace_invop_hdlr_t *hdlr;
85 
86 	hdlr = kmem_alloc(sizeof (dtrace_invop_hdlr_t), KM_SLEEP);
87 	hdlr->dtih_func = func;
88 	hdlr->dtih_next = dtrace_invop_hdlr;
89 	dtrace_invop_hdlr = hdlr;
90 }
91 
92 void
93 dtrace_invop_remove(int (*func)(uintptr_t, struct trapframe *, uintptr_t))
94 {
95 	dtrace_invop_hdlr_t *hdlr = dtrace_invop_hdlr, *prev = NULL;
96 
97 	for (;;) {
98 		if (hdlr == NULL)
99 			panic("attempt to remove non-existent invop handler");
100 
101 		if (hdlr->dtih_func == func)
102 			break;
103 
104 		prev = hdlr;
105 		hdlr = hdlr->dtih_next;
106 	}
107 
108 	if (prev == NULL) {
109 		ASSERT(dtrace_invop_hdlr == hdlr);
110 		dtrace_invop_hdlr = hdlr->dtih_next;
111 	} else {
112 		ASSERT(dtrace_invop_hdlr != hdlr);
113 		prev->dtih_next = hdlr->dtih_next;
114 	}
115 
116 	kmem_free(hdlr, 0);
117 }
118 
119 void
120 dtrace_invop_init(void)
121 {
122 
123 	dtrace_invop_jump_addr = dtrace_invop_start;
124 }
125 
126 void
127 dtrace_invop_uninit(void)
128 {
129 
130 	dtrace_invop_jump_addr = NULL;
131 }
132 
133 void
134 dtrace_toxic_ranges(void (*func)(uintptr_t base, uintptr_t limit))
135 {
136 	(*func)(0, kernelbase);
137 }
138 
139 void
140 dtrace_xcall(processorid_t cpu, dtrace_xcall_t func, void *arg)
141 {
142 	cpuset_t cpus;
143 
144 	if (cpu == DTRACE_CPUALL)
145 		cpus = all_cpus;
146 	else
147 		CPU_SETOF(cpu, &cpus);
148 
149 	smp_rendezvous_cpus(cpus, smp_no_rendezvous_barrier, func,
150 	    smp_no_rendezvous_barrier, arg);
151 }
152 
153 static void
154 dtrace_sync_func(void)
155 {
156 }
157 
158 void
159 dtrace_sync(void)
160 {
161         dtrace_xcall(DTRACE_CPUALL, (dtrace_xcall_t)dtrace_sync_func, NULL);
162 }
163 
164 #ifdef notyet
165 void
166 dtrace_safe_synchronous_signal(void)
167 {
168 	kthread_t *t = curthread;
169 	struct regs *rp = lwptoregs(ttolwp(t));
170 	size_t isz = t->t_dtrace_npc - t->t_dtrace_pc;
171 
172 	ASSERT(t->t_dtrace_on);
173 
174 	/*
175 	 * If we're not in the range of scratch addresses, we're not actually
176 	 * tracing user instructions so turn off the flags. If the instruction
177 	 * we copied out caused a synchonous trap, reset the pc back to its
178 	 * original value and turn off the flags.
179 	 */
180 	if (rp->r_pc < t->t_dtrace_scrpc ||
181 	    rp->r_pc > t->t_dtrace_astpc + isz) {
182 		t->t_dtrace_ft = 0;
183 	} else if (rp->r_pc == t->t_dtrace_scrpc ||
184 	    rp->r_pc == t->t_dtrace_astpc) {
185 		rp->r_pc = t->t_dtrace_pc;
186 		t->t_dtrace_ft = 0;
187 	}
188 }
189 
190 int
191 dtrace_safe_defer_signal(void)
192 {
193 	kthread_t *t = curthread;
194 	struct regs *rp = lwptoregs(ttolwp(t));
195 	size_t isz = t->t_dtrace_npc - t->t_dtrace_pc;
196 
197 	ASSERT(t->t_dtrace_on);
198 
199 	/*
200 	 * If we're not in the range of scratch addresses, we're not actually
201 	 * tracing user instructions so turn off the flags.
202 	 */
203 	if (rp->r_pc < t->t_dtrace_scrpc ||
204 	    rp->r_pc > t->t_dtrace_astpc + isz) {
205 		t->t_dtrace_ft = 0;
206 		return (0);
207 	}
208 
209 	/*
210 	 * If we have executed the original instruction, but we have performed
211 	 * neither the jmp back to t->t_dtrace_npc nor the clean up of any
212 	 * registers used to emulate %rip-relative instructions in 64-bit mode,
213 	 * we'll save ourselves some effort by doing that here and taking the
214 	 * signal right away.  We detect this condition by seeing if the program
215 	 * counter is the range [scrpc + isz, astpc).
216 	 */
217 	if (rp->r_pc >= t->t_dtrace_scrpc + isz &&
218 	    rp->r_pc < t->t_dtrace_astpc) {
219 #ifdef __amd64
220 		/*
221 		 * If there is a scratch register and we're on the
222 		 * instruction immediately after the modified instruction,
223 		 * restore the value of that scratch register.
224 		 */
225 		if (t->t_dtrace_reg != 0 &&
226 		    rp->r_pc == t->t_dtrace_scrpc + isz) {
227 			switch (t->t_dtrace_reg) {
228 			case REG_RAX:
229 				rp->r_rax = t->t_dtrace_regv;
230 				break;
231 			case REG_RCX:
232 				rp->r_rcx = t->t_dtrace_regv;
233 				break;
234 			case REG_R8:
235 				rp->r_r8 = t->t_dtrace_regv;
236 				break;
237 			case REG_R9:
238 				rp->r_r9 = t->t_dtrace_regv;
239 				break;
240 			}
241 		}
242 #endif
243 		rp->r_pc = t->t_dtrace_npc;
244 		t->t_dtrace_ft = 0;
245 		return (0);
246 	}
247 
248 	/*
249 	 * Otherwise, make sure we'll return to the kernel after executing
250 	 * the copied out instruction and defer the signal.
251 	 */
252 	if (!t->t_dtrace_step) {
253 		ASSERT(rp->r_pc < t->t_dtrace_astpc);
254 		rp->r_pc += t->t_dtrace_astpc - t->t_dtrace_scrpc;
255 		t->t_dtrace_step = 1;
256 	}
257 
258 	t->t_dtrace_ast = 1;
259 
260 	return (1);
261 }
262 #endif
263 
264 static int64_t	tgt_cpu_tsc;
265 static int64_t	hst_cpu_tsc;
266 static int64_t	tsc_skew[MAXCPU];
267 static uint64_t	nsec_scale;
268 
269 /* See below for the explanation of this macro. */
270 #define SCALE_SHIFT	28
271 
272 static void
273 dtrace_gethrtime_init_cpu(void *arg)
274 {
275 	uintptr_t cpu = (uintptr_t) arg;
276 
277 	if (cpu == curcpu)
278 		tgt_cpu_tsc = rdtsc();
279 	else
280 		hst_cpu_tsc = rdtsc();
281 }
282 
283 #ifdef EARLY_AP_STARTUP
284 static void
285 dtrace_gethrtime_init(void *arg)
286 {
287 	struct pcpu *pc;
288 	uint64_t tsc_f;
289 	cpuset_t map;
290 	int i;
291 #else
292 /*
293  * Get the frequency and scale factor as early as possible so that they can be
294  * used for boot-time tracing.
295  */
296 static void
297 dtrace_gethrtime_init_early(void *arg)
298 {
299 	uint64_t tsc_f;
300 #endif
301 
302 	/*
303 	 * Get TSC frequency known at this moment.
304 	 * This should be constant if TSC is invariant.
305 	 * Otherwise tick->time conversion will be inaccurate, but
306 	 * will preserve monotonic property of TSC.
307 	 */
308 	tsc_f = atomic_load_acq_64(&tsc_freq);
309 
310 	/*
311 	 * The following line checks that nsec_scale calculated below
312 	 * doesn't overflow 32-bit unsigned integer, so that it can multiply
313 	 * another 32-bit integer without overflowing 64-bit.
314 	 * Thus minimum supported TSC frequency is 62.5MHz.
315 	 */
316 	KASSERT(tsc_f > (NANOSEC >> (32 - SCALE_SHIFT)),
317 	    ("TSC frequency is too low"));
318 
319 	/*
320 	 * We scale up NANOSEC/tsc_f ratio to preserve as much precision
321 	 * as possible.
322 	 * 2^28 factor was chosen quite arbitrarily from practical
323 	 * considerations:
324 	 * - it supports TSC frequencies as low as 62.5MHz (see above);
325 	 * - it provides quite good precision (e < 0.01%) up to THz
326 	 *   (terahertz) values;
327 	 */
328 	nsec_scale = ((uint64_t)NANOSEC << SCALE_SHIFT) / tsc_f;
329 #ifndef EARLY_AP_STARTUP
330 }
331 SYSINIT(dtrace_gethrtime_init_early, SI_SUB_CPU, SI_ORDER_ANY,
332     dtrace_gethrtime_init_early, NULL);
333 
334 static void
335 dtrace_gethrtime_init(void *arg)
336 {
337 	cpuset_t map;
338 	struct pcpu *pc;
339 	int i;
340 #endif
341 
342 	if (vm_guest != VM_GUEST_NO)
343 		return;
344 
345 	/* The current CPU is the reference one. */
346 	sched_pin();
347 	tsc_skew[curcpu] = 0;
348 	CPU_FOREACH(i) {
349 		if (i == curcpu)
350 			continue;
351 
352 		pc = pcpu_find(i);
353 		CPU_SETOF(PCPU_GET(cpuid), &map);
354 		CPU_SET(pc->pc_cpuid, &map);
355 
356 		smp_rendezvous_cpus(map, NULL,
357 		    dtrace_gethrtime_init_cpu,
358 		    smp_no_rendezvous_barrier, (void *)(uintptr_t) i);
359 
360 		tsc_skew[i] = tgt_cpu_tsc - hst_cpu_tsc;
361 	}
362 	sched_unpin();
363 }
364 #ifdef EARLY_AP_STARTUP
365 SYSINIT(dtrace_gethrtime_init, SI_SUB_DTRACE, SI_ORDER_ANY,
366     dtrace_gethrtime_init, NULL);
367 #else
368 SYSINIT(dtrace_gethrtime_init, SI_SUB_SMP, SI_ORDER_ANY, dtrace_gethrtime_init,
369     NULL);
370 #endif
371 
372 /*
373  * DTrace needs a high resolution time function which can
374  * be called from a probe context and guaranteed not to have
375  * instrumented with probes itself.
376  *
377  * Returns nanoseconds since boot.
378  */
379 uint64_t
380 dtrace_gethrtime(void)
381 {
382 	uint64_t tsc;
383 	uint32_t lo, hi;
384 	register_t eflags;
385 
386 	/*
387 	 * We split TSC value into lower and higher 32-bit halves and separately
388 	 * scale them with nsec_scale, then we scale them down by 2^28
389 	 * (see nsec_scale calculations) taking into account 32-bit shift of
390 	 * the higher half and finally add.
391 	 */
392 	eflags = intr_disable();
393 	tsc = rdtsc() - tsc_skew[curcpu];
394 	intr_restore(eflags);
395 
396 	lo = tsc;
397 	hi = tsc >> 32;
398 	return (((lo * nsec_scale) >> SCALE_SHIFT) +
399 	    ((hi * nsec_scale) << (32 - SCALE_SHIFT)));
400 }
401 
402 uint64_t
403 dtrace_gethrestime(void)
404 {
405 	struct timespec current_time;
406 
407 	dtrace_getnanotime(&current_time);
408 
409 	return (current_time.tv_sec * 1000000000ULL + current_time.tv_nsec);
410 }
411 
412 /* Function to handle DTrace traps during probes. See i386/i386/trap.c */
413 int
414 dtrace_trap(struct trapframe *frame, u_int type)
415 {
416 	uint16_t nofault;
417 
418 	/*
419 	 * A trap can occur while DTrace executes a probe. Before
420 	 * executing the probe, DTrace blocks re-scheduling and sets
421 	 * a flag in its per-cpu flags to indicate that it doesn't
422 	 * want to fault. On returning from the probe, the no-fault
423 	 * flag is cleared and finally re-scheduling is enabled.
424 	 *
425 	 * Check if DTrace has enabled 'no-fault' mode:
426 	 */
427 	sched_pin();
428 	nofault = cpu_core[curcpu].cpuc_dtrace_flags & CPU_DTRACE_NOFAULT;
429 	sched_unpin();
430 	if (nofault) {
431 		KASSERT((read_eflags() & PSL_I) == 0, ("interrupts enabled"));
432 
433 		/*
434 		 * There are only a couple of trap types that are expected.
435 		 * All the rest will be handled in the usual way.
436 		 */
437 		switch (type) {
438 		/* General protection fault. */
439 		case T_PROTFLT:
440 			/* Flag an illegal operation. */
441 			cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
442 
443 			/*
444 			 * Offset the instruction pointer to the instruction
445 			 * following the one causing the fault.
446 			 */
447 			frame->tf_eip += dtrace_instr_size((u_char *) frame->tf_eip);
448 			return (1);
449 		/* Page fault. */
450 		case T_PAGEFLT:
451 			/* Flag a bad address. */
452 			cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_BADADDR;
453 			cpu_core[curcpu].cpuc_dtrace_illval = rcr2();
454 
455 			/*
456 			 * Offset the instruction pointer to the instruction
457 			 * following the one causing the fault.
458 			 */
459 			frame->tf_eip += dtrace_instr_size((u_char *) frame->tf_eip);
460 			return (1);
461 		default:
462 			/* Handle all other traps in the usual way. */
463 			break;
464 		}
465 	}
466 
467 	/* Handle the trap in the usual way. */
468 	return (0);
469 }
470