1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 * 22 * $FreeBSD$ 23 * 24 */ 25 /* 26 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 27 * Use is subject to license terms. 28 */ 29 30 #include <sys/param.h> 31 #include <sys/systm.h> 32 #include <sys/types.h> 33 #include <sys/cpuset.h> 34 #include <sys/kernel.h> 35 #include <sys/malloc.h> 36 #include <sys/kmem.h> 37 #include <sys/smp.h> 38 #include <sys/dtrace_impl.h> 39 #include <sys/dtrace_bsd.h> 40 #include <machine/clock.h> 41 #include <machine/frame.h> 42 #include <vm/pmap.h> 43 44 extern uintptr_t kernelbase; 45 extern uintptr_t dtrace_in_probe_addr; 46 extern int dtrace_in_probe; 47 48 int dtrace_invop(uintptr_t, uintptr_t *, uintptr_t); 49 50 typedef struct dtrace_invop_hdlr { 51 int (*dtih_func)(uintptr_t, uintptr_t *, uintptr_t); 52 struct dtrace_invop_hdlr *dtih_next; 53 } dtrace_invop_hdlr_t; 54 55 dtrace_invop_hdlr_t *dtrace_invop_hdlr; 56 57 int 58 dtrace_invop(uintptr_t addr, uintptr_t *stack, uintptr_t eax) 59 { 60 dtrace_invop_hdlr_t *hdlr; 61 int rval; 62 63 for (hdlr = dtrace_invop_hdlr; hdlr != NULL; hdlr = hdlr->dtih_next) 64 if ((rval = hdlr->dtih_func(addr, stack, eax)) != 0) 65 return (rval); 66 67 return (0); 68 } 69 70 void 71 dtrace_invop_add(int (*func)(uintptr_t, uintptr_t *, uintptr_t)) 72 { 73 dtrace_invop_hdlr_t *hdlr; 74 75 hdlr = kmem_alloc(sizeof (dtrace_invop_hdlr_t), KM_SLEEP); 76 hdlr->dtih_func = func; 77 hdlr->dtih_next = dtrace_invop_hdlr; 78 dtrace_invop_hdlr = hdlr; 79 } 80 81 void 82 dtrace_invop_remove(int (*func)(uintptr_t, uintptr_t *, uintptr_t)) 83 { 84 dtrace_invop_hdlr_t *hdlr = dtrace_invop_hdlr, *prev = NULL; 85 86 for (;;) { 87 if (hdlr == NULL) 88 panic("attempt to remove non-existent invop handler"); 89 90 if (hdlr->dtih_func == func) 91 break; 92 93 prev = hdlr; 94 hdlr = hdlr->dtih_next; 95 } 96 97 if (prev == NULL) { 98 ASSERT(dtrace_invop_hdlr == hdlr); 99 dtrace_invop_hdlr = hdlr->dtih_next; 100 } else { 101 ASSERT(dtrace_invop_hdlr != hdlr); 102 prev->dtih_next = hdlr->dtih_next; 103 } 104 105 kmem_free(hdlr, 0); 106 } 107 108 void 109 dtrace_toxic_ranges(void (*func)(uintptr_t base, uintptr_t limit)) 110 { 111 (*func)(0, kernelbase); 112 } 113 114 void 115 dtrace_xcall(processorid_t cpu, dtrace_xcall_t func, void *arg) 116 { 117 cpuset_t cpus; 118 119 if (cpu == DTRACE_CPUALL) 120 cpus = all_cpus; 121 else 122 CPU_SETOF(cpu, &cpus); 123 124 smp_rendezvous_cpus(cpus, smp_no_rendevous_barrier, func, 125 smp_no_rendevous_barrier, arg); 126 } 127 128 static void 129 dtrace_sync_func(void) 130 { 131 } 132 133 void 134 dtrace_sync(void) 135 { 136 dtrace_xcall(DTRACE_CPUALL, (dtrace_xcall_t)dtrace_sync_func, NULL); 137 } 138 139 #ifdef notyet 140 int (*dtrace_fasttrap_probe_ptr)(struct regs *); 141 int (*dtrace_pid_probe_ptr)(struct regs *); 142 int (*dtrace_return_probe_ptr)(struct regs *); 143 144 void 145 dtrace_user_probe(struct regs *rp, caddr_t addr, processorid_t cpuid) 146 { 147 krwlock_t *rwp; 148 proc_t *p = curproc; 149 extern void trap(struct regs *, caddr_t, processorid_t); 150 151 if (USERMODE(rp->r_cs) || (rp->r_ps & PS_VM)) { 152 if (curthread->t_cred != p->p_cred) { 153 cred_t *oldcred = curthread->t_cred; 154 /* 155 * DTrace accesses t_cred in probe context. t_cred 156 * must always be either NULL, or point to a valid, 157 * allocated cred structure. 158 */ 159 curthread->t_cred = crgetcred(); 160 crfree(oldcred); 161 } 162 } 163 164 if (rp->r_trapno == T_DTRACE_RET) { 165 uint8_t step = curthread->t_dtrace_step; 166 uint8_t ret = curthread->t_dtrace_ret; 167 uintptr_t npc = curthread->t_dtrace_npc; 168 169 if (curthread->t_dtrace_ast) { 170 aston(curthread); 171 curthread->t_sig_check = 1; 172 } 173 174 /* 175 * Clear all user tracing flags. 176 */ 177 curthread->t_dtrace_ft = 0; 178 179 /* 180 * If we weren't expecting to take a return probe trap, kill 181 * the process as though it had just executed an unassigned 182 * trap instruction. 183 */ 184 if (step == 0) { 185 tsignal(curthread, SIGILL); 186 return; 187 } 188 189 /* 190 * If we hit this trap unrelated to a return probe, we're 191 * just here to reset the AST flag since we deferred a signal 192 * until after we logically single-stepped the instruction we 193 * copied out. 194 */ 195 if (ret == 0) { 196 rp->r_pc = npc; 197 return; 198 } 199 200 /* 201 * We need to wait until after we've called the 202 * dtrace_return_probe_ptr function pointer to set %pc. 203 */ 204 rwp = &CPU->cpu_ft_lock; 205 rw_enter(rwp, RW_READER); 206 if (dtrace_return_probe_ptr != NULL) 207 (void) (*dtrace_return_probe_ptr)(rp); 208 rw_exit(rwp); 209 rp->r_pc = npc; 210 211 } else if (rp->r_trapno == T_DTRACE_PROBE) { 212 rwp = &CPU->cpu_ft_lock; 213 rw_enter(rwp, RW_READER); 214 if (dtrace_fasttrap_probe_ptr != NULL) 215 (void) (*dtrace_fasttrap_probe_ptr)(rp); 216 rw_exit(rwp); 217 218 } else if (rp->r_trapno == T_BPTFLT) { 219 uint8_t instr; 220 rwp = &CPU->cpu_ft_lock; 221 222 /* 223 * The DTrace fasttrap provider uses the breakpoint trap 224 * (int 3). We let DTrace take the first crack at handling 225 * this trap; if it's not a probe that DTrace knowns about, 226 * we call into the trap() routine to handle it like a 227 * breakpoint placed by a conventional debugger. 228 */ 229 rw_enter(rwp, RW_READER); 230 if (dtrace_pid_probe_ptr != NULL && 231 (*dtrace_pid_probe_ptr)(rp) == 0) { 232 rw_exit(rwp); 233 return; 234 } 235 rw_exit(rwp); 236 237 /* 238 * If the instruction that caused the breakpoint trap doesn't 239 * look like an int 3 anymore, it may be that this tracepoint 240 * was removed just after the user thread executed it. In 241 * that case, return to user land to retry the instuction. 242 */ 243 if (fuword8((void *)(rp->r_pc - 1), &instr) == 0 && 244 instr != FASTTRAP_INSTR) { 245 rp->r_pc--; 246 return; 247 } 248 249 trap(rp, addr, cpuid); 250 251 } else { 252 trap(rp, addr, cpuid); 253 } 254 } 255 256 void 257 dtrace_safe_synchronous_signal(void) 258 { 259 kthread_t *t = curthread; 260 struct regs *rp = lwptoregs(ttolwp(t)); 261 size_t isz = t->t_dtrace_npc - t->t_dtrace_pc; 262 263 ASSERT(t->t_dtrace_on); 264 265 /* 266 * If we're not in the range of scratch addresses, we're not actually 267 * tracing user instructions so turn off the flags. If the instruction 268 * we copied out caused a synchonous trap, reset the pc back to its 269 * original value and turn off the flags. 270 */ 271 if (rp->r_pc < t->t_dtrace_scrpc || 272 rp->r_pc > t->t_dtrace_astpc + isz) { 273 t->t_dtrace_ft = 0; 274 } else if (rp->r_pc == t->t_dtrace_scrpc || 275 rp->r_pc == t->t_dtrace_astpc) { 276 rp->r_pc = t->t_dtrace_pc; 277 t->t_dtrace_ft = 0; 278 } 279 } 280 281 int 282 dtrace_safe_defer_signal(void) 283 { 284 kthread_t *t = curthread; 285 struct regs *rp = lwptoregs(ttolwp(t)); 286 size_t isz = t->t_dtrace_npc - t->t_dtrace_pc; 287 288 ASSERT(t->t_dtrace_on); 289 290 /* 291 * If we're not in the range of scratch addresses, we're not actually 292 * tracing user instructions so turn off the flags. 293 */ 294 if (rp->r_pc < t->t_dtrace_scrpc || 295 rp->r_pc > t->t_dtrace_astpc + isz) { 296 t->t_dtrace_ft = 0; 297 return (0); 298 } 299 300 /* 301 * If we've executed the original instruction, but haven't performed 302 * the jmp back to t->t_dtrace_npc or the clean up of any registers 303 * used to emulate %rip-relative instructions in 64-bit mode, do that 304 * here and take the signal right away. We detect this condition by 305 * seeing if the program counter is the range [scrpc + isz, astpc). 306 */ 307 if (t->t_dtrace_astpc - rp->r_pc < 308 t->t_dtrace_astpc - t->t_dtrace_scrpc - isz) { 309 #ifdef __amd64 310 /* 311 * If there is a scratch register and we're on the 312 * instruction immediately after the modified instruction, 313 * restore the value of that scratch register. 314 */ 315 if (t->t_dtrace_reg != 0 && 316 rp->r_pc == t->t_dtrace_scrpc + isz) { 317 switch (t->t_dtrace_reg) { 318 case REG_RAX: 319 rp->r_rax = t->t_dtrace_regv; 320 break; 321 case REG_RCX: 322 rp->r_rcx = t->t_dtrace_regv; 323 break; 324 case REG_R8: 325 rp->r_r8 = t->t_dtrace_regv; 326 break; 327 case REG_R9: 328 rp->r_r9 = t->t_dtrace_regv; 329 break; 330 } 331 } 332 #endif 333 rp->r_pc = t->t_dtrace_npc; 334 t->t_dtrace_ft = 0; 335 return (0); 336 } 337 338 /* 339 * Otherwise, make sure we'll return to the kernel after executing 340 * the copied out instruction and defer the signal. 341 */ 342 if (!t->t_dtrace_step) { 343 ASSERT(rp->r_pc < t->t_dtrace_astpc); 344 rp->r_pc += t->t_dtrace_astpc - t->t_dtrace_scrpc; 345 t->t_dtrace_step = 1; 346 } 347 348 t->t_dtrace_ast = 1; 349 350 return (1); 351 } 352 #endif 353 354 static int64_t tgt_cpu_tsc; 355 static int64_t hst_cpu_tsc; 356 static int64_t tsc_skew[MAXCPU]; 357 static uint64_t nsec_scale; 358 359 /* See below for the explanation of this macro. */ 360 #define SCALE_SHIFT 28 361 362 static void 363 dtrace_gethrtime_init_cpu(void *arg) 364 { 365 uintptr_t cpu = (uintptr_t) arg; 366 367 if (cpu == curcpu) 368 tgt_cpu_tsc = rdtsc(); 369 else 370 hst_cpu_tsc = rdtsc(); 371 } 372 373 static void 374 dtrace_gethrtime_init(void *arg) 375 { 376 cpuset_t map; 377 struct pcpu *pc; 378 uint64_t tsc_f; 379 int i; 380 381 /* 382 * Get TSC frequency known at this moment. 383 * This should be constant if TSC is invariant. 384 * Otherwise tick->time conversion will be inaccurate, but 385 * will preserve monotonic property of TSC. 386 */ 387 tsc_f = atomic_load_acq_64(&tsc_freq); 388 389 /* 390 * The following line checks that nsec_scale calculated below 391 * doesn't overflow 32-bit unsigned integer, so that it can multiply 392 * another 32-bit integer without overflowing 64-bit. 393 * Thus minimum supported TSC frequency is 62.5MHz. 394 */ 395 KASSERT(tsc_f > (NANOSEC >> (32 - SCALE_SHIFT)), ("TSC frequency is too low")); 396 397 /* 398 * We scale up NANOSEC/tsc_f ratio to preserve as much precision 399 * as possible. 400 * 2^28 factor was chosen quite arbitrarily from practical 401 * considerations: 402 * - it supports TSC frequencies as low as 62.5MHz (see above); 403 * - it provides quite good precision (e < 0.01%) up to THz 404 * (terahertz) values; 405 */ 406 nsec_scale = ((uint64_t)NANOSEC << SCALE_SHIFT) / tsc_f; 407 408 /* The current CPU is the reference one. */ 409 sched_pin(); 410 tsc_skew[curcpu] = 0; 411 CPU_FOREACH(i) { 412 if (i == curcpu) 413 continue; 414 415 pc = pcpu_find(i); 416 CPU_SETOF(PCPU_GET(cpuid), &map); 417 CPU_SET(pc->pc_cpuid, &map); 418 419 smp_rendezvous_cpus(map, NULL, 420 dtrace_gethrtime_init_cpu, 421 smp_no_rendevous_barrier, (void *)(uintptr_t) i); 422 423 tsc_skew[i] = tgt_cpu_tsc - hst_cpu_tsc; 424 } 425 sched_unpin(); 426 } 427 428 SYSINIT(dtrace_gethrtime_init, SI_SUB_SMP, SI_ORDER_ANY, dtrace_gethrtime_init, NULL); 429 430 /* 431 * DTrace needs a high resolution time function which can 432 * be called from a probe context and guaranteed not to have 433 * instrumented with probes itself. 434 * 435 * Returns nanoseconds since boot. 436 */ 437 uint64_t 438 dtrace_gethrtime() 439 { 440 uint64_t tsc; 441 uint32_t lo; 442 uint32_t hi; 443 444 /* 445 * We split TSC value into lower and higher 32-bit halves and separately 446 * scale them with nsec_scale, then we scale them down by 2^28 447 * (see nsec_scale calculations) taking into account 32-bit shift of 448 * the higher half and finally add. 449 */ 450 tsc = rdtsc() + tsc_skew[curcpu]; 451 lo = tsc; 452 hi = tsc >> 32; 453 return (((lo * nsec_scale) >> SCALE_SHIFT) + 454 ((hi * nsec_scale) << (32 - SCALE_SHIFT))); 455 } 456 457 uint64_t 458 dtrace_gethrestime(void) 459 { 460 printf("%s(%d): XXX\n",__func__,__LINE__); 461 return (0); 462 } 463 464 /* Function to handle DTrace traps during probes. See i386/i386/trap.c */ 465 int 466 dtrace_trap(struct trapframe *frame, u_int type) 467 { 468 /* 469 * A trap can occur while DTrace executes a probe. Before 470 * executing the probe, DTrace blocks re-scheduling and sets 471 * a flag in it's per-cpu flags to indicate that it doesn't 472 * want to fault. On returning from the probe, the no-fault 473 * flag is cleared and finally re-scheduling is enabled. 474 * 475 * Check if DTrace has enabled 'no-fault' mode: 476 * 477 */ 478 if ((cpu_core[curcpu].cpuc_dtrace_flags & CPU_DTRACE_NOFAULT) != 0) { 479 /* 480 * There are only a couple of trap types that are expected. 481 * All the rest will be handled in the usual way. 482 */ 483 switch (type) { 484 /* General protection fault. */ 485 case T_PROTFLT: 486 /* Flag an illegal operation. */ 487 cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 488 489 /* 490 * Offset the instruction pointer to the instruction 491 * following the one causing the fault. 492 */ 493 frame->tf_eip += dtrace_instr_size((u_char *) frame->tf_eip); 494 return (1); 495 /* Page fault. */ 496 case T_PAGEFLT: 497 /* Flag a bad address. */ 498 cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_BADADDR; 499 cpu_core[curcpu].cpuc_dtrace_illval = rcr2(); 500 501 /* 502 * Offset the instruction pointer to the instruction 503 * following the one causing the fault. 504 */ 505 frame->tf_eip += dtrace_instr_size((u_char *) frame->tf_eip); 506 return (1); 507 default: 508 /* Handle all other traps in the usual way. */ 509 break; 510 } 511 } 512 513 /* Handle the trap in the usual way. */ 514 return (0); 515 } 516