1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 * 22 * $FreeBSD$ 23 * 24 */ 25 /* 26 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 27 * Use is subject to license terms. 28 */ 29 30 /* 31 * Copyright (c) 2011, Joyent, Inc. All rights reserved. 32 */ 33 34 #include <sys/param.h> 35 #include <sys/systm.h> 36 #include <sys/kernel.h> 37 #include <sys/malloc.h> 38 #include <sys/proc.h> 39 #include <sys/smp.h> 40 #include <sys/dtrace_impl.h> 41 #include <sys/dtrace_bsd.h> 42 #include <cddl/dev/dtrace/dtrace_cddl.h> 43 #include <machine/clock.h> 44 #include <machine/cpufunc.h> 45 #include <machine/frame.h> 46 #include <machine/md_var.h> 47 #include <machine/psl.h> 48 #include <machine/trap.h> 49 #include <vm/pmap.h> 50 51 extern void dtrace_getnanotime(struct timespec *tsp); 52 extern int (*dtrace_invop_jump_addr)(struct trapframe *); 53 54 int dtrace_invop(uintptr_t, struct trapframe *, void **); 55 int dtrace_invop_start(struct trapframe *frame); 56 void dtrace_invop_init(void); 57 void dtrace_invop_uninit(void); 58 59 typedef struct dtrace_invop_hdlr { 60 int (*dtih_func)(uintptr_t, struct trapframe *, uintptr_t); 61 struct dtrace_invop_hdlr *dtih_next; 62 } dtrace_invop_hdlr_t; 63 64 dtrace_invop_hdlr_t *dtrace_invop_hdlr; 65 66 int 67 dtrace_invop(uintptr_t addr, struct trapframe *frame, void **scratch) 68 { 69 struct thread *td; 70 dtrace_invop_hdlr_t *hdlr; 71 int rval; 72 73 td = curthread; 74 td->t_dtrace_trapframe = frame; 75 rval = 0; 76 for (hdlr = dtrace_invop_hdlr; hdlr != NULL; hdlr = hdlr->dtih_next) { 77 rval = hdlr->dtih_func(addr, frame, (uintptr_t)scratch); 78 if (rval != 0) 79 break; 80 } 81 td->t_dtrace_trapframe = NULL; 82 return (rval); 83 } 84 85 void 86 dtrace_invop_add(int (*func)(uintptr_t, struct trapframe *, uintptr_t)) 87 { 88 dtrace_invop_hdlr_t *hdlr; 89 90 hdlr = kmem_alloc(sizeof (dtrace_invop_hdlr_t), KM_SLEEP); 91 hdlr->dtih_func = func; 92 hdlr->dtih_next = dtrace_invop_hdlr; 93 dtrace_invop_hdlr = hdlr; 94 } 95 96 void 97 dtrace_invop_remove(int (*func)(uintptr_t, struct trapframe *, uintptr_t)) 98 { 99 dtrace_invop_hdlr_t *hdlr = dtrace_invop_hdlr, *prev = NULL; 100 101 for (;;) { 102 if (hdlr == NULL) 103 panic("attempt to remove non-existent invop handler"); 104 105 if (hdlr->dtih_func == func) 106 break; 107 108 prev = hdlr; 109 hdlr = hdlr->dtih_next; 110 } 111 112 if (prev == NULL) { 113 ASSERT(dtrace_invop_hdlr == hdlr); 114 dtrace_invop_hdlr = hdlr->dtih_next; 115 } else { 116 ASSERT(dtrace_invop_hdlr != hdlr); 117 prev->dtih_next = hdlr->dtih_next; 118 } 119 120 kmem_free(hdlr, 0); 121 } 122 123 void 124 dtrace_invop_init(void) 125 { 126 127 dtrace_invop_jump_addr = dtrace_invop_start; 128 } 129 130 void 131 dtrace_invop_uninit(void) 132 { 133 134 dtrace_invop_jump_addr = NULL; 135 } 136 137 /*ARGSUSED*/ 138 void 139 dtrace_toxic_ranges(void (*func)(uintptr_t base, uintptr_t limit)) 140 { 141 (*func)(0, la57 ? (uintptr_t)addr_P5Tmap : (uintptr_t)addr_P4Tmap); 142 } 143 144 void 145 dtrace_xcall(processorid_t cpu, dtrace_xcall_t func, void *arg) 146 { 147 cpuset_t cpus; 148 149 if (cpu == DTRACE_CPUALL) 150 cpus = all_cpus; 151 else 152 CPU_SETOF(cpu, &cpus); 153 154 smp_rendezvous_cpus(cpus, smp_no_rendezvous_barrier, func, 155 smp_no_rendezvous_barrier, arg); 156 } 157 158 static void 159 dtrace_sync_func(void) 160 { 161 } 162 163 void 164 dtrace_sync(void) 165 { 166 dtrace_xcall(DTRACE_CPUALL, (dtrace_xcall_t)dtrace_sync_func, NULL); 167 } 168 169 #ifdef notyet 170 void 171 dtrace_safe_synchronous_signal(void) 172 { 173 kthread_t *t = curthread; 174 struct regs *rp = lwptoregs(ttolwp(t)); 175 size_t isz = t->t_dtrace_npc - t->t_dtrace_pc; 176 177 ASSERT(t->t_dtrace_on); 178 179 /* 180 * If we're not in the range of scratch addresses, we're not actually 181 * tracing user instructions so turn off the flags. If the instruction 182 * we copied out caused a synchonous trap, reset the pc back to its 183 * original value and turn off the flags. 184 */ 185 if (rp->r_pc < t->t_dtrace_scrpc || 186 rp->r_pc > t->t_dtrace_astpc + isz) { 187 t->t_dtrace_ft = 0; 188 } else if (rp->r_pc == t->t_dtrace_scrpc || 189 rp->r_pc == t->t_dtrace_astpc) { 190 rp->r_pc = t->t_dtrace_pc; 191 t->t_dtrace_ft = 0; 192 } 193 } 194 195 int 196 dtrace_safe_defer_signal(void) 197 { 198 kthread_t *t = curthread; 199 struct regs *rp = lwptoregs(ttolwp(t)); 200 size_t isz = t->t_dtrace_npc - t->t_dtrace_pc; 201 202 ASSERT(t->t_dtrace_on); 203 204 /* 205 * If we're not in the range of scratch addresses, we're not actually 206 * tracing user instructions so turn off the flags. 207 */ 208 if (rp->r_pc < t->t_dtrace_scrpc || 209 rp->r_pc > t->t_dtrace_astpc + isz) { 210 t->t_dtrace_ft = 0; 211 return (0); 212 } 213 214 /* 215 * If we have executed the original instruction, but we have performed 216 * neither the jmp back to t->t_dtrace_npc nor the clean up of any 217 * registers used to emulate %rip-relative instructions in 64-bit mode, 218 * we'll save ourselves some effort by doing that here and taking the 219 * signal right away. We detect this condition by seeing if the program 220 * counter is the range [scrpc + isz, astpc). 221 */ 222 if (rp->r_pc >= t->t_dtrace_scrpc + isz && 223 rp->r_pc < t->t_dtrace_astpc) { 224 #ifdef __amd64 225 /* 226 * If there is a scratch register and we're on the 227 * instruction immediately after the modified instruction, 228 * restore the value of that scratch register. 229 */ 230 if (t->t_dtrace_reg != 0 && 231 rp->r_pc == t->t_dtrace_scrpc + isz) { 232 switch (t->t_dtrace_reg) { 233 case REG_RAX: 234 rp->r_rax = t->t_dtrace_regv; 235 break; 236 case REG_RCX: 237 rp->r_rcx = t->t_dtrace_regv; 238 break; 239 case REG_R8: 240 rp->r_r8 = t->t_dtrace_regv; 241 break; 242 case REG_R9: 243 rp->r_r9 = t->t_dtrace_regv; 244 break; 245 } 246 } 247 #endif 248 rp->r_pc = t->t_dtrace_npc; 249 t->t_dtrace_ft = 0; 250 return (0); 251 } 252 253 /* 254 * Otherwise, make sure we'll return to the kernel after executing 255 * the copied out instruction and defer the signal. 256 */ 257 if (!t->t_dtrace_step) { 258 ASSERT(rp->r_pc < t->t_dtrace_astpc); 259 rp->r_pc += t->t_dtrace_astpc - t->t_dtrace_scrpc; 260 t->t_dtrace_step = 1; 261 } 262 263 t->t_dtrace_ast = 1; 264 265 return (1); 266 } 267 #endif 268 269 static int64_t tgt_cpu_tsc; 270 static int64_t hst_cpu_tsc; 271 static int64_t tsc_skew[MAXCPU]; 272 static uint64_t nsec_scale; 273 274 /* See below for the explanation of this macro. */ 275 #define SCALE_SHIFT 28 276 277 static void 278 dtrace_gethrtime_init_cpu(void *arg) 279 { 280 uintptr_t cpu = (uintptr_t) arg; 281 282 if (cpu == curcpu) 283 tgt_cpu_tsc = rdtsc(); 284 else 285 hst_cpu_tsc = rdtsc(); 286 } 287 288 #ifdef EARLY_AP_STARTUP 289 static void 290 dtrace_gethrtime_init(void *arg) 291 { 292 struct pcpu *pc; 293 uint64_t tsc_f; 294 cpuset_t map; 295 int i; 296 #else 297 /* 298 * Get the frequency and scale factor as early as possible so that they can be 299 * used for boot-time tracing. 300 */ 301 static void 302 dtrace_gethrtime_init_early(void *arg) 303 { 304 uint64_t tsc_f; 305 #endif 306 307 /* 308 * Get TSC frequency known at this moment. 309 * This should be constant if TSC is invariant. 310 * Otherwise tick->time conversion will be inaccurate, but 311 * will preserve monotonic property of TSC. 312 */ 313 tsc_f = atomic_load_acq_64(&tsc_freq); 314 315 /* 316 * The following line checks that nsec_scale calculated below 317 * doesn't overflow 32-bit unsigned integer, so that it can multiply 318 * another 32-bit integer without overflowing 64-bit. 319 * Thus minimum supported TSC frequency is 62.5MHz. 320 */ 321 KASSERT(tsc_f > (NANOSEC >> (32 - SCALE_SHIFT)), 322 ("TSC frequency is too low")); 323 324 /* 325 * We scale up NANOSEC/tsc_f ratio to preserve as much precision 326 * as possible. 327 * 2^28 factor was chosen quite arbitrarily from practical 328 * considerations: 329 * - it supports TSC frequencies as low as 62.5MHz (see above); 330 * - it provides quite good precision (e < 0.01%) up to THz 331 * (terahertz) values; 332 */ 333 nsec_scale = ((uint64_t)NANOSEC << SCALE_SHIFT) / tsc_f; 334 #ifndef EARLY_AP_STARTUP 335 } 336 SYSINIT(dtrace_gethrtime_init_early, SI_SUB_CPU, SI_ORDER_ANY, 337 dtrace_gethrtime_init_early, NULL); 338 339 static void 340 dtrace_gethrtime_init(void *arg) 341 { 342 struct pcpu *pc; 343 cpuset_t map; 344 int i; 345 #endif 346 347 if (vm_guest != VM_GUEST_NO) 348 return; 349 350 /* The current CPU is the reference one. */ 351 sched_pin(); 352 tsc_skew[curcpu] = 0; 353 CPU_FOREACH(i) { 354 if (i == curcpu) 355 continue; 356 357 pc = pcpu_find(i); 358 CPU_SETOF(PCPU_GET(cpuid), &map); 359 CPU_SET(pc->pc_cpuid, &map); 360 361 smp_rendezvous_cpus(map, NULL, 362 dtrace_gethrtime_init_cpu, 363 smp_no_rendezvous_barrier, (void *)(uintptr_t) i); 364 365 tsc_skew[i] = tgt_cpu_tsc - hst_cpu_tsc; 366 } 367 sched_unpin(); 368 } 369 #ifdef EARLY_AP_STARTUP 370 SYSINIT(dtrace_gethrtime_init, SI_SUB_DTRACE, SI_ORDER_ANY, 371 dtrace_gethrtime_init, NULL); 372 #else 373 SYSINIT(dtrace_gethrtime_init, SI_SUB_SMP, SI_ORDER_ANY, dtrace_gethrtime_init, 374 NULL); 375 #endif 376 377 /* 378 * DTrace needs a high resolution time function which can 379 * be called from a probe context and guaranteed not to have 380 * instrumented with probes itself. 381 * 382 * Returns nanoseconds since boot. 383 */ 384 uint64_t 385 dtrace_gethrtime(void) 386 { 387 uint64_t tsc; 388 uint32_t lo, hi; 389 register_t rflags; 390 391 /* 392 * We split TSC value into lower and higher 32-bit halves and separately 393 * scale them with nsec_scale, then we scale them down by 2^28 394 * (see nsec_scale calculations) taking into account 32-bit shift of 395 * the higher half and finally add. 396 */ 397 rflags = intr_disable(); 398 tsc = rdtsc() - tsc_skew[curcpu]; 399 intr_restore(rflags); 400 401 lo = tsc; 402 hi = tsc >> 32; 403 return (((lo * nsec_scale) >> SCALE_SHIFT) + 404 ((hi * nsec_scale) << (32 - SCALE_SHIFT))); 405 } 406 407 uint64_t 408 dtrace_gethrestime(void) 409 { 410 struct timespec current_time; 411 412 dtrace_getnanotime(¤t_time); 413 414 return (current_time.tv_sec * 1000000000ULL + current_time.tv_nsec); 415 } 416 417 /* Function to handle DTrace traps during probes. See amd64/amd64/trap.c. */ 418 int 419 dtrace_trap(struct trapframe *frame, u_int type) 420 { 421 uint16_t nofault; 422 423 /* 424 * A trap can occur while DTrace executes a probe. Before 425 * executing the probe, DTrace blocks re-scheduling and sets 426 * a flag in its per-cpu flags to indicate that it doesn't 427 * want to fault. On returning from the probe, the no-fault 428 * flag is cleared and finally re-scheduling is enabled. 429 * 430 * Check if DTrace has enabled 'no-fault' mode: 431 */ 432 sched_pin(); 433 nofault = cpu_core[curcpu].cpuc_dtrace_flags & CPU_DTRACE_NOFAULT; 434 sched_unpin(); 435 if (nofault) { 436 KASSERT((read_rflags() & PSL_I) == 0, ("interrupts enabled")); 437 438 /* 439 * There are only a couple of trap types that are expected. 440 * All the rest will be handled in the usual way. 441 */ 442 switch (type) { 443 /* General protection fault. */ 444 case T_PROTFLT: 445 /* Flag an illegal operation. */ 446 cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 447 448 /* 449 * Offset the instruction pointer to the instruction 450 * following the one causing the fault. 451 */ 452 frame->tf_rip += dtrace_instr_size((u_char *) frame->tf_rip); 453 return (1); 454 /* Page fault. */ 455 case T_PAGEFLT: 456 /* Flag a bad address. */ 457 cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_BADADDR; 458 cpu_core[curcpu].cpuc_dtrace_illval = frame->tf_addr; 459 460 /* 461 * Offset the instruction pointer to the instruction 462 * following the one causing the fault. 463 */ 464 frame->tf_rip += dtrace_instr_size((u_char *) frame->tf_rip); 465 return (1); 466 default: 467 /* Handle all other traps in the usual way. */ 468 break; 469 } 470 } 471 472 /* Handle the trap in the usual way. */ 473 return (0); 474 } 475